切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9235阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 nMDxH $O  
    ?1L.:CS  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of U~{du;\  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of { pu85'DV  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear =U[3PC-N @  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c,so`I3rI  
    1}hIW":3Sr  
    %fid=fopen('e21.dat','w'); UT~a &u  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Qjx?ri//  
    M1 =3000;              % Total number of space steps YDC mI@  
    J =100;                % Steps between output of space wIkN9 f  
    T =10;                  % length of time windows:T*T0 yJuQ8+vgR}  
    T0=0.1;                 % input pulse width _0+0#! J!  
    MN1=0;                 % initial value for the space output location 0![ +Q4"  
    dt = T/N;                      % time step b[z]CP  
    n = [-N/2:1:N/2-1]';           % Index f)]%.>  
    t = n.*dt;   h%WE=\,Qp  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 PcB_oG g  
    u20=u10.*0.0;                  % input to waveguide 2 01!s"wjf  
    u1=u10; u2=u20;                 - (#I3h;I  
    U1 = u1;   fQrhsuCrC  
    U2 = u2;                       % Compute initial condition; save it in U 'c\iK=fl  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. YV=QF J'  
    w=2*pi*n./T; dd2[yKC`  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T =U|N=/y#hJ  
    L=4;                           % length of evoluation to compare with S. Trillo's paper !=;XBd-  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 k6`6Mjbc  
    for m1 = 1:1:M1                                    % Start space evolution TJE\A)|>g  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS XC{eX&,2x  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; zf3v5Hk  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 5cx#SD&5/  
       ca2 = fftshift(fft(u2)); V"cKJ;s  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation IwGqf.!.>  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   A^Kbsc  
       u2 = ifft(fftshift(c2));                        % Return to physical space O1')nYF7  
       u1 = ifft(fftshift(c1)); TW !&p"Us+  
    if rem(m1,J) == 0                                 % Save output every J steps. "#mBcQ;QLV  
        U1 = [U1 u1];                                  % put solutions in U array k X {0y  
        U2=[U2 u2]; :JlP[I  
        MN1=[MN1 m1]; c1X1+b,  
        z1=dz*MN1';                                    % output location u!1{Vt87  
      end j*xV!DqC  
    end bINvqv0v  
    hg=abs(U1').*abs(U1');                             % for data write to excel =4d (b ;  
    ha=[z1 hg];                                        % for data write to excel hsu{eyp  
    t1=[0 t']; oyo(1 >  
    hh=[t1' ha'];                                      % for data write to excel file J>d.dq>r  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format (a9d/3M  
    figure(1) j,]Y$B  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 1CLL%\V  
    figure(2) fM^[7;]7e  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn /VG2.:  
    |>@W ]CX[  
    非线性超快脉冲耦合的数值方法的Matlab程序 q -8t'7  
    Z"unF9`"1  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   A!^q J#  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .k,YlFvj  
    yDNOtC|  
    yCCrK@{oo  
    FVh U^  
    %  This Matlab script file solves the nonlinear Schrodinger equations 2wF8 P)  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of uw lr9nB  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear  }-~l!  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 dH( ('u[  
    <FZ@Q[RP  
    C=1;                           -*.-9B~u  
    M1=120,                       % integer for amplitude 4@xE8`+b G  
    M3=5000;                      % integer for length of coupler n]he-NHP  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) eYx Kp!f  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. [$[:"N_  
    T =40;                        % length of time:T*T0. +{/  
    dt = T/N;                     % time step 7g_]mG [6  
    n = [-N/2:1:N/2-1]';          % Index I!^O)4QRx  
    t = n.*dt;   3G kv4,w<  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. b+Br=Fv"T  
    w=2*pi*n./T; qW b+r  
    g1=-i*ww./2; Agrk|wPK  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; *2jK#9"MP  
    g3=-i*ww./2; w6j/ Dq!  
    P1=0; $MJm*6h  
    P2=0; $ `7^+8vHV  
    P3=1; 7g3 >jh  
    P=0; /hO1QT}xd  
    for m1=1:M1                 GgKEP,O  
    p=0.032*m1;                %input amplitude 0wS+++n$5  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 .9.2Be  
    s1=s10; y r,=.?C-  
    s20=0.*s10;                %input in waveguide 2 Sfdu`MQR  
    s30=0.*s10;                %input in waveguide 3 R LD`O9#j  
    s2=s20; }V\N16f  
    s3=s30; }l=xiAF  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   "jw<V,,  
    %energy in waveguide 1 R4-~jgzx  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   m)oJFF  
    %energy in waveguide 2 ={u0_j W  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ge8/``=  
    %energy in waveguide 3 -44&#l^}_u  
    for m3 = 1:1:M3                                    % Start space evolution #KO,~]k5|e  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ^aW Z!gi  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; CD8}I85 K  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; t%8d-+$  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform tor!Dl@Mo  
       sca2 = fftshift(fft(s2));  Tgl}  
       sca3 = fftshift(fft(s3)); Q$fmD  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   H*r>Y  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 7VP32Eh[  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); [<KM?\"1<  
       s3 = ifft(fftshift(sc3)); 9+pmS#>_  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Si~vDQ7"  
       s1 = ifft(fftshift(sc1)); QPq7R  
    end 3)RsLI9  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); '}9JCJ  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); &y#r;L<9  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); KI+VXH}Y5{  
       P1=[P1 p1/p10]; F;>!&[h}G  
       P2=[P2 p2/p10]; 9VbOQ{8  
       P3=[P3 p3/p10]; Sf r&p>{,  
       P=[P p*p]; Pfs;0}h5  
    end wiBVuj#  
    figure(1) nWHa.H#  
    plot(P,P1, P,P2, P,P3); T' ~!9Q  
    n..g~ $k  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~