计算脉冲在非线性耦合器中演化的Matlab 程序 6iQqOAG ,~;`@ % This Matlab script file solves the coupled nonlinear Schrodinger equations of
<=uO*s>% % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
2;]tIt d1 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
]Q^8
9? % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
NHZMH!=4:n w32F?78] %fid=fopen('e21.dat','w');
7#
'j>] N = 128; % Number of Fourier modes (Time domain sampling points)
R GV{KL M1 =3000; % Total number of space steps
[9?]|4 J =100; % Steps between output of space
AO$aW yI T =10; % length of time windows:T*T0
UIQ=b;J9 T0=0.1; % input pulse width
hy"p8j7_ MN1=0; % initial value for the space output location
GmGq69]J* dt = T/N; % time step
<.7W:s,f= n = [-N/2:1:N/2-1]'; % Index
a(o[ bH.|; t = n.*dt;
/7*qa G u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
lSId<v?C> u20=u10.*0.0; % input to waveguide 2
d\z':d.Tt u1=u10; u2=u20;
*7Sg8\wDn U1 = u1;
'9wD+'c=A U2 = u2; % Compute initial condition; save it in U
`.6Jgfu ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
BJ/#V) w=2*pi*n./T;
;`bJgSCfo g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
a7NX~9g L=4; % length of evoluation to compare with S. Trillo's paper
Pb D|7IM dz=L/M1; % space step, make sure nonlinear<0.05
\v_t:
" for m1 = 1:1:M1 % Start space evolution
~?A,GalS u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
= &aD!nTx u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
Y@%6*uTLa ca1 = fftshift(fft(u1)); % Take Fourier transform
xcIZ'V ca2 = fftshift(fft(u2));
:kI
x?cc c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
_jb"@TY c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
sXC]{]
P u2 = ifft(fftshift(c2)); % Return to physical space
48%a${Nvvj u1 = ifft(fftshift(c1));
Ll&5#q if rem(m1,J) == 0 % Save output every J steps.
;v+CQx U1 = [U1 u1]; % put solutions in U array
>-y&k^a= U2=[U2 u2];
G@Zi3 5 MN1=[MN1 m1];
s: q15" z1=dz*MN1'; % output location
U7fE6&g end
Pq7tNM E end
!r!Mq~X<= hg=abs(U1').*abs(U1'); % for data write to excel
4_I,wG@ ha=[z1 hg]; % for data write to excel
XKU=VOY t1=[0 t'];
<F.Ol/'h hh=[t1' ha']; % for data write to excel file
IO_H%/v"jC %dlmwrite('aa',hh,'\t'); % save data in the excel format
_5YL !v& figure(1)
9'8oOBqm3% waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
$l[*Y figure(2)
SS~Txt75m waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
%J%gXk}] |QgXSe7 非线性超快脉冲耦合的数值方法的Matlab程序 =yNHJHRA# a
m zw 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
+ow
^xiD Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
ptq{$Y{_ O-2H!58$) {:FITF3o <,hBoHZSL % This Matlab script file solves the nonlinear Schrodinger equations
:3n.nKANr % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
et ~gO!1:* % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
?HcA&
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
)LhO}zQ &%r#eB?7 C=1;
YV940A-n M1=120, % integer for amplitude
=,]J"n8|v M3=5000; % integer for length of coupler
xNqQbkF N = 512; % Number of Fourier modes (Time domain sampling points)
X9gC2iSs] dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
|f}NO~CA T =40; % length of time:T*T0.
A>g$[ dt = T/N; % time step
7ER 2h* n = [-N/2:1:N/2-1]'; % Index
`U1%d7[vY t = n.*dt;
f8^58]wx0 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
d=KOV;~); w=2*pi*n./T;
Qy/bzO g1=-i*ww./2;
v#+w<gRq g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
!^fJAtCN] g3=-i*ww./2;
i
}gxq P1=0;
G-^ccdT P2=0;
yl ;'Ru: P3=1;
C;)
xjZiR P=0;
*_wef/== for m1=1:M1
Fi/G, [q p=0.032*m1; %input amplitude
+e:ZN
tr9 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
XZ&v3ul s1=s10;
BD0-v` s20=0.*s10; %input in waveguide 2
l9ihW^ s30=0.*s10; %input in waveguide 3
,<
icW&a s2=s20;
(Sv%-8?gs s3=s30;
`^_: p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
66 Xt=US %energy in waveguide 1
'> Q$5R1 p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
bX(*f>G' %energy in waveguide 2
J|
'(;Ay4u p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
oX4uRc7wR %energy in waveguide 3
%Nn'p" for m3 = 1:1:M3 % Start space evolution
V6{xX0'b*m s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
Aii[=x8 s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
RM+E s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
ZO1J";>u sca1 = fftshift(fft(s1)); % Take Fourier transform
p,8Z{mLn sca2 = fftshift(fft(s2));
w1_Ux<RF sca3 = fftshift(fft(s3));
qi2dTB sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
\-0` %k"& sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
Pvw%,=41O sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
R*0F)M s3 = ifft(fftshift(sc3));
%$xFnGb s2 = ifft(fftshift(sc2)); % Return to physical space
KxwLKaImI s1 = ifft(fftshift(sc1));
dSZ#,Ea" end
R4(8]oUW p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
9p4U\hx p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
Z :+#3.4$3 p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
%4Zy1{yKs_ P1=[P1 p1/p10];
-JENY|6 P2=[P2 p2/p10];
;#i$0~lRl P3=[P3 p3/p10];
?63JQ.; P=[P p*p];
Vgn1I(Gj 4 end
fO>~V1 figure(1)
|]cDz
plot(P,P1, P,P2, P,P3);
OP}p;( 5,ahKB8 转自:
http://blog.163.com/opto_wang/