切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8331阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 2& l~8,  
    8 3wa{m:  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ]D;X"2I2'b  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of t:G67^<3  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ^sp+ sr :  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 VY5/C;0^h  
    1c} %_Z/  
    %fid=fopen('e21.dat','w'); [l2ds:  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) .*s1d)\:  
    M1 =3000;              % Total number of space steps Ol~j q;75  
    J =100;                % Steps between output of space OA_Bz"  
    T =10;                  % length of time windows:T*T0 ?m?DAd~ZY  
    T0=0.1;                 % input pulse width bI,gNVN=  
    MN1=0;                 % initial value for the space output location *c+Kqz-  
    dt = T/N;                      % time step /{';\?w  
    n = [-N/2:1:N/2-1]';           % Index 2%'iTXF  
    t = n.*dt;   ^$7Lmd.qI  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 -4&SYCw  
    u20=u10.*0.0;                  % input to waveguide 2 L"akV,w4p  
    u1=u10; u2=u20;                 pUs s_3  
    U1 = u1;   ^hhJ6E_W  
    U2 = u2;                       % Compute initial condition; save it in U &ESE?{of)  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. rVx%"_'*-  
    w=2*pi*n./T; +|N!(H  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T |[ tlR`A$  
    L=4;                           % length of evoluation to compare with S. Trillo's paper RY(\/W#$  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 hDp -,ag{  
    for m1 = 1:1:M1                                    % Start space evolution ,&;#$ b5  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS $\|$ekil4  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ?X1vU0 c  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform @"9^U_Qf1z  
       ca2 = fftshift(fft(u2)); 4|Dxyb>pS  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation tTT./-*0  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   MjAF&bD^  
       u2 = ifft(fftshift(c2));                        % Return to physical space {jX h/`  
       u1 = ifft(fftshift(c1)); o!`.LL%  
    if rem(m1,J) == 0                                 % Save output every J steps. ckXJ9>  
        U1 = [U1 u1];                                  % put solutions in U array <m"yPi3TY  
        U2=[U2 u2]; q^ {Xn-G  
        MN1=[MN1 m1]; dsKEWZ =  
        z1=dz*MN1';                                    % output location #HD$=ECcw  
      end 30(O]@f~  
    end 6OJ`R.DM`  
    hg=abs(U1').*abs(U1');                             % for data write to excel W_NQi  
    ha=[z1 hg];                                        % for data write to excel NJG-~ w  
    t1=[0 t']; AR i_m  
    hh=[t1' ha'];                                      % for data write to excel file }xx[=t=nUf  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 9Z,vpTE  
    figure(1) #:{Bd8PS  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn pm+_s]s,  
    figure(2) b]v.jgD  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn }|rnyYA  
     o *2TH2  
    非线性超快脉冲耦合的数值方法的Matlab程序 ~VZ)LQ'7  
    8}3dwr;-  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   i]:T{2  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 _ECWSfZ  
    aVI/x5p~  
    ?\dY!  
    @|:_?  
    %  This Matlab script file solves the nonlinear Schrodinger equations )GDP?Nc<Ik  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of HhN;&67~Z  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear w(O/mUDX  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 U^tr Z])  
    %oas IiO  
    C=1;                           <0OZ9?,dm  
    M1=120,                       % integer for amplitude eHCLENLmB  
    M3=5000;                      % integer for length of coupler M),i4a?2  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) CA7ZoMB#  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. @EZ@X/8{&  
    T =40;                        % length of time:T*T0. 1$Rua  
    dt = T/N;                     % time step D2o,K&V  
    n = [-N/2:1:N/2-1]';          % Index 1ID0'j$  
    t = n.*dt;   $;1#gq%  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Zgt:ZO  
    w=2*pi*n./T; ) -+u8#  
    g1=-i*ww./2; 29DYL  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; X}.y-X#v5J  
    g3=-i*ww./2; T/DKT1P-  
    P1=0; rPoPs@CBD  
    P2=0; l+BJh1^  
    P3=1; iUl5yq  
    P=0; 8RJXY:%  
    for m1=1:M1                 0|g|k7c{rF  
    p=0.032*m1;                %input amplitude ( H/JB\~r  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 3+mC96wN  
    s1=s10; 3.M<ATe^  
    s20=0.*s10;                %input in waveguide 2 lP*_dt9  
    s30=0.*s10;                %input in waveguide 3 %$/t`'&o-  
    s2=s20; 7%C6hEP/*W  
    s3=s30; rQ -pD  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ',L>UIXw  
    %energy in waveguide 1 E/mp.f2!  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   5gnNgt~  
    %energy in waveguide 2 Z?k4Kb  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   !Z978Aub3&  
    %energy in waveguide 3 j4j %r(  
    for m3 = 1:1:M3                                    % Start space evolution uMl.}t2uYu  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS UR|UGldt_T  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; J-t5kU;L{  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; =h,6/cs  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform fHTqLYd-  
       sca2 = fftshift(fft(s2)); tZlz0BY!  
       sca3 = fftshift(fft(s3)); h|h-<G?>  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   LaL.C^K  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); va \ 5  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); DC4,*a~  
       s3 = ifft(fftshift(sc3)); ]O'dwC  
       s2 = ifft(fftshift(sc2));                       % Return to physical space  nN!/  
       s1 = ifft(fftshift(sc1)); \ .H X7v  
    end VT1Nd  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); t2Dx$vT*&  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); `2X~3im  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); E)liuu! qI  
       P1=[P1 p1/p10]; 'EFSr!+  
       P2=[P2 p2/p10]; K7 >Z)21  
       P3=[P3 p3/p10]; <Z%iP{  
       P=[P p*p]; ZS51QB  
    end C2RR(n=N^  
    figure(1) !e?;f=1+E  
    plot(P,P1, P,P2, P,P3); jQjtO"\JG  
    N yT|=`;  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~