计算脉冲在非线性耦合器中演化的Matlab 程序 37ll8
Bo`fy/x#
% This Matlab script file solves the coupled nonlinear Schrodinger equations of Ufv{6"sH
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of NRcg~Nu
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear !__f
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !.+iA=K{
`tVBV:4\
%fid=fopen('e21.dat','w'); K^J;iu 4
N = 128; % Number of Fourier modes (Time domain sampling points) H$Q$3Q!`
M1 =3000; % Total number of space steps BNyDEFd
J =100; % Steps between output of space 1|;WaO1Q
T =10; % length of time windows:T*T0 s$C;31k
T0=0.1; % input pulse width S"|D!}@-
MN1=0; % initial value for the space output location 8hQ"rrj+
dt = T/N; % time step `.MM|6
n = [-N/2:1:N/2-1]'; % Index c500:OSB
t = n.*dt; w6Dysg:
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 KAgiY4
u20=u10.*0.0; % input to waveguide 2 |QAmN>7U
u1=u10; u2=u20; z:+Xs!S
U1 = u1; \Wt&z,
U2 = u2; % Compute initial condition; save it in U ;1NZY.pyc
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. Xvi{A]V
w=2*pi*n./T; plsf` a
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Uk S86`.
L=4; % length of evoluation to compare with S. Trillo's paper %a5Sc|&-
dz=L/M1; % space step, make sure nonlinear<0.05 IB}.J,=
for m1 = 1:1:M1 % Start space evolution PaMi5Pq
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS T(a*d7
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 4J!1$
ca1 = fftshift(fft(u1)); % Take Fourier transform xO/44D
ca2 = fftshift(fft(u2)); g[8VfIe
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation &4O"Xs`ka
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift qlPjz*<h"H
u2 = ifft(fftshift(c2)); % Return to physical space np=m~k
u1 = ifft(fftshift(c1)); cn<9!2a
if rem(m1,J) == 0 % Save output every J steps. Y91TF'
U1 = [U1 u1]; % put solutions in U array *%B%BJnX
U2=[U2 u2]; GY@Np^>[a
MN1=[MN1 m1]; Kl(}s{YFn.
z1=dz*MN1'; % output location A~*Wr+pv
end SK;f#quUQ
end A
|NX"
hg=abs(U1').*abs(U1'); % for data write to excel |1J "r.K
ha=[z1 hg]; % for data write to excel DSd 5?
t1=[0 t']; g|)e3q{M
hh=[t1' ha']; % for data write to excel file * fSa8CV
%dlmwrite('aa',hh,'\t'); % save data in the excel format \M:,Vg
figure(1) u+(e,t
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn 6XFO@c}d
figure(2) FE M_7M
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn $N,9e
bTO$B2eh|
非线性超快脉冲耦合的数值方法的Matlab程序 ~+l%}4RZ
xS,):R
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 um&N|5lHb
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @m6pAo4P
:".!6~:2
*$`r)pV%AK
]Y;$~qQ
% This Matlab script file solves the nonlinear Schrodinger equations %{zM> le9
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of _'2r=a#`
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear tE>3.0U0Q
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 JC>}(yQA
, LcMNP r
C=1; S:Yo9~
M1=120, % integer for amplitude pC5-,Z;8
M3=5000; % integer for length of coupler KgAc0pz{7H
N = 512; % Number of Fourier modes (Time domain sampling points) Kh$L~4l
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. b<=K@I.=
T =40; % length of time:T*T0. dN\pe@#lKP
dt = T/N; % time step
9FWn
n = [-N/2:1:N/2-1]'; % Index |
@di<d@
t = n.*dt;
[POy"O
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 1/HPcCsHb
w=2*pi*n./T; >x!N[N@G
g1=-i*ww./2; p,kJ# I
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; M{~eI
g3=-i*ww./2; V#3VRh
P1=0; zYls>fbp,
P2=0; Bm~>w`1wK
P3=1; ?KS9Dh
P=0;
9]AKNQq m
for m1=1:M1 !u7WCw.D m
p=0.032*m1; %input amplitude f3v/Y5)
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 >vP^l
{SD
s1=s10; N3x}YHFF
s20=0.*s10; %input in waveguide 2 K.X% Q,XD
s30=0.*s10; %input in waveguide 3 k{@z87+&
s2=s20; SxOM@A
s3=s30; vP,WV9Q1u
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); [oKB1GkA
%energy in waveguide 1 =#y&xWxL