计算脉冲在非线性耦合器中演化的Matlab 程序 Q*&k6A"jx
6ZKSet8
% This Matlab script file solves the coupled nonlinear Schrodinger equations of <a_ytSoG1
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ^N#z&oh
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear R<]f[
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 m%7T ~
@~1}n/
%fid=fopen('e21.dat','w'); apmZ&Ab
N = 128; % Number of Fourier modes (Time domain sampling points) II;
M1 =3000; % Total number of space steps Ts)ox}rYVm
J =100; % Steps between output of space DNwqi"
T =10; % length of time windows:T*T0 O7,)#{
T0=0.1; % input pulse width 4@0y$Dv\
MN1=0; % initial value for the space output location ]fiAV|'^
dt = T/N; % time step qGivRDR$
n = [-N/2:1:N/2-1]'; % Index 'wA4}f
t = n.*dt; pT ]: TRPS
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 m6+4}= Cn
u20=u10.*0.0; % input to waveguide 2 ~&{LMf
u1=u10; u2=u20; q#pD}Xe$
U1 = u1; -0P(lkylf
U2 = u2; % Compute initial condition; save it in U wB%N}bi!
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. S1SsJo2\
w=2*pi*n./T; NRIp@PIF:"
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T s\/$`fuhx
L=4; % length of evoluation to compare with S. Trillo's paper \A#YL1hh
dz=L/M1; % space step, make sure nonlinear<0.05 iC(&U YL
for m1 = 1:1:M1 % Start space evolution _|1m]2'9
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS Wks?9)Is
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; pA?kv]l(
ca1 = fftshift(fft(u1)); % Take Fourier transform ;Gnk8lIsb
ca2 = fftshift(fft(u2)); C]dK/~Z#r
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation S29k IJ
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift 3]MSS\uB
u2 = ifft(fftshift(c2)); % Return to physical space @3g$H[}
u1 = ifft(fftshift(c1)); Z~[EZgIg
if rem(m1,J) == 0 % Save output every J steps. R%EpF'[~[
U1 = [U1 u1]; % put solutions in U array K."%PdC
U2=[U2 u2]; E=3UaYr
MN1=[MN1 m1]; S:F8`Gh
z1=dz*MN1'; % output location ( :h#H[F
end T#OrsJdu
end iCXKi7
hg=abs(U1').*abs(U1'); % for data write to excel SOg>0VH)
ha=[z1 hg]; % for data write to excel 0cF+4,5
t1=[0 t']; K3*8-Be
hh=[t1' ha']; % for data write to excel file r
P1FM1"M
%dlmwrite('aa',hh,'\t'); % save data in the excel format !TwH;#U w
figure(1) =]F;{x
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn ))NiX^)8^
figure(2) QJ%[6S
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn Yt3+o<
V(#z{!
非线性超快脉冲耦合的数值方法的Matlab程序 8
o^ h\9I
hH.X_X?d%
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 IVY{N/ 3|
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 'O:QS)
$-*E
D}i_#-^MH
(U?*Z/
% This Matlab script file solves the nonlinear Schrodinger equations V!&O5T