利用菲涅尔公式计算光波在两种介质表面折反射率及折反射能流密度 =e# h;x2
RZ{O6~VH
1、光疏射向光密 u5rvrn ]
)O+Zbn
clear MLTS<pW/
f!YlYk5
close all ~ PyS;L}
'Y
,2CN
n1=1,n2=1.45; !'#
D~
'#=n>
theta=0:0.1:90; ZEDvY=@a
F?a
63,r
a=theta*pi/180; c9jS
!uDMK
jf;n*
rp=(n2*cos(a)-n1*sqrt(1-(n1/n2*sin(a)).^2))./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); !a\v)R
4,:I{P_>6B
rs=(n1*cos(a)-n2*sqrt(1-(n1/n2*sin(a)).^2))./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); *^G,
=BR+J9
tp=2*n1*cos(a)./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); \/ri|fm6l#
j]%XY+e
ts=2*n1*cos(a)./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); ]CcRI|g}
@IbZci)1
figure(1) V73/q
x4LPrF1
subplot(1,2,1); ipGxi[Vav
q!U$\Q&
plot(theta,rp,'-',theta,rs,'--',theta,abs(rp),':',theta,abs(rs),'-.','LineWidth',2) R%}<z*~NE@
`q^qe> '
legend('r_p','r_s','|r_p|','|r_s|') (AjgLNB
58HAl_8W
xlabel('\theta_i') KfVsnL_
p]y.N)a
ylabel('Amplitude') JBc*m
G{X7;j e
title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) R87@.
U&*%KPy`
axis([0 90 -1 1]) 5/U{b5
5"b1:
w@
grid on SzeY?04zj:
9:xs)t- _
subplot(1,2,2); OUwnVAZZ6
l\N2C4NG
plot(theta,tp,'-',theta,ts,'--',theta,abs(tp),':',theta,abs(ts),'-.','LineWidth',2) Qp:m=f6@
j$6Q]5KdoS
legend('t_p','t_s','|t_p|','|t_s|') *(vh |
t&x\@p9
xlabel('\theta_i') rzie_)a Y%
@C=gMn.E
ylabel('Amplitude') FaWc:GsfB
6Xo "?f
title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) 3
.j/D^
]3 GO_tL
axis([0 90 0 1]) M?P\ YAn$
;C1#[U1Uy
grid on zHNBX
Rx
,1CmB@
Rp=abs(rp).^2; tG9C(D`G
<?DI!~
Rs=abs(rs).^2; >;j&]]-&
QH7 GEj]
Rn=(Rp+Rs)/2; `h :!^"G
yXEI%2~)
Tp=1-Rp; >Sw?F&
6M_ W(
Ts=1-Rs; |}YxxeAk
F+BCzsm7$
Tn=(Tp+Ts)/2; (5:pHX`P
Ke:EL;*8k
figure(2) uxKO"
e9Gu`$K
subplot(1,2,1); _e8v12s
>hG*=4oh
plot(theta,Rp,'-',theta,Rs,'--',theta,Rn,':','LineWidth',2) u+6D|
%Q}(.h%M
legend('R_p','R_s','R_n') >fT%CGLC0
y#`;[!
xlabel('\theta_i') b-<@3N.9]
bJ6C7-w:wa
ylabel('Amplitude') Rq?t=7fX)
8a8D0}'
title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) &K