切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9404阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 `FwE^_9d  
    9&{z?*  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Bus]OF>hu  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of :!^NjO  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 0\Tp/Ph  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 aQ-SrxmO8  
    xd\ml 37~  
    %fid=fopen('e21.dat','w'); <7! "8e  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) J50n E~  
    M1 =3000;              % Total number of space steps S f6%A  
    J =100;                % Steps between output of space eVd:C8q  
    T =10;                  % length of time windows:T*T0 bVzJOBe  
    T0=0.1;                 % input pulse width NKc<nYdK?  
    MN1=0;                 % initial value for the space output location  T\#Gc4  
    dt = T/N;                      % time step /|3~LvIt=  
    n = [-N/2:1:N/2-1]';           % Index (b.4&P"0  
    t = n.*dt;   J#5V>7G  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ~NB|BwAh  
    u20=u10.*0.0;                  % input to waveguide 2 x.$cP  
    u1=u10; u2=u20;                 qMoo#UX  
    U1 = u1;   {-Gh 62hDg  
    U2 = u2;                       % Compute initial condition; save it in U _ gGA/   
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. hAt4+O&P  
    w=2*pi*n./T; ' 6)Yf}I  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T my/KsB  
    L=4;                           % length of evoluation to compare with S. Trillo's paper i'.D=o  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 yo8mfH_,  
    for m1 = 1:1:M1                                    % Start space evolution 9GsG*$-I  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS >I-rsw2  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; <Mu T7x-  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform KyQTrl.qdl  
       ca2 = fftshift(fft(u2)); fg lN_  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation *3]2vq  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   e1y#p3 @d  
       u2 = ifft(fftshift(c2));                        % Return to physical space |~#A?mK-  
       u1 = ifft(fftshift(c1)); l*{Bz5hc  
    if rem(m1,J) == 0                                 % Save output every J steps. X,Rl&K\b"  
        U1 = [U1 u1];                                  % put solutions in U array C/QrkTi=  
        U2=[U2 u2]; MPKrr  
        MN1=[MN1 m1]; It<VjN9  
        z1=dz*MN1';                                    % output location \RtFF  
      end ^I yYck'y+  
    end w~&#:F?  
    hg=abs(U1').*abs(U1');                             % for data write to excel a5aHv/W#P  
    ha=[z1 hg];                                        % for data write to excel +SE\c  
    t1=[0 t']; =qbN?a/?2  
    hh=[t1' ha'];                                      % for data write to excel file L8H:, } 2  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format FS=LpvOG)  
    figure(1) n).*=YLN  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn IuA4eDr^Y%  
    figure(2) ~d3@x\I?  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn LwTdmR  
    "shX~zd5  
    非线性超快脉冲耦合的数值方法的Matlab程序 $|7=$~y  
    KJv%t_4'F  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   m 9\"B3sr  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 cr|]\  
    3)L#V .  
    z}B8&*>  
    Jt #HbAY  
    %  This Matlab script file solves the nonlinear Schrodinger equations gs7_Q  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of j8 `7)^  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear CrSBN~  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Kv9FqrDj  
    &}0QnO_mj  
    C=1;                           uMpuS1  
    M1=120,                       % integer for amplitude ^FQn\,  
    M3=5000;                      % integer for length of coupler 7 h0u7N  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) }s:3_9mE  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. %IE;'aa }  
    T =40;                        % length of time:T*T0. j%D{z5,nKm  
    dt = T/N;                     % time step XT*/aa-1'  
    n = [-N/2:1:N/2-1]';          % Index o3eaNYa  
    t = n.*dt;   .{ZJywE<  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 7ku=roPoF  
    w=2*pi*n./T; nP<u.{q L  
    g1=-i*ww./2; CE!cZZ  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; :475FPy]  
    g3=-i*ww./2; <RpTk*Yo^=  
    P1=0; i(.V`G=  
    P2=0; MM*~X"A  
    P3=1; Xit@.:a;  
    P=0; -ah)/5j  
    for m1=1:M1                 S8+l!$7   
    p=0.032*m1;                %input amplitude Fw{68ggk  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 a(*"r:/lD  
    s1=s10; ~l?c.CS d  
    s20=0.*s10;                %input in waveguide 2 %'=2Jy6h  
    s30=0.*s10;                %input in waveguide 3 ssS"X@VZ \  
    s2=s20; mPqK k  
    s3=s30; UZmUYSu;  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   #_`p 0wY  
    %energy in waveguide 1 0%%y9;o  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   7=yjd)Iy9m  
    %energy in waveguide 2 `HnZ{PKf  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   WNb2"W  
    %energy in waveguide 3 akPd#mf  
    for m3 = 1:1:M3                                    % Start space evolution :8`$BbV  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 9Iq<*\V 4  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; \ltS~E uWU  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 4}t&yu<P>  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform FV7'3fIa  
       sca2 = fftshift(fft(s2)); $T:;Kc W)  
       sca3 = fftshift(fft(s3)); H3vnc\d~  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   NS""][#  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); iOCs% J  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); +-SO}P  
       s3 = ifft(fftshift(sc3)); ;($xAAR  
       s2 = ifft(fftshift(sc2));                       % Return to physical space PhV/WjCZ  
       s1 = ifft(fftshift(sc1)); S.`hl/  
    end ;&f(7 Q+T_  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); e6H}L:;  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ~% t'}JDZ  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 1*$6u5.=F  
       P1=[P1 p1/p10]; 0_-o]BY  
       P2=[P2 p2/p10]; *93=}1gN  
       P3=[P3 p3/p10]; w-$iKtb.  
       P=[P p*p]; >?)_, KL  
    end @$L|   
    figure(1) r#_0_I1[  
    plot(P,P1, P,P2, P,P3); lj8ficANo  
    6[RTL2&W  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~