切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 7874阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ANw1P{9*  
    {q8|/{;  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of b=MW;]F  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of MW rhVn{R  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Lr*PbjQDIY  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 C$+Q,guM  
    o<!H/PN  
    %fid=fopen('e21.dat','w'); q5e(~@(z<`  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) P`Ku. ONQ  
    M1 =3000;              % Total number of space steps gF)-Ci  
    J =100;                % Steps between output of space dyn)KDS  
    T =10;                  % length of time windows:T*T0 ig.Z,R3@r  
    T0=0.1;                 % input pulse width cK]n"6N[  
    MN1=0;                 % initial value for the space output location vkGF_aenk  
    dt = T/N;                      % time step 7MrHu2rZ=  
    n = [-N/2:1:N/2-1]';           % Index Fn`Zw:vp6  
    t = n.*dt;   e7xv~C>g  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 IWq\M,P  
    u20=u10.*0.0;                  % input to waveguide 2 xJ/)*?@+  
    u1=u10; u2=u20;                 7!jb  
    U1 = u1;   F6yFKNK!n  
    U2 = u2;                       % Compute initial condition; save it in U O8\f]!O(  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. &&C70+_po  
    w=2*pi*n./T; Q}B]b-c+E  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 8h=m()Eu  
    L=4;                           % length of evoluation to compare with S. Trillo's paper hizM}d-"C  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 )GG9[%H!  
    for m1 = 1:1:M1                                    % Start space evolution N80ogio_Tk  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS )YEAk@h@  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; +:jonN9d  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ya~;Of5  
       ca2 = fftshift(fft(u2)); v4|TQ8!wR  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation I[K4/91  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   au50%sA~  
       u2 = ifft(fftshift(c2));                        % Return to physical space v^o`+~i  
       u1 = ifft(fftshift(c1)); fWEQ vQ  
    if rem(m1,J) == 0                                 % Save output every J steps. %zGv+H?  
        U1 = [U1 u1];                                  % put solutions in U array 1ds4C:M+<  
        U2=[U2 u2]; `x _(EZ  
        MN1=[MN1 m1]; I(R%j]LX&  
        z1=dz*MN1';                                    % output location |33t5}we  
      end L{jx'[C  
    end Jb*QlsGd  
    hg=abs(U1').*abs(U1');                             % for data write to excel 6ZHeAb]"  
    ha=[z1 hg];                                        % for data write to excel =ZURh_{xV  
    t1=[0 t']; ER9{D$  
    hh=[t1' ha'];                                      % for data write to excel file Lwi"K8.u  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format P2jh[a%  
    figure(1) Ve"(}z  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn xf;>o$oN0P  
    figure(2) M-h+'G  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn m0^ "fMV  
    v+{{j|x=  
    非线性超快脉冲耦合的数值方法的Matlab程序 1K/ :  
    F%p DF\  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Ow>u!P!  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 6:%lxG  
    H:hM(m0?q  
    L%$ -?O|  
    iupkb  
    %  This Matlab script file solves the nonlinear Schrodinger equations V0>[bzI  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of E]n]_{BN]  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear (OES~G  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ?+ d{Rh) y  
    XTX/vbge3m  
    C=1;                           /# Jvt  
    M1=120,                       % integer for amplitude %.`u2'^  
    M3=5000;                      % integer for length of coupler ,_YI:xie|c  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) sdO8;v>  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. <S7SH-{_\  
    T =40;                        % length of time:T*T0. WynTU?  
    dt = T/N;                     % time step EmO[-W|2  
    n = [-N/2:1:N/2-1]';          % Index TE o  
    t = n.*dt;   :35h0;8+  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. <?IDCOt ?  
    w=2*pi*n./T; iP9]b&  
    g1=-i*ww./2; :^`j:B  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Rkk`+0K7$J  
    g3=-i*ww./2; ;rT/gwg!  
    P1=0; 46)[F0,$r  
    P2=0; bf.+Ewb(  
    P3=1; /f?;,CyI  
    P=0; \9p.I?=  
    for m1=1:M1                 (@*|[wN  
    p=0.032*m1;                %input amplitude zP0<4E$M`  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 "zNS6I?rzE  
    s1=s10; b*S,8vE]  
    s20=0.*s10;                %input in waveguide 2 3,G|oR{D  
    s30=0.*s10;                %input in waveguide 3 ,2Ed^!`  
    s2=s20; vA:ZR=)F  
    s3=s30; p#4*:rpq4  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   J&h59dm-  
    %energy in waveguide 1 :9 (kU  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   3C!|!N1Hn  
    %energy in waveguide 2 a'Cny((  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   B0yGr\KJ  
    %energy in waveguide 3 1yF9zKs&_  
    for m3 = 1:1:M3                                    % Start space evolution ]!S#[Wt {k  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ={cM6F}a@  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ^pe/~ :a  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; S"Vr+x?  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform :,p3&2 I  
       sca2 = fftshift(fft(s2)); : ^}!"4{  
       sca3 = fftshift(fft(s3)); @ ^F{  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   L T`T~|pz  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); |b='DJz2  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); GNmP_N  
       s3 = ifft(fftshift(sc3)); rusM]Z  
       s2 = ifft(fftshift(sc2));                       % Return to physical space -,/6 Wn'j  
       s1 = ifft(fftshift(sc1)); J_&cI%.  
    end Z-CA9&4Uh  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 3`SH-"{j%  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); /o$6"~t  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 8Wtr,%82  
       P1=[P1 p1/p10]; +K'YVB U}  
       P2=[P2 p2/p10]; ]5*H/8Ke7  
       P3=[P3 p3/p10]; 3nhQ^zqf  
       P=[P p*p]; n=d#Fm0<  
    end 3_;=y\F  
    figure(1) {c?{M.R  
    plot(P,P1, P,P2, P,P3); zBTxM  
    ho^c#>81  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~