切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8667阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 5/eS1NJ@  
    yP=isi#dDY  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ,Elga}7u  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of -QNMB4  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 5['B- Iw  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 )9sr,3w  
    \gW\Sa ^  
    %fid=fopen('e21.dat','w'); Q`wA"mw6k  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) &Bdt+OQ ;  
    M1 =3000;              % Total number of space steps '[ddE!ta  
    J =100;                % Steps between output of space SO jDtZ  
    T =10;                  % length of time windows:T*T0 A#07Ly8kXn  
    T0=0.1;                 % input pulse width (NWN&  
    MN1=0;                 % initial value for the space output location xo"4mbTV  
    dt = T/N;                      % time step z E7ocul  
    n = [-N/2:1:N/2-1]';           % Index XU })3]/  
    t = n.*dt;   NS/L! "g  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 QvQf@o  
    u20=u10.*0.0;                  % input to waveguide 2 QbKYB  
    u1=u10; u2=u20;                 X52jqXjg  
    U1 = u1;   ,Vn]Ft?n  
    U2 = u2;                       % Compute initial condition; save it in U m$UT4,Ol  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. v'~nABYH  
    w=2*pi*n./T; 8`*9jr  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 0tL/:zID  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Vv"wf;#  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 QNI|h;D  
    for m1 = 1:1:M1                                    % Start space evolution 7JwWM2N?V  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS vi.AzO  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; pvdZ>D-IU  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform i3WmD@  
       ca2 = fftshift(fft(u2)); 6V?&hq&t  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation  !'t2  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   |+=:x]#vV  
       u2 = ifft(fftshift(c2));                        % Return to physical space e/#&5ISk  
       u1 = ifft(fftshift(c1)); .A[.?7g  
    if rem(m1,J) == 0                                 % Save output every J steps. K#+]  
        U1 = [U1 u1];                                  % put solutions in U array Tb6x@MorP  
        U2=[U2 u2]; Q7aDl8Lxn  
        MN1=[MN1 m1]; z4`n%~w1b  
        z1=dz*MN1';                                    % output location `; %aQR  
      end !P^$g R  
    end uU !i`8  
    hg=abs(U1').*abs(U1');                             % for data write to excel 2o5< nGn  
    ha=[z1 hg];                                        % for data write to excel -&$%m)wN  
    t1=[0 t']; >!p K94  
    hh=[t1' ha'];                                      % for data write to excel file BRLU&@G`1  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format !3v"7l{LF  
    figure(1) OQ*. ho  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 10a*7 L  
    figure(2) 2EcYO$R!  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn '\YhRU  
    pXlBKJmW  
    非线性超快脉冲耦合的数值方法的Matlab程序 r.5Js*VX!  
    Q+M3Pqy  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   _qo1 GM&  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ? bg pUv  
    <RsKV$Je I  
    /;$ew~}  
    s1apHwJ -  
    %  This Matlab script file solves the nonlinear Schrodinger equations uM<+2S  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 3VB V_/i;  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear b!P;xLcb  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 &t:MWb;  
    7B2Og{P  
    C=1;                           F5q1VEe  
    M1=120,                       % integer for amplitude :Lzj'Ij  
    M3=5000;                      % integer for length of coupler p6\9H G  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) u"|nu!p`  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. M_)T=s *  
    T =40;                        % length of time:T*T0. 1T?%i  
    dt = T/N;                     % time step CfnCi_=[`  
    n = [-N/2:1:N/2-1]';          % Index  #7"5Y_0-  
    t = n.*dt;   FMr$cKvE]W  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 2 g==98>cg  
    w=2*pi*n./T; RIc<  
    g1=-i*ww./2; yiA\$mtO  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 78#ud15Ml  
    g3=-i*ww./2; nu -wQr  
    P1=0; Tj+WO6#V  
    P2=0; ]g!<5 w  
    P3=1; /qze  
    P=0; @V u[Tg}J  
    for m1=1:M1                 4f-C]N=  
    p=0.032*m1;                %input amplitude >R-$JrU.=  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 e]fC!>w(\  
    s1=s10; 5Ozj&Zq  
    s20=0.*s10;                %input in waveguide 2 ^i 7a2< z  
    s30=0.*s10;                %input in waveguide 3 Q{kuB+s  
    s2=s20; %.Y`X(g6/  
    s3=s30; j* ?MFvwE  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   xGPv3TLH^  
    %energy in waveguide 1 x B[# a*  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   #2=30  
    %energy in waveguide 2 h {btT  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   K)Ka"H  
    %energy in waveguide 3 ~vS.Dr  
    for m3 = 1:1:M3                                    % Start space evolution %hQ`b$07t  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS t|_g O!w8  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; !4fL|0  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; c+VUk*c3  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform |.yRo_  
       sca2 = fftshift(fft(s2)); h2K  
       sca3 = fftshift(fft(s3)); c6.|; 4  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   VgL<uxq  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); n$iz   
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); a r%Rr"  
       s3 = ifft(fftshift(sc3)); wEyh;ID3#  
       s2 = ifft(fftshift(sc2));                       % Return to physical space .kV/ 0!q?  
       s1 = ifft(fftshift(sc1)); J)f?x T*  
    end p! 1zhD  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); SM?<woY=*  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); sj2+|>  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); >ZWm0nTr  
       P1=[P1 p1/p10]; YTsn;3d]}  
       P2=[P2 p2/p10]; (>'d`^kjk  
       P3=[P3 p3/p10]; #4?3OU#  
       P=[P p*p]; EY(4 <;)  
    end B{<6 &bQ  
    figure(1) $TiAJ}:  
    plot(P,P1, P,P2, P,P3); &40d J~SQ  
    gUl Z cb  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~