计算脉冲在非线性耦合器中演化的Matlab 程序 frB~ajXK VRr_s:CWK % This Matlab script file solves the coupled nonlinear Schrodinger equations of
1;O%8sp& % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
n/ ]<Bc? % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
.Z[Bz7 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
6 <&jY Co`O{|NS}! %fid=fopen('e21.dat','w');
){ywk N = 128; % Number of Fourier modes (Time domain sampling points)
}6YD5?4 M1 =3000; % Total number of space steps
RZwjc<T J =100; % Steps between output of space
3awh>1N2W T =10; % length of time windows:T*T0
~nul[>z T0=0.1; % input pulse width
r?^[o MN1=0; % initial value for the space output location
gWlv;oq dt = T/N; % time step
V4c$V]7 n = [-N/2:1:N/2-1]'; % Index
\_H-TbU8 t = n.*dt;
0UV5}/2rP u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
RPH]@ u20=u10.*0.0; % input to waveguide 2
l5?fF6#j u1=u10; u2=u20;
,{4G@:Fm U1 = u1;
?|Q[QP U2 = u2; % Compute initial condition; save it in U
#9HQW:On ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
if|j)h& w=2*pi*n./T;
"S#}iYp g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
[=Qv?am L=4; % length of evoluation to compare with S. Trillo's paper
Y\CR*om!W dz=L/M1; % space step, make sure nonlinear<0.05
0I|IL]JL for m1 = 1:1:M1 % Start space evolution
kzZdYiC u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
P<Wtv;Z1Z u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
;W ZA ca1 = fftshift(fft(u1)); % Take Fourier transform
%O9kq ca2 = fftshift(fft(u2));
\\<waU'' c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
TDvUiJm c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
m(~5X0 u2 = ifft(fftshift(c2)); % Return to physical space
}zA
kUt u1 = ifft(fftshift(c1));
#X~{p4Lr if rem(m1,J) == 0 % Save output every J steps.
jt({@;sU[< U1 = [U1 u1]; % put solutions in U array
RPb/U8 U2=[U2 u2];
z:m` MN1=[MN1 m1];
a[Q\8< z1=dz*MN1'; % output location
`R}q&|o7< end
`O:ecPD4M end
%by8i1HR hg=abs(U1').*abs(U1'); % for data write to excel
iw`,\V& ha=[z1 hg]; % for data write to excel
P=Au~2X t1=[0 t'];
z]P=>w hh=[t1' ha']; % for data write to excel file
-,;r %7T %dlmwrite('aa',hh,'\t'); % save data in the excel format
u!NY@$Wc figure(1)
~d+.w%Z` waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
yrp;G_ figure(2)
1e Wl:S} waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
AsBep SV-M8Im73z 非线性超快脉冲耦合的数值方法的Matlab程序 6fP"I_c PS*=MyNa 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
2(_+PQ6C= Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
p&Os5zw;| 'QR
@G BvXA9YQ3 Equj[yw%@ % This Matlab script file solves the nonlinear Schrodinger equations
UODbT&& % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
}sbh|# % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
Idq&0<I % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
^h
q?E2- _;o)MTw|' C=1;
0+a-l[!p M1=120, % integer for amplitude
7d44i M3=5000; % integer for length of coupler
SGuR-$U`) N = 512; % Number of Fourier modes (Time domain sampling points)
OxGS{zs dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
3~Qvp )~ T =40; % length of time:T*T0.
z_)`='&n dt = T/N; % time step
XkG:1H;Q% n = [-N/2:1:N/2-1]'; % Index
O'<5PwhG t = n.*dt;
oCl
$ 0x ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
3J^"$qfSn w=2*pi*n./T;
-k$*@Hq g1=-i*ww./2;
){XaO;k<] g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
[M:ag_rm+f g3=-i*ww./2;
1qEpQ.:]( P1=0;
S4r-s;U-v/ P2=0;
\Lp|S:u P3=1;
>8I?YT. P=0;
~EYsUC#B_ for m1=1:M1
!B&OK&* p=0.032*m1; %input amplitude
7Wd}H Z s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
QD<GXPu?N s1=s10;
*]L(,_:" s20=0.*s10; %input in waveguide 2
.7h:/d
Y: s30=0.*s10; %input in waveguide 3
Ya%-/u s2=s20;
: h"Bf@3 s3=s30;
*bi!iz5F p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
oWJ0>) %energy in waveguide 1
9n(.v} p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
0j=xWC %energy in waveguide 2
Gr1WBYK p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
K,ccM[hu| %energy in waveguide 3
j_3X
1w)k for m3 = 1:1:M3 % Start space evolution
y:C=Ni&," s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
gpIq4Q< s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
l ~b s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
NuL.l__W sca1 = fftshift(fft(s1)); % Take Fourier transform
3RwDIk?>% sca2 = fftshift(fft(s2));
2Hh5gD|> sca3 = fftshift(fft(s3));
7GY3_` sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
?+Q?K30: sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
E<
57d,3l sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
!Vtj:2PQL s3 = ifft(fftshift(sc3));
<)f1skJsP s2 = ifft(fftshift(sc2)); % Return to physical space
3lkz:]SsE s1 = ifft(fftshift(sc1));
OoG Nij end
u$vA9g4 p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
m1d*Lt>F@ p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
HDV@d^]- p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
g>@T5&1q* P1=[P1 p1/p10];
_m;H$N~I# P2=[P2 p2/p10];
nIckI!U#D P3=[P3 p3/p10];
K!L0|WH%! P=[P p*p];
|
Ns-l
(l end
,aA%,C.0U figure(1)
:1O49g3R plot(P,P1, P,P2, P,P3);
`$fKS24u PP]Z~ne0X 转自:
http://blog.163.com/opto_wang/