切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9317阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 huC{SzXM  
     _<S!tW  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of #kC~qux^  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of arL>{mj  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear =?OU^ u`C  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 y74Q(  
    N!K%aH~O  
    %fid=fopen('e21.dat','w'); Pm/<^z%  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) r{ R-X3s  
    M1 =3000;              % Total number of space steps  vywB{%p  
    J =100;                % Steps between output of space Wu][A\3D1  
    T =10;                  % length of time windows:T*T0 :'p)xw4K|  
    T0=0.1;                 % input pulse width M/<ypJ  
    MN1=0;                 % initial value for the space output location JH.XZM&  
    dt = T/N;                      % time step uuY^Q;^I*  
    n = [-N/2:1:N/2-1]';           % Index kd'b_D[$H  
    t = n.*dt;   9\_s&p=:.  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 J8:s=#5  
    u20=u10.*0.0;                  % input to waveguide 2 s>>&3jfM  
    u1=u10; u2=u20;                 Ypyi(_G(?>  
    U1 = u1;   GY$Rkg6d  
    U2 = u2;                       % Compute initial condition; save it in U Q#p)?:o/  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. T)zk2\u  
    w=2*pi*n./T; Nn05me"X  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T qd0G sr}j  
    L=4;                           % length of evoluation to compare with S. Trillo's paper F1yn@a "=J  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 V8n { k'  
    for m1 = 1:1:M1                                    % Start space evolution :=NXwY3~M  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS g6Vkns4  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; \ja6g  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ZG=]b%  
       ca2 = fftshift(fft(u2)); %L.S~dN6  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Ub3$`  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   #&|"t< }  
       u2 = ifft(fftshift(c2));                        % Return to physical space ']nIa7  
       u1 = ifft(fftshift(c1)); .V;,6Vq  
    if rem(m1,J) == 0                                 % Save output every J steps. \tgY2 :  
        U1 = [U1 u1];                                  % put solutions in U array a OmG,+o  
        U2=[U2 u2]; JT 7WZc)  
        MN1=[MN1 m1]; sV"tN2W@  
        z1=dz*MN1';                                    % output location )>ff"| X  
      end aqSOC(jU  
    end 1EV bGe%b  
    hg=abs(U1').*abs(U1');                             % for data write to excel ?6 2zv[#  
    ha=[z1 hg];                                        % for data write to excel ;<i u*a  
    t1=[0 t']; !{l% 3'2  
    hh=[t1' ha'];                                      % for data write to excel file ?w/p 9j#  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 5]i#l3")  
    figure(1) %E%=Za  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 0L>3 i8'  
    figure(2) EeYL~ORdi  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn v o:KL%)  
    %/2 ` u  
    非线性超快脉冲耦合的数值方法的Matlab程序 `O7vPE  
    ^6Aa^|  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Jz''UJY/O  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 >.SO2w  
    +vZYuEq_  
    =)bOteWM  
    IEm?'o:  
    %  This Matlab script file solves the nonlinear Schrodinger equations 7}xQ4M\u$  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Y's=31G@  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear G:e=9qTf  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 }zA|M9%E  
    @C-dCC?  
    C=1;                           1 k!gR  
    M1=120,                       % integer for amplitude *c#DB{N  
    M3=5000;                      % integer for length of coupler /%m?D o  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) UusAsezm:  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. b$2=w^*  
    T =40;                        % length of time:T*T0. {ZUk!o>m@  
    dt = T/N;                     % time step zDYJe_m ~  
    n = [-N/2:1:N/2-1]';          % Index `_yksh3zL4  
    t = n.*dt;   k8E2?kbF  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. OC5oxL2HTe  
    w=2*pi*n./T; !o| ex+z;  
    g1=-i*ww./2; +!@xH];  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; -AnJLFY  
    g3=-i*ww./2; 44QW&qL!(  
    P1=0; (l][_6Q  
    P2=0; eZ) |m  
    P3=1; LEKE+775  
    P=0; oi Q3E  
    for m1=1:M1                 4PSbr$  
    p=0.032*m1;                %input amplitude L e~D"d8  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 OY"BaSEOw}  
    s1=s10; tQj=m_  
    s20=0.*s10;                %input in waveguide 2 ft8  
    s30=0.*s10;                %input in waveguide 3 $I`,nN  
    s2=s20; v*excl~  
    s3=s30; 2;:]Q.g  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   S%p,.0_  
    %energy in waveguide 1 )cN=/i  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));    V13^SVM  
    %energy in waveguide 2 qUe2(/TQu  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   /_<_X 7  
    %energy in waveguide 3 "QfF]/:  
    for m3 = 1:1:M3                                    % Start space evolution (Vey]J  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS (|W6p%(  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; `iuQ.I  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; (N}\Wft%  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform -{3^~vW|<  
       sca2 = fftshift(fft(s2)); D{]w +  
       sca3 = fftshift(fft(s3)); = r=/L  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   O,@QGUoA  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); e,vgD kI;  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ke*&*mx"L  
       s3 = ifft(fftshift(sc3)); 9Lt3^MKa"  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 'e))i#/VF  
       s1 = ifft(fftshift(sc1)); On4Vqbks  
    end I<lkociUCG  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); $v{s b,  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); l5e`m^GK  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); i+-Y"vRi  
       P1=[P1 p1/p10]; gO~>*q &  
       P2=[P2 p2/p10]; tchpO3u,  
       P3=[P3 p3/p10]; AxJf\B8  
       P=[P p*p]; UL8"{-`_\  
    end Iq;a!Lya-  
    figure(1) d#,   
    plot(P,P1, P,P2, P,P3); K<ldl.  
    %'F[(VB   
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~