切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8897阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Mn$]I) $  
    .s<*'B7&  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of %/c+`Wd/l$  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 6*qL[m.F[o  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear JOb*-q|y  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Rx*BwZ  
    I=7Y]w=  
    %fid=fopen('e21.dat','w'); 4B4Z])$3  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) i]=&  
    M1 =3000;              % Total number of space steps dWX stb:[  
    J =100;                % Steps between output of space :U d  
    T =10;                  % length of time windows:T*T0 JXixYwm  
    T0=0.1;                 % input pulse width 5GA\xM-  
    MN1=0;                 % initial value for the space output location {^ m(,K_  
    dt = T/N;                      % time step /erN;Oo%<  
    n = [-N/2:1:N/2-1]';           % Index CW)Z[<d8  
    t = n.*dt;   e/*$^i+S  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 4\pWB90V  
    u20=u10.*0.0;                  % input to waveguide 2 RbGJ)K!  
    u1=u10; u2=u20;                 R g?1-|Tj  
    U1 = u1;   YXU|h  
    U2 = u2;                       % Compute initial condition; save it in U KJ?y@Q  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. l"{Sm6:;-  
    w=2*pi*n./T; 6 4D]Ypx  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T W(25TbQ  
    L=4;                           % length of evoluation to compare with S. Trillo's paper u>Rb ?`  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 yJsH=5A  
    for m1 = 1:1:M1                                    % Start space evolution  Og2vGzD  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS |+:h|UIUQ  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 9D 0dg(  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform /w8"=6Vv~  
       ca2 = fftshift(fft(u2)); d'*]ns  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation g|Y] wd  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   O1D6^3w  
       u2 = ifft(fftshift(c2));                        % Return to physical space >S1)YKgz  
       u1 = ifft(fftshift(c1)); !@I}mQ ~  
    if rem(m1,J) == 0                                 % Save output every J steps. tp:\j@dB  
        U1 = [U1 u1];                                  % put solutions in U array =H %-.m'f2  
        U2=[U2 u2]; 6CC&Z>  
        MN1=[MN1 m1]; MlJVeod  
        z1=dz*MN1';                                    % output location ;' nL:\  
      end T"T;`y@(  
    end iB1i/l  
    hg=abs(U1').*abs(U1');                             % for data write to excel p0{EQT`tMG  
    ha=[z1 hg];                                        % for data write to excel ?\/qeGW6G  
    t1=[0 t']; 1z*kc)=JF8  
    hh=[t1' ha'];                                      % for data write to excel file Bi~:>X\[^6  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format P F`rWw  
    figure(1)  :Pq.,s  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Fl{WAg  
    figure(2) D -IR!js ]  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ?X9]HlH  
    IN7<@OS7  
    非线性超快脉冲耦合的数值方法的Matlab程序 T;\^#1  
    y/? &pKH^  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   m7=1%6FN3  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 TFR( 4W  
    3Z>YV]YbeU  
    2X88:  
    |<`.fOxJP  
    %  This Matlab script file solves the nonlinear Schrodinger equations maSgRf[g  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of -$<O\5cAQ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 9 L?;FY)_  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7OVbP%n)d2  
    G{x[uE2X&f  
    C=1;                           ~%#mK:+  
    M1=120,                       % integer for amplitude Nf9fb?  
    M3=5000;                      % integer for length of coupler K{cbn1\,H  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) /^#G0f*N  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. p|XAlia  
    T =40;                        % length of time:T*T0. Rt(J/%;  
    dt = T/N;                     % time step +VU4s$w6  
    n = [-N/2:1:N/2-1]';          % Index K(T\9J.  
    t = n.*dt;   f+Dn9t  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 7Bz*r0 9S  
    w=2*pi*n./T; x.$1<w64t  
    g1=-i*ww./2; JmOW~W  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; GZ }/leR  
    g3=-i*ww./2; 5V-jMB  
    P1=0; % do1i W  
    P2=0; #T~&]|{,  
    P3=1; WW "i  
    P=0; DFe;4BdC  
    for m1=1:M1                 ~!+ _[uJ  
    p=0.032*m1;                %input amplitude Nm]% }  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Di=9mHC  
    s1=s10; qJ8-9^E,L  
    s20=0.*s10;                %input in waveguide 2 |G=[5e^s[  
    s30=0.*s10;                %input in waveguide 3 BH@b1}  
    s2=s20; PI|`vC|yy&  
    s3=s30; h ?#@~  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Xt,X_o2m|]  
    %energy in waveguide 1 )QY![&k}1z  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   kJ=L2g>W<.  
    %energy in waveguide 2 ,#'7)M D8  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Sl~x$9`  
    %energy in waveguide 3 .Gb+\E{M  
    for m3 = 1:1:M3                                    % Start space evolution ;?IT)sNY  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS (TSqc5^H  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ilEi")b=  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Ff"gadRXd  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform EychR/s  
       sca2 = fftshift(fft(s2)); 2HOe__Ns  
       sca3 = fftshift(fft(s3)); s` >H  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   3;$bS<>  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); !Qu PG/=X  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); R Td^ImV  
       s3 = ifft(fftshift(sc3)); "D> ]ES%5  
       s2 = ifft(fftshift(sc2));                       % Return to physical space R]b! $6Lt  
       s1 = ifft(fftshift(sc1)); ]TK=>;&  
    end )&Z>@S^  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); T!( 4QRh[  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); T$b\Q  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 9NIy#  
       P1=[P1 p1/p10]; 4nX(:K}>  
       P2=[P2 p2/p10]; Uh6mGL z*&  
       P3=[P3 p3/p10]; mf4z?G@6  
       P=[P p*p]; (Nz]h:}r  
    end L :U4N*  
    figure(1) kl{6]39  
    plot(P,P1, P,P2, P,P3); I}:L]H{E  
    z Bf;fi  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~