切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8187阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 7Caap/L:  
    7R`ZTfD  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of au}0PnA;  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of E,?aBRxy  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;<)-*?m9  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Gt%?[  
    tlxjs]{0E  
    %fid=fopen('e21.dat','w'); 8RT0&[  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) OsSiBb,W79  
    M1 =3000;              % Total number of space steps waq_d.  
    J =100;                % Steps between output of space x 3co?  
    T =10;                  % length of time windows:T*T0 %>:)4A  
    T0=0.1;                 % input pulse width 2uR4~XjF  
    MN1=0;                 % initial value for the space output location )xy{[ K|M(  
    dt = T/N;                      % time step y?4=u,{C  
    n = [-N/2:1:N/2-1]';           % Index <W|{)U?p  
    t = n.*dt;   F4{. 7BT  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 J3SbyI!T  
    u20=u10.*0.0;                  % input to waveguide 2 @ DKl<F  
    u1=u10; u2=u20;                 ph'SS=!.  
    U1 = u1;   k.R/X  
    U2 = u2;                       % Compute initial condition; save it in U MJR\ g3  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. "&o@%){]  
    w=2*pi*n./T; 5<8>G?Y  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 1ZW'PXUZ  
    L=4;                           % length of evoluation to compare with S. Trillo's paper CbaAnm1  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ^ J@i7FOb  
    for m1 = 1:1:M1                                    % Start space evolution 90696v.  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS "1TM  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; I:)#U[tn0  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform <;Z~ vZ]  
       ca2 = fftshift(fft(u2)); ` Z V'7|  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation L#MxB|fcr  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   g#nsA(_L  
       u2 = ifft(fftshift(c2));                        % Return to physical space q$*_C kT  
       u1 = ifft(fftshift(c1)); 3'uES4+r  
    if rem(m1,J) == 0                                 % Save output every J steps. {YLJKu!M  
        U1 = [U1 u1];                                  % put solutions in U array SL 5DWZ  
        U2=[U2 u2]; KEB>}_[  
        MN1=[MN1 m1]; {$=%5  
        z1=dz*MN1';                                    % output location uXa}<=O  
      end T $]L 5  
    end eb woMG,B-  
    hg=abs(U1').*abs(U1');                             % for data write to excel ! r\ktX  
    ha=[z1 hg];                                        % for data write to excel APm[)vw#f  
    t1=[0 t']; J3E:r_+  
    hh=[t1' ha'];                                      % for data write to excel file `,=p\g|D  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format l zkn B  
    figure(1) Mo r-$a8  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn j?ubh{Izm  
    figure(2) Ekp 0.c8:  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn >(J!8*7  
    f3|=T8"t  
    非线性超快脉冲耦合的数值方法的Matlab程序 {%}6 d~Bg  
    I9&<:`  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   !H.lVA  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;] o^u.PC  
    \:28z  
    td$Jx}'A  
    NT:>.~ah@&  
    %  This Matlab script file solves the nonlinear Schrodinger equations ozwqK oE  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of .b)(_*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 5WG@ ;K%  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 0tyU%z{RV  
    d u )G)~  
    C=1;                           QNBzc {XB  
    M1=120,                       % integer for amplitude 0$uS)J\;K  
    M3=5000;                      % integer for length of coupler O/@[VPf  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) @3D%i#2o&[  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. .v8=zi:7Y  
    T =40;                        % length of time:T*T0. v65r@)\`  
    dt = T/N;                     % time step l8li@K  
    n = [-N/2:1:N/2-1]';          % Index ~<R~Q:T  
    t = n.*dt;   5< nK.i,  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 5n#&Hjb*F0  
    w=2*pi*n./T; 8\_,Y ji  
    g1=-i*ww./2; "FD~XSRL  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; {(Z1JoSl  
    g3=-i*ww./2; KwyXM9h6=  
    P1=0; NE nP3A  
    P2=0; AIo;\35  
    P3=1; 3P>@ :  
    P=0; {$.{VE+v5  
    for m1=1:M1                 m8`A~  
    p=0.032*m1;                %input amplitude 0$ EJ4  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 94/}@<d-=  
    s1=s10; ?!vW&KJZx  
    s20=0.*s10;                %input in waveguide 2 XRin~wz|S  
    s30=0.*s10;                %input in waveguide 3 HX[#tT|m~  
    s2=s20; ?RyvM_(N6  
    s3=s30; Vt>E\{@[t  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   VW/1[?HG5  
    %energy in waveguide 1 93,ExgFt  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   CiF bk&-g  
    %energy in waveguide 2 JJO"\^,;~  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   A O]e^Q  
    %energy in waveguide 3 5lbh "m=  
    for m3 = 1:1:M3                                    % Start space evolution zE{zX@  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS KcE=m\h  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; <9vkiEo  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 'ZZ/:MvQa  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform PV Q%y  
       sca2 = fftshift(fft(s2)); W3kilhZ  
       sca3 = fftshift(fft(s3)); 8'62[e|=7[  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ujBADDwOg)  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); iBt5aUt  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); R/7l2*  
       s3 = ifft(fftshift(sc3)); co|0s+%PBq  
       s2 = ifft(fftshift(sc2));                       % Return to physical space *QJ/DC$  
       s1 = ifft(fftshift(sc1)); )LUl?  
    end &aU+6'+QXB  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); v%w]Q B  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ,'}ZcN2)  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 9EW 7,m{A  
       P1=[P1 p1/p10]; 9`{cX  
       P2=[P2 p2/p10]; CJ>=odK[  
       P3=[P3 p3/p10]; G})mw  
       P=[P p*p]; UgJHSl  
    end t!$/r]XM h  
    figure(1) ah.Kb(d:  
    plot(P,P1, P,P2, P,P3); J/ ~]A1fP6  
    BH1To&ol  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~