计算脉冲在非线性耦合器中演化的Matlab 程序 XRJ<1w:
,Xo9gn
% This Matlab script file solves the coupled nonlinear Schrodinger equations of qqS-0U2
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of TLPy/,
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Rk2ZdNc\
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 /uW6P3M
hk}M'
%fid=fopen('e21.dat','w'); :==kC672
N = 128; % Number of Fourier modes (Time domain sampling points) AG/nX?u7)t
M1 =3000; % Total number of space steps 9]1-J5iO
J =100; % Steps between output of space >~>=[M0
T =10; % length of time windows:T*T0 rS>njG;R
T0=0.1; % input pulse width +_
K7x5g
MN1=0; % initial value for the space output location qI:}3b;T
dt = T/N; % time step #9#N+
n = [-N/2:1:N/2-1]'; % Index %}+j4n
t = n.*dt; &p=|z2 J
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 YAC=V?U-#
u20=u10.*0.0; % input to waveguide 2 Fr/8q:m&
u1=u10; u2=u20; :9_K@f?n
U1 = u1; }\*dD2qNL}
U2 = u2; % Compute initial condition; save it in U H]}Iw5Z
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. ULjW589zb
w=2*pi*n./T; \1aj!)
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T O0WzDD
L=4; % length of evoluation to compare with S. Trillo's paper 67/hhO
dz=L/M1; % space step, make sure nonlinear<0.05 ,yAvLY5P
for m1 = 1:1:M1 % Start space evolution L
a0H
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS wgkh}b
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; !@ai=p
ca1 = fftshift(fft(u1)); % Take Fourier transform 31Zl"-<#-
ca2 = fftshift(fft(u2)); 0-l
@U{
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation QIBv}hgcy
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift 76zi)f1f
u2 = ifft(fftshift(c2)); % Return to physical space .;/@k%>
u1 = ifft(fftshift(c1)); /LPSI^l!m
if rem(m1,J) == 0 % Save output every J steps. SZ1+h TY7d
U1 = [U1 u1]; % put solutions in U array DWm$:M4z
U2=[U2 u2];
UZmzk
MN1=[MN1 m1]; z/6kxV 89
z1=dz*MN1'; % output location 8'Z9Z*^h#x
end jW?.>(
end .~ZNlI {K
hg=abs(U1').*abs(U1'); % for data write to excel AM'-(x|
ha=[z1 hg]; % for data write to excel k+JDbJ@
t1=[0 t']; !Lk|eGd*
hh=[t1' ha']; % for data write to excel file p`33`25
%dlmwrite('aa',hh,'\t'); % save data in the excel format rguC#Xt!4
figure(1) Hd2Sou4-j
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn D-E30b]e
figure(2) *1Nz
VV
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn }"Hf/{E$_"
1UyI.U]
非线性超快脉冲耦合的数值方法的Matlab程序 Kn=P~,FaG3
\qNj?;B
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 5a5I+*
c
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Le|Ho^h,Y
`)1_^# k
H5^'J`0\
Co[ rhs
% This Matlab script file solves the nonlinear Schrodinger equations gqyQ Zew
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of sW3-JA]
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear MFiX8zwhx+
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Vyu 0OiGcR
$@}6P,mg
C=1; + [|2k(U
M1=120, % integer for amplitude Y.[^3
M3=5000; % integer for length of coupler x)THeH@
N = 512; % Number of Fourier modes (Time domain sampling points) <,HdX,5
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. P `T&z