切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8696阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 gMXs&`7P  
    p\;\hHai  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of #}M\ J0QG  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of j-~x==c-;  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear =sm<B^yj  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 (Dat`:  
    '=s{9lxn^  
    %fid=fopen('e21.dat','w'); n*gr(S  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) "|N58%  
    M1 =3000;              % Total number of space steps ar&j1""  
    J =100;                % Steps between output of space W4OL{p-\/  
    T =10;                  % length of time windows:T*T0 3(2WO^zX {  
    T0=0.1;                 % input pulse width /Pbytu);ds  
    MN1=0;                 % initial value for the space output location BE0Ov{'  
    dt = T/N;                      % time step (-}:'5|Yj  
    n = [-N/2:1:N/2-1]';           % Index K#"J8h;x  
    t = n.*dt;   1iA0+Ex(j  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 EF>vu+YK  
    u20=u10.*0.0;                  % input to waveguide 2 i2+r#Hw#5R  
    u1=u10; u2=u20;                 \eF _Xk[  
    U1 = u1;   #}PQ !gZ  
    U2 = u2;                       % Compute initial condition; save it in U A&?8 rc  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 5taR[ukM  
    w=2*pi*n./T; UWW^g@d4  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 0sMNp  
    L=4;                           % length of evoluation to compare with S. Trillo's paper bA_/ 6r)u  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 kC,=E9)O  
    for m1 = 1:1:M1                                    % Start space evolution J# >)+  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS O'Mo/ u1-  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; %fT%,( w}t  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform jo-2D[Q{  
       ca2 = fftshift(fft(u2)); !Y8+ Z&^2  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation T }}T`Ce  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   V jdu9Ez  
       u2 = ifft(fftshift(c2));                        % Return to physical space ._E 6?  
       u1 = ifft(fftshift(c1)); | 2Vhj<6  
    if rem(m1,J) == 0                                 % Save output every J steps. 3 as~yF0  
        U1 = [U1 u1];                                  % put solutions in U array qix$ }(P  
        U2=[U2 u2]; VGY x(  
        MN1=[MN1 m1]; ndmsXls  
        z1=dz*MN1';                                    % output location 8t;vZ&  
      end XnwVK  
    end 7"_m?c8  
    hg=abs(U1').*abs(U1');                             % for data write to excel QGCg~TV;  
    ha=[z1 hg];                                        % for data write to excel > `1K0?_  
    t1=[0 t']; +P &S0/  
    hh=[t1' ha'];                                      % for data write to excel file exZgk2[0  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format H|Y*TI2vf8  
    figure(1) `<3%`4z/  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn /Hs\`Kg"!  
    figure(2) A'tv[T d8,  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn } =p e;l  
    UVd ^tg  
    非线性超快脉冲耦合的数值方法的Matlab程序 -k?K|w*X  
    SHc?C&^S  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   4<j7F4  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 S.zY0  
    sv.?C pE  
    s||c#+j"8  
    mz2v2ma  
    %  This Matlab script file solves the nonlinear Schrodinger equations O:]e4r,'  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of yMz dM&a!*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear [t6Y,yo&h4  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 cq`!17"k  
    Al3*? H&  
    C=1;                           3Q#Tut  
    M1=120,                       % integer for amplitude `Hx JE"/  
    M3=5000;                      % integer for length of coupler N!//m?}  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) hcqg94R#_  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. {UFs1  
    T =40;                        % length of time:T*T0. hz+O.k],?  
    dt = T/N;                     % time step vn+~P9SHQ  
    n = [-N/2:1:N/2-1]';          % Index [ KDNKK  
    t = n.*dt;   }*P?KV (  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. [k]3#<sS  
    w=2*pi*n./T; n%ypxY0  
    g1=-i*ww./2; |})v, o B  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; NI:3hfs  
    g3=-i*ww./2; 35H.ZXQp-  
    P1=0; Qp;FVUw9  
    P2=0; V2S HF  
    P3=1; ~_F<"40  
    P=0; eMLcm ZJR  
    for m1=1:M1                 Y<t(m$s  
    p=0.032*m1;                %input amplitude KJ7-Vl>  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 0m,q3  
    s1=s10; aF{1V \e  
    s20=0.*s10;                %input in waveguide 2 #= T^XHjQ  
    s30=0.*s10;                %input in waveguide 3 Ov#G7a"  
    s2=s20; (@Kc(>(: Y  
    s3=s30; ^&lkh@Y1q  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   6IJH%qUx'  
    %energy in waveguide 1 z?t75#u9.  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ,B:r^(}0j  
    %energy in waveguide 2 p Le[<N  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   iOtf7.@  
    %energy in waveguide 3 fCbd]X  
    for m3 = 1:1:M3                                    % Start space evolution n}dLfg *  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Db*&'32W  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 6@VgLa,  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; e0M'\'J  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform y q!{\@-  
       sca2 = fftshift(fft(s2)); !-m 'diE  
       sca3 = fftshift(fft(s3)); 25;(`Td 5  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   FY)US>  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); N<O<wtXIj  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); *LEI@  
       s3 = ifft(fftshift(sc3)); C;%1XFzM  
       s2 = ifft(fftshift(sc2));                       % Return to physical space X2E=2tXl`7  
       s1 = ifft(fftshift(sc1)); K@vU_x0Sl  
    end bZ#5\L2  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); VsDY,=Ww  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 3i#'osq  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 4>Y*owa4  
       P1=[P1 p1/p10]; s &f\gp1  
       P2=[P2 p2/p10]; BZ,{gy7g7X  
       P3=[P3 p3/p10]; +OZ\rs  
       P=[P p*p]; 2AW*PDncxP  
    end {TvB3QOsj  
    figure(1) mRy0zN>?  
    plot(P,P1, P,P2, P,P3); 3:>hHQi  
    ]QQeUxi  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~