计算脉冲在非线性耦合器中演化的Matlab 程序 V7}5Zw1 gFR9!=,/V% % This Matlab script file solves the coupled nonlinear Schrodinger equations of
T=6fZ;7 % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
W`HO Q % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
+X)n} jh % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
:<$B o 4 [2^#t[ %fid=fopen('e21.dat','w');
!QK~l N = 128; % Number of Fourier modes (Time domain sampling points)
~Pq(Ta M1 =3000; % Total number of space steps
X2>qx^jT J =100; % Steps between output of space
T~B'- >O T =10; % length of time windows:T*T0
Hgs=qH T0=0.1; % input pulse width
M{ # MN1=0; % initial value for the space output location
K:Mm?28s dt = T/N; % time step
qI-q%]l n = [-N/2:1:N/2-1]'; % Index
nO{@p_3mi t = n.*dt;
:2#8\7IU^' u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
2n}nRv/' u20=u10.*0.0; % input to waveguide 2
W\xM$#)m u1=u10; u2=u20;
$6\-8zNk U1 = u1;
+3B^e%`NPm U2 = u2; % Compute initial condition; save it in U
0Y7b$~n'Y ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
Y{yN*9a79 w=2*pi*n./T;
r,^}/<* g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
uYW9kw>$ L=4; % length of evoluation to compare with S. Trillo's paper
#$trC)? ~q dz=L/M1; % space step, make sure nonlinear<0.05
@@$%+XNY for m1 = 1:1:M1 % Start space evolution
a o_A%?Ld u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
-&87nR(eW u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
*Jd,8B/hC ca1 = fftshift(fft(u1)); % Take Fourier transform
-cW`qWbd ca2 = fftshift(fft(u2));
WU oGIT' c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
{4u8~whLp c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
X
?p_O2#k u2 = ifft(fftshift(c2)); % Return to physical space
hVQ
TW[ u1 = ifft(fftshift(c1));
6L--FY>.- if rem(m1,J) == 0 % Save output every J steps.
&%YFO'>>} U1 = [U1 u1]; % put solutions in U array
XRU^7@Ylks U2=[U2 u2];
v/% q*6@ MN1=[MN1 m1];
E8]PV,#xY z1=dz*MN1'; % output location
UPtWj8h end
y?BzZ16\bL end
Jz(!eTVs hg=abs(U1').*abs(U1'); % for data write to excel
Mv9q-SIc[ ha=[z1 hg]; % for data write to excel
`V N $
S t1=[0 t'];
(GnwK1f hh=[t1' ha']; % for data write to excel file
-!]Ie4" %dlmwrite('aa',hh,'\t'); % save data in the excel format
DwTqj=l figure(1)
pPztUz/. waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
FS.z lk\D= figure(2)
j!c[$; waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
\L14rQ
t xW84g08_, 非线性超快脉冲耦合的数值方法的Matlab程序 ~i)O^CKq JM8s]& 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
7Gb(&'n Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
l@}BWSx&ms IbRy~ Pw4j?pv2 p^_E7k<ag % This Matlab script file solves the nonlinear Schrodinger equations
|.D_[QI % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
.*H0{ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
yK"OZ2Mv % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
M,Y lhL 2i);2>HLG C=1;
g*9jPwdG M1=120, % integer for amplitude
QC:/xP M3=5000; % integer for length of coupler
\Fhk> N = 512; % Number of Fourier modes (Time domain sampling points)
)]2yTG[ dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
wE K@B&DV T =40; % length of time:T*T0.
%9|=\#
G dt = T/N; % time step
{b@rQCre7 n = [-N/2:1:N/2-1]'; % Index
C7=Q!UK`\ t = n.*dt;
jjgY4<n ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
7#Qa/[? D w=2*pi*n./T;
1m-"v:fT5D g1=-i*ww./2;
_`!@ g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
zT}Q rf~
g3=-i*ww./2;
9E{Bn# P1=0;
\mZ\1wzn'{ P2=0;
?i4}[q P3=1;
hA`>SkO P=0;
ZyqTtA!A for m1=1:M1
`~( P p=0.032*m1; %input amplitude
\K 01F s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
@URLFMFi s1=s10;
OwGl& s20=0.*s10; %input in waveguide 2
nLq7J: s30=0.*s10; %input in waveguide 3
C]UBu-]#S s2=s20;
T6f{'.w s3=s30;
uh`@ qmu) p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
hoASrj{s %energy in waveguide 1
JWG7QH p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
#)%N+Odnr %energy in waveguide 2
$ 1(u.Ud p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
RM53B %energy in waveguide 3
F2yM2Ldx for m3 = 1:1:M3 % Start space evolution
YgaJ*%\ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
N$ZThZqqv s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
?,r bD1 s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
' U(v sca1 = fftshift(fft(s1)); % Take Fourier transform
5|1&s3/f sca2 = fftshift(fft(s2));
z)5n&w
S sca3 = fftshift(fft(s3));
[Dq7mqr$ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
#&">x7?5 sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
A"Rzn1/ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
I=hgfo s3 = ifft(fftshift(sc3));
ovCk:Vz s2 = ifft(fftshift(sc2)); % Return to physical space
Kq`Luf s1 = ifft(fftshift(sc1));
7|6tH@4Ub end
uqZLlP# p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
*MkhRLw\, p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
t Zj6=# p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
|aN0|O2 P1=[P1 p1/p10];
!mL,Ue3/ P2=[P2 p2/p10];
C5Q|3d P3=[P3 p3/p10];
e%G-+6 P=[P p*p];
]^gD@]. end
p)tac*US figure(1)
&F\J%#{ plot(P,P1, P,P2, P,P3);
nvD"_.K rJ )T#;1qNB 转自:
http://blog.163.com/opto_wang/