切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8294阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 lp4sO#>`  
    S6cSeRmw  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of &98qAO]Z  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ]SK(cfA`  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear DRw%~  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 qoOHWh&  
    IUzRE?Kzf  
    %fid=fopen('e21.dat','w'); Y~Zg^x2  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 2t_E\W7w+  
    M1 =3000;              % Total number of space steps #* w$JH  
    J =100;                % Steps between output of space \2 W( >_z  
    T =10;                  % length of time windows:T*T0 2-2'c?%  
    T0=0.1;                 % input pulse width CvlAn7r,@  
    MN1=0;                 % initial value for the space output location )U8F6GIC&}  
    dt = T/N;                      % time step MECR0S9  
    n = [-N/2:1:N/2-1]';           % Index fz<Y9h=  
    t = n.*dt;   m"u 9AOHk  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 jk)U~KGcg  
    u20=u10.*0.0;                  % input to waveguide 2 5-n N8qs  
    u1=u10; u2=u20;                 lnTl"9F  
    U1 = u1;   9;.dNdg>  
    U2 = u2;                       % Compute initial condition; save it in U u K 8 r  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. -6#i~a]  
    w=2*pi*n./T; RL($h4d9  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ci ,o'`Q  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 3<B{-z  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 !iITX,'8  
    for m1 = 1:1:M1                                    % Start space evolution P^+Og_$  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Jg^tr>I~  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 8iq~ha$]|  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform r/8,4:rh  
       ca2 = fftshift(fft(u2)); OG0ro(|dI  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ^fH]Rlx  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   9'O<d/xj/  
       u2 = ifft(fftshift(c2));                        % Return to physical space Bojm lVg  
       u1 = ifft(fftshift(c1)); D4_D{\xhO  
    if rem(m1,J) == 0                                 % Save output every J steps. GMd81@7  
        U1 = [U1 u1];                                  % put solutions in U array tBdvk>d  
        U2=[U2 u2]; -j<m0XUQ  
        MN1=[MN1 m1]; g`\Vy4w  
        z1=dz*MN1';                                    % output location AQ@A$  
      end N\mV+f3A@,  
    end SrU,-mA W  
    hg=abs(U1').*abs(U1');                             % for data write to excel {_PV~8u  
    ha=[z1 hg];                                        % for data write to excel :Ruj;j  
    t1=[0 t']; >KC*xa"  
    hh=[t1' ha'];                                      % for data write to excel file h1J-AfV  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format eF!c< Kcr  
    figure(1) UI |D?z<  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ePB=aCZ  
    figure(2) e(j"u;=  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn H`m| R  
    Ywlym\ [+  
    非线性超快脉冲耦合的数值方法的Matlab程序 $  5  
    o"K{^ L~u  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   v='7.A  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @^/JNtbH!  
    yP~D."  
    dEns|r  
    <"aPoGda  
    %  This Matlab script file solves the nonlinear Schrodinger equations a!4'}gHR  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ;\( wJ{u?Y  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear t~gnai  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 no^I![_M  
    (~,Q-w"  
    C=1;                           'N0d==aI  
    M1=120,                       % integer for amplitude ;w[|IRa  
    M3=5000;                      % integer for length of coupler d(42ob.Tr  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) |\Jpjm)?  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. LR'F/.Dx  
    T =40;                        % length of time:T*T0. m`E8gVC  
    dt = T/N;                     % time step rn U2EL  
    n = [-N/2:1:N/2-1]';          % Index KYd2=P6  
    t = n.*dt;   `[/BG)4  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. f`P%aX'cBQ  
    w=2*pi*n./T; `fc2vaSH =  
    g1=-i*ww./2; ,]1K^UeZ  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 8BC}D+q  
    g3=-i*ww./2; |_ E)2b:h  
    P1=0; \*1pFX#  
    P2=0; -0Y8/6](  
    P3=1; tb^3-ZUb  
    P=0; L0_R2E A  
    for m1=1:M1                 PtwE[YDu  
    p=0.032*m1;                %input amplitude X{<j%PdC  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 eB^:+h#A_  
    s1=s10; @va)j   
    s20=0.*s10;                %input in waveguide 2 )# M*@e$k  
    s30=0.*s10;                %input in waveguide 3 YjoN: z`b  
    s2=s20; jo0p/5;  
    s3=s30; 'l!tQD!  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   3Q Zw  
    %energy in waveguide 1 E;9SsA  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   SPn0D9 b]  
    %energy in waveguide 2 z9u"?vdA  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   rW&8#&  
    %energy in waveguide 3 zf4@:GM`  
    for m3 = 1:1:M3                                    % Start space evolution VLkK6W.u  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS e(,sFhR  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ~;3N'o  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; @$4(!80-  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform y!)Z ^u  
       sca2 = fftshift(fft(s2)); iw12x:  
       sca3 = fftshift(fft(s3)); y`!3Z} 7  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ` ` 6?;Y  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Nq"/:3@4  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); zgJ%Zr!~  
       s3 = ifft(fftshift(sc3)); P<km?\Xp(  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 8 U B?X  
       s1 = ifft(fftshift(sc1)); v](7c2;  
    end Yhb=^)@))  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); \:'=ccf  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 3z!\Z[  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ZH~T'Bg  
       P1=[P1 p1/p10]; ZBB^?FF  
       P2=[P2 p2/p10]; .3t[M0sd  
       P3=[P3 p3/p10]; Wm7Dy7#l  
       P=[P p*p]; Yvcd(2  
    end @c9VCG D  
    figure(1) (B}+uI{  
    plot(P,P1, P,P2, P,P3); (sq4  
    '@3hU|jO!  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~