计算脉冲在非线性耦合器中演化的Matlab 程序 ZhCd** Sydl[c pH$ % This Matlab script file solves the coupled nonlinear Schrodinger equations of
XE_Lz2H` % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
Q0"?TSY % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
<m \Y$Wv % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
M{orw;1Isy CRCy)AS,t %fid=fopen('e21.dat','w');
j)8$hK/e0. N = 128; % Number of Fourier modes (Time domain sampling points)
rF[-4t
% M1 =3000; % Total number of space steps
0#Gm# =F J =100; % Steps between output of space
H2|'JA#v T =10; % length of time windows:T*T0
>x%HqP#_V T0=0.1; % input pulse width
8Y8bFWuc MN1=0; % initial value for the space output location
4 ;_g9] dt = T/N; % time step
nW]CA~ n = [-N/2:1:N/2-1]'; % Index
6, j60`f) t = n.*dt;
#Ev}Gf+5Q u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
MzB.Vvsy%9 u20=u10.*0.0; % input to waveguide 2
#@-dT,t u1=u10; u2=u20;
r{?qvl!q U1 = u1;
BYdGK@ouk U2 = u2; % Compute initial condition; save it in U
{.oz^~zs]g ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
U*{0, Ue' w=2*pi*n./T;
qGN>a[D g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
00IW9B- L=4; % length of evoluation to compare with S. Trillo's paper
g]h@U&`~u_ dz=L/M1; % space step, make sure nonlinear<0.05
Ndl{f=sjX- for m1 = 1:1:M1 % Start space evolution
}>AA[ba"' u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
*MfH\X379 u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
A-B>VX ca1 = fftshift(fft(u1)); % Take Fourier transform
cg^~P-i@* ca2 = fftshift(fft(u2));
4xT /8>v2| c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
:mDOqlXW/ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
TR*vZzoy u2 = ifft(fftshift(c2)); % Return to physical space
}BW&1*M{ u1 = ifft(fftshift(c1));
S=S/]]e if rem(m1,J) == 0 % Save output every J steps.
o_=4Ex
" U1 = [U1 u1]; % put solutions in U array
?A\+s,9 U2=[U2 u2];
Iu0GOy*[ MN1=[MN1 m1];
:Nf(:D8 z1=dz*MN1'; % output location
19[o XyFI end
%I`'it2d end
zQO 1%g hg=abs(U1').*abs(U1'); % for data write to excel
o3Yb2Nw ha=[z1 hg]; % for data write to excel
2A|mXWG}~ t1=[0 t'];
Pbbi*&i hh=[t1' ha']; % for data write to excel file
qYVeFSS %dlmwrite('aa',hh,'\t'); % save data in the excel format
2s,cyCw& figure(1)
/ho7~C+H*e waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
\;_tXb}F figure(2)
s^6,"C waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
uj\&-9gEi {4SaSv^/ 非线性超快脉冲耦合的数值方法的Matlab程序 };}N1[D hFtjw6 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
sRBfLN2C Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
WoNJF6=? 6b2h\+AP 1NZpd'$c EJz!#f~ % This Matlab script file solves the nonlinear Schrodinger equations
T
;84Sv % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
qmPu D/c % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
^h=gaNL % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
r91i : 3NZK$d=4 C=1;
DfGq m-c M1=120, % integer for amplitude
&)Zv>P8z` M3=5000; % integer for length of coupler
Nk%$;Si N = 512; % Number of Fourier modes (Time domain sampling points)
]!1HN3 dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
3HR)H-@6@7 T =40; % length of time:T*T0.
#~m^RoE dt = T/N; % time step
N&G(`] n = [-N/2:1:N/2-1]'; % Index
Q A~F
t = n.*dt;
u f<%!=e ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
v`'Iew } w=2*pi*n./T;
kuLur)^ g1=-i*ww./2;
o*d (; g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
l| \ -d g3=-i*ww./2;
@o}J ) P1=0;
YsiH=x P2=0;
2|1CGHj\ P3=1;
45Zh8 k P=0;
xi<}n# for m1=1:M1
>D##94PZ p=0.032*m1; %input amplitude
afaQb s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
{#@[ttw$U s1=s10;
dci,[TEGu s20=0.*s10; %input in waveguide 2
K'Wv$[~Dc s30=0.*s10; %input in waveguide 3
S+eu3nMq s2=s20;
dF! B5( s3=s30;
p}I\H
^"8+ p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
Q>\DM'{:4 %energy in waveguide 1
FW3E UC)P p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
6_rgRo& %energy in waveguide 2
e8_EB/)_Z p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
I3Z\]BI %energy in waveguide 3
i-WP#\s for m3 = 1:1:M3 % Start space evolution
C[ KMaB s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
v3n
T@ra' s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
fOsvOC s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
XdlA)0S) sca1 = fftshift(fft(s1)); % Take Fourier transform
tK+JmbB\ sca2 = fftshift(fft(s2));
#{k+^7aQ sca3 = fftshift(fft(s3));
\Q|,0` sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
d}?KPJ{ sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
Jfv'M<I sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
*[jq& s3 = ifft(fftshift(sc3));
FSkX95 s2 = ifft(fftshift(sc2)); % Return to physical space
OYa9f[ $ s1 = ifft(fftshift(sc1));
\|]+sQ WQ end
7;6'=0( p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
cV`NQt <W p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
<O-R p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
?c_:S]^ P1=[P1 p1/p10];
?<
Ma4yl</ P2=[P2 p2/p10];
^x(s!4d] P3=[P3 p3/p10];
0x&L'&SpN P=[P p*p];
Kj?hcGl[ end
`6NcE-oJ figure(1)
]haQ#e}WH plot(P,P1, P,P2, P,P3);
W=HHTvK9Hh ?d3<GhzlR3 转自:
http://blog.163.com/opto_wang/