切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9344阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 #4Z]/D2G  
    2S`D7R#6s  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 3$E\B=7/U  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of XX@@tzN  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear CG -^}xE:  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004  <m7T`5+  
    beN(7jo  
    %fid=fopen('e21.dat','w'); 4PVkKP'/  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) xbeVq P  
    M1 =3000;              % Total number of space steps }RT#V8oc  
    J =100;                % Steps between output of space JC[G5$E  
    T =10;                  % length of time windows:T*T0 ,*Vt53@E  
    T0=0.1;                 % input pulse width m:{ws~   
    MN1=0;                 % initial value for the space output location 8&0+Az"{O  
    dt = T/N;                      % time step '&<T;V%  
    n = [-N/2:1:N/2-1]';           % Index  b}eBy  
    t = n.*dt;   HU='Hk!  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Ba]J3Yp,z  
    u20=u10.*0.0;                  % input to waveguide 2 mV58&SZT  
    u1=u10; u2=u20;                 V6.w=6:`X  
    U1 = u1;   @&7|Laa  
    U2 = u2;                       % Compute initial condition; save it in U [kjmEMF9i  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. /1Q i9uit  
    w=2*pi*n./T; iTgv8  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T GdxMHnn=  
    L=4;                           % length of evoluation to compare with S. Trillo's paper k~<b~VcU  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 N=`xoF  
    for m1 = 1:1:M1                                    % Start space evolution 6N^sUc0s  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS GOx+%`.R\  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; \vU1*:3  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ?[|T"bE5[  
       ca2 = fftshift(fft(u2)); BWd{xP y  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation jw^Pt~@  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   l_Ffbs_6t  
       u2 = ifft(fftshift(c2));                        % Return to physical space e=]>TeqG0  
       u1 = ifft(fftshift(c1)); rTR4j>Ua~  
    if rem(m1,J) == 0                                 % Save output every J steps. 99<0xN(25  
        U1 = [U1 u1];                                  % put solutions in U array ~PoBvHi  
        U2=[U2 u2]; vXio /m  
        MN1=[MN1 m1]; )kq3q5*_  
        z1=dz*MN1';                                    % output location b)5z'zQu  
      end ns{BU->f  
    end %Q0J$eC  
    hg=abs(U1').*abs(U1');                             % for data write to excel %dyEF8)  
    ha=[z1 hg];                                        % for data write to excel oZY2K3J)  
    t1=[0 t']; R-8/BTls7  
    hh=[t1' ha'];                                      % for data write to excel file JpFfO<uO  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format gx*rxid  
    figure(1) )AX0x1I|E  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn *i}Nb* Z3  
    figure(2) D`t }V  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn <N Lor55.]  
    +:s]>R eDa  
    非线性超快脉冲耦合的数值方法的Matlab程序 b0~AN#Es  
    5g{L -8XwI  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   fCA/   
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 q66+x)  
    1>doa1  
    f-V8/  
    w_gPX0N}3n  
    %  This Matlab script file solves the nonlinear Schrodinger equations k#4%d1O}  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of a!;]9}u7  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 7*7Z&1*3  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 =-ky%3:`@  
    T@n-^B!Xq  
    C=1;                           &*I\~;1  
    M1=120,                       % integer for amplitude S_z}h  
    M3=5000;                      % integer for length of coupler ,C#Mf@b  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Bh9O<|E  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. yAu-BObD  
    T =40;                        % length of time:T*T0. hLVS}HE2  
    dt = T/N;                     % time step MNE{mV(  
    n = [-N/2:1:N/2-1]';          % Index zS@"ITy  
    t = n.*dt;   6z^Kg~a   
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1.  Yfk){1  
    w=2*pi*n./T; 0L34)W  
    g1=-i*ww./2; O};U3=^0f  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ]7QRelMiz+  
    g3=-i*ww./2; )C @W_cfMN  
    P1=0; mulK(mp  
    P2=0; 9.KOrg5}L  
    P3=1; H!F Cerg  
    P=0; UF[2Rb8?  
    for m1=1:M1                 -%&_LE9ZtS  
    p=0.032*m1;                %input amplitude >uok\sX  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 wff&ci28  
    s1=s10; &CvNNDgrJ  
    s20=0.*s10;                %input in waveguide 2 00') Ol&  
    s30=0.*s10;                %input in waveguide 3 05(lh<C  
    s2=s20; }lzyl*.  
    s3=s30; Y",Fs(  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   uzO%+B!  
    %energy in waveguide 1 U _~lpu  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   +$MNG   
    %energy in waveguide 2 ZQT14.$L  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   xw*T? !r=V  
    %energy in waveguide 3 {Gnji] v  
    for m3 = 1:1:M3                                    % Start space evolution dbTPY`  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Y[AL!h  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 360V  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; h[D"O6 y  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform |Ire#0Nwx  
       sca2 = fftshift(fft(s2)); &qki NS  
       sca3 = fftshift(fft(s3)); &zsaVm8  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   %nJ^0X_]  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); K~A$>0c  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); #zC_;u$  
       s3 = ifft(fftshift(sc3)); $_-f}E  
       s2 = ifft(fftshift(sc2));                       % Return to physical space #>-_z  
       s1 = ifft(fftshift(sc1)); .+<Ul ]e/  
    end ^CUeq"GYoZ  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); AZ)H/#be  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); mie<jha  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); bk E4{P"  
       P1=[P1 p1/p10]; *0)vsBi  
       P2=[P2 p2/p10]; y]5O45E0  
       P3=[P3 p3/p10]; )v1n#m,W  
       P=[P p*p]; L]L-000D(  
    end 2R&msdF   
    figure(1) zbdmz  
    plot(P,P1, P,P2, P,P3); jX^uNmb  
    2f1WT g)  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~