切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8435阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 D+8d^-:  
    jA? #!lx_  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of \lL[08G  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of y48]|%73  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Nk~}aj  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 c0Ug5Vr  
    owVvbC2<b(  
    %fid=fopen('e21.dat','w'); \j)Evjw  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) K/4@ 2vF  
    M1 =3000;              % Total number of space steps vwR_2u  
    J =100;                % Steps between output of space >WLPE6E  
    T =10;                  % length of time windows:T*T0 ?z ,!iK`  
    T0=0.1;                 % input pulse width _sjS'*]  
    MN1=0;                 % initial value for the space output location !U`&a=k  
    dt = T/N;                      % time step {f*Y}/@  
    n = [-N/2:1:N/2-1]';           % Index AZ:7_4jz  
    t = n.*dt;   F<4rn  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 I-v} DuM  
    u20=u10.*0.0;                  % input to waveguide 2  ` Xc7b  
    u1=u10; u2=u20;                 :XKYfc_y  
    U1 = u1;   [%IOB/{N  
    U2 = u2;                       % Compute initial condition; save it in U /i+z#q5'  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 4^_6~YP7  
    w=2*pi*n./T; ,CE/o7.FG  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T =4y gbk  
    L=4;                           % length of evoluation to compare with S. Trillo's paper LPs%^*8(2  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ?2<QoS  
    for m1 = 1:1:M1                                    % Start space evolution $0*sj XV  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS _S!^=9bJ  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; }"Y<<e<z:  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Bz+oM N#XJ  
       ca2 = fftshift(fft(u2)); .X g.,kW  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation HC0juT OiO  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   (qcFGM22U  
       u2 = ifft(fftshift(c2));                        % Return to physical space zI88IM7/  
       u1 = ifft(fftshift(c1)); J_s`G  
    if rem(m1,J) == 0                                 % Save output every J steps. UG1<Xfu|  
        U1 = [U1 u1];                                  % put solutions in U array aRd~T6I  
        U2=[U2 u2]; bC&A@.g{  
        MN1=[MN1 m1]; b[%@3}E  
        z1=dz*MN1';                                    % output location T2{e 1 =Z7  
      end FT).$h~+4  
    end x0 7 =  
    hg=abs(U1').*abs(U1');                             % for data write to excel M-WSdG[AJ  
    ha=[z1 hg];                                        % for data write to excel B=Hd:P|  
    t1=[0 t']; h*%p%t<  
    hh=[t1' ha'];                                      % for data write to excel file dT`nR"  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Z bRRDXk!  
    figure(1) F`}'^>  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn yoE-a  
    figure(2) DJ ru|2  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn (6%T~|a  
    ~tUZQ5"  
    非线性超快脉冲耦合的数值方法的Matlab程序 ^} j~:EZb  
    |N,^*xP(6  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   /Qgb t  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 q 4BXrEOw  
    g$(Y\`zw  
    b"g^Jm! j  
    0%xktf  
    %  This Matlab script file solves the nonlinear Schrodinger equations j/V_h'}  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of D5zc{) /  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear k-$Acv(  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 e\)%<G5  
    Aez2n(yac  
    C=1;                           [*%lm9 x  
    M1=120,                       % integer for amplitude 6v@Prw@.b  
    M3=5000;                      % integer for length of coupler & -/J~b)"  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) /Pjd"  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. [bLKjD  
    T =40;                        % length of time:T*T0. ~B<\#oO  
    dt = T/N;                     % time step {/[@uMS_6]  
    n = [-N/2:1:N/2-1]';          % Index O"9t,B>=i  
    t = n.*dt;   }$?FR  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. lw=kTYbq  
    w=2*pi*n./T; bbL\xq^  
    g1=-i*ww./2;  ff9m_P  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;  ZllmaI  
    g3=-i*ww./2; d% EdvM|)  
    P1=0; J~x]~}V&  
    P2=0; fb f&bJT  
    P3=1; osc8;B/  
    P=0; I!zoo[/)%  
    for m1=1:M1                 +;,{`*W+N  
    p=0.032*m1;                %input amplitude 74_?@Z(  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 -=-^rQx9  
    s1=s10; <h(AJX7wsD  
    s20=0.*s10;                %input in waveguide 2 `JIp$  
    s30=0.*s10;                %input in waveguide 3 PvKGB01_  
    s2=s20; 2e6P?pX~2  
    s3=s30; 6>?qBWW  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   NbWEP\dS'z  
    %energy in waveguide 1 AyJl:aN^  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   |E13W  
    %energy in waveguide 2 (U\o0LI  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   6@aH2+4+  
    %energy in waveguide 3 n%r>W^2j  
    for m3 = 1:1:M3                                    % Start space evolution '[r:pwE  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ~'*23]j  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ,]wab6sY  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Vc\g"1 x  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform CfOyHhhKX  
       sca2 = fftshift(fft(s2)); d 6Y9D=O  
       sca3 = fftshift(fft(s3)); ->#wDL!6  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   %>&~?zrq  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); J5b3r1~D"[  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); eg~ Dm>Es  
       s3 = ifft(fftshift(sc3)); ' !huU   
       s2 = ifft(fftshift(sc2));                       % Return to physical space ZW M:Wj192  
       s1 = ifft(fftshift(sc1)); h5{//0 y  
    end P]"@3Z&w  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); :] Wn26z)  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); )t~ad]oM  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); +@$VJM%^7b  
       P1=[P1 p1/p10];  7]@M  
       P2=[P2 p2/p10]; 3SM'vV0[  
       P3=[P3 p3/p10]; %n]jsdE^|  
       P=[P p*p]; ]:ca=&>  
    end 9f['TG,"  
    figure(1) t:dvgRJt*  
    plot(P,P1, P,P2, P,P3); ?23J(;)s  
    DN9x<%/-  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~