计算脉冲在非线性耦合器中演化的Matlab 程序 _ )^n[_E of<>M4/g4y % This Matlab script file solves the coupled nonlinear Schrodinger equations of
WY~}sE % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
9aqFdlbY % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
FH H2 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
$0iN43WSQ sEfGf. %fid=fopen('e21.dat','w');
^_Z Qf N = 128; % Number of Fourier modes (Time domain sampling points)
q14A'XW M1 =3000; % Total number of space steps
EZiGi[t7 J =100; % Steps between output of space
.yj=*N. T =10; % length of time windows:T*T0
o9HDxS$~^ T0=0.1; % input pulse width
NU/~E"^I. MN1=0; % initial value for the space output location
o:Z*F0qm dt = T/N; % time step
7 -V_)FK2c n = [-N/2:1:N/2-1]'; % Index
.Lu=16 t = n.*dt;
A[':O*iB u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
J>Rt2K u20=u10.*0.0; % input to waveguide 2
qXW2a'~ u1=u10; u2=u20;
>|I3h5\M U1 = u1;
zsRN\U U2 = u2; % Compute initial condition; save it in U
uJp}9B60_ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
"Lpt@g[HF w=2*pi*n./T;
k0D&F;a% g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
&akMj@4;R L=4; % length of evoluation to compare with S. Trillo's paper
#WpO9[b> dz=L/M1; % space step, make sure nonlinear<0.05
Mw5!9@Fc7 for m1 = 1:1:M1 % Start space evolution
|-aj$u%~ u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
.r*b+rc;] u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
?R{?Qv ca1 = fftshift(fft(u1)); % Take Fourier transform
6nSk,yE'hE ca2 = fftshift(fft(u2));
TAC\2*bWje c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
WE~3(rs#X# c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
K6oXnz} u2 = ifft(fftshift(c2)); % Return to physical space
LA@}{hU u1 = ifft(fftshift(c1));
+`Bn]e8O if rem(m1,J) == 0 % Save output every J steps.
s*YFN#Wuc U1 = [U1 u1]; % put solutions in U array
>a-+7{}; U2=[U2 u2];
ng<`2XgU MN1=[MN1 m1];
quUJ%F z1=dz*MN1'; % output location
E:E&Wv?r end
$-AvH(@ end
n0i&P9@B1 hg=abs(U1').*abs(U1'); % for data write to excel
qiF~I0_0 ha=[z1 hg]; % for data write to excel
-MEz`7c~ t1=[0 t'];
Pd;ClMa% hh=[t1' ha']; % for data write to excel file
w+$gY?% %dlmwrite('aa',hh,'\t'); % save data in the excel format
yEqmB4^- figure(1)
X5/{Mx`8Oz waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
J+|ohA figure(2)
qL+y8* waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
DVcu*UVw /#se>4] 非线性超快脉冲耦合的数值方法的Matlab程序 (MIw$)#^ S'JeA>L 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
ipp_?5TL Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
g^4FzJ -pGt; omA*XXUx=8 0amz#VIB<u % This Matlab script file solves the nonlinear Schrodinger equations
3ElpS^2W % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
t3>rf3v % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
O]g+z$2o % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
PC_4#6^5 {G0)mp, C=1;
!Cy2>6v7 M1=120, % integer for amplitude
ge oN4 M3=5000; % integer for length of coupler
N]<gHGj} N = 512; % Number of Fourier modes (Time domain sampling points)
`k|nf9_ dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
9|WWA%p T =40; % length of time:T*T0.
S+y2eP G dt = T/N; % time step
,;-*q}U n = [-N/2:1:N/2-1]'; % Index
U[D<%7f t = n.*dt;
5#o,]tP ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
[;f"',)y, w=2*pi*n./T;
W7o/
g1=-i*ww./2;
FOA%(5$4 g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
U.F65KaKF g3=-i*ww./2;
y4L9Cxvs P1=0;
*a%PA(%6 P2=0;
T!a[@,)_
P3=1;
)\;r
V'; P=0;
DS2$ w9! for m1=1:M1
cj#q7 p=0.032*m1; %input amplitude
!v L:P2 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
\IfgL$+ s1=s10;
%nh'F6bNgv s20=0.*s10; %input in waveguide 2
$bosGG s30=0.*s10; %input in waveguide 3
k >CtWV5B s2=s20;
fNJ;{ s3=s30;
_64@zdL+ p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
j2Y(Q/i %energy in waveguide 1
$\!;*SSj p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
q_&IZ,{Vk %energy in waveguide 2
{ bn#:75r p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
>2
qP %energy in waveguide 3
sK?-@ for m3 = 1:1:M3 % Start space evolution
}AqD0Qd2Hj s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
<pUou s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
#Vigu,zY s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
h,'+w sca1 = fftshift(fft(s1)); % Take Fourier transform
6S[D"Q94 sca2 = fftshift(fft(s2));
Dg+d=I? sca3 = fftshift(fft(s3));
Gnt!!1_8L sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
"J{zfWr sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
& }}WP:U sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
DZ.trtK s3 = ifft(fftshift(sc3));
3]es$ Jy s2 = ifft(fftshift(sc2)); % Return to physical space
+yH~G9u( s1 = ifft(fftshift(sc1));
QJM!Wx+ end
z44~5J] p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
-$t,}3 p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
<SZO-
-+lB p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
p\;)^O4 P1=[P1 p1/p10];
3og$'#6P P2=[P2 p2/p10];
X$iJ|=vW P3=[P3 p3/p10];
UiZp-Y%ki P=[P p*p];
wP0+Xv, end
"|*Kf# figure(1)
>1G*ya) plot(P,P1, P,P2, P,P3);
jY+S,lD ]GPJ(+5 转自:
http://blog.163.com/opto_wang/