切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8606阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 >#gDk K  
    p8?"}  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 9`"#OQPn1  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of vCK+v r!  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear PRFl%M.H`  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ufw[Ei$I:  
    M"qS#*{  
    %fid=fopen('e21.dat','w'); N>Uxq& )!  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) }s6Veosl  
    M1 =3000;              % Total number of space steps -yBj7F|  
    J =100;                % Steps between output of space iE_[]Vgc  
    T =10;                  % length of time windows:T*T0 EQw7(r|v:  
    T0=0.1;                 % input pulse width Z#^|h0  
    MN1=0;                 % initial value for the space output location ]ZW-`UMO  
    dt = T/N;                      % time step $"MVr5q6  
    n = [-N/2:1:N/2-1]';           % Index wf\7sz  
    t = n.*dt;   8K8jz9.s  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 WB<MU:.Vc  
    u20=u10.*0.0;                  % input to waveguide 2 FgrVXb_q  
    u1=u10; u2=u20;                 "!eq~/nk  
    U1 = u1;   @de0)AJG6  
    U2 = u2;                       % Compute initial condition; save it in U /iAhGY  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. D/;[x{;E  
    w=2*pi*n./T; \1n (Jr.<  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T H5 :,hrZY  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Zg>]!^X8  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 4PkKL/E  
    for m1 = 1:1:M1                                    % Start space evolution Z5*(xony0  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS D@ !r?E`  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; gX(Xj@=(&  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform T/ eX7p1  
       ca2 = fftshift(fft(u2)); #T{)y  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation D`'Cnt/  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   VZ">vIRyi|  
       u2 = ifft(fftshift(c2));                        % Return to physical space utl-#Wwt/  
       u1 = ifft(fftshift(c1)); 0S'@(p[A  
    if rem(m1,J) == 0                                 % Save output every J steps. s16, *;Z  
        U1 = [U1 u1];                                  % put solutions in U array G)M! , Q  
        U2=[U2 u2]; >ke.ZZV?  
        MN1=[MN1 m1]; ]s E)-8  
        z1=dz*MN1';                                    % output location ct OCj$$u  
      end }; M@JMu,  
    end P>_9>k@;Q  
    hg=abs(U1').*abs(U1');                             % for data write to excel :2/ jI:L~  
    ha=[z1 hg];                                        % for data write to excel Oo FMOlb.Z  
    t1=[0 t']; \7#w@3*  
    hh=[t1' ha'];                                      % for data write to excel file GRVF/hPn  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ?$uF(>LD  
    figure(1) ~{-Ka>A  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn PlK3;  
    figure(2) Gr)G-zE  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn =PNkzFUo  
    J|^z>gP(  
    非线性超快脉冲耦合的数值方法的Matlab程序 D]rYg'  
    B.;@i;7L  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   XzqB=iX  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 6K<o0=,jm2  
    oOAkwc%)b  
    4<)*a]\c5M  
    z 0zB&}  
    %  This Matlab script file solves the nonlinear Schrodinger equations suW|hh1/Ya  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of *QI Yq  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear v6[VdWOx5  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 s,!vBSn8  
     ST~YO  
    C=1;                           ?z6K/'?  
    M1=120,                       % integer for amplitude Ex|Z@~T12  
    M3=5000;                      % integer for length of coupler NXDkGO/*  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) !<VP[%2L~  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. DHuvHK0#  
    T =40;                        % length of time:T*T0. SDNRcSbOD6  
    dt = T/N;                     % time step 5K682+^5  
    n = [-N/2:1:N/2-1]';          % Index 'irwecd8  
    t = n.*dt;   #w\x-i|  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. yJO Jw o^  
    w=2*pi*n./T; ,O:p`"3`0=  
    g1=-i*ww./2; vWrTB   
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;  7( Z9\  
    g3=-i*ww./2; :hW(2=%  
    P1=0; G(Hr*T%  
    P2=0; !Fxn1Z,  
    P3=1; N;BuBm5K  
    P=0; T5e#Ll/  
    for m1=1:M1                 X eY[;}9  
    p=0.032*m1;                %input amplitude `d4xX@  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ,/TmTX--d  
    s1=s10; G %\/[ B  
    s20=0.*s10;                %input in waveguide 2 B]}gfVO  
    s30=0.*s10;                %input in waveguide 3 E_[a|N"D  
    s2=s20; /-m)  
    s3=s30; M"{*))O\-c  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   @JLN3  
    %energy in waveguide 1 Tz.okCo]z  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   #f_'&m  
    %energy in waveguide 2 "oFi+']*  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   c=bK_Z_  
    %energy in waveguide 3 2J$vX(  
    for m3 = 1:1:M3                                    % Start space evolution +Zr~mwM=x  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS w9RBT(u  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; aaN/HE_  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; E4Ez)IaKyi  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform J|be'V#]1  
       sca2 = fftshift(fft(s2)); ?$tD  
       sca3 = fftshift(fft(s3)); !O}e)t  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift    cC|  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 4b`Fi@J\  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); c+T`X?.j  
       s3 = ifft(fftshift(sc3)); NG:4Q.G1g  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 3PL0bejaT7  
       s1 = ifft(fftshift(sc1)); |r?0!;bN0  
    end s6 (md<r  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); F1B/cd  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); @2d9 7.X  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); C2=PGq  
       P1=[P1 p1/p10]; Ygkf}n  
       P2=[P2 p2/p10]; %{cVG-<_iz  
       P3=[P3 p3/p10]; O{7#Xj :_  
       P=[P p*p]; ~UQ<8`@a  
    end :"Tkl$@,  
    figure(1) V51kX{S  
    plot(P,P1, P,P2, P,P3); -b8SaLak  
    }U5$~, *p  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~