切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8624阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 *'=JT#  
    J+IQvOn_|  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of x]|8  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of p.,o@GcL~  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear |5|^[v   
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Eyu]0+  
    g#0h{%3A \  
    %fid=fopen('e21.dat','w'); qa 'YZE`  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) pE(\q+1<  
    M1 =3000;              % Total number of space steps 'vKB]/e;  
    J =100;                % Steps between output of space Q7oJ4rIP  
    T =10;                  % length of time windows:T*T0 K r $R"  
    T0=0.1;                 % input pulse width !l!^`c  
    MN1=0;                 % initial value for the space output location WJvD,VMz  
    dt = T/N;                      % time step b(wzn`Z%Et  
    n = [-N/2:1:N/2-1]';           % Index b6%T[B B  
    t = n.*dt;   cn1CM'Ru  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 $ c4Q6w  
    u20=u10.*0.0;                  % input to waveguide 2 csZIBi  
    u1=u10; u2=u20;                 MJ^NRT0?b  
    U1 = u1;   , |SO'dG  
    U2 = u2;                       % Compute initial condition; save it in U ZC+F*:$  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. oK1"8k|Z  
    w=2*pi*n./T; -'& 4No  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ;!U`GN,tH  
    L=4;                           % length of evoluation to compare with S. Trillo's paper '~i;g.n=}-  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 p] kpDx[9  
    for m1 = 1:1:M1                                    % Start space evolution &Npv~Iy  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS It,m %5 Py  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; -N`j` zb|  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform BEM_y:#  
       ca2 = fftshift(fft(u2)); ZAe>MNtW  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 3\FPW1$i|[  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   n\k6UD  
       u2 = ifft(fftshift(c2));                        % Return to physical space Am3^3>  
       u1 = ifft(fftshift(c1)); DArEIt6Q  
    if rem(m1,J) == 0                                 % Save output every J steps. {?*3Ou  
        U1 = [U1 u1];                                  % put solutions in U array oL0Q%_9hW  
        U2=[U2 u2]; 5Gm,lNQAv  
        MN1=[MN1 m1]; pjr,X+6o  
        z1=dz*MN1';                                    % output location UEmNT9V  
      end pnin;;D*  
    end SpbOvY=>  
    hg=abs(U1').*abs(U1');                             % for data write to excel -.ITcD g  
    ha=[z1 hg];                                        % for data write to excel fhqc[@Y[  
    t1=[0 t']; =&?}qa(P  
    hh=[t1' ha'];                                      % for data write to excel file /C"dwh"``  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format l<  8RG@  
    figure(1) 4~-"k{Xt  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn XE);oL2xP  
    figure(2) 9Mo(3M  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn oj*5m+:>a  
     TA;  
    非线性超快脉冲耦合的数值方法的Matlab程序 ! 7,rz1s73  
    |__\Vn  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   U085qKyCw  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `-!t8BH  
    3DRbCKNL  
    VyK]:n<5Q  
    lVY`^pw?  
    %  This Matlab script file solves the nonlinear Schrodinger equations Y%!3/3T  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of HrQBzS  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ]0P-?O:  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 w^tNYN,i  
    ,aS6|~ac4  
    C=1;                           m@o/W  
    M1=120,                       % integer for amplitude @f442@_4  
    M3=5000;                      % integer for length of coupler c;DWSgIw  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) WP&P#ju&  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. s>d@=P>R  
    T =40;                        % length of time:T*T0. ?H8w/{J   
    dt = T/N;                     % time step ?2hoY  
    n = [-N/2:1:N/2-1]';          % Index HU ]Yv+3   
    t = n.*dt;   tWL3F?wd  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. cA%70Y:AV  
    w=2*pi*n./T; +r[u4?  
    g1=-i*ww./2; zOA{S~>  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 2ILMf?}  
    g3=-i*ww./2; 0eq="|n^|  
    P1=0; kzPHPERA]  
    P2=0; K(RG:e~R0i  
    P3=1; n%PHHu  
    P=0; /CX_@%m}e=  
    for m1=1:M1                 xe}d&  
    p=0.032*m1;                %input amplitude i/;Ql, gm  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ],ioY*4G  
    s1=s10; vU&I,:72 H  
    s20=0.*s10;                %input in waveguide 2 =YlsJ={h  
    s30=0.*s10;                %input in waveguide 3 M@@l>"g@  
    s2=s20; xVHZZ?e  
    s3=s30; to~Ap=E  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   '5zolp%St  
    %energy in waveguide 1 PR?Ls{}p\  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   em`z=JGG  
    %energy in waveguide 2 xaQ]Vjw  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   b%<-(o/  
    %energy in waveguide 3 SSO F\  
    for m3 = 1:1:M3                                    % Start space evolution $%!'c# F  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS O#}T.5t  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; dWV.5cViP  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; FbB^$ ]*  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ]kUF>Wp  
       sca2 = fftshift(fft(s2)); c!l=09a~a+  
       sca3 = fftshift(fft(s3)); {HPKp&kl  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   y]$%>N0vLX  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); gj{2" tE  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Xy[O  
       s3 = ifft(fftshift(sc3)); EJ7}h?a]U_  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 0<"4W:  
       s1 = ifft(fftshift(sc1)); Hq'mv_}qG  
    end ximW!y7  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); E0QrByr_  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); \fG?j@Qx  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ${\iHg[vZ  
       P1=[P1 p1/p10]; :tclYX  
       P2=[P2 p2/p10]; @-y.Y}k#$~  
       P3=[P3 p3/p10]; ^hPREbD+f  
       P=[P p*p]; 4DaLt&1  
    end >jxo,xz  
    figure(1) }gw \w?/  
    plot(P,P1, P,P2, P,P3); V'TBt=!=]  
    +\~.cP7[  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~