计算脉冲在非线性耦合器中演化的Matlab 程序 H8A=]Gq :v%iF!+.P % This Matlab script file solves the coupled nonlinear Schrodinger equations of
$xK(bc'{ % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
:Tdl84 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
+:3p*x%1H % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
yHnN7& F>
b<t.yV %fid=fopen('e21.dat','w');
'e*:eBoyb N = 128; % Number of Fourier modes (Time domain sampling points)
1>)uI@?Rb M1 =3000; % Total number of space steps
M5`wfF,j J =100; % Steps between output of space
vpP8'f. T =10; % length of time windows:T*T0
7!A3PDAe T0=0.1; % input pulse width
CA3`Ee+rD MN1=0; % initial value for the space output location
@5\/L6SRfL dt = T/N; % time step
_Kv;hR> n = [-N/2:1:N/2-1]'; % Index
1Ba.'~: t = n.*dt;
{W%/?d9m u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
c HUj6'neO u20=u10.*0.0; % input to waveguide 2
) %bY2
pk u1=u10; u2=u20;
QuBaG< U1 = u1;
GC)xQZU)s U2 = u2; % Compute initial condition; save it in U
zJTSg ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
V/t- w=2*pi*n./T;
]64?S0p1c! g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
fH 0&Wc3yC L=4; % length of evoluation to compare with S. Trillo's paper
0kL
tL!3 dz=L/M1; % space step, make sure nonlinear<0.05
WO+_|*& for m1 = 1:1:M1 % Start space evolution
V]|P>>`v9p u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
2rqYm6 u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
ktiC*|fd ca1 = fftshift(fft(u1)); % Take Fourier transform
9m}c2:p ca2 = fftshift(fft(u2));
qViolmDz c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
fHacVjJ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
=aRE
u2 = ifft(fftshift(c2)); % Return to physical space
/;9]LC.g u1 = ifft(fftshift(c1));
3k* U/* if rem(m1,J) == 0 % Save output every J steps.
}tPI#[cfK U1 = [U1 u1]; % put solutions in U array
gro@+^DmT U2=[U2 u2];
YCu9dBeVS MN1=[MN1 m1];
ZJ}|t z1=dz*MN1'; % output location
sRSy++FRF end
}zqYn`ffD end
bS*oFm@u hg=abs(U1').*abs(U1'); % for data write to excel
h7[PU^ m ha=[z1 hg]; % for data write to excel
Ks.kn7<l t1=[0 t'];
=xPBolxm5U hh=[t1' ha']; % for data write to excel file
psAdYEGk! %dlmwrite('aa',hh,'\t'); % save data in the excel format
3QD##Wr^ figure(1)
`KJBQK waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
^
,yh384 figure(2)
ns9a+QQ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
r?wE ;gH YJ~3eZQ 非线性超快脉冲耦合的数值方法的Matlab程序 ewv[nJD$ \7A6+[
`fa 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
TkV*^j5 Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
.RxAYf| wE J?Y8 I:,D:00+ (f?&zQ!+ % This Matlab script file solves the nonlinear Schrodinger equations
R{A$hnhW6 % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
MYF6tZ* % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
yXL]uh#b % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
06~HVv jwZBWt )5 C=1;
o;2QZ"v M1=120, % integer for amplitude
H| 1O>p& M3=5000; % integer for length of coupler
&[4lP~ N = 512; % Number of Fourier modes (Time domain sampling points)
J,]U"+;H dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
k-a3oLCR, T =40; % length of time:T*T0.
l*z.20^P dt = T/N; % time step
RE}$(T= n = [-N/2:1:N/2-1]'; % Index
'hl4cHk14 t = n.*dt;
WZJ}HHePr ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
<X1^w w=2*pi*n./T;
#jNN?,ZK g1=-i*ww./2;
#iAEcC0k5 g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
V+2C!)f( g3=-i*ww./2;
298@&_ P1=0;
]M5w!O! P2=0;
Wa+q[E P3=1;
O6$d@r;EK] P=0;
&p#$}tm for m1=1:M1
]EZiPW-uy p=0.032*m1; %input amplitude
dy^ zOqc s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
O5eTkKUc s1=s10;
f/6,b&l, s20=0.*s10; %input in waveguide 2
5T4!'4n s30=0.*s10; %input in waveguide 3
1y($h< s2=s20;
amH..D7_> s3=s30;
xf]_@T; p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
+*aZ9g %energy in waveguide 1
;VAHgIpx; p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
hbg:}R=B< %energy in waveguide 2
I>( \B| \6 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
a2'f#[as %energy in waveguide 3
,aBo
p# for m3 = 1:1:M3 % Start space evolution
&?xZHr` s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
oe{K0.` s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
.V Cfh+*J# s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
O^,%V{]6\ sca1 = fftshift(fft(s1)); % Take Fourier transform
w`$M}oX( sca2 = fftshift(fft(s2));
^$I8ga sca3 = fftshift(fft(s3));
_pS|bqF sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
aX$Q}mgb sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
MQ{.% sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
efu'PfZ`& s3 = ifft(fftshift(sc3));
M'D l_dx- s2 = ifft(fftshift(sc2)); % Return to physical space
z[`OYwsW s1 = ifft(fftshift(sc1));
t+?m<h6w;l end
nPU=n[t8O p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
~l@
h p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
U'(@?]2<G p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
qXw^y P1=[P1 p1/p10];
~d072qUos P2=[P2 p2/p10];
6,q}1- P3=[P3 p3/p10];
$)O=3dNbo P=[P p*p];
yHk}'YP end
. h7`Q{ figure(1)
b&j}f plot(P,P1, P,P2, P,P3);
muJR~4 AYP*J 转自:
http://blog.163.com/opto_wang/