切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9200阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 B}N1}i+  
    hF5(1s}e$  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of /9?yw!  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of (!9+QXb'  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear &=wvlI52`  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 SPtx_+ Q)S  
    I(Vg  
    %fid=fopen('e21.dat','w'); pLMaXX~4_  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) YuoIhT  
    M1 =3000;              % Total number of space steps "@Qg]#]JH  
    J =100;                % Steps between output of space  jQ-2SA O  
    T =10;                  % length of time windows:T*T0 $A T kCO  
    T0=0.1;                 % input pulse width h)z2#qfc  
    MN1=0;                 % initial value for the space output location ,!P}Y[|  
    dt = T/N;                      % time step b]N&4t  
    n = [-N/2:1:N/2-1]';           % Index Qp>Z&LvC5  
    t = n.*dt;   ylQ9Su>o  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 FRayB VHL  
    u20=u10.*0.0;                  % input to waveguide 2 S{,|Fa^PPO  
    u1=u10; u2=u20;                 9A9T'g)Du  
    U1 = u1;   Nc?'},  
    U2 = u2;                       % Compute initial condition; save it in U 4"\%/kG  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. iMQ0Sq-%1  
    w=2*pi*n./T; ciFqj3JS  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T {~XnmBs  
    L=4;                           % length of evoluation to compare with S. Trillo's paper @eq.&{&  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 pfFHuS~  
    for m1 = 1:1:M1                                    % Start space evolution 3kVN[0  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 4Ofkagg  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; C3(h j  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform \(r$f!`  
       ca2 = fftshift(fft(u2)); .sKfwcYu4  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation r^ABu_u(`I  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   |n~,{=  
       u2 = ifft(fftshift(c2));                        % Return to physical space 6r`Xi&  
       u1 = ifft(fftshift(c1)); o1uM(  
    if rem(m1,J) == 0                                 % Save output every J steps. s3 VD6xi7  
        U1 = [U1 u1];                                  % put solutions in U array buhbUmQ2  
        U2=[U2 u2]; Tf('iZ2+  
        MN1=[MN1 m1]; `O0y8  
        z1=dz*MN1';                                    % output location Ns5P,[pBOZ  
      end Fe.90)  
    end aDu[iaZ  
    hg=abs(U1').*abs(U1');                             % for data write to excel dAy\IfZX=  
    ha=[z1 hg];                                        % for data write to excel L<6nM ;d  
    t1=[0 t']; Z_[L5B]Gwd  
    hh=[t1' ha'];                                      % for data write to excel file js% n]$N  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format J5Ti@(G5V  
    figure(1) [\  &2&  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn d$Y_vX<  
    figure(2) (B! DBnq  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Qraa0]56  
    Np/vPaAk  
    非线性超快脉冲耦合的数值方法的Matlab程序 F@zTz54t  
    SIc~cZ!Yu  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ImbA2Gcs  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 vJS}_j]_@  
    \r [@A3O  
    m)Wq*&,o  
    XWq"_$&LF  
    %  This Matlab script file solves the nonlinear Schrodinger equations U]g9t<jD  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of gAf4wq  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear @jrxbo;5  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @a,=ApS"  
    :[0)Uu{  
    C=1;                           RL fQT_V  
    M1=120,                       % integer for amplitude ^dE[ ;  
    M3=5000;                      % integer for length of coupler k;)mc+ ~+  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) h0I5zQZm  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Bx6,U4o*  
    T =40;                        % length of time:T*T0. *B9xL[}  
    dt = T/N;                     % time step '(g;nU<  
    n = [-N/2:1:N/2-1]';          % Index OXn-!J90P  
    t = n.*dt;   hTmJ ~m'J  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. yB 'C9wEH  
    w=2*pi*n./T; ;' H\s  
    g1=-i*ww./2; u7j,Vc'~  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; F/3L^k]  
    g3=-i*ww./2; }Z< Sca7  
    P1=0; NytodVZ'3  
    P2=0; dczSW ]%  
    P3=1; PZlPC#E-  
    P=0; # s7e/GdKb  
    for m1=1:M1                 v>N*f~n  
    p=0.032*m1;                %input amplitude 1b2  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 g:GywX W  
    s1=s10; uh\Tf5  
    s20=0.*s10;                %input in waveguide 2 23 #JmR  
    s30=0.*s10;                %input in waveguide 3 <K,X5ctM}  
    s2=s20; WNKg>$M  
    s3=s30; w.#z>4#3-  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   k 8%@PC$  
    %energy in waveguide 1 Sw5:T  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   F^S]7{  
    %energy in waveguide 2 .k +>T*c{  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   pS}IU{#;  
    %energy in waveguide 3 "S*@._   
    for m3 = 1:1:M3                                    % Start space evolution {J,4g:4G  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS %r*,m3d  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; KWAd~8,mk  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 2)T;N`tNw  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform nwC*w`4  
       sca2 = fftshift(fft(s2)); `AvK=]  
       sca3 = fftshift(fft(s3)); A|YgA66M  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   V>GJO(9  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 5SmJ'zFO  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); foL4s;2  
       s3 = ifft(fftshift(sc3)); hw*u.46  
       s2 = ifft(fftshift(sc2));                       % Return to physical space z%iPk'^  
       s1 = ifft(fftshift(sc1)); rm$dv%q  
    end lNtxM"G&  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 5h0Hk<N  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); /e*fsQ>M:  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); kqxq'Aq)d  
       P1=[P1 p1/p10]; iA[o;D#  
       P2=[P2 p2/p10]; 67Qu<9}<-  
       P3=[P3 p3/p10]; 8#- Nx]VM  
       P=[P p*p]; c 3o3i  
    end jb{9W7;RL  
    figure(1) _ qwf3Q@  
    plot(P,P1, P,P2, P,P3); +v:]#1  
    -$I30.#  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~