计算脉冲在非线性耦合器中演化的Matlab 程序 HP7~Zn)c r=37Q14v % This Matlab script file solves the coupled nonlinear Schrodinger equations of
{\k }:) % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
#Mk3cp^Yl % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
o;
6^: % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
Aua}.Fl, fVZ92Xw
B %fid=fopen('e21.dat','w');
?x 0gI
N = 128; % Number of Fourier modes (Time domain sampling points)
r#oJch= M1 =3000; % Total number of space steps
h=6D=6c J =100; % Steps between output of space
# bjK]+ T =10; % length of time windows:T*T0
a~R.">>$ T0=0.1; % input pulse width
0)zJG | MN1=0; % initial value for the space output location
BK)<~I dt = T/N; % time step
2rC& n = [-N/2:1:N/2-1]'; % Index
YvuE:ia t = n.*dt;
|Y6;8e`H u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
%TAS4hnu% u20=u10.*0.0; % input to waveguide 2
a>-qHX-l u1=u10; u2=u20;
B[h^] k U1 = u1;
4o";p}[b U2 = u2; % Compute initial condition; save it in U
LPs5LE[Pm ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
<_kA+&T w=2*pi*n./T;
_u;pD- g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
@+~>utr L=4; % length of evoluation to compare with S. Trillo's paper
Xf"<
>M dz=L/M1; % space step, make sure nonlinear<0.05
j( k%w for m1 = 1:1:M1 % Start space evolution
/kw;q{>?o u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
.x] pJ9 u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
eU`O=uE ca1 = fftshift(fft(u1)); % Take Fourier transform
2wPc
yD ca2 = fftshift(fft(u2));
b>i5r$S8G c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
Q`.q,T8I c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
(GGosXU-v u2 = ifft(fftshift(c2)); % Return to physical space
gMZ+kP` u1 = ifft(fftshift(c1));
\
qq if rem(m1,J) == 0 % Save output every J steps.
EbX!;z U1 = [U1 u1]; % put solutions in U array
qQ3pe:n? U2=[U2 u2];
]
>w@@A MN1=[MN1 m1];
q7_Ttjn-DV z1=dz*MN1'; % output location
dIh+h|: end
^~vM*.j~j end
lIx./Nf hg=abs(U1').*abs(U1'); % for data write to excel
L<iRqayn ha=[z1 hg]; % for data write to excel
X@:Y. / t1=[0 t'];
bWlYQ
hh=[t1' ha']; % for data write to excel file
01&E.A %dlmwrite('aa',hh,'\t'); % save data in the excel format
<s\ZqL$f figure(1)
z%T|L[(6 waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
$`%Om WW{ figure(2)
gs/o cu waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
.p o,.} \X!NoF 非线性超快脉冲耦合的数值方法的Matlab程序 SsZSR.tD v.4G>0 0^ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
%I!2dXNFRF Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
Wb cm1I) QS\wtTXj 8HZ+r/j %QGw`E % This Matlab script file solves the nonlinear Schrodinger equations
2P^qZDG 8I % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
);q~TZ[Do % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
eV(9I v[ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
KUm?gFh goF87^M C=1;
34N~<-9AY M1=120, % integer for amplitude
E]m?R 4 M3=5000; % integer for length of coupler
QX<x2U N = 512; % Number of Fourier modes (Time domain sampling points)
~LOE^6C+~o dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
)u=W?5%=} T =40; % length of time:T*T0.
mW{> dt = T/N; % time step
T,>L n = [-N/2:1:N/2-1]'; % Index
0WSZhzNyY t = n.*dt;
|S|'o*u ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
S ++~w9} w=2*pi*n./T;
:{lP9%J- g1=-i*ww./2;
\weg%a g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
v*dw'i g3=-i*ww./2;
to,\n"$~! P1=0;
LGW_7&0<< P2=0;
{ %]imf|g. P3=1;
>zL5*:G P=0;
GPL%8 YY for m1=1:M1
).(y#zJ7P p=0.032*m1; %input amplitude
]cmX f s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
bJD$!*r\%! s1=s10;
|Nj6RB7 s20=0.*s10; %input in waveguide 2
t8xXGWk0 s30=0.*s10; %input in waveguide 3
NT5'U s2=s20;
02*qf:kTnA s3=s30;
0{8L^
jB/ p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
!d!u{1Y& %energy in waveguide 1
kL0K[O p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
{N/%%O.b %energy in waveguide 2
hKWWN`;b ! p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
$YcB=l %energy in waveguide 3
| Rhqi for m3 = 1:1:M3 % Start space evolution
0('ec60u s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
HDZl;= s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
^V96lKt/ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
*0eU_*A^zO sca1 = fftshift(fft(s1)); % Take Fourier transform
u{\'/c7G sca2 = fftshift(fft(s2));
"2sk1 sca3 = fftshift(fft(s3));
Q1?*+] sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
9jEH"`qqk sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
rZaO^}u] sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
YE{t?Y\5 s3 = ifft(fftshift(sc3));
]SRpMZ s2 = ifft(fftshift(sc2)); % Return to physical space
wB \`3u4 s1 = ifft(fftshift(sc1));
(uDd_@a9t end
q^EY?;Y p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
|3@DCbT p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
?&~q^t?u p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
3Ioe#*5\
P1=[P1 p1/p10];
bSX/)')jU P2=[P2 p2/p10];
@&WHX# P3=[P3 p3/p10];
g""GQeR P=[P p*p];
B#SVN Lv end
}shxEsq figure(1)
l&qCgw plot(P,P1, P,P2, P,P3);
ZCPUNtOl 5Q"w{ n 转自:
http://blog.163.com/opto_wang/