切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9078阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ;Uy}(  
    G6JP3dOT  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of m6gMVon  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 5as5{"l  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear GR 1%(,  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 wuSotbc/  
    it-2]Nw  
    %fid=fopen('e21.dat','w'); ~JS@$#  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) }-9 c1&m  
    M1 =3000;              % Total number of space steps VAqZ`y  
    J =100;                % Steps between output of space 4#ikdjB;  
    T =10;                  % length of time windows:T*T0 Z=a~0&G  
    T0=0.1;                 % input pulse width TWfk r  
    MN1=0;                 % initial value for the space output location ,,ML^ey  
    dt = T/N;                      % time step g{K \  
    n = [-N/2:1:N/2-1]';           % Index WQB V~.<Yv  
    t = n.*dt;   /`y^z"!  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 KUHkjA_  
    u20=u10.*0.0;                  % input to waveguide 2 8{6`?qst@  
    u1=u10; u2=u20;                 WB `h)  
    U1 = u1;   [N"=rY4G  
    U2 = u2;                       % Compute initial condition; save it in U !>GDp>0  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. BD]o+96qP  
    w=2*pi*n./T; {V8uk $  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 3l$D%y  
    L=4;                           % length of evoluation to compare with S. Trillo's paper > -(Zx  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 }I18|=TB  
    for m1 = 1:1:M1                                    % Start space evolution l=#b7rBP  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS E, oR.B  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ^ _W] @m2  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ,F "P/`i'  
       ca2 = fftshift(fft(u2)); ##Qy6Dc  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation :H:+XIgoR  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   >q ,Z*s>?  
       u2 = ifft(fftshift(c2));                        % Return to physical space &(|Ot`el]v  
       u1 = ifft(fftshift(c1)); h&~9?B  
    if rem(m1,J) == 0                                 % Save output every J steps. ~b4kV)[ q  
        U1 = [U1 u1];                                  % put solutions in U array ocpM6b.fK  
        U2=[U2 u2]; '#Do( U'  
        MN1=[MN1 m1]; C+dz0u3s  
        z1=dz*MN1';                                    % output location 5FsfJpw  
      end jc,Q g2  
    end k3]qpWKj  
    hg=abs(U1').*abs(U1');                             % for data write to excel us.IdG  
    ha=[z1 hg];                                        % for data write to excel 19%zcYTe  
    t1=[0 t']; ~w.y9)",  
    hh=[t1' ha'];                                      % for data write to excel file Xc~BHEp  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format !:}m-iqQ1  
    figure(1) bh3yH>Zns  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn SN[ar&I  
    figure(2) TJZ arNc$  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn HC6v#-( `{  
    `L!L=.}4  
    非线性超快脉冲耦合的数值方法的Matlab程序 Zvra >%  
    u}rJqZ  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   $0+&xJVn  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 {Eqx'j  
    vjA!+_I6  
    BbPRPkV  
    b tbuE  
    %  This Matlab script file solves the nonlinear Schrodinger equations _3#_6>=M  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of bik lja  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear $ % B  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 cxx8I  
    @CoUFdbz  
    C=1;                           6^2='y~e  
    M1=120,                       % integer for amplitude |Nadk(}  
    M3=5000;                      % integer for length of coupler BH}M]<5  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ~&"'>C#  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. $Yw~v36`t/  
    T =40;                        % length of time:T*T0. VA %lJ!$  
    dt = T/N;                     % time step ZoCk]hk  
    n = [-N/2:1:N/2-1]';          % Index aN!,\D  
    t = n.*dt;   NSq29#  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. lwjA07 i  
    w=2*pi*n./T; 9hJ a K  
    g1=-i*ww./2; =F5zU5`i  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; /_yAd,^-+  
    g3=-i*ww./2; k?1e + \  
    P1=0; -<e_^  
    P2=0; 8m#y>`  
    P3=1; 90ov[|MkM  
    P=0; }%^3  
    for m1=1:M1                 ^),;`YXZ  
    p=0.032*m1;                %input amplitude ~B7<Yg  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Gh<#wa['}  
    s1=s10; qca=a }  
    s20=0.*s10;                %input in waveguide 2 4H{$zMq8  
    s30=0.*s10;                %input in waveguide 3 8N3rYx;d~  
    s2=s20; d ]#`?}  
    s3=s30; Bw9O)++  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ;1>V7+/  
    %energy in waveguide 1 st>%U9  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   g!)*CP#;  
    %energy in waveguide 2 iP1yy5T  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   =c%gV]>G  
    %energy in waveguide 3 Zv9%}%7p  
    for m3 = 1:1:M3                                    % Start space evolution x&$8;2&.  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 7y$U$6  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; -$,'|\Y  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; i?|u$[^=+  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Or55_E  
       sca2 = fftshift(fft(s2)); p[;@9!t  
       sca3 = fftshift(fft(s3)); >4Qj+ou  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   =4OV }z=I  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Y^XZ.R  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); NFf` V  
       s3 = ifft(fftshift(sc3)); tg9{(_ t/W  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ):n'B` f}z  
       s1 = ifft(fftshift(sc1)); _,f7D/dq  
    end nB}eJD|  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); _T;Kn'Gz(&  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); A-h[vP!v|  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); +,)Iv_Xl$  
       P1=[P1 p1/p10]; D4?cnwU  
       P2=[P2 p2/p10]; K 28s<i`  
       P3=[P3 p3/p10]; 6zGeGW  
       P=[P p*p]; Ql,WKoj*  
    end *q@3yB}  
    figure(1) OU*skc>  
    plot(P,P1, P,P2, P,P3); U}l=1B  
    Sae*VvT6  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~