切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9269阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ivP#qM1*;  
    (-hGb:  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of P(~vqo>!  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 5VK.Zs\  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear =LojRY  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 bLyaJ%pa\/  
    c>yqq'  
    %fid=fopen('e21.dat','w'); nQ^ c{Bm:  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 629 #t`W\  
    M1 =3000;              % Total number of space steps (b;*8  
    J =100;                % Steps between output of space "tg?V  
    T =10;                  % length of time windows:T*T0 *waaM]u  
    T0=0.1;                 % input pulse width -gy@sSfvkv  
    MN1=0;                 % initial value for the space output location Eh|v>Yew  
    dt = T/N;                      % time step _Rm1-,3  
    n = [-N/2:1:N/2-1]';           % Index ^z}$ '<D9  
    t = n.*dt;   {K>}eO:K  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 E@92hB4D"  
    u20=u10.*0.0;                  % input to waveguide 2 _*LgpZ-2(  
    u1=u10; u2=u20;                 "/qm,$  
    U1 = u1;   @0U={qX  
    U2 = u2;                       % Compute initial condition; save it in U Eh/Z4pzT  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. s|o+ Im  
    w=2*pi*n./T; 2H2Yxe7?-  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T oTLpq:9J  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Xi81?F?[  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 5 p! rZ  
    for m1 = 1:1:M1                                    % Start space evolution [mA\,ny9  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 5.zv0tJku  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; $ {5|{`  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform p1B~F  
       ca2 = fftshift(fft(u2)); MtKM#@  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation D:vX/mf;7  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   OVa38Aucr3  
       u2 = ifft(fftshift(c2));                        % Return to physical space .|z8WF*  
       u1 = ifft(fftshift(c1)); Y>To k|PV  
    if rem(m1,J) == 0                                 % Save output every J steps. U6yZKK  
        U1 = [U1 u1];                                  % put solutions in U array Hw 1cc3!  
        U2=[U2 u2]; Z@ QJ5F1y  
        MN1=[MN1 m1]; dE ]yb|Ld  
        z1=dz*MN1';                                    % output location GLE"[!s]f  
      end F%^)oQT+c  
    end iFkXt<_A  
    hg=abs(U1').*abs(U1');                             % for data write to excel _0EKE  
    ha=[z1 hg];                                        % for data write to excel Uy5G,!  
    t1=[0 t']; 9@yi UX  
    hh=[t1' ha'];                                      % for data write to excel file kP,^c {  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format IJ#+"(?7,u  
    figure(1) v2;' F  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn qM8"* dL  
    figure(2) 5><KTya?=  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn c%vtg.A  
    (~OP)F).  
    非线性超快脉冲耦合的数值方法的Matlab程序 Gx/kel[Y}  
    8D6rShx =  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   l7vxTj@(-  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 x#c%+  
    bTbF  
    nC(<eL  
    /;clxtus  
    %  This Matlab script file solves the nonlinear Schrodinger equations s5 ($b  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of M" R= ;n  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear r%412 #  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;\(X;kQi  
    p`/c&}  
    C=1;                           fF]w[lLDv  
    M1=120,                       % integer for amplitude , Aw Z%  
    M3=5000;                      % integer for length of coupler KuJNKuHa.  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Z,1b$:+  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. J1g+H2  
    T =40;                        % length of time:T*T0. Nn='9s9F?}  
    dt = T/N;                     % time step Wf:LYL  
    n = [-N/2:1:N/2-1]';          % Index iph}!3f  
    t = n.*dt;   (Qf. S{;  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. SI, t:=D  
    w=2*pi*n./T; (C.<H6]=  
    g1=-i*ww./2;  *"Uf|  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; l?)!^}Qc  
    g3=-i*ww./2; OAo;vC:^  
    P1=0; L25%KGg' o  
    P2=0; uZe"M(3r$  
    P3=1; 7(l>Ck3B#  
    P=0; Y1R?, 5  
    for m1=1:M1                 C2C 1 @=w  
    p=0.032*m1;                %input amplitude kJK*wq]U6  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 \[&&4CN{  
    s1=s10; s`gfz}/  
    s20=0.*s10;                %input in waveguide 2 8F9x2CM-[C  
    s30=0.*s10;                %input in waveguide 3 qT~a`ou:  
    s2=s20; 6_g:2=6S  
    s3=s30; sf"vii,1A  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   / }Pj^^6A<  
    %energy in waveguide 1 .,F`*JVFq  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   BlfadM;  
    %energy in waveguide 2 7j8lhrM}^  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Y49&EQ  
    %energy in waveguide 3 +t%1FkI\  
    for m3 = 1:1:M3                                    % Start space evolution 3 #"!Hg  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS )kDB*(?  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Vw]!Kb7tA  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; bs0[ a 1/  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform (0E<Fz V  
       sca2 = fftshift(fft(s2)); U^8S@#1Q  
       sca3 = fftshift(fft(s3)); NG_7jZzXA9  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   hBi/lHu'  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); eZBC@y  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); <$??Z;6  
       s3 = ifft(fftshift(sc3)); D)tL}X$  
       s2 = ifft(fftshift(sc2));                       % Return to physical space {mUt|m 7!  
       s1 = ifft(fftshift(sc1)); +{0v@6<(02  
    end /j-c29nz  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); >t{-_4Yv?  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); @FZbp  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); +xd@un[r<  
       P1=[P1 p1/p10]; =Cd{bj.8  
       P2=[P2 p2/p10]; uS5G(}[  
       P3=[P3 p3/p10]; 6MNrH  
       P=[P p*p]; 7=/iFv[  
    end ?dPr HSy  
    figure(1) C1>zwU_zo  
    plot(P,P1, P,P2, P,P3); !jvl"+_FV  
    zf>*\pZE  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~