计算脉冲在非线性耦合器中演化的Matlab 程序 `# ^0cW SSmHEy*r) % This Matlab script file solves the coupled nonlinear Schrodinger equations of
)^/0cQcJ % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
]J@/p:S> % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
ngUHkpYS5 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
J(iV0LAZb k4y}&?$B %fid=fopen('e21.dat','w');
` |Fp^gM N = 128; % Number of Fourier modes (Time domain sampling points)
jv&+<j`r M1 =3000; % Total number of space steps
lhPGE_\ J =100; % Steps between output of space
5
9-!6;T T =10; % length of time windows:T*T0
'^}+Fv<O T0=0.1; % input pulse width
(3%t+aqq MN1=0; % initial value for the space output location
-cfx2;68 dt = T/N; % time step
+nU.p/cK+\ n = [-N/2:1:N/2-1]'; % Index
]P1YHw9 t = n.*dt;
oNYZIk: u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
h?j_Ry u20=u10.*0.0; % input to waveguide 2
y0IK,W'&? u1=u10; u2=u20;
fN[8N$1- U1 = u1;
!7 _\P7M U2 = u2; % Compute initial condition; save it in U
#n7Yr,|Z ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
TV:<TR w=2*pi*n./T;
&drFQ| g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
I>n
g` L=4; % length of evoluation to compare with S. Trillo's paper
wE Qi0! dz=L/M1; % space step, make sure nonlinear<0.05
V4K'R2t for m1 = 1:1:M1 % Start space evolution
$>w/Cy u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
Y&f\VNlT u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
(tCib 4 ca1 = fftshift(fft(u1)); % Take Fourier transform
f/ahwz ca2 = fftshift(fft(u2));
ijW7c+yd c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
Lj
8<'"U# c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
x';uCKWV u2 = ifft(fftshift(c2)); % Return to physical space
o`? zF+M0 u1 = ifft(fftshift(c1));
E zT`,#b if rem(m1,J) == 0 % Save output every J steps.
;l!`C' :' U1 = [U1 u1]; % put solutions in U array
vsMmCd)7U U2=[U2 u2];
n=!uNu7 MN1=[MN1 m1];
TFH&(_b z1=dz*MN1'; % output location
S`=WF^ end
f
j<H6|3 end
Ge \["`;i hg=abs(U1').*abs(U1'); % for data write to excel
$3;Upgv ha=[z1 hg]; % for data write to excel
I/uy>* t1=[0 t'];
!I8f#'p hh=[t1' ha']; % for data write to excel file
I1=(. *B} %dlmwrite('aa',hh,'\t'); % save data in the excel format
;YH[G;aJ figure(1)
qqOFr!)g waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
9- )qZ figure(2)
{IM! Wb waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
$c9k*3{<+A PCE4W^ns 非线性超快脉冲耦合的数值方法的Matlab程序 J;QUPpHZ Pe ~c 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
l-O$ m Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
ls|LCQPx }iww:H-1 bB6[Xj{ Qn+:/zA; % This Matlab script file solves the nonlinear Schrodinger equations
EX
"|H.( % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
M$S]}
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
D"l+iVbBP % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
7@;">`zvm :1aL
? C=1;
+4)7j&L M1=120, % integer for amplitude
|a(fejO3 M3=5000; % integer for length of coupler
Fx#jV\''s N = 512; % Number of Fourier modes (Time domain sampling points)
9F##F-%x dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
-$-8W T =40; % length of time:T*T0.
h*l&RR:i dt = T/N; % time step
6|;Uq' n = [-N/2:1:N/2-1]'; % Index
\caH pof t = n.*dt;
GDhM<bVqM* ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
eSy(~Y w=2*pi*n./T;
)&W**!(C g1=-i*ww./2;
L^0v\ g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
p{tK_ZBy]c g3=-i*ww./2;
p,!$/Q+l P1=0;
>fs2kha P2=0;
lK(Fg P3=1;
H3KTir"on P=0;
lj[,|[X7` for m1=1:M1
c:hK$C)T p=0.032*m1; %input amplitude
]k%PG-9 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
4<S' s1=s10;
mY-hN| s20=0.*s10; %input in waveguide 2
(?i[jO||B s30=0.*s10; %input in waveguide 3
Akk
3 Qx s2=s20;
"8<K'zeS8 s3=s30;
M"Y0jQ( p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
0Y+FRB]u %energy in waveguide 1
K`6z&* p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
F:g= i}7 %energy in waveguide 2
2xxB\J p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
0!GAk %energy in waveguide 3
nb,2,H for m3 = 1:1:M3 % Start space evolution
F jrINxL7^ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
&"E
lm s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
oh-|'5+,;h s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
w=_Jc8/. sca1 = fftshift(fft(s1)); % Take Fourier transform
i'HQQWd sca2 = fftshift(fft(s2));
pV\YG B+ sca3 = fftshift(fft(s3));
Va<eusl sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
_M5%V>HO sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
>,5i60Q sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
.qD@
Y3- s3 = ifft(fftshift(sc3));
S-Fo s2 = ifft(fftshift(sc2)); % Return to physical space
N/F$bv s1 = ifft(fftshift(sc1));
%V_-%/3Z end
FY'dJY3O p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
<z)m%*lvU p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
D ]03eu p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
.2:\:H~3 P1=[P1 p1/p10];
)P
Jw+5 P2=[P2 p2/p10];
U.oksD9v P3=[P3 p3/p10];
*VeW?mY,P P=[P p*p];
JMa3btLy( end
E1V^}dn figure(1)
Mt>oI SN&d plot(P,P1, P,P2, P,P3);
Zj9c9 uGH?N 转自:
http://blog.163.com/opto_wang/