切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8957阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Mvh_>-i  
    I(CI')Q  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of  e.GzGX  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of +J4t0x  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear j&pgq2Kl  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 mN*P 2 *  
    y b G)=0  
    %fid=fopen('e21.dat','w'); rh_({rvQ  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) "J1ar.li  
    M1 =3000;              % Total number of space steps >`uSNY"tO  
    J =100;                % Steps between output of space 8#Z5-",iw  
    T =10;                  % length of time windows:T*T0 Dn3~8  
    T0=0.1;                 % input pulse width N [u Xo  
    MN1=0;                 % initial value for the space output location M5V1j(URE  
    dt = T/N;                      % time step %ze1ZWO{  
    n = [-N/2:1:N/2-1]';           % Index |@HdTGD  
    t = n.*dt;   aVYUk7_<  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 <X |h *  
    u20=u10.*0.0;                  % input to waveguide 2 F%d"gF0qu  
    u1=u10; u2=u20;                 #c>MUC(?s:  
    U1 = u1;   }BrE|'.j'  
    U2 = u2;                       % Compute initial condition; save it in U <.B s`P  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 20qVzXi  
    w=2*pi*n./T;  o %%fO  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T w0!,1 Ry  
    L=4;                           % length of evoluation to compare with S. Trillo's paper S\ZAcz4  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 SA1/U  
    for m1 = 1:1:M1                                    % Start space evolution ,no:6&#  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS =R.9"7~2x  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; VWv0\:,G  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform DV\ei")  
       ca2 = fftshift(fft(u2)); eLny-.i ,7  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 2&fwr>!$  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   tl5IwrF6;  
       u2 = ifft(fftshift(c2));                        % Return to physical space 7]j-zv  
       u1 = ifft(fftshift(c1)); h$k3MhYDes  
    if rem(m1,J) == 0                                 % Save output every J steps. 7nz+n#  
        U1 = [U1 u1];                                  % put solutions in U array m[j3s=Gr  
        U2=[U2 u2]; A*~1Uz\t  
        MN1=[MN1 m1]; i)i)3K2  
        z1=dz*MN1';                                    % output location &>l8SlC?  
      end B?y t%f1  
    end 77d`N  
    hg=abs(U1').*abs(U1');                             % for data write to excel Ib8i#DV  
    ha=[z1 hg];                                        % for data write to excel EiN)TB^]  
    t1=[0 t']; <WJ0St  
    hh=[t1' ha'];                                      % for data write to excel file rcmAVl:$>  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format nln6:^w  
    figure(1) ';, Bn9rv  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn +~ Ay h[V  
    figure(2) _vV&4>  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn vCSB8R  
    -0 da"AB  
    非线性超快脉冲耦合的数值方法的Matlab程序 y9li<u<PF  
    D!a5#+\C  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   KBR0p&MN  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |u r~s$8y-  
    <]^;/2 .B  
    dm=F:\C  
    q)ql]iH  
    %  This Matlab script file solves the nonlinear Schrodinger equations >Ryss@o  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of N"RYM~c7  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear LIC~Kehi  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 j& iL5J;  
    F ssEs!#  
    C=1;                           Ygi1"X}  
    M1=120,                       % integer for amplitude ]}7rWs[|1  
    M3=5000;                      % integer for length of coupler gQ=POJ=G  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 36x:(-GFq  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 4)+IO;  
    T =40;                        % length of time:T*T0. ]Y&)98  
    dt = T/N;                     % time step #7-@k-<|  
    n = [-N/2:1:N/2-1]';          % Index zk'K.! `^  
    t = n.*dt;   2{B(j&{  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. C%_  
    w=2*pi*n./T; 2HGD{;6>v{  
    g1=-i*ww./2; rk,1am:cg  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; )YMlF zYr  
    g3=-i*ww./2; w;@25= |  
    P1=0; rgdQR^!l6  
    P2=0; E< CxKY9  
    P3=1; xGEmrE<;  
    P=0; ;xO=Yhc+  
    for m1=1:M1                 W0MnGzZ  
    p=0.032*m1;                %input amplitude )d(0Y<e @  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ).}k6v[4)  
    s1=s10; Ivt} o_b*  
    s20=0.*s10;                %input in waveguide 2 4:Xj-l^D  
    s30=0.*s10;                %input in waveguide 3 +'['HQ)  
    s2=s20; Cld<D5\|f+  
    s3=s30; [j}7@Mr`\  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   |\%F(d330  
    %energy in waveguide 1 AuDR |;i  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   .D,?u"fk|  
    %energy in waveguide 2 x, Vh  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   HKiVEg  
    %energy in waveguide 3 _TOi [G T  
    for m3 = 1:1:M3                                    % Start space evolution 5+bFy.UW  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ?S@R~y0K  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; S -6"f /  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; <F)w=_%&  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform )y`TymM[F  
       sca2 = fftshift(fft(s2)); dT]L-uRZgy  
       sca3 = fftshift(fft(s3)); +t>*l>[  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   <,@H;|mZ  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); <DXmZ1  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); KIKq9*  
       s3 = ifft(fftshift(sc3)); 4aN+}TkH@G  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 0n*rs=\VG  
       s1 = ifft(fftshift(sc1)); kQwm"Z  
    end ?UZ$bz  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 7~ *;=,mw  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); r}R^<y@I  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); E#<7\ p>  
       P1=[P1 p1/p10]; J&63Z  
       P2=[P2 p2/p10]; U+.PuC[3  
       P3=[P3 p3/p10]; W1?!iE~tO  
       P=[P p*p]; gHvW e  
    end np-T&Pz2  
    figure(1) N a. nA  
    plot(P,P1, P,P2, P,P3); T/wM(pr'   
    v~V;+S=gz  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~