切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8888阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ? i|LO  
    h4M>k{  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ?B4X&xf.D  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Mg^3Y'{o  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear /@s(8{;  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "g;}B"rG  
    \G]vTK3  
    %fid=fopen('e21.dat','w'); llBW*4'  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) \]t }N  
    M1 =3000;              % Total number of space steps b;(BMO,(  
    J =100;                % Steps between output of space M*jn8OE  
    T =10;                  % length of time windows:T*T0 1FEY&rpR  
    T0=0.1;                 % input pulse width qc^qCGy!z  
    MN1=0;                 % initial value for the space output location ivl_=  
    dt = T/N;                      % time step h IUO=f  
    n = [-N/2:1:N/2-1]';           % Index u#34mg..  
    t = n.*dt;   mt3j$r{_  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 &f>1/"lnd\  
    u20=u10.*0.0;                  % input to waveguide 2 :j#Fq d[DF  
    u1=u10; u2=u20;                 }W R?n  
    U1 = u1;   h)C `w'L  
    U2 = u2;                       % Compute initial condition; save it in U 4ze4{a^  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Jro%zZle  
    w=2*pi*n./T; wn{DY v7B  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T \>XkK<ye  
    L=4;                           % length of evoluation to compare with S. Trillo's paper .3 T#:Hl  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 GCA?sFwo>  
    for m1 = 1:1:M1                                    % Start space evolution j%s:d(H`  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS };;6706a  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; A@lY{e  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ?qjlWCV|e  
       ca2 = fftshift(fft(u2)); W[tX%B  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation l+8G6?@]>  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   $5/lU }To  
       u2 = ifft(fftshift(c2));                        % Return to physical space lAPvphO  
       u1 = ifft(fftshift(c1)); sv?Lk4_  
    if rem(m1,J) == 0                                 % Save output every J steps. T]Eg9Y:+v  
        U1 = [U1 u1];                                  % put solutions in U array h wfKgsm  
        U2=[U2 u2]; >) PcK  
        MN1=[MN1 m1]; 8L*P!j9`EY  
        z1=dz*MN1';                                    % output location dg]: JU  
      end RBzBR)@5   
    end )`.' QW  
    hg=abs(U1').*abs(U1');                             % for data write to excel S+(-k0  
    ha=[z1 hg];                                        % for data write to excel (>Tq  
    t1=[0 t']; v= I 'rx  
    hh=[t1' ha'];                                      % for data write to excel file n$T'gX#5  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format &ahZ_9Q  
    figure(1) ta 66AEc9  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ;4 ON  
    figure(2) 2aUy1*aM  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ( AnM _s  
    XZFM|=%X  
    非线性超快脉冲耦合的数值方法的Matlab程序 noa =wy  
    g4 |s9RMD  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   &qP&=( $  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 #{kwl|c   
    .3.oan*i  
    jQs"8[=s  
    #A2)]XvY  
    %  This Matlab script file solves the nonlinear Schrodinger equations %kJ_o*"  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of g"iLhm` L  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear A<VNttgG  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 &u'$q  
    CcHf1 _CI  
    C=1;                           gOA  
    M1=120,                       % integer for amplitude 5 5_#?vw  
    M3=5000;                      % integer for length of coupler !5P\5WF~Y  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) M6P`~emX2  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. v} $KlT  
    T =40;                        % length of time:T*T0. f|f9[h'  
    dt = T/N;                     % time step .;0?r9  
    n = [-N/2:1:N/2-1]';          % Index crt )}L8-  
    t = n.*dt;   g= ql 3N  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. {\Eqo4A5}  
    w=2*pi*n./T; i<*{Z~B  
    g1=-i*ww./2; F`$V H^%V  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; <"g ^V  
    g3=-i*ww./2; .*N,x0 B(  
    P1=0; C[ ehw  
    P2=0; ;:[!I]E0  
    P3=1; 6mnj!p]3  
    P=0; ^hhJ6E_W  
    for m1=1:M1                 &ESE?{of)  
    p=0.032*m1;                %input amplitude ^nYS @  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 EhkvC>y  
    s1=s10; #l6L7u0~wC  
    s20=0.*s10;                %input in waveguide 2 RY(\/W#$  
    s30=0.*s10;                %input in waveguide 3 hDp -,ag{  
    s2=s20; ,&;#$ b5  
    s3=s30; ]F5qXF5  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   8]N  
    %energy in waveguide 1 ,{ C   
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   rTiW&#  
    %energy in waveguide 2  Sxrbhnx  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   "0F =txduS  
    %energy in waveguide 3 ]}_@!F)  
    for m3 = 1:1:M3                                    % Start space evolution =#AeOqs( q  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS G] -$fz  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; (=d%Bn$6b  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; P~V0<$C  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ]OE{qXr{  
       sca2 = fftshift(fft(s2)); z:hY{/-  
       sca3 = fftshift(fft(s3)); :h1-i  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   %C_RBd  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); HG2i^y  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); h\k!X/  
       s3 = ifft(fftshift(sc3)); D 6trqB  
       s2 = ifft(fftshift(sc2));                       % Return to physical space /;t42 g9w  
       s1 = ifft(fftshift(sc1)); 7-"ml\z  
    end P#/k5]g  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); K<O1PrC  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); T-)Ur/qp  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); FqOV/B /z2  
       P1=[P1 p1/p10]; 85rXm*Df  
       P2=[P2 p2/p10]; ;?>xuC$  
       P3=[P3 p3/p10]; _7(>0GY  
       P=[P p*p]; N 4$!V}pp  
    end Iz/o|o]#  
    figure(1) iV!o)WvG,F  
    plot(P,P1, P,P2, P,P3); _L mDF8Q(  
    / c1=`OJ  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~