计算脉冲在非线性耦合器中演化的Matlab 程序 G1K5J`"* UiqHUrx % This Matlab script file solves the coupled nonlinear Schrodinger equations of
`f,SY % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
$vnshU8/v % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
h|$.`$ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
8_US.52V 3Kc %fid=fopen('e21.dat','w');
8
;y N N = 128; % Number of Fourier modes (Time domain sampling points)
NRe{0U}nO M1 =3000; % Total number of space steps
|QHDg( J =100; % Steps between output of space
R#eY@N}\ T =10; % length of time windows:T*T0
w[~O@:`]<o T0=0.1; % input pulse width
O~N0JK_> MN1=0; % initial value for the space output location
R#.FfWTZ dt = T/N; % time step
?xu5/r< n = [-N/2:1:N/2-1]'; % Index
qn}4PVn4 t = n.*dt;
W-ErzX u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
;N6Euiz u20=u10.*0.0; % input to waveguide 2
vY&[=2= u1=u10; u2=u20;
2fM*6CaS U1 = u1;
'gHa3:US U2 = u2; % Compute initial condition; save it in U
4loG$l+a1 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
3=@94i w=2*pi*n./T;
59A@~;.F g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
pJ!:mt L=4; % length of evoluation to compare with S. Trillo's paper
p0U4#dD6 dz=L/M1; % space step, make sure nonlinear<0.05
NI_.wB{ for m1 = 1:1:M1 % Start space evolution
Ea#wtow|- u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
\_;zm+ <{ u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
?s/]k#H ca1 = fftshift(fft(u1)); % Take Fourier transform
%;$zR} ca2 = fftshift(fft(u2));
%g1:yx c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
K;Qlg{v c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
lArYlR} u2 = ifft(fftshift(c2)); % Return to physical space
T{-<G13 u1 = ifft(fftshift(c1));
Goa0OC, if rem(m1,J) == 0 % Save output every J steps.
]f#1G$ U1 = [U1 u1]; % put solutions in U array
W'WZ@!! U2=[U2 u2];
wN'Q\l+ MN1=[MN1 m1];
N]f"+ z1=dz*MN1'; % output location
[9dW9[Z+! end
k`ulDQu end
|zhVl hg=abs(U1').*abs(U1'); % for data write to excel
w9h`8pt ha=[z1 hg]; % for data write to excel
`IL''eJug_ t1=[0 t'];
:%-xiv hh=[t1' ha']; % for data write to excel file
3~v'Ev %dlmwrite('aa',hh,'\t'); % save data in the excel format
*F7ksLH|q figure(1)
l'TM^B)`c waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
y
qDE|DIez figure(2)
sTeW4Hnp waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
kH:! 7L_= J;"66ue(d 非线性超快脉冲耦合的数值方法的Matlab程序 ^UTQcm zQvp<IUq 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
fy&vo~4i; Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
X.TsOoy ~Iw7Xq E2 DMO8~5 $}kT)+K % This Matlab script file solves the nonlinear Schrodinger equations
>HMuh) % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
*Xm$w % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
!##OQ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
3zi(|B[,? Y)="of C=1;
DPIIE2X M1=120, % integer for amplitude
HAa$pGb M3=5000; % integer for length of coupler
~m4{GzB N = 512; % Number of Fourier modes (Time domain sampling points)
c!#DD;<Q dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
q=Cc2|Ve T =40; % length of time:T*T0.
m^hi}Am1 dt = T/N; % time step
=^ n = [-N/2:1:N/2-1]'; % Index
,|RS]I>X t = n.*dt;
#{97<sU\ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
?&v+-4%4PI w=2*pi*n./T;
o\ss g1=-i*ww./2;
zl~`> g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
(vL-Z[M! g3=-i*ww./2;
wCT. (d_ P1=0;
aH@GhI^@ P2=0;
X'BFR]cm P3=1;
.8[Uk^q P=0;
;Oh abbj* for m1=1:M1
c*iZ6j"iI p=0.032*m1; %input amplitude
eAvOT$ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
C9+`sFau@ s1=s10;
)<Cf,R s20=0.*s10; %input in waveguide 2
eRV4XB : s30=0.*s10; %input in waveguide 3
JQSp2b@'H s2=s20;
aB@D-Y"HO s3=s30;
k;aV4
0N9 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
aE]/w1a %energy in waveguide 1
! 2]eVO p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
jV:Krk6T< %energy in waveguide 2
+
Xc s<+b
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
5!GL" %energy in waveguide 3
urM=l5Sx for m3 = 1:1:M3 % Start space evolution
7-p9IFcA s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
% Q| >t~ s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
PWU8 9YXp s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
Q:U^):~ sca1 = fftshift(fft(s1)); % Take Fourier transform
53vnON#{* sca2 = fftshift(fft(s2));
70sb{) sca3 = fftshift(fft(s3));
Rwu
y!F sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
*CsRO sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
xV]eEOiLM sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
AC`4n|,zJ; s3 = ifft(fftshift(sc3));
os<YfMM<:/ s2 = ifft(fftshift(sc2)); % Return to physical space
I.V?O} s1 = ifft(fftshift(sc1));
QOb+6qy:3 end
SEf:u p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
*RPdU. p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
fV}: eEo|Y p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
H);O. m P1=[P1 p1/p10];
dS+/G9X^ P2=[P2 p2/p10];
;;A8*\*$ P3=[P3 p3/p10];
P~"e=NL5 P=[P p*p];
.Oh4b5 end
pi/Jto25z figure(1)
-o\o{?t, plot(P,P1, P,P2, P,P3);
CJn{tP c,wYXnJ_t 转自:
http://blog.163.com/opto_wang/