切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9373阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 7o!t/WEEq  
    ph!h8@e  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of :h3U^  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of vAeVQ~  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear e(b$LUV  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]E DC s?,  
    8o $ ` '  
    %fid=fopen('e21.dat','w'); U-,s/VQ?  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) P&tw!B  
    M1 =3000;              % Total number of space steps 4:b'VHW.  
    J =100;                % Steps between output of space SXJjagAoML  
    T =10;                  % length of time windows:T*T0 |_+l D|'  
    T0=0.1;                 % input pulse width .i|nn[H &  
    MN1=0;                 % initial value for the space output location N0\<B-8+,>  
    dt = T/N;                      % time step 4N7|LxNNl_  
    n = [-N/2:1:N/2-1]';           % Index %i?v)EW  
    t = n.*dt;   {KEmGHC4R  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 o :4#Ak S  
    u20=u10.*0.0;                  % input to waveguide 2 }rs>B,=*k  
    u1=u10; u2=u20;                 n8T'}d+mm  
    U1 = u1;   ^4<&"aoo  
    U2 = u2;                       % Compute initial condition; save it in U >$ro\/  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. A =&`TfXu  
    w=2*pi*n./T; e$`hRZ%  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T wPcEvGBN=  
    L=4;                           % length of evoluation to compare with S. Trillo's paper \&Bdi6xAy  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 }&6:0l$4!  
    for m1 = 1:1:M1                                    % Start space evolution %AWc`D  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS f3>DmH#  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; yO7#n0q  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 4)'U!jSb  
       ca2 = fftshift(fft(u2)); 7+X~i@#rU  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 0&2`)W?9  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Xi\c>eALO  
       u2 = ifft(fftshift(c2));                        % Return to physical space SdnO#J}{  
       u1 = ifft(fftshift(c1)); 0B}2~}#  
    if rem(m1,J) == 0                                 % Save output every J steps. }*qj,8-9  
        U1 = [U1 u1];                                  % put solutions in U array +~y>22Zfg  
        U2=[U2 u2]; =1 S%E  
        MN1=[MN1 m1]; |~18MW  
        z1=dz*MN1';                                    % output location d:#tN4y7(  
      end !gfd!R  
    end DpT$19Q+  
    hg=abs(U1').*abs(U1');                             % for data write to excel p:0X3?IG3  
    ha=[z1 hg];                                        % for data write to excel zf^|H% ~^  
    t1=[0 t']; fYh<S  
    hh=[t1' ha'];                                      % for data write to excel file x5/&,&m`%  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ?gjx7TQ?  
    figure(1) %9S0!h\  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn A%^7D.j  
    figure(2) )%n $_N n  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn [9NrPm3d  
    ?`O^;f  
    非线性超快脉冲耦合的数值方法的Matlab程序 27$,D XD  
    &,{YfAxQ`  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   O.xtY @'"  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 I:UDEoQo  
    iy]?j$B$  
    $p$p C/:%  
    ?~yJ7~3TS<  
    %  This Matlab script file solves the nonlinear Schrodinger equations YV@efPy}n  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of x7G*xHJ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear o[+t}hC[  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 mF jM6pmo  
    0\@oqw]6hv  
    C=1;                           b >k2@  
    M1=120,                       % integer for amplitude &Vgpv#&Cfx  
    M3=5000;                      % integer for length of coupler 6qT-  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) v+SdjFAY  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ~oT*@  
    T =40;                        % length of time:T*T0. jh`[ Y7RJO  
    dt = T/N;                     % time step =]/<Kd}A.  
    n = [-N/2:1:N/2-1]';          % Index MOnTp8   
    t = n.*dt;   { w sT  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. q(~|roKA(  
    w=2*pi*n./T; BpYxH#4  
    g1=-i*ww./2; n&?)gKL0g  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; t*)mX2R,  
    g3=-i*ww./2; &oy')\H  
    P1=0; K{"hf:k  
    P2=0; )4c?BCgy  
    P3=1; EUQtl_h/H  
    P=0; o; U!{G(X  
    for m1=1:M1                 ;^E_BJm  
    p=0.032*m1;                %input amplitude kLU-4W5t  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 $60`Hh 4/  
    s1=s10; VfP\)Rl  
    s20=0.*s10;                %input in waveguide 2 JEMc_ngR!  
    s30=0.*s10;                %input in waveguide 3 DX+zK'34  
    s2=s20; [;sTl~gC  
    s3=s30; b(Tvc  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   cGdYfi  
    %energy in waveguide 1 d%-/U!z?  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   w-LENdw  
    %energy in waveguide 2 Ot:}Ncq^\O  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   z0SF2L H  
    %energy in waveguide 3 uZ\+{j=  
    for m3 = 1:1:M3                                    % Start space evolution Vp|?R65S*  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS h& }iH  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; TO"Md["GI  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; y)CvlI  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform _*Z3,*~"X  
       sca2 = fftshift(fft(s2)); A>2_I)  
       sca3 = fftshift(fft(s3)); `8RKpZv&  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ()O&O+R|)  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ,uPcQ  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); nw%`CnzT  
       s3 = ifft(fftshift(sc3)); [0]A-#J  
       s2 = ifft(fftshift(sc2));                       % Return to physical space `&OX|mL^w  
       s1 = ifft(fftshift(sc1)); >$E;."a  
    end 0BhcXH t  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); _ezRE"F5  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); $/;K<*O$  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); '@ Rk#=85Z  
       P1=[P1 p1/p10]; BI%XF 9{  
       P2=[P2 p2/p10]; vB{i w}Hi!  
       P3=[P3 p3/p10]; ~?HK,`0h>  
       P=[P p*p]; {B4qeG5  
    end Sp:w _;{#  
    figure(1) 3Ke6lV)uq  
    plot(P,P1, P,P2, P,P3); 1PUZB`"3  
    F@f4-NR>  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~