切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 7857阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ^ H ThN  
    X!Mx5fg  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of J^nBdofP  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of fk[-mZ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ox>^>wR*  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 #ASz;$P  
    Y1OkkcPb{  
    %fid=fopen('e21.dat','w'); 4 \K7xM!  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) gA5/,wDO  
    M1 =3000;              % Total number of space steps 3yY}04[9<  
    J =100;                % Steps between output of space D>@I+4{p  
    T =10;                  % length of time windows:T*T0 tl4V7!U@^z  
    T0=0.1;                 % input pulse width YTX,cj#D^&  
    MN1=0;                 % initial value for the space output location 1k5Who@  
    dt = T/N;                      % time step .hP D$o  
    n = [-N/2:1:N/2-1]';           % Index ,j}6? Q  
    t = n.*dt;   *_{j=sd  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 z^q0/'  
    u20=u10.*0.0;                  % input to waveguide 2 VT%NO'0  
    u1=u10; u2=u20;                 o\<ULW*  
    U1 = u1;   OwUhdiG  
    U2 = u2;                       % Compute initial condition; save it in U ,I$`-$_'  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. vNY{j7l/W  
    w=2*pi*n./T; [f-?y mmT  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 9ni1f{k  
    L=4;                           % length of evoluation to compare with S. Trillo's paper gX}8#O.K$  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 r CHl?J  
    for m1 = 1:1:M1                                    % Start space evolution 3cyHfpx-W  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ?|C2*?hZ+  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; #m<nAR  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform | y# Jx  
       ca2 = fftshift(fft(u2)); vnt%XU,,Y  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation qu6D 5t  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   cAqLE\h  
       u2 = ifft(fftshift(c2));                        % Return to physical space {G0T$,'DR  
       u1 = ifft(fftshift(c1)); eKLZt%=  
    if rem(m1,J) == 0                                 % Save output every J steps. V/LLaZ TE  
        U1 = [U1 u1];                                  % put solutions in U array 9y8&9<#  
        U2=[U2 u2];  O67W&nz  
        MN1=[MN1 m1]; <X^@*79m  
        z1=dz*MN1';                                    % output location 4qbBc1,7y  
      end 4*#18<u5  
    end UWJ8amA  
    hg=abs(U1').*abs(U1');                             % for data write to excel B =T'5&  
    ha=[z1 hg];                                        % for data write to excel |t&>5HM  
    t1=[0 t']; S_4?K)n #  
    hh=[t1' ha'];                                      % for data write to excel file Ugt/rf5n  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format VUGmi]qd  
    figure(1) _|\~q[ep  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn \?ZB]*Fu  
    figure(2) |A9F\A->4  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn wn, KY$/  
    !r8 `Yrn  
    非线性超快脉冲耦合的数值方法的Matlab程序 ~i{(<.he  
    $q{!5-e  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   *NaB#;+|k`  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 &|ex`nwc0  
    Jbg/0|1  
    t?&|8SId  
    0 [# 3;a  
    %  This Matlab script file solves the nonlinear Schrodinger equations 7\[@ m3s  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 1;8UC;,  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear vjCu4+w($Z  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 SrJGTuXg  
    HTS0s\R$  
    C=1;                           |\t-g" ~sN  
    M1=120,                       % integer for amplitude *?>T,gx}  
    M3=5000;                      % integer for length of coupler [`[|l  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) uEP*iPLD@  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Tc:)- z[o  
    T =40;                        % length of time:T*T0. mh #a#<  
    dt = T/N;                     % time step A#<?4&  
    n = [-N/2:1:N/2-1]';          % Index .},'~NM]  
    t = n.*dt;   >J?fl8  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. eA?RK.e  
    w=2*pi*n./T; >dD@j:Qc  
    g1=-i*ww./2; $G+@_'  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ^|>PA:%  
    g3=-i*ww./2; X-Kh(Z  
    P1=0; ~&{S<Wl  
    P2=0; RJ&RTo  
    P3=1; @%uUiP0  
    P=0; (gU!=F?#m  
    for m1=1:M1                 NB#OCH1/9  
    p=0.032*m1;                %input amplitude g2ixx+`?|:  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 k5e;fA/w  
    s1=s10; hEH?[>9  
    s20=0.*s10;                %input in waveguide 2 L}b.ulkMD  
    s30=0.*s10;                %input in waveguide 3 5m 4P\y^a  
    s2=s20; {duz\k2  
    s3=s30; 3M7/?TMw{6  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   i)#dWFDTv  
    %energy in waveguide 1 n'LrQU  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   q:0N<$63  
    %energy in waveguide 2 KYI/  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   o[w:1q7  
    %energy in waveguide 3 HM1Fz\Sf  
    for m3 = 1:1:M3                                    % Start space evolution ~jk|4`I?T  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS p)-^;=<B3  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; p27~>xQ  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ZJJY8k `  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ..5CC;B  
       sca2 = fftshift(fft(s2)); f~R(D0@  
       sca3 = fftshift(fft(s3)); tSUEZ62EY  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ^ VyKd  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); exUFS5d  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); [ l??A3G  
       s3 = ifft(fftshift(sc3)); B dfwa  
       s2 = ifft(fftshift(sc2));                       % Return to physical space MJO-q $)c  
       s1 = ifft(fftshift(sc1)); @b%=H/5\  
    end 4k1xy##  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); yx[/|nZDC4  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Qd{CMm x  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); AV]2 euyn  
       P1=[P1 p1/p10]; U< fGGCw  
       P2=[P2 p2/p10]; ec;o\erPG  
       P3=[P3 p3/p10]; cqkV9f8Ro  
       P=[P p*p]; 4F:\-O  
    end +3BN}  
    figure(1) `/+>a8  
    plot(P,P1, P,P2, P,P3); };zFJ6I8  
    Gb6'n$g  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~