切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8745阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 XL}<1- }  
    zG c[Z3N  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 3|Y!2b(:?  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 7=*VpX1  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ]wuy_+$  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;S/7 h6  
    Jll-X\O`-  
    %fid=fopen('e21.dat','w'); nD,{3B#  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) *,\` o~  
    M1 =3000;              % Total number of space steps .%0ne:5  
    J =100;                % Steps between output of space $rG<uO  
    T =10;                  % length of time windows:T*T0 YJ2ro-X  
    T0=0.1;                 % input pulse width u:` y]  
    MN1=0;                 % initial value for the space output location \T-~JQVj  
    dt = T/N;                      % time step hGP1(pH.  
    n = [-N/2:1:N/2-1]';           % Index I&1!v8  
    t = n.*dt;   px9>:t[P  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 j:1uP^.  
    u20=u10.*0.0;                  % input to waveguide 2 | D.C!/69  
    u1=u10; u2=u20;                 n!N\zx8  
    U1 = u1;   Dr"/3xm  
    U2 = u2;                       % Compute initial condition; save it in U hPufzhT  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 8 HoP( +?  
    w=2*pi*n./T; X$wehMBX  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T MPRO !45Z  
    L=4;                           % length of evoluation to compare with S. Trillo's paper @5}gsC  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Z-|li}lDr  
    for m1 = 1:1:M1                                    % Start space evolution dA#{Cn;  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Ls: =A6AGM  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; wTpD1"_R  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform N5 q725zJ  
       ca2 = fftshift(fft(u2)); X_70]^XL  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ,{j4  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   -WT3)On  
       u2 = ifft(fftshift(c2));                        % Return to physical space u+% tPe  
       u1 = ifft(fftshift(c1)); jFj~]]j  
    if rem(m1,J) == 0                                 % Save output every J steps. f:%SW  
        U1 = [U1 u1];                                  % put solutions in U array [a8+(  
        U2=[U2 u2]; H(\V+@~>AD  
        MN1=[MN1 m1];  ]R Mb,hJ  
        z1=dz*MN1';                                    % output location wR7aQg  
      end ;1LG&h,K  
    end "r-l8r,  
    hg=abs(U1').*abs(U1');                             % for data write to excel o?!uX|Fy  
    ha=[z1 hg];                                        % for data write to excel =FBIrw{w  
    t1=[0 t']; bc}dYK3$q  
    hh=[t1' ha'];                                      % for data write to excel file  0:dB 9  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Tj,2r]g`<  
    figure(1) dokuyiN\  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn jpO38H0)  
    figure(2) z`'P>.x   
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn yzc pG6 ,  
    I>((o`  
    非线性超快脉冲耦合的数值方法的Matlab程序 {Nq?#%vdT  
    8!j=vCv  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   &N{zkMf  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 M1uP\Sa  
    !P"?  
    ~.Q4c*_b  
    ~N[|bPRmhE  
    %  This Matlab script file solves the nonlinear Schrodinger equations mG}k 3e-  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of z^~U]S3  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear zH+<bEo=1=  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]7F)bIG[  
    WTu{,Q  
    C=1;                           EVSK8T,  
    M1=120,                       % integer for amplitude fNEz  
    M3=5000;                      % integer for length of coupler fm6]CU1^  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) :bw6k  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. M,L@k  
    T =40;                        % length of time:T*T0. hgj0tIi/  
    dt = T/N;                     % time step 8D T@h8tA  
    n = [-N/2:1:N/2-1]';          % Index kGj]i@(PA4  
    t = n.*dt;   L{K*~B-p  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Y\>\[*.v  
    w=2*pi*n./T; 5V rcR=?O  
    g1=-i*ww./2; di<B~:l58  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ) ]]|d  
    g3=-i*ww./2; ^8\Y`Z0%  
    P1=0; g _x\T+=  
    P2=0; z9fNk%  
    P3=1; 0hZxN2r  
    P=0; ws().IZ  
    for m1=1:M1                 6)+9G_  
    p=0.032*m1;                %input amplitude KF4see;;  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 'Ix5,^M}B  
    s1=s10; +cw{aI`a8  
    s20=0.*s10;                %input in waveguide 2 ;;6\q!7`  
    s30=0.*s10;                %input in waveguide 3 {"\q(R0  
    s2=s20; YRu%j4Tx  
    s3=s30; Qasr:p+  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   aZC*7AK   
    %energy in waveguide 1 }9 FD/  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   aKD;1|)  
    %energy in waveguide 2 %g5jY%dg.r  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   %)dI2 J^Xf  
    %energy in waveguide 3 %8g$T6E[<2  
    for m3 = 1:1:M3                                    % Start space evolution V!}L<cN  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS _jk|}IB;X  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; )PHl>0i!  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; !~tnt i6  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ] :GfOgo  
       sca2 = fftshift(fft(s2)); {z-NlH  
       sca3 = fftshift(fft(s3));  TVj1C  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   hX %s]"  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 78^Y;2 P]W  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 3lyQn "  
       s3 = ifft(fftshift(sc3)); w4`!Te  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Fv;u1Atiw  
       s1 = ifft(fftshift(sc1)); _4~k3%w\`l  
    end H.)fO ctbO  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); a'm!M:w  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 2;O  c^  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); [gTQ-  
       P1=[P1 p1/p10]; \v.HG] /u  
       P2=[P2 p2/p10]; my=*zziN  
       P3=[P3 p3/p10]; IZ|c <#r6  
       P=[P p*p]; a{5H33JA  
    end 57'q;I  
    figure(1) V5cb}xx  
    plot(P,P1, P,P2, P,P3); xqU^I5Z  
    ?UU5hek+m  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~