切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9189阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ;5q=/  
    \H*"UgS  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of jQj`GnN|  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of o D*h@yL  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear kRTT ~  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 O6YYOmt3  
    teg LGp@_  
    %fid=fopen('e21.dat','w'); T,!?+#  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) &xj?MgdNL  
    M1 =3000;              % Total number of space steps bv4lgRE6Y  
    J =100;                % Steps between output of space 0V}%'Ec<e  
    T =10;                  % length of time windows:T*T0 i?A4uyYwS  
    T0=0.1;                 % input pulse width ,+oQ 5c(f  
    MN1=0;                 % initial value for the space output location 3EI$tP@4  
    dt = T/N;                      % time step Z '/:  
    n = [-N/2:1:N/2-1]';           % Index |*fGG?}  
    t = n.*dt;   WDP$w( M  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 wZ0$ylEX  
    u20=u10.*0.0;                  % input to waveguide 2 54-sb~]  
    u1=u10; u2=u20;                 y7u"a)T  
    U1 = u1;   >IJH#>i  
    U2 = u2;                       % Compute initial condition; save it in U H .JA)*b-  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Zyu4!  
    w=2*pi*n./T; 38 tRb"3zP  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T dArg'Dc4  
    L=4;                           % length of evoluation to compare with S. Trillo's paper T5=3 jPQ  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ~N;kF.q&>&  
    for m1 = 1:1:M1                                    % Start space evolution [as\>@o  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS `&LPqb  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; $GSn#} yz  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform q$yTG!q*  
       ca2 = fftshift(fft(u2)); sPyq.oG  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation G yvEc3|@  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   }Cvf[H1+  
       u2 = ifft(fftshift(c2));                        % Return to physical space mcP]k8?C  
       u1 = ifft(fftshift(c1)); f 0~<qT?:n  
    if rem(m1,J) == 0                                 % Save output every J steps. q3z<v:=1y  
        U1 = [U1 u1];                                  % put solutions in U array Q=)$  
        U2=[U2 u2]; ~5N0=)  
        MN1=[MN1 m1]; K63OjR >H  
        z1=dz*MN1';                                    % output location dAh&Z:86\  
      end Y^M3m' d?  
    end wI'T J e,  
    hg=abs(U1').*abs(U1');                             % for data write to excel C?fd.2#U  
    ha=[z1 hg];                                        % for data write to excel |e!%6Qq3  
    t1=[0 t']; NoB)tAvw  
    hh=[t1' ha'];                                      % for data write to excel file 3,8<5)ds*  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format *?zmo@-  
    figure(1) ~Y7>P$G)  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 6U Q~Fv`]  
    figure(2) ]u?|3y^ (  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn -,)&?S  
    _ho9}7 >  
    非线性超快脉冲耦合的数值方法的Matlab程序 E z?O gE{  
    5/F1|N4  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   C< 3` ]l  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 [_Fj2nb*  
    $Ypt /`  
     l+HmG< P  
    E#[_"^n  
    %  This Matlab script file solves the nonlinear Schrodinger equations oCg|* c|+  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of _ I"}3*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear J&CA#Bg:w  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 e{EKM4  
    H*51GxK  
    C=1;                           O`j1~o<{  
    M1=120,                       % integer for amplitude `d2 r5*<  
    M3=5000;                      % integer for length of coupler mM0VUSy  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) BCMQ^hP}t  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. T1%_sq  
    T =40;                        % length of time:T*T0. F$.h+v   
    dt = T/N;                     % time step _JNSl2  
    n = [-N/2:1:N/2-1]';          % Index td JA?  
    t = n.*dt;   ', ~  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. /*Iq,"kGz  
    w=2*pi*n./T; $ha,DlN  
    g1=-i*ww./2; 6l]jm j)/  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; OIJNOuI  
    g3=-i*ww./2; ~ES6Qw`Oe  
    P1=0; N!!=9'fGF  
    P2=0; 7IkNS  
    P3=1; ;O8'vp  
    P=0; "`g5iUHqUl  
    for m1=1:M1                 Jx@_OE_vp  
    p=0.032*m1;                %input amplitude IJ\4S  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 +lC?Vpi^  
    s1=s10; 4FQB%3>*  
    s20=0.*s10;                %input in waveguide 2 qQjd@J}^  
    s30=0.*s10;                %input in waveguide 3 nl<TM96  
    s2=s20; ;$,b w5  
    s3=s30; [GQn1ZLc  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   7}#zF]vHNi  
    %energy in waveguide 1 j/ [V<  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ^E~F,]dV=  
    %energy in waveguide 2 |ht:_l 8  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   AS4mJ UU9  
    %energy in waveguide 3 {z#!3a  
    for m3 = 1:1:M3                                    % Start space evolution +xNV1bM  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ":@\kw  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; OFe-e(c1  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; IVSOSl|  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform HpP82X xj  
       sca2 = fftshift(fft(s2)); DwmK?5p  
       sca3 = fftshift(fft(s3)); Sf*1Z~P|  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ^+p7\D/E(  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);  )OHGg  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); mqj]=Fq*  
       s3 = ifft(fftshift(sc3)); )iX2r{  
       s2 = ifft(fftshift(sc2));                       % Return to physical space }TQa<;Q  
       s1 = ifft(fftshift(sc1)); r)S:-wP  
    end tNoPpIu  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); "w&IO}j;=  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); or,:5Z  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 4SVIdSA  
       P1=[P1 p1/p10]; +[vI ocu  
       P2=[P2 p2/p10]; {ty)2  
       P3=[P3 p3/p10]; ylm # Xa  
       P=[P p*p]; fHK.q({Qc  
    end :a/l9 m(  
    figure(1) r[g  
    plot(P,P1, P,P2, P,P3); ,I6li7V  
    y0f:N U  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~