利用菲涅尔公式计算光波在两种介质表面折反射率及折反射能流密度 DD"]as"#
Q++lgVh)E
1、光疏射向光密 zg)Z2?K|;u
x?va26FV
clear ["MF-tQ5
rbO9NRg>
close all Cj_cu
9d#-;qV
n1=1,n2=1.45; '2uQ
IA$:r@QNx8
theta=0:0.1:90; R\A5f\L9
Ct|iZLh`j
a=theta*pi/180; <3O>
!j%v Ue;t
rp=(n2*cos(a)-n1*sqrt(1-(n1/n2*sin(a)).^2))./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); -?2ThvT
{]Nvq9?
rs=(n1*cos(a)-n2*sqrt(1-(n1/n2*sin(a)).^2))./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); |"5NI'X?
h[ba$S,T
tp=2*n1*cos(a)./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); &=<x&4H+
;5PXPpJ
ts=2*n1*cos(a)./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); nI|jUD+y
!RFlv
figure(1) \uQ(-ji
o" &7$pAh
subplot(1,2,1); X*]uLgbl
jU@qQ@|
plot(theta,rp,'-',theta,rs,'--',theta,abs(rp),':',theta,abs(rs),'-.','LineWidth',2) ,kpkXK
vbmi_[,U
legend('r_p','r_s','|r_p|','|r_s|') >y(;k|-$
(pREo/ T
xlabel('\theta_i') jXSo{
A%k@75V@
ylabel('Amplitude') DNLqipUw
|@sUN:G4k
title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) x`WP*a7Fk]
}_@*,
axis([0 90 -1 1]) ]
RN&s
7xMvf<1P
grid on {tOu+zy
aVNRhnM
subplot(1,2,2); (Z,v)TOXjV
:+bQPzL
plot(theta,tp,'-',theta,ts,'--',theta,abs(tp),':',theta,abs(ts),'-.','LineWidth',2) q$(aMO&J
DJS0;!#
|O
legend('t_p','t_s','|t_p|','|t_s|') $!G7u<`na
8jMw7ti
xlabel('\theta_i') -ce N}Cb3
-iR}kP|
ylabel('Amplitude') <wW#Wnc ]
=!GUQLS{
title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) )U`6` &F
CJ8X Ky
axis([0 90 0 1]) FF0N{bY
Oq7M1|{
grid on Ckj2$c~
?S~HnIn
Rp=abs(rp).^2; SGXXv
FDbb/6ku
Rs=abs(rs).^2; fFMGpibkM
T&oY:1D,g
Rn=(Rp+Rs)/2; qg7.E+
0BMKwZg
Tp=1-Rp; Pv17wUB
-y5^xR
Ts=1-Rs; +0{m(%i
!TA6- ]1
Tn=(Tp+Ts)/2; O:IU|INq8
<1YINkRz
figure(2) [a:yKJ[
b|^g51v
subplot(1,2,1); DJVH}w}9_P
t3|If@T
plot(theta,Rp,'-',theta,Rs,'--',theta,Rn,':','LineWidth',2) v8Vw.Ce`f
qsOA(+ZP
legend('R_p','R_s','R_n') V7U&8UPb
_PLY<i2vr
xlabel('\theta_i') 5^<X:1J$
A'vQtlvKA
ylabel('Amplitude') J3fk3d`2
t~H'Ugv^
title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) ##+|zka!U
X; I:i%-
axis([0 90 0 1]) w#vSZbh
&_Z