切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9266阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 &r 5&6p  
    "(HA9:  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of qr<-eJf  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of FVvv   
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 8Izn'>"  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4EaS g#  
    @8 oDy$j  
    %fid=fopen('e21.dat','w'); [~Z'xY y  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ,YAPCj  
    M1 =3000;              % Total number of space steps 5kRwSOG%'  
    J =100;                % Steps between output of space ]%WD} 4e  
    T =10;                  % length of time windows:T*T0 GDNh?R  
    T0=0.1;                 % input pulse width a V+o\fId  
    MN1=0;                 % initial value for the space output location S1x.pLHj8  
    dt = T/N;                      % time step B~ 'VDOG$Z  
    n = [-N/2:1:N/2-1]';           % Index buxI-wv  
    t = n.*dt;   <?=mLOo =  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ^R8U-V8:  
    u20=u10.*0.0;                  % input to waveguide 2 O[5_ 9W 4  
    u1=u10; u2=u20;                 pJ)+}vascR  
    U1 = u1;   {YO%JTQ  
    U2 = u2;                       % Compute initial condition; save it in U uZ=UBir  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. jU3;jm.)  
    w=2*pi*n./T; XeIUdg4>R  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 6|"!sW`%N  
    L=4;                           % length of evoluation to compare with S. Trillo's paper b[&,%Sm+6  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 U`8^N.Snrp  
    for m1 = 1:1:M1                                    % Start space evolution I ]WeZ,E  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 7/U<\(V!g  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; JtrDZ;^@  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform "Wn?8vR  
       ca2 = fftshift(fft(u2)); zw%n!wc_\  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation +{=_|3(  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   aJa^~*N/Aa  
       u2 = ifft(fftshift(c2));                        % Return to physical space Kt!IyIa;Ht  
       u1 = ifft(fftshift(c1)); HHu7{,  
    if rem(m1,J) == 0                                 % Save output every J steps. 9Sj:nn^/u  
        U1 = [U1 u1];                                  % put solutions in U array lu@>?,<  
        U2=[U2 u2]; ek;&<Z_ ]  
        MN1=[MN1 m1]; ah!O&ECh  
        z1=dz*MN1';                                    % output location 5[j!\d}U  
      end rO?x/{;ai  
    end |q.:hWYFpM  
    hg=abs(U1').*abs(U1');                             % for data write to excel mZ0oa-Iy  
    ha=[z1 hg];                                        % for data write to excel ;MRC~F=  
    t1=[0 t']; pJ*#aH[ySP  
    hh=[t1' ha'];                                      % for data write to excel file :?:j$ =nWN  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format v<J;S9u=  
    figure(1) gt t$O  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn N;`[R>Z~  
    figure(2) g0:4zeL  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn !qw=I(  
    ?m_RU  
    非线性超快脉冲耦合的数值方法的Matlab程序 : ! iPn%  
    :2UC{_  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   PqJ*   
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c%LB|(@j{  
    >eG&gc@$1$  
    `j!2uRFe>  
    yL3<X w|  
    %  This Matlab script file solves the nonlinear Schrodinger equations HT,kx  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of g=YiR/O1QN  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ,I&0#+}n  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 < 8 Y<w|Hh  
    k'I_,Z<,  
    C=1;                           -ynLuq#1A  
    M1=120,                       % integer for amplitude C}P \kDM  
    M3=5000;                      % integer for length of coupler T;[c<gc/  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ~h^}W$pO  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. > v!c\  
    T =40;                        % length of time:T*T0. %Rsf6rJ  
    dt = T/N;                     % time step R5;eR(24G  
    n = [-N/2:1:N/2-1]';          % Index LI|HET_  
    t = n.*dt;   Nj-rZ%&  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. lQ<n dt~  
    w=2*pi*n./T; hHl-;%#  
    g1=-i*ww./2; ocuVDC  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; B{o\RNU  
    g3=-i*ww./2; nk3<]u  
    P1=0; +l?ro[#6&.  
    P2=0; ,f0g|5yDf  
    P3=1; \y )4`A  
    P=0; @oc%4~zl  
    for m1=1:M1                 Ee\-q  
    p=0.032*m1;                %input amplitude +j: Ld(  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 KJ^GUqVl  
    s1=s10; Ufe  
    s20=0.*s10;                %input in waveguide 2 rUpAiZfz >  
    s30=0.*s10;                %input in waveguide 3 %V1T !<  
    s2=s20; vgW1hWmHJ  
    s3=s30; (`y|AOs  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   I.0P7eA-  
    %energy in waveguide 1 W]}V<S$  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   = 4WZr  
    %energy in waveguide 2 k mr 4cU5  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   "gikX/Co=  
    %energy in waveguide 3 -zLI!F 0  
    for m3 = 1:1:M3                                    % Start space evolution G1^!ej  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS L8tLW09  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; <d&)|W  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 8Pdnw/W  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform DD$P r&~=  
       sca2 = fftshift(fft(s2)); cA SHgm  
       sca3 = fftshift(fft(s3)); ftH%, /,  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   "sx&8H"  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ,Y8X"~{A  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 5YH mp7c-z  
       s3 = ifft(fftshift(sc3)); LLY;IUK!R  
       s2 = ifft(fftshift(sc2));                       % Return to physical space *#^1rKGWK  
       s1 = ifft(fftshift(sc1)); OHnjI> /  
    end $(L7/M  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); w:zC/5x`  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); /P"\ +Qp  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); to|9)\  
       P1=[P1 p1/p10]; h}&IlDG  
       P2=[P2 p2/p10]; ?[B[ F  
       P3=[P3 p3/p10]; Dj. +5f'  
       P=[P p*p]; XK-x*|  
    end T<?BIQz(}  
    figure(1) 7<o;3gR7Kj  
    plot(P,P1, P,P2, P,P3); vGHYB1=~  
    DMN H?6  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~