切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8946阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 f 3\w99\o  
    8*"rZh}'  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of q w"e0q%)  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 6l=M;B7:i  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear OHQ3+WJ  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 )8\Z=uC  
    X^9t  
    %fid=fopen('e21.dat','w'); jeyaT^F(   
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Z|f^nH#-C  
    M1 =3000;              % Total number of space steps !/[AQ{**T!  
    J =100;                % Steps between output of space g9! d pP  
    T =10;                  % length of time windows:T*T0 pvI&-D #}  
    T0=0.1;                 % input pulse width w2s,  
    MN1=0;                 % initial value for the space output location "F04c|oR<X  
    dt = T/N;                      % time step 9n-RXVL+  
    n = [-N/2:1:N/2-1]';           % Index fdvi}SS8  
    t = n.*dt;   ]q@rGD85K  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 `z5v}T  
    u20=u10.*0.0;                  % input to waveguide 2 X/K| WOO6  
    u1=u10; u2=u20;                 9? v)  
    U1 = u1;   I*%&)Hj~  
    U2 = u2;                       % Compute initial condition; save it in U oM m/!Dc  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 6eVe}V4W  
    w=2*pi*n./T; &fh.w]\  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T +*]SP@|IYI  
    L=4;                           % length of evoluation to compare with S. Trillo's paper g=)U_DPRi  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 )GQ D*b  
    for m1 = 1:1:M1                                    % Start space evolution e=|F(iW  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS )yfOrsM  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; `=WzG"  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform mvxc[  
       ca2 = fftshift(fft(u2)); L+`}euu5  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation }d$vcEI$3  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Zm?G'06  
       u2 = ifft(fftshift(c2));                        % Return to physical space C _ k_D  
       u1 = ifft(fftshift(c1)); \v B9fA:*  
    if rem(m1,J) == 0                                 % Save output every J steps. !!\4'Q[  
        U1 = [U1 u1];                                  % put solutions in U array m|g$'vjk  
        U2=[U2 u2]; 1mkQ"E4  
        MN1=[MN1 m1]; GN8`xR{J*  
        z1=dz*MN1';                                    % output location h=mI{w*  
      end E9 :|8#b  
    end y$"~^8"z  
    hg=abs(U1').*abs(U1');                             % for data write to excel 9.]Cy8  
    ha=[z1 hg];                                        % for data write to excel ?3e!A9x  
    t1=[0 t']; cJ1{2R  
    hh=[t1' ha'];                                      % for data write to excel file \ltErd-  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Qt)7mf  
    figure(1) X,Q 6  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn bDcWb2 lqs  
    figure(2) S@l a.0HDA  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn f^>lObvd  
    rmAP&Gw I  
    非线性超快脉冲耦合的数值方法的Matlab程序 '{1W)X  
    gGceK^#  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   mDe+ M {/  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Yn?2,^?N  
    a93d'ZE-X  
    P,LXZ  
    }*{\)7g  
    %  This Matlab script file solves the nonlinear Schrodinger equations U(=f5|-  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of r A&#>R`  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 0*'`%W+5  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 p3'mJ3MA  
    J,&`iL-  
    C=1;                            G$cq   
    M1=120,                       % integer for amplitude HtS1N}@  
    M3=5000;                      % integer for length of coupler p'9 V. _h  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 9# .NPfMF  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. FK/ro91L  
    T =40;                        % length of time:T*T0. ADJ5ZD<Q  
    dt = T/N;                     % time step K.sj"#D  
    n = [-N/2:1:N/2-1]';          % Index ~6Ee=NaLzP  
    t = n.*dt;   2e D\_IW  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. :@z5& h  
    w=2*pi*n./T; :)3$&QdHT  
    g1=-i*ww./2; [b\lcQ8O  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; vY TPZ@RL  
    g3=-i*ww./2; .\hib. n3  
    P1=0; .w*{=x0k  
    P2=0; &t=>:C$1Y  
    P3=1; >?uH#%C5  
    P=0; iTtAj~dfZ  
    for m1=1:M1                 XiZ Zo  
    p=0.032*m1;                %input amplitude qS[p|*BL  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 cq+M *1;  
    s1=s10; th>yi)m  
    s20=0.*s10;                %input in waveguide 2 >t6'8g"T  
    s30=0.*s10;                %input in waveguide 3 \Lh<E5@]  
    s2=s20; 1rzq$,O  
    s3=s30; K]=>F  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   |jCE9Ve#  
    %energy in waveguide 1 ]mGsNQ ].H  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   =Q8^@i4[&D  
    %energy in waveguide 2   } k%\  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   N#6A>  
    %energy in waveguide 3 :J)l C =  
    for m3 = 1:1:M3                                    % Start space evolution qh'f,#dI}  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS F|3FvxA  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; N<i Vs  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; A?Hjz%EcW  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform {G*:N[pJp  
       sca2 = fftshift(fft(s2)); PXQ9P<m  
       sca3 = fftshift(fft(s3)); TB3T:A>2  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   cB"F1~z  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); bz,cfc;?$  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 2b&;Y/z  
       s3 = ifft(fftshift(sc3)); {XUfxNDf  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 0 Vgn N  
       s1 = ifft(fftshift(sc1)); SJuf`  
    end So]FDd  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Q24:G  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); $Q7E#  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); y&I|m  
       P1=[P1 p1/p10]; M6d w~0e  
       P2=[P2 p2/p10]; rM?Dp2  
       P3=[P3 p3/p10]; r.G/f{=<@  
       P=[P p*p]; 71 m-W#zyA  
    end }oxaB9r  
    figure(1) {q>4:lsS  
    plot(P,P1, P,P2, P,P3); OL9C #er  
    u0H`%m  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~