计算脉冲在非线性耦合器中演化的Matlab 程序 \#uqD\DE 0\V\qAk % This Matlab script file solves the coupled nonlinear Schrodinger equations of
`DI{wqV9 % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
)3k)2X F % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
J% :WLQo % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
\7|s$ XQ\ #rh0r` %fid=fopen('e21.dat','w');
zd?bHcW/h N = 128; % Number of Fourier modes (Time domain sampling points)
c80
}1 M1 =3000; % Total number of space steps
R g%R/p)C J =100; % Steps between output of space
tfi2y]{A T =10; % length of time windows:T*T0
wlm3~B\64 T0=0.1; % input pulse width
j)6@q@P/ MN1=0; % initial value for the space output location
Q.j-C}a dt = T/N; % time step
M3hy5j(b n = [-N/2:1:N/2-1]'; % Index
sL!;hKK t = n.*dt;
({*.!ty u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
,$hQ(yF u20=u10.*0.0; % input to waveguide 2
&>d:ewM\ u1=u10; u2=u20;
(1j(*
?2 U1 = u1;
@)aXNQY U2 = u2; % Compute initial condition; save it in U
,\|n=T, ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
&M!4]pow w=2*pi*n./T;
yC9:sQ'k g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
X;K8,A7` L=4; % length of evoluation to compare with S. Trillo's paper
*T.={>HE8 dz=L/M1; % space step, make sure nonlinear<0.05
uf{SxEa for m1 = 1:1:M1 % Start space evolution
:d!i[W* u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
Y}V)4j u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
Ktg&G<%J0 ca1 = fftshift(fft(u1)); % Take Fourier transform
D6C-x ca2 = fftshift(fft(u2));
9Q
SUCN_ c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
}M"-5K} c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
iqU.a/~y u2 = ifft(fftshift(c2)); % Return to physical space
X}65\6 u1 = ifft(fftshift(c1));
K1m!S9d`x if rem(m1,J) == 0 % Save output every J steps.
Y-}hNZn"{ U1 = [U1 u1]; % put solutions in U array
TE*> a5C| U2=[U2 u2];
]1/W8z% MN1=[MN1 m1];
$5 q{vy z1=dz*MN1'; % output location
Z'*G'/* end
6E*Zj1KX end
1A,4Aw< hg=abs(U1').*abs(U1'); % for data write to excel
'W<a54T?z ha=[z1 hg]; % for data write to excel
GI'&g@?u t1=[0 t'];
30gZ_8C>} hh=[t1' ha']; % for data write to excel file
`4"y#Z %dlmwrite('aa',hh,'\t'); % save data in the excel format
D{&+7C:8. figure(1)
0ER6cTo-t waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
uK"$=v6| figure(2)
(HTk;vbZm waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
d'**wh, .@x"JI>; 非线性超快脉冲耦合的数值方法的Matlab程序 2vW,.]95M hc@;}a\Y 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
+e{djp@m Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
`9G$p|6 OTy4"% K>DnD0 ^{6UAT~!R % This Matlab script file solves the nonlinear Schrodinger equations
&CPe$'FYI % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
kBDe*K.V % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
#!<+:y'S? % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
g-T X;( 5
\.TZMB C=1;
j*3sjOoC M1=120, % integer for amplitude
lHj7O&+ M3=5000; % integer for length of coupler
Wb}0-U{S' N = 512; % Number of Fourier modes (Time domain sampling points)
*$WiJ3'(m dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
['9OGV\ T =40; % length of time:T*T0.
)Or:wFSMq dt = T/N; % time step
<R]Wy}2- n = [-N/2:1:N/2-1]'; % Index
SqT"/e]b' t = n.*dt;
.+yJh ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
FdK R{dX} w=2*pi*n./T;
ggYIq*4 g1=-i*ww./2;
c,u$tnE) g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
5qODS_Eq g3=-i*ww./2;
|'l* $ P1=0;
TTw~.x, P2=0;
="[+6X P3=1;
0,i+ P=0;
Y9(i}uTi for m1=1:M1
(WU~e!} p=0.032*m1; %input amplitude
"> 4[+' s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
J4R s1=s10;
qLktMp_ s20=0.*s10; %input in waveguide 2
e\bF_
N2VA s30=0.*s10; %input in waveguide 3
fb S. s2=s20;
k Y |=a s3=s30;
uJAB)ti2I p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
khO<Z^wi[ %energy in waveguide 1
y^Xxa'y p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
x:D<Mu# %energy in waveguide 2
<3]/ms p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
<pa];k(IQL %energy in waveguide 3
k3htHCf*G$ for m3 = 1:1:M3 % Start space evolution
0%L$TJ.'' s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
P^{`d_[K% s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
rq|czQ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
`S!uj <- sca1 = fftshift(fft(s1)); % Take Fourier transform
cB{;Nh6" sca2 = fftshift(fft(s2));
>!ZyykAs sca3 = fftshift(fft(s3));
"r `6c0Z sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
l#(g&x6J sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
F@*r%[S/ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
cqU/Y_%l' s3 = ifft(fftshift(sc3));
U=*q;$L# s2 = ifft(fftshift(sc2)); % Return to physical space
YUE1 '} s1 = ifft(fftshift(sc1));
]8j5Ou6#y end
J,2v~Dq p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
cF>;f(X p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
p`V9+CA p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
iF2IR{h P1=[P1 p1/p10];
.dq.F#2B; P2=[P2 p2/p10];
V:$1o P3=[P3 p3/p10];
_\V{X}ftqa P=[P p*p];
kTe<1^,m end
hQRc,d6x5 figure(1)
3 mMdq*X5 plot(P,P1, P,P2, P,P3);
ieg PEb <zWQ[^ 转自:
http://blog.163.com/opto_wang/