切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8852阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 }akF=/M  
    nlq"OzcH04  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 5x2m ]u  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 6T qs6*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear *_ U=KpZF  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 J7RO*.O&Iq  
    oMUyP~1  
    %fid=fopen('e21.dat','w'); 'yw7|i2  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) f\|R<3 L  
    M1 =3000;              % Total number of space steps ,rU>)X  
    J =100;                % Steps between output of space 7 {n>0@_  
    T =10;                  % length of time windows:T*T0 RT~6#Caf  
    T0=0.1;                 % input pulse width (6Y.|u]bq  
    MN1=0;                 % initial value for the space output location z'!sc"]W6  
    dt = T/N;                      % time step 'QP~uK  
    n = [-N/2:1:N/2-1]';           % Index smJ#.I6/L  
    t = n.*dt;   < %t$0'  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 @hG]Gs[,o  
    u20=u10.*0.0;                  % input to waveguide 2 GGWdMGI/  
    u1=u10; u2=u20;                 $q%l)]+  
    U1 = u1;   vJ a?5Jr  
    U2 = u2;                       % Compute initial condition; save it in U m%p;>:"R  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 'KU)]v  
    w=2*pi*n./T; :~ ; 48m  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T !8Mi+ZV  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ~stG2^"[  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 %8]~+ #]p  
    for m1 = 1:1:M1                                    % Start space evolution B7u4e8(E*  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS =iFI@2  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;  9EU0R H  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ~\QN.a   
       ca2 = fftshift(fft(u2)); BMJsR0  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation KB\A<(o,  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   o6@`aU  
       u2 = ifft(fftshift(c2));                        % Return to physical space }R\;htmc;  
       u1 = ifft(fftshift(c1)); jg3 X6/'  
    if rem(m1,J) == 0                                 % Save output every J steps. d>YX18'<Q  
        U1 = [U1 u1];                                  % put solutions in U array h%[1V  
        U2=[U2 u2]; <W2 YG6^i  
        MN1=[MN1 m1]; .1@8rVp7  
        z1=dz*MN1';                                    % output location nu<kx  
      end ol#4AU`  
    end #FwTV@  
    hg=abs(U1').*abs(U1');                             % for data write to excel $;Nw_S@  
    ha=[z1 hg];                                        % for data write to excel +DR,&;  
    t1=[0 t']; iYR`|PJi  
    hh=[t1' ha'];                                      % for data write to excel file f.{/PL  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format [izP1A$r#Q  
    figure(1) -NL=^O$G  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ys DGF@wZC  
    figure(2) pLtAusx  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn )"sJaHx<  
    Y2&hf6BE  
    非线性超快脉冲耦合的数值方法的Matlab程序 p8bAz  
    BHrNDpv  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   11Y4oS  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 1!"iN~  
    tg#d.(  
    TMAart; <  
    :3 p&h[M  
    %  This Matlab script file solves the nonlinear Schrodinger equations M WHzrqCA  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of _uQxrB"9  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear \1[v-hvK  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Nxr%xTD  
    *{1]b_<  
    C=1;                           !IAd.<,  
    M1=120,                       % integer for amplitude *T:gx:Sg/  
    M3=5000;                      % integer for length of coupler h5p,BRtu  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ELa:yIl0  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ^Sj*  
    T =40;                        % length of time:T*T0. +|c1G[Jh  
    dt = T/N;                     % time step QKt+Orz  
    n = [-N/2:1:N/2-1]';          % Index f J$>VN  
    t = n.*dt;   mJFFst,  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. I>n2# -8  
    w=2*pi*n./T; Fb^f`UI  
    g1=-i*ww./2; |*te69RX  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 3^2P7$W=   
    g3=-i*ww./2; US2Tdmy@05  
    P1=0; =c Krp'  
    P2=0; em, j>qp  
    P3=1; DFN  
    P=0; o)SA^5  
    for m1=1:M1                 ?I}0[+)V  
    p=0.032*m1;                %input amplitude Ps=<@,dks  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 #1VejeTi  
    s1=s10; y>iote~  
    s20=0.*s10;                %input in waveguide 2 z>9gt  
    s30=0.*s10;                %input in waveguide 3 ;UoXj+Z  
    s2=s20; yaWHGre  
    s3=s30; x^u [L$  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ,`.`}'  
    %energy in waveguide 1 V(6GM+  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   )uxXG `,h  
    %energy in waveguide 2 03^?+[C  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   _;8+L\  
    %energy in waveguide 3 "Qfw)!#  
    for m3 = 1:1:M3                                    % Start space evolution 8iKupaaOX  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS l.AG^b  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; !PuW6  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; kf>L  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ` 8OA:4).  
       sca2 = fftshift(fft(s2)); 01AzM)U3"m  
       sca3 = fftshift(fft(s3)); F]k$O$)0  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   q@8j[15  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 0$e]?]X6  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Zg2F%f$Y  
       s3 = ifft(fftshift(sc3)); MsLQ'9%Au  
       s2 = ifft(fftshift(sc2));                       % Return to physical space l! 9G  
       s1 = ifft(fftshift(sc1)); D`fi\A  
    end ?KF.v1w7  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); oMer+=vH  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); (25v7 Y ]  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 97~*Z|#<+  
       P1=[P1 p1/p10]; (U#9  
       P2=[P2 p2/p10]; eq(Xzh  
       P3=[P3 p3/p10]; F2k)hG*|{  
       P=[P p*p]; \5=fC9*G  
    end "H!2{l{  
    figure(1) Fm,} sP"Qx  
    plot(P,P1, P,P2, P,P3); y*fU_Il|!  
    Kl)PF),  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~