切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8598阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ^(TCUY~f&  
    '^)'q\v'k  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of =CFjG)L  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of c \??kQH  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear }K)A jZ  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]ePg6  
    1e[?}q]*  
    %fid=fopen('e21.dat','w'); c= t4 gf  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) \NNA"  
    M1 =3000;              % Total number of space steps dLYM )-H`>  
    J =100;                % Steps between output of space Wq3PN^  
    T =10;                  % length of time windows:T*T0 ""7H;I&  
    T0=0.1;                 % input pulse width 1< vJuF^  
    MN1=0;                 % initial value for the space output location (/uN+   
    dt = T/N;                      % time step J~K O#`  
    n = [-N/2:1:N/2-1]';           % Index OFr"RGW"  
    t = n.*dt;   9C \}bT  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 $?F_Qsy{d  
    u20=u10.*0.0;                  % input to waveguide 2 } `L;.9  
    u1=u10; u2=u20;                 C+/EPPi  
    U1 = u1;   Lz1KDXr`)+  
    U2 = u2;                       % Compute initial condition; save it in U S!A:/(^WB  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. V<WWtu;3  
    w=2*pi*n./T; )s>|;K{  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T oL~1M=r  
    L=4;                           % length of evoluation to compare with S. Trillo's paper }$<v  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 WblH}  
    for m1 = 1:1:M1                                    % Start space evolution N_ ODr]L  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Vl$RMW@Ds  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 0 @#Jz#?  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform K_+M?ap_  
       ca2 = fftshift(fft(u2)); N|mggz  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ,$!fyi[;C  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   +On2R&m  
       u2 = ifft(fftshift(c2));                        % Return to physical space 7d.H 8C2  
       u1 = ifft(fftshift(c1)); h*^JFZb  
    if rem(m1,J) == 0                                 % Save output every J steps. IsT}T}p,t  
        U1 = [U1 u1];                                  % put solutions in U array  zr ez*  
        U2=[U2 u2]; }'vQUG u8z  
        MN1=[MN1 m1]; 9=}#.W3.  
        z1=dz*MN1';                                    % output location 1;m?:|6K{  
      end \#biwX  
    end 5 xr2  
    hg=abs(U1').*abs(U1');                             % for data write to excel =,*/Ph&  
    ha=[z1 hg];                                        % for data write to excel V #vkj  
    t1=[0 t']; yx#!2Z0hw  
    hh=[t1' ha'];                                      % for data write to excel file W ~MNst?  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format G-D}J2r=F  
    figure(1) &u9,|n]O9  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn j 7);N  
    figure(2) A]iT uu5p  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Gmu[UI}w8  
    UHV"<9tk  
    非线性超快脉冲耦合的数值方法的Matlab程序 }qGd*k0F0  
    X%I@4 B7Ts  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   qCVb-f  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]hlQU%&  
    k3LHLJZ#  
    0 {d)f1  
    d?5oJ'JU  
    %  This Matlab script file solves the nonlinear Schrodinger equations xGOmvn^lQ  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of DQ$m@_/4w  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ~d<&OL  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 k0FAI0~(  
    n2o)K;wW+  
    C=1;                           B{` K?e0  
    M1=120,                       % integer for amplitude -m ,Y6  
    M3=5000;                      % integer for length of coupler $2]>{g  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) K d#(eGe  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. P7X3>5<;q  
    T =40;                        % length of time:T*T0. Wf?[GO  
    dt = T/N;                     % time step HXh:8 3  
    n = [-N/2:1:N/2-1]';          % Index <QgpePyoN  
    t = n.*dt;   o=![+g  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. asQ^33g z  
    w=2*pi*n./T; "\lO Op^-  
    g1=-i*ww./2; Bvj  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; _^?_Vb  
    g3=-i*ww./2; >C{8}Lg-.  
    P1=0; Ya jAz5N  
    P2=0; VeEa17g&  
    P3=1; lP4s"8E`h  
    P=0; c8zok `\P_  
    for m1=1:M1                 25 U+L  
    p=0.032*m1;                %input amplitude ,9KnC=_y  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 _b)Ie`a.H  
    s1=s10; am 'K$s  
    s20=0.*s10;                %input in waveguide 2 )yz)Fw|&  
    s30=0.*s10;                %input in waveguide 3 kTzO4s?  
    s2=s20; 6 %`h2Z  
    s3=s30; r_8;aPL  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   `Y!8,( 5#  
    %energy in waveguide 1 =Y^K   
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   \,m*CYs`  
    %energy in waveguide 2 O#!|2qN  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ^VnnYtCRz  
    %energy in waveguide 3 00-2u~D&  
    for m3 = 1:1:M3                                    % Start space evolution pL*aU=FjQ  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS }YiFiGf,  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 00>knCe6  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; JS?%zj&@  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 0XC3O 8q  
       sca2 = fftshift(fft(s2)); benqm ~{\  
       sca3 = fftshift(fft(s3)); @tRDKPh  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift    Ew;AYZX  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); svt3gkR0  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); }0/l48G  
       s3 = ifft(fftshift(sc3)); ))X"bFP!3  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 39 pA:3iTd  
       s1 = ifft(fftshift(sc1)); EIpz-"S  
    end 1=X1<@*  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ~XXNzz ]?  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); AYsHA w   
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); g^#,!e  
       P1=[P1 p1/p10]; #N"QTD|i  
       P2=[P2 p2/p10]; O"X7 DgbC  
       P3=[P3 p3/p10]; pFBK'NE  
       P=[P p*p]; m}beT~FT_  
    end 4kK_S.&  
    figure(1)  zDxJK  
    plot(P,P1, P,P2, P,P3); E8lq2r=  
    p&2d&;Qo0  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~