切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8595阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 diLjUC`69  
    sKX%<n$  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ]rh)AE!Y(  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of iK"j@1|  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear IP1|$b}sq  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 A*h)p@3t<  
    mP)<;gm,  
    %fid=fopen('e21.dat','w'); $Q:5KNF+p  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ^/Hj^4~_U  
    M1 =3000;              % Total number of space steps .~5cNu'#m  
    J =100;                % Steps between output of space y(RbW_ ?  
    T =10;                  % length of time windows:T*T0 Hc@Z7eQ3^  
    T0=0.1;                 % input pulse width (WW,]#^  
    MN1=0;                 % initial value for the space output location ~P5!VNJ;r  
    dt = T/N;                      % time step ^yRCR] oT  
    n = [-N/2:1:N/2-1]';           % Index ]sjOn?YA+  
    t = n.*dt;   ``kKi3TWJ  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 r,6~?hG]  
    u20=u10.*0.0;                  % input to waveguide 2 KG#|Cq  
    u1=u10; u2=u20;                 @ %z5]w  
    U1 = u1;   p;n)YY$  
    U2 = u2;                       % Compute initial condition; save it in U )`rC"N)  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. -}UC daQ3  
    w=2*pi*n./T; Iw"?%k\U  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T eT+MN`  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 9w Kz p  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 {\t:{.F A  
    for m1 = 1:1:M1                                    % Start space evolution f|VP_o<  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS d1j v>tu  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; =]E1T8|  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform YA^9, q6u?  
       ca2 = fftshift(fft(u2)); &TbnZnv  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation #G#gB   
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   %h%r6EB1F  
       u2 = ifft(fftshift(c2));                        % Return to physical space TF^]^XS'  
       u1 = ifft(fftshift(c1)); m$J'nA  
    if rem(m1,J) == 0                                 % Save output every J steps. 73xI8  
        U1 = [U1 u1];                                  % put solutions in U array Zt` ,DM  
        U2=[U2 u2]; 4 qW)R{%  
        MN1=[MN1 m1]; F{T|lTl  
        z1=dz*MN1';                                    % output location :OI!YR%"  
      end v;K\#uc_  
    end l:@.D|(o3  
    hg=abs(U1').*abs(U1');                             % for data write to excel `%ymg8^  
    ha=[z1 hg];                                        % for data write to excel NHc+QMbou(  
    t1=[0 t']; dy`~%lX?  
    hh=[t1' ha'];                                      % for data write to excel file Vxgc|E^J  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format P6=|C;[  
    figure(1) sZ4H\  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn R4qk/@]t  
    figure(2) 103Ik6.o  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn NM]6  o  
    56':U29.]  
    非线性超快脉冲耦合的数值方法的Matlab程序 @pko zE-  
    d'-^ VxO0  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   r?V|9B`$p  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Vr0RdO  
    v5$zz w  
    n6uobo-  
    !E7/:t4  
    %  This Matlab script file solves the nonlinear Schrodinger equations  b'{D4/  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of zu|pL`X  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 3 S5QqAm  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $K G?d>wx  
    etDB|(,z  
    C=1;                           q{_buTARq  
    M1=120,                       % integer for amplitude RZ.5:v6  
    M3=5000;                      % integer for length of coupler OIWo* %  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) L"b5P2{c  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. "iydXV=Q  
    T =40;                        % length of time:T*T0. 6a,YxR\  
    dt = T/N;                     % time step {jq-dL  
    n = [-N/2:1:N/2-1]';          % Index '",5Bu#C  
    t = n.*dt;   HxM-VK '  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. `H|g~7KD&  
    w=2*pi*n./T; 0 s 4j>  
    g1=-i*ww./2; 9%dNktt  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; . }1!MK5  
    g3=-i*ww./2; )i>KYg w  
    P1=0; !kz\ {  
    P2=0; "{:*fI;!  
    P3=1; kR_[p._  
    P=0; D6m>>&E['  
    for m1=1:M1                 (C:rH  
    p=0.032*m1;                %input amplitude %q!nTG U~  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 m8f_w  
    s1=s10; 3whyIXs  
    s20=0.*s10;                %input in waveguide 2 $H 9xM  
    s30=0.*s10;                %input in waveguide 3 f[ywC$en  
    s2=s20; I'j? T.  
    s3=s30; l;C_A;y\  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   2-6-kS)c  
    %energy in waveguide 1 X3>(K1  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   U9q*zP_jV  
    %energy in waveguide 2 a|>MueJ  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   [+1 i$d  
    %energy in waveguide 3 R3<+z  
    for m3 = 1:1:M3                                    % Start space evolution qnlj~]NV  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS n-Xj>  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 5SjS~ 9  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;  e?7paJ  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 'SY &-<t(  
       sca2 = fftshift(fft(s2)); Il642#Gh  
       sca3 = fftshift(fft(s3)); Ob6vg^#  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ,yF)7fN  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 4j*}|@x  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); J B|I/\(A  
       s3 = ifft(fftshift(sc3)); y/ FisX  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ^#4s/mdVO  
       s1 = ifft(fftshift(sc1)); zaZnL7ZJX  
    end 8%4`Yj=  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); V#~. Jg7  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));  /F_ :@#H  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); a:fHTU=\p  
       P1=[P1 p1/p10]; Rc4EFHL  
       P2=[P2 p2/p10]; %Z7!9+<  
       P3=[P3 p3/p10]; r)t^qhn  
       P=[P p*p]; u!i5Q  
    end 'GFzI:Xr  
    figure(1) AUC< m.  
    plot(P,P1, P,P2, P,P3); gY9"!IVe+  
    coWBKWF  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~