切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8496阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 *MQ`&;Qa,  
    G&08Qb ,N  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of IyAD>Q^  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ""*g\  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear BZ(I]:oDL  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 k 7:Z\RGy  
    N_/+B]r }T  
    %fid=fopen('e21.dat','w'); tG~[E,/`  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) %M:$ML6b<  
    M1 =3000;              % Total number of space steps wF3 MzN=%  
    J =100;                % Steps between output of space -A zOujSS  
    T =10;                  % length of time windows:T*T0 x"r,l/gzy  
    T0=0.1;                 % input pulse width 3-'3w,  
    MN1=0;                 % initial value for the space output location MjWxfW/  
    dt = T/N;                      % time step M3r;Pdj2r  
    n = [-N/2:1:N/2-1]';           % Index f Xh{ _>  
    t = n.*dt;   txE+A/>i9  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 dsH*9t:z  
    u20=u10.*0.0;                  % input to waveguide 2 vM50H  
    u1=u10; u2=u20;                 g>l+oH[Tv|  
    U1 = u1;   -hc8IS  
    U2 = u2;                       % Compute initial condition; save it in U i[:cG  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. }F"98s W  
    w=2*pi*n./T; SM8_C!h:  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 9E NI%Jz  
    L=4;                           % length of evoluation to compare with S. Trillo's paper .R l7,1\  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 `F3wO!  
    for m1 = 1:1:M1                                    % Start space evolution ~+ 9v z  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS pC #LQ  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; `?b'.Z_J  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform V7.g,  
       ca2 = fftshift(fft(u2)); .(3ec/i4CF  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation X?XB!D7[  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   v\_\bT1  
       u2 = ifft(fftshift(c2));                        % Return to physical space IUNr<w<  
       u1 = ifft(fftshift(c1)); q^?a|l  
    if rem(m1,J) == 0                                 % Save output every J steps. #sxv?r  
        U1 = [U1 u1];                                  % put solutions in U array dMCoN8W  
        U2=[U2 u2]; jw`05rw:  
        MN1=[MN1 m1]; a=`] L`|N  
        z1=dz*MN1';                                    % output location jsx&h Y%(  
      end zWH)\>X59  
    end -m@PqJF^  
    hg=abs(U1').*abs(U1');                             % for data write to excel WIuYSt)h  
    ha=[z1 hg];                                        % for data write to excel r-yUWIr S  
    t1=[0 t']; *,IK4F6>:  
    hh=[t1' ha'];                                      % for data write to excel file v5@M 34  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ;FW <%  
    figure(1) -/V(Z+dj  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn (m6V)y  
    figure(2) o8|qT)O@U  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ifu!6_b.  
    dfKGO$}V  
    非线性超快脉冲耦合的数值方法的Matlab程序 vbd)L$$20+  
    W)J MV  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   IvlfX`("  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 V1pBKr)v  
    Dh}(B$~Oz+  
    VBw 5[  
    S[zGA<}  
    %  This Matlab script file solves the nonlinear Schrodinger equations AI Kz]J0;  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ([}08OW@  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear nO!&;E&  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 z;F HZb9t,  
    OM{^F=Ap  
    C=1;                           m C`*#[  
    M1=120,                       % integer for amplitude bX,#z,  
    M3=5000;                      % integer for length of coupler j7lJ7BIr  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) t$wbwP  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. `-OzjbM  
    T =40;                        % length of time:T*T0. 1dw{:X=j  
    dt = T/N;                     % time step @!u{>!~0  
    n = [-N/2:1:N/2-1]';          % Index +ima$a0Zyt  
    t = n.*dt;   3T0~k--  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. yNow hh  
    w=2*pi*n./T; {\CWoFht>  
    g1=-i*ww./2; 4(LLRzzW  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; GK!@|Kk8q7  
    g3=-i*ww./2; xr7}@rq"U<  
    P1=0; BxjSo^n  
    P2=0; p:5NMo  
    P3=1; Y0T:%  
    P=0; `[g$EXX  
    for m1=1:M1                 kfZ`|w@q  
    p=0.032*m1;                %input amplitude Qrg- xu=  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 -Dx3*ZhP  
    s1=s10; X:$vP'B>  
    s20=0.*s10;                %input in waveguide 2 }7(+#ISK6  
    s30=0.*s10;                %input in waveguide 3 ]%HxzJ  
    s2=s20; I;%1xdPt  
    s3=s30; e15yDwvB  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   -0#"<!N  
    %energy in waveguide 1 PA ?2K4  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   6?~9{0  
    %energy in waveguide 2 0NGth(2  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   $q z{L~ <  
    %energy in waveguide 3 ] xHiy+  
    for m3 = 1:1:M3                                    % Start space evolution 6j XDLI  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS n:OXv}pv  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; |1(x2x%}D^  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 'ia-h7QWS  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform C@eL9R;N1  
       sca2 = fftshift(fft(s2)); t;6<k7h  
       sca3 = fftshift(fft(s3)); b4-gNF]Yt  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   #e-K It  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); O- QT+]  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ?'+]d;UO&  
       s3 = ifft(fftshift(sc3)); O>qlWPht  
       s2 = ifft(fftshift(sc2));                       % Return to physical space m~AAO{\:b  
       s1 = ifft(fftshift(sc1)); )'T].kWW  
    end 2Ax"X12{6  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));   8sG?|u  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ?Y3i-jY  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); $q:l \  
       P1=[P1 p1/p10]; hmo4H3g!N  
       P2=[P2 p2/p10]; L?+N:G  
       P3=[P3 p3/p10]; :?\29j#*V  
       P=[P p*p]; py:L-5  
    end * @]wT'  
    figure(1) C/Tk`C&  
    plot(P,P1, P,P2, P,P3); (m:Q'4Ep  
    1>rQ).eT  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~