切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8938阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Pvv7|AV   
    +|oLS_  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of \Rt>U|%  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 7!o#pt7  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear D}{]5R  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 O d6'bO;G  
    3 ?gfDJfE  
    %fid=fopen('e21.dat','w'); -'oxenu  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) MD;,O3Ge  
    M1 =3000;              % Total number of space steps Z5wDf+  
    J =100;                % Steps between output of space <vs*aFq  
    T =10;                  % length of time windows:T*T0 &a >UVs?=  
    T0=0.1;                 % input pulse width 7 mA3&<&q  
    MN1=0;                 % initial value for the space output location 4*n1Xu 7^x  
    dt = T/N;                      % time step /a$Zzs&xs  
    n = [-N/2:1:N/2-1]';           % Index b V_<5PHP  
    t = n.*dt;   _M>S=3w  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 F_}y[Yn^  
    u20=u10.*0.0;                  % input to waveguide 2 IAmMO[9H  
    u1=u10; u2=u20;                 e'v_eD T^  
    U1 = u1;   !t)uRJ   
    U2 = u2;                       % Compute initial condition; save it in U X)TZ  S  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. fA V.Mj-  
    w=2*pi*n./T; EN>a^B+!  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T su60j^e*  
    L=4;                           % length of evoluation to compare with S. Trillo's paper j9%vw.3b  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 rJp9ut'FEz  
    for m1 = 1:1:M1                                    % Start space evolution ]RVme^=  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ]G! APE  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; E_z,%aD[  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform d.>O`.Mu)}  
       ca2 = fftshift(fft(u2)); za.^vwkBk2  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation &` "uKO]  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   \u/=?b  
       u2 = ifft(fftshift(c2));                        % Return to physical space d| {<SRAI  
       u1 = ifft(fftshift(c1)); JV;VR9-l  
    if rem(m1,J) == 0                                 % Save output every J steps. 2{hG",JL  
        U1 = [U1 u1];                                  % put solutions in U array lP(<4mdP  
        U2=[U2 u2]; 85H*Xm?d#  
        MN1=[MN1 m1]; s BuXw a  
        z1=dz*MN1';                                    % output location hz2f7g  
      end v`jFWq8I,  
    end A~a7/N6s;  
    hg=abs(U1').*abs(U1');                             % for data write to excel p|r>tBv?x  
    ha=[z1 hg];                                        % for data write to excel > LU !Z  
    t1=[0 t']; 4 tt=u]:  
    hh=[t1' ha'];                                      % for data write to excel file @<S'f<>g  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 61b<6 r0o  
    figure(1) k a8=`cn  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn M%eTNsbNm  
    figure(2) ?`SB GN;  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ]V"B`ip[2  
    <U /r U9O  
    非线性超快脉冲耦合的数值方法的Matlab程序 :y!{=[>M(  
    $yZP"AsAR  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   )B^T7{  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 y=1(o3(  
    BQ~\p\  
    Nu; 9  
    m?)F@4]  
    %  This Matlab script file solves the nonlinear Schrodinger equations "L)?dlb6T  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of |y]8gL^  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear `7 J4h9K  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 x1`Jlzrp,  
    V#PT.,Xa.  
    C=1;                           Ed"p|5~  
    M1=120,                       % integer for amplitude =co6.Il  
    M3=5000;                      % integer for length of coupler o PA m*  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) h`:gMhn  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. qEPC]es|T  
    T =40;                        % length of time:T*T0. `9VRT`e  
    dt = T/N;                     % time step T!H }^v  
    n = [-N/2:1:N/2-1]';          % Index s9?H#^Y5u  
    t = n.*dt;   eOd'i{f@F  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Ar$ Am  
    w=2*pi*n./T; z`y^o*qc]  
    g1=-i*ww./2; R?kyJ4S  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ]*AQT7PH  
    g3=-i*ww./2; v}"DW?  
    P1=0; TP)}1 @  
    P2=0;  !*-|s}e  
    P3=1; LZ~}*}jy  
    P=0; ?w"zW6U  
    for m1=1:M1                 , *Z!Bd8  
    p=0.032*m1;                %input amplitude 5q.)K f+  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 .u9,w  
    s1=s10; ncij)7c)u  
    s20=0.*s10;                %input in waveguide 2 )L7h:%h#  
    s30=0.*s10;                %input in waveguide 3 ~@VyJT%  
    s2=s20; $)M 5@KT  
    s3=s30; <SNu`,/I  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   $[*<e~?  
    %energy in waveguide 1 s ` +cQ  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ,tHV H7[  
    %energy in waveguide 2 s\ YHT.O?  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   iXuSFman  
    %energy in waveguide 3 vHx[:vuq:  
    for m3 = 1:1:M3                                    % Start space evolution b(:U]>J  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS kt hy9<!$  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; -Y/c]g  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; V3> JZH`  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Wr\A ->+  
       sca2 = fftshift(fft(s2)); .d%CD`8!  
       sca3 = fftshift(fft(s3)); i~EFRI@  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   2G BE=T  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 8A2_4q@34  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 5g;i{T/6~x  
       s3 = ifft(fftshift(sc3));  F]KAnEf  
       s2 = ifft(fftshift(sc2));                       % Return to physical space nHF%PH#|o  
       s1 = ifft(fftshift(sc1)); &X OFc.u  
    end /~;om\7r  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 59M\uVWR  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); @ZGD'+zd?  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); o",J{  
       P1=[P1 p1/p10]; rE$=~s  
       P2=[P2 p2/p10]; o) ,1R:  
       P3=[P3 p3/p10]; J`d;I#R%c  
       P=[P p*p]; JWvL  
    end }w/6"MJ[n  
    figure(1) yk&PJ;%O<  
    plot(P,P1, P,P2, P,P3); #hF(`oX}4K  
    &`Ek-b!7  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~