切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9262阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 g)5mr:\  
    9QaE)wt  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of O%3Hp.|!  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of |r*)U(c`  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear "M, 1ElQ  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 D#AqZS>B  
    S=0DQ19  
    %fid=fopen('e21.dat','w'); N+ak{3  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) W#%s0EN<_  
    M1 =3000;              % Total number of space steps (6.uNLr  
    J =100;                % Steps between output of space lXg5UrW  
    T =10;                  % length of time windows:T*T0 TF%Xb>jy[  
    T0=0.1;                 % input pulse width LFI#wGhXVk  
    MN1=0;                 % initial value for the space output location *f3StX  
    dt = T/N;                      % time step .L+XV y  
    n = [-N/2:1:N/2-1]';           % Index 8L,=Eap  
    t = n.*dt;   +SR{ FF  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 oNtoqYwH  
    u20=u10.*0.0;                  % input to waveguide 2 hJ$9Hb  
    u1=u10; u2=u20;                 n m<?oI*\  
    U1 = u1;   gfs;?vP  
    U2 = u2;                       % Compute initial condition; save it in U Z,/K$;YWo  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ~ney~Pz_  
    w=2*pi*n./T; d\ 8v VZ  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T &iInru3  
    L=4;                           % length of evoluation to compare with S. Trillo's paper #R{>@]x`  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 59O-"Sc[  
    for m1 = 1:1:M1                                    % Start space evolution puJB&u"4L  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Z;%uDlcXI  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ?+))J~@t  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform %rMCiz  
       ca2 = fftshift(fft(u2)); JwB'B  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation bx(@ fl:m  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   b?l>vUgAg  
       u2 = ifft(fftshift(c2));                        % Return to physical space z 7ik/>d?  
       u1 = ifft(fftshift(c1)); {$,\Qg  
    if rem(m1,J) == 0                                 % Save output every J steps. t&xoi7!$  
        U1 = [U1 u1];                                  % put solutions in U array ejlns ~  
        U2=[U2 u2]; rNR7}o~qo  
        MN1=[MN1 m1]; d?8OY  
        z1=dz*MN1';                                    % output location 9H/>M4RT  
      end |ZL?Pqki  
    end ~x^y5[5{  
    hg=abs(U1').*abs(U1');                             % for data write to excel {_Wrs.a'8  
    ha=[z1 hg];                                        % for data write to excel 0k5-S~_\  
    t1=[0 t']; _"ciHYHBQ  
    hh=[t1' ha'];                                      % for data write to excel file RkE)2q[5  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format !1G KpL  
    figure(1) uYMn VE"  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn V9,<>  
    figure(2) 4LKpEl.=  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn u<Kowt<ci  
    Tb$))O}  
    非线性超快脉冲耦合的数值方法的Matlab程序 hO]F\0+  
    tL$,]I$1+  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   I&{T 4.B:U  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ==OUd6e}  
    ^Hv&{r77  
     E.h  
    UDh \%?j  
    %  This Matlab script file solves the nonlinear Schrodinger equations `Pvi+:6\Y  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of &KjMw:l  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear -K'UXoU1  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %dzt'uz  
    [UA*We 1  
    C=1;                           *S ag  
    M1=120,                       % integer for amplitude cuN9R G  
    M3=5000;                      % integer for length of coupler C< c6Ub  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) hOwb   
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Hz.i$L0}  
    T =40;                        % length of time:T*T0. [kg?q5F)  
    dt = T/N;                     % time step v>]g="5}8  
    n = [-N/2:1:N/2-1]';          % Index ?4bYb]8Z  
    t = n.*dt;   k( :Bl  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. cXPpxRXBD  
    w=2*pi*n./T; dd  
    g1=-i*ww./2; iT}>a30]B  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; a9-Mc5^'n  
    g3=-i*ww./2; @3.Z>KONx  
    P1=0; %J M$]  
    P2=0; Voo'ZeZa  
    P3=1; Y~vk>ZC  
    P=0; I=kqkuW  
    for m1=1:M1                 Kk8wlC  
    p=0.032*m1;                %input amplitude k24I1DlR8  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 !T,<p    
    s1=s10; ,^([aK  
    s20=0.*s10;                %input in waveguide 2 UjI./"]O  
    s30=0.*s10;                %input in waveguide 3 h9QM nH'  
    s2=s20; f)*?Ji|5F  
    s3=s30; (%X *b.n=  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   !-lI<$S:  
    %energy in waveguide 1 I{89chi  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   pTCD1)  
    %energy in waveguide 2 juR>4SH  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   6TW<,SM  
    %energy in waveguide 3 y|| n9  
    for m3 = 1:1:M3                                    % Start space evolution d_25]B(  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS v6 U!(x  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Gd 4S7JE  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; cg8/v:B  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform $mPR)T  
       sca2 = fftshift(fft(s2)); GrLxERf  
       sca3 = fftshift(fft(s3)); jlBsm'M<m  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   @@D/&}#F  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); E{T3Xwg  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); zIF1A*UH  
       s3 = ifft(fftshift(sc3)); Xex7Lr&  
       s2 = ifft(fftshift(sc2));                       % Return to physical space !0l|[c4 e>  
       s1 = ifft(fftshift(sc1)); 16 AlmegDk  
    end +S~ u,=  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); <.ZIhDiEl  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); SD^::bH  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); k9 r49lb  
       P1=[P1 p1/p10]; >V^8<^?G  
       P2=[P2 p2/p10]; q]="ek&_  
       P3=[P3 p3/p10]; E <yQB39  
       P=[P p*p]; a?y ucA  
    end w~+*Vd~U  
    figure(1) 5$U49j  
    plot(P,P1, P,P2, P,P3); (csk   
    1|p\rHGd  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~