切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9066阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 +P YX.  
    &/)2P#u  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 5eS0 B{,c  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of {yFCGCs  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Ik W 8$>  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 V?pqKQL0  
    hc#Lni R3$  
    %fid=fopen('e21.dat','w'); 5,Rxc=  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) |qe[`x; %  
    M1 =3000;              % Total number of space steps ePF)wl;m  
    J =100;                % Steps between output of space t @=*k9  
    T =10;                  % length of time windows:T*T0 Xm#rkF[,  
    T0=0.1;                 % input pulse width |7XPu  
    MN1=0;                 % initial value for the space output location k2]fUP  
    dt = T/N;                      % time step Jc8^m0_  
    n = [-N/2:1:N/2-1]';           % Index b2rlj6d  
    t = n.*dt;   _"nzo4e0  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ~@Yiwp\"  
    u20=u10.*0.0;                  % input to waveguide 2 )T2V< 3l  
    u1=u10; u2=u20;                 PD,s,A  
    U1 = u1;   ha Tmfh_|  
    U2 = u2;                       % Compute initial condition; save it in U 5D9n>K4|  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. {nQ?+o3  
    w=2*pi*n./T; <V?csx/eRd  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T lQ5d.}O&  
    L=4;                           % length of evoluation to compare with S. Trillo's paper K9z 1'k QH  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 OO$YwOKS  
    for m1 = 1:1:M1                                    % Start space evolution Vc2 (R^  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ]Q8[,HTG  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; |j2b=0Rpk  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Mk=M)d`  
       ca2 = fftshift(fft(u2)); (3. B\8s  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation p"l GR&b  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   C_5o&O8Bc  
       u2 = ifft(fftshift(c2));                        % Return to physical space w?;j5[j  
       u1 = ifft(fftshift(c1)); 10gh4,z[  
    if rem(m1,J) == 0                                 % Save output every J steps. ,1|Qm8O  
        U1 = [U1 u1];                                  % put solutions in U array ORCG(N  
        U2=[U2 u2]; As}3VBd  
        MN1=[MN1 m1]; e^ Aw%t  
        z1=dz*MN1';                                    % output location 0R21"]L_M  
      end }Mv$Up  
    end |XGj97#M  
    hg=abs(U1').*abs(U1');                             % for data write to excel @XJzM]*w&  
    ha=[z1 hg];                                        % for data write to excel =\ek;d0Tqb  
    t1=[0 t']; l.>3gjr  
    hh=[t1' ha'];                                      % for data write to excel file v~B "Il  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format  U))2?#  
    figure(1) ]cmq  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ;L`NF"  
    figure(2) f*%Y]XL;%  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn &eA!h  
    w %2|Po5  
    非线性超快脉冲耦合的数值方法的Matlab程序 /s~(? =qYH  
    4{v?<x8  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   1#w'<}h#U  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 XI5TVxo(q  
    Jc=~BT_G  
    O)FkpZc@9c  
    >2^|r8l5  
    %  This Matlab script file solves the nonlinear Schrodinger equations  8MZ:=  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of (ah^</  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear &_1x-@oI2:  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 -J& b~t@  
    7*MjQzg-P  
    C=1;                           eaWK2%v  
    M1=120,                       % integer for amplitude )k~{p;Ke  
    M3=5000;                      % integer for length of coupler 6Zx'$F.iqK  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) EYy|JT]B  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. p=T6Ix'_2e  
    T =40;                        % length of time:T*T0. F2^qf  
    dt = T/N;                     % time step e~1$x`DH  
    n = [-N/2:1:N/2-1]';          % Index Ib}~Q@?2  
    t = n.*dt;   1nZ7xCDK98  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 9Od|R"aS|  
    w=2*pi*n./T; By;{Y[@rS  
    g1=-i*ww./2; )e?6 Ncy  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; V9\y*6#Y,  
    g3=-i*ww./2; Rq[VP#  
    P1=0; ?l?_8y/ww  
    P2=0; lHc|: vG?  
    P3=1; +ab#2~,)  
    P=0; 5T-CAkR{n  
    for m1=1:M1                 8(@ Y@`/  
    p=0.032*m1;                %input amplitude dXMO{*MF{H  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 @wTRoMHPQ  
    s1=s10; Yw6d-5=:  
    s20=0.*s10;                %input in waveguide 2 s$?u'}G3  
    s30=0.*s10;                %input in waveguide 3 aUyJi  
    s2=s20; Fu*Qci1Z  
    s3=s30; XJguw/[wm  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   m^%Xl@V:c-  
    %energy in waveguide 1 R-]i BL  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   52v@zDY  
    %energy in waveguide 2 =|O><O|  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   #+SdX[ N  
    %energy in waveguide 3 r34 GO1d  
    for m3 = 1:1:M3                                    % Start space evolution +V,Ld&r  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS }Zp5d7(@w  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; V5up/6b,1  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; MngfXm  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform "SFs\] Z  
       sca2 = fftshift(fft(s2)); wpepi8w,  
       sca3 = fftshift(fft(s3)); `XK+Y  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   G&,2>qxK R  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); `\Hs{t]  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); )A*Sl2ew  
       s3 = ifft(fftshift(sc3)); *OR(8;  
       s2 = ifft(fftshift(sc2));                       % Return to physical space -z?O^:e#x  
       s1 = ifft(fftshift(sc1)); ?{KC@c*c  
    end vy{YGT  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); mP+rPDGp  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); tRzo}_+N  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); H\RuYCn2G  
       P1=[P1 p1/p10]; fudLm  
       P2=[P2 p2/p10]; gt:Ot0\7  
       P3=[P3 p3/p10]; Xb5 $ijH  
       P=[P p*p]; mqv!"rk'w  
    end pNzpT!}H>  
    figure(1) s[tFaB1  
    plot(P,P1, P,P2, P,P3); nyr)d%I{  
    MnT+p[.  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~