切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8518阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 |VBt:dd<  
    3[YG BM(  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of =kjKK  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of \iuR+I  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear zC?' Qiuh*  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 _Cmmx`ln  
    tcD7OC:"6  
    %fid=fopen('e21.dat','w'); (m~>W"x/  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 88g3<&  
    M1 =3000;              % Total number of space steps jkAjYR.  
    J =100;                % Steps between output of space S$6|K Y u  
    T =10;                  % length of time windows:T*T0 D!<F^mtl  
    T0=0.1;                 % input pulse width `zd,^.i5~  
    MN1=0;                 % initial value for the space output location |.<_$[v[x  
    dt = T/N;                      % time step  (I[_}l  
    n = [-N/2:1:N/2-1]';           % Index a:kAo0@":j  
    t = n.*dt;   *Rgr4-eS  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 xEb>6+-F@  
    u20=u10.*0.0;                  % input to waveguide 2 )H8_.]|  
    u1=u10; u2=u20;                 h<9s& p  
    U1 = u1;   pu-HEv}]a|  
    U2 = u2;                       % Compute initial condition; save it in U  j]u!;]  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 4>JSZ6i#n  
    w=2*pi*n./T; E C?}iP  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T F'bwXb**  
    L=4;                           % length of evoluation to compare with S. Trillo's paper dbp\tWaW  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 !`69.v  
    for m1 = 1:1:M1                                    % Start space evolution E$ d#4x  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS +C( -f  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; YEL0h0gn  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform L*@`i ]jl  
       ca2 = fftshift(fft(u2)); ?Oyo /?/  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation %xt9k9=vZ  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   LC%o coc  
       u2 = ifft(fftshift(c2));                        % Return to physical space |23F@s1  
       u1 = ifft(fftshift(c1)); fr17|#L+s  
    if rem(m1,J) == 0                                 % Save output every J steps. j\2Qe %d  
        U1 = [U1 u1];                                  % put solutions in U array 2qMiX|Y  
        U2=[U2 u2]; #M,&g{  
        MN1=[MN1 m1]; F%OP,>zl  
        z1=dz*MN1';                                    % output location 0w?da~  
      end tKbxC>w  
    end 'Wlbh:=$  
    hg=abs(U1').*abs(U1');                             % for data write to excel !fh (k  
    ha=[z1 hg];                                        % for data write to excel F O!Td  
    t1=[0 t']; bA;OphO(  
    hh=[t1' ha'];                                      % for data write to excel file X! d-"[  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format N*Y[[N(  
    figure(1) +m=b "g  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn $)lkiA&;  
    figure(2) mm/\\my  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ,Qj G|P  
    K'A+V  
    非线性超快脉冲耦合的数值方法的Matlab程序 W .a>K$  
    ^y<^hKjV  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   L/k35x8  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 MxTJgY  
    ]'.qRTz'\t  
    -&+:7t  
    r,5e/X  
    %  This Matlab script file solves the nonlinear Schrodinger equations m=l>8  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of T:^.; ZY  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Wu>]R'C  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 'L/)9.29  
    _3/u#'m0  
    C=1;                           2/-m-5A  
    M1=120,                       % integer for amplitude xIdb9hm<  
    M3=5000;                      % integer for length of coupler G[64qhTC  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) xUJ(tG3  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. .K C* (}-  
    T =40;                        % length of time:T*T0. _i =*0Q  
    dt = T/N;                     % time step TTf j 5  
    n = [-N/2:1:N/2-1]';          % Index WQ|Ufl;  
    t = n.*dt;   V@'Xj .ze  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. >a;a8EA<O  
    w=2*pi*n./T; "4b{YWv  
    g1=-i*ww./2; 5'!fi]Z  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; z)Rkd0/X  
    g3=-i*ww./2; Kz'GAm\  
    P1=0; ak7%  
    P2=0; D#GuF~-F!R  
    P3=1; vo/x`F'ib  
    P=0; kQ\GVI11?  
    for m1=1:M1                 ib,`0=0= O  
    p=0.032*m1;                %input amplitude qq)5)S  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 +17!v_4^  
    s1=s10; +3,7 Apj  
    s20=0.*s10;                %input in waveguide 2 F|%PiC,,qO  
    s30=0.*s10;                %input in waveguide 3 G|cjI*  
    s2=s20; ,xwiJfG; ]  
    s3=s30; \VPw3  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Fe8X@63  
    %energy in waveguide 1 '4,?YcZ?S  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   z,Xj$wl  
    %energy in waveguide 2 *q}yfa35eR  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   P| NGAd  
    %energy in waveguide 3 a1,)1y~  
    for m3 = 1:1:M3                                    % Start space evolution \`.v8C>vG  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Y3@+aA  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; %! ` %21  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; FM]clC;X?  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform :7{GOx  
       sca2 = fftshift(fft(s2)); RHsVG &<j  
       sca3 = fftshift(fft(s3)); %YVPm*J ~  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   |=5zI6pT  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 8UB2 du@?  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); }$)~HmZw  
       s3 = ifft(fftshift(sc3)); J;sQvPHV8  
       s2 = ifft(fftshift(sc2));                       % Return to physical space lhM5a \  
       s1 = ifft(fftshift(sc1)); Q g/Rw4[  
    end Xl=RaV^X"  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); fhi}x(  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); w,hm_aDq  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); &D<6Go/)_*  
       P1=[P1 p1/p10]; 6+=_p$crMx  
       P2=[P2 p2/p10]; k7uX!}  
       P3=[P3 p3/p10]; 2K4Xu9-i:b  
       P=[P p*p]; Boj R"  
    end rL<N:@HL  
    figure(1) (~Z&U  
    plot(P,P1, P,P2, P,P3); Zx8$M5  
    e;v7!X  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~