切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9075阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 `/8@Fj  
    GJ ^c^`  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of / F0q8j0  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of idI w7hi4  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear +9_Y0<C  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^CkMk 1  
    I?e5h@uE  
    %fid=fopen('e21.dat','w'); zHJCXTM  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) +?_!8N8  
    M1 =3000;              % Total number of space steps G@8)3 @  
    J =100;                % Steps between output of space #HUn~r  
    T =10;                  % length of time windows:T*T0 5ya9VZ5#  
    T0=0.1;                 % input pulse width vSgT36ZF  
    MN1=0;                 % initial value for the space output location ]VI^ hhf  
    dt = T/N;                      % time step 28MMH Q  
    n = [-N/2:1:N/2-1]';           % Index Z vysLHj  
    t = n.*dt;   GY~$<^AK  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 wI%M3XaBws  
    u20=u10.*0.0;                  % input to waveguide 2 B~Sj#(WEa  
    u1=u10; u2=u20;                 cAWn*%  
    U1 = u1;   |2(q9j  
    U2 = u2;                       % Compute initial condition; save it in U fLDrit4_Q  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. oTw!#Re)  
    w=2*pi*n./T; v] m/$X2  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ]M?i:A$B  
    L=4;                           % length of evoluation to compare with S. Trillo's paper R N$vKJk  
    dz=L/M1;                       % space step, make sure nonlinear<0.05  TGCB=e  
    for m1 = 1:1:M1                                    % Start space evolution <kn 2  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS pjeNBSu6  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; q}{E![ZTu  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Xaq;d'  
       ca2 = fftshift(fft(u2)); GP} ;~  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation q W(@p`  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   QS#@xhH  
       u2 = ifft(fftshift(c2));                        % Return to physical space T ,lM(2S[  
       u1 = ifft(fftshift(c1)); =2R4Z8G  
    if rem(m1,J) == 0                                 % Save output every J steps. ;:;E|{e  
        U1 = [U1 u1];                                  % put solutions in U array e5L+NPeM6v  
        U2=[U2 u2]; &YhAB\Rw  
        MN1=[MN1 m1]; j\y;~ V  
        z1=dz*MN1';                                    % output location 8`4M4" lj  
      end pBsb>wvej  
    end 3?93Pj3oPt  
    hg=abs(U1').*abs(U1');                             % for data write to excel !<[+u  
    ha=[z1 hg];                                        % for data write to excel 'Y?-."eKh  
    t1=[0 t']; Oa[  
    hh=[t1' ha'];                                      % for data write to excel file ",#.?vT`  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format -]N2V'QB  
    figure(1) h<.5:a  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ptCF))Zm'  
    figure(2) "{0G,tdA  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn #CS>_qe.{  
    M 8},RR@{  
    非线性超快脉冲耦合的数值方法的Matlab程序 k8gH#ENNK  
    O NabL.CV  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   qGinlE&\  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 &Vlno*  
    EC+t-:a]  
    OSu&vFKz  
    z/7q#~J,  
    %  This Matlab script file solves the nonlinear Schrodinger equations bt}8ymcG  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of so-5%S  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear +=tdgw/  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 DUOoTl p  
    sW>%mnx  
    C=1;                           -&/?&{Q0  
    M1=120,                       % integer for amplitude C,|&  
    M3=5000;                      % integer for length of coupler +){^HC\7h  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) JE.$]){  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. P{Nvt/%  
    T =40;                        % length of time:T*T0. K?.~}82c  
    dt = T/N;                     % time step vs@d)$N  
    n = [-N/2:1:N/2-1]';          % Index bZowc {!\  
    t = n.*dt;   !I7$e&Uz@  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. wE .H:q4&  
    w=2*pi*n./T; h:Pfiw]  
    g1=-i*ww./2; F^dJ{<yX  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; +t!]nE #  
    g3=-i*ww./2; y0%@^^-Ru  
    P1=0; d4y#n=HnnV  
    P2=0; :H}iL*  
    P3=1; j0l,1=^>l  
    P=0; xm m,- u  
    for m1=1:M1                 /~LE1^1&U  
    p=0.032*m1;                %input amplitude ing'' _  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 2Kxb(q"  
    s1=s10; 91R# /i  
    s20=0.*s10;                %input in waveguide 2 a %#UF@ I  
    s30=0.*s10;                %input in waveguide 3 is;g`m  
    s2=s20; *byUqY3(  
    s3=s30; <\229  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   J( 1Tl  
    %energy in waveguide 1 ieyK$q  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   N&8$tJ(hhx  
    %energy in waveguide 2 196aYLE  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   9< mMU:  
    %energy in waveguide 3 Ym'h vK  
    for m3 = 1:1:M3                                    % Start space evolution >.<VD7p  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS _c>iux;  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 1W|jC   
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Zkp~qx  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform E '6>3n  
       sca2 = fftshift(fft(s2)); Nl\`xl6y]  
       sca3 = fftshift(fft(s3)); {B$CqsvJ  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   OVLVsNg  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 4"&-a1N  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 'm<Lx _i  
       s3 = ifft(fftshift(sc3)); 7?dWAUF  
       s2 = ifft(fftshift(sc2));                       % Return to physical space k*1Lr\1  
       s1 = ifft(fftshift(sc1)); #|9W9\f,  
    end BJ UG<k  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); lZk  z\  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 3kxo1eb  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Ip8ml0oG  
       P1=[P1 p1/p10]; LOUP  
       P2=[P2 p2/p10]; l7QxngWw  
       P3=[P3 p3/p10]; juEPUsE  
       P=[P p*p]; 4 \z@Evm  
    end ':.Hz]]/A  
    figure(1) J v}  
    plot(P,P1, P,P2, P,P3); [8QK @5[  
    hjL;B 'IL  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~