切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9003阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 }uaFmXy3  
    {|<r7K1<  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of %yKcp5_  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ?5lO1(  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 5"!K8 N  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 E#tfCM6  
    yHs9J1S f  
    %fid=fopen('e21.dat','w'); yLXIjR  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) %t1Z!xv_  
    M1 =3000;              % Total number of space steps Y:Lkh>S1Q  
    J =100;                % Steps between output of space ]w]BKpU=  
    T =10;                  % length of time windows:T*T0 H|j]uLZ  
    T0=0.1;                 % input pulse width ?;5/"/i  
    MN1=0;                 % initial value for the space output location }7{( o-  
    dt = T/N;                      % time step :nqDX  
    n = [-N/2:1:N/2-1]';           % Index |FlB#  
    t = n.*dt;   =Y!.0)t;*  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 +:70vZc:V@  
    u20=u10.*0.0;                  % input to waveguide 2 ND=JpVkvZ?  
    u1=u10; u2=u20;                 iny/K/5bf  
    U1 = u1;   ~=HPqe8  
    U2 = u2;                       % Compute initial condition; save it in U _Fv6S}~Q  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. .ty2! .  
    w=2*pi*n./T; (8o;Cm  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T J?Q@f  
    L=4;                           % length of evoluation to compare with S. Trillo's paper sH1 ucZ>9Y  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 3&c'3y:b  
    for m1 = 1:1:M1                                    % Start space evolution eDNY|}$}v  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 3]'h(C  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 6wq%4RI0  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform >nK (  
       ca2 = fftshift(fft(u2)); i^ILo,Q  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation oHSDi  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   P&Xy6@%[Z  
       u2 = ifft(fftshift(c2));                        % Return to physical space !rqs!-cCQ  
       u1 = ifft(fftshift(c1)); R&P^rrC@B5  
    if rem(m1,J) == 0                                 % Save output every J steps. 9M|#X1r{%{  
        U1 = [U1 u1];                                  % put solutions in U array 3y:),;|5  
        U2=[U2 u2]; [6.<#_~{  
        MN1=[MN1 m1]; ) 54cG  
        z1=dz*MN1';                                    % output location 7pep\  
      end z?`7g%Z?{  
    end KiC,O7&<  
    hg=abs(U1').*abs(U1');                             % for data write to excel L-q)48+^k  
    ha=[z1 hg];                                        % for data write to excel Z.aeE*Hs$  
    t1=[0 t']; v6x jLP;O  
    hh=[t1' ha'];                                      % for data write to excel file ci 22fw0  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ~:_10g]r  
    figure(1) `r\/5|M  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn SwrzW'%A  
    figure(2) fbah~[5}  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn QT1oUP#*  
    q_>=| b  
    非线性超快脉冲耦合的数值方法的Matlab程序 4m~p(r  
    7(LB}  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   we*E}U4  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %/s+-j@s:  
    P{2ED1T\  
    w5Ucj*A\  
    XwU1CejP0  
    %  This Matlab script file solves the nonlinear Schrodinger equations w0<1=;_%  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of < r b5'  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear >7W8_6sC<  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 /B{c L`<  
    Ac +fL  
    C=1;                           ~"R;p}5 "  
    M1=120,                       % integer for amplitude O#vIn}  
    M3=5000;                      % integer for length of coupler /" &Jf}r  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) `j.-hy>s  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. -b  )~  
    T =40;                        % length of time:T*T0. Fj <a;oV  
    dt = T/N;                     % time step v:9Vp{)  
    n = [-N/2:1:N/2-1]';          % Index  {qH+S/  
    t = n.*dt;   bD 1IY1  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. zj1_#=]  
    w=2*pi*n./T; +]C|y ,r  
    g1=-i*ww./2; :pP l|"  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; = o1&.v2j  
    g3=-i*ww./2; *zX^Sg-[  
    P1=0; dFnu&u"  
    P2=0; ;,B $lgF  
    P3=1; vFgnbWxG  
    P=0; x$bCbg  
    for m1=1:M1                 !T]bz+  
    p=0.032*m1;                %input amplitude 9Fv VM9  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Hwm] l`E]  
    s1=s10; c2fbqM~  
    s20=0.*s10;                %input in waveguide 2 j_2yTz"G-  
    s30=0.*s10;                %input in waveguide 3 ~^pV>>LX|  
    s2=s20; *#2]`G)  
    s3=s30; pSlosv(6  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   a jyuk@  
    %energy in waveguide 1 xxC2F:Q?U  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Xeo2 < @[  
    %energy in waveguide 2 NU?05sF  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   2wki21oY  
    %energy in waveguide 3 & e~g}7  
    for m3 = 1:1:M3                                    % Start space evolution 3BWYSJ|  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS PQFr4EY?i  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; z7'C;I  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ES&"zjr$  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ^saH^kg1"  
       sca2 = fftshift(fft(s2)); /MUa b*h  
       sca3 = fftshift(fft(s3)); nVVQ^i}`G  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Q-M"+HO  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); x^ruPiH  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); .W)%*~ O!;  
       s3 = ifft(fftshift(sc3)); P,/=c(5\}  
       s2 = ifft(fftshift(sc2));                       % Return to physical space .Q^8 _'ZG  
       s1 = ifft(fftshift(sc1)); r#CQCq  
    end P5^<c\Mr,Y  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); }b5If7  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Z} Ld!Byz  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); y6*9, CF  
       P1=[P1 p1/p10]; vUU)zZB ~  
       P2=[P2 p2/p10]; } JePEmj  
       P3=[P3 p3/p10]; -'iV-]<  
       P=[P p*p]; m$X0O_*A  
    end lQSKY}h  
    figure(1) k;bdzcMkQ  
    plot(P,P1, P,P2, P,P3); {!`0i  
    |6d0,muN  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~