计算脉冲在非线性耦合器中演化的Matlab 程序 !LN8=u. K|7"YNohfG % This Matlab script file solves the coupled nonlinear Schrodinger equations of
v03cQw\"WE % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
Ap
dXsL % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
x4'@U< % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
q9/v\~m ff#7}9_mh %fid=fopen('e21.dat','w');
]<f)Rf">:` N = 128; % Number of Fourier modes (Time domain sampling points)
5CkG^9 M1 =3000; % Total number of space steps
;}46Uc#WS J =100; % Steps between output of space
d/7fJ8y8 T =10; % length of time windows:T*T0
p&<Ssc T0=0.1; % input pulse width
+vh|m5"7I7 MN1=0; % initial value for the space output location
@k?vbq dt = T/N; % time step
Xsq@E#@S n = [-N/2:1:N/2-1]'; % Index
ob.<j t = n.*dt;
7*5B u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
/Y7^!3uM u20=u10.*0.0; % input to waveguide 2
Ma^jy. u1=u10; u2=u20;
$p0nq&4c U1 = u1;
uAO!fE}CJ U2 = u2; % Compute initial condition; save it in U
8MJJ w; ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
Q]k<Y w=2*pi*n./T;
N"S`9B1eD( g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
%~LY'cfPse L=4; % length of evoluation to compare with S. Trillo's paper
j_8 Y Fz5 dz=L/M1; % space step, make sure nonlinear<0.05
f@OH~4FG for m1 = 1:1:M1 % Start space evolution
H5K
Fm# u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
2@|`Ugjptl u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
uC'-: t# ca1 = fftshift(fft(u1)); % Take Fourier transform
oB:7R^a ca2 = fftshift(fft(u2));
11H`WOTQF c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
-+".ut:R c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
6j%%CWU{~ u2 = ifft(fftshift(c2)); % Return to physical space
P3zUaN\c u1 = ifft(fftshift(c1));
O =Z}DGa+ if rem(m1,J) == 0 % Save output every J steps.
}.&nEi` U1 = [U1 u1]; % put solutions in U array
mrTf["K U2=[U2 u2];
p*g Fr hm MN1=[MN1 m1];
='7m$,{(Q[ z1=dz*MN1'; % output location
7H7
Xbi@ end
)@g[aRFa end
b;i*}4h! hg=abs(U1').*abs(U1'); % for data write to excel
iM]O ha=[z1 hg]; % for data write to excel
V%,,GmiU] t1=[0 t'];
x5lVb$!G hh=[t1' ha']; % for data write to excel file
r&u1-%%9[ %dlmwrite('aa',hh,'\t'); % save data in the excel format
?WI v4 figure(1)
q*hn5 K* waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
.n 9.y8C figure(2)
P3oYk_oW waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
PQHztS" yzS]FwW7 非线性超快脉冲耦合的数值方法的Matlab程序 jD
S?p)& o|xf2k 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
,1]UOQ>AP Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
uyj!$}4 d^v#x[1msZ
+25}X{r$_ x ytrd. % This Matlab script file solves the nonlinear Schrodinger equations
Rk$7jZdTf % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
r_7%|T8 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
1[egCC\Mo_ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
]cRvdUGv CsR[@&n' C=1;
MK#
M1=120, % integer for amplitude
-laH^<jm5 M3=5000; % integer for length of coupler
HSruue8 N = 512; % Number of Fourier modes (Time domain sampling points)
1 iH@vd dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
:5kDc"
=Z| T =40; % length of time:T*T0.
(hc!!:N~q dt = T/N; % time step
Jz8P':6[ n = [-N/2:1:N/2-1]'; % Index
Kw fd
S( t = n.*dt;
(:iMs)
iO{ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
i\xs!QU w=2*pi*n./T;
#$WnMJ@ g1=-i*ww./2;
re/-Yu$' g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
&8VH m?h g3=-i*ww./2;
(B#FLoK P1=0;
lxn/97rA P2=0;
htB2?%S=T P3=1;
]OpGD5jZ P=0;
HNZ$CaJh for m1=1:M1
E~y8X9HZ) p=0.032*m1; %input amplitude
{4+/0\ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
[if(B\& s1=s10;
D0J{pAJ s20=0.*s10; %input in waveguide 2
B)q }]Qn s30=0.*s10; %input in waveguide 3
9SC1A -nF s2=s20;
ruaZ(R[ s3=s30;
C|y^{4|R p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
-x?Z2EA! %energy in waveguide 1
bdrE2m p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
c&;" Y{ %energy in waveguide 2
)CXlPbhY? p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
".jO2GO^ %energy in waveguide 3
u6C_*i{2 for m3 = 1:1:M3 % Start space evolution
Uz ;^R@ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
v&:[?<6- s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
@3n!5XM{EE s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
l>*X+TpA, sca1 = fftshift(fft(s1)); % Take Fourier transform
DY`0 `T sca2 = fftshift(fft(s2));
U&"L9o`2 sca3 = fftshift(fft(s3));
+v/y{8Fu sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
6jpzyf=~ sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
\Fjasz5E' sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
PTHxvml s3 = ifft(fftshift(sc3));
g9C-!X-<T s2 = ifft(fftshift(sc2)); % Return to physical space
% )V=)l.j s1 = ifft(fftshift(sc1));
C
b'| end
wPU5L*/*i p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
Rd8mn'A p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
W2`3 p p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
WvU[9ME^) P1=[P1 p1/p10];
GUL~k@:_k P2=[P2 p2/p10];
aPJTH0u P3=[P3 p3/p10];
Xau%v5r P=[P p*p];
YusmMsN? end
1
F:bExQ figure(1)
:U\*4l plot(P,P1, P,P2, P,P3);
.i\FK@2 cLyf[z)W 转自:
http://blog.163.com/opto_wang/