切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9068阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 *+ i1m `6Q  
    u?Uu>9@Z  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 8mm]>u$  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ron-v"!  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear `MLOf  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 o){\qhLp  
    6*aU^#Hz6  
    %fid=fopen('e21.dat','w'); w=QlQ\  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) CyV2=o!F w  
    M1 =3000;              % Total number of space steps X7~^D[ X  
    J =100;                % Steps between output of space XsEo tW  
    T =10;                  % length of time windows:T*T0 [yhK4A  
    T0=0.1;                 % input pulse width K\trT!I  
    MN1=0;                 % initial value for the space output location V+$^4Ht  
    dt = T/N;                      % time step ^\f1zg9I  
    n = [-N/2:1:N/2-1]';           % Index tH)fu%:p  
    t = n.*dt;   u*S-Pji,x  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 {aVRvZH4  
    u20=u10.*0.0;                  % input to waveguide 2 sU$<v( `"  
    u1=u10; u2=u20;                 ]3\%i2NM  
    U1 = u1;   si,)!%b  
    U2 = u2;                       % Compute initial condition; save it in U KXiStwS  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. KY'x;\0 g  
    w=2*pi*n./T; ;Tec)Fl  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Q$*JkwPQ}  
    L=4;                           % length of evoluation to compare with S. Trillo's paper iAr]Ed"9|  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 )Tl]1^  
    for m1 = 1:1:M1                                    % Start space evolution *'n L[]  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS <~Oy3#{  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; V q[4RAd^P  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ?Q[b1:;Lm  
       ca2 = fftshift(fft(u2)); tch;_7?  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation S8,e `F  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Vo;0i$  
       u2 = ifft(fftshift(c2));                        % Return to physical space v&)G~cz  
       u1 = ifft(fftshift(c1)); 3^,p$D<T:,  
    if rem(m1,J) == 0                                 % Save output every J steps. [9;[g~;E%m  
        U1 = [U1 u1];                                  % put solutions in U array GboZ T68  
        U2=[U2 u2]; ,ll<0Atg  
        MN1=[MN1 m1]; ET[>kn^#  
        z1=dz*MN1';                                    % output location xdgbs-a)  
      end bs_< UE  
    end )eVn1U2*z.  
    hg=abs(U1').*abs(U1');                             % for data write to excel 0<)Ep~!  
    ha=[z1 hg];                                        % for data write to excel !DkIM}.  
    t1=[0 t']; %%T?LRv  
    hh=[t1' ha'];                                      % for data write to excel file .3CQFbHF  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format &U_T1-UR2  
    figure(1) GO UO  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn O& 1z-  
    figure(2) ~hb;kc3  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn .^wBv 'Y  
    r@c!M|m@  
    非线性超快脉冲耦合的数值方法的Matlab程序 c{3P|O&.  
    cz1 m05E  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   7po;*?Ox  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 u)[i'ceQZ:  
    2<E@f0BVAy  
    %F87"v~  
    %x8vvcO^t  
    %  This Matlab script file solves the nonlinear Schrodinger equations q\/xx`L  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of #!C|~=  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ge]Z5E(1  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 -HvJ&O.V$  
    K?u:-QX^  
    C=1;                           wA o6:)  
    M1=120,                       % integer for amplitude ao"Z%#Jb~  
    M3=5000;                      % integer for length of coupler 7|k2~\@q  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) bQ-n<Lx  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ]Na;b  
    T =40;                        % length of time:T*T0. N>w+YFM  
    dt = T/N;                     % time step i(4.7{*  
    n = [-N/2:1:N/2-1]';          % Index XCT3:db  
    t = n.*dt;   r_MP[]f|0  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 63'L58O  
    w=2*pi*n./T; 3uL$+F  
    g1=-i*ww./2; y]g5S-G  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; U45-R -  
    g3=-i*ww./2; .Ms$)1  
    P1=0; @QDUz>_y  
    P2=0; mr,G H x  
    P3=1; #n+sbx5~7  
    P=0; a1x].{  
    for m1=1:M1                 2RdpVNx\y  
    p=0.032*m1;                %input amplitude 1 J[z ![Tf  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 >:OP+Vc  
    s1=s10; "?6R"Vk?:  
    s20=0.*s10;                %input in waveguide 2 uT Y G/O  
    s30=0.*s10;                %input in waveguide 3 I7C+XUQkQ  
    s2=s20; |M EJ)LE7  
    s3=s30; 9t7 e~&R  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   gX(8V*os^  
    %energy in waveguide 1 -|P7e  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   c^R "g)gr  
    %energy in waveguide 2 212 =+k  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   X*a7`aL  
    %energy in waveguide 3 %;#9lkOXWH  
    for m3 = 1:1:M3                                    % Start space evolution N6v*X+4JH  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS #fF D|q  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; _zLEHEZ-  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; qv`:o `  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform w$`u_P|@E:  
       sca2 = fftshift(fft(s2)); #2+hu^Q-  
       sca3 = fftshift(fft(s3)); n65fT+;  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   dB Hki*.u  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);  HS|x  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); V/ZWyYxjLi  
       s3 = ifft(fftshift(sc3)); 9Dyw4'W.N  
       s2 = ifft(fftshift(sc2));                       % Return to physical space R%JEx3)0m  
       s1 = ifft(fftshift(sc1)); mG%cE(j*D  
    end ^.M_1$-  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Y5TBWcGU%  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 7N0m7SC  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); z u1gP/  
       P1=[P1 p1/p10]; fVq,?  
       P2=[P2 p2/p10]; Koz0Xy  
       P3=[P3 p3/p10]; ! &V,+}>)  
       P=[P p*p]; mN#&NA  
    end *T{KpiuP  
    figure(1) |\]pTA$2  
    plot(P,P1, P,P2, P,P3); Lya?b  
    5;9.&f  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~