切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9225阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 $Tur"_`I;  
    OXacI~C  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of (;j7 {(  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of UA8!?r-cR  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear >Qx#2x+  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4B y-+C*  
    0/gcSW b  
    %fid=fopen('e21.dat','w'); IcoL/7k3  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) d$TW](Bby  
    M1 =3000;              % Total number of space steps p_AV3   
    J =100;                % Steps between output of space F:@Ixk?E  
    T =10;                  % length of time windows:T*T0 Na6z,TW  
    T0=0.1;                 % input pulse width *@& "MZ/M  
    MN1=0;                 % initial value for the space output location 1%@~J\qF  
    dt = T/N;                      % time step )mPlB.  
    n = [-N/2:1:N/2-1]';           % Index bvx:R ~E$  
    t = n.*dt;   `@e H4}L*  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 l =yHx\  
    u20=u10.*0.0;                  % input to waveguide 2 qC4-J)8 Wk  
    u1=u10; u2=u20;                 _)l %-*Z7p  
    U1 = u1;   "P{&UwMmh  
    U2 = u2;                       % Compute initial condition; save it in U =R'v]SXj  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 19.cf3Dh  
    w=2*pi*n./T; :z\f.+MI  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ?},ItJ#>)q  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 1;P\mff3Y  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Ax0,7,8y  
    for m1 = 1:1:M1                                    % Start space evolution (6BCFl:/Q<  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS  +o  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ifs*-f  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ]p!J]YV ]0  
       ca2 = fftshift(fft(u2)); ! -c*lb  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Y2X1!Em>B  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Du>HF;Fv  
       u2 = ifft(fftshift(c2));                        % Return to physical space (OqJet2{+  
       u1 = ifft(fftshift(c1)); >.iw8#l  
    if rem(m1,J) == 0                                 % Save output every J steps. 1955(:I  
        U1 = [U1 u1];                                  % put solutions in U array HUC2RM?FN  
        U2=[U2 u2];  {K9E% ,w  
        MN1=[MN1 m1]; <yS"c5D6  
        z1=dz*MN1';                                    % output location [!&k?.*;<  
      end  z\tJ~  
    end \Wc/kY3&  
    hg=abs(U1').*abs(U1');                             % for data write to excel Y*k<NeDyn  
    ha=[z1 hg];                                        % for data write to excel OQ7c| O  
    t1=[0 t']; uB1!*S1f  
    hh=[t1' ha'];                                      % for data write to excel file ?i~/gjp  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Y/0O9}hf  
    figure(1) Fw9``{4w  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn wP/9z(US  
    figure(2) 4QFOO sNp  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ku;nVV  
    H040-Q;S'  
    非线性超快脉冲耦合的数值方法的Matlab程序 ? ~Zrd  
    ?Q)Z..7  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   AfN   
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ({KAh?  
    z4641q5'm  
    ~Ls I<z  
    {,FeNf46  
    %  This Matlab script file solves the nonlinear Schrodinger equations [T]qm7 ?  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of WWcm(q =  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear [\9(@Bx  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 eH955[fVd4  
    %"Q!5qH&  
    C=1;                           .p9h$z^  
    M1=120,                       % integer for amplitude F[=lA"F^  
    M3=5000;                      % integer for length of coupler / JeqoM"x  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) a{HgIQg_>R  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. j{R|]SjW2H  
    T =40;                        % length of time:T*T0. THgzT\_zq  
    dt = T/N;                     % time step .eNwC.8i  
    n = [-N/2:1:N/2-1]';          % Index 8.Ef5-m  
    t = n.*dt;   HoE.//b  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. kQd[E-b7  
    w=2*pi*n./T; &NjZD4m`=  
    g1=-i*ww./2; 8ex:OTzn|  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Y"kS!!C>[  
    g3=-i*ww./2; P .4b+9T x  
    P1=0; "!Oh#Vf  
    P2=0; {2k< k(,  
    P3=1; %4|}&,%%r  
    P=0; D 2:a  
    for m1=1:M1                 V 1nZ M  
    p=0.032*m1;                %input amplitude 1+tt'  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 }0*ra37z>  
    s1=s10; C.)&FW2F_  
    s20=0.*s10;                %input in waveguide 2 X,EYa>RSy_  
    s30=0.*s10;                %input in waveguide 3 dh;MpE  
    s2=s20; wu!_BCIy  
    s3=s30; H.8CwsfP  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   p5;,/ |Ft  
    %energy in waveguide 1 cvV?V\1f  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   a]Da`$T  
    %energy in waveguide 2 zg Y*|{4Sl  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   0/P-> n~  
    %energy in waveguide 3 bC4* w O  
    for m3 = 1:1:M3                                    % Start space evolution f93rY<  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 0tm_}L$g=b  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; AzO3(1:  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ]7S7CVDk4  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform >)J47j7{c  
       sca2 = fftshift(fft(s2)); xDA,?i;T 0  
       sca3 = fftshift(fft(s3)); W[X!P)=w]  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   7! b)'W?  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); wy_;+ 'Y  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ?sf2h:\N  
       s3 = ifft(fftshift(sc3)); TQ\wHJ  
       s2 = ifft(fftshift(sc2));                       % Return to physical space :KV,:13`D  
       s1 = ifft(fftshift(sc1)); F `pyhc>1;  
    end BRU9LS  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); b8{h[YJL2  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); l`FR.)2h  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 9Ajgfy>  
       P1=[P1 p1/p10]; v>y8s&/  
       P2=[P2 p2/p10]; @@{_[ir  
       P3=[P3 p3/p10]; ;TV'PJ  
       P=[P p*p]; 9HNh*Gc=  
    end ghobu}wuF  
    figure(1) !/Bw,y ri<  
    plot(P,P1, P,P2, P,P3); (m3I#L  
    wO_pcNYZ8  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~