切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9286阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ?Mp1~{8  
    9Z6C8J v  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of R1-k3;v^  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of /i)Hb`(S  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear I@l>w._.  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 T#O??3/%$1  
    SLhEc  
    %fid=fopen('e21.dat','w'); g8'DoHJ*  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) jFerYv&K~  
    M1 =3000;              % Total number of space steps m/`IGT5J  
    J =100;                % Steps between output of space r Db>&s3  
    T =10;                  % length of time windows:T*T0 (H?ZSeWx  
    T0=0.1;                 % input pulse width IB|]fzy  
    MN1=0;                 % initial value for the space output location OSzjK7:  
    dt = T/N;                      % time step _B,_4}  
    n = [-N/2:1:N/2-1]';           % Index E-1"+p  
    t = n.*dt;   (}:C+p 'I  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 X;!D};;M  
    u20=u10.*0.0;                  % input to waveguide 2 &D#+6M&LK{  
    u1=u10; u2=u20;                 Z v0C@r  
    U1 = u1;   dZGbC9  
    U2 = u2;                       % Compute initial condition; save it in U =w<v3wWN4  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. /9Ilo\MdD  
    w=2*pi*n./T; k:#6^!b1  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Icp0A\L@  
    L=4;                           % length of evoluation to compare with S. Trillo's paper y7<&vIEC  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Pj7gGf6v  
    for m1 = 1:1:M1                                    % Start space evolution 0p fnV%  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS v.W{x?5  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ["3df>!f  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ad!(z[F'Y  
       ca2 = fftshift(fft(u2)); w5]l1}rl  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation NE"jh_m-  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   oj}"H>tTp  
       u2 = ifft(fftshift(c2));                        % Return to physical space wUi(3g|A  
       u1 = ifft(fftshift(c1)); GLKO]y  
    if rem(m1,J) == 0                                 % Save output every J steps. r dj@u47  
        U1 = [U1 u1];                                  % put solutions in U array bO49GEUT _  
        U2=[U2 u2]; #/j={*-  
        MN1=[MN1 m1]; 7SI)1_%G  
        z1=dz*MN1';                                    % output location +zWrLf_Rc  
      end ]2+g&ox4'  
    end >kdM:MK  
    hg=abs(U1').*abs(U1');                             % for data write to excel R V!o4"\]  
    ha=[z1 hg];                                        % for data write to excel !W1eUY  
    t1=[0 t']; Uq X1E  
    hh=[t1' ha'];                                      % for data write to excel file SZVV40w  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format xKp0r1}  
    figure(1) gZ(O)uzv  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn M@?"t_e1  
    figure(2) 0^]t"z5f0  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 0 15Owi  
    a ]1i/3/  
    非线性超快脉冲耦合的数值方法的Matlab程序 ;mO,3dV  
    7unA"9=[4V  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   qmmv7==  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |*Ot/TvG  
    6b:DJ  
    MWq$AK]  
    ]Sta]}VQ  
    %  This Matlab script file solves the nonlinear Schrodinger equations $(>f8)Uku(  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of PI7IBI  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear oA3d^%(c  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 X9'xn 0n;  
    ,0T)Oc|HL/  
    C=1;                           g'G8 3F  
    M1=120,                       % integer for amplitude 'TEyP56  
    M3=5000;                      % integer for length of coupler @;9()ad  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) *1;23BiH-  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 0|2%#  E  
    T =40;                        % length of time:T*T0. jA2ofC  
    dt = T/N;                     % time step ci7~KewJ*  
    n = [-N/2:1:N/2-1]';          % Index \ j]~>9  
    t = n.*dt;   w67x l  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. *4#on>  
    w=2*pi*n./T; 3%NE/lw1  
    g1=-i*ww./2; onzA7Gre  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; >5i?JUZ  
    g3=-i*ww./2; }W "(c YN_  
    P1=0; *?Wtj  
    P2=0; h Z#\t  
    P3=1; GUCM4jVT^  
    P=0; nx :)k-p_[  
    for m1=1:M1                 A;%kl`~iyz  
    p=0.032*m1;                %input amplitude -HTL5  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 -q(:%;  
    s1=s10; luF#OPC  
    s20=0.*s10;                %input in waveguide 2 s<{GpWT8  
    s30=0.*s10;                %input in waveguide 3 wU0K3qZL  
    s2=s20; s1@@o#r  
    s3=s30; 2$ VTu+  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   f)tc4iV  
    %energy in waveguide 1 ,'-?:`hP'  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   K|~AA"I;  
    %energy in waveguide 2 g!`BXmW  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   !'PlDGD  
    %energy in waveguide 3 ~mcZUiP9  
    for m3 = 1:1:M3                                    % Start space evolution ]1Qi=2'  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS sVD([`Nmc  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; q+J0}y{#8)  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 'WnpwY  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform *C/KM;&  
       sca2 = fftshift(fft(s2)); g!5#,kJM  
       sca3 = fftshift(fft(s3)); ULbP_y>(Y  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   O &\<FT5  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 7`+UB>8  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); .ftUhg  
       s3 = ifft(fftshift(sc3)); /^ QFqM;  
       s2 = ifft(fftshift(sc2));                       % Return to physical space \"bLE0~  
       s1 = ifft(fftshift(sc1)); eb7UoZw  
    end q]?+By-0  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); E$&;]a  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); s|p(KWo2U  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); I9:%@g]uYw  
       P1=[P1 p1/p10]; lzI/\%  
       P2=[P2 p2/p10]; L.Vq1RU\"  
       P3=[P3 p3/p10]; .n=xbx:=  
       P=[P p*p]; R_~F6O^EO  
    end Z0z)  
    figure(1) SOYDp;j  
    plot(P,P1, P,P2, P,P3); 'iDu0LX  
    *q[^Q'jnN  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~