切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9229阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 M+-*QyCFK  
    LmRy1T,act  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 'Oxy$U   
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of O6@j &*jS  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear .[YuRLGz  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 )"qa kT  
    n#mA/H;wV  
    %fid=fopen('e21.dat','w'); X enE^e+9  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) }?lrU.@zg  
    M1 =3000;              % Total number of space steps E!;SL|lj.  
    J =100;                % Steps between output of space ] ;KJ6  
    T =10;                  % length of time windows:T*T0 9/9j+5}+  
    T0=0.1;                 % input pulse width "RedK '7g  
    MN1=0;                 % initial value for the space output location K:J3Z5"  
    dt = T/N;                      % time step -7SAK1c$  
    n = [-N/2:1:N/2-1]';           % Index "WlZ)wyF%  
    t = n.*dt;   P=qa::A  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 1v#%Ei$6`t  
    u20=u10.*0.0;                  % input to waveguide 2 CMe 06^U   
    u1=u10; u2=u20;                 ]{!U@b  
    U1 = u1;   .b_)%jd x  
    U2 = u2;                       % Compute initial condition; save it in U MlcR"gl*  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ?llXd4  
    w=2*pi*n./T; Id*Ce2B  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ht|z<XJ  
    L=4;                           % length of evoluation to compare with S. Trillo's paper }~2LW" 1'  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 88Ey12$  
    for m1 = 1:1:M1                                    % Start space evolution M\vwI"  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS  vx\r!]  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; AW%50V  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Y$o< 6[7  
       ca2 = fftshift(fft(u2)); zy?.u.4L  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation "33Fv9C#bK  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   eP.wOl  
       u2 = ifft(fftshift(c2));                        % Return to physical space hZdoc<  
       u1 = ifft(fftshift(c1)); 90Pl$#cb2  
    if rem(m1,J) == 0                                 % Save output every J steps. dA#Q}.*r  
        U1 = [U1 u1];                                  % put solutions in U array 3^IpE];+:u  
        U2=[U2 u2]; <5d ~P/,  
        MN1=[MN1 m1]; &\#sI9  
        z1=dz*MN1';                                    % output location 9Q.rMs>qj  
      end 09|K>UC)v  
    end i3dkYevs?  
    hg=abs(U1').*abs(U1');                             % for data write to excel vN Vox0V  
    ha=[z1 hg];                                        % for data write to excel ZLc -RM  
    t1=[0 t']; :D euX  
    hh=[t1' ha'];                                      % for data write to excel file e%@'5k\SK  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 9"NF/)_  
    figure(1) EH$1fvE  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Ut*`:]la  
    figure(2) ICpAt~3[M  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn .I$qCb|FP  
    dFRsm0T  
    非线性超快脉冲耦合的数值方法的Matlab程序 ?e` ^P   
    FFl!\y*0z  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   z[LNf.)}  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 >/g#lS 5  
    Jk&3%^P{m  
    UXeN8  
    f6EZ( v  
    %  This Matlab script file solves the nonlinear Schrodinger equations B%" d~5Y  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of nx@=>E+a  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear E08 klC0  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 G(Lzf(  
    \O}E7 -  
    C=1;                           FI[A[*fi  
    M1=120,                       % integer for amplitude 4 <9=5q]  
    M3=5000;                      % integer for length of coupler b $'FvZbk  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) +GG9^:<yr  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. jDKO} bQ  
    T =40;                        % length of time:T*T0. yGI;ye'U  
    dt = T/N;                     % time step qJ;jfh!  
    n = [-N/2:1:N/2-1]';          % Index vY4\59]P  
    t = n.*dt;   .Fs7z7?Y  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 1=t>HQ  
    w=2*pi*n./T; @"hb) 8ng  
    g1=-i*ww./2; qT ,Te  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; rk&IlAE  
    g3=-i*ww./2; }e!x5g   
    P1=0; zxMX Xm;  
    P2=0; 'GB. UKlR  
    P3=1; #J@[Wd  
    P=0; RzxNbeki[W  
    for m1=1:M1                 yQU_>_!n  
    p=0.032*m1;                %input amplitude ~{d$!`|a  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 uH/J]zKR  
    s1=s10; i;]"n;>+/  
    s20=0.*s10;                %input in waveguide 2 6tXq:  
    s30=0.*s10;                %input in waveguide 3 !i{aMxUP  
    s2=s20; mIurA?&7!  
    s3=s30; ~s% Md  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   0vFD3}~>  
    %energy in waveguide 1 L\Aq6q@c  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Y ?S!8-z  
    %energy in waveguide 2 jB`,u|FG  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   | 1E|hh@k  
    %energy in waveguide 3 -- PtZ]Z  
    for m3 = 1:1:M3                                    % Start space evolution &]8P1{  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS y6LWx:  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; l%[EXZ  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Q7*SE%H  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform B{|8#jqY  
       sca2 = fftshift(fft(s2)); Yb +yw_5  
       sca3 = fftshift(fft(s3)); sA/pVU  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   $AfM>+GQ`n  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); <%($7VMev  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Ewu O&q  
       s3 = ifft(fftshift(sc3)); ~kShq%  
       s2 = ifft(fftshift(sc2));                       % Return to physical space kB3H="3[[  
       s1 = ifft(fftshift(sc1)); $8;R[SU6Y  
    end '3_]Gu-D  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); U[SaY0Z  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); p=;=w_^y  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); e^d0zl{  
       P1=[P1 p1/p10]; s8wmCzB~  
       P2=[P2 p2/p10]; Q?e*4ba  
       P3=[P3 p3/p10]; 6`O.!|)  
       P=[P p*p]; {kp"nl$<  
    end ~R_ztD+C(  
    figure(1) 8JM&(Q%#  
    plot(P,P1, P,P2, P,P3); +,2:g}5  
    V@Rrn <l  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~