切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9434阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 $rySz7NI  
    lxRzyx  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of *6)u5  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of .bOueB-  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear #_+T@|r  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 R0y@#}JH  
    :zC'jceO  
    %fid=fopen('e21.dat','w'); {.N" 6P  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Qhnz7/a9  
    M1 =3000;              % Total number of space steps c?0uv2*Yh  
    J =100;                % Steps between output of space ]]s_ 8u 3  
    T =10;                  % length of time windows:T*T0 j~G^J  
    T0=0.1;                 % input pulse width G6zFCgFJ^y  
    MN1=0;                 % initial value for the space output location mmXLGLMd  
    dt = T/N;                      % time step C61KY7iyR  
    n = [-N/2:1:N/2-1]';           % Index $J #}3;a  
    t = n.*dt;   .~ a)  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Q^v8n1  
    u20=u10.*0.0;                  % input to waveguide 2 j\nnx8`7  
    u1=u10; u2=u20;                 rbnu:+!  
    U1 = u1;   <?P UF,  
    U2 = u2;                       % Compute initial condition; save it in U N1Y*IkW"  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. fV3!x,H  
    w=2*pi*n./T; _[V.%k  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 0>-l {4srs  
    L=4;                           % length of evoluation to compare with S. Trillo's paper _tQ=ASe0  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Nh41o0  
    for m1 = 1:1:M1                                    % Start space evolution J-fU,*Bk  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS /D_8uTS>d[  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 0.nS306  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform &_&])V)<\S  
       ca2 = fftshift(fft(u2)); y^zVb\"4  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation P _t8=d  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   fPHv|_XM>  
       u2 = ifft(fftshift(c2));                        % Return to physical space O'm&S?>  
       u1 = ifft(fftshift(c1)); F5%-6@=  
    if rem(m1,J) == 0                                 % Save output every J steps.  'TV^0D"  
        U1 = [U1 u1];                                  % put solutions in U array <27B*C M  
        U2=[U2 u2]; -,96Qg4vI  
        MN1=[MN1 m1]; IgC)YIhd  
        z1=dz*MN1';                                    % output location eF"7[_+D  
      end kT UQ8U  
    end (@M=W.M#  
    hg=abs(U1').*abs(U1');                             % for data write to excel +=MO6}5T  
    ha=[z1 hg];                                        % for data write to excel ap\2={u^|  
    t1=[0 t']; T~%5^+[h  
    hh=[t1' ha'];                                      % for data write to excel file 7(~^6Ql!  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format V/|Ln*rm  
    figure(1) M!=v"C#  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn <HG~#oBRq  
    figure(2) tF&%7(EU3  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ~MO'%'@  
    5Zn3s()  
    非线性超快脉冲耦合的数值方法的Matlab程序 wH!]B-hn  
    h|%d=`P,  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ]-)qL[Q  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 M.d{:&@`%  
    *NDLGdQqz  
    b_Ba0h=  
    [O [ N_z  
    %  This Matlab script file solves the nonlinear Schrodinger equations 7G%`ziZ  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of +U+c] Xgt  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear a|5GC pp  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 yN~=3b>  
    c.&vWmLSGE  
    C=1;                           8c__ U<  
    M1=120,                       % integer for amplitude 9A3Q&@,  
    M3=5000;                      % integer for length of coupler 3 %dbfT j  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ClVMZ  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. H:9( XW  
    T =40;                        % length of time:T*T0. |fTQ\q]W  
    dt = T/N;                     % time step 0,m*W?^31  
    n = [-N/2:1:N/2-1]';          % Index AGCqJ8`|T  
    t = n.*dt;   G~4^`[elB  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. zK:/ 1  
    w=2*pi*n./T; v1 oSf  
    g1=-i*ww./2; #)>>f  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; f*5=,$0  
    g3=-i*ww./2; e@0wF59  
    P1=0; [ Q=) f  
    P2=0; s/sH",  
    P3=1; Q6%m}R  
    P=0; Ylt[Ks<2  
    for m1=1:M1                 3u{[(W}08  
    p=0.032*m1;                %input amplitude O:lD>A4{  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 9KXp0Q?-$  
    s1=s10; _E'M(.B<  
    s20=0.*s10;                %input in waveguide 2 Di-"y,[  
    s30=0.*s10;                %input in waveguide 3 z0g]nYN%  
    s2=s20; 1oX"}YY1  
    s3=s30; s o~p+]  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   -+Q,xxu  
    %energy in waveguide 1 W11_MTIU  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   VWfrcSZg6M  
    %energy in waveguide 2 X dB#+"[  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Q `E{Oo,  
    %energy in waveguide 3 eX_}KH-Q  
    for m3 = 1:1:M3                                    % Start space evolution \3)%p('  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS h.2!d0j]  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; {_[l,tdZ  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Ubn5tN MK  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform !0Q(x  
       sca2 = fftshift(fft(s2)); `$@1NL7>  
       sca3 = fftshift(fft(s3)); y-sQ"HPN  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   "_#%W oo  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Qr0JJoHT  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); sU bZVPDr  
       s3 = ifft(fftshift(sc3)); 'a"<uk3DT  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 3\D jV2t  
       s1 = ifft(fftshift(sc1)); wau81rSd  
    end 9=< Z>  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); S~6<'N&[  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); j*xens$)  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); %&gx@ \v  
       P1=[P1 p1/p10]; kN]#;R6  
       P2=[P2 p2/p10]; ^x/0*t5};z  
       P3=[P3 p3/p10]; e2B~j3-?z  
       P=[P p*p]; o@pM??&x  
    end 9w0 ^=   
    figure(1) ]L &_R^  
    plot(P,P1, P,P2, P,P3); 2d3wQ)2  
    *VRFs=  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~