计算脉冲在非线性耦合器中演化的Matlab 程序 nlebFDb7
sK%Hx`
% This Matlab script file solves the coupled nonlinear Schrodinger equations of [x<6v}fRn
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of AMD?LjY~
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear r%,H*DOu
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "c/s/$k//
+e8>?dkq
%fid=fopen('e21.dat','w'); d[]p_oIQq
N = 128; % Number of Fourier modes (Time domain sampling points) fEw=I7{Y
M1 =3000; % Total number of space steps H[7cA9FI
J =100; % Steps between output of space 4iv]N 4
T =10; % length of time windows:T*T0 |^PLZ>
T0=0.1; % input pulse width <@e+-$
MN1=0; % initial value for the space output location jfY{z=*]u
dt = T/N; % time step k<Tez{<
n = [-N/2:1:N/2-1]'; % Index J/x@$'
t = n.*dt; HD:%Yv
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 +|?|8"Qg
u20=u10.*0.0; % input to waveguide 2 r[v-?W'
u1=u10; u2=u20; %]<RRH.w
U1 = u1; 5{ FM#@
U2 = u2; % Compute initial condition; save it in U uPFHlT
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. .b#9q6F-/
w=2*pi*n./T; PNJe&q0*
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T &=-e`=qJ'6
L=4; % length of evoluation to compare with S. Trillo's paper $,;S\JmWP
dz=L/M1; % space step, make sure nonlinear<0.05 \|~?x#aA
for m1 = 1:1:M1 % Start space evolution T")i+v
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS <4Q1 2:
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; lkg"'p{
ca1 = fftshift(fft(u1)); % Take Fourier transform fi&uB9hc
ca2 = fftshift(fft(u2));
TmYP_5g:
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation 7V=MRf&xQ
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift Xn/ n|[
u2 = ifft(fftshift(c2)); % Return to physical space \oB'
u1 = ifft(fftshift(c1)); g %\$ !b
if rem(m1,J) == 0 % Save output every J steps. *"5N>F[L
U1 = [U1 u1]; % put solutions in U array f]ue#O
U2=[U2 u2]; skI(]BDf
MN1=[MN1 m1]; 5c]}G.NV
z1=dz*MN1'; % output location 3ximNQ}S
end Q54r?|'V
end ?Q96,T-)
c
hg=abs(U1').*abs(U1'); % for data write to excel (LRM~5KVg
ha=[z1 hg]; % for data write to excel CZyz;Jtk
t1=[0 t']; ^Ti_<<X
hh=[t1' ha']; % for data write to excel file P{S\pWZkk
%dlmwrite('aa',hh,'\t'); % save data in the excel format _~;&)cn,0
figure(1) 2$
|]Vj*Zs
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn j2}
figure(2) zJ;>.0
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn E.J0fwyT
!/j,hO4Z4
非线性超快脉冲耦合的数值方法的Matlab程序 }!%JYG^!D
bo@,4xw
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 :K~rvv\L7
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 3`A>j"
p^1zIC>F
q^a|wTC
F$Im9T6
% This Matlab script file solves the nonlinear Schrodinger equations qKdS7SoS
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of +VCo$o
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear , 3X: )
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 M18qa,fK{
NunV8atn:
C=1; >Mvka;T]
M1=120, % integer for amplitude <4bz/^
M3=5000; % integer for length of coupler qoj^_s6
N = 512; % Number of Fourier modes (Time domain sampling points) EntF@ln!
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. :dP~.ZY7
T =40; % length of time:T*T0. e~{^oM
dt = T/N; % time step B%tIwUE2
n = [-N/2:1:N/2-1]'; % Index {L@+(I
t = n.*dt; '>j<yaD'
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 7} be>(
w=2*pi*n./T; Rj[hhSx 2
g1=-i*ww./2; 2_;]
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; hv*>%p
g3=-i*ww./2; 6HoqEku/Q
P1=0; EM=w?T
P2=0; ~U6"?
P3=1; CjZZm^O
P=0; n*Q`g@`
for m1=1:M1 P|e`^Frxt
p=0.032*m1; %input amplitude OJAx:&