计算脉冲在非线性耦合器中演化的Matlab 程序 e>
ar Az
U|p % This Matlab script file solves the coupled nonlinear Schrodinger equations of
o-SRSu % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
Y*Y&)k6t % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
tCWJSi`IJ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
RRx`}E9, `]K,'i{R %fid=fopen('e21.dat','w');
`aO.=:O_ N = 128; % Number of Fourier modes (Time domain sampling points)
7'_nc!ME M1 =3000; % Total number of space steps
G$cxDGo J =100; % Steps between output of space
X,>(Y8 T =10; % length of time windows:T*T0
qPsyqn?Y| T0=0.1; % input pulse width
X!T|07#c MN1=0; % initial value for the space output location
|.j^G2x dt = T/N; % time step
;e&! n = [-N/2:1:N/2-1]'; % Index
M$,Jg5Dc t = n.*dt;
C0zrXhY_v u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
5\VxXiy0 u20=u10.*0.0; % input to waveguide 2
mYX56,b}5 u1=u10; u2=u20;
M|U';2hZN: U1 = u1;
c`-YIz)W U2 = u2; % Compute initial condition; save it in U
b![t6-f^z ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
Tv`_n2J`2 w=2*pi*n./T;
[/?c@N, g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
Ip>^O/}$1 L=4; % length of evoluation to compare with S. Trillo's paper
PT mf dz=L/M1; % space step, make sure nonlinear<0.05
Y.E?;iS for m1 = 1:1:M1 % Start space evolution
3nwz<P u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
BpH|/7 u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
{U(Bfe^a, ca1 = fftshift(fft(u1)); % Take Fourier transform
yHl@_rN
sC ca2 = fftshift(fft(u2));
?LM:RADCm c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
y0;,dv] c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
Y\.DQ u2 = ifft(fftshift(c2)); % Return to physical space
LxB&7 u1 = ifft(fftshift(c1));
DK)u)?! if rem(m1,J) == 0 % Save output every J steps.
HH7[tGF U1 = [U1 u1]; % put solutions in U array
yP
x\ltG3 U2=[U2 u2];
pXssh MN1=[MN1 m1];
MM7"a?y) z1=dz*MN1'; % output location
H]BAW *} end
w.tW=z5 end
Pow|:Lau! hg=abs(U1').*abs(U1'); % for data write to excel
n-d:O\] ha=[z1 hg]; % for data write to excel
XHy? t1=[0 t'];
Ga.0Io&}C hh=[t1' ha']; % for data write to excel file
Cgo9rC~] %dlmwrite('aa',hh,'\t'); % save data in the excel format
S:#e8H_7m] figure(1)
M]1; waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
C]/&vh7ta figure(2)
N50fL waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
HQl~Dh0DJ rxs8De 非线性超快脉冲耦合的数值方法的Matlab程序 uw_H:-J !Pw$48cg 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
]s_@n! Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
vuZf#\zh} )PwQ^||{ 4x(F&0 > <X $# % This Matlab script file solves the nonlinear Schrodinger equations
YN/u9[=` % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
)Xp Vu % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
Y5n>r@)m % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
%w$mSG KhrFg1| C=1;
f -7S:, M1=120, % integer for amplitude
of=ql M3=5000; % integer for length of coupler
|e:rYLxm: N = 512; % Number of Fourier modes (Time domain sampling points)
h<)yJh dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
bTiBmS T =40; % length of time:T*T0.
5\&]J7( dt = T/N; % time step
O)`Gzx*ShU n = [-N/2:1:N/2-1]'; % Index
l**3%cTb t = n.*dt;
l:)S 3 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
zXjwnep w=2*pi*n./T;
7u|%^Ao6 g1=-i*ww./2;
,aWCiu} g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
-n-Z/5~ X g3=-i*ww./2;
?T
<rt P1=0;
hox< vr4 P2=0;
1 )'Iu`k/ P3=1;
l77'Lne P=0;
IhfZLE., for m1=1:M1
TVYz3~m p=0.032*m1; %input amplitude
]hL:33 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
.+HcA x{/2 s1=s10;
**n y! s20=0.*s10; %input in waveguide 2
1U'ZVJ5bpK s30=0.*s10; %input in waveguide 3
xvB8YW" s2=s20;
*t]v}ZV* s3=s30;
zC#%6@P\ p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
6m@0;Ht %energy in waveguide 1
bLco:-G1E1 p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
EWO /u.z %energy in waveguide 2
c@9##DPn p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
oBC]UL;8xJ %energy in waveguide 3
>9MS"t for m3 = 1:1:M3 % Start space evolution
9OfU7_m s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
zQ_z7FJCB s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
UhdqY] s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
3Soy3Xp sca1 = fftshift(fft(s1)); % Take Fourier transform
*{4
ETr7 sca2 = fftshift(fft(s2));
/S[?{Q A sca3 = fftshift(fft(s3));
6uqUiRs() sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
~2(]ZfO?>H sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
}2=hd. . sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
c})wD+1 s3 = ifft(fftshift(sc3));
op.d;lO@ s2 = ifft(fftshift(sc2)); % Return to physical space
F<gMUDB s1 = ifft(fftshift(sc1));
T0Q51Q end
\C7q4p?8 p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
) $J7sa p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
0#^Bf[Dn p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
gvlFumg2 P1=[P1 p1/p10];
7 OWsHlU P2=[P2 p2/p10];
TaWaHf P3=[P3 p3/p10];
=+\$e1Mb* P=[P p*p];
qX?[mdCHZ end
!=y Q)l2 figure(1)
{Xv3:"E"O plot(P,P1, P,P2, P,P3);
fM2^MUp[=1 7D9]R#-K 转自:
http://blog.163.com/opto_wang/