切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8638阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 F*\4l;NJ  
    OG}KqG!n  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ]]y[t|6  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of [q"NU&SX  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ~`[8"YUL  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .vaJ Avg  
    T#r=<YH[C  
    %fid=fopen('e21.dat','w'); [gn[nP9  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) )_Iz>)  
    M1 =3000;              % Total number of space steps ]}~4J.Yn  
    J =100;                % Steps between output of space "XB4yExy  
    T =10;                  % length of time windows:T*T0 FfSI n3  
    T0=0.1;                 % input pulse width acae=c|X  
    MN1=0;                 % initial value for the space output location ;@4sd%L8V  
    dt = T/N;                      % time step ;qb Dbg  
    n = [-N/2:1:N/2-1]';           % Index 5M.Red.L  
    t = n.*dt;   6sy,A~e  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 >~wu3q  
    u20=u10.*0.0;                  % input to waveguide 2 'M-)Os "  
    u1=u10; u2=u20;                 c(&AnIlS  
    U1 = u1;   |*1xrM:v~  
    U2 = u2;                       % Compute initial condition; save it in U R8ZD#,;  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. %mL5+d-oP  
    w=2*pi*n./T; D2$^"  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T _.-#E$6s#q  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ?RJdn]`4j  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 oX{@'B  
    for m1 = 1:1:M1                                    % Start space evolution ^XNw$@&',  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Z9f/-|r5  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Y{j7Q4{  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform e# <4/FR  
       ca2 = fftshift(fft(u2)); g/B\ObY  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Rdj8 *f  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   `GS cRhbh  
       u2 = ifft(fftshift(c2));                        % Return to physical space c dDY]"k  
       u1 = ifft(fftshift(c1)); l.uN$B  
    if rem(m1,J) == 0                                 % Save output every J steps. ->3uOF!q  
        U1 = [U1 u1];                                  % put solutions in U array &t_A0z  
        U2=[U2 u2]; yWmrdvL  
        MN1=[MN1 m1]; lJlhl7  
        z1=dz*MN1';                                    % output location $$\V 2%v  
      end W[fT R?n  
    end H7}g!n?  
    hg=abs(U1').*abs(U1');                             % for data write to excel GI?PGAT  
    ha=[z1 hg];                                        % for data write to excel IqXBz.p  
    t1=[0 t']; \#2 s4RCji  
    hh=[t1' ha'];                                      % for data write to excel file %rw}u"3T  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format "R8.P/ 3  
    figure(1) y]7%$* <  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn @"0uM?_)-  
    figure(2) `ReGnT[  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn HS(U4   
    J ZA*{n2  
    非线性超快脉冲耦合的数值方法的Matlab程序 'H!V54 \j  
    3Qk/ Ll  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   [0wP\{%  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 <c(&T<$  
    7MoR9,(  
    6-tiRk~  
    hcQSB00D^  
    %  This Matlab script file solves the nonlinear Schrodinger equations el}hcAY/RP  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of PP],HB+*[  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear :Jm!=U%'Z  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *!i,?vn  
    ~};]k}  
    C=1;                           +;YE)~R?  
    M1=120,                       % integer for amplitude r1+c/;TpZ  
    M3=5000;                      % integer for length of coupler gt~9"I  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) #jOOsfH|k  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ftxTX3X  
    T =40;                        % length of time:T*T0. y2GQN:X  
    dt = T/N;                     % time step gU~ L@R_D  
    n = [-N/2:1:N/2-1]';          % Index (x}A_ i  
    t = n.*dt;   >B`Cch/ 'U  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. g ,`F<CF9  
    w=2*pi*n./T; 6={IMkmA  
    g1=-i*ww./2; 1]Gf)|  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 5[nmP95YK  
    g3=-i*ww./2; JaA&eT|  
    P1=0; tc"T}huypU  
    P2=0; ' J2ewW5  
    P3=1; Y$>+U  
    P=0; E1#H{)G  
    for m1=1:M1                 WUzS lZq  
    p=0.032*m1;                %input amplitude cW=Qh-`jU;  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 MST:.x ;  
    s1=s10; 0 4P.p6  
    s20=0.*s10;                %input in waveguide 2 Fs?( UM  
    s30=0.*s10;                %input in waveguide 3 L^6"' #  
    s2=s20; NS h%t+XU]  
    s3=s30; P`7ojXy  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   uFz/PDOZ@  
    %energy in waveguide 1 3(MoXA*  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   6euR'd^Qi  
    %energy in waveguide 2 d:A\<F  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Yd[U  
    %energy in waveguide 3 pi|\0lH6W  
    for m3 = 1:1:M3                                    % Start space evolution 52da]BW<  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS bh{E&1sLh  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; :b.3CL\.6  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ,;9ak-$8p  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 5BrU'NF  
       sca2 = fftshift(fft(s2)); )>ug{M%g  
       sca3 = fftshift(fft(s3)); >Dk1axZ!>/  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   EV:_Kx8fP  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); :x8Jy4L  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 2r %>]y  
       s3 = ifft(fftshift(sc3)); @P*ylB}?Q  
       s2 = ifft(fftshift(sc2));                       % Return to physical space H~~7~1"x  
       s1 = ifft(fftshift(sc1)); ^!q 08`0  
    end 8w03{H 0  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 7ESN!  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); n>u.3w L  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); s4x'f$r  
       P1=[P1 p1/p10]; 976E3u"Vt  
       P2=[P2 p2/p10]; s.|!Ti!]  
       P3=[P3 p3/p10]; d^ 2u}^kG  
       P=[P p*p]; vEu Ka<5  
    end <l* agH-.3  
    figure(1) jn.R.}TT  
    plot(P,P1, P,P2, P,P3); 7h(HG?2Y  
    x*NqA( r  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~