切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9028阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 0EJ(.8hwm  
    .UoOO'1K  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ' H7x L  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of .G o{1[  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear L4L2O7  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 z4E|Ai  
    h~wi6^{&Y  
    %fid=fopen('e21.dat','w'); I}2P>)K  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ,ZS6jZ  
    M1 =3000;              % Total number of space steps n&A'C\  
    J =100;                % Steps between output of space Su 5>$  
    T =10;                  % length of time windows:T*T0 @Tfl>/%  
    T0=0.1;                 % input pulse width upvS|KUil  
    MN1=0;                 % initial value for the space output location  &QNWL]  
    dt = T/N;                      % time step (RtueEb.~E  
    n = [-N/2:1:N/2-1]';           % Index P=1I<Pew  
    t = n.*dt;   y< C<_2  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 k=GG>]<i  
    u20=u10.*0.0;                  % input to waveguide 2 H:H6b  
    u1=u10; u2=u20;                 ;+1RU v  
    U1 = u1;   ^*~;k|;&  
    U2 = u2;                       % Compute initial condition; save it in U M,}|tsL  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ps$7bN C  
    w=2*pi*n./T; !`bio cA  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Z0De!?ALV\  
    L=4;                           % length of evoluation to compare with S. Trillo's paper sE{pzPq!  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 5'a3huRtV  
    for m1 = 1:1:M1                                    % Start space evolution #P#-xz  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS &Z?ut *%S  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; a?YCn!  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform m?HZ;  
       ca2 = fftshift(fft(u2)); OGiV{9U  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation $BmmNn#  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ,<DB&&EV8  
       u2 = ifft(fftshift(c2));                        % Return to physical space _lW+>xQ  
       u1 = ifft(fftshift(c1)); a(]`F(L  
    if rem(m1,J) == 0                                 % Save output every J steps. .Wi{lt  
        U1 = [U1 u1];                                  % put solutions in U array `pd&se'p  
        U2=[U2 u2]; g]UBZ33y  
        MN1=[MN1 m1]; PCnQ_A-Q  
        z1=dz*MN1';                                    % output location aCV4AyG  
      end 9z?oB&5  
    end 0ult7s}  
    hg=abs(U1').*abs(U1');                             % for data write to excel ,&U4a1%i#c  
    ha=[z1 hg];                                        % for data write to excel !se0F.K  
    t1=[0 t']; fA48(0p  
    hh=[t1' ha'];                                      % for data write to excel file oPc\<$  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format )rLMIk  
    figure(1) BK,sc'b  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn .k4W_9  
    figure(2) 5BR5X\f0  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 63?)K s  
    6a}"6d/sTL  
    非线性超快脉冲耦合的数值方法的Matlab程序 x]5@>5  
    wiX~D  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   FI8Oz,  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 0tk#Gs[  
    56hA]O29O  
    M\b")Tu{0  
    ]aCk_*U  
    %  This Matlab script file solves the nonlinear Schrodinger equations p#f+P?  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of (yo;NKq,@  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 7 1W5.!  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 1p`+  
    Pag63njg?  
    C=1;                           C}IbxKl  
    M1=120,                       % integer for amplitude 8&"(WuZ@  
    M3=5000;                      % integer for length of coupler #sKWd  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Kt>X3m,  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. mmw^{MK!  
    T =40;                        % length of time:T*T0. 1G~S |,8p  
    dt = T/N;                     % time step !S%6Uzsj  
    n = [-N/2:1:N/2-1]';          % Index (wRBd  
    t = n.*dt;   g=}v>[k E  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 0%s|Zbo!>  
    w=2*pi*n./T; pO<-.,  
    g1=-i*ww./2; O$`UCq  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; %[<Y9g,:Q  
    g3=-i*ww./2; 5sde  
    P1=0; IGX:H)&*  
    P2=0; "%8A :^1  
    P3=1; v}J;ZIb  
    P=0; V@=V5bZLs  
    for m1=1:M1                 PU9`<3z5  
    p=0.032*m1;                %input amplitude XC15K@K  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 M4Z@O3OI E  
    s1=s10; z1 i &Ge  
    s20=0.*s10;                %input in waveguide 2  'k&?DZ!  
    s30=0.*s10;                %input in waveguide 3  V[pvJ(  
    s2=s20; o?Sla_D   
    s3=s30; bAxTLIf  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Bd bJ< Is  
    %energy in waveguide 1 O}Ui`eWU  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   r0m)j  
    %energy in waveguide 2 47 u@4"M  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ]Gc3Ea;4  
    %energy in waveguide 3 -'rj&x{Q)U  
    for m3 = 1:1:M3                                    % Start space evolution dTEJ=d40  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS fm1X1T.  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; SP 2 8  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ;Hm'6TR!  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform +-068k(  
       sca2 = fftshift(fft(s2)); ST1Ts5I  
       sca3 = fftshift(fft(s3)); Mj0Cat=  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ?SY<~i<K-  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Q F-)^`N  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); }F`beoMAkM  
       s3 = ifft(fftshift(sc3)); |U[y_Y\a  
       s2 = ifft(fftshift(sc2));                       % Return to physical space !^U6Z@&/R  
       s1 = ifft(fftshift(sc1)); 0/]_nd  
    end urY`^lX~  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 2xmk,&s  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); g jG2  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); twqFs  
       P1=[P1 p1/p10]; i%(yk#=V  
       P2=[P2 p2/p10]; [j6~}zu@  
       P3=[P3 p3/p10]; !"4w&bQ  
       P=[P p*p]; 9+CFRYC  
    end YaFcz$GE_  
    figure(1) .+#Lx;})  
    plot(P,P1, P,P2, P,P3); qc!xW ,I  
    KS!yT_O  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~