切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8913阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 $ftxid8  
    W3gHz T?{  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of watTV\b  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 88KQ) NU  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear gsY Q"/S9  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ye-[l7  
    M#k$[w}=  
    %fid=fopen('e21.dat','w'); '#a;n  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) &NX7  
    M1 =3000;              % Total number of space steps 39~te%;C7  
    J =100;                % Steps between output of space u7S C_3R  
    T =10;                  % length of time windows:T*T0 eD|"?@cE  
    T0=0.1;                 % input pulse width M5:j)o W  
    MN1=0;                 % initial value for the space output location vNHvuw K  
    dt = T/N;                      % time step biG :Xn  
    n = [-N/2:1:N/2-1]';           % Index A,EuUp  
    t = n.*dt;   o@L2c3?c5  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 >8|V[-H  
    u20=u10.*0.0;                  % input to waveguide 2 cB)tf S4)  
    u1=u10; u2=u20;                 M8R/a[ -A  
    U1 = u1;   O^n\lik  
    U2 = u2;                       % Compute initial condition; save it in U }.1}yz^y  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. z.|[g$F  
    w=2*pi*n./T; cTQ._|M  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T R*?!xDJ  
    L=4;                           % length of evoluation to compare with S. Trillo's paper @RZbo@{~  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 j;I( w [@P  
    for m1 = 1:1:M1                                    % Start space evolution #^tnRfS"  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS `>GXJ~:D["  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; @~}~;}0x  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform >a bp se  
       ca2 = fftshift(fft(u2)); .X5A7 m  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation FX!Qd&kl1  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   BOD!0CR5  
       u2 = ifft(fftshift(c2));                        % Return to physical space {55f{5y3 c  
       u1 = ifft(fftshift(c1)); m%nRHT0KAf  
    if rem(m1,J) == 0                                 % Save output every J steps. x*p'm[Tdtm  
        U1 = [U1 u1];                                  % put solutions in U array b2H -D!YO^  
        U2=[U2 u2]; MEu{'[C  
        MN1=[MN1 m1]; >2v<;.  
        z1=dz*MN1';                                    % output location d@tf+_Ih  
      end Y$#6%`*#>n  
    end Tb!FO"o  
    hg=abs(U1').*abs(U1');                             % for data write to excel $b[Ha{9(v  
    ha=[z1 hg];                                        % for data write to excel uPC(|U%  
    t1=[0 t']; 5j v*C]z  
    hh=[t1' ha'];                                      % for data write to excel file Fkg%_v$  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 9fWR8iV  
    figure(1) RXo6y(^  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn uqD|j:~ =k  
    figure(2) QQ=Kj%R  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 1,7 }ah_  
    $wyPGok  
    非线性超快脉冲耦合的数值方法的Matlab程序 ^%m{yf#  
    4|4 *rhwp  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ^M\X/uq$E  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 3.9/mztS  
    NZO86y/  
    RY3=UeoF  
    A]1dR\p  
    %  This Matlab script file solves the nonlinear Schrodinger equations S..8,5mBH  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Uw| -d[!  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear #M<YNuE#"  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $inKI  
    KE~.f(  
    C=1;                           ~'|^|*}~Dj  
    M1=120,                       % integer for amplitude  vY"I  
    M3=5000;                      % integer for length of coupler VrWQ]L  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 'blMwD{0&\  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. DL d~  
    T =40;                        % length of time:T*T0. _~ 'MQ`P  
    dt = T/N;                     % time step  8hYl73#  
    n = [-N/2:1:N/2-1]';          % Index %zo 6A1Q;  
    t = n.*dt;   @ 'c(q=K;  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. C+>mehDC_G  
    w=2*pi*n./T; Z78i7k}  
    g1=-i*ww./2; &gr  T@  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; (N/-blto  
    g3=-i*ww./2; /q8B | (U  
    P1=0; C,%Dp0  
    P2=0; 7IQa Xcl  
    P3=1; <FAbImE}  
    P=0; j&U7xv  
    for m1=1:M1                 ROvY,-?  
    p=0.032*m1;                %input amplitude ]1eZ<le`6  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 -x:7K\=$SX  
    s1=s10; neE Zw#(Z  
    s20=0.*s10;                %input in waveguide 2 ^6Zx-Mf\  
    s30=0.*s10;                %input in waveguide 3 DC8\v+K  
    s2=s20; b4EUr SL  
    s3=s30; Ujqnl>l  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   =T#hd7O`V  
    %energy in waveguide 1 ? * r  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   SL`; `//  
    %energy in waveguide 2 2Nx:Y+[  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   -m[ tYp,q  
    %energy in waveguide 3 kw} E0uY  
    for m3 = 1:1:M3                                    % Start space evolution G(wstHT;/  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS =[[I<[BZq  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Z op/ MeI  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Z15 =vsV  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform &y7=tEV  
       sca2 = fftshift(fft(s2)); !I\eIV>0b  
       sca3 = fftshift(fft(s3)); Pa#Jwo  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   :4x6dYNU  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); F_i"v5#  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); G$)tp^%]  
       s3 = ifft(fftshift(sc3)); ZoYllk   
       s2 = ifft(fftshift(sc2));                       % Return to physical space Jr%F#/  
       s1 = ifft(fftshift(sc1)); h?h)i>  
    end @P>>:002/  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); C3N1t  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); st~ l||  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); kGC*\?<LmR  
       P1=[P1 p1/p10]; m5a'Vs  
       P2=[P2 p2/p10]; L]Xx-S  
       P3=[P3 p3/p10]; ZsCwNZR  
       P=[P p*p]; IP-M)_I  
    end -e?n4YO*\  
    figure(1) [6 "5  
    plot(P,P1, P,P2, P,P3); N})vrB;1  
    @HnahD  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~