切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8827阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 19-yM`O  
    ,N|R/Vk$+E  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of |9"^s x  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of yb.|7U?/x  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear f}ij=Y9  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 RJs G]`  
    |`;1p@w"  
    %fid=fopen('e21.dat','w'); w@$o  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ;3?J#e6;  
    M1 =3000;              % Total number of space steps f`]E]5?  
    J =100;                % Steps between output of space kR~4O$riG  
    T =10;                  % length of time windows:T*T0 E4aCGg  
    T0=0.1;                 % input pulse width k+GK1Yl  
    MN1=0;                 % initial value for the space output location d!z).G  
    dt = T/N;                      % time step j nA_!;b  
    n = [-N/2:1:N/2-1]';           % Index (Rg!km%2T  
    t = n.*dt;   Qnb?hvb"d  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 pW^ ?g|_}  
    u20=u10.*0.0;                  % input to waveguide 2 M j%|'dZz  
    u1=u10; u2=u20;                 QDT{Xg* I  
    U1 = u1;   n6UU6t{  
    U2 = u2;                       % Compute initial condition; save it in U QRh4f\fY  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. V?z{UZkR  
    w=2*pi*n./T; nV xMo_  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T  D6!+  
    L=4;                           % length of evoluation to compare with S. Trillo's paper )Gp\_(9fc  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 M "P  
    for m1 = 1:1:M1                                    % Start space evolution oUKbzr/C  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS *P\_:>bV(  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; rxI&;F#  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Fl3r!a!P,  
       ca2 = fftshift(fft(u2)); 3b[+m}UWQ  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation {1U*: @j  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   |laKntv2  
       u2 = ifft(fftshift(c2));                        % Return to physical space =y]b|"s~2  
       u1 = ifft(fftshift(c1)); &vvx"  
    if rem(m1,J) == 0                                 % Save output every J steps. 8 ]MzOGB8  
        U1 = [U1 u1];                                  % put solutions in U array k3.p@8@:  
        U2=[U2 u2]; $yqq.#1  
        MN1=[MN1 m1]; QuRg(K%:  
        z1=dz*MN1';                                    % output location ` +UMZc  
      end p#BvlS=D  
    end lR2;g:&H  
    hg=abs(U1').*abs(U1');                             % for data write to excel TdIFZ[<7  
    ha=[z1 hg];                                        % for data write to excel 5Zm_^IS  
    t1=[0 t']; 4_0/]:~5  
    hh=[t1' ha'];                                      % for data write to excel file n)!_HNc9  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 6$<o^Ha*R  
    figure(1) s1$#G!'  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ugPI1'f  
    figure(2) ko>O ~@r  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn e+ w  
    :k/U7 2  
    非线性超快脉冲耦合的数值方法的Matlab程序 "g1;TT:1~  
    !!O{ ppM  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   'nt,+`.y6  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 b!~%a  
    `(suRp8!  
    0F'UFn>{  
    d;:&3r|X  
    %  This Matlab script file solves the nonlinear Schrodinger equations xKzFrP;/{  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of )t|Q7$ v1  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear oYErG] ,  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 '#::ba[9w  
    D\*_ulc]  
    C=1;                           6="&K_Q7  
    M1=120,                       % integer for amplitude at]Q4  
    M3=5000;                      % integer for length of coupler o(NyOC  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) <7] Y\{+  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. $uB(@Ft.  
    T =40;                        % length of time:T*T0. @W- f{V  
    dt = T/N;                     % time step #R4KBXN  
    n = [-N/2:1:N/2-1]';          % Index Jxw:Jk ~  
    t = n.*dt;   Y[?Wt/O;  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Cbvl( (  
    w=2*pi*n./T; 9<CUsq@i:  
    g1=-i*ww./2; U(LR('-h  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Qnx92   
    g3=-i*ww./2; 7lPk~0  
    P1=0; JlGD.!`  
    P2=0; ;-^9j)31+F  
    P3=1; gdY/RDxn:  
    P=0; Qug'B  
    for m1=1:M1                 \9zC?Cw  
    p=0.032*m1;                %input amplitude F <Z=%M3e  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 e-)1K  
    s1=s10; ;FflEL<7Y  
    s20=0.*s10;                %input in waveguide 2 f_XCO=8'v  
    s30=0.*s10;                %input in waveguide 3 ^V]DY!@k3_  
    s2=s20; oHnpwU  
    s3=s30; _'p;V[(+M  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   %k)I =|  
    %energy in waveguide 1 7/!C  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   G_4P)G3H  
    %energy in waveguide 2 3h4"Rv=,  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   &bu`\|V  
    %energy in waveguide 3 )pa|uH +N  
    for m3 = 1:1:M3                                    % Start space evolution Utp\}0GZY  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS S`@*zQ  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; tTp`e0L*m  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; C,u.!g;lm  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform "T=LHjE  
       sca2 = fftshift(fft(s2)); V@-GQP1  
       sca3 = fftshift(fft(s3)); L-gF$it\*b  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   )!72^rl  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); kcUt!PL  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); S @($c'  
       s3 = ifft(fftshift(sc3)); JdEb_c3S  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 2F7R,rr  
       s1 = ifft(fftshift(sc1)); 7z&u92dJI  
    end (@ sKE  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); uB5o Ghu-  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 1bs95Fh9Q  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); <sOB j'  
       P1=[P1 p1/p10]; CFxs`C^  
       P2=[P2 p2/p10]; dUSuhT  
       P3=[P3 p3/p10]; }cmL{S  
       P=[P p*p]; >z$|O>j  
    end S3cQC`^  
    figure(1) YO+d+5  
    plot(P,P1, P,P2, P,P3); u\?u}t v  
    Fj4:_(%nG  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~