切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9413阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 yA}nPXrd  
    gV`S%   
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of #M:B3C!ouY  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of RAOKZ~`  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear iiN?\OO^~  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 gvr]]}h:O  
    Hdna{@~  
    %fid=fopen('e21.dat','w'); .f%vDBJS  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) \E&thp  
    M1 =3000;              % Total number of space steps s((b"{fFb  
    J =100;                % Steps between output of space gix>DHq$k  
    T =10;                  % length of time windows:T*T0 @Yarz1  
    T0=0.1;                 % input pulse width J[o${^  
    MN1=0;                 % initial value for the space output location &<t79d%{  
    dt = T/N;                      % time step =W |vOfy  
    n = [-N/2:1:N/2-1]';           % Index "i(U  
    t = n.*dt;   un&>  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 pLo;#e8'f  
    u20=u10.*0.0;                  % input to waveguide 2 ec1Fg0Fa  
    u1=u10; u2=u20;                 `.`FgaJ |  
    U1 = u1;   wOM<X hZ  
    U2 = u2;                       % Compute initial condition; save it in U fv/v|  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ~D_ rZ&  
    w=2*pi*n./T; UL ck  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T x3_,nl  
    L=4;                           % length of evoluation to compare with S. Trillo's paper *V<)p%l.  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 *Ji9%IA  
    for m1 = 1:1:M1                                    % Start space evolution 2X^iV09  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS /t5g"n3  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; YpiRF+G  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Uv'uqt  
       ca2 = fftshift(fft(u2)); wvX"D0eVn  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ec#_olG%  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   63SVIc~wT  
       u2 = ifft(fftshift(c2));                        % Return to physical space 4a1BGNI%SW  
       u1 = ifft(fftshift(c1)); |&(H^<+Xp  
    if rem(m1,J) == 0                                 % Save output every J steps. k=FcPF"  
        U1 = [U1 u1];                                  % put solutions in U array QdirE4W  
        U2=[U2 u2]; (w}r7`n  
        MN1=[MN1 m1]; R'r|E_  
        z1=dz*MN1';                                    % output location a0)vvo=bz  
      end _3I3AG0e  
    end EO"=\C,  
    hg=abs(U1').*abs(U1');                             % for data write to excel :nt}7Dn'  
    ha=[z1 hg];                                        % for data write to excel EI<"DB   
    t1=[0 t']; svF*@(- P#  
    hh=[t1' ha'];                                      % for data write to excel file Qk|( EFQ9  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Fr<Pe&dn  
    figure(1) s~/57S  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn rdFs?hO  
    figure(2) #qPV Qt  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn RlPjki"Mg  
    xL|?(pQ/BK  
    非线性超快脉冲耦合的数值方法的Matlab程序 )!BB/'DRQ  
    @f-0X1C."N  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   20n%o&kG]8  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Qz'O{f  
     h=:*7>}  
    bL+sN"Km  
    9'D8[p%  
    %  This Matlab script file solves the nonlinear Schrodinger equations ozT._ C  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of XL=2wh  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear hcj{%^p  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 twAw01".  
     n})  
    C=1;                           CzK%x?~]  
    M1=120,                       % integer for amplitude ?exALv'B  
    M3=5000;                      % integer for length of coupler * .oi3m  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Lqg7D\7j  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. x/pC%25  
    T =40;                        % length of time:T*T0. VOD1xWrb  
    dt = T/N;                     % time step 7l[t9ON  
    n = [-N/2:1:N/2-1]';          % Index AX/=}G  
    t = n.*dt;   ]eY Qio!  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. jc3ExOH  
    w=2*pi*n./T; % E<FB;h  
    g1=-i*ww./2; 9c#L{in  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; "X\q%%P=?  
    g3=-i*ww./2; bDxPgb7N=  
    P1=0; $[WN[J  
    P2=0; 0^-z?Kb<}  
    P3=1; S^*(ALFPj  
    P=0; n\~"Wim<b  
    for m1=1:M1                 Z`e$~n(Bh  
    p=0.032*m1;                %input amplitude E>o&GYc  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 t201ud2$  
    s1=s10; ,"4X&>_f  
    s20=0.*s10;                %input in waveguide 2 [R roHXdk+  
    s30=0.*s10;                %input in waveguide 3 0:~gW#lD  
    s2=s20; 5;r({ J  
    s3=s30; ZS07_6.~  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   eW<!^Aer  
    %energy in waveguide 1 A0'tCq]?0  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   EuhF$L1  
    %energy in waveguide 2 Nj! R9N  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   bvt-leA=  
    %energy in waveguide 3  ] I N -  
    for m3 = 1:1:M3                                    % Start space evolution LA(f]Xmc  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS N9~'P-V  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 2d,wrC<'$  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; %t,1_c0w  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform p8 E;[  
       sca2 = fftshift(fft(s2)); #$9U=^Z[  
       sca3 = fftshift(fft(s3)); i[V,IP +  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   lk5_s@V l  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 0~LnnD N  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 'eTpcrS3  
       s3 = ifft(fftshift(sc3)); *}50q9)/  
       s2 = ifft(fftshift(sc2));                       % Return to physical space NpjsZcA  
       s1 = ifft(fftshift(sc1)); / r`Y'rm  
    end &k {t0>  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); nJnO/~|  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); D(W7O>5vQ2  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); KV3+}k  
       P1=[P1 p1/p10]; |wl")|b%  
       P2=[P2 p2/p10]; [bQ8A(u  
       P3=[P3 p3/p10]; LS?` {E   
       P=[P p*p]; (]GY.(F{  
    end U/~Zk@3j  
    figure(1) |G5=>W  
    plot(P,P1, P,P2, P,P3); c{r6a=C  
    {ILQ CvP*  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~