切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9312阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 &*>.u8:r  
    T+nID@"36  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of iH4LZ  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Lq5xp<  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear (a#gCG\  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 j yD3Sa3  
    U.,S.WP+d  
    %fid=fopen('e21.dat','w'); %4m Nk}tyH  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) g_cED15  
    M1 =3000;              % Total number of space steps vcdVck@  
    J =100;                % Steps between output of space 0]bt}rh  
    T =10;                  % length of time windows:T*T0 e:Y+-C5  
    T0=0.1;                 % input pulse width (*$F7oO<  
    MN1=0;                 % initial value for the space output location YA$YT8iMe  
    dt = T/N;                      % time step w"?Q0bhV9y  
    n = [-N/2:1:N/2-1]';           % Index Qz(2Iu{E]  
    t = n.*dt;   @ &N  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 #epbc K  
    u20=u10.*0.0;                  % input to waveguide 2 ':pDlUA  
    u1=u10; u2=u20;                 ,Tr&`2w  
    U1 = u1;   #4mRMsW5"  
    U2 = u2;                       % Compute initial condition; save it in U ?)-6~p 4N  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. L0"|4=  
    w=2*pi*n./T; r{v3 XD/  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Uo >aQk  
    L=4;                           % length of evoluation to compare with S. Trillo's paper %urvX$r4K  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 3S3(Gl  
    for m1 = 1:1:M1                                    % Start space evolution x3cjyu<K  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ~'lT8 n_  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; syB pF:`-W  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 5zBA]1PY  
       ca2 = fftshift(fft(u2)); F2}Fuupb.  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ]]K?Q )9x  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Kj4BVs  
       u2 = ifft(fftshift(c2));                        % Return to physical space t$nJmfzm  
       u1 = ifft(fftshift(c1)); > pb}@\;:  
    if rem(m1,J) == 0                                 % Save output every J steps. )). =MTk  
        U1 = [U1 u1];                                  % put solutions in U array `[5xncZ-  
        U2=[U2 u2]; &zF>5@fM  
        MN1=[MN1 m1]; B-N//ef}  
        z1=dz*MN1';                                    % output location C/Q20  
      end "O>~osj  
    end z )hK2JD  
    hg=abs(U1').*abs(U1');                             % for data write to excel [<f2h-V$  
    ha=[z1 hg];                                        % for data write to excel Ag9GYm  
    t1=[0 t']; d]e36Dwk  
    hh=[t1' ha'];                                      % for data write to excel file UCcr>  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format c qCNk  
    figure(1) 2*V%S/cck  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn s`=| D'G(=  
    figure(2) f4  S:L&  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn K>+ v" x  
    0]7jb_n1  
    非线性超快脉冲耦合的数值方法的Matlab程序 g/.FJ-I*  
    =F_uK7W  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   K*j OrQf`  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Db Qp (W0  
    ,JdBVt  
    s U`#hL6;  
    RL4|!HzR  
    %  This Matlab script file solves the nonlinear Schrodinger equations Z0Sqw  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of (E0WZ $f}  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear dY}5Kmt  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 <~uzHg%Y  
    ?MFC(Wsh  
    C=1;                           \m|5Aqs  
    M1=120,                       % integer for amplitude pP.`+vPi  
    M3=5000;                      % integer for length of coupler &'12,'8  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) F'[Y.tA ,#  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. #9TL5-1y  
    T =40;                        % length of time:T*T0. L;:PeYPL  
    dt = T/N;                     % time step S*G^U1Sc+  
    n = [-N/2:1:N/2-1]';          % Index x~}&t+FK  
    t = n.*dt;   ^Ak?2,xB#+  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. uq]=L  
    w=2*pi*n./T; k:?)0Uh%^  
    g1=-i*ww./2; IrYj#,xJ  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; {H,O@  
    g3=-i*ww./2; $Mg O)bH  
    P1=0; =M?+KbTJ3  
    P2=0; b)IQa,enH  
    P3=1; c=tbl|Cq  
    P=0; +I uu8t  
    for m1=1:M1                 r8YM#dF  
    p=0.032*m1;                %input amplitude t"Du  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ;Lfn&2G  
    s1=s10; tLKf]5}f  
    s20=0.*s10;                %input in waveguide 2 &<*M{GW'&  
    s30=0.*s10;                %input in waveguide 3 G!VEV3zT  
    s2=s20; D6lzc f  
    s3=s30; 8zMGpY#  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   uzQj+Po  
    %energy in waveguide 1 02EX_tt),  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Zq33R`  
    %energy in waveguide 2 U~BR8]=G  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   tOVTHx3E]  
    %energy in waveguide 3 {=?[:5  
    for m3 = 1:1:M3                                    % Start space evolution 92Gfxld\  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS <=|^\r !}&  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; pWE(?d_M{G  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; {w3<dfJ  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform O6$,J1 2l  
       sca2 = fftshift(fft(s2)); y`m0/SOT  
       sca3 = fftshift(fft(s3)); el$@^Wy&$  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   b' ^<0c  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); =g6~2p=H  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 5I[:.o0  
       s3 = ifft(fftshift(sc3)); b&E"r*i|  
       s2 = ifft(fftshift(sc2));                       % Return to physical space eptw)S-j  
       s1 = ifft(fftshift(sc1)); D@X"1X!F`G  
    end Rm n|!C%%K  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); hy#nK:B  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ]Z UE !  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); u)EtEl7Wq  
       P1=[P1 p1/p10]; 1Bs  t|  
       P2=[P2 p2/p10]; ghW`xm87  
       P3=[P3 p3/p10]; r-S%gG}~E  
       P=[P p*p]; ~a  V5  
    end !ckluj  
    figure(1) F&p42!"  
    plot(P,P1, P,P2, P,P3); q@S \R 7R  
    _~1O#*|4  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~