切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9218阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 42ge3>  
    zX i 'kB  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of )NT*bLRPQ  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of sU^1wB Rj  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear M&M 6;Ph  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]A_`0"m.U  
    9H1rO8k  
    %fid=fopen('e21.dat','w'); goWuw}?  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) -m#)B~)  
    M1 =3000;              % Total number of space steps lPAQ3t!,  
    J =100;                % Steps between output of space w_VP J  
    T =10;                  % length of time windows:T*T0 _7y[B&g[r  
    T0=0.1;                 % input pulse width %iqD5x$OA  
    MN1=0;                 % initial value for the space output location vW@=<aS Z  
    dt = T/N;                      % time step <9b &<K:  
    n = [-N/2:1:N/2-1]';           % Index ;}p  
    t = n.*dt;   sNFlKQ8)Q  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 )0k53-h&  
    u20=u10.*0.0;                  % input to waveguide 2 ]T) 'Hb  
    u1=u10; u2=u20;                 |u p  
    U1 = u1;   bpa?C  
    U2 = u2;                       % Compute initial condition; save it in U .*Qx\,  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. F,CT Z~  
    w=2*pi*n./T;  e]$s t?  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T >=w)x,0yX  
    L=4;                           % length of evoluation to compare with S. Trillo's paper i,VMd  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 {id4:^u&;  
    for m1 = 1:1:M1                                    % Start space evolution @>7%qS  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Y}KNKO;  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; MiX43Pk]  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform iH'p>s5L  
       ca2 = fftshift(fft(u2)); G^@5H/)  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 9: lFo=  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   +aAc9'k   
       u2 = ifft(fftshift(c2));                        % Return to physical space a$fnh3j[  
       u1 = ifft(fftshift(c1)); /BL4<T f  
    if rem(m1,J) == 0                                 % Save output every J steps. ?Z}&EH  
        U1 = [U1 u1];                                  % put solutions in U array (**oRwr%  
        U2=[U2 u2]; -$g#I  
        MN1=[MN1 m1]; #[[ en  
        z1=dz*MN1';                                    % output location 1{.9uw"2S  
      end DVeE1Q  
    end |5]X| v  
    hg=abs(U1').*abs(U1');                             % for data write to excel ,`sv1xwd  
    ha=[z1 hg];                                        % for data write to excel ?\n > AC  
    t1=[0 t']; 3$ PV2"  
    hh=[t1' ha'];                                      % for data write to excel file HK% 7g  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format z0 Z%m@  
    figure(1) MWh6]gGs  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn l}P=/#</T  
    figure(2) _tycgq#  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Rk8P ax/JK  
    EiaW1Cs  
    非线性超快脉冲耦合的数值方法的Matlab程序 6wg^FD_Q  
    bhs _9ivw  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   J9 I:Q<;  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 wKY_Bo/d  
    H%{+QwzZ[j  
    DW3G  
    -ze J#B)C  
    %  This Matlab script file solves the nonlinear Schrodinger equations %]7d`/  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of BL4-7  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear IvNT6]6 P  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |&4/n6;P$0  
    .eC1qWZJpd  
    C=1;                           fd9k?,zM  
    M1=120,                       % integer for amplitude J,6yYIq  
    M3=5000;                      % integer for length of coupler \^1E4C\":  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Zgb!E]V[  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. =WJ NWt>  
    T =40;                        % length of time:T*T0. A_UjC`  
    dt = T/N;                     % time step Z #m+ObHK1  
    n = [-N/2:1:N/2-1]';          % Index -%4,@ x`  
    t = n.*dt;   ]{>,rK[So  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. H%lVl8oQ  
    w=2*pi*n./T; =?`c=z3~i$  
    g1=-i*ww./2; "^iYLQOC  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; CTA 3*Gn  
    g3=-i*ww./2; )=-szJjXZ  
    P1=0; e8 b:)"R  
    P2=0; ,"0 :3+(8;  
    P3=1; Yz93'HDB  
    P=0; AwF:Iu^3n  
    for m1=1:M1                 ]J]h#ZHx  
    p=0.032*m1;                %input amplitude M"To&?OI  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 e@YK@?^#N  
    s1=s10; +qdEq_ m  
    s20=0.*s10;                %input in waveguide 2 Uoix  
    s30=0.*s10;                %input in waveguide 3 Ef{Vp;]  
    s2=s20; '/%H3A#L  
    s3=s30; Yu`~U,m  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   FXU8[j0P_G  
    %energy in waveguide 1 pI<f) r  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   _h1mF<\ X^  
    %energy in waveguide 2 mRK>U$v  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   dUdT7ixo  
    %energy in waveguide 3 YKf0dh;O  
    for m3 = 1:1:M3                                    % Start space evolution ={Qi0Pvt  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS J<lO= +mg  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; {BU;$  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Wh{tZ~c  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Fv`,3aNB  
       sca2 = fftshift(fft(s2)); `~q<N  
       sca3 = fftshift(fft(s3)); 13/]DF,S"^  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   [)X\|pO&  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ~WV"SaA)*U  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); seeB S/%  
       s3 = ifft(fftshift(sc3)); vs{s_T7Mz]  
       s2 = ifft(fftshift(sc2));                       % Return to physical space '@P^0+B!(.  
       s1 = ifft(fftshift(sc1)); #C@FYO f*  
    end K\c#ig   
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); iO; 7t@]-  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); "U"Z 3 *  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); uWE^hz"  
       P1=[P1 p1/p10]; Dv`c<+q(#  
       P2=[P2 p2/p10]; D^;Uq8NDKq  
       P3=[P3 p3/p10]; A&jlizN7  
       P=[P p*p]; R ViuJ;  
    end U :_^#\p  
    figure(1) 0_t!T'jr7  
    plot(P,P1, P,P2, P,P3); uY'HT|@:{  
    Q&bM\;Ml  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~