切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9307阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 P6rL;_~e  
    4V5*6O9(u  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of NunT2JP.  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of F{H y@7  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 3{z }[@N  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 akoILX~u  
    nor`w,2VF  
    %fid=fopen('e21.dat','w'); H]\H'r"  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) j!pxG5%  
    M1 =3000;              % Total number of space steps (?(ahtT4T  
    J =100;                % Steps between output of space a*`J]{3G  
    T =10;                  % length of time windows:T*T0 de[_T%A  
    T0=0.1;                 % input pulse width w:Vs$,  
    MN1=0;                 % initial value for the space output location ruVm8 BO  
    dt = T/N;                      % time step O.!?O(  
    n = [-N/2:1:N/2-1]';           % Index 7 m%|TwJN  
    t = n.*dt;   U*t `hn-xs  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 '_8Vay~  
    u20=u10.*0.0;                  % input to waveguide 2 +8"H%#~  
    u1=u10; u2=u20;                 ;F5%X\ t-  
    U1 = u1;   Sw~<W%! ?  
    U2 = u2;                       % Compute initial condition; save it in U Q_S fFsY  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. E#OKeMK  
    w=2*pi*n./T; 5k@ k  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ;(A'XA4 6N  
    L=4;                           % length of evoluation to compare with S. Trillo's paper BDA\9m^3  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 k<y$[xV  
    for m1 = 1:1:M1                                    % Start space evolution ~W4<M:R  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS R?k1)n   
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; F-t-d1w6  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform SU^/qF%8  
       ca2 = fftshift(fft(u2)); }-kb"\X%g  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation s_|wvOW)'  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   aG!!z>  
       u2 = ifft(fftshift(c2));                        % Return to physical space ;a|A1DmZ  
       u1 = ifft(fftshift(c1)); ;X>KP,/r$  
    if rem(m1,J) == 0                                 % Save output every J steps. ~![R\gps  
        U1 = [U1 u1];                                  % put solutions in U array Xc.~6nYp  
        U2=[U2 u2]; I]h+24_S  
        MN1=[MN1 m1]; zR:S.e<  
        z1=dz*MN1';                                    % output location [69aTl>/  
      end Y,9("'bo  
    end > 2$M~to"1  
    hg=abs(U1').*abs(U1');                             % for data write to excel &p*N8S8  
    ha=[z1 hg];                                        % for data write to excel /[mCK3_  
    t1=[0 t']; )pJzw-m"  
    hh=[t1' ha'];                                      % for data write to excel file SU:Cm: $  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format <[*s%9)'9  
    figure(1) #nnP.t m  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn = hpX2/]  
    figure(2) -?ip?[Z  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ( mycUU%  
    ~k&b3-A}  
    非线性超快脉冲耦合的数值方法的Matlab程序 A%Ao yy4E  
    SFuzH)+VO  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   3Vhm$y%Td  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 {It4=I)M  
    _)ERi*}x8  
    ks! G \<I  
    -7lJ  
    %  This Matlab script file solves the nonlinear Schrodinger equations 4Hu.o7  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of #fwG~Q(  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear - Q,lUP  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 sI`Lsd'V  
    b2z~C{l  
    C=1;                           '&\km~&  
    M1=120,                       % integer for amplitude z19y>j  
    M3=5000;                      % integer for length of coupler [!v:fj  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 9nB:=`T9  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. % Dya-  
    T =40;                        % length of time:T*T0. 6$IAm#  
    dt = T/N;                     % time step o rEo$e<  
    n = [-N/2:1:N/2-1]';          % Index H>VuUH|  
    t = n.*dt;    N3E=t#n  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. hhwV)Z  
    w=2*pi*n./T; H4)){\  
    g1=-i*ww./2; #T+%$q [:  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; hD;[}8qN{  
    g3=-i*ww./2; m]V5}-?al  
    P1=0; 2;A].5>l  
    P2=0; W"$'$ h  
    P3=1; =3sBWDB[  
    P=0; C8i}~x<  
    for m1=1:M1                 zK33.HY  
    p=0.032*m1;                %input amplitude 9NVe>\s_  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 2@=JIMtc  
    s1=s10; WJ=^r@Sf  
    s20=0.*s10;                %input in waveguide 2 ZNzye1JSm  
    s30=0.*s10;                %input in waveguide 3 \4mw>8wA  
    s2=s20; #lNi\Lw+j  
    s3=s30; N[czraFBD}  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   8J Gt|,  
    %energy in waveguide 1 ;/$zBr`'  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   P#6y  
    %energy in waveguide 2 p9Ks=\yvL  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   S=2-<R  
    %energy in waveguide 3 'a*tee ^RS  
    for m3 = 1:1:M3                                    % Start space evolution 5PG%)xff*  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS T0v;8E e  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; JhIgq W2  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; $TWt[  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform F.K7w  
       sca2 = fftshift(fft(s2)); 1)vdM(y3j  
       sca3 = fftshift(fft(s3)); GYZzWN}U  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ,qyH B2v  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); q*,];j/>k  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); yX?& K}JI  
       s3 = ifft(fftshift(sc3)); J6Cw1Pi  
       s2 = ifft(fftshift(sc2));                       % Return to physical space $#1i@dI  
       s1 = ifft(fftshift(sc1)); h0L *8P`t  
    end Ar N*9  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 7$k[cL1  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ]_@5LvI  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); $s$z"<  
       P1=[P1 p1/p10]; V07e29w  
       P2=[P2 p2/p10]; ._Wm%'uX  
       P3=[P3 p3/p10]; \XD&0inv  
       P=[P p*p]; )k{zRq:d  
    end I HgYgn  
    figure(1) Q >] v?4  
    plot(P,P1, P,P2, P,P3); H0_hQ:K   
    E$T)N U\  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~