切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9289阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 HKG8X="  
    ;BW9SqlN  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of .pPtBqp  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 7 MG<!U  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear e+Sq&H!@  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 koy0A/\%  
    3'6by!N,d  
    %fid=fopen('e21.dat','w'); VMJK9|JC[  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 8W}rS v+  
    M1 =3000;              % Total number of space steps 2R~[B]2"r  
    J =100;                % Steps between output of space +p0Y*.  
    T =10;                  % length of time windows:T*T0 $c7Utm s  
    T0=0.1;                 % input pulse width >W^)1E,Qh  
    MN1=0;                 % initial value for the space output location bipA{VU  
    dt = T/N;                      % time step =7Sw29u<  
    n = [-N/2:1:N/2-1]';           % Index ew*;mQd  
    t = n.*dt;   u^+ (5|  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10  #-K,,"  
    u20=u10.*0.0;                  % input to waveguide 2 !b'!7p  
    u1=u10; u2=u20;                 o;'-^ LJ  
    U1 = u1;   {|R +|ow  
    U2 = u2;                       % Compute initial condition; save it in U 'Jl3%axR  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 9 N9Q#o$!.  
    w=2*pi*n./T; :[bpMP<bz;  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T (zIF2qY  
    L=4;                           % length of evoluation to compare with S. Trillo's paper JeU1r-i  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 'Ad|*~  
    for m1 = 1:1:M1                                    % Start space evolution i z dJ,8  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS f(.t0{Etq  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; "In$|A\?E  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform #An_RU6h  
       ca2 = fftshift(fft(u2)); SaiYdJ  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation okLhe F  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift    Y$nI9  
       u2 = ifft(fftshift(c2));                        % Return to physical space fx = %e  
       u1 = ifft(fftshift(c1)); G33'Cgo:,  
    if rem(m1,J) == 0                                 % Save output every J steps. 8t1,_,2'  
        U1 = [U1 u1];                                  % put solutions in U array _>i<`k  
        U2=[U2 u2]; SOQR(UT  
        MN1=[MN1 m1]; ^LAdN8Cbb  
        z1=dz*MN1';                                    % output location R1C2d+L  
      end jn#Ok@tZ  
    end 4L)Ox;6>  
    hg=abs(U1').*abs(U1');                             % for data write to excel *sq+ Vc(  
    ha=[z1 hg];                                        % for data write to excel 5g4xhYl70n  
    t1=[0 t']; nIv/B/>pZ  
    hh=[t1' ha'];                                      % for data write to excel file +*KDtqZjk  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format H?)?(t7@  
    figure(1) Mx=L lC)  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn s]i<D9h  
    figure(2) DWcEl:  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn psB9~EU&Q  
    sr`)l&t?  
    非线性超快脉冲耦合的数值方法的Matlab程序 Tg/r V5@ka  
    W0KSLxM  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   lZ5TDS  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 _`q ei0  
    CB>O%m[1  
    7"$9js2  
    xZp`Ke!  
    %  This Matlab script file solves the nonlinear Schrodinger equations CO.e.:h  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of R4[dh.lf  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Nzel^~  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 5'"l0EuD  
    vAo|o *  
    C=1;                           ]|)M /U *  
    M1=120,                       % integer for amplitude c9axzg UA  
    M3=5000;                      % integer for length of coupler y2NVx!?n  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ~OOD#/  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. =Btmi  
    T =40;                        % length of time:T*T0. S}XVr?l 2O  
    dt = T/N;                     % time step lr&O@ 5"oy  
    n = [-N/2:1:N/2-1]';          % Index 0O7VM)[  
    t = n.*dt;   1JO@G3,  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. - u'5xn7  
    w=2*pi*n./T; C4 @"@kbr  
    g1=-i*ww./2; e?eX9yA7F  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; .GNl31f0  
    g3=-i*ww./2; Gt5'-Hyo  
    P1=0; YlEV@  
    P2=0; :gacP?  
    P3=1; 7P7d[KP<  
    P=0; ] ! :0^|  
    for m1=1:M1                 ">NPp\t>/Z  
    p=0.032*m1;                %input amplitude Hp?uYih0  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Y#aHGZ$i  
    s1=s10; !:w&eFC6  
    s20=0.*s10;                %input in waveguide 2 ;+iw?"  
    s30=0.*s10;                %input in waveguide 3 ^ G@o} Z  
    s2=s20; |4A938'4j  
    s3=s30; T1c.ER}17  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   {\zB'SNq  
    %energy in waveguide 1 x\2N @*I:  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Aq"<#:  
    %energy in waveguide 2  R7-+@  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   jbK<"T5  
    %energy in waveguide 3 CXfPC[o  
    for m3 = 1:1:M3                                    % Start space evolution Zi~-m]9U  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS @8s:,Y_  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; (D rDWD4_  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 3 tIno!|  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform @8xa"Dc  
       sca2 = fftshift(fft(s2)); &Eqa y'  
       sca3 = fftshift(fft(s3)); 0R[onPU_vZ  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   :OvTZ ?\  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);  {]=oOy1  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); b\H !\A  
       s3 = ifft(fftshift(sc3)); (jB_uMuS  
       s2 = ifft(fftshift(sc2));                       % Return to physical space qGPIKu  
       s1 = ifft(fftshift(sc1)); R2!_)Rpf  
    end *^b<CZd9  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); j[y,Jc h  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); zM*PN|/%sH  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); { WW!P,w  
       P1=[P1 p1/p10]; li Hz5<|  
       P2=[P2 p2/p10]; *{e?%!Q  
       P3=[P3 p3/p10]; <>  |/U`  
       P=[P p*p]; yQ M<(;\O  
    end #+]-}v3  
    figure(1) mbh;oX+  
    plot(P,P1, P,P2, P,P3); KOM]7%ys1H  
    p swEIa  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~