切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9088阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 &jP1Q3  
    Xqf,_I=V  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of .e~"+Pe6b  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of L'= \|r  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 4Z)s8sDKW  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $'J3 /C7  
    QKG3>lU  
    %fid=fopen('e21.dat','w'); ;g|Vt}a&4  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) hYW9a`Ht/  
    M1 =3000;              % Total number of space steps 3z8i0  
    J =100;                % Steps between output of space 'C[tPP  
    T =10;                  % length of time windows:T*T0 |bY@HpMp  
    T0=0.1;                 % input pulse width oW3"J6,S  
    MN1=0;                 % initial value for the space output location w' 7sh5  
    dt = T/N;                      % time step |b   
    n = [-N/2:1:N/2-1]';           % Index Pxlc RF  
    t = n.*dt;   9bM\ (s/  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 VXeO}>2S  
    u20=u10.*0.0;                  % input to waveguide 2 M-o'`e'  
    u1=u10; u2=u20;                 &`r/+B_W  
    U1 = u1;   _'=,c"  
    U2 = u2;                       % Compute initial condition; save it in U FZHA19Kb  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. JVc{vSa!rm  
    w=2*pi*n./T; #EPC]jFk  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T zPby+BP  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 6mM9p)"$  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Rf:.'/<^  
    for m1 = 1:1:M1                                    % Start space evolution aFnel8  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS t3;Zx+Br  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; I1Q!3P  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ]\(8d[ 4  
       ca2 = fftshift(fft(u2)); KdVKvs[  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ~YYnn7)  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   GJ ^c^`  
       u2 = ifft(fftshift(c2));                        % Return to physical space PYkhY;*  
       u1 = ifft(fftshift(c1)); Tq1\  
    if rem(m1,J) == 0                                 % Save output every J steps. EeuYRyK  
        U1 = [U1 u1];                                  % put solutions in U array H"A%mrb  
        U2=[U2 u2]; y9:4n1fg  
        MN1=[MN1 m1]; s)^/3a  
        z1=dz*MN1';                                    % output location XqTguO'  
      end $Z]&3VxxY  
    end 8 x{Owj:Q  
    hg=abs(U1').*abs(U1');                             % for data write to excel IG^@VQ%  
    ha=[z1 hg];                                        % for data write to excel P?0X az  
    t1=[0 t']; ]E`<8hRB  
    hh=[t1' ha'];                                      % for data write to excel file qN!oN*  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format a|ufm^ F  
    figure(1) zx.qN  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn B8@mL-Z-;  
    figure(2) &LLU@|  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn uFkl^2  
    + :MSY p  
    非线性超快脉冲耦合的数值方法的Matlab程序 ":!$Jnj,  
    RZa/la*  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   1Viz`y)^  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 yM_/_V|G  
    ,B <\a  
    f{sT*_at  
    3c<aI =$^  
    %  This Matlab script file solves the nonlinear Schrodinger equations E>~R P^?Uz  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ) c@gRb~  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear hkMeUxS  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c./\sN@  
    6h:QSVfx  
    C=1;                           eM7@!CdA9q  
    M1=120,                       % integer for amplitude r.C6` a  
    M3=5000;                      % integer for length of coupler \6b~$\~B  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) k&Pt\- 9on  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 1/DtF  
    T =40;                        % length of time:T*T0. '.A!IGsj  
    dt = T/N;                     % time step {U5sRM|I  
    n = [-N/2:1:N/2-1]';          % Index (v]%kXy/G  
    t = n.*dt;   y{<e4{ !  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1.  o E+'@  
    w=2*pi*n./T; G%W9?4_K  
    g1=-i*ww./2; A7p4M?09  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; N`8K1{>BH  
    g3=-i*ww./2; iq&3S0  
    P1=0; i<QDV W9  
    P2=0; s QDgNJbU  
    P3=1; 2#wnJdr6E  
    P=0; )2f#@0SVL  
    for m1=1:M1                 }Fe~XO`  
    p=0.032*m1;                %input amplitude wh:;G`6S  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 i VSNara  
    s1=s10; {R1]tGOf  
    s20=0.*s10;                %input in waveguide 2 yV^Yp=f_  
    s30=0.*s10;                %input in waveguide 3 -^p{J TB+  
    s2=s20; (:o F\  
    s3=s30; j7I=2xnTWu  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   @6 he!wW  
    %energy in waveguide 1 V?mP7  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   v?8WQNy  
    %energy in waveguide 2 =EJ&=t  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   w-|Rb~XT h  
    %energy in waveguide 3 v\x l?F  
    for m3 = 1:1:M3                                    % Start space evolution l}nVWuD  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS )nN!% |J  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Jqoo&T")  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; .$U,bE  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Gek?+|m  
       sca2 = fftshift(fft(s2)); %YG?7PBB  
       sca3 = fftshift(fft(s3)); &PMQ]B  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   k+QGvgP[4@  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); SmXoNiM"y  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Y\ [|k-6  
       s3 = ifft(fftshift(sc3)); ~&?([}A  
       s2 = ifft(fftshift(sc2));                       % Return to physical space  _){|/Zd  
       s1 = ifft(fftshift(sc1)); z "@^'{.l  
    end WjV Bz   
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Qz(D1>5I?  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); $QJ3~mG2  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); @-@Coy 4Tt  
       P1=[P1 p1/p10]; z{XB_j6\=  
       P2=[P2 p2/p10]; Mc,79Ix"  
       P3=[P3 p3/p10]; ?9 huuJ s7  
       P=[P p*p]; Ww<Y]H$xZ<  
    end ;*%rFt9FK  
    figure(1) [S6u:;7  
    plot(P,P1, P,P2, P,P3); {gD ED  
    M9"Bx/  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~