切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8764阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ^1<i7u  
    F I~=A/:  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of OzR<jCOS  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Cxe(iwa.  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear E33WT{H&_'  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 #99=wn  
    6PC?*^v  
    %fid=fopen('e21.dat','w'); d. ZfK  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) "p+JME(  
    M1 =3000;              % Total number of space steps o_5[}d  
    J =100;                % Steps between output of space = J]M#6N0  
    T =10;                  % length of time windows:T*T0 Z$%!H7w  
    T0=0.1;                 % input pulse width /%)(Uz  
    MN1=0;                 % initial value for the space output location 1H-~+lf  
    dt = T/N;                      % time step Ggy?5N7P  
    n = [-N/2:1:N/2-1]';           % Index lXEn m-_  
    t = n.*dt;   mHa~c(x  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 _xBhMu2f  
    u20=u10.*0.0;                  % input to waveguide 2 BB_(!omq[  
    u1=u10; u2=u20;                 ~Q5]?ZNX  
    U1 = u1;   c= ?Tu  
    U2 = u2;                       % Compute initial condition; save it in U d= ?lPEzSA  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. r%NzKPW'  
    w=2*pi*n./T; F`,Hf Cb\  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T =#A/d `2 b  
    L=4;                           % length of evoluation to compare with S. Trillo's paper L\!Oj5  
    dz=L/M1;                       % space step, make sure nonlinear<0.05  4,?beA  
    for m1 = 1:1:M1                                    % Start space evolution lkC|g%f  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS o)$eIu}Wg  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; J|@D @\?7  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform hegH^IN M  
       ca2 = fftshift(fft(u2)); "xn,'`a  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation _;:_ !`  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   s,l*=<  
       u2 = ifft(fftshift(c2));                        % Return to physical space m\E=I5*/  
       u1 = ifft(fftshift(c1)); NG23  
    if rem(m1,J) == 0                                 % Save output every J steps. "z= ~7g  
        U1 = [U1 u1];                                  % put solutions in U array RD;A  
        U2=[U2 u2]; V#R; -C  
        MN1=[MN1 m1]; 4vND ~9d  
        z1=dz*MN1';                                    % output location .u`A4;;Gw  
      end Sz]1`%_H/  
    end TtQd#mSI\  
    hg=abs(U1').*abs(U1');                             % for data write to excel rq\<zx]au  
    ha=[z1 hg];                                        % for data write to excel qT&zg@m  
    t1=[0 t']; `tcX[(`  
    hh=[t1' ha'];                                      % for data write to excel file DZA '0-  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format E>O@Bv  
    figure(1) 7|"$YV'DM  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn c%&*yR  
    figure(2) *P&lAyt6  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 52^,qP'6  
    8i<]$  
    非线性超快脉冲耦合的数值方法的Matlab程序 5@ Hg 4.  
    G({VK  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   |34w<0Pc,  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 JSaF7(a =  
    ~:|V,1  
    $iA:3DM07  
    _1WA:7$C  
    %  This Matlab script file solves the nonlinear Schrodinger equations Y{Lxo])e  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of @\>7 wt_'  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Bgp%hK  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 I|;C} lfp  
    `.]oH1\  
    C=1;                           c0w1 N]+Ne  
    M1=120,                       % integer for amplitude (E~6fb "c  
    M3=5000;                      % integer for length of coupler l)'*jZ  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) gA3f@7}d  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. #&?}h)Jr'  
    T =40;                        % length of time:T*T0. D 5:'2i  
    dt = T/N;                     % time step H ]!P[?  
    n = [-N/2:1:N/2-1]';          % Index |CQ0{1R1  
    t = n.*dt;   KP $AT}D  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. -3 "<znv  
    w=2*pi*n./T; G]mD_J1$  
    g1=-i*ww./2; }wI +e Mr  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 7s;;2<k;_  
    g3=-i*ww./2; =EU;%f  
    P1=0; tCA0H\';  
    P2=0; 4Y4zBD=<  
    P3=1; .' h^  
    P=0; P :%b[7  
    for m1=1:M1                 5fz K*[B  
    p=0.032*m1;                %input amplitude pRUQMPn (  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 NJ;m&Tm,DF  
    s1=s10; e-1G\}E  
    s20=0.*s10;                %input in waveguide 2 uc|ej9N  
    s30=0.*s10;                %input in waveguide 3 O`aNNy  
    s2=s20;  .C5JQO  
    s3=s30; TefPxvd  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ~dP\0x0AB  
    %energy in waveguide 1 _j*I\  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ;E>#qYC6  
    %energy in waveguide 2 w@n}DCFt  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   9E0x\%2K  
    %energy in waveguide 3 iOL/u)   
    for m3 = 1:1:M3                                    % Start space evolution '/AX 'U8Y  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS *O\lR-z!k  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ^&$86-PB/  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; rp2g./2  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform }z|9F(I   
       sca2 = fftshift(fft(s2)); 2^w{Hcf  
       sca3 = fftshift(fft(s3)); mgM"u94-]  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   9`? M-U  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); <(V~eo e  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); <=w!:   
       s3 = ifft(fftshift(sc3)); .])X.7@x  
       s2 = ifft(fftshift(sc2));                       % Return to physical space _N>#/v)Yi  
       s1 = ifft(fftshift(sc1)); _}T )\o   
    end  o|#F@L3i  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); wb h=v;  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); |2rOV&@l9  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); LnsYtkb r  
       P1=[P1 p1/p10];  obPG]*3  
       P2=[P2 p2/p10]; (hIo0 .  
       P3=[P3 p3/p10]; 6BM$u v4  
       P=[P p*p]; Z+[W@5q  
    end $H]NC-\+>  
    figure(1) |`V=hqe{  
    plot(P,P1, P,P2, P,P3); %Y5F@=>&  
    KGI <G  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~