计算脉冲在非线性耦合器中演化的Matlab 程序 CqFk(Td9-D tXXnHEz % This Matlab script file solves the coupled nonlinear Schrodinger equations of
^L?2y/ % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
1Y+g^Z;G % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
l~(A(1 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
oU`{6 ~; |&u4Q /0 %fid=fopen('e21.dat','w');
u,~/oTgO N = 128; % Number of Fourier modes (Time domain sampling points)
(baBi9<P= M1 =3000; % Total number of space steps
vCX
54 J =100; % Steps between output of space
5.M82rR;~ T =10; % length of time windows:T*T0
Gov]^?^D- T0=0.1; % input pulse width
!FA[
]d 4 MN1=0; % initial value for the space output location
9 `+RmX;m dt = T/N; % time step
~8 S2BV3@ n = [-N/2:1:N/2-1]'; % Index
4ux^K:z t = n.*dt;
<rI8O;\H u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
taBCE?{ u20=u10.*0.0; % input to waveguide 2
|\BxKwS^ u1=u10; u2=u20;
vX;~m7+ U1 = u1;
bDtb"V8e U2 = u2; % Compute initial condition; save it in U
Wj INY ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
}}b &IA# w=2*pi*n./T;
Um%$TGw5 g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
Eg+z(m$M L=4; % length of evoluation to compare with S. Trillo's paper
HRg< f= oz dz=L/M1; % space step, make sure nonlinear<0.05
NTV@, for m1 = 1:1:M1 % Start space evolution
CNM pyr u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
n?mV(? N u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
|V-)3#c ca1 = fftshift(fft(u1)); % Take Fourier transform
>(He,o@M ca2 = fftshift(fft(u2));
zvOSQxGQ c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
}rA
_4% c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
|C`.m| u2 = ifft(fftshift(c2)); % Return to physical space
kO}QOL4 u1 = ifft(fftshift(c1));
k#"}oI{<
6 if rem(m1,J) == 0 % Save output every J steps.
v|IG
G'r U1 = [U1 u1]; % put solutions in U array
/NB;eV? U2=[U2 u2];
K<E|29t^k MN1=[MN1 m1];
ana?;NvC z1=dz*MN1'; % output location
0eFvcH:qG end
Nhrh>x[wJ end
m{?uR.O hg=abs(U1').*abs(U1'); % for data write to excel
2)T.Ci cx ha=[z1 hg]; % for data write to excel
fI }v}L^ t1=[0 t'];
:9]"4ktoJ hh=[t1' ha']; % for data write to excel file
Z(c2F] %dlmwrite('aa',hh,'\t'); % save data in the excel format
9{&oVt~Y$ figure(1)
<G60R^o waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
<sor;;T figure(2)
J_7&nIH7 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
Bhf4 /$ cz;gz4d8 非线性超快脉冲耦合的数值方法的Matlab程序 i1^#TC$x _i pY; 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
R4AKp1Y Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
{w52]5l L4!T NsF8`rg IRK(y*6 % This Matlab script file solves the nonlinear Schrodinger equations
JXAH/N&i % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
I%tJLdL % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
)^]1j$N=3 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
u Tvck6 |#J!oBS! C=1;
Rd:wMy$ M1=120, % integer for amplitude
dU.H9\p M3=5000; % integer for length of coupler
g1(`a`M N = 512; % Number of Fourier modes (Time domain sampling points)
fl*>m, dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
Ja%(kq[v T =40; % length of time:T*T0.
V[fcP; dt = T/N; % time step
{hi'LA-4@ n = [-N/2:1:N/2-1]'; % Index
0Q5fX} t = n.*dt;
=x-@-\m ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
$[M5Vv w=2*pi*n./T;
57rH`UFXH g1=-i*ww./2;
tish%Qnpd g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
DcX,o*ec! g3=-i*ww./2;
'Ej&zh P1=0;
>*e,+ok P2=0;
f{ER]U P3=1;
c~v(bK P=0;
egh_1Wg2a for m1=1:M1
X~>2iL p=0.032*m1; %input amplitude
yQdoy^d/4 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
BjAmM*k s1=s10;
Y4,LXuQ s20=0.*s10; %input in waveguide 2
:uQ~?amM s30=0.*s10; %input in waveguide 3
? yek\X s2=s20;
xAJuIR1Hi s3=s30;
![hVTZ,hyZ p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
PNG!q}(c %energy in waveguide 1
NTy0NH p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
IrTMZG %energy in waveguide 2
Ika(ip#]= p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
Jwe9L^gL %energy in waveguide 3
Mhiz{Td for m3 = 1:1:M3 % Start space evolution
nEbJ,#>Z s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
?nV& :~eY s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
pipqXe s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
6U[bAp sca1 = fftshift(fft(s1)); % Take Fourier transform
9 ,>u, sca2 = fftshift(fft(s2));
\K%A}gnHe sca3 = fftshift(fft(s3));
0PT\/imgN sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
>Qold7
M sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
5$Da\?Fpn sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
q8[I`
V{ s3 = ifft(fftshift(sc3));
mIm.+U`a2 s2 = ifft(fftshift(sc2)); % Return to physical space
HZEDr}RN s1 = ifft(fftshift(sc1));
*Rj(~Q/t end
_|}
GhdYE p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
< (<IRCR p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
#azD&6` p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
Kfk/pYMDq P1=[P1 p1/p10];
u!D AeE P2=[P2 p2/p10];
tC4 7P[b P3=[P3 p3/p10];
2}8xY:|@(U P=[P p*p];
,/6 aA7( end
-9> oB figure(1)
_7Rp.)[& plot(P,P1, P,P2, P,P3);
3|9
U`@ gy6Pf4Yo 转自:
http://blog.163.com/opto_wang/