切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9370阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 9I}-[|`u  
    B}lvr-c#  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of D)L+7N0D~  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ~_/(t'9  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 6}d.5^7lr  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 vX/T3WV  
    a{L d  
    %fid=fopen('e21.dat','w'); MF5[lK9e  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ML|FQ  
    M1 =3000;              % Total number of space steps %J+E/  
    J =100;                % Steps between output of space .yz}ROmN^  
    T =10;                  % length of time windows:T*T0 Y$"O VC  
    T0=0.1;                 % input pulse width <J) ]mh dm  
    MN1=0;                 % initial value for the space output location As'=tIro  
    dt = T/N;                      % time step hb}+A=A=+  
    n = [-N/2:1:N/2-1]';           % Index aDU<wxnSvO  
    t = n.*dt;   =vX/{C  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ~"nxE  
    u20=u10.*0.0;                  % input to waveguide 2 N sXHO  
    u1=u10; u2=u20;                 16 =sij%A  
    U1 = u1;   YtmrRDQs  
    U2 = u2;                       % Compute initial condition; save it in U ]s<[D$ <,  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. o~`/_ +  
    w=2*pi*n./T; yDzc<p\`  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T EV]1ml k$  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 4h|c<-`>t  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 {*G9|#[/@  
    for m1 = 1:1:M1                                    % Start space evolution ZrpU <   
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 6^]+[q}3  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; X% t1 T4  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ,o86}6Ag  
       ca2 = fftshift(fft(u2)); eA2@Nkw~)  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation $a.JSXyxL  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   g6j?,c|y  
       u2 = ifft(fftshift(c2));                        % Return to physical space ,E S0NA  
       u1 = ifft(fftshift(c1)); -t!~%_WCv  
    if rem(m1,J) == 0                                 % Save output every J steps. <:+x+4ru  
        U1 = [U1 u1];                                  % put solutions in U array *4\:8  
        U2=[U2 u2]; s6 uG`F"  
        MN1=[MN1 m1]; LBYMCY  
        z1=dz*MN1';                                    % output location +r2+X:#~T  
      end f6hnTbJ  
    end d,k!qjf=r  
    hg=abs(U1').*abs(U1');                             % for data write to excel hOjk3 k  
    ha=[z1 hg];                                        % for data write to excel y0L_"e/  
    t1=[0 t']; (7wc*#}  
    hh=[t1' ha'];                                      % for data write to excel file M?1Y,5  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format y%"{I7!A  
    figure(1) W+I!q:p4H  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Ag-(5:  
    figure(2) (KjoSN( K  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn n] ._uza  
    *#,7d"6W5  
    非线性超快脉冲耦合的数值方法的Matlab程序 R@1xt@?  
    <FV1Wz  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   .s?L^Z^  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 &* M!lxDN  
    8{^kQ/]'|  
    - YEZ]:"  
    8V'~UzK  
    %  This Matlab script file solves the nonlinear Schrodinger equations 8'HEms  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 3#3n!(  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear G|bT9f$  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *7uH-u"5d  
    rD*jp6Cl  
    C=1;                           h0g8*HY+}  
    M1=120,                       % integer for amplitude Wf+cDpK  
    M3=5000;                      % integer for length of coupler .]8ZwAs=&  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) hNC&T`.-~B  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. h79}qU  
    T =40;                        % length of time:T*T0. E>6MeO  
    dt = T/N;                     % time step P_F30 x(  
    n = [-N/2:1:N/2-1]';          % Index is?{MJZ_  
    t = n.*dt;   *3+4[WT0]a  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ; 5*&xz  
    w=2*pi*n./T; !z\h| wU+  
    g1=-i*ww./2; Y`~Ut:fZ  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 0{5w 6  
    g3=-i*ww./2; S\CCrje  
    P1=0; /:cd\A}  
    P2=0; ?tWaI{95I  
    P3=1; LQ@"Xe]5  
    P=0; hZm"t/aKc  
    for m1=1:M1                 yl'u'-Zb6  
    p=0.032*m1;                %input amplitude 5?f ^Rz  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ^ gdaa>L  
    s1=s10; fW?vdYF  
    s20=0.*s10;                %input in waveguide 2 d-oMQGOklb  
    s30=0.*s10;                %input in waveguide 3 iDpSj!x/_  
    s2=s20; pIc#L>{E  
    s3=s30; tR# OjkvX  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   2R[:]-b  
    %energy in waveguide 1 *I B4[6  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   =O~_Q-  
    %energy in waveguide 2 w2?3wrP3  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   H%[eV8  
    %energy in waveguide 3 .#EFLXs  
    for m3 = 1:1:M3                                    % Start space evolution p'Y^ X  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS .j ?W>F  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; b!+hH Hv:  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 8=!D$t\3  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Lc}LGq!  
       sca2 = fftshift(fft(s2)); n'"/KS+_  
       sca3 = fftshift(fft(s3)); &5>Kl}7  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   W~)}xy  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); N"Z{5A  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ,<.V7(|t)  
       s3 = ifft(fftshift(sc3)); `~cqAs}6]Q  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ,>:U2%  
       s1 = ifft(fftshift(sc1)); |NlO7aQ>2H  
    end <;lkUU(WT2  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ${DUCud,kY  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); (|2t#'m  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); kj Jn2c:y  
       P1=[P1 p1/p10]; QL(n} {.%  
       P2=[P2 p2/p10]; pd?M f=>#  
       P3=[P3 p3/p10]; HVRZ[Y<^  
       P=[P p*p]; 8C40%q..  
    end :'Vf g[Uq  
    figure(1) td$E/h=3  
    plot(P,P1, P,P2, P,P3); <NMEGit  
    7P } W *  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~