计算脉冲在非线性耦合器中演化的Matlab 程序 ?8$`GyjS KK 7}q<&i % This Matlab script file solves the coupled nonlinear Schrodinger equations of
0m1V@3]7> % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
z(c8] Wu# % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
lrc%GU): % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
7Wef[N\x &FmTT8"l %fid=fopen('e21.dat','w');
wxBHlgK4z N = 128; % Number of Fourier modes (Time domain sampling points)
lO\HchGzB M1 =3000; % Total number of space steps
PW@ :fM:q J =100; % Steps between output of space
l'm|** T =10; % length of time windows:T*T0
,W+=N"`a' T0=0.1; % input pulse width
J8\l'}?& MN1=0; % initial value for the space output location
U{dK8~ dt = T/N; % time step
xppnBnu$7 n = [-N/2:1:N/2-1]'; % Index
Up%XBA t = n.*dt;
Z?S?O#FED u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
Q^<amM! u20=u10.*0.0; % input to waveguide 2
q/:]+ u1=u10; u2=u20;
d(}?
\| U1 = u1;
>]_6|Wfl U2 = u2; % Compute initial condition; save it in U
dlyGgaV*X ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
}{+?>!qD t w=2*pi*n./T;
7}qxWz g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
3 US`6Y" L=4; % length of evoluation to compare with S. Trillo's paper
v1i-O' dz=L/M1; % space step, make sure nonlinear<0.05
n]vCvmt for m1 = 1:1:M1 % Start space evolution
A ___|
#R u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
i9 CQ~ u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
;fV"5H)U\ ca1 = fftshift(fft(u1)); % Take Fourier transform
-`ljKp ca2 = fftshift(fft(u2));
"E7<S5cr c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
D|U bh ] c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
kReZch} u2 = ifft(fftshift(c2)); % Return to physical space
W`LG.`JW u1 = ifft(fftshift(c1));
|{|B70v3Co if rem(m1,J) == 0 % Save output every J steps.
512p\x@ U1 = [U1 u1]; % put solutions in U array
gjD|f2*x U2=[U2 u2];
fiC0'4., MN1=[MN1 m1];
6|Dtx5
"r z1=dz*MN1'; % output location
LV9R ] end
({Yfsf, end
A/9<} m hg=abs(U1').*abs(U1'); % for data write to excel
Hwd^C2v ha=[z1 hg]; % for data write to excel
Y\<w|LkD8 t1=[0 t'];
`[E-V hh=[t1' ha']; % for data write to excel file
'N6oXE %dlmwrite('aa',hh,'\t'); % save data in the excel format
z( ^?xv figure(1)
>~7XBb08 waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
.>,Y
| figure(2)
5o{U$ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
~Ih`
ayVq 3,Z;J5VL4! 非线性超快脉冲耦合的数值方法的Matlab程序 o *U-.& *eD[[HbKX 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
r]}6iF. Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
\+Qd=,!i( gCYe^KJ fb0)("_V VWd`06'BN' % This Matlab script file solves the nonlinear Schrodinger equations
9pi{)PDJ % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
0zr%8Q(Q % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
<:(;#&< % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
S_*Gv O _nzTd\L88 C=1;
!iHC++D M1=120, % integer for amplitude
kDJqT M3=5000; % integer for length of coupler
Mx0~^l N = 512; % Number of Fourier modes (Time domain sampling points)
l`6.(6 dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
~f[;(?39xZ T =40; % length of time:T*T0.
3J8>r|u;1' dt = T/N; % time step
,|8aDL? n = [-N/2:1:N/2-1]'; % Index
F W2x t = n.*dt;
]ZR`
6|"VO ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
r1.zURY w=2*pi*n./T;
v:!TqfI g1=-i*ww./2;
V]]!0ugvk( g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
Nz"K`C>/ g3=-i*ww./2;
z<P?p P1=0;
r4K_Wp P2=0;
%Y/;jCY P3=1;
[T'[7Z P=0;
1QhQ#`$<1 for m1=1:M1
[Djx@x p=0.032*m1; %input amplitude
>^W6'Q$P< s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
TWRnty-C s1=s10;
n<)A5UB5- s20=0.*s10; %input in waveguide 2
FP y}Wc*UA s30=0.*s10; %input in waveguide 3
GM8>u O s2=s20;
MdEds|D s3=s30;
LH`$<p2''r p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
ETX>wZ %energy in waveguide 1
O\oRM2^u} p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
$zhvI*0 %energy in waveguide 2
y_Gs_xg p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
8.%wnH %energy in waveguide 3
7On.y* for m3 = 1:1:M3 % Start space evolution
:|&6x! s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
U![$7k>,pr s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
247vU1 s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
gs.+|4dv sca1 = fftshift(fft(s1)); % Take Fourier transform
xHx_!
)7 sca2 = fftshift(fft(s2));
%PPy0RZ^
sca3 = fftshift(fft(s3));
7N5M=f.DS( sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
a3:45[SO4e sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
4QPHT#e qX sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
} nIYNeP?D s3 = ifft(fftshift(sc3));
aWvC-vZk s2 = ifft(fftshift(sc2)); % Return to physical space
@^#
9N!Fj] s1 = ifft(fftshift(sc1));
VWYNq^<AT end
a>6M{C@pd p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
TR
`C|TV> p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
QYj 4D p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
;$ ]a.9
- P1=[P1 p1/p10];
VD!PF' P2=[P2 p2/p10];
]$.w
I~J% P3=[P3 p3/p10];
|Ul 4n@+2 P=[P p*p];
:: GW end
9N2.:<so figure(1)
KB^GC5L> plot(P,P1, P,P2, P,P3);
TgLr4Ex 1j}e2H 转自:
http://blog.163.com/opto_wang/