切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9283阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 l&(l$@t  
    S6i@"h5  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 2a=sm1?  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of qv2!grp]*W  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 1+kE!2b;b  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;@mRo`D`  
    t;qP']2  
    %fid=fopen('e21.dat','w'); h)(* q+a  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) \}*k)$r  
    M1 =3000;              % Total number of space steps P7 yq^|  
    J =100;                % Steps between output of space $9!D\N,}]C  
    T =10;                  % length of time windows:T*T0 w`HI]{hE~N  
    T0=0.1;                 % input pulse width ub:ly0;t  
    MN1=0;                 % initial value for the space output location /%rq hHs  
    dt = T/N;                      % time step 0DPxW8Y-`  
    n = [-N/2:1:N/2-1]';           % Index \FmKJ\  
    t = n.*dt;   ,?cH"@ RJ  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 #$ thPZ  
    u20=u10.*0.0;                  % input to waveguide 2 w|Cx>8P8@  
    u1=u10; u2=u20;                 .giz=* q+  
    U1 = u1;   ]c)_&{:V  
    U2 = u2;                       % Compute initial condition; save it in U _c(4o:  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. R3.*dqo$  
    w=2*pi*n./T; (K..k-o`.  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T B}?IEpYp  
    L=4;                           % length of evoluation to compare with S. Trillo's paper L5fuM]G`  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 IND]j72  
    for m1 = 1:1:M1                                    % Start space evolution 1eS_ nLFw~  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS T )~9Wac  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; aG`;OgrH  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform .3qu9eP   
       ca2 = fftshift(fft(u2)); KP"%Rm`XN  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation }CGSEr4'w~  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   95W?{> @  
       u2 = ifft(fftshift(c2));                        % Return to physical space ~g;   
       u1 = ifft(fftshift(c1)); K{fsn4rk  
    if rem(m1,J) == 0                                 % Save output every J steps. 6i@\5}m=  
        U1 = [U1 u1];                                  % put solutions in U array s,]%dG!  
        U2=[U2 u2]; x*XH]&V  
        MN1=[MN1 m1]; t ~7V { xk  
        z1=dz*MN1';                                    % output location Zi\['2CG  
      end Q4*-wF-P  
    end L5YnG_M&  
    hg=abs(U1').*abs(U1');                             % for data write to excel /'.=sH  
    ha=[z1 hg];                                        % for data write to excel 2;3f=$3  
    t1=[0 t']; G bP!9I  
    hh=[t1' ha'];                                      % for data write to excel file "Dcs])7Q  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format arK_oh0B  
    figure(1) Lv[OUW#S  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Y5q3T`x E  
    figure(2) 0IkM  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 0C%W&;r0  
    ef!XV7 P  
    非线性超快脉冲耦合的数值方法的Matlab程序 0U/,aHvhP  
    nKr9#JebRC  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   siDh="{s  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 58xnB!h\}  
    ti5HrKIw  
    @F*wg  
    |R/.r_x,V?  
    %  This Matlab script file solves the nonlinear Schrodinger equations I`(l*U  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ykg#{9+  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear (h-*_a}F4  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 m#/_x  
    1nknSw#  
    C=1;                            $!@\  
    M1=120,                       % integer for amplitude >ydRSr^  
    M3=5000;                      % integer for length of coupler `Hx~UH)  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) T\s)le  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. RC#C\S6  
    T =40;                        % length of time:T*T0. :wqC8&V  
    dt = T/N;                     % time step 6M.;@t,Y  
    n = [-N/2:1:N/2-1]';          % Index I&|f'pn^<  
    t = n.*dt;   Q?t^@  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. qo6y %[  
    w=2*pi*n./T; &hIRd,1#  
    g1=-i*ww./2; S"mcUU}}  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; -D^A:}$  
    g3=-i*ww./2; 3-Dt[0%{  
    P1=0; h&3YGCl  
    P2=0; o\otgyoh  
    P3=1; >kZ57,  
    P=0; $*a'84-5G-  
    for m1=1:M1                 cXMhq<GkAA  
    p=0.032*m1;                %input amplitude rx"s!y{!-  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 b IW'c_ ,  
    s1=s10; w9RS)l2FQ  
    s20=0.*s10;                %input in waveguide 2 E`H$YS3o  
    s30=0.*s10;                %input in waveguide 3 dx*qb  
    s2=s20; )py{\r9X  
    s3=s30; %%ae^*[!n  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   4F3x@H'  
    %energy in waveguide 1 ^ &/G|  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   o'<^LYSnB  
    %energy in waveguide 2 )&{K~i;:  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ~9\WFF/  
    %energy in waveguide 3 6pOx'u>h+  
    for m3 = 1:1:M3                                    % Start space evolution )QagS.L{z  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS z\ss4  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 88"Sai  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; X;F?:Iw\  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform tc r//  
       sca2 = fftshift(fft(s2)); `cQo0{xK  
       sca3 = fftshift(fft(s3)); M~*u;vA/  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Z4$cyL'$P  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 7`IpBm<  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); /"H`.LD.?  
       s3 = ifft(fftshift(sc3)); )Rat0$6  
       s2 = ifft(fftshift(sc2));                       % Return to physical space  =$8nUX`  
       s1 = ifft(fftshift(sc1)); kPBV6+d~  
    end L\{IljA  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Cd79 tu|  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); d%I" /8-J  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); $ N']TN  
       P1=[P1 p1/p10]; wfvU0]wk}  
       P2=[P2 p2/p10]; I\?9+3 XnQ  
       P3=[P3 p3/p10]; \k`n[{  
       P=[P p*p]; BG^C9*ZuP  
    end qa(>wR"mT  
    figure(1) CxhY$%C (L  
    plot(P,P1, P,P2, P,P3); :M{Y,~cP  
    ^ 5VK>  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~