切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8902阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 kso*}uh0  
    C2/}d? bki  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of %Q4i%:Qi  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of {THqz$KN  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear &s VadOBQ  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 G]*|H0j  
    6 bO;&  
    %fid=fopen('e21.dat','w'); U5+vN[ K  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 4JO@BV>t  
    M1 =3000;              % Total number of space steps |_zO_Frtp  
    J =100;                % Steps between output of space $YM_G=k  
    T =10;                  % length of time windows:T*T0 ^^}Hs-{T  
    T0=0.1;                 % input pulse width b{&FuvQg2  
    MN1=0;                 % initial value for the space output location =r6qX  
    dt = T/N;                      % time step n?QZFeI`  
    n = [-N/2:1:N/2-1]';           % Index Yx%bn?%;&  
    t = n.*dt;   [m2+9MMl  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 !O)qYmK]|  
    u20=u10.*0.0;                  % input to waveguide 2 PRr*]$\&Mj  
    u1=u10; u2=u20;                 5w<A;f  
    U1 = u1;   +AI`R`Tm  
    U2 = u2;                       % Compute initial condition; save it in U DTY<0Q.  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. c`kQvXx  
    w=2*pi*n./T; h-XY4gq/  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T tXq)nfGe{  
    L=4;                           % length of evoluation to compare with S. Trillo's paper nSS=%,?  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 BD*G1k_q  
    for m1 = 1:1:M1                                    % Start space evolution )=_ycf^MC  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS LmL Gki$w  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ]gP5f@`  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform JN[0L:  
       ca2 = fftshift(fft(u2)); PT]GJ<K/  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation w^;DG  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   aj8Rb&  
       u2 = ifft(fftshift(c2));                        % Return to physical space 0k[2jh  
       u1 = ifft(fftshift(c1)); EHI'xt  
    if rem(m1,J) == 0                                 % Save output every J steps. o8S"&O ?  
        U1 = [U1 u1];                                  % put solutions in U array # c Fr   
        U2=[U2 u2]; o"q+,"QL  
        MN1=[MN1 m1]; p'Bm8=AwD  
        z1=dz*MN1';                                    % output location q7Es$zjX  
      end xJhU<q~?  
    end 3W&S.$l  
    hg=abs(U1').*abs(U1');                             % for data write to excel =G${[V \  
    ha=[z1 hg];                                        % for data write to excel hIU(P Dl4  
    t1=[0 t']; H3O@9YU  
    hh=[t1' ha'];                                      % for data write to excel file ht6244:  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format aC^$*qN-)  
    figure(1) 9- )qZ  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn U A-7nb  
    figure(2) ..qd,9H  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn u, kU$  
    J;QUPpH Z  
    非线性超快脉冲耦合的数值方法的Matlab程序 K+d2m9C=  
    l-O$m  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Vxdp|  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 }iww:H-1  
    bB 6[Xj{  
    Qn+:/ zA;  
    EX "|H.(  
    %  This Matlab script file solves the nonlinear Schrodinger equations M$S]}   
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of D"l+iVbBP  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 7@;">`zvm  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 :1aL ?  
    7"2b H  
    C=1;                           Zi ESlf$  
    M1=120,                       % integer for amplitude ?Rr2/W#F  
    M3=5000;                      % integer for length of coupler X?Pl<l&  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) LN^f1/ b*  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ]r/^9XaqtA  
    T =40;                        % length of time:T*T0. Fo|xzLm9*|  
    dt = T/N;                     % time step m $dV<  
    n = [-N/2:1:N/2-1]';          % Index _D;@v?n6!O  
    t = n.*dt;   fZN><3MO>  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. M\2"gT-LV  
    w=2*pi*n./T; 5ukp^OxE  
    g1=-i*ww./2; p2O~>97t1  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; +c$I&JO  
    g3=-i*ww./2; ocQWQ   
    P1=0; 1~yZ T  
    P2=0; B6M+mx"G  
    P3=1; H3KTir"on  
    P=0; lj[, |[X7`  
    for m1=1:M1                 c:hK$C)T  
    p=0.032*m1;                %input amplitude ]k%PG-9  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 M]rO;^;6?  
    s1=s10; M {a #  
    s20=0.*s10;                %input in waveguide 2 _GA$6#]  
    s30=0.*s10;                %input in waveguide 3 j,-C{ K  
    s2=s20; tw K^I6@  
    s3=s30; `DW2spd  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   3YL l;TP_  
    %energy in waveguide 1 -4 Ux,9&  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   :%4imgY`  
    %energy in waveguide 2 c:4P%({  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   9Sg<K)Mc  
    %energy in waveguide 3 Jfhk@27T  
    for m3 = 1:1:M3                                    % Start space evolution 3MBN:dbQ  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS = [@)R!3H  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; WlwY <)  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; x_<qzlQt  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform -"TR\/  
       sca2 = fftshift(fft(s2)); 4{na+M  
       sca3 = fftshift(fft(s3)); 1,t)3;o$  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   b]fzRdhl  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); WNX5iwm  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); /@oLe[Mz$  
       s3 = ifft(fftshift(sc3)); K 1#ji*Tp  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 1y"3  
       s1 = ifft(fftshift(sc1)); pmc=NTr&<  
    end FY'dJY3O  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); <z)m%*lvU  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); D]03eu  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); .2:\:H~3  
       P1=[P1 p1/p10]; )P Jw+5  
       P2=[P2 p2/p10]; 1%~ZRmd e  
       P3=[P3 p3/p10]; CXaWgxlK:a  
       P=[P p*p]; X` r* ob  
    end zc+@lJy  
    figure(1) !PUZWO  
    plot(P,P1, P,P2, P,P3); c0- ;VZ'  
    l|`^*%W@u6  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~