切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8682阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 `# ^0cW  
    SSmHEy*r)  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of )^/0cQcJ  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ]J@/p:S>  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ngUHkpYS5  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 J(iV0LAZb  
    k4y}&?$B  
    %fid=fopen('e21.dat','w'); `|Fp^gM  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) jv&+<j`r  
    M1 =3000;              % Total number of space steps lhPGE_\  
    J =100;                % Steps between output of space 5 9 -!6;T  
    T =10;                  % length of time windows:T*T0 '^}+Fv<O  
    T0=0.1;                 % input pulse width (3%t+aqq  
    MN1=0;                 % initial value for the space output location -cfx2;68  
    dt = T/N;                      % time step +nU.p/cK+\  
    n = [-N/2:1:N/2-1]';           % Index ]P1YHw9  
    t = n.*dt;   oNYZIk:  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 h?j_Ry  
    u20=u10.*0.0;                  % input to waveguide 2 y0IK,W'&?  
    u1=u10; u2=u20;                 fN[8N$1-  
    U1 = u1;   !7 _\P7M  
    U2 = u2;                       % Compute initial condition; save it in U #n7Yr,|Z  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. T V:<TR  
    w=2*pi*n./T; &drFQ|  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T I>n g`  
    L=4;                           % length of evoluation to compare with S. Trillo's paper wE Qi0!  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 V4K'R2t  
    for m1 = 1:1:M1                                    % Start space evolution $>w/Cy  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Y &f\VNlT  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; (tCib 4  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform f/ahwz  
       ca2 = fftshift(fft(u2)); ijW 7c+yd  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Lj 8<' "U#  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   x';u CKWV  
       u2 = ifft(fftshift(c2));                        % Return to physical space o`?zF+M0  
       u1 = ifft(fftshift(c1)); EzT`,#b  
    if rem(m1,J) == 0                                 % Save output every J steps. ;l!`C':'  
        U1 = [U1 u1];                                  % put solutions in U array vsMmCd)7U  
        U2=[U2 u2]; n=!uNu7  
        MN1=[MN1 m1]; TFH&(_b  
        z1=dz*MN1';                                    % output location S`= WF^  
      end f j<H6|3  
    end Ge \["`;i  
    hg=abs(U1').*abs(U1');                             % for data write to excel $3;Upgv  
    ha=[z1 hg];                                        % for data write to excel I/uy>*  
    t1=[0 t']; !I8f#'p  
    hh=[t1' ha'];                                      % for data write to excel file I1=(. *B}  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ;YH[G;aJ  
    figure(1) qqOFr!)g  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 9- )qZ  
    figure(2) {IM! Wb  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn $c9k*3{<+A  
    PCE4W^ns  
    非线性超快脉冲耦合的数值方法的Matlab程序 J;QUPpH Z  
    Pe ~c  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   l-O$m  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ls|LCQPx  
    }iww:H-1  
    bB 6[Xj{  
    Qn+:/ zA;  
    %  This Matlab script file solves the nonlinear Schrodinger equations EX "|H.(  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of M$S]}   
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear D"l+iVbBP  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7@;">`zvm  
    :1aL ?  
    C=1;                           +4)7j&L  
    M1=120,                       % integer for amplitude |a(fejO3  
    M3=5000;                      % integer for length of coupler Fx#jV\''s  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 9F##F-%x  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. -$-8W  
    T =40;                        % length of time:T*T0. h*l&RR:i  
    dt = T/N;                     % time step 6|;Uq'  
    n = [-N/2:1:N/2-1]';          % Index \caH pof  
    t = n.*dt;   GDhM<bVqM*  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. eSy(~Y  
    w=2*pi*n./T; )&W**!(C  
    g1=-i*ww./2; L^0v\  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; p{tK_ZBy]c  
    g3=-i*ww./2; p,!$/Q+l  
    P1=0; >fs2kha  
    P2=0; lK(Fg  
    P3=1; H3KTir"on  
    P=0; lj[, |[X7`  
    for m1=1:M1                 c:hK$C)T  
    p=0.032*m1;                %input amplitude ]k%PG-9  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 4< S'  
    s1=s10; mY-hN|  
    s20=0.*s10;                %input in waveguide 2 (?i[jO||B  
    s30=0.*s10;                %input in waveguide 3 Akk 3 Qx  
    s2=s20; "8<K'zeS8  
    s3=s30; M"Y0jQ(  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   0Y+FRB ]u  
    %energy in waveguide 1 K`6z&*  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   F:g=i}7  
    %energy in waveguide 2 2xxB\J  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   0!GAk   
    %energy in waveguide 3 nb, 2,H  
    for m3 = 1:1:M3                                    % Start space evolution F jrINxL7^  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS &"E lm  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; oh-|'5+,;h  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; w=_Jc8/.  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform i'HQQWd  
       sca2 = fftshift(fft(s2)); pV\YG B+  
       sca3 = fftshift(fft(s3)); Va<eusl  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   _M5%V>HO  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); >,5i60Q  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); .qD@ Y3-  
       s3 = ifft(fftshift(sc3)); S-F o  
       s2 = ifft(fftshift(sc2));                       % Return to physical space N/F$bv  
       s1 = ifft(fftshift(sc1)); %V_-%/3Z  
    end FY'dJY3O  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); <z)m%*lvU  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); D]03eu  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); .2:\:H~3  
       P1=[P1 p1/p10]; )P Jw+5  
       P2=[P2 p2/p10]; U.oksD9 v  
       P3=[P3 p3/p10]; *VeW?mY,P  
       P=[P p*p]; JMa3btLy(  
    end E1V^}dn  
    figure(1) Mt>oI SN&d  
    plot(P,P1, P,P2, P,P3); Zj9c9  
    uGH?N  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~