切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9163阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 vjzG H*  
    &>!-67  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of gA`QV''/:  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of T^F83Py<  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear z9!OzGtIR  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 CH#K0hi  
    G`;\"9t5h  
    %fid=fopen('e21.dat','w'); ]j!pK4  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) l3*GQ~m7  
    M1 =3000;              % Total number of space steps :`4F0  
    J =100;                % Steps between output of space ~MP |L?my  
    T =10;                  % length of time windows:T*T0 artn _  
    T0=0.1;                 % input pulse width ,!,tU7-H  
    MN1=0;                 % initial value for the space output location l,~`o$ _  
    dt = T/N;                      % time step :+ mULUi  
    n = [-N/2:1:N/2-1]';           % Index bT6VxbNS  
    t = n.*dt;   t(dVd%   
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 V;W{pd-I  
    u20=u10.*0.0;                  % input to waveguide 2 @q`T#vd  
    u1=u10; u2=u20;                 <5^m`F5  
    U1 = u1;   `!spi=f  
    U2 = u2;                       % Compute initial condition; save it in U |Y8}*C\M.h  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 5F!Qn\{u{  
    w=2*pi*n./T; w3 kkam"  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T R(*t 1R\  
    L=4;                           % length of evoluation to compare with S. Trillo's paper [Y~~C J  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 4"H *hKp  
    for m1 = 1:1:M1                                    % Start space evolution m"-kkH{I  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS {bADMj1  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; PU[<sr#,  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform pF7N = mO  
       ca2 = fftshift(fft(u2)); Aix6O=K6  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation = p2AK\  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ir )~T0  
       u2 = ifft(fftshift(c2));                        % Return to physical space ]ao%9:P;  
       u1 = ifft(fftshift(c1)); +{ e2TY  
    if rem(m1,J) == 0                                 % Save output every J steps. NTM.Vj -_h  
        U1 = [U1 u1];                                  % put solutions in U array ` NvJ  
        U2=[U2 u2]; H8qAj  
        MN1=[MN1 m1]; @q" #.?>s  
        z1=dz*MN1';                                    % output location =WFG[~8  
      end 1NlpOVq:)  
    end #k)J);&ZA  
    hg=abs(U1').*abs(U1');                             % for data write to excel c30 kb  
    ha=[z1 hg];                                        % for data write to excel @2A&eLw LH  
    t1=[0 t']; (TGG?V  
    hh=[t1' ha'];                                      % for data write to excel file VelX+|w  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format RjR  
    figure(1) 2 mvp|< "  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn :?gk =JH:  
    figure(2) euh rEjwkH  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn `~W?a  
    ^w}BXVn  
    非线性超快脉冲耦合的数值方法的Matlab程序 { r8H5X  
    a*@4W3;7  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   n<7R6)j6  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 O#D N3yu?  
    +@C|u'  
     A,|lDsvM  
    $k3l[@;hE  
    %  This Matlab script file solves the nonlinear Schrodinger equations RZKczZGZg  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ^pa -2Ao6  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ..ht)Gex  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7;:Uv=  
    KA0_uty/T  
    C=1;                           a s?)6  
    M1=120,                       % integer for amplitude DKf:0E8  
    M3=5000;                      % integer for length of coupler ZNbb8v  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) iX'#~eK*<  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 1|\/2  
    T =40;                        % length of time:T*T0. mOi 8W,2  
    dt = T/N;                     % time step 6~6*(s|]A  
    n = [-N/2:1:N/2-1]';          % Index 1:iT#~n  
    t = n.*dt;   o4pe>hn  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. wS1zd?  
    w=2*pi*n./T; ob.=QQQs  
    g1=-i*ww./2; !+I!J s"  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; !@-g9z  
    g3=-i*ww./2; $T80vEi+u  
    P1=0; T]Eg9Y:+v  
    P2=0; 6>B_ojj:  
    P3=1; |d8x55dk  
    P=0; ;7 Y4 v`m  
    for m1=1:M1                 R k).D 6  
    p=0.032*m1;                %input amplitude UDz#?ZWnd  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 | sio:QP  
    s1=s10; d$`NApr  
    s20=0.*s10;                %input in waveguide 2 t<2B3&o1  
    s30=0.*s10;                %input in waveguide 3 !G3d5d2)C  
    s2=s20; 9W <I~  
    s3=s30; }EZd=_kAq~  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Z6`[ dAo  
    %energy in waveguide 1 PKM8MYvo  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   564)ha/^(  
    %energy in waveguide 2 1tQl^>r16  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   IvyBK]{|  
    %energy in waveguide 3 x:)8+Rn}  
    for m3 = 1:1:M3                                    % Start space evolution Xy(o0/7F9  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS zLiFk<G@Xi  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; n++L =&Wd  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; dLMKfh/4Q  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform qEoa%O  
       sca2 = fftshift(fft(s2)); @ukIt  
       sca3 = fftshift(fft(s3)); 3o=K?eOdg  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   .UuCTH;6`  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); IPhV|7  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ,1+)qv#|i  
       s3 = ifft(fftshift(sc3)); o4"7i 9+g  
       s2 = ifft(fftshift(sc2));                       % Return to physical space >f$>Odqe  
       s1 = ifft(fftshift(sc1)); T~rPpi&  
    end C"P40VQoo  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); BM&.Tw|x  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 3i'L5f67  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); f|f9[h'  
       P1=[P1 p1/p10]; *3A[C-1~.  
       P2=[P2 p2/p10]; lklMdsIdj  
       P3=[P3 p3/p10]; ,5_Hen=PI  
       P=[P p*p];  S=o1k  
    end =hO0 @w  
    figure(1) RTW4r9~'  
    plot(P,P1, P,P2, P,P3); &K_"5.7-56  
    $=iV)-  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~