计算脉冲在非线性耦合器中演化的Matlab 程序 P)hZFX KY1(yni&8[ % This Matlab script file solves the coupled nonlinear Schrodinger equations of
5C03)Go3Z % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
:n1^Xw0q % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
LyEM^d] % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
^|h5*Tb }3G`f> s %fid=fopen('e21.dat','w');
-ahSFBZlg N = 128; % Number of Fourier modes (Time domain sampling points)
fSe$w#*I M1 =3000; % Total number of space steps
MMyVm"w J =100; % Steps between output of space
%t*_Rtz\o T =10; % length of time windows:T*T0
u`%Kh_ T0=0.1; % input pulse width
(}$pf6s MN1=0; % initial value for the space output location
*2K/)( dt = T/N; % time step
]u;Ma
G=; n = [-N/2:1:N/2-1]'; % Index
vr /O%mDp t = n.*dt;
RyI(6TZl u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
X\?PnD`, u20=u10.*0.0; % input to waveguide 2
$:{r#mM u1=u10; u2=u20;
{'.[N79xP U1 = u1;
Ch3{q/-g U2 = u2; % Compute initial condition; save it in U
?CaMn b8 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
^/K]id7 2 w=2*pi*n./T;
F XpI-?#E< g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
Ro&s\T+d L=4; % length of evoluation to compare with S. Trillo's paper
5xHP5+& dz=L/M1; % space step, make sure nonlinear<0.05
h.A@o#x for m1 = 1:1:M1 % Start space evolution
jRk"#: u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
3ID1> u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
(?9 @nS ca1 = fftshift(fft(u1)); % Take Fourier transform
'p%\fb6` ca2 = fftshift(fft(u2));
9-Y.8:A` c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
;IN!H@bq c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
=5a|'O u2 = ifft(fftshift(c2)); % Return to physical space
DEdJH4 u1 = ifft(fftshift(c1));
3#=%2\ if rem(m1,J) == 0 % Save output every J steps.
lT`y=qR| U1 = [U1 u1]; % put solutions in U array
|.OXe!uU41 U2=[U2 u2];
("G
_{tVU MN1=[MN1 m1];
8uj;RG z1=dz*MN1'; % output location
0QWc1L end
&, =Z end
k&|#(1CFY hg=abs(U1').*abs(U1'); % for data write to excel
?3f-"K_r ha=[z1 hg]; % for data write to excel
OKXELP t1=[0 t'];
T^"-; hh=[t1' ha']; % for data write to excel file
Yy,i,c`r %dlmwrite('aa',hh,'\t'); % save data in the excel format
kOu C@~, figure(1)
%OI4}!z@l waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
*%[L
@WF figure(2)
s)gU vS\ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
G*oqhep nUp, %z[ 非线性超快脉冲耦合的数值方法的Matlab程序 j %3wD2 l Thlqe? 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
B+8lp4V9% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
OMl<=;^:| Q+Sx5JUR~ 12D>~#J kjS9?>i % This Matlab script file solves the nonlinear Schrodinger equations
2 Nr* % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
IB'gY0* % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
E41ay:duAl % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
iSiez' l\Q-- C=1;
<Mt>v2a3Y M1=120, % integer for amplitude
!=-{$& { M3=5000; % integer for length of coupler
;ui=7[Us N = 512; % Number of Fourier modes (Time domain sampling points)
/t4#-vz dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
ZxDh94w/ T =40; % length of time:T*T0.
X(YR).a~ dt = T/N; % time step
lhp.zl n = [-N/2:1:N/2-1]'; % Index
;J]Lzh t = n.*dt;
+!@@55I- ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
q_J)68B R w=2*pi*n./T;
sI&|qK-( g1=-i*ww./2;
AW6 "1(D g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
3Z taj^v g3=-i*ww./2;
d=*&=r0!C{ P1=0;
h;+bHrKji P2=0;
x_X%|f P3=1;
km 0LLYG P=0;
wjRv=[ for m1=1:M1
[v,Y-}wQ) p=0.032*m1; %input amplitude
.huk>
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
8<2
[ F s1=s10;
w1N-`S: s20=0.*s10; %input in waveguide 2
H
N )@sLPc s30=0.*s10; %input in waveguide 3
\DgWp:| s2=s20;
cBGR%w\t% s3=s30;
0q ! p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
WxgA{q7: %energy in waveguide 1
t>Ot)d p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
E
U#
M. %energy in waveguide 2
GIs
*;ps7w p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
DJ]GM|? %energy in waveguide 3
'1f:8 for m3 = 1:1:M3 % Start space evolution
n0T>sE-9 s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
RaX:&PE s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
/XeCJxo8 s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
O{Y_j&1 sca1 = fftshift(fft(s1)); % Take Fourier transform
_d J"2rx sca2 = fftshift(fft(s2));
GcHy`bQbiX sca3 = fftshift(fft(s3));
r ?e''r sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
+{7/+Zz sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
@D3|Ak 1 sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
asLvJ{d8s s3 = ifft(fftshift(sc3));
/Y7YyjMi s2 = ifft(fftshift(sc2)); % Return to physical space
]Av)N6$&-Z s1 = ifft(fftshift(sc1));
#[<XNs!" end
xDtJ&6uFw p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
V\=QAN^ p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
V=+wsc p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
v;_k*y[VV$ P1=[P1 p1/p10];
BT3X7Cx P2=[P2 p2/p10];
|PY*"Ul P3=[P3 p3/p10];
:tTP3t5 P=[P p*p];
F Tk`Mq end
920 o]Dh=t figure(1)
'xn3g ;5 plot(P,P1, P,P2, P,P3);
`yXJaTbo vf&Sk` 转自:
http://blog.163.com/opto_wang/