切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8716阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 dpZ7eJ   
    nen6!bw4  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of kR^7Z7+#*  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ~D@ V@sX  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear k(=\& T  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 jCW>=1:JGY  
    fj0+a0h  
    %fid=fopen('e21.dat','w'); qt/syF&s  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) =/6.4;8  
    M1 =3000;              % Total number of space steps Z/q%%(fh 0  
    J =100;                % Steps between output of space `m3@mJ!>\  
    T =10;                  % length of time windows:T*T0 z:u`W#Rf  
    T0=0.1;                 % input pulse width T_Z@uZom.  
    MN1=0;                 % initial value for the space output location eN/s W!:P|  
    dt = T/N;                      % time step c/;t.+g  
    n = [-N/2:1:N/2-1]';           % Index L)8+/+  
    t = n.*dt;   E=~H,~  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 s%GiM  
    u20=u10.*0.0;                  % input to waveguide 2 ><LIOFqsS  
    u1=u10; u2=u20;                  ~Zl`Ap  
    U1 = u1;   -J[zJ4z #  
    U2 = u2;                       % Compute initial condition; save it in U Cb=r8C  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. T~"tex]  
    w=2*pi*n./T; C>v    
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T (n"  )  
    L=4;                           % length of evoluation to compare with S. Trillo's paper @kvp2P+O  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 OOl{  
    for m1 = 1:1:M1                                    % Start space evolution vR,HCI  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS t)cG_+rJ  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; a:zx&DwM  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform YL){o$-N"J  
       ca2 = fftshift(fft(u2)); 32~Tf,  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation WU<#_by g  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   X&wK<  
       u2 = ifft(fftshift(c2));                        % Return to physical space + W@r p#  
       u1 = ifft(fftshift(c1)); ~|DF-t V  
    if rem(m1,J) == 0                                 % Save output every J steps. V]q{N-Iq  
        U1 = [U1 u1];                                  % put solutions in U array ?b#?Vz  
        U2=[U2 u2]; QMtt:f]?i  
        MN1=[MN1 m1]; ATnD~iACY  
        z1=dz*MN1';                                    % output location ]2h[.qa  
      end wW%I < M  
    end Lj~lfO  
    hg=abs(U1').*abs(U1');                             % for data write to excel I,YGm  
    ha=[z1 hg];                                        % for data write to excel P? 9CBhN  
    t1=[0 t']; ]VwAHT&je  
    hh=[t1' ha'];                                      % for data write to excel file jQb=N%5s  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 7]nPWz1%*  
    figure(1) _Fz )2h,3  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn I]k'0LG*^  
    figure(2) gKYn*  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn o8s&n3mY}y  
    XX6&% 7(  
    非线性超快脉冲耦合的数值方法的Matlab程序 LL[ +QcH  
    hJ}G5pX  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   G x,D'H'  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +vU.#C_2  
    SbGp  
    {;p /V\   
    Ix(4<s  
    %  This Matlab script file solves the nonlinear Schrodinger equations 5Q%#Z L/'  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of qb"!  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 4k#B5^iJ  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 [")0{LSA=  
    y:,{U*49  
    C=1;                           8vT:icl  
    M1=120,                       % integer for amplitude A%GJ|h,i  
    M3=5000;                      % integer for length of coupler 3/[=  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) PH7L#H^  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ]$L[3qA.  
    T =40;                        % length of time:T*T0. ?BLOc;I&a  
    dt = T/N;                     % time step 3YLnh@-  
    n = [-N/2:1:N/2-1]';          % Index 1B1d>V$*  
    t = n.*dt;   +$UfP(XmH  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. <=zGaU,  
    w=2*pi*n./T; <;XJ::d  
    g1=-i*ww./2; |hdh4P$+|  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; B}MJ?uvA  
    g3=-i*ww./2; /C(L(X  
    P1=0; fk"{G>&8  
    P2=0; 8odVdivh  
    P3=1; .H>Rqikj  
    P=0; K&X'^|en  
    for m1=1:M1                 I}q-J~s  
    p=0.032*m1;                %input amplitude Gt1Up~\s  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 AH7k|6ku<*  
    s1=s10; )a}5\V  
    s20=0.*s10;                %input in waveguide 2 9.@(&  
    s30=0.*s10;                %input in waveguide 3 3jI.!xD`  
    s2=s20; g@U#Y#b@"  
    s3=s30; H 0h  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   =CVw0'yZ  
    %energy in waveguide 1 asF- mf;D  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   2tbqmWw/s  
    %energy in waveguide 2 H,I}R  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   cpy"1=K~M  
    %energy in waveguide 3 O<E0L&4-&  
    for m3 = 1:1:M3                                    % Start space evolution oby*.61?5l  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ]SPB c  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ~H$XSNPi  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; C=]3NB>Jc  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform e56#Qb@$\  
       sca2 = fftshift(fft(s2)); jG2w(h/"  
       sca3 = fftshift(fft(s3)); Cn55%:  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   MvW>ktkU  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); U;nC)'~YW9  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); {L=[1  
       s3 = ifft(fftshift(sc3)); x3P@AC$\  
       s2 = ifft(fftshift(sc2));                       % Return to physical space t,+S~Cj|  
       s1 = ifft(fftshift(sc1)); nZT@d;]U9  
    end j*zK"n  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); N:<O  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 5_`}$"<~  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); J#kdyBmuO  
       P1=[P1 p1/p10]; G<z)Ydh_  
       P2=[P2 p2/p10]; f8 ja Mn9o  
       P3=[P3 p3/p10]; xHG oCFB  
       P=[P p*p]; yRznP)  
    end nT12[@:Tr  
    figure(1) ;1dz?'%V  
    plot(P,P1, P,P2, P,P3); Chua>p!$g  
    J v#^GNm  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~