切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9023阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 w4fJ`,  
    fFZ` rPb  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of @7l=+`.i  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of lmtQr5U  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear oF b mz*  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $:u7Dv}\  
    aEFe!_QY  
    %fid=fopen('e21.dat','w'); $Y 4ch ko  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) @t; O"q'|  
    M1 =3000;              % Total number of space steps vgQhdtt  
    J =100;                % Steps between output of space %<J(lC9,C  
    T =10;                  % length of time windows:T*T0 j&[3Be'pQ  
    T0=0.1;                 % input pulse width vi!r8k  
    MN1=0;                 % initial value for the space output location FM"GK '  
    dt = T/N;                      % time step Pvg  
    n = [-N/2:1:N/2-1]';           % Index *4hOCQ[  
    t = n.*dt;   8A8xY446)  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Tu= eQS|'  
    u20=u10.*0.0;                  % input to waveguide 2 !: EW21m  
    u1=u10; u2=u20;                 d JQ }{,+6  
    U1 = u1;   ttbQergS  
    U2 = u2;                       % Compute initial condition; save it in U {F(-s"1;xO  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 7\0|`{|R@  
    w=2*pi*n./T; !skb=B#  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T jWv3O&+?X  
    L=4;                           % length of evoluation to compare with S. Trillo's paper =2g[tsY  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 # McK46B z  
    for m1 = 1:1:M1                                    % Start space evolution n$m]58w  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 71 L\t3fG  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 9-a2L JI  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ,p*ntj{  
       ca2 = fftshift(fft(u2)); VO @ 4A6  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation xu"94y+  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   x<{;1F,k3  
       u2 = ifft(fftshift(c2));                        % Return to physical space fUp|3bBE  
       u1 = ifft(fftshift(c1)); RQ*|+ ~H  
    if rem(m1,J) == 0                                 % Save output every J steps. MgH1d&R  
        U1 = [U1 u1];                                  % put solutions in U array @\6nXf  
        U2=[U2 u2]; e}?1T7NPG]  
        MN1=[MN1 m1]; @;m@Luk  
        z1=dz*MN1';                                    % output location -VreBKn  
      end J/]o WC`u  
    end 2sd ) w  
    hg=abs(U1').*abs(U1');                             % for data write to excel EG(`E9DZ  
    ha=[z1 hg];                                        % for data write to excel 5Aa31"43n  
    t1=[0 t']; 7}#*3*]  
    hh=[t1' ha'];                                      % for data write to excel file yd0=h7s  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ,Ou1!`6?t  
    figure(1) U+9- li  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ]uStn   
    figure(2) qL%.5OCn(  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn "LP, TC  
    "UhK]i*@l  
    非线性超快脉冲耦合的数值方法的Matlab程序 nCffBc  
    +K$5tT6b  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   %?]{U($?  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Qr|N)  
    NRHr6!f>  
    ( E"&UC[  
    (<]\,pP0_  
    %  This Matlab script file solves the nonlinear Schrodinger equations Lo|NE[b:G  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of <K DH  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ,<0Rf  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 5eiZs  
    ^Txu ~r0@  
    C=1;                           {2}tPT[a(  
    M1=120,                       % integer for amplitude 9:9N)cNvfX  
    M3=5000;                      % integer for length of coupler n=<NFkeX  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) vi[#? ;pkF  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ||{T5E-.F  
    T =40;                        % length of time:T*T0. + AcKB82  
    dt = T/N;                     % time step q:`77  
    n = [-N/2:1:N/2-1]';          % Index T@K7DkP@  
    t = n.*dt;   45Nv_4s  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. K;<NBnH  
    w=2*pi*n./T; pY{; Yn&t  
    g1=-i*ww./2; ]+}ZfHp  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; `DgaO-Dg3  
    g3=-i*ww./2; 71k!k&Im  
    P1=0; Fe_::NVvk  
    P2=0; 38V $<w  
    P3=1; 9]]!8_0=r  
    P=0; hw&ke$Fg#  
    for m1=1:M1                 b{~fVil$y  
    p=0.032*m1;                %input amplitude ]k[ Q]:q  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 1KeJd&e  
    s1=s10; -:)DX++  
    s20=0.*s10;                %input in waveguide 2 J- t=1  
    s30=0.*s10;                %input in waveguide 3 wb(*7 &eP:  
    s2=s20; A|p@\3 P*A  
    s3=s30; c&E*KfOG  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   @wd!&%yzO  
    %energy in waveguide 1 `FZ(#GDF  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   i&A{L}eCr:  
    %energy in waveguide 2 2x-'>i_|g  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   l?3vNa FeR  
    %energy in waveguide 3 TqENaC#&  
    for m3 = 1:1:M3                                    % Start space evolution a(PjcQ4dY  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS HBt|}uZ?6i  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ?ada>"~GR_  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ,bB( 24LD  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform lTa1pp Zw  
       sca2 = fftshift(fft(s2)); R(M}0JRm  
       sca3 = fftshift(fft(s3)); Hnfvo*6d.e  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Ivz+Jj w  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); GwgFi@itN  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); _ oQtk^fp  
       s3 = ifft(fftshift(sc3)); [Xxw]C6\>(  
       s2 = ifft(fftshift(sc2));                       % Return to physical space e(?:g@]-r  
       s1 = ifft(fftshift(sc1)); n?y'c^  
    end jK3giT  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); \w{@u)h  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); WuBmdjZ  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 9k+N3vA  
       P1=[P1 p1/p10]; l_^T&xq8  
       P2=[P2 p2/p10]; ^36M0h|R  
       P3=[P3 p3/p10]; pwa.q  
       P=[P p*p]; ]O6KKz  
    end ~Y\QGuT  
    figure(1) 4st~3,lR$  
    plot(P,P1, P,P2, P,P3); 9uuta4&uI  
    p@#]mVJ>9  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~