切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9213阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 I ^[[*Bh*C  
    ?}(B8^  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of s(r4m/  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of {HFx+<JG  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 'LR|DS[Ne  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ,vAcri 97  
    b Rr3:"=sE  
    %fid=fopen('e21.dat','w'); h05<1>?|  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) x0lAJaG  
    M1 =3000;              % Total number of space steps PZI6{KOis  
    J =100;                % Steps between output of space ?P/73p  
    T =10;                  % length of time windows:T*T0 IsDwa qd|  
    T0=0.1;                 % input pulse width ZKM@U?PK  
    MN1=0;                 % initial value for the space output location F3L+X5D.yu  
    dt = T/N;                      % time step t/l<X]o  
    n = [-N/2:1:N/2-1]';           % Index ]zn3nhBI  
    t = n.*dt;   yq[@Cw  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Lyit`j~yH  
    u20=u10.*0.0;                  % input to waveguide 2 ~ e a K]|  
    u1=u10; u2=u20;                 8\jsGN.$JZ  
    U1 = u1;   l hST%3Ld  
    U2 = u2;                       % Compute initial condition; save it in U .hnq>R\  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 3$.#\*s_4  
    w=2*pi*n./T; R iFUa $  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T $V F$Ok>  
    L=4;                           % length of evoluation to compare with S. Trillo's paper kdaq_O:s  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 qd<I;*WV  
    for m1 = 1:1:M1                                    % Start space evolution EK&0Cn3z  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS wJ"]H!r0  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 6Cfsh<]b  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform "2p\/VfA  
       ca2 = fftshift(fft(u2)); p|@#IoA/e  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation l=x(   
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   7 D{%  
       u2 = ifft(fftshift(c2));                        % Return to physical space +O.qYX  
       u1 = ifft(fftshift(c1)); |kTq &^$  
    if rem(m1,J) == 0                                 % Save output every J steps. RE4WD9n  
        U1 = [U1 u1];                                  % put solutions in U array (H\ `/%Bp  
        U2=[U2 u2]; f .$*9Fkw  
        MN1=[MN1 m1]; qW'L}x  
        z1=dz*MN1';                                    % output location }6=? zs}  
      end #%w)w R3  
    end Z] x6np  
    hg=abs(U1').*abs(U1');                             % for data write to excel 1g jGaC  
    ha=[z1 hg];                                        % for data write to excel  +cKOIMu9  
    t1=[0 t']; 7 p1B"%  
    hh=[t1' ha'];                                      % for data write to excel file 9ExI,  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format &I%E8E  
    figure(1) _dmG#_1  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 5:C>:pAV  
    figure(2) a6O <t;&  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ) .KMZ]  
    ,eWLig  
    非线性超快脉冲耦合的数值方法的Matlab程序 DIJmISk  
    @th94tk,  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   drk BW}_  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 upX@8WxR  
    _pDfPLlY&  
    Dwr 9}Z-]  
    *u",-n  
    %  This Matlab script file solves the nonlinear Schrodinger equations %(W8W Lz}  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Rjv;[  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear [;4;. V  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `xx3JQv[  
    @|bJMi  
    C=1;                           cbs ;  
    M1=120,                       % integer for amplitude '@Yp@ _  
    M3=5000;                      % integer for length of coupler HFlExa u  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Tku6X/LF  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. WW>m`RU`  
    T =40;                        % length of time:T*T0. ~"<^4h  
    dt = T/N;                     % time step %QEyvl4  
    n = [-N/2:1:N/2-1]';          % Index El: @l %  
    t = n.*dt;   1iNMgA  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 9* huO#  
    w=2*pi*n./T; |\/\FK]?]  
    g1=-i*ww./2; 1N:~5S}s>  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 6(uZn=  
    g3=-i*ww./2; M ?AX:0  
    P1=0; /oLY\>pD  
    P2=0; N u\<Xr8  
    P3=1; }`%ks  
    P=0; /y6f~F  
    for m1=1:M1                 1uCF9P ai  
    p=0.032*m1;                %input amplitude 3HW&\:q5'M  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 D.|r [c  
    s1=s10; #NYHwO<0-  
    s20=0.*s10;                %input in waveguide 2 }L&LtW{X  
    s30=0.*s10;                %input in waveguide 3 }/,Rp/+7]  
    s2=s20; V aG Qre  
    s3=s30; nc\2A>f`  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Li"+`  
    %energy in waveguide 1 9I;~P &  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   4*Gv0#dga  
    %energy in waveguide 2 ~G-W|>  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   TA2ETvz^  
    %energy in waveguide 3 &[_@f#  
    for m3 = 1:1:M3                                    % Start space evolution ~!Nw]lb!  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Xo] 2iQy  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; S'kgpF"bm  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ?6hd(^  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 0@{0#W3R  
       sca2 = fftshift(fft(s2)); u@`a~  
       sca3 = fftshift(fft(s3)); h]+;"v6 /  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   5]upfC6  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); w6)Q5H53)  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Yf~Kzv1]*  
       s3 = ifft(fftshift(sc3)); lX)AbK]nb  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 3\ ,t_6}  
       s1 = ifft(fftshift(sc1)); ,\cV,$  
    end t[|t0y8  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); HGh -rEh  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); NsSZ?ky  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); _aF8Us  
       P1=[P1 p1/p10]; ir>h3Zk   
       P2=[P2 p2/p10]; N3aqNRwlk  
       P3=[P3 p3/p10]; ,aGIq. *v  
       P=[P p*p]; xkiiQs)  
    end wy#>Aq  
    figure(1) 79@CO6  
    plot(P,P1, P,P2, P,P3); oz)4YBf  
    1"75+Q>D  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~