切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8899阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 I` `S%`h  
    >[,ywRJ#_}  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of XUI9)Ne  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of N)F&c!anh  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pKSn 3-A  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;3 N0)  
    |I; tBqN{u  
    %fid=fopen('e21.dat','w'); G9`;Z^<L  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) hLs<g!*O  
    M1 =3000;              % Total number of space steps j`fQN  
    J =100;                % Steps between output of space D'{NEk@  
    T =10;                  % length of time windows:T*T0 Uavr>-  
    T0=0.1;                 % input pulse width [ " n+2;  
    MN1=0;                 % initial value for the space output location }]dK26pX  
    dt = T/N;                      % time step IJWUNKqo=  
    n = [-N/2:1:N/2-1]';           % Index :v=^-&t  
    t = n.*dt;   ySfot`LQ  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 2 kP0//  
    u20=u10.*0.0;                  % input to waveguide 2 %kS4v,I  
    u1=u10; u2=u20;                 U9?fUS  
    U1 = u1;   AXnuXa(j  
    U2 = u2;                       % Compute initial condition; save it in U x,U '!F  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. _*tU.x|DP  
    w=2*pi*n./T; /G{;?R  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T {6_M$"e.  
    L=4;                           % length of evoluation to compare with S. Trillo's paper e(e_p#  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 gdPPk=LD  
    for m1 = 1:1:M1                                    % Start space evolution zmA]@'j  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS h/)kd3$*'  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; IE)$ .%q;)  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform -<g&U*/E  
       ca2 = fftshift(fft(u2)); 4AIo,{(  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 1Q5:Vo^B#  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   u[{j;l(  
       u2 = ifft(fftshift(c2));                        % Return to physical space &dH[lB  
       u1 = ifft(fftshift(c1)); jOkc'  
    if rem(m1,J) == 0                                 % Save output every J steps. `Z#0kpXk_  
        U1 = [U1 u1];                                  % put solutions in U array nrhzNW>]  
        U2=[U2 u2]; )S:,q3gxJ  
        MN1=[MN1 m1]; \ oY/hT_  
        z1=dz*MN1';                                    % output location 9\QeH'A  
      end Po)!vL"   
    end mp !S<m  
    hg=abs(U1').*abs(U1');                             % for data write to excel S'%|40U  
    ha=[z1 hg];                                        % for data write to excel |41NRGgY  
    t1=[0 t']; C`J>Gm  
    hh=[t1' ha'];                                      % for data write to excel file 4# L}&  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format D]?eRO9'  
    figure(1) ?Iin/<y  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn xJ$/#UdP  
    figure(2) Z! /!4(Fh  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn z[cs/x  
    q&DM*!Jq  
    非线性超快脉冲耦合的数值方法的Matlab程序 ]+"25V'L  
    }&*wJ]j`L  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   [%0{7pz}  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 [%uj+?}6O  
    ~E8L,h~  
    hf JeVT-/v  
    ~6Xr^An/Z  
    %  This Matlab script file solves the nonlinear Schrodinger equations D2y[?RG  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of o]@Mg5(8Q  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear n@JZ2K4  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 O)aWTI  
    cXd?48O  
    C=1;                           f`gs/R  
    M1=120,                       % integer for amplitude cIS?EW]S%X  
    M3=5000;                      % integer for length of coupler FwjmC%iY  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) n9%&HDl4  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. anzt;V.;Y  
    T =40;                        % length of time:T*T0. N^TE ;BM  
    dt = T/N;                     % time step 6CV9ewr  
    n = [-N/2:1:N/2-1]';          % Index Y'{F^VxA/  
    t = n.*dt;   H{BP7!t[V  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. T2dv!}7p  
    w=2*pi*n./T; lz [s  
    g1=-i*ww./2; iW9o-W a  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ~Z>!SMXp<  
    g3=-i*ww./2; xU!eT'Y  
    P1=0; iLbf:DXK(  
    P2=0; obz|*1M?  
    P3=1; W^k|*Y|  
    P=0; @}<b42  
    for m1=1:M1                 )ppIO"\  
    p=0.032*m1;                %input amplitude $<s;YhM:u)  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Wb%t6N?  
    s1=s10; \Q!I;  
    s20=0.*s10;                %input in waveguide 2 lDX\"Fq  
    s30=0.*s10;                %input in waveguide 3 PC<[ $~  
    s2=s20; I^l\<1"]  
    s3=s30; |[W7&@hF  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   EY^+ N>  
    %energy in waveguide 1 KNG7$icG  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   P#l"`C /  
    %energy in waveguide 2 _+6aD|7x  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   TY`t3  
    %energy in waveguide 3 _ *.ImD  
    for m3 = 1:1:M3                                    % Start space evolution Fz{T;  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS mHF? t.y  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; (Zoopkxw  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; V^%P}RFMc  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform od-yVE&  
       sca2 = fftshift(fft(s2)); g2%fla7r  
       sca3 = fftshift(fft(s3)); V%Ww;Ca]I  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   "j/jhe6  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); a{@gzB  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 60#eTo?}o  
       s3 = ifft(fftshift(sc3)); HZ[.,DuW  
       s2 = ifft(fftshift(sc2));                       % Return to physical space gZ>) S@  
       s1 = ifft(fftshift(sc1)); 045_0+r"@  
    end &e \UlM22  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 'w8p[h (,  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); '\% Kd+k  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 4q)+nh~s  
       P1=[P1 p1/p10]; s4[PwD  
       P2=[P2 p2/p10]; 8P* d  
       P3=[P3 p3/p10]; ;J,`v5z0:  
       P=[P p*p]; /^sk y!  
    end [ 0z-X7=e  
    figure(1) b!JrdJO,DP  
    plot(P,P1, P,P2, P,P3); #Dp]S, e  
    &&ZX<wOM  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~