切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8810阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 f}%sO  
    GBW 7Y  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Txu>/1N,  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Yx!n*+:J  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear m EFWo  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 FbuKZp+  
    g4Bg6<;  
    %fid=fopen('e21.dat','w');  XtR`?  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) .jCk#@+  
    M1 =3000;              % Total number of space steps h~ZNHSP:  
    J =100;                % Steps between output of space GV=V^Fl .  
    T =10;                  % length of time windows:T*T0 ;2BPPZ  
    T0=0.1;                 % input pulse width @YsL*zw  
    MN1=0;                 % initial value for the space output location g{]ej  
    dt = T/N;                      % time step ;=#qHo9k1%  
    n = [-N/2:1:N/2-1]';           % Index v3Eo@,-  
    t = n.*dt;   Wz5d| b  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ]Px:d+wX:  
    u20=u10.*0.0;                  % input to waveguide 2 x7Eeb!s0f,  
    u1=u10; u2=u20;                 IG>>j}  
    U1 = u1;   uQ-WTz|*  
    U2 = u2;                       % Compute initial condition; save it in U >"i~ x  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Z"+(LO!  
    w=2*pi*n./T; pc^E'h:  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 8`6 LMQ  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 1/!nV  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 lf}?!*V`+  
    for m1 = 1:1:M1                                    % Start space evolution ;>sq_4_  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 2 e )  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Y/#:)(&@  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform cS+?s=d  
       ca2 = fftshift(fft(u2)); 3$;J0{&[i  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation O $YJku  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   I)qKS@  
       u2 = ifft(fftshift(c2));                        % Return to physical space /]P%b K6B  
       u1 = ifft(fftshift(c1)); 6CCZda@  
    if rem(m1,J) == 0                                 % Save output every J steps. !:&2+%  
        U1 = [U1 u1];                                  % put solutions in U array zv>ZrFl*  
        U2=[U2 u2]; WReYF+Uen  
        MN1=[MN1 m1]; (gFQ K[  
        z1=dz*MN1';                                    % output location A5`#Ot*3  
      end >I{4  
    end f45x%tha%  
    hg=abs(U1').*abs(U1');                             % for data write to excel i_'|:Uy*F  
    ha=[z1 hg];                                        % for data write to excel rAtai}Lx  
    t1=[0 t']; `>$g y/N  
    hh=[t1' ha'];                                      % for data write to excel file ikeJDKSG  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format :+kg4v&r  
    figure(1) <#:Ebofsn  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn @DRfNJ}  
    figure(2) iLc)"L-i  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn a>#d=.  
    -<u- +CbuT  
    非线性超快脉冲耦合的数值方法的Matlab程序 "0p +SZ~D  
    Q5T(;u6  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Z:W')Nd(  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 g9RzzE!  
    sqgD?:@J  
    9CgXc5  
    =P@M&Yy'  
    %  This Matlab script file solves the nonlinear Schrodinger equations ayB=|*Q"  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of  dfYYyE  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear  WMt&8W5  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]0at2  
    &6=TtTp"9  
    C=1;                           XY&]T'A  
    M1=120,                       % integer for amplitude (Q*2dd>  
    M3=5000;                      % integer for length of coupler yHV^a0e7EH  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) /1s9;'I  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 5p N08+  
    T =40;                        % length of time:T*T0. eUGm ns  
    dt = T/N;                     % time step w yuJSB  
    n = [-N/2:1:N/2-1]';          % Index *RUd!]bh  
    t = n.*dt;   \rB/83[;u  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 4DG 9`5.  
    w=2*pi*n./T; G~Q*:m  
    g1=-i*ww./2; \{Ox@   
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 3"2<T^H]  
    g3=-i*ww./2; g~i''lng  
    P1=0;  (9'G  
    P2=0; a!SR"3 k  
    P3=1; + 3~Gc<OO  
    P=0; 59"Nn\}3gE  
    for m1=1:M1                 VdjU2d  
    p=0.032*m1;                %input amplitude O4'kS @  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 +w_MSj#P  
    s1=s10; V@54k*V  
    s20=0.*s10;                %input in waveguide 2 Xm0&U?dZB  
    s30=0.*s10;                %input in waveguide 3 GSUOMy[M-  
    s2=s20; wUZ(Tin  
    s3=s30; iPtm@f,bI  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   !Ed<xG/  
    %energy in waveguide 1 P"h,[{Y*>  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ^| a&%wxA  
    %energy in waveguide 2 H8=vQy  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   qU /Wg  
    %energy in waveguide 3 hz>yv@1  
    for m3 = 1:1:M3                                    % Start space evolution \|b1s @c8  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 2=Vkjh-  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 0YsN82IDD  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; [4+a 1/^  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform s K$Sar  
       sca2 = fftshift(fft(s2)); eL] w' }\  
       sca3 = fftshift(fft(s3)); =":V WHf  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   k*UR# z(I  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ^0 ,&R\e+  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ;]O 7^s#v  
       s3 = ifft(fftshift(sc3)); !]jNVg  
       s2 = ifft(fftshift(sc2));                       % Return to physical space aS1P]&  
       s1 = ifft(fftshift(sc1)); (fLbg,  
    end Hhce:E@K  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ko7-%+0|]  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Ow&'sR'CX  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ?-6x]l=]  
       P1=[P1 p1/p10]; 0I ND9h. %  
       P2=[P2 p2/p10]; BR0p0%  
       P3=[P3 p3/p10]; szM=U$jKq  
       P=[P p*p]; S92 !jp/  
    end 6u]OXP A|  
    figure(1) UdM5R [  
    plot(P,P1, P,P2, P,P3); [7 Kj$PB3  
    (/rIodHJO  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~