切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8186阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 \#uqD\DE  
    0\V\qAk  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of `DI{wqV9  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of )3k)2XF  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear J%:WLQo  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 \7|s$ XQ\  
    # rh0r`  
    %fid=fopen('e21.dat','w'); zd?bHcW/h  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) c80 }1  
    M1 =3000;              % Total number of space steps Rg%R/p)C  
    J =100;                % Steps between output of space tfi2y]{A  
    T =10;                  % length of time windows:T*T0 wlm3~B\64  
    T0=0.1;                 % input pulse width j)6@q@P/  
    MN1=0;                 % initial value for the space output location Q.j-C}a  
    dt = T/N;                      % time step M3hy5 j(b  
    n = [-N/2:1:N/2-1]';           % Index sL!;hKK  
    t = n.*dt;   ({*.!ty  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ,$hQ(yF  
    u20=u10.*0.0;                  % input to waveguide 2 &>d:ewM\  
    u1=u10; u2=u20;                 (1j(* ?2  
    U1 = u1;   @)aXNQY  
    U2 = u2;                       % Compute initial condition; save it in U ,\|n=T,  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. &M!4]p ow  
    w=2*pi*n./T; yC9:sQ'k  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T X;K8,A7`  
    L=4;                           % length of evoluation to compare with S. Trillo's paper *T.={>HE8  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 uf{SxEa  
    for m1 = 1:1:M1                                    % Start space evolution :d!i[W*  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Y}V)4j  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Ktg&G<%J0  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform D6C -x  
       ca2 = fftshift(fft(u2)); 9Q SUCN_  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation }M"-5K}  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   iqU.a/~y  
       u2 = ifft(fftshift(c2));                        % Return to physical space X}65\6  
       u1 = ifft(fftshift(c1)); K1m!S9d`x  
    if rem(m1,J) == 0                                 % Save output every J steps. Y-}hNZn"{  
        U1 = [U1 u1];                                  % put solutions in U array TE*>a5C|  
        U2=[U2 u2]; ]1/W8z%  
        MN1=[MN1 m1]; $5q{vy  
        z1=dz*MN1';                                    % output location Z'*G'/*  
      end 6E*Zj1KX  
    end 1A,4 Aw<  
    hg=abs(U1').*abs(U1');                             % for data write to excel 'W<a54T?z  
    ha=[z1 hg];                                        % for data write to excel GI'&g@?u  
    t1=[0 t']; 30gZ_ 8C>}  
    hh=[t1' ha'];                                      % for data write to excel file `4"y#Z  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format D{&+7C:8.  
    figure(1) 0ER6cTo-t  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn uK"$=v6|  
    figure(2) (HTk;vbZm  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn  d'**wh,  
    .@x"JI> ;  
    非线性超快脉冲耦合的数值方法的Matlab程序 2vW,.]95M  
    hc@;}a\Y  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   +e{djp@m  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `9G$p|6  
    OTy 4"%  
    K>DnD0  
    ^{6UAT~!R  
    %  This Matlab script file solves the nonlinear Schrodinger equations &CPe$'FYI  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of kBDe*K.V  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear #!<+:y'S?  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 g-TX;(  
    5 \.TZMB  
    C=1;                           j*3sjOoC  
    M1=120,                       % integer for amplitude lHj7O &+  
    M3=5000;                      % integer for length of coupler Wb}0-U{S'  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) *$WiJ3'(m  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ['9OGV\  
    T =40;                        % length of time:T*T0. )Or:wFSMq  
    dt = T/N;                     % time step <R]Wy}2-  
    n = [-N/2:1:N/2-1]';          % Index SqT"/e]b'  
    t = n.*dt;   .+ yJh  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. FdK R{dX}  
    w=2*pi*n./T; ggYIq*4  
    g1=-i*ww./2; c,u$tnE)  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 5qODS_Eq  
    g3=-i*ww./2; |'l* $  
    P1=0; TTw~.x,  
    P2=0; ="[+6X  
    P3=1; 0,i+  
    P=0; Y9(i}uTi  
    for m1=1:M1                 (WU~e!}  
    p=0.032*m1;                %input amplitude ">4[+'  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 J4R  
    s1=s10; qLktMp_  
    s20=0.*s10;                %input in waveguide 2 e\bF_ N2VA  
    s30=0.*s10;                %input in waveguide 3 fb S.  
    s2=s20; kY |=a  
    s3=s30; uJAB)ti2I  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   khO<Z^wi[  
    %energy in waveguide 1 y^Xxa'y  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   x:D<Mu#  
    %energy in waveguide 2 <3]/ms  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   <pa];k(IQL  
    %energy in waveguide 3 k3htHCf*G$  
    for m3 = 1:1:M3                                    % Start space evolution 0%L$TJ.''  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS P^{`d_[K%  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; rq|czQ  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; `S!uj <-  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform cB{;Nh6"  
       sca2 = fftshift(fft(s2)); >!ZyykAs  
       sca3 = fftshift(fft(s3)); "r `6c0Z  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   l#(g&x6J  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); F@*r%[S/  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); cqU/Y_%l'  
       s3 = ifft(fftshift(sc3)); U=*q;$L#  
       s2 = ifft(fftshift(sc2));                       % Return to physical space YUE 1 '}  
       s1 = ifft(fftshift(sc1)); ]8j5Ou6#y  
    end J,2v~Dq  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); cF>;f(X  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); p`V9+CA  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); iF2IR {h  
       P1=[P1 p1/p10]; .dq.F#2B;  
       P2=[P2 p2/p10]; V:$ 1o  
       P3=[P3 p3/p10]; _\V{X}ftqa  
       P=[P p*p]; kTe<1^,m  
    end hQRc,d6x5  
    figure(1) 3 mMdq*X5  
    plot(P,P1, P,P2, P,P3); iegPEb  
    <zWQ[^  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~