计算脉冲在非线性耦合器中演化的Matlab 程序 G/w&yd4
O=9mLI6
% This Matlab script file solves the coupled nonlinear Schrodinger equations of 9qHbV
9,M
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of bK7j"
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ) sh+cfTCb
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~; emUU
{NS6y \,
%fid=fopen('e21.dat','w'); exnFy-
N = 128; % Number of Fourier modes (Time domain sampling points) Yb~[XS |p
M1 =3000; % Total number of space steps :dZq!1~t
J =100; % Steps between output of space ?3x7_=4t@
T =10; % length of time windows:T*T0 I1IuvH6
T0=0.1; % input pulse width U|Du9_0
MN1=0; % initial value for the space output location ~BSIp
.
dt = T/N; % time step z^KMYvH
g
n = [-N/2:1:N/2-1]'; % Index y" (-O%Pe
t = n.*dt; @-7h}2P Q
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 -UHa;WH
u20=u10.*0.0; % input to waveguide 2 %LH~Im=
u1=u10; u2=u20; E>bK-jG
U1 = u1; :#?Z)oQpT
U2 = u2; % Compute initial condition; save it in U VdVUYp
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. W!R}eLf@
w=2*pi*n./T; J`&*r;""V
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T dK5|tWJX
L=4; % length of evoluation to compare with S. Trillo's paper D9cpw0{nc
dz=L/M1; % space step, make sure nonlinear<0.05 2=&4@c|cn
for m1 = 1:1:M1 % Start space evolution wNHvYulI
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS :U,n[.$5'
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; aCq ) hR
ca1 = fftshift(fft(u1)); % Take Fourier transform wRa$b
ca2 = fftshift(fft(u2)); yc#0c[ZQu
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation ?!h
jI;_&
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift gJkk0wokC
u2 = ifft(fftshift(c2)); % Return to physical space lk$@8h$vS
u1 = ifft(fftshift(c1)); 0 e}N{,&Y
if rem(m1,J) == 0 % Save output every J steps. Fp_?1y
U1 = [U1 u1]; % put solutions in U array qqmhh_[T
U2=[U2 u2]; n#{z"G
MN1=[MN1 m1]; O%1X[
z1=dz*MN1'; % output location D8`dEB2|S
end -v'|#q
end O?6ph4'
hg=abs(U1').*abs(U1'); % for data write to excel m0: IFE($
ha=[z1 hg]; % for data write to excel @Kx@ 2#~b
t1=[0 t']; ~^&]8~m*d
hh=[t1' ha']; % for data write to excel file O}Ipg[h
%dlmwrite('aa',hh,'\t'); % save data in the excel format Rl. YF+YH
figure(1) @w8MOT$
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn S? -6hGA
j
figure(2) b5-W K;
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn h!vq~g
x&n gCB@O
非线性超快脉冲耦合的数值方法的Matlab程序 r )EuH.z
_'W en
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 }mZsK>
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 l*v6U'J
j4!g&F _y
l,I[r$TCf
]vFtByqn
% This Matlab script file solves the nonlinear Schrodinger equations =54"9*
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of mbij& 0
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Lrr1) h
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %ut^ O
9kpCn.rJ
C=1; #RJFJb/
M1=120, % integer for amplitude %yVboA1
M3=5000; % integer for length of coupler 4
Qo(Wl
N = 512; % Number of Fourier modes (Time domain sampling points) w7(jSPB
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. bv%A;
T =40; % length of time:T*T0. #QWG5
dt = T/N; % time step "JH
/ODm
n = [-N/2:1:N/2-1]'; % Index zKnHo:SV
t = n.*dt; >+9f{FP
9
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. dbmty|d
w=2*pi*n./T; \-Oq/g{j
g1=-i*ww./2; Po
,zTz
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ls^|j%$J
g3=-i*ww./2; 82EH'C
P1=0; H{XD>q.
P2=0; lZt{L0
P3=1; wDL dmrB
P=0; xE[CNJ%t^,
for m1=1:M1 +2ZBj6 e9
p=0.032*m1; %input amplitude I^CKq?V?:
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 rA"><pH
s1=s10; B. J_(V+
s20=0.*s10; %input in waveguide 2 !oJ226>WI
s30=0.*s10; %input in waveguide 3 #dd-rooQuD
s2=s20; p^E}%0#
s3=s30; ",qcqG(
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); bG'"l qn
%energy in waveguide 1 0Rme}&$
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); 8,5H^Bi
%energy in waveguide 2 w
b@Zna
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); .y)Y20=o!
%energy in waveguide 3 M)<4|x
for m3 = 1:1:M3 % Start space evolution >z,SN
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS A#WvN>
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; S~Z`?qHWh
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; &3o[^_Ti
sca1 = fftshift(fft(s1)); % Take Fourier transform W@T_-pTCjK
sca2 = fftshift(fft(s2)); !,I530eh7
sca3 = fftshift(fft(s3)); Q9\6Pn ]T
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift :epjJ1mW
sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ftw@ nQNU
sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); XW^Sw;[efZ
s3 = ifft(fftshift(sc3)); x+X^K_*
s2 = ifft(fftshift(sc2)); % Return to physical space ",pN.<F9O
s1 = ifft(fftshift(sc1)); `X =2Ff
end =LUDg7P
p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); dV:vM9+x
p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); DaK2P;WP
p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); r
N.<S[
P1=[P1 p1/p10]; ^<