计算脉冲在非线性耦合器中演化的Matlab 程序 nMDxH$O ?1L.:CS % This Matlab script file solves the coupled nonlinear Schrodinger equations of
U~{du;\ % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
{ pu85'DV % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
=U[3PC-N@ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
c,so`I3rI 1}hIW":3Sr %fid=fopen('e21.dat','w');
UT~a&u N = 128; % Number of Fourier modes (Time domain sampling points)
Qjx?ri// M1 =3000; % Total number of space steps
YDC mI@ J =100; % Steps between output of space
wIkN9
f T =10; % length of time windows:T*T0
yJuQ8+vgR} T0=0.1; % input pulse width
_0+0#! J! MN1=0; % initial value for the space output location
0![
+Q4" dt = T/N; % time step
b[z]CP n = [-N/2:1:N/2-1]'; % Index
f)]%.> t = n.*dt;
h%WE=\,Qp u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
PcB_oG g u20=u10.*0.0; % input to waveguide 2
01!s"wjf u1=u10; u2=u20;
-(#I3h;I U1 = u1;
fQrhsuCrC U2 = u2; % Compute initial condition; save it in U
'c\iK=fl ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
YV=QF
J' w=2*pi*n./T;
dd2[yKC` g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
=U|N=/y#hJ L=4; % length of evoluation to compare with S. Trillo's paper
!=;XBd- dz=L/M1; % space step, make sure nonlinear<0.05
k6`6Mjbc for m1 = 1:1:M1 % Start space evolution
TJE\A)|>g u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
XC{eX&,2x u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
zf3v5Hk ca1 = fftshift(fft(u1)); % Take Fourier transform
5cx#SD&5/ ca2 = fftshift(fft(u2));
V"cKJ;s c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
IwGqf.!.> c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
A^Kbsc u2 = ifft(fftshift(c2)); % Return to physical space
O1')nYF7 u1 = ifft(fftshift(c1));
TW !&p"Us+ if rem(m1,J) == 0 % Save output every J steps.
"#mBcQ;QLV U1 = [U1 u1]; % put solutions in U array
k
X {0y U2=[U2 u2];
:JlP[I
MN1=[MN1 m1];
c1X1+b, z1=dz*MN1'; % output location
u!1{Vt87 end
j*xV!DqC end
bINvqv0v hg=abs(U1').*abs(U1'); % for data write to excel
=4d (b ; ha=[z1 hg]; % for data write to excel
hsu{ey p t1=[0 t'];
oyo(1> hh=[t1' ha']; % for data write to excel file
J>d.dq>r %dlmwrite('aa',hh,'\t'); % save data in the excel format
(a9d/3M figure(1)
j,]Y$B waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
1CLL%\V figure(2)
fM^[7;]7e waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
/VG2.: |>@W
]CX[ 非线性超快脉冲耦合的数值方法的Matlab程序 q -8t'7 Z"unF9`"1 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
A!^q
J# Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
.k,YlFvj yDNOt C| yCCrK@{oo FVhU^ % This Matlab script file solves the nonlinear Schrodinger equations
2wF8 P) % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
uwlr9nB % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
}-~l!
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
dH( ('u[ <FZ@Q[RP C=1;
-*.-9B~u M1=120, % integer for amplitude
4@xE8`+bG M3=5000; % integer for length of coupler
n]he-NHP N = 512; % Number of Fourier modes (Time domain sampling points)
eYx Kp!f dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
[$[:"N_ T =40; % length of time:T*T0.
+{/ dt = T/N; % time step
7g_]mG[6 n = [-N/2:1:N/2-1]'; % Index
I!^O)4QRx t = n.*dt;
3Gkv4,w< ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
b+Br=Fv"T w=2*pi*n./T;
qWb+r g1=-i*ww./2;
Agrk|wPK g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
*2jK#9"MP g3=-i*ww./2;
w6j/ Dq! P1=0;
$M Jm*6h P2=0;
$ `7^+8vHV P3=1;
7g3>jh P=0;
/hO1QT}xd for m1=1:M1
GgKEP,O p=0.032*m1; %input amplitude
0wS+++n$5 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
.9.2Be s1=s10;
yr,=.?C- s20=0.*s10; %input in waveguide 2
Sfdu`MQR s30=0.*s10; %input in waveguide 3
R
LD`O9#j s2=s20;
}V\N16f s3=s30;
}l=xiAF p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
"jw<V,, %energy in waveguide 1
R4-~j gzx p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
m)oJFF %energy in waveguide 2
={u0_j
W p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
ge8/``= %energy in waveguide 3
-44l^}_u for m3 = 1:1:M3 % Start space evolution
#KO,~]k5|e s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
^aW
Z!gi s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
CD8}I85K s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
t%8d-+$ sca1 = fftshift(fft(s1)); % Take Fourier transform
tor!Dl@Mo sca2 = fftshift(fft(s2));
Tgl} sca3 = fftshift(fft(s3));
Q$fmD sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
H*r>Y sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
7VP32Eh[ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
[<KM?\"1< s3 = ifft(fftshift(sc3));
9+pmS#>_ s2 = ifft(fftshift(sc2)); % Return to physical space
Si~vDQ7" s1 = ifft(fftshift(sc1));
QPq7R end
3)RsLI9 p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
'}9JCJ p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
&y#r;L<9 p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
KI+VXH}Y5{ P1=[P1 p1/p10];
F;>!&[h}G P2=[P2 p2/p10];
9VbOQ {8 P3=[P3 p3/p10];
Sfr&p>{, P=[P p*p];
Pfs;0}h5 end
wiBVuj# figure(1)
nWHa.H# plot(P,P1, P,P2, P,P3);
T'~!9Q n..g~$k 转自:
http://blog.163.com/opto_wang/