切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8798阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 CqFk(Td9-D  
    tXXnHEz  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ^ L?2y/  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 1Y+g^Z;G  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear l~(A(1  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 oU`{6 ~;  
    |&u4Q /0  
    %fid=fopen('e21.dat','w'); u,~/oTg O  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) (baBi9<P=  
    M1 =3000;              % Total number of space steps vCX 54  
    J =100;                % Steps between output of space 5.M82rR; ~  
    T =10;                  % length of time windows:T*T0 Gov]^?^D-  
    T0=0.1;                 % input pulse width !FA[ ]d4  
    MN1=0;                 % initial value for the space output location 9 `+RmX;m  
    dt = T/N;                      % time step ~8 S2BV3@  
    n = [-N/2:1:N/2-1]';           % Index 4ux^K:z  
    t = n.*dt;   <rI8O;\H  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 taBCE?{  
    u20=u10.*0.0;                  % input to waveguide 2 |\BxKwS^  
    u1=u10; u2=u20;                 vX;~m7+  
    U1 = u1;   bDtb"V8e  
    U2 = u2;                       % Compute initial condition; save it in U Wj I NY  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. }}b &IA#  
    w=2*pi*n./T; Um%$TGw5  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Eg+ z(m$M  
    L=4;                           % length of evoluation to compare with S. Trillo's paper HRg< f= oz  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 NTV@,  
    for m1 = 1:1:M1                                    % Start space evolution CNM pyr  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS n?mV(?N  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; |V-)3 #c  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform >(He,o@M  
       ca2 = fftshift(fft(u2)); zvOSQxGQ  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation }rA _4%  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   |C`.m |  
       u2 = ifft(fftshift(c2));                        % Return to physical space kO}Q OL4  
       u1 = ifft(fftshift(c1)); k#"}oI{< 6  
    if rem(m1,J) == 0                                 % Save output every J steps. v|IG G'r  
        U1 = [U1 u1];                                  % put solutions in U array / NB;eV?  
        U2=[U2 u2]; K<E|29t^k  
        MN1=[MN1 m1]; ana?;NvC  
        z1=dz*MN1';                                    % output location 0eFvcH:qG  
      end Nhrh>x[wJ  
    end m {?uR.O  
    hg=abs(U1').*abs(U1');                             % for data write to excel 2)T.Ci cx  
    ha=[z1 hg];                                        % for data write to excel fI }v}L^  
    t1=[0 t']; :9]"4ktoJ  
    hh=[t1' ha'];                                      % for data write to excel file Z(c2F]  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 9{&oVt~Y$  
    figure(1) <G60R^o  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn <sor;;T  
    figure(2) J_7&nIH7  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Bhf4 /$  
    cz;gz4d8  
    非线性超快脉冲耦合的数值方法的Matlab程序 i1 ^#TC$x  
    _ipY;  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   R4 AKp1Y  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 {w52]5l  
    L4!T  
    NsF8`r g  
    IRK(y*6  
    %  This Matlab script file solves the nonlinear Schrodinger equations JXAH/N& i  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of I%tJLdL  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear )^]1j$N=3  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 uTvck6  
    |#J!oBS!  
    C=1;                           Rd:wMy$  
    M1=120,                       % integer for amplitude dU.H9\p  
    M3=5000;                      % integer for length of coupler g1(`a`M  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) fl *>m,  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Ja%(kq[v  
    T =40;                        % length of time:T*T0. V[fcP;   
    dt = T/N;                     % time step {hi'LA-4@  
    n = [-N/2:1:N/2-1]';          % Index 0Q5fX}  
    t = n.*dt;   =x-@-\m  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. $[M5V v  
    w=2*pi*n./T; 57rH`UFXH  
    g1=-i*ww./2; tish%Qnpd  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; DcX,o*ec!  
    g3=-i*ww./2; 'Ej&zh  
    P1=0; >*e,+ok  
    P2=0; f{ER]U  
    P3=1; c~v(bK  
    P=0; egh_1Wg2a  
    for m1=1:M1                 X~> 2iL  
    p=0.032*m1;                %input amplitude yQdoy^d/4  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 BjAmM*k  
    s1=s10; Y4,LXuQ  
    s20=0.*s10;                %input in waveguide 2 :uQ~?amM  
    s30=0.*s10;                %input in waveguide 3 ? yek\X  
    s2=s20; xAJuIR1Hi  
    s3=s30; ![hVTZ,hyZ  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   PNG!q}(c  
    %energy in waveguide 1 NTy0NH  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   IrTMZG  
    %energy in waveguide 2 Ika(ip#]=  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Jwe9L^gL  
    %energy in waveguide 3 Mhiz{Td  
    for m3 = 1:1:M3                                    % Start space evolution nEbJ,#>Z  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ?n V& :~eY  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; pipqXe  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 6U[bAp  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 9,>u,  
       sca2 = fftshift(fft(s2)); \K%A}gnHe  
       sca3 = fftshift(fft(s3)); 0PT\/imgN  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   >Qold7 M  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 5$Da\?Fpn  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); q8[I` V{  
       s3 = ifft(fftshift(sc3)); mIm.+U`a2  
       s2 = ifft(fftshift(sc2));                       % Return to physical space HZEDr}RN  
       s1 = ifft(fftshift(sc1)); *Rj(~Q/t  
    end _|} GhdYE  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); < (<IRCR  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); #azD& 6`  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Kfk/pYMDq  
       P1=[P1 p1/p10]; u!DAeE  
       P2=[P2 p2/p10]; tC4 7P[b  
       P3=[P3 p3/p10]; 2}8xY:|@(U  
       P=[P p*p]; ,/6 aA7(  
    end -9> oB  
    figure(1) _7Rp.)[&  
    plot(P,P1, P,P2, P,P3); 3|9 U`@  
    gy6Pf4Yo  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~