切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8890阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 n]< >$  
    2l.qINyz  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ~/R bYvyA  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of mNDd>4%H_  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear C8bB OC(  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 J;#7dRW{  
    H]<@\g*l@P  
    %fid=fopen('e21.dat','w'); N_Q\+x}zq  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) c>)_I  
    M1 =3000;              % Total number of space steps }}q_QD_  
    J =100;                % Steps between output of space B4kJ 7Pdny  
    T =10;                  % length of time windows:T*T0 DRy,n)U&  
    T0=0.1;                 % input pulse width hTS?+l  
    MN1=0;                 % initial value for the space output location 8;q2W F{AX  
    dt = T/N;                      % time step Gi 7p`F.  
    n = [-N/2:1:N/2-1]';           % Index RKtU@MX49  
    t = n.*dt;   vNIQ1x5Za  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 b!gvvg<  
    u20=u10.*0.0;                  % input to waveguide 2 +m]Kj3-z@  
    u1=u10; u2=u20;                 qP4vH]  
    U1 = u1;   =&-+{txs  
    U2 = u2;                       % Compute initial condition; save it in U NA-)7i*>J  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 3OvQ,^[J4  
    w=2*pi*n./T; IM8lA  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T aS)Gj?Odf  
    L=4;                           % length of evoluation to compare with S. Trillo's paper -8pQI  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Ns#R`WG)  
    for m1 = 1:1:M1                                    % Start space evolution Dqg~g|(Q<  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS K)_DaTmi)  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; /{sFrEMP\  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 96]!*}  
       ca2 = fftshift(fft(u2)); #Ks2a):8  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation kW.it5Z#  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   N[j*Q 8X_  
       u2 = ifft(fftshift(c2));                        % Return to physical space dHJ#xmE!pP  
       u1 = ifft(fftshift(c1)); |x/00XhS  
    if rem(m1,J) == 0                                 % Save output every J steps. R A^-Pa.O  
        U1 = [U1 u1];                                  % put solutions in U array ^wTod\y  
        U2=[U2 u2]; w^N3Ma  
        MN1=[MN1 m1]; SXF~>|h5<  
        z1=dz*MN1';                                    % output location Ce-D^9kC  
      end %D $+Z(  
    end /j(3 ~%]o4  
    hg=abs(U1').*abs(U1');                             % for data write to excel p0bMgP  
    ha=[z1 hg];                                        % for data write to excel us$=)m~v+  
    t1=[0 t']; (sN;B)  
    hh=[t1' ha'];                                      % for data write to excel file {wy#HYhv  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 8D5v'[j-  
    figure(1)  _YPu  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn rFl6xM;F  
    figure(2) `zjbyY  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn }Gi4`Es  
    #a|.cm>6  
    非线性超快脉冲耦合的数值方法的Matlab程序 d%w#a3(  
    4pG!m&4]ze  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   p6|RV(?8  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 o@j)clf  
    YIZ+BVa  
    C[IY9s:Pf  
    ]aqg{XdGt  
    %  This Matlab script file solves the nonlinear Schrodinger equations f>kW\uC  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of t IO 'ky  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear G}ccf%  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Y>i5ubR~  
    wN^$8m5\T^  
    C=1;                           {- Y.C*E  
    M1=120,                       % integer for amplitude ml\2%07  
    M3=5000;                      % integer for length of coupler Aat-938FP6  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ie9,ye"  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. pon0!\ZT=  
    T =40;                        % length of time:T*T0. X$(Dem  
    dt = T/N;                     % time step :0'2m@x~  
    n = [-N/2:1:N/2-1]';          % Index iciw 54;4  
    t = n.*dt;   nQ}$jOU &  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. qOi"3_  
    w=2*pi*n./T; REc+@;B  
    g1=-i*ww./2; lk`,s  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; LktH*ePO  
    g3=-i*ww./2; V3t;V-Lkt  
    P1=0; 8P[aX3T7G  
    P2=0; @b5zHXF83E  
    P3=1; j]5mzz~  
    P=0; O=2SDuBZ  
    for m1=1:M1                 at5>h   
    p=0.032*m1;                %input amplitude m\xlSNW'q  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 9zs!rlzQ  
    s1=s10; 8 O% ?t  
    s20=0.*s10;                %input in waveguide 2 X^c2  
    s30=0.*s10;                %input in waveguide 3 1SO!a R#g  
    s2=s20; # @~HpqqR  
    s3=s30; c3]X#Qa#m$  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Eu)(@,]we  
    %energy in waveguide 1  QnN cGH  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   >J,y1jzJ  
    %energy in waveguide 2 v[J"/:]  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));    SE;Yb'  
    %energy in waveguide 3 || 0n%"h>i  
    for m3 = 1:1:M3                                    % Start space evolution `Eq~W@';Q0  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ?Ja&LNI9S  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 5kbbeO|0G  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ;eQOBGX9  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform G}8Zkz@+  
       sca2 = fftshift(fft(s2)); dw"{inMf  
       sca3 = fftshift(fft(s3)); .{ +Ob i  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ;I@@PUnR  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ~+OAAkJ9  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ZA{T0:  
       s3 = ifft(fftshift(sc3)); \Jy/ a-  
       s2 = ifft(fftshift(sc2));                       % Return to physical space =QQTHL{3  
       s1 = ifft(fftshift(sc1)); Lw_s'QNWR  
    end j$ h>CZZ  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); v62O+{  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); oTLA&dy@  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 'PK;Fg\  
       P1=[P1 p1/p10]; T\3a T  
       P2=[P2 p2/p10]; jS<(O o  
       P3=[P3 p3/p10]; @eOD+h'  
       P=[P p*p]; p^>_VE[S  
    end pN?geF~t|  
    figure(1) 9qcA+gz:|  
    plot(P,P1, P,P2, P,P3); ?CU6RC n  
    '2X6 >6`w  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~