切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8759阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 +]A+!8%Z  
    }/_('q@s\  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of o~Bk0V=  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ]&&I|K_  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 8dr0 DF$c  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;n3uV`\  
    |}M~ kJ)  
    %fid=fopen('e21.dat','w'); p^p'/$<6_  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) mw:3q6  
    M1 =3000;              % Total number of space steps CbnR<W-j  
    J =100;                % Steps between output of space DfAiL(  
    T =10;                  % length of time windows:T*T0 u86J.K1Q  
    T0=0.1;                 % input pulse width /Lq;w'|I  
    MN1=0;                 % initial value for the space output location +`Q PBj^  
    dt = T/N;                      % time step ^ze@#Cp  
    n = [-N/2:1:N/2-1]';           % Index w~bG<kxP  
    t = n.*dt;   _ pY   
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 gUks O!7^1  
    u20=u10.*0.0;                  % input to waveguide 2 F?}m8ZRv  
    u1=u10; u2=u20;                 d [\>'>  
    U1 = u1;   B$K7L'e+-  
    U2 = u2;                       % Compute initial condition; save it in U mJwv&E  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 2A dX)iF@  
    w=2*pi*n./T; @#bBs9@gv  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 1h#w"4  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 7yY1dR<Y  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 {Uik|  
    for m1 = 1:1:M1                                    % Start space evolution {%]NpFg#b  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Wwn5LlJ^  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; G/x3wR  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform |usnY  
       ca2 = fftshift(fft(u2)); ~0VwF  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation /V#MLPA  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   0!3!?E <  
       u2 = ifft(fftshift(c2));                        % Return to physical space wo,""=l  
       u1 = ifft(fftshift(c1)); ;n yB  
    if rem(m1,J) == 0                                 % Save output every J steps. B| $\/xO  
        U1 = [U1 u1];                                  % put solutions in U array V/QTYy1  
        U2=[U2 u2]; ,gAr|x7_  
        MN1=[MN1 m1]; OGSEvfW  
        z1=dz*MN1';                                    % output location eLHa9R{)B  
      end o`<h=+a\  
    end J,dG4.ht  
    hg=abs(U1').*abs(U1');                             % for data write to excel ')5jllxv  
    ha=[z1 hg];                                        % for data write to excel v :'P"uU;4  
    t1=[0 t']; ')C _An>X6  
    hh=[t1' ha'];                                      % for data write to excel file S&4w`hdD>~  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format [8V(N2  
    figure(1) S*~Na]nS0  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn LM'*OtpDG  
    figure(2) pl1EJ <  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Vp- n(Z  
    uAPLT~  
    非线性超快脉冲耦合的数值方法的Matlab程序 EvGUj$  
    Og&0Z)%  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   dK=D=5r,  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 D{&+7C:8.  
    Gaw,1Ow!`2  
    (&N$W&  
    iTKG,$G  
    %  This Matlab script file solves the nonlinear Schrodinger equations yK @X^jf  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of e+]YCp[(  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear KweHY,  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 OTy 4"%  
    K>DnD0  
    C=1;                           I'6 ed`|  
    M1=120,                       % integer for amplitude hj#+8=  
    M3=5000;                      % integer for length of coupler e\|E; l  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) eBLHT  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. \fQgiX  
    T =40;                        % length of time:T*T0. YA8yMh*4D?  
    dt = T/N;                     % time step U4mh!  
    n = [-N/2:1:N/2-1]';          % Index *$WiJ3'(m  
    t = n.*dt;   ['9OGV\  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. )Or:wFSMq  
    w=2*pi*n./T; <R]Wy}2-  
    g1=-i*ww./2; [{.\UkV@  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; P[J qJi/H  
    g3=-i*ww./2; FdK R{dX}  
    P1=0; ggYIq*4  
    P2=0; c,u$tnE)  
    P3=1; 5qODS_Eq  
    P=0; Liz 6ob  
    for m1=1:M1                 =f{Z~`3  
    p=0.032*m1;                %input amplitude \-`oFe"  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 A.'`FtV  
    s1=s10; ~9{-I{=  
    s20=0.*s10;                %input in waveguide 2 (WU~e!}  
    s30=0.*s10;                %input in waveguide 3 G){1`gAhNJ  
    s2=s20; 5SPl#*W  
    s3=s30; ph$&f0A6Xc  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   qz_TcU'  
    %energy in waveguide 1 Q:xI} ]FM  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   >5z`SZf  
    %energy in waveguide 2 n6-!@RYr  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   &hM,b!R|  
    %energy in waveguide 3 $K>d\{@+7  
    for m3 = 1:1:M3                                    % Start space evolution {<V|Gr  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ,:Y=,[n  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 8aM% 9OU  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; mrB hvp""  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform EXM/>PG  
       sca2 = fftshift(fft(s2)); oY#XWe8Om  
       sca3 = fftshift(fft(s3)); w]}cB+C+l#  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift    OG<]`!"  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); C(Ba r#  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); MrygEC 5  
       s3 = ifft(fftshift(sc3)); y`P7LC  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ? wiq 3f6  
       s1 = ifft(fftshift(sc1)); t6U+a\-<  
    end CI ]U)@\U  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); +Y%I0.?&5  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Z~R/ p;@  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Z( clw  
       P1=[P1 p1/p10]; XS~w_J#q  
       P2=[P2 p2/p10];  9%hB   
       P3=[P3 p3/p10]; ]KII?{ <k  
       P=[P p*p]; IU"!oM^  
    end (h(ZL9!  
    figure(1) orN2(:Ct7  
    plot(P,P1, P,P2, P,P3); 5D@Q1   
    SEn8t"n  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~