切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8677阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 9`"o,wGX3  
    oD$8(  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of IL:d`Kbqf  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of thoAEG80  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear [-Zp[  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 >&@hm4  
    +GgJFBl  
    %fid=fopen('e21.dat','w'); )'<B\P/  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) wq[\Fb`  
    M1 =3000;              % Total number of space steps )KZ1Z$<  
    J =100;                % Steps between output of space `y&d  
    T =10;                  % length of time windows:T*T0 R^}}-Dv r  
    T0=0.1;                 % input pulse width \2?p  
    MN1=0;                 % initial value for the space output location M18H1e@Al  
    dt = T/N;                      % time step H-?wEMi)*u  
    n = [-N/2:1:N/2-1]';           % Index D;f[7Cac  
    t = n.*dt;   =h?Q.vad  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 +N161vo7  
    u20=u10.*0.0;                  % input to waveguide 2 c0J=gZiP  
    u1=u10; u2=u20;                 $jt  UQ1  
    U1 = u1;   a,o>E4#c  
    U2 = u2;                       % Compute initial condition; save it in U 0jS"PH?[  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 3Y\7+975m  
    w=2*pi*n./T; q|E0Y   
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 8+m[ %5lu  
    L=4;                           % length of evoluation to compare with S. Trillo's paper '~dE0ohWb  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ~c e?xr|  
    for m1 = 1:1:M1                                    % Start space evolution R&z)  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS /UJ@e  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; <OKzb3e  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform PGT*4r21  
       ca2 = fftshift(fft(u2)); G1; .\i  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation b&LfL$  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   @ljvTgZ(X  
       u2 = ifft(fftshift(c2));                        % Return to physical space R3MbTg  
       u1 = ifft(fftshift(c1)); -Cb<T"7  
    if rem(m1,J) == 0                                 % Save output every J steps. !J34yro+s  
        U1 = [U1 u1];                                  % put solutions in U array *. H1m{V  
        U2=[U2 u2]; ^*;{Uj+O~Y  
        MN1=[MN1 m1]; 5K1WfdBX7)  
        z1=dz*MN1';                                    % output location 4dDDi,)U  
      end ]!>ThBMa  
    end ZE#f{qF(  
    hg=abs(U1').*abs(U1');                             % for data write to excel S.;>:Dd[K  
    ha=[z1 hg];                                        % for data write to excel x\=2D<@az  
    t1=[0 t']; Sz\"*W;>  
    hh=[t1' ha'];                                      % for data write to excel file T[w]w  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format +k!Y]_&(:f  
    figure(1) j8@ Eqh  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn uV]4C^k;`[  
    figure(2) {VWUK`3  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn PZ/gD  
    ,&S ^Ryc  
    非线性超快脉冲耦合的数值方法的Matlab程序 Tct[0B  
    !/4f/g4Ze  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   #1MEmt  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^*7~ Wxk5  
    1vcI`8%S+u  
    MCamc  
    X-oHQu5  
    %  This Matlab script file solves the nonlinear Schrodinger equations {(}Mu R  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 1a#oJU  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear {~*aXu 3  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 [\o+I:,}wi  
    1'5I]D ec  
    C=1;                           {}?;|&_  
    M1=120,                       % integer for amplitude ^}XKhn.S'  
    M3=5000;                      % integer for length of coupler 8ALvP}H  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) !B==cNq  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Ep% 5wR  
    T =40;                        % length of time:T*T0. gf]biE"k  
    dt = T/N;                     % time step (>qX>  
    n = [-N/2:1:N/2-1]';          % Index I*e8 5wef  
    t = n.*dt;   @l9qH1  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. k^q}F%UV  
    w=2*pi*n./T; Jji~MiMn  
    g1=-i*ww./2; _(J7^rN  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ; 6Wlu3I  
    g3=-i*ww./2; 0_Hdj K  
    P1=0; i2{xW`AcUh  
    P2=0; wj>mk  
    P3=1; $|v_ pjUu]  
    P=0; R9SJ;TsE  
    for m1=1:M1                 Ti/t\'6  
    p=0.032*m1;                %input amplitude 9Vx2VjK2'  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 b _fI1f|  
    s1=s10; 73/kyu-0%  
    s20=0.*s10;                %input in waveguide 2 D_GIj$%N[  
    s30=0.*s10;                %input in waveguide 3 qvz2u]IOw  
    s2=s20; 7%Zl^c>q  
    s3=s30; q!#e2Dx  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   kBY54pl  
    %energy in waveguide 1 ScrEtN  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   bWv4'Y!p  
    %energy in waveguide 2 iw<#V&([ J  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   sDnHd9v<?t  
    %energy in waveguide 3 mj0{Nd  
    for m3 = 1:1:M3                                    % Start space evolution v*%#Fp,g8  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS %dTkw+J  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; JGPLVw  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Gx ?p,Fj  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform D%v4B`4ua'  
       sca2 = fftshift(fft(s2)); ]=p@1  
       sca3 = fftshift(fft(s3)); R}F0_.  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ` bd  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); $ WAFr  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); .$+]N[-=  
       s3 = ifft(fftshift(sc3)); OKfJ  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Ec| Gom?  
       s1 = ifft(fftshift(sc1)); u-Pa:wm0-  
    end orn9;|8q  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); <,d.`0:y  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ud K)F$7  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 2wE?O^J  
       P1=[P1 p1/p10]; ((A]FOIbO  
       P2=[P2 p2/p10]; SU;PmG4  
       P3=[P3 p3/p10]; ]Q=D'1 MM  
       P=[P p*p]; (OT /o&cQ  
    end $X_JUzb  
    figure(1) <=8REA?  
    plot(P,P1, P,P2, P,P3); Zrp`91&I  
    zyTP|SXk  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~