切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9354阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ANq3r(  
    r!y3VmJ'm  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of dd:vQOF;  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of D/bF  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear PHx No)  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 OI^sd_gkZ  
    qw6i|JM%  
    %fid=fopen('e21.dat','w'); x|GkXD3  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 57[tUO  
    M1 =3000;              % Total number of space steps fHiS'R  
    J =100;                % Steps between output of space ,j e  
    T =10;                  % length of time windows:T*T0 LW!>_~g-  
    T0=0.1;                 % input pulse width 1w'W)x  
    MN1=0;                 % initial value for the space output location (qDPGd*1  
    dt = T/N;                      % time step ]\(Ho  
    n = [-N/2:1:N/2-1]';           % Index 0t2n7Y?N  
    t = n.*dt;   KuZZKh  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ^"] ]rZ)  
    u20=u10.*0.0;                  % input to waveguide 2 BD?u|Fd,i:  
    u1=u10; u2=u20;                 ;C,t`(  
    U1 = u1;   BI+x6S>d  
    U2 = u2;                       % Compute initial condition; save it in U n<e1=L  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. a7n`(}?Y  
    w=2*pi*n./T; 2"IDz01ne  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T W?<<al*  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Y@ X>ejk"  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 dheobD  
    for m1 = 1:1:M1                                    % Start space evolution B ,U|V  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS q0L\{  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; /B)`pF.n  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ?.^n,[2  
       ca2 = fftshift(fft(u2)); N^4CA@'{  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation O'h f8w  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift    xq&r|el  
       u2 = ifft(fftshift(c2));                        % Return to physical space Q#zU0K*^  
       u1 = ifft(fftshift(c1)); Af Y ]i  
    if rem(m1,J) == 0                                 % Save output every J steps. ?10L *PD@  
        U1 = [U1 u1];                                  % put solutions in U array 1xjWD30  
        U2=[U2 u2]; mv>-XJ+  
        MN1=[MN1 m1]; .~X&BY>qP  
        z1=dz*MN1';                                    % output location 6k`O  
      end ^j7>Ul,  
    end *R3^:Y&  
    hg=abs(U1').*abs(U1');                             % for data write to excel jwmPy)X|s\  
    ha=[z1 hg];                                        % for data write to excel ^J'O8G$  
    t1=[0 t']; ca<OG;R^  
    hh=[t1' ha'];                                      % for data write to excel file Q[)3r ,D  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format HutQx  
    figure(1) Og7^7))  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn #=N6[:,  
    figure(2) = OzpI  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn QY c/f"9  
    @cc}[Uw4B  
    非线性超快脉冲耦合的数值方法的Matlab程序 9Y+7o%6e  
    Qt>Bvu Q  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Hi nJ}MF  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]z8Th5a?o  
    `6<Qb=  
    yVWt%o/  
    i,,mt_/,  
    %  This Matlab script file solves the nonlinear Schrodinger equations UJ><B"  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of |k#EYf#Y  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear B]I*ymc#  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 SB,#y>Zv?  
    AnoA5H  
    C=1;                           Kx02 2rgDU  
    M1=120,                       % integer for amplitude ;?C`Jag x  
    M3=5000;                      % integer for length of coupler .>1vN+  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ^O<@I  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. kQ"Ax? b  
    T =40;                        % length of time:T*T0. ki|OowP  
    dt = T/N;                     % time step rJ(AO'=  
    n = [-N/2:1:N/2-1]';          % Index B.L_EIw  
    t = n.*dt;   +wfZFJ:1l  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. [9yd29pQ]  
    w=2*pi*n./T; hPuF:iiQ4  
    g1=-i*ww./2; ']N\y6=fn9  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; |Xmzq X%  
    g3=-i*ww./2; f9t+x+ Z  
    P1=0; i ^, $/  
    P2=0; [8>#b_>  
    P3=1; r,q.RWuII  
    P=0; a:s$[+'Y  
    for m1=1:M1                 5 %+epzy  
    p=0.032*m1;                %input amplitude !-t"}^)  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 f8-~&N/_R  
    s1=s10; DABV}@K"  
    s20=0.*s10;                %input in waveguide 2 n[\L6}  
    s30=0.*s10;                %input in waveguide 3 Nz:p(X!  
    s2=s20; !QC ErE;r  
    s3=s30; #Q BW%L  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));    Q.Y6  
    %energy in waveguide 1 ,{_56j^d,  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   SNf~%B?`L  
    %energy in waveguide 2 <pM6fI6BD  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   m~4ik1 wq  
    %energy in waveguide 3 VVfTFi<  
    for m3 = 1:1:M3                                    % Start space evolution tMXNi\Bj  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS O&sUPv  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; @2`nBtk  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; %vbov}R  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform jI~$iDdOfs  
       sca2 = fftshift(fft(s2)); .g94|P  
       sca3 = fftshift(fft(s3)); goNDS5}  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   >8&fFq  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); n8JM 0 U-  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 9*XT|B  
       s3 = ifft(fftshift(sc3)); IFW7MF9V  
       s2 = ifft(fftshift(sc2));                       % Return to physical space k%iwt]i%  
       s1 = ifft(fftshift(sc1)); ?xuWha@:  
    end dh1 N/[  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ~du U& \  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 5Q:%f  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); @'y8* _  
       P1=[P1 p1/p10]; (B%[NC 6  
       P2=[P2 p2/p10]; ) )t]5Ys%;  
       P3=[P3 p3/p10]; M!X^2  
       P=[P p*p]; OGO\u#  
    end ?Ss~!38  
    figure(1) ,$U~<Zd  
    plot(P,P1, P,P2, P,P3); 40z1Qkmaey  
    C=2DxdZG  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~