计算脉冲在非线性耦合器中演化的Matlab 程序 f}%sO GBW 7Y % This Matlab script file solves the coupled nonlinear Schrodinger equations of
Txu>/1N, % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
Yx!n*+ :J % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
m
EFWo % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
FbuKZp+ g4Bg6<; %fid=fopen('e21.dat','w');
X tR`? N = 128; % Number of Fourier modes (Time domain sampling points)
.jCk#@+ M1 =3000; % Total number of space steps
h~ZNHSP: J =100; % Steps between output of space
GV=V^Fl . T =10; % length of time windows:T*T0
;2BPPZ T0=0.1; % input pulse width
@YsL*zw MN1=0; % initial value for the space output location
g{]e j dt = T/N; % time step
;=#qHo9k1% n = [-N/2:1:N/2-1]'; % Index
v3Eo@,- t = n.*dt;
Wz5d|b u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
]Px:d+wX: u20=u10.*0.0; % input to waveguide 2
x7Eeb!s0f, u1=u10; u2=u20;
IG>>j} U1 = u1;
uQ-WTz|* U2 = u2; % Compute initial condition; save it in U
>" i~ x ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
Z"+(LO! w=2*pi*n./T;
pc^E'h: g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
8`6
LMQ L=4; % length of evoluation to compare with S. Trillo's paper
1/!nV dz=L/M1; % space step, make sure nonlinear<0.05
lf}?!*V`+ for m1 = 1:1:M1 % Start space evolution
;>sq_4_ u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
2 e) u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
Y/#:)(&@ ca1 = fftshift(fft(u1)); % Take Fourier transform
cS+?s=d ca2 = fftshift(fft(u2));
3$;J0{&[i c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
O$YJku c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
I)qKS@ u2 = ifft(fftshift(c2)); % Return to physical space
/]P%b K6B u1 = ifft(fftshift(c1));
6CCZda@ if rem(m1,J) == 0 % Save output every J steps.
!:&2+% U1 = [U1 u1]; % put solutions in U array
zv>ZrFl* U2=[U2 u2];
WReYF+Uen MN1=[MN1 m1];
(gFQK[ z1=dz*MN1'; % output location
A5`#Ot*3 end
>I{4 end
f45x%tha % hg=abs(U1').*abs(U1'); % for data write to excel
i_'|:Uy*F ha=[z1 hg]; % for data write to excel
rAtai}Lx t1=[0 t'];
`>$gy/N hh=[t1' ha']; % for data write to excel file
ikeJDKSG %dlmwrite('aa',hh,'\t'); % save data in the excel format
:+kg4v&r figure(1)
<#:Ebofsn waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
@DRfNJ} figure(2)
iLc)"L-i waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
a>#d=. -<u-
+CbuT 非线性超快脉冲耦合的数值方法的Matlab程序 "0p +SZ~D Q5T(;u6 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
Z:W')Nd( Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
g9RzzE! sqgD?:@J 9CgXc5 =P@M&Yy' % This Matlab script file solves the nonlinear Schrodinger equations
ayB=|*Q" % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
dfYYyE % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
WMt&8W5 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
]0at2 &6=TtTp"9 C=1;
XY&]T'A M1=120, % integer for amplitude
(Q*2dd> M3=5000; % integer for length of coupler
yHV^a0e7EH N = 512; % Number of Fourier modes (Time domain sampling points)
/1s 9;'I dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
5pN08+ T =40; % length of time:T*T0.
eUGmns dt = T/N; % time step
w yuJSB n = [-N/2:1:N/2-1]'; % Index
*RUd!]bh t = n.*dt;
\rB/83[;u ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
4DG 9`5. w=2*pi*n./T;
G~Q*:m g1=-i*ww./2;
\{Ox@ g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
3"2<T^H] g3=-i*ww./2;
g~i''lng P1=0;
(9'G P2=0;
a!SR"3 k P3=1;
+3~Gc<OO P=0;
59"Nn\}3gE for m1=1:M1
VdjU2d
p=0.032*m1; %input amplitude
O4'kS
@ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
+w_MSj#P s1=s10;
V@5 4k*V s20=0.*s10; %input in waveguide 2
Xm0&U?dZB s30=0.*s10; %input in waveguide 3
GSUOMy[M- s2=s20;
wUZ(Tin s3=s30;
iPtm@f,bI p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
!Ed<xG/ %energy in waveguide 1
P"h,[{Y*> p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
^|a&%wxA %energy in waveguide 2
H8=vQy p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
qU
/Wg %energy in waveguide 3
hz>yv@1 for m3 = 1:1:M3 % Start space evolution
\|b1s @c8 s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
2=Vkjh- s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
0YsN82IDD s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
[4+a 1/^ sca1 = fftshift(fft(s1)); % Take Fourier transform
s K$Sar sca2 = fftshift(fft(s2));
eL]w' }\ sca3 = fftshift(fft(s3));
=":V
WHf sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
k*UR#z(I sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
^0,&R\e+ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
;]O 7^s#v s3 = ifft(fftshift(sc3));
!]jNVg s2 = ifft(fftshift(sc2)); % Return to physical space
aS1P]& s1 = ifft(fftshift(sc1));
(fLbg, end
Hhce:E@K p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
ko7-%+0|] p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
Ow&'sR'CX p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
?-6x]l=] P1=[P1 p1/p10];
0I
ND9h.% P2=[P2 p2/p10];
BR0p0% P3=[P3 p3/p10];
szM=U$jKq P=[P p*p];
S92!jp/ end
6u]OXPA| figure(1)
UdM5R
[ plot(P,P1, P,P2, P,P3);
[7Kj$PB3 (/rIodHJO 转自:
http://blog.163.com/opto_wang/