切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8382阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 vNi;)"&*  
    _z p<en[  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ^^q&VL  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of *%uzLW0  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2gWR2 H@  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 M)13'B.  
    -TD\?Q  
    %fid=fopen('e21.dat','w'); 2V~E <K-  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) k(H&Af+  
    M1 =3000;              % Total number of space steps 8Qi)E 1n  
    J =100;                % Steps between output of space F:/x7]7??Z  
    T =10;                  % length of time windows:T*T0 `%YMUBaI  
    T0=0.1;                 % input pulse width *eg0^ByeD  
    MN1=0;                 % initial value for the space output location stiF`l  
    dt = T/N;                      % time step loA/d  
    n = [-N/2:1:N/2-1]';           % Index tE %g)hL-  
    t = n.*dt;   )at:Xm<s  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 &JX<)JEB=<  
    u20=u10.*0.0;                  % input to waveguide 2 eEXNEgbn  
    u1=u10; u2=u20;                 |!FQQ(1b  
    U1 = u1;   bo<P%$(D  
    U2 = u2;                       % Compute initial condition; save it in U ,h=a+ja8  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. vom3 C9o  
    w=2*pi*n./T; 4?Y7. :x  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T !aSj1 2J  
    L=4;                           % length of evoluation to compare with S. Trillo's paper :G>w MMv&z  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 'goKYl#1Q  
    for m1 = 1:1:M1                                    % Start space evolution yH('Vl  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS D>k(#vYKB  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 1j<uFhi>  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform D?#l8  
       ca2 = fftshift(fft(u2)); n*"r!&Dg  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation %GTFub0 F  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ' pgP QM<  
       u2 = ifft(fftshift(c2));                        % Return to physical space ='jT 5Mg  
       u1 = ifft(fftshift(c1)); ]AQ}_dRi=  
    if rem(m1,J) == 0                                 % Save output every J steps. JPn)Op6  
        U1 = [U1 u1];                                  % put solutions in U array D\G.p |9=  
        U2=[U2 u2]; PR5N:Bw  
        MN1=[MN1 m1]; ,K[e?(RP  
        z1=dz*MN1';                                    % output location XB7*S*"!  
      end ]y.V#,6e  
    end O*v&C Hd3  
    hg=abs(U1').*abs(U1');                             % for data write to excel keC'/\e  
    ha=[z1 hg];                                        % for data write to excel -+{[.U<1jk  
    t1=[0 t']; "a].v 8l!  
    hh=[t1' ha'];                                      % for data write to excel file Uj;JN}k  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format :+6W%B  
    figure(1) =s!0EwDH3  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn wxqX42v  
    figure(2) 0 aH&M4  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ^+Nd\tp  
    @]q^O MLY  
    非线性超快脉冲耦合的数值方法的Matlab程序 8OZasf  
    4/~x+tdc  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   x?o#}:S  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 [ne51F5_  
    4_5f4%S  
    5@+?{Cl  
    UB5H8&Rf!  
    %  This Matlab script file solves the nonlinear Schrodinger equations W]/J]O6  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of w\s`8S  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear UH-873AK  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `$Rgn3  
    g ptf*^s  
    C=1;                           ! DOyOTR&3  
    M1=120,                       % integer for amplitude J@:Q(  
    M3=5000;                      % integer for length of coupler KGM__ZO.  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) d^A]]Xg  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. BL 1KM2]  
    T =40;                        % length of time:T*T0. V5(_7b#z``  
    dt = T/N;                     % time step `sqr>QD  
    n = [-N/2:1:N/2-1]';          % Index LH2B*8=^2  
    t = n.*dt;   iOg4(SPci  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. >fWGiFmlk  
    w=2*pi*n./T; 5h/,*p6Nje  
    g1=-i*ww./2; J{b#X"i  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; w"?Q0bhV9y  
    g3=-i*ww./2; c+3`hVV  
    P1=0; ldUZ\z(*  
    P2=0; :41Y  
    P3=1; ?)-6~p 4N  
    P=0; S?b&4\:  
    for m1=1:M1                 F}So=Jz9h  
    p=0.032*m1;                %input amplitude c`;oV-f  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 : |s;2Y  
    s1=s10; )iw-l~y;  
    s20=0.*s10;                %input in waveguide 2 7JBs7LG  
    s30=0.*s10;                %input in waveguide 3 3XlQ4  
    s2=s20; Gw3+TvwU+Q  
    s3=s30; |1!fuB A  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ]%D!-[C%1  
    %energy in waveguide 1 Gt#r$.]W?o  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Q,5PscE6&k  
    %energy in waveguide 2 >hNSEWMY`  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   <8 <P,  
    %energy in waveguide 3 [T r7SU#x  
    for m3 = 1:1:M3                                    % Start space evolution 8_!qoW@B  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Oh1U=V2~  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; qY8; k #  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; P1[.[q/-e  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 2x<BU3  
       sca2 = fftshift(fft(s2)); Xw9]WJc  
       sca3 = fftshift(fft(s3)); u;$qJjS N  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   _m?i$5  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); \@Cz 32wg  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); |.Vgk8oTl  
       s3 = ifft(fftshift(sc3)); D Z*c.|W  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ThX3@o  
       s1 = ifft(fftshift(sc1)); L;:PeYPL  
    end E|9`J00  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); >oq\`E  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 7fypUQ:y  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ]vf_4QW=  
       P1=[P1 p1/p10]; DtBvfYO8)>  
       P2=[P2 p2/p10]; !:\0}w$-  
       P3=[P3 p3/p10]; q(~jP0pj%  
       P=[P p*p]; -sv%A7i  
    end g0B-<>E  
    figure(1) 0Md.3kY  
    plot(P,P1, P,P2, P,P3); C1f$^N  
    rEp\ld  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~