计算脉冲在非线性耦合器中演化的Matlab 程序 ybYXD?
X|)Il8
% This Matlab script file solves the coupled nonlinear Schrodinger equations of jrcc
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Ou!)1UFI
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear kPedX
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %IU4\ZY>
`D"1
gD}{A
%fid=fopen('e21.dat','w'); ](n69XX_
N = 128; % Number of Fourier modes (Time domain sampling points) (zEYpTp
M1 =3000; % Total number of space steps GZ,j?@
J =100; % Steps between output of space w= B
T =10; % length of time windows:T*T0 tnJ`D4
T0=0.1; % input pulse width c}'Xoc
MN1=0; % initial value for the space output location .S(^roM;+
dt = T/N; % time step vC-[#]<
n = [-N/2:1:N/2-1]'; % Index Crg#6k1~EN
t = n.*dt; %|bN@@
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 o[imNy~ ~
u20=u10.*0.0; % input to waveguide 2 #'KY`&Tw&
u1=u10; u2=u20; wRj~Qv~E
U1 = u1; l`qP~k#
U2 = u2; % Compute initial condition; save it in U ]%||KC!O
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. Y`q!V=
w=2*pi*n./T; xpz`))w
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T _rG-#BKW8L
L=4; % length of evoluation to compare with S. Trillo's paper P 4H*jy@?
dz=L/M1; % space step, make sure nonlinear<0.05 WQTendS
for m1 = 1:1:M1 % Start space evolution A` =]RJ
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS bsMC#xT
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; nE^wxtY
ca1 = fftshift(fft(u1)); % Take Fourier transform C~:b* X
ca2 = fftshift(fft(u2)); cS5w +`,L
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation vg5E/+4gp%
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift O${r^6Hh
u2 = ifft(fftshift(c2)); % Return to physical space #'#4hJ*YC
u1 = ifft(fftshift(c1)); HoMQt3C
if rem(m1,J) == 0 % Save output every J steps. \2(MpB\_6!
U1 = [U1 u1]; % put solutions in U array A?\h|u<
U2=[U2 u2]; "3v7 gtGG
MN1=[MN1 m1]; 0NVG"-Q
z1=dz*MN1'; % output location 1RURZoL
end >Zi|$@7t-
end 4;08n|C
hg=abs(U1').*abs(U1'); % for data write to excel Qh/lT$g
ha=[z1 hg]; % for data write to excel :m)c[q8
t1=[0 t']; X5|?/aR}
hh=[t1' ha']; % for data write to excel file "pR $cS
%dlmwrite('aa',hh,'\t'); % save data in the excel format _CHKh*KHML
figure(1) 5/*)+
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn [''=><
figure(2) (
?atGFgu
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn rD_Ss.\^g
D
"JMSL4r
非线性超快脉冲耦合的数值方法的Matlab程序 Z?5,cI[6#
T@2f&Un^
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 ^Z#<tN;
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 SZNFE
3 t~X:
pIk4V/fy
s9^"wN YQ
% This Matlab script file solves the nonlinear Schrodinger equations T[`QO`\5O
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 0;.e#(`-
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear aMe%#cLI
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 PGC07U:B
Yk(NZ3O
C=1; K+(m'3`
M1=120, % integer for amplitude y}s
0J K
M3=5000; % integer for length of coupler eW<!^Aer
N = 512; % Number of Fourier modes (Time domain sampling points) 0tn7Rkiw
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. 7N&3FER
T =40; % length of time:T*T0. pmE1EDPag
dt = T/N; % time step qdg= Imx
n = [-N/2:1:N/2-1]'; % Index 5<0Yh#_
t = n.*dt; zW|$x<M^
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. g;|
n8]
w=2*pi*n./T; T#ecLD#
g1=-i*ww./2; vq@#Be?@
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; h9@gs,'
g3=-i*ww./2; -K{\S2
P1=0;
M}_M_
P2=0; D|
3AjzW
P3=1; p1[WGeV
P=0; \J#I}-a&j
for m1=1:M1 F!DrZd>\
p=0.032*m1; %input amplitude FuRn%)DA5
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 r-Xjy*T
s1=s10; @pyA;>U
s20=0.*s10; %input in waveguide 2 cHfK-R
s30=0.*s10; %input in waveguide 3 ?Vb=4B{~
s2=s20; U^WQWa
s3=s30; ePFC$kMn
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); GcU(:V2o
%energy in waveguide 1 tFb|y+
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); TU^tW
%energy in waveguide 2 (5CX *)R
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); yDl5t-0`
%energy in waveguide 3 3M5=@Fwkr
for m3 = 1:1:M3 % Start space evolution y2d_b/
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS l a6e`
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Xqq?S
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; @idp8J [td
sca1 = fftshift(fft(s1)); % Take Fourier transform oWn_3gzw;
sca2 = fftshift(fft(s2)); W"DxIy
sca3 = fftshift(fft(s3)); oD|+X/FK
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift m''i E
sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); *8(t y%5F0
sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); X]f#w
s3 = ifft(fftshift(sc3)); \p_8YC
s2 = ifft(fftshift(sc2)); % Return to physical space `^@g2c+d
s1 = ifft(fftshift(sc1));
A*?/F:E
end &vGEz*F
p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); KH CdO
p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); vFkyfX(
p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); %QlBFl0a
P1=[P1 p1/p10]; |R|U z`
P2=[P2 p2/p10];
Y=#mx3.
P3=[P3 p3/p10]; ~vvQz"
P=[P p*p]; (*@~HF,t=
end 7kew/8-
figure(1) &