计算脉冲在非线性耦合器中演化的Matlab 程序 MAYb.>X#>
b@CjnAZ
% This Matlab script file solves the coupled nonlinear Schrodinger equations of d'96$e o~
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
[QxP9EC
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear w8X5kk
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 'etA1]<N
@.7/lRr@bp
%fid=fopen('e21.dat','w'); )>1}I_1j)
N = 128; % Number of Fourier modes (Time domain sampling points) )IcSdS0@M
M1 =3000; % Total number of space steps QwX81*nx
J =100; % Steps between output of space D`@a*YIq
T =10; % length of time windows:T*T0 d'W2I*Zc<
T0=0.1; % input pulse width _5rKuL
MN1=0; % initial value for the space output location !-`L1D_hy
dt = T/N; % time step &j:e<{@
n = [-N/2:1:N/2-1]'; % Index MZ}0.KmaZ
t = n.*dt; //c6vG
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 ntH`\ )xi
u20=u10.*0.0; % input to waveguide 2 lPZ>#
u1=u10; u2=u20; ;\w3IAa|V
U1 = u1; CaZc{
U2 = u2; % Compute initial condition; save it in U dI\_I]
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. kqKT>xo4EZ
w=2*pi*n./T; 2vpQ"e- A
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T /V*SI!C<f
L=4; % length of evoluation to compare with S. Trillo's paper >fYcr#i0[
dz=L/M1; % space step, make sure nonlinear<0.05 m+XHFU
for m1 = 1:1:M1 % Start space evolution ?w(hPUd!2
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS \C$e+qb~{
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
M ]047W
ca1 = fftshift(fft(u1)); % Take Fourier transform lPR^~&/
ca2 = fftshift(fft(u2)); Xb:*
KeZq
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation [RKk-8I
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift pG"wQ
u2 = ifft(fftshift(c2)); % Return to physical space .hH_1Mo8
u1 = ifft(fftshift(c1)); MDytA0M
if rem(m1,J) == 0 % Save output every J steps. XB!qPh.
U1 = [U1 u1]; % put solutions in U array c/+6M
U2=[U2 u2]; DU6j0lz
MN1=[MN1 m1]; bJn&Y
z1=dz*MN1'; % output location 9@CRL=
end G%HG6
end f~W+Rt7o
hg=abs(U1').*abs(U1'); % for data write to excel SWw!s&lP&
ha=[z1 hg]; % for data write to excel 5 <k)tF%
t1=[0 t']; =-Hhm($n
hh=[t1' ha']; % for data write to excel file C5^WJx[
%dlmwrite('aa',hh,'\t'); % save data in the excel format L|WrdT D;
figure(1) 2z{B
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn ?u#s ?$ Y?
figure(2) \bT0\
(Js\
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn 2&*#k
-6J <{1V
非线性超快脉冲耦合的数值方法的Matlab程序 jywS<9c@
w#)u+^ -
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 l|
uiC%T
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 E+i(p+=4
3ux7^au
l F64g
&iWTf K7
% This Matlab script file solves the nonlinear Schrodinger equations `^/8dIya
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of .'o=J`|
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear !4Zy$69R
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 -
c>Vw&1
+pgHCzwJE
C=1; h._eP.W `
M1=120, % integer for amplitude 2p9^ =
M3=5000; % integer for length of coupler 'AK '(cZ
N = 512; % Number of Fourier modes (Time domain sampling points) Gjeb)Y6N
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. 9IXy96]]6
T =40; % length of time:T*T0. ~ zfF*A
dt = T/N; % time step A-L1vu;
n = [-N/2:1:N/2-1]'; % Index 0p[k7W u
t = n.*dt; {HY3E}YJL
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. ]h1.1@ >xc
w=2*pi*n./T; t0fgG/f'
g1=-i*ww./2; Q\s+w){f%
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; c`x4."m
g3=-i*ww./2; ?ch?q~e)
P1=0; dH5*%
P2=0; vTFG*\Cq
P3=1; ?@PSD\
P=0; cvy
5|;-u
for m1=1:M1 Y [)mHs2
p=0.032*m1; %input amplitude rAtCG1Vr
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 yCR8 c,'8
s1=s10; {,uSDIOj$
s20=0.*s10; %input in waveguide 2 Y$XzZ>VW
s30=0.*s10; %input in waveguide 3 9=$pV==
s2=s20; 5cf?u3r!qJ
s3=s30; [xY-=-T*4
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); |WS@q'
%energy in waveguide 1 Q?T+^J
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); [Y!HQ9^LEp
%energy in waveguide 2 l"JM%LV
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); e.L&A|
%energy in waveguide 3 b]?5r)GK
for m3 = 1:1:M3 % Start space evolution {hN\=_6*EW
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS /"="y'Wx
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; N`7OJ)l
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; zQ:nL*X'Z"
sca1 = fftshift(fft(s1)); % Take Fourier transform +}at#%1@
sca2 = fftshift(fft(s2)); lIEZ=CEmY
sca3 = fftshift(fft(s3)); jFg19C{=X
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift z[ ;n2o|s
sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); }~&0<8m
sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); o=94H7@
s3 = ifft(fftshift(sc3)); Has}oe[
s2 = ifft(fftshift(sc2)); % Return to physical space ~]no7O4
s1 = ifft(fftshift(sc1)); 837:;<T
end N:Q.6_%^
p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 2 {WZ?H93a
p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); !XjZt
p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); NG3:=
P1=[P1 p1/p10]; m Qx1co
P2=[P2 p2/p10]; yqK_|7I+
P3=[P3 p3/p10]; &S