计算脉冲在非线性耦合器中演化的Matlab 程序 n7{1m$/ rZ0@GA % This Matlab script file solves the coupled nonlinear Schrodinger equations of
-4GSGR'L&y % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
(S9"(\A % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
UDp"+nS % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
>E)UmO{S Blaj07K %fid=fopen('e21.dat','w');
[nG/>Z]W N = 128; % Number of Fourier modes (Time domain sampling points)
2.; OHQTE M1 =3000; % Total number of space steps
ncS^NH(& J =100; % Steps between output of space
ixfkMM,W T =10; % length of time windows:T*T0
R`s /^0 T0=0.1; % input pulse width
@6t3Us~/ MN1=0; % initial value for the space output location
X>*zA?: dt = T/N; % time step
+cjNA2@ n = [-N/2:1:N/2-1]'; % Index
A.z~wu%( t = n.*dt;
}m0Lr:vq<r u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
@^;\(If2 u20=u10.*0.0; % input to waveguide 2
Xwx;m/ u1=u10; u2=u20;
)Dqv&^ U1 = u1;
q8[Nr3. U2 = u2; % Compute initial condition; save it in U
'n>|jw) ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
` qt4~rD w=2*pi*n./T;
u6 B (f; g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
0*tEuJ7 L=4; % length of evoluation to compare with S. Trillo's paper
~r>WnI:vg dz=L/M1; % space step, make sure nonlinear<0.05
(<8T*Xo for m1 = 1:1:M1 % Start space evolution
4H\O&pSS u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
-B`;Sx u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
HjV^6oP ca1 = fftshift(fft(u1)); % Take Fourier transform
>n` OLHg; ca2 = fftshift(fft(u2));
EaP#~x c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
ODEy2). c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
X)nOY* u2 = ifft(fftshift(c2)); % Return to physical space
WpmypkJA# u1 = ifft(fftshift(c1));
ybYSz@7 if rem(m1,J) == 0 % Save output every J steps.
1J<-P9 vk+ U1 = [U1 u1]; % put solutions in U array
I
s8| U2=[U2 u2];
sav2 .w MN1=[MN1 m1];
8<_WtDg z1=dz*MN1'; % output location
Ulktd^A\ end
[5m;L5 end
(:[><-h. hg=abs(U1').*abs(U1'); % for data write to excel
=8tduB ha=[z1 hg]; % for data write to excel
0udE\/4!^ t1=[0 t'];
kMI\GQW hh=[t1' ha']; % for data write to excel file
t^h>~o'\ %dlmwrite('aa',hh,'\t'); % save data in the excel format
}8r+&e figure(1)
Oe;9[=L[ waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
o'H$g% figure(2)
MN1|k waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
kg
!@i 7 v`v+M4upC 非线性超快脉冲耦合的数值方法的Matlab程序 4|XE
f, |
sQ5`lV? 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
OSSMIPr Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
x80~j(uVf 8PQ$X2) ?G8 D6 Sfvi|kZX % This Matlab script file solves the nonlinear Schrodinger equations
e7hPIG % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
y ruN5 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
Q
|l93Rb` % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
xQmk2S`
y :X;8$.z C=1;
_xmM~q[c7p M1=120, % integer for amplitude
8fDnDA.e M3=5000; % integer for length of coupler
S++}kR);
N = 512; % Number of Fourier modes (Time domain sampling points)
(:hPT-1 dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
q.g!WLiI T =40; % length of time:T*T0.
9Y/c<gbY dt = T/N; % time step
f'#7i@Je n = [-N/2:1:N/2-1]'; % Index
bAW;2
NB t = n.*dt;
z?yADYr9 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
!(o)*S w=2*pi*n./T;
Ay2|@1e g1=-i*ww./2;
B!8]\D g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
&Nec(q< g3=-i*ww./2;
2+Fq'! P1=0;
mFo6f\DHr` P2=0;
Q 2tGe~H P3=1;
WOg_Pn9HI P=0;
AS8T! for m1=1:M1
1x\%VtO>\b p=0.032*m1; %input amplitude
|Yk23\! s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
^K;,,s;0 s1=s10;
0?sIod s20=0.*s10; %input in waveguide 2
1nvs51?H s30=0.*s10; %input in waveguide 3
=Qz8"rt# s2=s20;
u`("x5sa s3=s30;
>j$f$*x p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
<rCl %energy in waveguide 1
ff{ESFtD p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
i5)trSM| %energy in waveguide 2
;vd%=vR p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
T!/$@]%\7 %energy in waveguide 3
7R)"HfUh for m3 = 1:1:M3 % Start space evolution
xeu] X|, s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
"b} ^xy s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
S'?XI@t[ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
Fmsg*s7w sca1 = fftshift(fft(s1)); % Take Fourier transform
fTH?t_e sca2 = fftshift(fft(s2));
qdcCX:Z< sca3 = fftshift(fft(s3));
r3iNfY b sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
Pp26UWW sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
`@`Q"J sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
d B?I( s3 = ifft(fftshift(sc3));
9{>m04888 s2 = ifft(fftshift(sc2)); % Return to physical space
dnN" s1 = ifft(fftshift(sc1));
VF6@;5p
end
R;,&CQUl p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
OBj.-jL p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
X|8Yz3:o p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
b@5bN\"x$ P1=[P1 p1/p10];
W'6*$Ron P2=[P2 p2/p10];
){gO b P3=[P3 p3/p10];
u/k#b2BqL P=[P p*p];
Q}]Q0'X8 end
SYl:X figure(1)
}F@`A?k plot(P,P1, P,P2, P,P3);
&jg,8 y0rT=kU 转自:
http://blog.163.com/opto_wang/