切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9338阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 W:G*t4i  
    Qpc>5p![3  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Vow+,,oh  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ~yV0SpL  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear j~0hAKHG  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 (nm&\b~j  
    q.4DwY5 L  
    %fid=fopen('e21.dat','w'); GzX@Av$  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Rh|&{Tf  
    M1 =3000;              % Total number of space steps S_zE+f+ 2  
    J =100;                % Steps between output of space V Puzu|  
    T =10;                  % length of time windows:T*T0 IZGty=Q_  
    T0=0.1;                 % input pulse width "A7tb39*  
    MN1=0;                 % initial value for the space output location ? p]w_l  
    dt = T/N;                      % time step Sk xaSJ"  
    n = [-N/2:1:N/2-1]';           % Index ESAh(A)8  
    t = n.*dt;   mb/Y  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 O\?ei+(H7  
    u20=u10.*0.0;                  % input to waveguide 2 { .AFg/Z  
    u1=u10; u2=u20;                 ]4PG[9J@  
    U1 = u1;   /C"E*a  
    U2 = u2;                       % Compute initial condition; save it in U :Fh* 4 &Z  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. JkTL+obu  
    w=2*pi*n./T; 8@!SM  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 3't?%$'5  
    L=4;                           % length of evoluation to compare with S. Trillo's paper U}NNb GQj  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 6xwC1V?:0t  
    for m1 = 1:1:M1                                    % Start space evolution Xv9C D  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Z(#a-_ g  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; \|kU{d0  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform SRMy#j-  
       ca2 = fftshift(fft(u2)); / wEr>[8S  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation JP#m} W  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   `#~@f!';  
       u2 = ifft(fftshift(c2));                        % Return to physical space !HFwQGP.Y  
       u1 = ifft(fftshift(c1)); (5SI! 1N  
    if rem(m1,J) == 0                                 % Save output every J steps. ~{J.br`  
        U1 = [U1 u1];                                  % put solutions in U array r(RJ&\ !  
        U2=[U2 u2]; )s M}BY  
        MN1=[MN1 m1]; 'n\ZmG{  
        z1=dz*MN1';                                    % output location *%8dW  
      end g\ 2Y605DM  
    end r*$KF!-dg  
    hg=abs(U1').*abs(U1');                             % for data write to excel :t(}h!7  
    ha=[z1 hg];                                        % for data write to excel %k"-rmW  
    t1=[0 t']; ~&g:7f|X  
    hh=[t1' ha'];                                      % for data write to excel file I3A](`  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format rkV ZP!7!  
    figure(1) tUzuel*  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn r]TeR$NJ  
    figure(2) 3=` UX  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn I;=}@]9  
    { aU~[5L3(  
    非线性超快脉冲耦合的数值方法的Matlab程序 :iq1-Pw  
    >LLFe~9`g  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   avdi9!J2  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ?=6zgb"9-  
    Oa{M9d,l  
    oo`mVRVf  
    ).LJY<A  
    %  This Matlab script file solves the nonlinear Schrodinger equations Xf:-K(%e  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of =r`>tWs  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 8L0#<"'0  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 g8^$,  
    rN OwB2e  
    C=1;                           W;2y.2*  
    M1=120,                       % integer for amplitude =>&d[G[m!  
    M3=5000;                      % integer for length of coupler jQc$>M<"o  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ?'^xO:  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. a93Aj  
    T =40;                        % length of time:T*T0. &}6=V+J;  
    dt = T/N;                     % time step [<6ez;2q'  
    n = [-N/2:1:N/2-1]';          % Index ^,,|ED\M{m  
    t = n.*dt;   *PD7H9m  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. |ML|P\1&V  
    w=2*pi*n./T; B \BP:;"  
    g1=-i*ww./2; s %/3X\_  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; +hi!=^b]  
    g3=-i*ww./2; NU81 V0:jG  
    P1=0; L_O m<LO2  
    P2=0; <.#i3!  
    P3=1; C&r&&Pw  
    P=0; ~r+;i,,X  
    for m1=1:M1                 A+>+XA'  
    p=0.032*m1;                %input amplitude U",kAQY  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Ak&eGd$d  
    s1=s10; k]w;(<  
    s20=0.*s10;                %input in waveguide 2 XNsMXeO]&  
    s30=0.*s10;                %input in waveguide 3 1InG%=jLo  
    s2=s20; whr[rWt@>  
    s3=s30; 0jG8Gmh!  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   |G } qY5_  
    %energy in waveguide 1 eWE7>kwh  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   p v%`aQ]o{  
    %energy in waveguide 2 qo/`9%^E?  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   kect)=T(  
    %energy in waveguide 3 sZA7)Z`7  
    for m3 = 1:1:M3                                    % Start space evolution vT)FLhH6*  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS \\xoOA.  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ~}+F$&  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; VI/77  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform )$XcO]  
       sca2 = fftshift(fft(s2)); Gg8F>y<[R  
       sca3 = fftshift(fft(s3)); b dP @^Q  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   /c6:B5G  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); e+Vn@-L;  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Gg$4O8  
       s3 = ifft(fftshift(sc3)); L3pNna  
       s2 = ifft(fftshift(sc2));                       % Return to physical space _ 5n Lrn,~  
       s1 = ifft(fftshift(sc1)); M*<Ee]u  
    end  ]?M3X_Mq  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); @T)kqT  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); B _k+Oa2!  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); B'SLyf  
       P1=[P1 p1/p10]; Z^wogIAV  
       P2=[P2 p2/p10]; 9bwG3jn4?  
       P3=[P3 p3/p10]; ) G a5c  
       P=[P p*p]; EIug)S~  
    end ,%6!8vX  
    figure(1) $MhfGMk!'  
    plot(P,P1, P,P2, P,P3); N3"O#C  
    ]O]6O%.ao  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~