切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8968阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 S= _vv)6+4  
    xI>A6  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of kJW N.  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of x.8TRMk^  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear s"Pf+aTW  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 =K{\p`?  
    TuW%zF/  
    %fid=fopen('e21.dat','w'); `tjH<  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) GA7}K:LP'k  
    M1 =3000;              % Total number of space steps 6JKqn~0Kk  
    J =100;                % Steps between output of space ~"UV]Udn  
    T =10;                  % length of time windows:T*T0 &WNf M+  
    T0=0.1;                 % input pulse width %Y!Yvw^&P(  
    MN1=0;                 % initial value for the space output location )M__ t5L  
    dt = T/N;                      % time step ~ek$C  
    n = [-N/2:1:N/2-1]';           % Index | 9~GM  
    t = n.*dt;   j"AU z)x  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Q#nOJ(KV  
    u20=u10.*0.0;                  % input to waveguide 2 #j *d^j&  
    u1=u10; u2=u20;                 gJ2>(k03y  
    U1 = u1;   71vkyn@"  
    U2 = u2;                       % Compute initial condition; save it in U ]E]2o  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. E ;<l(.Ar  
    w=2*pi*n./T; kOh{l: 2-+  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T $.9{if#o&  
    L=4;                           % length of evoluation to compare with S. Trillo's paper )T;?^kho  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 6252N]*  
    for m1 = 1:1:M1                                    % Start space evolution i hh/sPi  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS KiJT!moB  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; < yC  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform &3yD_P_3  
       ca2 = fftshift(fft(u2)); wm+/e#'&  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ID#I`}h.k  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Ug&,Y/tFw2  
       u2 = ifft(fftshift(c2));                        % Return to physical space q$aaA`E%  
       u1 = ifft(fftshift(c1)); R'S0 zp6  
    if rem(m1,J) == 0                                 % Save output every J steps. Q>n|^y6  
        U1 = [U1 u1];                                  % put solutions in U array }1>[  
        U2=[U2 u2]; F'hHK.tT  
        MN1=[MN1 m1]; msVO H%wH  
        z1=dz*MN1';                                    % output location v%fu  
      end h,Q3oy\s1  
    end JA)] _H P  
    hg=abs(U1').*abs(U1');                             % for data write to excel ei rzYt  
    ha=[z1 hg];                                        % for data write to excel <vXGi  
    t1=[0 t']; )c8j}  
    hh=[t1' ha'];                                      % for data write to excel file ?(R]9.5S  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format gdkwWoN .  
    figure(1) =2@B&  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Vb9',a?#n  
    figure(2) -YsLd 9^4  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn \?jeWyo  
    +wkjS r`e  
    非线性超快脉冲耦合的数值方法的Matlab程序 IEU^#=n  
    1AU#%wIEP  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   o`Ta("9^  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 &gjF4~W]  
    !ET~KL!  
    fJ ,1Ef;Z  
    ",!1m7[wF  
    %  This Matlab script file solves the nonlinear Schrodinger equations J9=m]R8T  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 9]e V?yoA8  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear yrR1[aT  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Q:5KZm[[  
    l&[;rh  
    C=1;                           ~q~MoN<R  
    M1=120,                       % integer for amplitude X$yN_7|+  
    M3=5000;                      % integer for length of coupler hXA6D)   
    N = 512;                      % Number of Fourier modes (Time domain sampling points) a<@N-Exr  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Z ,EvQ8i  
    T =40;                        % length of time:T*T0. G_SG  
    dt = T/N;                     % time step v'BZs   
    n = [-N/2:1:N/2-1]';          % Index ,u/aT5\_  
    t = n.*dt;   @WI2hHD  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. hiUD]5Kp  
    w=2*pi*n./T; D&S26jrZ  
    g1=-i*ww./2; &o<F7U'R  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 6,9o>zT%H  
    g3=-i*ww./2; /IsS;0K%L  
    P1=0; I}t#%/'YA  
    P2=0; 7[.6axL  
    P3=1; . Z%{'CC  
    P=0; lIProF0  
    for m1=1:M1                 AhNq/?Q Q~  
    p=0.032*m1;                %input amplitude Hbpqyl%O>  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ##4GK08!  
    s1=s10; 4)("v-p  
    s20=0.*s10;                %input in waveguide 2 &SrO)  
    s30=0.*s10;                %input in waveguide 3 *f?4   
    s2=s20; ZfB " E  
    s3=s30; *<J*S#]  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Kh MSL  
    %energy in waveguide 1 qs QNjt  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   CXC`sPY  
    %energy in waveguide 2 rs~wv('  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   'Tc]KXD6  
    %energy in waveguide 3 &0`) Q  
    for m3 = 1:1:M3                                    % Start space evolution [B|MlrZ  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS EbdfV-E  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; *Q,0W:~-  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 7R\oj8[  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform .<Zy|1 4  
       sca2 = fftshift(fft(s2)); -*XCxU'  
       sca3 = fftshift(fft(s3)); ]Ei0d8Uo  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   |Z*J/v'@p  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); }|XtypbL  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); (e[}/hf6  
       s3 = ifft(fftshift(sc3)); D`VM6/iQR  
       s2 = ifft(fftshift(sc2));                       % Return to physical space VL*ovD%-  
       s1 = ifft(fftshift(sc1)); |P%DkM*X  
    end 67VT\f  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); iURk=*Z=  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); fF V!)Zj  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ) lZp9O  
       P1=[P1 p1/p10]; YWxc-fPZ  
       P2=[P2 p2/p10];  0gfA#|'  
       P3=[P3 p3/p10]; zNIsf "  
       P=[P p*p]; %y%j*B!%  
    end YE9,KVV;$n  
    figure(1) pb=cBZ$  
    plot(P,P1, P,P2, P,P3); ZAXN6h  
    !OuWPH. :  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~