切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9046阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 (%"M% Qko  
    iU{bPyz ,  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of YvE$fX=  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of /8@JWK^I{  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear FOgF'!K  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 h<\o[n7j  
    4%~$A`7  
    %fid=fopen('e21.dat','w'); <splLZW3k  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) NqvL,~1G  
    M1 =3000;              % Total number of space steps ChF:N0w? p  
    J =100;                % Steps between output of space 1@RctI_}  
    T =10;                  % length of time windows:T*T0 +Sv`23G@  
    T0=0.1;                 % input pulse width qlD+[`=b  
    MN1=0;                 % initial value for the space output location XWZ *{/u  
    dt = T/N;                      % time step } WY7!Y  
    n = [-N/2:1:N/2-1]';           % Index *O,\/aQ+  
    t = n.*dt;   KB <n-'  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Fh9`8  
    u20=u10.*0.0;                  % input to waveguide 2 6tB-  
    u1=u10; u2=u20;                 dQ@ e+u5  
    U1 = u1;   &e@2zfl7  
    U2 = u2;                       % Compute initial condition; save it in U bVSa}&*kM  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 1u7 5  
    w=2*pi*n./T; A;m)/@  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T OsPx-|f S~  
    L=4;                           % length of evoluation to compare with S. Trillo's paper /lkIbmV  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 )VQ:L:1t(  
    for m1 = 1:1:M1                                    % Start space evolution &N GYV  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS YFOSv]w  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; +b1(sk=4z  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ~{iBm"4  
       ca2 = fftshift(fft(u2)); &10vdAnBRC  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 1U.se` L  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   9"1 0:\U  
       u2 = ifft(fftshift(c2));                        % Return to physical space / *xP`'T  
       u1 = ifft(fftshift(c1)); S9J<3 =  
    if rem(m1,J) == 0                                 % Save output every J steps. db`xlvrCY  
        U1 = [U1 u1];                                  % put solutions in U array aAiSP+#  
        U2=[U2 u2]; 'x{g P?.  
        MN1=[MN1 m1]; -q|K\>tgU  
        z1=dz*MN1';                                    % output location +'Pl?QyH  
      end f!a[+^RB:  
    end :,%~rR  
    hg=abs(U1').*abs(U1');                             % for data write to excel FFb`4.  
    ha=[z1 hg];                                        % for data write to excel YpoO:  
    t1=[0 t']; 6 /gh_'&  
    hh=[t1' ha'];                                      % for data write to excel file eWS[|' dl  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format c-3AzB#[  
    figure(1) m619bzFlB  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ^;@q^b)ZP  
    figure(2) t%ye :  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Ac'[(  
    UhYeyT  
    非线性超快脉冲耦合的数值方法的Matlab程序 DZ5%-  
    1%Xwk2l,8b  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   d a we!w!  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 o0^..f  
    =`[08  
    8o#*0d|  
    sufidi  
    %  This Matlab script file solves the nonlinear Schrodinger equations e  p~3e5  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of -v .\CtpHv  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear w'z ?1M(*  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $'*@g1v Y  
    Gf\Dc   
    C=1;                           cP%mkh_ri  
    M1=120,                       % integer for amplitude A9\m .3jo  
    M3=5000;                      % integer for length of coupler vJVL%,7  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Da*=uW9  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. "- S2${  
    T =40;                        % length of time:T*T0. 8-5MGh0L  
    dt = T/N;                     % time step exrsYo!%  
    n = [-N/2:1:N/2-1]';          % Index w~+5FSdH  
    t = n.*dt;   _+YCwg  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. jm0J)Z_"nr  
    w=2*pi*n./T; i71 ,  
    g1=-i*ww./2; uN20sD}  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; l_GvdD  
    g3=-i*ww./2; RB.&,1  
    P1=0; l|z 'Lwwm5  
    P2=0; 7yo/ sb9h  
    P3=1; S/G6NBnbS  
    P=0; N|K,{ p^li  
    for m1=1:M1                 L9nv05B  
    p=0.032*m1;                %input amplitude OY7\*wc:  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 6*cG>I.Z  
    s1=s10; l{F^"_U  
    s20=0.*s10;                %input in waveguide 2 R}njFQvS)  
    s30=0.*s10;                %input in waveguide 3 }VxbO8\b(  
    s2=s20; J/S 47J~  
    s3=s30; xO)vn\uJ  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   jjbBv~vs  
    %energy in waveguide 1 /Y@^B,6 \  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   u}Vc2a,WV  
    %energy in waveguide 2 ^N}zePy0  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   g3Q]W(F%$  
    %energy in waveguide 3 qa wb9Iud0  
    for m3 = 1:1:M3                                    % Start space evolution D,%R[F? 5O  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS "@U9'rKx  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; =KqcWN3k  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; x'kwk  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform @r4ZN6Wn  
       sca2 = fftshift(fft(s2)); 7sKN`  
       sca3 = fftshift(fft(s3)); Kk+IUs  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   q(<#7 spz  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); >(5*y=\i  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Q<W9<&VZe  
       s3 = ifft(fftshift(sc3)); )w];eF0c  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Z&FC:4!!  
       s1 = ifft(fftshift(sc1)); %Z~, F?  
    end k%-_z}:3V  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Au jvKQ(  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); %"^$$$6%  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); sW!pMkd_  
       P1=[P1 p1/p10]; \hN\px  
       P2=[P2 p2/p10]; wLwAtjW)  
       P3=[P3 p3/p10]; Li~(kw3  
       P=[P p*p]; cAq>|^f0a  
    end "+3p??h%Rq  
    figure(1) 'U ',9  
    plot(P,P1, P,P2, P,P3); nM:e<`r  
    YSwAu,$jf  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~