利用菲涅尔公式计算光波在两种介质表面折反射率及折反射能流密度 n[E#K`gg'
I7S#vIMXR.
1、光疏射向光密 : xBG~D
}C'H@:/
clear L@&(>
Li? _P5+a
close all 1DTA Dh0
pBb fU2p
n1=1,n2=1.45; TwaK>t96[
-|FSdzvg
theta=0:0.1:90; %XQ!>BeE
H[x$65ND
a=theta*pi/180; D)_67w|u|
~{xm(p
rp=(n2*cos(a)-n1*sqrt(1-(n1/n2*sin(a)).^2))./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); NI%&Xhn!*>
4g%BCGsys
rs=(n1*cos(a)-n2*sqrt(1-(n1/n2*sin(a)).^2))./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); #Bih=A
#
5gg
Yg$
tp=2*n1*cos(a)./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); rsGQ
:c
iPuX
ts=2*n1*cos(a)./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); `"-ln'nw
ULJV
figure(1) xh90qm
\-h%z%{R
subplot(1,2,1); v0 3
?x\tE]
plot(theta,rp,'-',theta,rs,'--',theta,abs(rp),':',theta,abs(rs),'-.','LineWidth',2) C||9u}Q<
>Av[`1a2F
legend('r_p','r_s','|r_p|','|r_s|') qb[UA5S\`
zZhA]J
xlabel('\theta_i') 01_*^iCf5
O^L#(8bC
ylabel('Amplitude') ;/79tlwq
yPmo@aw]1
title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) 5.TeH@(
X%sMna)
axis([0 90 -1 1]) }}Kjb
~x #RIt
grid on )
u(Gf*t
aQTISX;
subplot(1,2,2); !,0%ZG}]7
e*Gt%'
plot(theta,tp,'-',theta,ts,'--',theta,abs(tp),':',theta,abs(ts),'-.','LineWidth',2) vUNmN2pRJ
->rr4xaK C
legend('t_p','t_s','|t_p|','|t_s|') iL6Yk @
~ZuFMVR
xlabel('\theta_i') 2x<A7l)6
M#CYDEB
ylabel('Amplitude') <j<V{Wc
|l#<vw
wE
title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) ~M!9E])
|RS(QU<QE
axis([0 90 0 1]) $.0l% $ 7
S!r,p};
grid on 4]P5k6nV
VHbQLJ0
Rp=abs(rp).^2; 'Y;M%
|Vj@;+/j
Rs=abs(rs).^2; >69- [#P!
V0O6\)/.
Rn=(Rp+Rs)/2; Xk]:]pl4W
t~0!K;nn
Tp=1-Rp; yOdh?:Imv
1!P\x=Nn_
Ts=1-Rs; P
=jRof$
[/+}E X
Tn=(Tp+Ts)/2; <{Pr(U*7}
\kS:u}Ip!
figure(2) D_D76
`m_('N
subplot(1,2,1); Gdu5
&]H#6
E8LZ%
N#
plot(theta,Rp,'-',theta,Rs,'--',theta,Rn,':','LineWidth',2) $E,,::oJ
g7-*WN<