切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8170阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 o7gYj\  
    D.[h`Hkc  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of /Pbytu);ds  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of BE0Ov{'  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear (-}:'5|Yj  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 K#"J8h;x  
    `!Z0; qk  
    %fid=fopen('e21.dat','w'); EF>vu+YK  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) i2+r#Hw#5R  
    M1 =3000;              % Total number of space steps \eF _Xk[  
    J =100;                % Steps between output of space #}PQ !gZ  
    T =10;                  % length of time windows:T*T0 A&?8 rc  
    T0=0.1;                 % input pulse width 5taR[ukM  
    MN1=0;                 % initial value for the space output location R"wBDWs  
    dt = T/N;                      % time step uOQ!av2"Rf  
    n = [-N/2:1:N/2-1]';           % Index *|gY7Av*  
    t = n.*dt;   ]QU 9|1  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 |~K 5]  
    u20=u10.*0.0;                  % input to waveguide 2 Z Zs@P#]  
    u1=u10; u2=u20;                 5VS};&f  
    U1 = u1;   /M : 7  
    U2 = u2;                       % Compute initial condition; save it in U ^cUmLzM  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. M2kvj'WWq  
    w=2*pi*n./T; ,59G6o  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T k!Ym<RD%N  
    L=4;                           % length of evoluation to compare with S. Trillo's paper | 2Vhj<6  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 cp:U@Nh(  
    for m1 = 1:1:M1                                    % Start space evolution .B+Bl/  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS %K`th&331  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; }s7@0#j@a  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform XnwVK  
       ca2 = fftshift(fft(u2)); adcH3rV  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation +TZVx(Z&A  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   @~z4GTF9i  
       u2 = ifft(fftshift(c2));                        % Return to physical space ~hZr1hT6L  
       u1 = ifft(fftshift(c1)); *b}/fG)XZ  
    if rem(m1,J) == 0                                 % Save output every J steps. 3 <A?  
        U1 = [U1 u1];                                  % put solutions in U array "u.'JE;j  
        U2=[U2 u2]; sSLV R^  
        MN1=[MN1 m1]; !V'~<&  
        z1=dz*MN1';                                    % output location h]Y,gya[yk  
      end q90 ~)n?  
    end bMA0#e2  
    hg=abs(U1').*abs(U1');                             % for data write to excel &wX568o  
    ha=[z1 hg];                                        % for data write to excel ~W2Od2p !  
    t1=[0 t']; s||c#+j"8  
    hh=[t1' ha'];                                      % for data write to excel file .rw a=IW  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format {'-^CoR  
    figure(1) S`Xx('!/|  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn b$eN]L   
    figure(2) ~eyZH8&  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Ak dx1h,  
    c(kYCVc   
    非线性超快脉冲耦合的数值方法的Matlab程序 {/|tVc63  
    OcE,E6LD  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   U>i}C_7g  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .MS41 E!  
    J'E?Z0  
    :anR/  
    FvJkb!5*e_  
    %  This Matlab script file solves the nonlinear Schrodinger equations )GKY#O09x9  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of JLbmh1'  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear NY GWA4L  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]Pl Ly:(  
    7<*,O&![|  
    C=1;                           ^H!45ph?Jc  
    M1=120,                       % integer for amplitude K8JshF Ie  
    M3=5000;                      % integer for length of coupler g5;Ig  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Zet80|q  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ":_~(?1+  
    T =40;                        % length of time:T*T0. _]zH4o<p  
    dt = T/N;                     % time step ydTd.`  
    n = [-N/2:1:N/2-1]';          % Index 7.*Mmx~]=  
    t = n.*dt;   d3]<'B:nb  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Ftdx+\O_i&  
    w=2*pi*n./T; 2xBYJoF(  
    g1=-i*ww./2; Ck:+F+7_v  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; aM4-quaG]  
    g3=-i*ww./2; ,YBe|3  
    P1=0; FOAXm4"  
    P2=0; %l3f .  
    P3=1; /?1^&a  
    P=0; _/J`v`}G  
    for m1=1:M1                 Ltk-1zhI  
    p=0.032*m1;                %input amplitude 6@;sOiN+  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 vO)]~AiB  
    s1=s10; ! mZWd'  
    s20=0.*s10;                %input in waveguide 2 tZY6{,K%4  
    s30=0.*s10;                %input in waveguide 3 fizL_`uMqb  
    s2=s20; T|2v1Vj  
    s3=s30; RB9ZaL\  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   K 8W99:v  
    %energy in waveguide 1 2v<O}   
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   6!C>J#T  
    %energy in waveguide 2 %us#p|Ya  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   0_N.s5~N  
    %energy in waveguide 3 -' =?Hs.  
    for m3 = 1:1:M3                                    % Start space evolution q8}he~a  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS h!7Lvh`o  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; tC5>K9Ed  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; zJ_y"bt  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ')TS'p,n  
       sca2 = fftshift(fft(s2)); s`|KT&r  
       sca3 = fftshift(fft(s3)); q<K/q"0-l  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   =z4J[8bb  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); )|GYxG;8C  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); rY M@e  
       s3 = ifft(fftshift(sc3)); M}$Td_g  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ,Fn-SrB:  
       s1 = ifft(fftshift(sc1)); "|BSGV!8  
    end buDz]ec b  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); \x|8  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Q)=2%X  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); TPYh<p#  
       P1=[P1 p1/p10]; U_RWqKL  
       P2=[P2 p2/p10]; p*U!94Pb  
       P3=[P3 p3/p10]; ^I{/j 'b&  
       P=[P p*p]; 72vp6/;)  
    end /I:&P Pff  
    figure(1) [{: l?  
    plot(P,P1, P,P2, P,P3); -@XOe&q  
    Lf`<4 P  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~