切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8324阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Q`{2 yU:r  
    nA)KRCi  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of &4R -5i2a  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of )'3V4Z&  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear e_v_y$  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 vkgAI<  
    V[RsSZx =  
    %fid=fopen('e21.dat','w'); /nas~{B  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) u4QBD5T"  
    M1 =3000;              % Total number of space steps _Q=h3(ZI  
    J =100;                % Steps between output of space n=8DC&  
    T =10;                  % length of time windows:T*T0 px>g  
    T0=0.1;                 % input pulse width &o]ic(74c?  
    MN1=0;                 % initial value for the space output location qQ T ^d  
    dt = T/N;                      % time step 5%K(tRc|  
    n = [-N/2:1:N/2-1]';           % Index (S)jV 0  
    t = n.*dt;   *<"#1H/q  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 :5, k64'D  
    u20=u10.*0.0;                  % input to waveguide 2 ! 0DOj["  
    u1=u10; u2=u20;                 }xG~ a=,  
    U1 = u1;   W#sCvI@   
    U2 = u2;                       % Compute initial condition; save it in U sb"h:i>O4  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. =f\BAi  
    w=2*pi*n./T; sG K7Uy  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 59X'-fg,  
    L=4;                           % length of evoluation to compare with S. Trillo's paper mDX UF~G[  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 H2oD0f|  
    for m1 = 1:1:M1                                    % Start space evolution .;,` bH0  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS uJ9 hU`h  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ;cD&qheDV  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 1h,m  
       ca2 = fftshift(fft(u2)); (D~NW*,9  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 3^-yw`  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   }h=}!R'm   
       u2 = ifft(fftshift(c2));                        % Return to physical space t}x^*I$*  
       u1 = ifft(fftshift(c1)); l`(pV ;{W  
    if rem(m1,J) == 0                                 % Save output every J steps. -?Kd[Ma  
        U1 = [U1 u1];                                  % put solutions in U array trm-&e7q?;  
        U2=[U2 u2]; D wtvtglqV  
        MN1=[MN1 m1]; gWLhO|y  
        z1=dz*MN1';                                    % output location  5JggU  
      end DR c-L$bD  
    end A=bBI>GEYP  
    hg=abs(U1').*abs(U1');                             % for data write to excel 2'T uS?  
    ha=[z1 hg];                                        % for data write to excel =Yt)b/0b9  
    t1=[0 t']; g7@.Fa.u'!  
    hh=[t1' ha'];                                      % for data write to excel file |:)ARH6l#  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format k+;XQEH  
    figure(1) gt|:K)[,6  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ''3b[<  
    figure(2) d*tn&d~k,  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn JK9 J;c#T  
    o%_Hmd;_'  
    非线性超快脉冲耦合的数值方法的Matlab程序 ]!'9Y}9a  
    DC+l3N  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   u81@vEK:_  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 P`TJqJiY~  
    7?W1i{(  
    :/~TV   
    >^ TcO  
    %  This Matlab script file solves the nonlinear Schrodinger equations i=AQ1X\s  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of uB>OS 1=  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 7L !$hk  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 '8V>:dy>  
    F*J@OY8i  
    C=1;                           mr<camL5  
    M1=120,                       % integer for amplitude <BX'Owbs!O  
    M3=5000;                      % integer for length of coupler 'Fr"96C$  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ?CSv;:  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. WNcJ710k27  
    T =40;                        % length of time:T*T0. " gQJeMU  
    dt = T/N;                     % time step {2=f,,|+f  
    n = [-N/2:1:N/2-1]';          % Index r9y(j z  
    t = n.*dt;   X3Yi|dyn T  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. }zy h!  
    w=2*pi*n./T; =kDh:&u%  
    g1=-i*ww./2; H tAO9  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; bD4aSubN  
    g3=-i*ww./2; CA]u3bf~  
    P1=0; (K`@OwD  
    P2=0; &[qJ=HMm I  
    P3=1; T))F r:  
    P=0; qj:\ )#I  
    for m1=1:M1                 +Z1y1%a  
    p=0.032*m1;                %input amplitude B*&HQW *u  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ..;ep2jSs  
    s1=s10; $9rQ w1#e  
    s20=0.*s10;                %input in waveguide 2 ~jDf,a2  
    s30=0.*s10;                %input in waveguide 3 _ 0h)O  
    s2=s20; v/[*Pze,C  
    s3=s30; cllnYvr3  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Y0xn}:%K  
    %energy in waveguide 1 0}qnq"  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   u}eLf'^ZCe  
    %energy in waveguide 2 <Wa7$hF  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   -W.bOr  
    %energy in waveguide 3 h)pYV>!d  
    for m3 = 1:1:M3                                    % Start space evolution e!oL!Zg  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS YES-,;ZQ'  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 6YF<GF{  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; J?_-Dg(=  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform G6q*U,  
       sca2 = fftshift(fft(s2)); f?W"^6Df  
       sca3 = fftshift(fft(s3)); -h%1rw  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift    >^J  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); @BoZZ  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); $5N\sdyZxg  
       s3 = ifft(fftshift(sc3)); g[ O6WZ!F_  
       s2 = ifft(fftshift(sc2));                       % Return to physical space {VT**o  
       s1 = ifft(fftshift(sc1)); 6oy[0hj  
    end 3S{3AmKj?  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); NEW0dF&)  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); G0b##-.'^  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); *^i"q\n5(  
       P1=[P1 p1/p10]; V#TNv0&0  
       P2=[P2 p2/p10]; 4MPR  
       P3=[P3 p3/p10]; (o518fmR  
       P=[P p*p]; ~'VVCtA  
    end {+jO/ZQu5  
    figure(1) 9O|k|FD  
    plot(P,P1, P,P2, P,P3); +@qIDUiF3  
    sOhKMz  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~