计算脉冲在非线性耦合器中演化的Matlab 程序 &*>.u8:r
T+nID@"36
% This Matlab script file solves the coupled nonlinear Schrodinger equations of iH4LZ
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Lq5xp<
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear (a#gCG\
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 j yD3Sa3
U.,S.WP+d
%fid=fopen('e21.dat','w'); %4m Nk}tyH
N = 128; % Number of Fourier modes (Time domain sampling points) g_cED15
M1 =3000; % Total number of space steps vcdVck@
J =100; % Steps between output of space 0]bt}rh
T =10; % length of time windows:T*T0 e:Y+-C5
T0=0.1; % input pulse width (*$F7oO<
MN1=0; % initial value for the space output location YA$YT8iMe
dt = T/N; % time step w"?Q0bhV9y
n = [-N/2:1:N/2-1]'; % Index Qz(2Iu{E]
t = n.*dt; @
&N
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 #epbc K
u20=u10.*0.0; % input to waveguide 2 ':pDlUA
u1=u10; u2=u20; ,Tr&`2w
U1 = u1; #4mRMsW5"
U2 = u2; % Compute initial condition; save it in U ?)-6~p 4N
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. L0"|4=
w=2*pi*n./T; r{v3XD/
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Uo >aQk
L=4; % length of evoluation to compare with S. Trillo's paper %urvX$r4K
dz=L/M1; % space step, make sure nonlinear<0.05 3S3(Gl
for m1 = 1:1:M1 % Start space evolution x3cjyu<K
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS ~'lT8 n_
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; syBpF:`-W
ca1 = fftshift(fft(u1)); % Take Fourier transform 5zBA ]1PY
ca2 = fftshift(fft(u2)); F2}Fuupb.
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation ]]K?Q
)9x
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift Kj4BVs
u2 = ifft(fftshift(c2)); % Return to physical space t$n Jmfzm
u1 = ifft(fftshift(c1)); >
pb}@\;:
if rem(m1,J) == 0 % Save output every J steps. )).=MTk
U1 = [U1 u1]; % put solutions in U array `[5xncZ-
U2=[U2 u2]; &zF>5@fM
MN1=[MN1 m1]; B-N//ef}
z1=dz*MN1'; % output location C/Q20
end "O>~osj
end z)hK 2JD
hg=abs(U1').*abs(U1'); % for data write to excel [<f2h-V$
ha=[z1 hg]; % for data write to excel Ag9GYm
t1=[0 t']; d]e36Dwk
hh=[t1' ha']; % for data write to excel file UCcr>
%dlmwrite('aa',hh,'\t'); % save data in the excel format c
qCNk
figure(1) 2*V%S/cck
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn s`=| D'G(=
figure(2) f4 S:L&
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn K>+ v" x
0]7jb_n1
非线性超快脉冲耦合的数值方法的Matlab程序 g/.FJ-I*
=F_uK7W
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 K*j
OrQf`
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Db Qp(W0
,JdBVt
s U`#hL6;
RL4|!HzR
% This Matlab script file solves the nonlinear Schrodinger equations Z0Sqw
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of (E0WZ$f}
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear dY}5Kmt
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 <~uzHg%Y
?MFC(Wsh
C=1; \m|5Aqs
M1=120, % integer for amplitude pP.`+vPi
M3=5000; % integer for length of coupler &'12,'8
N = 512; % Number of Fourier modes (Time domain sampling points) F'[Y.tA ,#
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. #9TL5-1y
T =40; % length of time:T*T0. L;:PeYPL
dt = T/N; % time step S*G^U1Sc+
n = [-N/2:1:N/2-1]'; % Index x~}&t+FK
t = n.*dt; ^Ak?2,xB#+
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. uq]=L
w=2*pi*n./T; k:?)0Uh%^
g1=-i*ww./2; IrYj#,xJ
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; {H,O@
g3=-i*ww./2; $Mg O)bH
P1=0; =M?+KbTJ3
P2=0; b)IQa,enH
P3=1; c=tbl|Cq
P=0; +Iuu8t
for m1=1:M1 r8 YM#dF
p=0.032*m1; %input amplitude t"Du
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 ;L fn&2G
s1=s10; tLKf]5}f
s20=0.*s10; %input in waveguide 2 &