切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9136阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 hHHQmK<r  
    hD=.rDvO  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of v2_` iwE  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of yM~bUmSg  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear MqJ5|C.q  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 '%82pZ,?  
    a>x6n3{  
    %fid=fopen('e21.dat','w'); 2,wwI<=E'  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ()48>||  
    M1 =3000;              % Total number of space steps aCI3Tx&2qT  
    J =100;                % Steps between output of space 'NZ=DSGIy  
    T =10;                  % length of time windows:T*T0 *~>p;*  
    T0=0.1;                 % input pulse width T;?k]4.X  
    MN1=0;                 % initial value for the space output location 1X&.po  
    dt = T/N;                      % time step x x4GP2  
    n = [-N/2:1:N/2-1]';           % Index yOt#6Vw  
    t = n.*dt;   rlD!%gG2x  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 &a;?o~%*]i  
    u20=u10.*0.0;                  % input to waveguide 2 IzJq:G.  
    u1=u10; u2=u20;                 I}m20|vv  
    U1 = u1;   N!Rt040.%  
    U2 = u2;                       % Compute initial condition; save it in U }z x ~  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 3 ye  
    w=2*pi*n./T; Rq%Kw > {&  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T |?s sHW  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ?*%_:fB  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 5|nc^ 12  
    for m1 = 1:1:M1                                    % Start space evolution r4fHD~#l{  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS P.qzP/Ny  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; #K6cBfqI  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform P/dnH  
       ca2 = fftshift(fft(u2)); 8'HS$J;C  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation F,{mF2U*$  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   o$buoGSPc  
       u2 = ifft(fftshift(c2));                        % Return to physical space 9&5<ZC-D  
       u1 = ifft(fftshift(c1)); uO`MA% z<  
    if rem(m1,J) == 0                                 % Save output every J steps. 2Jio_Hk  
        U1 = [U1 u1];                                  % put solutions in U array dWPQp*f2  
        U2=[U2 u2]; &8z<~q  
        MN1=[MN1 m1]; G %6P`:  
        z1=dz*MN1';                                    % output location KGHSEZi]  
      end Ca PHF@6WN  
    end ~e 1l7H;  
    hg=abs(U1').*abs(U1');                             % for data write to excel NOuG#P  
    ha=[z1 hg];                                        % for data write to excel pX ^^0  
    t1=[0 t']; 6eB;  
    hh=[t1' ha'];                                      % for data write to excel file `om+p?j  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format C=/B\G/.9  
    figure(1) XS[L-NHG  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn . \"k49M`  
    figure(2) U8w_C\Q  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn <aJQV)]\  
    wOl?(w=|  
    非线性超快脉冲耦合的数值方法的Matlab程序 a/,>fv9;$  
    `;E/\eG"  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   hd(FOKOP  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .mt%8GM  
    2t-w0~O  
    Ki2!sADd  
    cKe%P|8  
    %  This Matlab script file solves the nonlinear Schrodinger equations ]:59c{O  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of >H!Mx_fDL  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear W(`QbNJ  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 l9Ir@.m  
    6!ve6ZB[p  
    C=1;                           H<Oo./8+  
    M1=120,                       % integer for amplitude /Hyz]46  
    M3=5000;                      % integer for length of coupler Sw\*$g]  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ViPC Yt`of  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. DH-M|~.sf^  
    T =40;                        % length of time:T*T0. 8AuBs;i  
    dt = T/N;                     % time step _1p8(n  
    n = [-N/2:1:N/2-1]';          % Index ?)xIn)#l s  
    t = n.*dt;   ej`%}e%2  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. h'):/}JPl  
    w=2*pi*n./T; d,b4q&^X8  
    g1=-i*ww./2; 6lSz/V;  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; wZiUzS ;v  
    g3=-i*ww./2; ;Y$>WKsV  
    P1=0;  5&&4-  
    P2=0; xzOa9w/  
    P3=1; (+> 2&@@<  
    P=0; ~#A}=, 4>  
    for m1=1:M1                 xH-d<Ht,7  
    p=0.032*m1;                %input amplitude CubQ6@,  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ` p\=NP!n  
    s1=s10; c=oDzAzuV\  
    s20=0.*s10;                %input in waveguide 2 cz>,sz~i  
    s30=0.*s10;                %input in waveguide 3 2 |s ohF  
    s2=s20; 7K1-.uQ  
    s3=s30; QJGGce  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   jwDlz.sW!  
    %energy in waveguide 1 = xO03|T;6  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Fb5U@X/vE  
    %energy in waveguide 2 I&;>(@K  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   #j QauO  
    %energy in waveguide 3 \G" S7  
    for m3 = 1:1:M3                                    % Start space evolution OSgJj MQ  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS !Zz;;Z  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; A`c%p7Z%  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; *@2Bh4  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform x sryXex;  
       sca2 = fftshift(fft(s2)); ]pax,| +$C  
       sca3 = fftshift(fft(s3)); t]yxLl\  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Z2% HQL2  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Rh!UbEPjC  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); " O&93#8  
       s3 = ifft(fftshift(sc3)); HN5m%R&`  
       s2 = ifft(fftshift(sc2));                       % Return to physical space M!UTqf7XL  
       s1 = ifft(fftshift(sc1)); mmAm@/  
    end Xn6#q3;^|  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Ys"wG B>  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); c/;;zc  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); h0GoF A<  
       P1=[P1 p1/p10]; aF{_"X2  
       P2=[P2 p2/p10]; *o6}>;  
       P3=[P3 p3/p10]; ^X=Q{nB  
       P=[P p*p]; WRh5v8Wz0  
    end R'Sd'pSDN  
    figure(1) fE#(M+(<  
    plot(P,P1, P,P2, P,P3); QQ*sjK.(  
    {%V(Dd[B6  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~