切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9265阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 r|l?2 eO~  
    xN*k&!1&  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 1 iox0  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 4$iS@o|  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Z]B v  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 lrJV"H  
    VJ\qp%  
    %fid=fopen('e21.dat','w'); :6Z2@9.}w  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 3zB'AG3b  
    M1 =3000;              % Total number of space steps O84:ejro  
    J =100;                % Steps between output of space o9}\vN0F  
    T =10;                  % length of time windows:T*T0 {dxFd-K3  
    T0=0.1;                 % input pulse width 1'/ [x(/]d  
    MN1=0;                 % initial value for the space output location iZG-ca  
    dt = T/N;                      % time step JtO}i{A  
    n = [-N/2:1:N/2-1]';           % Index bse`Xfg  
    t = n.*dt;   T^4 dHG-(  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 dU9;sx  
    u20=u10.*0.0;                  % input to waveguide 2 S${%T$>  
    u1=u10; u2=u20;                 n#6{K6}k~  
    U1 = u1;   GTLS0l)  
    U2 = u2;                       % Compute initial condition; save it in U Movm1*&=  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ZbC$Fk,,I&  
    w=2*pi*n./T; ;j9%D`u<  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ]$drBk86bh  
    L=4;                           % length of evoluation to compare with S. Trillo's paper I/w;4!+)  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 AZ(zM.y!#_  
    for m1 = 1:1:M1                                    % Start space evolution :#g.%&  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Tz)Ku  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; z]9t 5I  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 85!]N F  
       ca2 = fftshift(fft(u2)); =6U5^+|d  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation m}z6Bbis0  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   jOT/|k  
       u2 = ifft(fftshift(c2));                        % Return to physical space lW5Lwyt8  
       u1 = ifft(fftshift(c1)); x_~_/&X5  
    if rem(m1,J) == 0                                 % Save output every J steps. Y/J~M$9P,  
        U1 = [U1 u1];                                  % put solutions in U array D9TjjA|zS  
        U2=[U2 u2]; (eF[nfM  
        MN1=[MN1 m1]; )Lz =[e  
        z1=dz*MN1';                                    % output location 2V]a+Cgk  
      end EmaS/]X[  
    end ng/h6 S  
    hg=abs(U1').*abs(U1');                             % for data write to excel B:X%k/{  
    ha=[z1 hg];                                        % for data write to excel MB;rxUbhe3  
    t1=[0 t']; [z"E"_r~%Y  
    hh=[t1' ha'];                                      % for data write to excel file %l8!p'a  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ;"cQ)=s9Y  
    figure(1) {d<XDx4`  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ~IYR&GEaUG  
    figure(2) ;.AMP$o`(Y  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn /ckk qk"  
    Ye]K 74M.  
    非线性超快脉冲耦合的数值方法的Matlab程序 L*4"D4V  
    x%s1)\^A  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。    Y:/p0 o  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 j5DCc,s  
    hY!ek;/Gc  
    7HVENj_b+M  
    ~D@YLW1z(  
    %  This Matlab script file solves the nonlinear Schrodinger equations &Z>??|f  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of +EjXoW7V  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear CKH mJ]=  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 oUn+tu:  
    LpY{<:y  
    C=1;                           -ysNo4#e&  
    M1=120,                       % integer for amplitude Ej)7[  
    M3=5000;                      % integer for length of coupler 3\4e{3$  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) L+G0/G}O\  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ^;ZpK@Luk  
    T =40;                        % length of time:T*T0. ]d[e  
    dt = T/N;                     % time step TgjjwcO Y  
    n = [-N/2:1:N/2-1]';          % Index c $r"q :\  
    t = n.*dt;   OIj.K@Kr  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. c*B< - l<5  
    w=2*pi*n./T; x%`YV):*  
    g1=-i*ww./2; :l"B NT[/  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ilQ}{p6I  
    g3=-i*ww./2; L4B/ g)K  
    P1=0; .`~?w+ ~  
    P2=0; cY5;~lO  
    P3=1; Rd7U5MBEF  
    P=0; ;Q,t65+Am  
    for m1=1:M1                 C) R hld  
    p=0.032*m1;                %input amplitude S'^ q  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 kJl^,q  
    s1=s10; ML'y`S  
    s20=0.*s10;                %input in waveguide 2 DzMg^Kp  
    s30=0.*s10;                %input in waveguide 3 UUDHknm"  
    s2=s20; C{$iuus0  
    s3=s30; ,9d]-CuP;  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ?o.d FKUe  
    %energy in waveguide 1 B-_b.4ND)  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   V*PL_|Q5  
    %energy in waveguide 2 xDU \mfeGj  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Wk7E&?-:6  
    %energy in waveguide 3 fZ &  
    for m3 = 1:1:M3                                    % Start space evolution ~C^:SND7  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ;G}  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; O >+=cg  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ,ja!OZ0$  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform pTi7Xy!Cw  
       sca2 = fftshift(fft(s2)); ^%zhj3#  
       sca3 = fftshift(fft(s3)); L,.~VNy-  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   , d $"`W2  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); D|Q7dIZm  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); q=->) &D%  
       s3 = ifft(fftshift(sc3)); pl3ap(/  
       s2 = ifft(fftshift(sc2));                       % Return to physical space #S9J9k  
       s1 = ifft(fftshift(sc1)); e`b#,=  
    end VO eVS&}  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); s !?uLSEdb  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ^?H|RAp  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Dfzj/spFV  
       P1=[P1 p1/p10]; @%x2d1FS  
       P2=[P2 p2/p10]; Lfi6b%/z  
       P3=[P3 p3/p10]; B VeMV4  
       P=[P p*p]; UA*VqK)Y  
    end ws9IO ?|&G  
    figure(1) SWx: -<  
    plot(P,P1, P,P2, P,P3); JMt*GFd  
    R+NiIoa  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~