切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8714阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 G/w&yd4  
    O=9mLI6  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 9qHbV 9,M  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of  bK7j"  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear )sh+cfTCb  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~; emUU  
    {NS6y\,  
    %fid=fopen('e21.dat','w'); exn Fy-  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Yb~[XS |p  
    M1 =3000;              % Total number of space steps :dZq!1~t  
    J =100;                % Steps between output of space ?3x7_=4t@  
    T =10;                  % length of time windows:T*T0 I1IuvH6  
    T0=0.1;                 % input pulse width U|Du9_0  
    MN1=0;                 % initial value for the space output location ~BS Ip .  
    dt = T/N;                      % time step z^KMYvH g  
    n = [-N/2:1:N/2-1]';           % Index y" (-O%Pe  
    t = n.*dt;   @-7h}2P Q  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 -UHa;W H  
    u20=u10.*0.0;                  % input to waveguide 2 %LH~Im=  
    u1=u10; u2=u20;                 E>bK-jG  
    U1 = u1;   :#?Z)oQpT  
    U2 = u2;                       % Compute initial condition; save it in U VdVUYp  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. W!R}eLf@  
    w=2*pi*n./T; J`&*r;""V  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T dK5|tWJX  
    L=4;                           % length of evoluation to compare with S. Trillo's paper D9cpw0{nc  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 2=&4@c|cn  
    for m1 = 1:1:M1                                    % Start space evolution wNHvYu lI  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS :U,n[.$5'  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; aCq ) hR  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform wRa$b  
       ca2 = fftshift(fft(u2)); yc#0c[ZQu  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ?!h jI;_&  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   gJkk0wok C  
       u2 = ifft(fftshift(c2));                        % Return to physical space lk$@8h$vS  
       u1 = ifft(fftshift(c1)); 0 e}N{,&Y  
    if rem(m1,J) == 0                                 % Save output every J steps. Fp_?1 y  
        U1 = [U1 u1];                                  % put solutions in U array qqmhh_[T  
        U2=[U2 u2]; n#{z"G  
        MN1=[MN1 m1]; O% 1X[  
        z1=dz*MN1';                                    % output location D8`dEB2|S  
      end -v '|#q  
    end O?6ph4'  
    hg=abs(U1').*abs(U1');                             % for data write to excel m0: IFE($  
    ha=[z1 hg];                                        % for data write to excel @Kx@ 2#~b  
    t1=[0 t']; ~^&]8~m*d  
    hh=[t1' ha'];                                      % for data write to excel file O}Ipg[h  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Rl. YF+YH  
    figure(1) @w8MOT$  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn S? -6hGA j  
    figure(2) b5-WK;  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn h!vq~g  
    x&ngCB@O  
    非线性超快脉冲耦合的数值方法的Matlab程序 r )EuH.z  
    _'W en  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   }mZ sK>  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 l*v6U'J  
    j4!g&F _y  
    l,I[r$TCf  
    ]vFtByqn  
    %  This Matlab script file solves the nonlinear Schrodinger equations =54"9*  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of mbij& 0  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Lrr1) h  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %ut^ O  
    9kpCn.rJ  
    C=1;                           #RJFJb/  
    M1=120,                       % integer for amplitude %yVboA1  
    M3=5000;                      % integer for length of coupler 4 Qo(Wl  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) w7(jSPB  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. bv%A;  
    T =40;                        % length of time:T*T0. #QWG5  
    dt = T/N;                     % time step "JH / ODm  
    n = [-N/2:1:N/2-1]';          % Index zKnHo:SV  
    t = n.*dt;   >+9f{FP 9  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. dbmty|d  
    w=2*pi*n./T; \-Oq/g{j  
    g1=-i*ww./2; Po ,zTz   
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ls^| j%$J  
    g3=-i*ww./2; 8 2EH'C  
    P1=0; H{XD>q.  
    P2=0; lZt{L0  
    P3=1; wDL dmrB  
    P=0; xE[CNJ%t^,  
    for m1=1:M1                 +2ZBj6 e9  
    p=0.032*m1;                %input amplitude I^CKq?V?:  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 rA">< pH  
    s1=s10; B.J_(V+  
    s20=0.*s10;                %input in waveguide 2 !oJ226>WI  
    s30=0.*s10;                %input in waveguide 3 #dd-rooQuD  
    s2=s20; p^E}%0#  
    s3=s30; " ,qcqG(  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   bG'"l qn  
    %energy in waveguide 1 0Rme}&$  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   8,5H^Bi  
    %energy in waveguide 2 w b@Zna  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   .y)Y20=o!  
    %energy in waveguide 3 M)<4|x  
    for m3 = 1:1:M3                                    % Start space evolution >z,SN  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS A#WvN>  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; S~Z`?qHWh  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; &3o[^_Ti  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform W@T_-pTCjK  
       sca2 = fftshift(fft(s2)); !,I530eh7  
       sca3 = fftshift(fft(s3)); Q9\6Pn ]T  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   :epjJ1mW  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ftw@nQNU  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); XW^Sw;[efZ  
       s3 = ifft(fftshift(sc3)); x+X^K_*  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ",pN.<F9O  
       s1 = ifft(fftshift(sc1)); `X=2Ff  
    end =LUDg7P  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); dV:vM9+x  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); DaK2P;WP  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); r N.<S[  
       P1=[P1 p1/p10]; ^<}>]F_  
       P2=[P2 p2/p10]; r=`]L-}V  
       P3=[P3 p3/p10]; t!u{sr{j=  
       P=[P p*p]; UImd* ;2TE  
    end \0^ZNa?  
    figure(1) :kaHvf  
    plot(P,P1, P,P2, P,P3); {e3XmVAI  
    :We}l;.jQ  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~