计算脉冲在非线性耦合器中演化的Matlab 程序 $jDD0<F.# Ez wF`3RjK % This Matlab script file solves the coupled nonlinear Schrodinger equations of
@#J H=-06 % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
R7y-#? % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
e1Dj0s?i~K % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
1gO//fdI 8~rT %fid=fopen('e21.dat','w');
;%lJD"yF N = 128; % Number of Fourier modes (Time domain sampling points)
FxMMxY,*% M1 =3000; % Total number of space steps
Z7ZWf'o J =100; % Steps between output of space
zbdOCfA; T =10; % length of time windows:T*T0
7Co3P@@ T0=0.1; % input pulse width
c lq
<$-
MN1=0; % initial value for the space output location
1j8 /4: dt = T/N; % time step
">rsA&hN- n = [-N/2:1:N/2-1]'; % Index
:Fq2x_IUE t = n.*dt;
d;IJ0xB+by u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
vQE` c@^{ u20=u10.*0.0; % input to waveguide 2
h/w] u1=u10; u2=u20;
WIhIEU7 / U1 = u1;
#zh6=.,7 U2 = u2; % Compute initial condition; save it in U
*
N2#{eF&] ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
HE4`9$kVLr w=2*pi*n./T;
*(>F'>F1" g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
s2kGU^]y L=4; % length of evoluation to compare with S. Trillo's paper
noWRYS % dz=L/M1; % space step, make sure nonlinear<0.05
99=[>Ck)G for m1 = 1:1:M1 % Start space evolution
K7YT0cG u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
aA!@;rR<yU u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
eU<]h>2 ca1 = fftshift(fft(u1)); % Take Fourier transform
&C!g(fS ca2 = fftshift(fft(u2));
UzP@{? c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
.CB"@.7 c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
S8rW'}XJ=H u2 = ifft(fftshift(c2)); % Return to physical space
~`a#h# u1 = ifft(fftshift(c1));
i|::vl if rem(m1,J) == 0 % Save output every J steps.
Uj
y6vgU; U1 = [U1 u1]; % put solutions in U array
$NH`Iu9t U2=[U2 u2];
0$Qn#K MN1=[MN1 m1];
W\ZV0T;<] z1=dz*MN1'; % output location
H"kc^G+(R" end
P W0q71 end
u k>q\j hg=abs(U1').*abs(U1'); % for data write to excel
X}ey0)g% ha=[z1 hg]; % for data write to excel
bs4fyb t1=[0 t'];
5+#?7J1 hh=[t1' ha']; % for data write to excel file
g%KGF)+H %dlmwrite('aa',hh,'\t'); % save data in the excel format
"oKj~:$ figure(1)
\ZmFH8=|f waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
Q7OnhGA figure(2)
rZwf%} waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
tOp:e KN H-PW( 非线性超快脉冲耦合的数值方法的Matlab程序
QmDhZ04f `t/@ L: 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
kfG 65aa>_ Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
gXJ19zB+ Eusf gU: uH~ TugQ~ h<!khWFS % This Matlab script file solves the nonlinear Schrodinger equations
d[qEP6B % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
UlLM<33_) % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
nATfmUN
L % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
%^)Ja EUC J_((o C=1;
!Barc,kA M1=120, % integer for amplitude
~L Bq5a M3=5000; % integer for length of coupler
vb80J<4 N = 512; % Number of Fourier modes (Time domain sampling points)
2rE~V.)% dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
E?;T:7.% T =40; % length of time:T*T0.
GYy!`E dt = T/N; % time step
is_dPc n = [-N/2:1:N/2-1]'; % Index
#xJGuYdv t = n.*dt;
cxF?&0[mY ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
)b:~kuHi w=2*pi*n./T;
V+@%(x@D_ g1=-i*ww./2;
WEY97_@ g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
Q,`2DHhK g3=-i*ww./2;
o sgS?=8 P1=0;
_|5FrN P2=0;
S<bz7
k9 P3=1;
GwIfGixqH P=0;
c<t3y7 for m1=1:M1
]oWZ{#r2 p=0.032*m1; %input amplitude
<PuB3PEvV s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
spoWdRM2 s1=s10;
9OO_Hp#|9 s20=0.*s10; %input in waveguide 2
$'mB 8 S s30=0.*s10; %input in waveguide 3
KE)D =P s2=s20;
B$[%pm`'2 s3=s30;
po](6V p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
/B#lju! %energy in waveguide 1
O|7{%5h p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
zL!~,B8C %energy in waveguide 2
^J}$y7 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
h/+I-],RF %energy in waveguide 3
+h vIJv ? for m3 = 1:1:M3 % Start space evolution
6/WK((Fd s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
0)] C&;}_M s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
MnrGD>M@| s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
1b]PCNz sca1 = fftshift(fft(s1)); % Take Fourier transform
]OCJ~Zw sca2 = fftshift(fft(s2));
+]~w ?^h sca3 = fftshift(fft(s3));
~RLx; sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
oJ;O>J@c sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
kI[O {<kQ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
P@S;>t{TD s3 = ifft(fftshift(sc3));
cPBy(5^ s2 = ifft(fftshift(sc2)); % Return to physical space
`J7Lecgo s1 = ifft(fftshift(sc1));
LXfeXWw?, end
/5'<w( p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
_Ag/gu2-? p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
-$MC p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
bZlLivi P1=[P1 p1/p10];
0jZ{ ? P2=[P2 p2/p10];
j{w,<Wt> P3=[P3 p3/p10];
SUi1*S P=[P p*p];
!DUg"o3G> end
Jc#)T;#6 figure(1)
Xgth|C}k plot(P,P1, P,P2, P,P3);
/$.vHt5nt huD\dmQ:] 转自:
http://blog.163.com/opto_wang/