切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9424阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 q'%!qa+  
    uIR   
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of e<"sZK  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of w} r mYQ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 7Kt i&T  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 #_zj5B38E  
    ~$YasFEz  
    %fid=fopen('e21.dat','w'); 9 $zx<O  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Rj-4K@a8#N  
    M1 =3000;              % Total number of space steps bs)Ro/7}  
    J =100;                % Steps between output of space Kp6%=JjO  
    T =10;                  % length of time windows:T*T0 %/R[cj 8  
    T0=0.1;                 % input pulse width 8cj}9}k  
    MN1=0;                 % initial value for the space output location 8*eVP*g  
    dt = T/N;                      % time step T )bMHk  
    n = [-N/2:1:N/2-1]';           % Index U \jFB*U  
    t = n.*dt;   Srrzj-9^)K  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 )~#3A@  
    u20=u10.*0.0;                  % input to waveguide 2 }1NNXxQ  
    u1=u10; u2=u20;                 * K0aR!  
    U1 = u1;   _w7yfZLv+  
    U2 = u2;                       % Compute initial condition; save it in U N^jr  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. +<WNAmh   
    w=2*pi*n./T; 9dp1NjOtAc  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T && WEBQ  
    L=4;                           % length of evoluation to compare with S. Trillo's paper b>nwX9Y/U  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 @y,>cDg  
    for m1 = 1:1:M1                                    % Start space evolution "}:SXAZ5`  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS v5*JBW+c*  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; AdRK)L  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform B8zc#0!1  
       ca2 = fftshift(fft(u2)); }q:4Zh'l!  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation "f-HOd\=  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   'NDr$Qc3  
       u2 = ifft(fftshift(c2));                        % Return to physical space nsu RG  
       u1 = ifft(fftshift(c1)); gVs@T'  
    if rem(m1,J) == 0                                 % Save output every J steps. Lo}zT-F  
        U1 = [U1 u1];                                  % put solutions in U array C%"aj^u  
        U2=[U2 u2]; !~Kg_*IT  
        MN1=[MN1 m1]; ~P"o_b6,k  
        z1=dz*MN1';                                    % output location ;V84Dy#b  
      end 9M@,BXOt  
    end "nU] 2  
    hg=abs(U1').*abs(U1');                             % for data write to excel H1$n6J  
    ha=[z1 hg];                                        % for data write to excel w+hpi5OH  
    t1=[0 t']; P5v;o9B&  
    hh=[t1' ha'];                                      % for data write to excel file *4c5b'u  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format BxesoB  
    figure(1) ra^"Vr  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn xU |8.,@  
    figure(2) E*QLw* H  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn *Z3b6X'e  
    kk}_AZ0eK  
    非线性超快脉冲耦合的数值方法的Matlab程序 Sea6xGdq  
    jH37{S-  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   `{Fz  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 rg I Z  
    '>t'U?7w<  
    ^O&&QRH~w  
    RJdijj  
    %  This Matlab script file solves the nonlinear Schrodinger equations Xl E0oN~{  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of '|G8yojz  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 5X:3'*  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004  |?ZNGPt  
    Xi!e=5&Pa  
    C=1;                           kT:?1w'  
    M1=120,                       % integer for amplitude a?*pO`<J{  
    M3=5000;                      % integer for length of coupler e /L([  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) U"a7myB+jX  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. jwheJ G  
    T =40;                        % length of time:T*T0. $5>m\wrl  
    dt = T/N;                     % time step CaV)F3   
    n = [-N/2:1:N/2-1]';          % Index xxOhGA)  
    t = n.*dt;   ]N:Wt2  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Px gul7  
    w=2*pi*n./T; 3Qu-X\  
    g1=-i*ww./2; `k(m2k ?  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 9rT"_d#  
    g3=-i*ww./2; 4K,S5^`Gx  
    P1=0; yh.WTgcW  
    P2=0; vILgM\or  
    P3=1; 'a"Uw"/p[  
    P=0; \xmDkWzE  
    for m1=1:M1                 qf{HGn_9~1  
    p=0.032*m1;                %input amplitude '30JJ0  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 SME]C') 7  
    s1=s10; lLI%J>b@  
    s20=0.*s10;                %input in waveguide 2  gOy{ RE  
    s30=0.*s10;                %input in waveguide 3 +R"n_6N  
    s2=s20; OXbC\^qo@  
    s3=s30; t;_1/ mt  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));    lHE+o;-  
    %energy in waveguide 1 EB p g  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   w{GEWD{&  
    %energy in waveguide 2 V OT9cP^6  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ZHCrKp  
    %energy in waveguide 3 7?\r9bD  
    for m3 = 1:1:M3                                    % Start space evolution x!u6LDq0  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS i*mI-l  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; L+0:'p=  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;  &%T*sR  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Uh'W d_?  
       sca2 = fftshift(fft(s2)); m3XT8F*&  
       sca3 = fftshift(fft(s3)); X n Rm9%  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   xM/WS':V  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 7mL1$i6=  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); $SfY<j,R  
       s3 = ifft(fftshift(sc3)); U@:l~ xJ  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ](`:<>c  
       s1 = ifft(fftshift(sc1)); bG+Gg*0p  
    end {ea*dX872:  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); BL%3[JQ  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); zR?1iV.]  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));  _w FK+>  
       P1=[P1 p1/p10]; >E WK cocM  
       P2=[P2 p2/p10]; ${`q!  
       P3=[P3 p3/p10]; o%K1!'  
       P=[P p*p]; -o57"r^x  
    end (A-Uo   
    figure(1) SRrp= >w?  
    plot(P,P1, P,P2, P,P3); jJ?G7Q5 l  
    jn oX%3d-  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~