计算脉冲在非线性耦合器中演化的Matlab 程序 2e-bt@0t )s,tBU+N % This Matlab script file solves the coupled nonlinear Schrodinger equations of
)S`[ gK % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
K\8zhY % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
yqL" YD % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
PUZcb+%]h %eIaH!x: %fid=fopen('e21.dat','w');
tCGx]\ N = 128; % Number of Fourier modes (Time domain sampling points)
= _N[mR^ M1 =3000; % Total number of space steps
BKb#\(95* J =100; % Steps between output of space
y06**f) T =10; % length of time windows:T*T0
qz3
Z'
T0=0.1; % input pulse width
TecMQ0
KD MN1=0; % initial value for the space output location
IvY3iRq6 dt = T/N; % time step
{ gs$pBu n = [-N/2:1:N/2-1]'; % Index
qq<T~^ t = n.*dt;
Ml{
]{n u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
oaPWeM+ u20=u10.*0.0; % input to waveguide 2
4KR` u1=u10; u2=u20;
ISK 8t U1 = u1;
l:JVt`A4? U2 = u2; % Compute initial condition; save it in U
v7KBYN ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
+WMXd.iN, w=2*pi*n./T;
\f(zMP g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
-LUZ7,!/>o L=4; % length of evoluation to compare with S. Trillo's paper
vyJ8"
#]qY dz=L/M1; % space step, make sure nonlinear<0.05
w%iwxo for m1 = 1:1:M1 % Start space evolution
){'<67dK u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
_#&oQFdYR u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
S$$SLy:P ca1 = fftshift(fft(u1)); % Take Fourier transform
B&B:P ca2 = fftshift(fft(u2));
YVgH[-`, c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
2PRiiL@ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
.Tq8Qdl u2 = ifft(fftshift(c2)); % Return to physical space
/^k%sG@? u1 = ifft(fftshift(c1));
6_u!{ if rem(m1,J) == 0 % Save output every J steps.
_6r[msH" U1 = [U1 u1]; % put solutions in U array
%g@\SR. U2=[U2 u2];
"JLE MN1=[MN1 m1];
n^l*oEl z1=dz*MN1'; % output location
8OV=;aM?{ end
jIrfJ*z end
bfZt <- hg=abs(U1').*abs(U1'); % for data write to excel
uYg Q?*Z ha=[z1 hg]; % for data write to excel
Z4As'al t1=[0 t'];
(hZNWQ0 hh=[t1' ha']; % for data write to excel file
qpCaW0]7 %dlmwrite('aa',hh,'\t'); % save data in the excel format
4;AQ12<[1 figure(1)
m;{HlDez waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
rXMc0SPk figure(2)
se2Y:v waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
hE`d@ KU
oAxA 非线性超快脉冲耦合的数值方法的Matlab程序 PI`Y%! P '/6f2[%Y" 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
G"-V6CA[ Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
)uo".n|n~B ^9 LoxU- cNmAr8^} wEX<[#a- % This Matlab script file solves the nonlinear Schrodinger equations
hHVAN3e % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
wL3RcXW``e % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
G7+ {O7 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
@sZ7Ka k\T]*A C=1;
0)b1'xt', M1=120, % integer for amplitude
hFr+K1 M3=5000; % integer for length of coupler
iV?8'^ N = 512; % Number of Fourier modes (Time domain sampling points)
H!X*29nX dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
/.!&d^ T =40; % length of time:T*T0.
Y%eW6Y# dt = T/N; % time step
>yn]h4M n = [-N/2:1:N/2-1]'; % Index
Yu_
eCq5/ t = n.*dt;
cQThpgha ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
u?MhK#Mr w=2*pi*n./T;
RfD#/G3| g1=-i*ww./2;
OAW_c.)5D g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
|zP~/ g3=-i*ww./2;
CL7/J[TS P1=0;
{fl[BX]kZ P2=0;
,P`G IGvkA P3=1;
ts@$* P=0;
2W_[|.;' for m1=1:M1
.-&
=\}^2l p=0.032*m1; %input amplitude
DA>nYj-s s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
R[v<mo[s s1=s10;
tB`"gC~ s20=0.*s10; %input in waveguide 2
i>CR{q s30=0.*s10; %input in waveguide 3
#4LTUVH s2=s20;
F-ofR]|)> s3=s30;
tK{#kApHGG p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
K3tW Y
4- %energy in waveguide 1
iWr
#H p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
noa+h<vGb %energy in waveguide 2
V?x&\<;, p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
<[}zw!z %energy in waveguide 3
4h--x~ @ for m3 = 1:1:M3 % Start space evolution
'sa)_?Hy s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
F^!O\8PFd s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
AT3HHQD s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
^z,B}Nz sca1 = fftshift(fft(s1)); % Take Fourier transform
LCA+y1LP-_ sca2 = fftshift(fft(s2));
Y`-q[F?\y sca3 = fftshift(fft(s3));
AU%Yr6 sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
( )ldn?v sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
<^{(?* sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
=B;qy7? s3 = ifft(fftshift(sc3));
:KG=3un] s2 = ifft(fftshift(sc2)); % Return to physical space
$J)`Ru6. s1 = ifft(fftshift(sc1));
udr|6EjD. end
*,O3@,+>H p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
<GQ=PrT|/ p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
iS.gN&\z^ p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
4K`b?{){+a P1=[P1 p1/p10];
KOXG=P0 P2=[P2 p2/p10];
f8r7SFwUv P3=[P3 p3/p10];
`<<9A\Y-f P=[P p*p];
&X`
lh P end
G}NqVbZ9] figure(1)
&c&TQkx plot(P,P1, P,P2, P,P3);
c>/7E-T saQ
~v@ 转自:
http://blog.163.com/opto_wang/