切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9019阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 WE")xhV6  
    !6Q`>s]  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of |=\91fP68`  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Xem 05%,  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear On4w/L9L5  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 a'uU,Eb}#w  
    kBbl+1{H  
    %fid=fopen('e21.dat','w'); .!i0_Rv5x  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) en>9E.?N  
    M1 =3000;              % Total number of space steps 27>a#vCT  
    J =100;                % Steps between output of space J/t!- !  
    T =10;                  % length of time windows:T*T0 Ivsb<qzG  
    T0=0.1;                 % input pulse width "IG+V:{ou  
    MN1=0;                 % initial value for the space output location f/ajejYo?,  
    dt = T/N;                      % time step 3% ^z?_  
    n = [-N/2:1:N/2-1]';           % Index >\Z R*CS  
    t = n.*dt;   ET)>#zp+s  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 pW{8R^vKm  
    u20=u10.*0.0;                  % input to waveguide 2 %w7m\nw@  
    u1=u10; u2=u20;                 i&A%"lOI9  
    U1 = u1;   Tw//!rp G  
    U2 = u2;                       % Compute initial condition; save it in U rs:Q%V ^  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. _R7 w?!t8  
    w=2*pi*n./T; v)):$s?WB  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T |) Pi6Y  
    L=4;                           % length of evoluation to compare with S. Trillo's paper W/r^ugDV  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 G AQ 'Ti1!  
    for m1 = 1:1:M1                                    % Start space evolution t+Z`n(>  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 6^;^rUlm  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; dv7<AJ  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Pdw#o^Iq^  
       ca2 = fftshift(fft(u2)); ,-'4L9  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation C0fmmI0z~  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   8Bpip  
       u2 = ifft(fftshift(c2));                        % Return to physical space C c*( {  
       u1 = ifft(fftshift(c1)); ~F w<eY  
    if rem(m1,J) == 0                                 % Save output every J steps. pUCK-rL  
        U1 = [U1 u1];                                  % put solutions in U array &aPl`"j  
        U2=[U2 u2]; MdC<4^|  
        MN1=[MN1 m1]; xhw-2dl*H  
        z1=dz*MN1';                                    % output location cS|VJWgTZ  
      end ,+._;[k  
    end bU`=*  
    hg=abs(U1').*abs(U1');                             % for data write to excel 2yKz-"E  
    ha=[z1 hg];                                        % for data write to excel 5j{Np,K  
    t1=[0 t']; j$x)pB3]  
    hh=[t1' ha'];                                      % for data write to excel file S &JJIFftO  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format n|i"S`  
    figure(1) \DA$6w\\  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn wqD5d   
    figure(2) ~O;y?]U  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn `.=sTp2rbc  
    _8><| 3d  
    非线性超快脉冲耦合的数值方法的Matlab程序 n#*`!#  
    t`G)b&3_O  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   \M(* =5  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +l?; )  
    *7" L]6  
    *Oo &}oAj  
    e*]r  
    %  This Matlab script file solves the nonlinear Schrodinger equations {J]-<:XD  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of [f!O6moR6  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear {8@\Ij  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 G> \T bx  
    )%Ru#}1X6  
    C=1;                           x*}bo))hb  
    M1=120,                       % integer for amplitude ?a.+j8pbGg  
    M3=5000;                      % integer for length of coupler |}[nH>  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) EO)%UrWnC  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. "Xn%at4  
    T =40;                        % length of time:T*T0. %f&< wC  
    dt = T/N;                     % time step ](K0Fwo`;"  
    n = [-N/2:1:N/2-1]';          % Index VC-;S7k  
    t = n.*dt;   5j^NV&/_  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 2~c~{ jl\  
    w=2*pi*n./T; O~@fXMthh  
    g1=-i*ww./2; z`$J_CjY  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ;(6P6@+o  
    g3=-i*ww./2; 'C?NJ~MN  
    P1=0; XU-m"_t  
    P2=0; ml u 3K  
    P3=1; N.j "S'(i  
    P=0; bAF )Bli  
    for m1=1:M1                 .px:e)iW  
    p=0.032*m1;                %input amplitude ~]uZy=P? 5  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 x5Zrz<Y$w  
    s1=s10; ^_>!B)  
    s20=0.*s10;                %input in waveguide 2 0ys~2Y!eH  
    s30=0.*s10;                %input in waveguide 3 nr\q7  
    s2=s20; +F@_Es<6  
    s3=s30; w'ybbv{c  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   @"|i"Hk^  
    %energy in waveguide 1 Lz4eh WntO  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   M{N(~ql  
    %energy in waveguide 2 K7`YJp`i  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   . (`3JQ2s  
    %energy in waveguide 3  Mm= Mz  
    for m3 = 1:1:M3                                    % Start space evolution tRfm+hqRZ  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS y' xF0  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; {'bip`U.  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; \pY^^ l*  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform X K>&$<5{  
       sca2 = fftshift(fft(s2)); $v27]"]  
       sca3 = fftshift(fft(s3)); 3/goCg  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   k#)Ad*t  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); &%F@O<:  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); rPiNv 30L  
       s3 = ifft(fftshift(sc3)); q<{NO/Mm  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 8+'C_t/0i  
       s1 = ifft(fftshift(sc1)); z,f=}t[.Y  
    end cT'w=  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); P-Su5F  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); E{Vo'!LY  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); SUdm 0y  
       P1=[P1 p1/p10]; RKkGITDk  
       P2=[P2 p2/p10]; K|^wc$  
       P3=[P3 p3/p10]; Ruaur]  
       P=[P p*p]; sbsu(Sz+  
    end .BZVX=x  
    figure(1) qfL-r,XS`F  
    plot(P,P1, P,P2, P,P3); t#~?{i@m  
    #hxyOq,  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~