计算脉冲在非线性耦合器中演化的Matlab 程序 u/k'
ry= c}v8j2{ % This Matlab script file solves the coupled nonlinear Schrodinger equations of
g3s5ra[ % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
Q?hf2iw % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
bv41et+Kb % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
TlO=dLR7d ZYY`f/qi %fid=fopen('e21.dat','w');
;7[DFlS\P N = 128; % Number of Fourier modes (Time domain sampling points)
P:J|![ M1 =3000; % Total number of space steps
p v4#`.m J =100; % Steps between output of space
rhYAR r' T =10; % length of time windows:T*T0
ZT"vVX-)G T0=0.1; % input pulse width
GRpwEfG MN1=0; % initial value for the space output location
{Mo[C% dt = T/N; % time step
`4ga~Ch n = [-N/2:1:N/2-1]'; % Index
5~>j98K t = n.*dt;
GQ85ykky u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
b4$g$() u20=u10.*0.0; % input to waveguide 2
9k4z__K e u1=u10; u2=u20;
ys) U1 = u1;
1z; !)pG. U2 = u2; % Compute initial condition; save it in U
;Ym6ey0t ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
-5os0G80 w=2*pi*n./T;
+U'n|>t9 g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
.R)Ho4CE L=4; % length of evoluation to compare with S. Trillo's paper
/: -ig .YY dz=L/M1; % space step, make sure nonlinear<0.05
oGXcu?ft for m1 = 1:1:M1 % Start space evolution
ui"`c%2n u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
{
zL4dJw u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
JFu.o8[Q ca1 = fftshift(fft(u1)); % Take Fourier transform
"tb KbFn9 ca2 = fftshift(fft(u2));
Hl}m*9<9us c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
H[R6 ?H@$F c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
aA%x9\Y u2 = ifft(fftshift(c2)); % Return to physical space
U_9|ED: u1 = ifft(fftshift(c1));
XYV`[,^h& if rem(m1,J) == 0 % Save output every J steps.
E-X02A U1 = [U1 u1]; % put solutions in U array
F)l1%FCm U2=[U2 u2];
D41.$t[ MN1=[MN1 m1];
>7?Lq<H z1=dz*MN1'; % output location
V[8!ymi0 end
e*<pO@Uy end
W;X:U. hg=abs(U1').*abs(U1'); % for data write to excel
g5nL7;`N ha=[z1 hg]; % for data write to excel
0p,_?3nX t1=[0 t'];
5a5JOl$8 hh=[t1' ha']; % for data write to excel file
q@mZ0D- %dlmwrite('aa',hh,'\t'); % save data in the excel format
#VZ-gy4$\B figure(1)
.^- I<4 . waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
X#W6;?Z\ figure(2)
-hK^ *vJ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
p:|7d\r ju.`c->k" 非线性超快脉冲耦合的数值方法的Matlab程序 U~|)=+%O W$}2
$}r0U 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
s2tNQtq0W Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
j;_E0j# 3! KyO)8 HT_nxe`E r-hb]!t % This Matlab script file solves the nonlinear Schrodinger equations
JFRbWQ0 % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
C]zG@O! % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
uE#"wm'J % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
`'rvDaP gE23C*!'&: C=1;
<UW-fI)X M1=120, % integer for amplitude
L$]Y$yv M3=5000; % integer for length of coupler
P?=}}DI N = 512; % Number of Fourier modes (Time domain sampling points)
o3'Za'N. dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
j3o?B T =40; % length of time:T*T0.
) C#>@W dt = T/N; % time step
9]S;%:64 n = [-N/2:1:N/2-1]'; % Index
q) e*eN t = n.*dt;
oPxh+|0? ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
;%/}(&E2 w=2*pi*n./T;
Q-e(>=Gv_ g1=-i*ww./2;
9 KU3)%U g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
@
&GA0;q0t g3=-i*ww./2;
cS",Bw\ P1=0;
. N5$s2t P2=0;
1mv8[^pF P3=1;
<@c9S,@t P=0;
tY`%vI [ for m1=1:M1
o3:h!(#G p=0.032*m1; %input amplitude
?KFj=Yo s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
q$B|a5a? s1=s10;
_]kw |[) s20=0.*s10; %input in waveguide 2
g|{Ru s30=0.*s10; %input in waveguide 3
W>$mU&ew[ s2=s20;
K!tM "`a s3=s30;
,/-DAo~O p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
\`?4PQ %energy in waveguide 1
a;G>56iw p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
?2S<D5MSb %energy in waveguide 2
&A&2z l %# p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
Ye\&_w"
%energy in waveguide 3
wEix 8Ow* for m3 = 1:1:M3 % Start space evolution
B5qlU4km& s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
{G-y7y+E s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
LV]F?O[K= s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
9d+z?J: sca1 = fftshift(fft(s1)); % Take Fourier transform
1{CVd m<9 sca2 = fftshift(fft(s2));
jGn2QL sca3 = fftshift(fft(s3));
V}/AQe2m& sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
U1pwk[ sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
q!) nSD sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
f!}e*oX s3 = ifft(fftshift(sc3));
Uclta s2 = ifft(fftshift(sc2)); % Return to physical space
M^y5 Dep s1 = ifft(fftshift(sc1));
^4
~ V/ end
6$5SS# p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
%xN91j[" p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
$_u)~O4$ p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
s,8g^aF4 P1=[P1 p1/p10];
MgQb" qx P2=[P2 p2/p10];
. L]!* P3=[P3 p3/p10];
kIH)>euZ P=[P p*p];
3Ebkq[/*% end
u[LsH figure(1)
]]V|]}<)m plot(P,P1, P,P2, P,P3);
F t;[>o ds'7zxy/ 转自:
http://blog.163.com/opto_wang/