切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8836阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ybYXD?  
    X|)Il8  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of jrcc  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Ou!)1UFI  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear kPedX  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %IU4\ZY>  
    `D"1 gD}{A  
    %fid=fopen('e21.dat','w'); ](n69XX_  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) (zEYpTp  
    M1 =3000;              % Total number of space steps GZ,j?@  
    J =100;                % Steps between output of space w= B  
    T =10;                  % length of time windows:T*T0 tnJ`D4  
    T0=0.1;                 % input pulse width c}'Xoc  
    MN1=0;                 % initial value for the space output location .S(^roM;+  
    dt = T/N;                      % time step v C-[#]<  
    n = [-N/2:1:N/2-1]';           % Index Crg#6k1~EN  
    t = n.*dt;    %|bN@@  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 o[imNy~~  
    u20=u10.*0.0;                  % input to waveguide 2 #'KY`&Tw&  
    u1=u10; u2=u20;                 wRj~Qv~E  
    U1 = u1;   l`qP~ k#  
    U2 = u2;                       % Compute initial condition; save it in U ]%||KC!O  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Y` q!V=  
    w=2*pi*n./T; xpz`))w  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T _rG-#BKW8L  
    L=4;                           % length of evoluation to compare with S. Trillo's paper P 4H*jy@?  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 WQTendS  
    for m1 = 1:1:M1                                    % Start space evolution A` =]RJ  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS b sMC#xT  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; nE^wxtY  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform C~:b*X   
       ca2 = fftshift(fft(u2)); cS5w +`,L  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation vg5E/+4gp%  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   O${r^6Hh  
       u2 = ifft(fftshift(c2));                        % Return to physical space #'#4hJ*YC  
       u1 = ifft(fftshift(c1)); HoMQt3C  
    if rem(m1,J) == 0                                 % Save output every J steps. \2(MpB\_6!  
        U1 = [U1 u1];                                  % put solutions in U array A?\h|u<  
        U2=[U2 u2]; "3v7gtGG  
        MN1=[MN1 m1]; 0NVG"-Q  
        z1=dz*MN1';                                    % output location 1RURZoL  
      end >Zi|$@7t-  
    end 4;08n|C  
    hg=abs(U1').*abs(U1');                             % for data write to excel Qh/lT$g  
    ha=[z1 hg];                                        % for data write to excel :m)c[q8  
    t1=[0 t']; X5|?/aR}  
    hh=[t1' ha'];                                      % for data write to excel file "pR $cS  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format _CHKh*KHML  
    figure(1) 5/*)+  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn [''=><  
    figure(2) ( ?atGFgu  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn rD_Ss.\^g  
    D "JMSL4r  
    非线性超快脉冲耦合的数值方法的Matlab程序 Z?5,cI[6#  
    T@2f&Un^  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ^Z#<tN;  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 SZNFE  
    3 t~X:  
    pIk4V/ fy  
    s9^"wN YQ  
    %  This Matlab script file solves the nonlinear Schrodinger equations T[`QO`\5O  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 0;. e#(`-  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear aMe%#cLI  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 PGC07U:B  
    Yk(NZ3O  
    C=1;                           K+(m'3`  
    M1=120,                       % integer for amplitude y}s 0J K  
    M3=5000;                      % integer for length of coupler eW<!^Aer  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 0tn7Rkiw  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 7N&3FER  
    T =40;                        % length of time:T*T0. pmE1EDPag  
    dt = T/N;                     % time step qdg= Imx  
    n = [-N/2:1:N/2-1]';          % Index 5<0Yh#_  
    t = n.*dt;   zW|$x<M^  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. g;| n8]  
    w=2*pi*n./T; T#ecLD#  
    g1=-i*ww./2; vq@#Be?@  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; h9@gs,'   
    g3=-i*ww./2; -K{\S2  
    P1=0;  M}_M_  
    P2=0; D| 3AjzW  
    P3=1;  p1[WGeV  
    P=0; \J#I}-a&j  
    for m1=1:M1                 F!DrZd>\  
    p=0.032*m1;                %input amplitude FuRn%)DA5  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 r-Xjy*T  
    s1=s10; @pyA;>U  
    s20=0.*s10;                %input in waveguide 2 cHfK-R  
    s30=0.*s10;                %input in waveguide 3 ?Vb=4B{~  
    s2=s20; U^WQWa  
    s3=s30; ePFC$kMn  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   GcU(:V2o  
    %energy in waveguide 1 tFb|y+  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   TU^tW  
    %energy in waveguide 2 (5CX*)R  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   yDl5t-0`  
    %energy in waveguide 3 3M5=@Fwkr  
    for m3 = 1:1:M3                                    % Start space evolution y2d_b/  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS la6e`  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Xqq?S  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; @idp8J [td  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform oWn_3gzw;  
       sca2 = fftshift(fft(s2)); W"DxIy  
       sca3 = fftshift(fft(s3)); oD|+X/F K  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   m''iE  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); *8(t y%5F0  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); X]f#w  
       s3 = ifft(fftshift(sc3)); \p_8YC  
       s2 = ifft(fftshift(sc2));                       % Return to physical space `^@g2c+d  
       s1 = ifft(fftshift(sc1)); A*?/F:E  
    end &vGEz*F  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); KH CdO  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); vFkyfX(   
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); %QlBFl0a  
       P1=[P1 p1/p10]; |R|U z`  
       P2=[P2 p2/p10]; Y=#mx3.  
       P3=[P3 p3/p10]; ~vvQz"  
       P=[P p*p]; (*@~HF,t=  
    end 7kew/8-  
    figure(1) &dHm!b  
    plot(P,P1, P,P2, P,P3); pu m9x)y1  
    )l81R  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~