切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9206阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Xyz/CZPi  
    c*R\fQd  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of #Rs5W  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of M djxTr^  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear muK.x7zyl  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !lZ}kz0  
    noB8*n0  
    %fid=fopen('e21.dat','w'); &oZU=CN  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) h^,L) E  
    M1 =3000;              % Total number of space steps o7PS1qcya<  
    J =100;                % Steps between output of space \j.l1O  
    T =10;                  % length of time windows:T*T0 >lJTS t5{  
    T0=0.1;                 % input pulse width K0I.3| 6C  
    MN1=0;                 % initial value for the space output location f\RTO63|O  
    dt = T/N;                      % time step d mTZEO  
    n = [-N/2:1:N/2-1]';           % Index ?-0, x|ul  
    t = n.*dt;   96; gzG@1!  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Cd6th F)  
    u20=u10.*0.0;                  % input to waveguide 2 @S5HMJ2=  
    u1=u10; u2=u20;                 #l9sQ-1Q  
    U1 = u1;    Bw+ ?MdS  
    U2 = u2;                       % Compute initial condition; save it in U tU!Yg"4Q  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 4OAR ["f  
    w=2*pi*n./T; XW2ZQMos1  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 23'<R i  
    L=4;                           % length of evoluation to compare with S. Trillo's paper "|,KXv')  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 1BP/,d |+  
    for m1 = 1:1:M1                                    % Start space evolution ^e $!19g  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS v7hw%9(=  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; LU@1Gol  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform M*Q}^<E*  
       ca2 = fftshift(fft(u2)); k#/cdK!K  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 1TGE>HG  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Vvfd?G"  
       u2 = ifft(fftshift(c2));                        % Return to physical space #IDLfQ5g  
       u1 = ifft(fftshift(c1)); gg#lI|  
    if rem(m1,J) == 0                                 % Save output every J steps. tt6GtYrC 1  
        U1 = [U1 u1];                                  % put solutions in U array <{YzmN\Z  
        U2=[U2 u2]; 2BT+[  
        MN1=[MN1 m1]; ]!jfrj  
        z1=dz*MN1';                                    % output location DqmKD U  
      end  B"5xs  
    end sK/ymEfRv  
    hg=abs(U1').*abs(U1');                             % for data write to excel V_n tS& 2o  
    ha=[z1 hg];                                        % for data write to excel cT&lkS  
    t1=[0 t']; YuJ{@"H  
    hh=[t1' ha'];                                      % for data write to excel file 1M55!b  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format {F\P3-ub  
    figure(1) 6p3cMJ'8y  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ,":_CY4(  
    figure(2) *xj2Z,u  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 7A$mZPKh  
    q['3M<q  
    非线性超快脉冲耦合的数值方法的Matlab程序 zF? 6"  
    6o(.zk`d  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   <F-IF7>a  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 B| M@o^Tf  
    Dk2Zl  
    jJ'NYG  
    X%B$*y5  
    %  This Matlab script file solves the nonlinear Schrodinger equations ?=-/5A4K  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of x'6i9]+r  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear bwszfPM  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 W?ghG  
    W(-son~I  
    C=1;                           y~M 6  
    M1=120,                       % integer for amplitude vkG%w;  
    M3=5000;                      % integer for length of coupler ^4Se=Hr z2  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) $DnR[V}rR!  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. $?[pcgv  
    T =40;                        % length of time:T*T0. &arJe!K  
    dt = T/N;                     % time step ,K PrUM}  
    n = [-N/2:1:N/2-1]';          % Index _t4(H))]vG  
    t = n.*dt;   ;l < amB  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. hD,|CQ  
    w=2*pi*n./T; PB BJ.!Pb  
    g1=-i*ww./2; e~R_bBQ0  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; n%02,pC6,  
    g3=-i*ww./2; BXz g33  
    P1=0; Y OvhMi  
    P2=0; +<B"g{dLuX  
    P3=1; R 4DfqX  
    P=0; A\E ))b9+  
    for m1=1:M1                 ;Cty"H,  
    p=0.032*m1;                %input amplitude ?UeV5<TewS  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 dAOJ: @y  
    s1=s10; g2u\gR5  
    s20=0.*s10;                %input in waveguide 2 OW!y7  
    s30=0.*s10;                %input in waveguide 3 cqm:[0Xf5>  
    s2=s20; |X6R 2I  
    s3=s30; ,WW=,P  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   K,*z8@  
    %energy in waveguide 1 e9QjRx  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ]Qp-$)N  
    %energy in waveguide 2 ]<Q&  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   EEx:Xk%5hX  
    %energy in waveguide 3 2l:cP2fa  
    for m3 = 1:1:M3                                    % Start space evolution [l<&eI&ln  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS K(TejW#  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; p^ OHLT  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 5rQu^6&  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform VT#`l0I }  
       sca2 = fftshift(fft(s2)); xv%]g= Q  
       sca3 = fftshift(fft(s3)); +u&3pK>f  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   giesof  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); C!6D /S  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); {/48n83n  
       s3 = ifft(fftshift(sc3)); @zLyG#kHY  
       s2 = ifft(fftshift(sc2));                       % Return to physical space n5tsaU;  
       s1 = ifft(fftshift(sc1)); ~Ra8(KocD  
    end Fp]ErDan  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ?papk4w  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); oMoco tQ;$  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Y'+K U/H  
       P1=[P1 p1/p10]; `/B+  
       P2=[P2 p2/p10]; -q? ,  
       P3=[P3 p3/p10]; HTm`_}G9  
       P=[P p*p]; |U$ "GI  
    end |PGTP#O<  
    figure(1) 2gEF$?+q?  
    plot(P,P1, P,P2, P,P3); Tv~Ho&LS  
    ?_T[]I'  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~