切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9432阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 +1otn~(E  
    |av*!i5Q  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of e >L5.~i  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of yGb a  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear zKIGWH=qqm  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 iYk':iv}S  
    Uc_jQ4e_  
    %fid=fopen('e21.dat','w'); [J a)<!]<  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) /xl4ohL$a  
    M1 =3000;              % Total number of space steps \hs/D+MCk  
    J =100;                % Steps between output of space r_b8,I6{]  
    T =10;                  % length of time windows:T*T0 }1QI"M*  
    T0=0.1;                 % input pulse width z-n>9  
    MN1=0;                 % initial value for the space output location Z5((1J9  
    dt = T/N;                      % time step Yo>`h2C4  
    n = [-N/2:1:N/2-1]';           % Index Ct4LkmD  
    t = n.*dt;   Oo FgQEr@  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 an3~'g?  
    u20=u10.*0.0;                  % input to waveguide 2 fv|]= e  
    u1=u10; u2=u20;                 aXMv(e+  
    U1 = u1;   %b=Y <v  
    U2 = u2;                       % Compute initial condition; save it in U o^HNF+sm  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. :1:3Svb<Y  
    w=2*pi*n./T; d; 9*l!CF  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 7=}6H3|&  
    L=4;                           % length of evoluation to compare with S. Trillo's paper + c`AE  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 z)}3**3'y  
    for m1 = 1:1:M1                                    % Start space evolution ,mBZ`X@N  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS {}V$`L8  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 4w 'lu"U  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform F"!agc2!  
       ca2 = fftshift(fft(u2)); YPu9Q  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ful#Px6m  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   2b5#PcKa  
       u2 = ifft(fftshift(c2));                        % Return to physical space +}P%HH]E/p  
       u1 = ifft(fftshift(c1)); J0=7'@(p  
    if rem(m1,J) == 0                                 % Save output every J steps. q(,cYu  
        U1 = [U1 u1];                                  % put solutions in U array djW cbC=g_  
        U2=[U2 u2]; 1j11|~  
        MN1=[MN1 m1]; ^V[/(Lq  
        z1=dz*MN1';                                    % output location .Y;b)]@f  
      end 1@xP(XS  
    end 2d-{Q 8Pi  
    hg=abs(U1').*abs(U1');                             % for data write to excel m+?N7  
    ha=[z1 hg];                                        % for data write to excel R,%_deV\(  
    t1=[0 t']; C\7u<2c  
    hh=[t1' ha'];                                      % for data write to excel file yf!,4SUkU  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 98GlhogWt  
    figure(1) u#1%P5r&X  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn wzd`l?o,  
    figure(2) {;*}WPYb  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ^K+:C;Q|  
    wqUQ"d  
    非线性超快脉冲耦合的数值方法的Matlab程序 6O pa{]  
    TXjloGv^  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   E!zX)|Z<  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 C}q>YRubZ  
    BWh }^3?l  
    D|l,08n"?  
    pE2QnNr'  
    %  This Matlab script file solves the nonlinear Schrodinger equations %#u.J  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of P^pFqUL7#  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear /t*YDWLg  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Z0$] tS  
    %]!adro~  
    C=1;                           Ql8bt77eI-  
    M1=120,                       % integer for amplitude ~O{W;Cyh  
    M3=5000;                      % integer for length of coupler %t*  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) LEZ&W ;bCo  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. /;Yy@oc  
    T =40;                        % length of time:T*T0. vg)Z]F=t(  
    dt = T/N;                     % time step oaK.kOo  
    n = [-N/2:1:N/2-1]';          % Index FbAW_Am(  
    t = n.*dt;   v8m`jxII64  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. e`iEy=W  
    w=2*pi*n./T; 9 #qeFBI  
    g1=-i*ww./2; &+01+-1hW  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ]!Oue_-;  
    g3=-i*ww./2; ,(N[*)G  
    P1=0; z\TLsx  
    P2=0; [k$efwJ  
    P3=1; Ja|{1&J.  
    P=0; 0}]SUe^  
    for m1=1:M1                 RF?DtNuq  
    p=0.032*m1;                %input amplitude NLyXBV[hV  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 wC`;f5->  
    s1=s10; ^2S# Uk  
    s20=0.*s10;                %input in waveguide 2 KxIyc7.  
    s30=0.*s10;                %input in waveguide 3 AOb]qc  
    s2=s20; GS;%zdH~  
    s3=s30; | kXm}K  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   )&,{?$.  
    %energy in waveguide 1 _Zc4=c,K  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   6ZOy&fd,Ty  
    %energy in waveguide 2 xq[Yg15d%  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   D."=k{r.  
    %energy in waveguide 3 ~Y7dH Dn  
    for m3 = 1:1:M3                                    % Start space evolution })Yv9],6  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS @0NJ{  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; fDh] tua  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; X(*!2uS  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Y3Oz'%B  
       sca2 = fftshift(fft(s2)); `s"d]/85VW  
       sca3 = fftshift(fft(s3)); pf&ag#nr  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   p?# pT}1  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); hH>``gK  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); D-&a n@  
       s3 = ifft(fftshift(sc3)); 94/BG0  
       s2 = ifft(fftshift(sc2));                       % Return to physical space taWqSq!  
       s1 = ifft(fftshift(sc1)); !<<AzLVL  
    end )C~9E 5E  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); !wE}(0BTx  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); V '.a)6  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); [XR$F@o  
       P1=[P1 p1/p10]; {ci.V*:"  
       P2=[P2 p2/p10]; /M=3X||  
       P3=[P3 p3/p10]; 56}X/u  
       P=[P p*p]; rD &D)w  
    end ezm&]F`  
    figure(1) 7DD&~ZcD  
    plot(P,P1, P,P2, P,P3); f&KdlpxKv  
    = QO g 6  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~