利用菲涅尔公式计算光波在两种介质表面折反射率及折反射能流密度 T&s}~S=m
{[[/*1r|
1、光疏射向光密 8U7X/L
3}2a3)
clear ]%I|C++0
K1m'20U
close all >m8~Fs0
Qi\"b
n1=1,n2=1.45; nsy eid*
n_Bi HMIU'
theta=0:0.1:90; w4j,t
X"O^4MnvI
a=theta*pi/180; ]$i~;f 8I
}g_\?z3gt
rp=(n2*cos(a)-n1*sqrt(1-(n1/n2*sin(a)).^2))./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); HiTj-O
Y@Ti2bI`v
rs=(n1*cos(a)-n2*sqrt(1-(n1/n2*sin(a)).^2))./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); H:.l:PJ
wvlM(
tp=2*n1*cos(a)./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); o1)8?h
y(*#0fJrTV
ts=2*n1*cos(a)./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); X!!3>`|
l|5;&(Y+s
figure(1) pDM95.6
(?lKedA>2
subplot(1,2,1); I#9q^,,F
dI)
9@UL
plot(theta,rp,'-',theta,rs,'--',theta,abs(rp),':',theta,abs(rs),'-.','LineWidth',2) )jHH-=JM
:XeRc"m<
legend('r_p','r_s','|r_p|','|r_s|') *PF=dx<8
SRek:S,
xlabel('\theta_i') n5;>e&
i4H,Ggb
ylabel('Amplitude') \TnRn(Kw
'rDai[
title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) p~f=0K
@t4OpU<'*b
axis([0 90 -1 1]) "ot#g"
gt)wk93d>
grid on eq,`T;
}B@44HdY
subplot(1,2,2); #8@o%%Fd
9s&Tv&%VN
plot(theta,tp,'-',theta,ts,'--',theta,abs(tp),':',theta,abs(ts),'-.','LineWidth',2) 'e:(61_
|VQmB/a
legend('t_p','t_s','|t_p|','|t_s|') G-eSHv
Usq.'y/o
xlabel('\theta_i') <BjrW]pM
Cxra(!&
ylabel('Amplitude') z#^;'nnw
ubUVxYD?
title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) f[wxt n'r
,)ZI&BL5
axis([0 90 0 1]) ?@CbaX~+K
)W*A[c
2
grid on M.\V/OX
-; *lcY*
Rp=abs(rp).^2; <h%I-e6
0sI7UK`m
Rs=abs(rs).^2; bXk(wXX
8p_6RvG
Rn=(Rp+Rs)/2; Go(Td++HS
%S/?Ci
Tp=1-Rp; nXw98;
*USG
p<iH
Ts=1-Rs; X}H?*'-
7=gcdfW,;x
Tn=(Tp+Ts)/2; 0ZJj5<U
fj'7\[nZ
figure(2) es<8"CcP
Q89fXi0Ivb
subplot(1,2,1); sE&1ZJ]7
O L 9(~p
plot(theta,Rp,'-',theta,Rs,'--',theta,Rn,':','LineWidth',2) L~AU4Q0o
")<5VtV
legend('R_p','R_s','R_n') -e"A)Bpl(
:IucH%6V
xlabel('\theta_i') SDB \6[D
Da8
|eN}
ylabel('Amplitude') ;cB3D3fR.
t&