计算脉冲在非线性耦合器中演化的Matlab 程序 Mvh_>-i I(CI')Q % This Matlab script file solves the coupled nonlinear Schrodinger equations of
e.GzGX % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
+J4t0x % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
j&pgq2Kl % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
mN*P2* ybG)=0 %fid=fopen('e21.dat','w');
rh_({rvQ N = 128; % Number of Fourier modes (Time domain sampling points)
"J1ar.li M1 =3000; % Total number of space steps
>`uS NY"tO J =100; % Steps between output of space
8#Z5-",iw T =10; % length of time windows:T*T0
Dn3~8 T0=0.1; % input pulse width
N
[u
Xo MN1=0; % initial value for the space output location
M5V1j(URE dt = T/N; % time step
%ze1ZWO{ n = [-N/2:1:N/2-1]'; % Index
|@ HdTGD t = n.*dt;
aVYUk7_ < u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
<X |h* u20=u10.*0.0; % input to waveguide 2
F%d"gF0qu u1=u10; u2=u20;
#c>MUC(?s: U1 = u1;
}BrE|'.j' U2 = u2; % Compute initial condition; save it in U
<.B s`P ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
20qVzXi w=2*pi*n./T;
o%%fO g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
w0!,1
Ry L=4; % length of evoluation to compare with S. Trillo's paper
S\ZAcz4 dz=L/M1; % space step, make sure nonlinear<0.05
SA1/U for m1 = 1:1:M1 % Start space evolution
,no:6 u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
=R.9"7~2x u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
VWv0\:,G ca1 = fftshift(fft(u1)); % Take Fourier transform
DV\ei") ca2 = fftshift(fft(u2));
eLny-.i,7 c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
2&fwr>!$ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
tl5IwrF6; u2 = ifft(fftshift(c2)); % Return to physical space
7]j-zv u1 = ifft(fftshift(c1));
h$k3MhYDes if rem(m1,J) == 0 % Save output every J steps.
7nz+n# U1 = [U1 u1]; % put solutions in U array
m[j3s=Gr U2=[U2 u2];
A*~1Uz\t MN1=[MN1 m1];
i)i)3K2 z1=dz*MN1'; % output location
&>l8S lC?
end
B?yt%f1 end
77d`N hg=abs(U1').*abs(U1'); % for data write to excel
Ib8i#D V ha=[z1 hg]; % for data write to excel
EiN)TB^] t1=[0 t'];
<WJ0St hh=[t1' ha']; % for data write to excel file
rcmAVl:$> %dlmwrite('aa',hh,'\t'); % save data in the excel format
nln6:^w figure(1)
';,Bn9rv waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
+~Ay h[V figure(2)
_vV&4> waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
vCSB8R -0da"AB 非线性超快脉冲耦合的数值方法的Matlab程序 y9li<u<PF D!a5#+\C 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
KB R0p&MN Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
|u r~s$8y- <]^;/2.B dm=F:\C q)ql]iH % This Matlab script file solves the nonlinear Schrodinger equations
>Ryss@o % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
N"RYM~c7 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
LIC~Kehi % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
j&
iL5J; F ssEs!# C=1;
Ygi1"X} M1=120, % integer for amplitude
]}7rWs[|1 M3=5000; % integer for length of coupler
gQ=POJ=G N = 512; % Number of Fourier modes (Time domain sampling points)
36x:(-GFq dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
4)+IO; T =40; % length of time:T*T0.
]Y&)98 dt = T/N; % time step
#7-@k-<| n = [-N/2:1:N/2-1]'; % Index
zk'K.!
`^ t = n.*dt;
2{B(j&{ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
C%_ w=2*pi*n./T;
2HGD{;6>v{ g1=-i*ww./2;
rk,1am:cg g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
)YMlFzYr g3=-i*ww./2;
w;@25=
| P1=0;
rgdQR^!l6 P2=0;
E<CxKY9 P3=1;
xGEmrE<; P=0;
;xO=Yhc+ for m1=1:M1
W0MnGzZ p=0.032*m1; %input amplitude
)d(0Y<e@ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
).}k6v[4) s1=s10;
Ivt} o_b* s20=0.*s10; %input in waveguide 2
4:Xj-l^D s30=0.*s10; %input in waveguide 3
+'['HQ) s2=s20;
Cld<D5\|f+ s3=s30;
[j}7 @Mr`\ p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
|\%F(d330 %energy in waveguide 1
AuDR |;i p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
.D,?u"fk| %energy in waveguide 2
x , Vh p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
HKiVEg %energy in waveguide 3
_TOi
[GT for m3 = 1:1:M3 % Start space evolution
5+bFy.UW s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
?S@R~y0K s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
S -6"f/ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
<F)w=_%& sca1 = fftshift(fft(s1)); % Take Fourier transform
)y`TymM[F sca2 = fftshift(fft(s2));
dT]L-uRZgy sca3 = fftshift(fft(s3));
+t>*l>[ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
<,@H;|mZ sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
<DXmZ1 sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
KIKq9 * s3 = ifft(fftshift(sc3));
4aN+}TkH@G s2 = ifft(fftshift(sc2)); % Return to physical space
0n*rs=\VG s1 = ifft(fftshift(sc1));
kQwm"Z end
?UZ$bz p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
7~ *;=,mw p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
r}R^<y@I p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
E#<7\p> P1=[P1 p1/p10];
J&63Z P2=[P2 p2/p10];
U+.PuC[3 P3=[P3 p3/p10];
W1?!iE~tO P=[P p*p];
gHvW
e end
np-T&Pz2 figure(1)
Na.
nA plot(P,P1, P,P2, P,P3);
T/wM(pr'
v~V;+S=gz 转自:
http://blog.163.com/opto_wang/