切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8169阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ZhCd**  
    Sydl[c pH$  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of XE_Lz2H`  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Q0"?TSY  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear <m\Y$Wv  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 M{orw;1Isy  
    CRCy)AS,t  
    %fid=fopen('e21.dat','w'); j)8$hK/e0.  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) rF[-4t %  
    M1 =3000;              % Total number of space steps 0#Gm# =F  
    J =100;                % Steps between output of space H2|'JA#v  
    T =10;                  % length of time windows:T*T0 >x%HqP#_V  
    T0=0.1;                 % input pulse width 8Y8bFWuc  
    MN1=0;                 % initial value for the space output location 4 ;_g9]  
    dt = T/N;                      % time step nW]CA~  
    n = [-N/2:1:N/2-1]';           % Index 6, j60`f)  
    t = n.*dt;   #Ev}Gf+5Q  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 MzB.Vvsy%9  
    u20=u10.*0.0;                  % input to waveguide 2 #@-dT,t  
    u1=u10; u2=u20;                 r{?qvl!q  
    U1 = u1;   BYdG K@ouk  
    U2 = u2;                       % Compute initial condition; save it in U {.oz^~zs]g  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. U*{0,Ue'  
    w=2*pi*n./T; qGN> a[D  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 00IW9B-  
    L=4;                           % length of evoluation to compare with S. Trillo's paper g]h@U&`~u_  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Ndl{f=sjX-  
    for m1 = 1:1:M1                                    % Start space evolution }>AA[ba"'  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS *MfH\X379  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; A-B>VX  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform cg^~P-i@*  
       ca2 = fftshift(fft(u2)); 4xT /8>v2|  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation :mDOqlXW/  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   TR*vZzoy  
       u2 = ifft(fftshift(c2));                        % Return to physical space }BW&1*M{  
       u1 = ifft(fftshift(c1)); S=S/]]e  
    if rem(m1,J) == 0                                 % Save output every J steps. o_=4Ex "  
        U1 = [U1 u1];                                  % put solutions in U array ?A\+s,9  
        U2=[U2 u2]; Iu0GOy*[  
        MN1=[MN1 m1]; :Nf(:D8  
        z1=dz*MN1';                                    % output location 19[oXyFI  
      end %I`'it2d  
    end zQO 1%g  
    hg=abs(U1').*abs(U1');                             % for data write to excel o3Yb2Nw  
    ha=[z1 hg];                                        % for data write to excel 2A|mXWG}~  
    t1=[0 t']; Pbbi*&i  
    hh=[t1' ha'];                                      % for data write to excel file qYVeFSS  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 2s,cyCw&  
    figure(1) /ho7~C+H*e  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn \;_tXb}F  
    figure(2) s^6,"C  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn uj\&-9gEi  
    {4SaS v^/  
    非线性超快脉冲耦合的数值方法的Matlab程序 };}N1[D   
    hFtjw6  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   sRBfLN2C  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 WoN JF6=?  
    6b2h\+AP  
    1NZpd'$c  
    EJz!#f~  
    %  This Matlab script file solves the nonlinear Schrodinger equations T ;84Sv  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of qmPu D/ c  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ^h=gaNL  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 r9 1i :  
    3NZK$d=4  
    C=1;                           DfGq m-c  
    M1=120,                       % integer for amplitude &)Zv>P8z`  
    M3=5000;                      % integer for length of coupler Nk%$;Si  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ] !1HN3  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 3HR)H-@6@7  
    T =40;                        % length of time:T*T0. #~m^RoE  
    dt = T/N;                     % time step N&G(`]  
    n = [-N/2:1:N/2-1]';          % Index QA~F  
    t = n.*dt;   u f<%!=e  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. v`'Iew }  
    w=2*pi*n./T; kuLur)^  
    g1=-i*ww./2; o*d(;  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; l| \ -d  
    g3=-i*ww./2; @o}J)  
    P1=0; YsiH=x  
    P2=0; 2|1CGHj\  
    P3=1; 45Zh8k  
    P=0;  xi<}n#  
    for m1=1:M1                 >D##94PZ  
    p=0.032*m1;                %input amplitude afaQb  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 {#@[ttw$U  
    s1=s10; dci,[TEGu  
    s20=0.*s10;                %input in waveguide 2 K'Wv$[~Dc  
    s30=0.*s10;                %input in waveguide 3 S+eu3nMq  
    s2=s20; dF! B5(  
    s3=s30; p}I\H ^"8+  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Q>\DM'{:4  
    %energy in waveguide 1 FW3E UC)P  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   6_rgRo&  
    %energy in waveguide 2 e8_EB/)_Z  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   I3Z\]BI  
    %energy in waveguide 3 i-WP#\s  
    for m3 = 1:1:M3                                    % Start space evolution C[ KMaB  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS v3n T@r a'  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;  fOsvOC  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; XdlA)0S)  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform tK+JmbB\  
       sca2 = fftshift(fft(s2)); #{k+^7aQ  
       sca3 = fftshift(fft(s3)); \Q|,0`  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   d}?KPJ{  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Jfv'M<I  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); *[jq&  
       s3 = ifft(fftshift(sc3)); FSkX95  
       s2 = ifft(fftshift(sc2));                       % Return to physical space OYa9f[$  
       s1 = ifft(fftshift(sc1)); \|]+sQWQ  
    end 7;6'=0(  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); cV`NQt<W  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); <O-R  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ?c_:S]^  
       P1=[P1 p1/p10]; ?< Ma4yl</  
       P2=[P2 p2/p10]; ^x( s !4d]  
       P3=[P3 p3/p10]; 0x&L'&SpN  
       P=[P p*p]; Kj?hcG l[  
    end `6NcE-oJ  
    figure(1) ]haQ#e}WH  
    plot(P,P1, P,P2, P,P3); W=HHTvK9Hh  
    ?d3<GhzlR3  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~