切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9375阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 {k)MC)%  
    d EXw=u  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of $@<\$I2s  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 9*x9sfCv9  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear duM>( y  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 FkS{Z s  
    )Y:CV,`  
    %fid=fopen('e21.dat','w'); q80?C.,`  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) b :+ X3  
    M1 =3000;              % Total number of space steps "#OmmU<U  
    J =100;                % Steps between output of space =l\D7s  
    T =10;                  % length of time windows:T*T0 59)PJ0E  
    T0=0.1;                 % input pulse width %URyGS]*  
    MN1=0;                 % initial value for the space output location 5n"'M&Ce  
    dt = T/N;                      % time step "'8$hV65.p  
    n = [-N/2:1:N/2-1]';           % Index )h/fr|  
    t = n.*dt;   3}vlj:L  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 4f>Vg$4  
    u20=u10.*0.0;                  % input to waveguide 2 2 o.Mh/D0  
    u1=u10; u2=u20;                 c1Hv^*Y  
    U1 = u1;   +Gjy%JFp  
    U2 = u2;                       % Compute initial condition; save it in U P--#5W;^oB  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ei"FN3Rm  
    w=2*pi*n./T; 1,/oS&?E  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T p'R}z|d)  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ^ o{O5&i]  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Coyop#q#"{  
    for m1 = 1:1:M1                                    % Start space evolution K 4 >d  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS lKa}Bcd  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; #\"5:.H Oz  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 08twcY;&k  
       ca2 = fftshift(fft(u2)); LsmC/+7r$1  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation YlYTH_L>E  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   phNv^R+  
       u2 = ifft(fftshift(c2));                        % Return to physical space v3[ 2!UXq  
       u1 = ifft(fftshift(c1)); *v&g>Ni  
    if rem(m1,J) == 0                                 % Save output every J steps. :JOF!Q  
        U1 = [U1 u1];                                  % put solutions in U array t#d~gBe?V  
        U2=[U2 u2]; [3\}Ca1  
        MN1=[MN1 m1]; d6Z;\f7[  
        z1=dz*MN1';                                    % output location '91Ak,cWB  
      end HID;~Ne  
    end uh GL1{  
    hg=abs(U1').*abs(U1');                             % for data write to excel | 0&~fY  
    ha=[z1 hg];                                        % for data write to excel vm Hf$rq  
    t1=[0 t']; KI# hII[Q.  
    hh=[t1' ha'];                                      % for data write to excel file OW6i2>Or  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Va{`es)hky  
    figure(1) 0R; ;ou  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn e}Db-7B_~  
    figure(2) 9 Z4H5!:(  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn d-c+ KV  
    h<}4mo_ $  
    非线性超快脉冲耦合的数值方法的Matlab程序 Er%nSH^"  
    O6m}#?Ai/@  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   HtXzMSGo7  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 k6$.pCH6  
    X${k  
    +.zriiF]i  
    Bf8 #&]O  
    %  This Matlab script file solves the nonlinear Schrodinger equations tQ*5[F,fm  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of )K%AbKn  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear zHyM@*Gf(  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ] @IzJz"R  
    Of-l<Ks\  
    C=1;                           p6sXftk  
    M1=120,                       % integer for amplitude \`x$@s?  
    M3=5000;                      % integer for length of coupler w%`7,d u|  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) teET nz_L  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. uN'e~X6  
    T =40;                        % length of time:T*T0. tLLP2^_&  
    dt = T/N;                     % time step sv =6?uYW  
    n = [-N/2:1:N/2-1]';          % Index X62GEqff  
    t = n.*dt;   qL] !/}  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. /SjA;c! .  
    w=2*pi*n./T; }+,;wj~  
    g1=-i*ww./2; qA5tMZ^w  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; eAPGy-  
    g3=-i*ww./2; '(~+ \  
    P1=0; YQ;?N66  
    P2=0; J](AJkGzK  
    P3=1; Ij4oH  
    P=0; iz& )FuOr  
    for m1=1:M1                 Fq9AO~z  
    p=0.032*m1;                %input amplitude =M>pL+#  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 fgq#Oi}  
    s1=s10; }5u$/c@f1  
    s20=0.*s10;                %input in waveguide 2 &pV'/  
    s30=0.*s10;                %input in waveguide 3 7]62=p2R  
    s2=s20; M2{{B ^*$6  
    s3=s30; 6gNsh  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   P @G2F:}  
    %energy in waveguide 1 4Y;z46yM%  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   5v6*.e'p  
    %energy in waveguide 2 up#W"`"  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ]*D=^kA0[  
    %energy in waveguide 3 1@egAo)  
    for m3 = 1:1:M3                                    % Start space evolution (~#{{Ja  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 4Un(}P'   
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ~#C7G\R  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; g Q6_]~4  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ^cn%]X#.  
       sca2 = fftshift(fft(s2)); %`?IY<  
       sca3 = fftshift(fft(s3)); <Y9%oJn%  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   TY"8.vd  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); a~>+I~^K5q  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); il|e5TD^  
       s3 = ifft(fftshift(sc3)); Uf4A9$R.G  
       s2 = ifft(fftshift(sc2));                       % Return to physical space fp^{612O?  
       s1 = ifft(fftshift(sc1)); TgoaEufS<  
    end &s-iie$"@x  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 0Q`Dp;a5&  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); '1'De^%6W  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ibAZ=RD  
       P1=[P1 p1/p10]; *j6K QZ"  
       P2=[P2 p2/p10]; uB_8P+h7  
       P3=[P3 p3/p10]; }>]V_}h  
       P=[P p*p]; H|JPqBNRh  
    end ]?rVram;z  
    figure(1) `tw[{Wb  
    plot(P,P1, P,P2, P,P3); B]iPixA6  
    n@[_lNa4GD  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~