切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8735阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 gg[WlRQK4A  
    ?3%` bY+3;  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of >_o}  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of e<=cdze  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear S'A>2>  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 P/c&@_b  
    Av"R[)  
    %fid=fopen('e21.dat','w');  Jd%H2`  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) }2(,K[?  
    M1 =3000;              % Total number of space steps (IC]?n}  
    J =100;                % Steps between output of space &0NFb^8+  
    T =10;                  % length of time windows:T*T0 R#2t)y  
    T0=0.1;                 % input pulse width qp/v^$EA  
    MN1=0;                 % initial value for the space output location T? tG~  
    dt = T/N;                      % time step .#1~Rz1r  
    n = [-N/2:1:N/2-1]';           % Index ?0)&U  
    t = n.*dt;   \=uKHNP?#  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 4"{ooy^Q  
    u20=u10.*0.0;                  % input to waveguide 2 ]<H&+ &!  
    u1=u10; u2=u20;                 q8^^H$<Db  
    U1 = u1;   MP_'D+LS  
    U2 = u2;                       % Compute initial condition; save it in U X=hYB}}nu  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. &z>e5_.  
    w=2*pi*n./T; !OBEM1~ 1  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T >iD )eB  
    L=4;                           % length of evoluation to compare with S. Trillo's paper MKy[hT:  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 c.,2GwW  
    for m1 = 1:1:M1                                    % Start space evolution nx8a$vI-TY  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS {.QEc0-  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; T2SP W@#Z3  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform |_`E1Y}}  
       ca2 = fftshift(fft(u2)); V#cqRE3XNi  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation %7"X(Ts7B  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift    :@%4  
       u2 = ifft(fftshift(c2));                        % Return to physical space "NgxkbDEbG  
       u1 = ifft(fftshift(c1)); | \'rP_I>  
    if rem(m1,J) == 0                                 % Save output every J steps. T{Sb^-H#X  
        U1 = [U1 u1];                                  % put solutions in U array VwOW=4`6  
        U2=[U2 u2]; GG@ md_  
        MN1=[MN1 m1]; oXxCXO,q  
        z1=dz*MN1';                                    % output location GFel(cx:K  
      end O)ME"@r@:  
    end I9:Cb)hbU]  
    hg=abs(U1').*abs(U1');                             % for data write to excel -TM 0]{  
    ha=[z1 hg];                                        % for data write to excel qW!]co  
    t1=[0 t']; |g #K]v  
    hh=[t1' ha'];                                      % for data write to excel file y($%;l   
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format COW}o~3-4  
    figure(1) e'0{?B  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn e XfZ5(na  
    figure(2) 5dB'&8DX  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ve% xxn:  
    *M$0J'-BQ  
    非线性超快脉冲耦合的数值方法的Matlab程序 Bx/L<J@  
    _io+YzS  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   :{IO=^D=$  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 1jc, Y.mP  
    du)~kU>l  
    Dh5X/y  
    9(6I<]#  
    %  This Matlab script file solves the nonlinear Schrodinger equations w:?oTuw  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of &|!7Z4N  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Kj<^zo%w  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 L{(QpgHZ  
    ?r?jl;A&  
    C=1;                           ")V130<  
    M1=120,                       % integer for amplitude Q($Z%1S  
    M3=5000;                      % integer for length of coupler s VJ!FC  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) B<~ NS)w  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 'UMXq~RMe  
    T =40;                        % length of time:T*T0. ;_^fk&+  
    dt = T/N;                     % time step | fSe>uVZ  
    n = [-N/2:1:N/2-1]';          % Index L2, 1Kt7  
    t = n.*dt;   |37 g ~  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. E;1Jh(58)b  
    w=2*pi*n./T; /)dFK~  
    g1=-i*ww./2; f-5:wM&  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; mZx&Xez_G  
    g3=-i*ww./2; u$-U*r  
    P1=0; 3bDQk :L  
    P2=0; :PtF+{N>  
    P3=1; 7{I h_.#  
    P=0; xia|+  
    for m1=1:M1                 cIp D~0\  
    p=0.032*m1;                %input amplitude '3<fsK=  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ~i21%$  
    s1=s10; L3n_ 5|  
    s20=0.*s10;                %input in waveguide 2 =e8bNg  
    s30=0.*s10;                %input in waveguide 3 C&6IU8l\  
    s2=s20; M?[h0{^K  
    s3=s30; ' 4E R00  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   qA!]E^0*Ke  
    %energy in waveguide 1 jq+A-T}@  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   1!.(4gV  
    %energy in waveguide 2 )=-0M9e.{  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   X+~ XJ  
    %energy in waveguide 3 _>v<(7  
    for m3 = 1:1:M3                                    % Start space evolution Vo7dAHHL  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS vmLxkjUm#  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; C#H:-Q&  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 8,atX+tc  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 2KQoy;  
       sca2 = fftshift(fft(s2)); !YP@m~  
       sca3 = fftshift(fft(s3)); /__PSK  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   2hee./F`  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); IN,(y aC  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); *b xzCI7b  
       s3 = ifft(fftshift(sc3)); XEdzpkB  
       s2 = ifft(fftshift(sc2));                       % Return to physical space |gsE2vV  
       s1 = ifft(fftshift(sc1)); =&},;VOh  
    end tqy@iEz+  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); {O+Kw<d  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); NHl|x4Zpw  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ^1wA:?uN}  
       P1=[P1 p1/p10]; \'M3|w`f  
       P2=[P2 p2/p10]; E"L2&.  
       P3=[P3 p3/p10]; EaWS. eK  
       P=[P p*p]; z.CywME<)t  
    end w=}uwvn NX  
    figure(1) e5OsI Vtjr  
    plot(P,P1, P,P2, P,P3); CT\;xt,S  
    @o-B{ EH8  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~