切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8431阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 QYbB\Y  
    [+o{0o>  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of G`l\R:Q  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 1"y !wsM%  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Rs=Fcvl  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 1>e30Ri,g  
    jV2H61d  
    %fid=fopen('e21.dat','w'); 4r$#-  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Xy(QK2|  
    M1 =3000;              % Total number of space steps 0$|VkMq(  
    J =100;                % Steps between output of space 3#t9pI4  
    T =10;                  % length of time windows:T*T0 <.)=CK  
    T0=0.1;                 % input pulse width Yh95W  
    MN1=0;                 % initial value for the space output location ~);4O8~.  
    dt = T/N;                      % time step `sm Cfh}j6  
    n = [-N/2:1:N/2-1]';           % Index b%lB&}uw}  
    t = n.*dt;   I7vP*YE 7F  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 437Wy+Q|e  
    u20=u10.*0.0;                  % input to waveguide 2 {v*4mT  
    u1=u10; u2=u20;                 k5< n:dS  
    U1 = u1;   +c_AAMe  
    U2 = u2;                       % Compute initial condition; save it in U o'lG9ePM|  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Z0&^(Fb  
    w=2*pi*n./T; zh) &6'S\  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ~ n<|f  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ^X&`YXjuN  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 b=Nsz$[  
    for m1 = 1:1:M1                                    % Start space evolution 4PVg?  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS $2Wk#F2c=  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ftY&Q#[  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform R"OT&:0/  
       ca2 = fftshift(fft(u2)); 4&NB xe  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Mg\588cI  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   lB27Z}   
       u2 = ifft(fftshift(c2));                        % Return to physical space Qb@j8Xa4[  
       u1 = ifft(fftshift(c1)); ),{3LIr  
    if rem(m1,J) == 0                                 % Save output every J steps. #N`'hPD}  
        U1 = [U1 u1];                                  % put solutions in U array ai?uJ}  
        U2=[U2 u2]; Q3>qT84  
        MN1=[MN1 m1]; "dCIg{j   
        z1=dz*MN1';                                    % output location 4AhF E@  
      end $MasYi  
    end q<\r}1Dm  
    hg=abs(U1').*abs(U1');                             % for data write to excel @Xoh@:j\  
    ha=[z1 hg];                                        % for data write to excel .U(6])%;@  
    t1=[0 t']; -v9(43  
    hh=[t1' ha'];                                      % for data write to excel file >> cW0I/`  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format xLIyh7$t  
    figure(1) eQQVfEvS  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Jha*BaD~N  
    figure(2) tgBA(2/Co  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn }|h-=T '  
    {Q/@Y.~<  
    非线性超快脉冲耦合的数值方法的Matlab程序 !& c%!*  
    gS(JgN  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   cMi9 Z]  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 K/(LF}  
    Ty b_'|?rW  
    Yaq0mef0  
    Z2{$FN  
    %  This Matlab script file solves the nonlinear Schrodinger equations j 1'H|4  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of -6 v?iiZr  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear z*nztvY@e  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Nj6Np^@sH  
    akw:3+`  
    C=1;                           M/V"Ke"N  
    M1=120,                       % integer for amplitude .~'q yD2V  
    M3=5000;                      % integer for length of coupler @lB1t= D  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) >ptI!\i}  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ,S(_YS^m  
    T =40;                        % length of time:T*T0. :%Z)u:~':  
    dt = T/N;                     % time step .WOF:Nu4  
    n = [-N/2:1:N/2-1]';          % Index MS SHMR  
    t = n.*dt;   ;$a|4_U$m  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. m";8 nm  
    w=2*pi*n./T; nb5%a   
    g1=-i*ww./2; O'S xTwO  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; p38s&\-kEN  
    g3=-i*ww./2; T5~Qfl?Y  
    P1=0; -'W:P'BG  
    P2=0; hQSJt[8My  
    P3=1; EI9Yv>7d{  
    P=0; 17Q* <iCs  
    for m1=1:M1                 UIQ=b;J9  
    p=0.032*m1;                %input amplitude #l2WRw_t  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ,38bT#p:,r  
    s1=s10; I |D]NY^  
    s20=0.*s10;                %input in waveguide 2 fv3)#>Dgp>  
    s30=0.*s10;                %input in waveguide 3 Y!E| X 3  
    s2=s20; jM@@N.  
    s3=s30; 8/34{2048  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Q[O U`   
    %energy in waveguide 1 S4O:?^28  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Qzk/oH s  
    %energy in waveguide 2 J! eVw\6  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   WY~}sE  
    %energy in waveguide 3 9aqFdlbY  
    for m3 = 1:1:M3                                    % Start space evolution FHH2  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS $0iN43WSQ  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; sEfGf.  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ~w%Z Bp  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform PzTTL=G +  
       sca2 = fftshift(fft(s2)); [laX~(ND{  
       sca3 = fftshift(fft(s3)); bOmM~pD  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   w1A&p  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);  K[TMTn  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); =09j1:''<d  
       s3 = ifft(fftshift(sc3)); s?K4::@Fv  
       s2 = ifft(fftshift(sc2));                       % Return to physical space El&pu x2  
       s1 = ifft(fftshift(sc1)); '*p-`  
    end Pq7tNM E  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); !r!Mq~X<=  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); I0jEhg%JZ  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); zZh`go02E  
       P1=[P1 p1/p10]; 1y8:tri>N  
       P2=[P2 p2/p10]; v:T` D  
       P3=[P3 p3/p10]; kAk,:a;P  
       P=[P p*p]; .y[K =p3  
    end z06pX$Q.<  
    figure(1) :* /``  
    plot(P,P1, P,P2, P,P3); :U[_V4? 7  
    yZ)ScB^  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~