切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9130阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 #CM2FN:W  
    IuPwFf)  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ?R";EnD  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of L./UgeZ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear rK];2[U  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 zdr?1=  
    ifuVVFov  
    %fid=fopen('e21.dat','w'); .*8.{n5   
    N = 128;                       % Number of Fourier modes (Time domain sampling points) -E.EI@"  
    M1 =3000;              % Total number of space steps <.Pr+g  
    J =100;                % Steps between output of space 1<lLE1fk  
    T =10;                  % length of time windows:T*T0 J|s4c`=  
    T0=0.1;                 % input pulse width KnlVZn[3t  
    MN1=0;                 % initial value for the space output location U|,VH-#  
    dt = T/N;                      % time step 3dXyKi  
    n = [-N/2:1:N/2-1]';           % Index " 4s,a  
    t = n.*dt;   m|'TPy  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 fuQ? @F  
    u20=u10.*0.0;                  % input to waveguide 2 ++xEMP)  
    u1=u10; u2=u20;                 &}rh+z  
    U1 = u1;   ^G15]Pyw  
    U2 = u2;                       % Compute initial condition; save it in U *K!V$8k=99  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ,rQznE1e  
    w=2*pi*n./T; /+%1Kq.hP  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T fY\QI =  
    L=4;                           % length of evoluation to compare with S. Trillo's paper R7+k=DI  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 --y .q~d  
    for m1 = 1:1:M1                                    % Start space evolution o <sX6a9e  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS UA}k"uM  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; $BCqz! 4K  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Dg \fjuK9  
       ca2 = fftshift(fft(u2)); jh9^5"vQ  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation RoP z?,u  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   74QWGw`,  
       u2 = ifft(fftshift(c2));                        % Return to physical space Ip|7JL0Z  
       u1 = ifft(fftshift(c1)); (eHvp  
    if rem(m1,J) == 0                                 % Save output every J steps. C)Mh  
        U1 = [U1 u1];                                  % put solutions in U array 6M F%$K3  
        U2=[U2 u2]; eo"6 \3z  
        MN1=[MN1 m1]; 5WY..60K,  
        z1=dz*MN1';                                    % output location SI U"cO4  
      end JQ!D8Ut  
    end s\_ ,aI  
    hg=abs(U1').*abs(U1');                             % for data write to excel R:zjEhH )  
    ha=[z1 hg];                                        % for data write to excel Q']:k}y  
    t1=[0 t']; zS]Yd9;X1  
    hh=[t1' ha'];                                      % for data write to excel file ,Epg&)wC]  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format (',G Ako  
    figure(1) u JGYXlLE  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn XswEAz0=  
    figure(2) %=%jy  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn [[ H XOPaV  
    ^<7)w2ns  
    非线性超快脉冲耦合的数值方法的Matlab程序 $GPenQ~},  
    }B^KV#_{S  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Jy{A1i@4~s  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 a'rN&*P  
    | \C{R  
    j?#S M!f  
    ="z\  
    %  This Matlab script file solves the nonlinear Schrodinger equations ZI-)'  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of P8piXG  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear OiZPL"Q(K  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 j'I$F1>Te  
    mq do@  
    C=1;                           JmtU>2z\  
    M1=120,                       % integer for amplitude }r9f}yX9Q  
    M3=5000;                      % integer for length of coupler R@u6mMX{N,  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) x4Y+?2  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. W_ngB[  
    T =40;                        % length of time:T*T0. Xq1n1_Z  
    dt = T/N;                     % time step {eMu"<  
    n = [-N/2:1:N/2-1]';          % Index ts aD5B  
    t = n.*dt;   `fj(xrI  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 2>_6b>9]  
    w=2*pi*n./T; kb Odg:  
    g1=-i*ww./2; v_En9~e^n  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; |U>BXX P  
    g3=-i*ww./2; 1Hp0,R}  
    P1=0; @I_A\ U{  
    P2=0; 2(Vm0E  
    P3=1; ; P&K a  
    P=0; y/'2WO[  
    for m1=1:M1                 0,{Dw9W:  
    p=0.032*m1;                %input amplitude HFB2ep7N  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Zm4IN3FGLv  
    s1=s10; ?S36)oZzg  
    s20=0.*s10;                %input in waveguide 2 [j`It4^nC  
    s30=0.*s10;                %input in waveguide 3 i\ X Ok!  
    s2=s20; uL1e?  
    s3=s30; 3W5|Y@0  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   pdngM 8n  
    %energy in waveguide 1 b(&2/|hd  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   j_H{_Ug  
    %energy in waveguide 2 k^:$ETW2 D  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   -yy&q9  
    %energy in waveguide 3 ?sfA/9"  
    for m3 = 1:1:M3                                    % Start space evolution z AacX@  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS G!C2[:[g  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; u`xmF/jhQ  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; !vHnMY~AG  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform yNoJrA  
       sca2 = fftshift(fft(s2)); pn{Mj  
       sca3 = fftshift(fft(s3)); Zm >Q-7r9  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   pLE|#58I  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); zQMsS  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); y+)][Wa0  
       s3 = ifft(fftshift(sc3)); )O#]Wvr  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Zz'(!h Uy  
       s1 = ifft(fftshift(sc1)); bN`oQ.Z 4  
    end RFU(wek  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); :Ag]^ot  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); f<= #WV  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); EW%%W6O6  
       P1=[P1 p1/p10]; `(vgBz`e[  
       P2=[P2 p2/p10]; O[+S/6uy  
       P3=[P3 p3/p10]; tV<}!~0,*  
       P=[P p*p]; dE7 kd=.o  
    end I,(m\NalK  
    figure(1) DN2K4%cM%'  
    plot(P,P1, P,P2, P,P3); r :{2}nE  
    2Vxr  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~