切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8705阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 v oxlo>:  
    HChewrUAn  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of C@-JH\{\T#  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ^ytd~iK8  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear N_0O"" d  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004  2~)]E#9  
    )94R\f  
    %fid=fopen('e21.dat','w'); e|LXH/H  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ^9nM)[/C?  
    M1 =3000;              % Total number of space steps o%.cQo=v*  
    J =100;                % Steps between output of space rSk $]E]Z  
    T =10;                  % length of time windows:T*T0 "n:9JqPb  
    T0=0.1;                 % input pulse width 83a Rq&(R  
    MN1=0;                 % initial value for the space output location b/EvcN8 }  
    dt = T/N;                      % time step a#1X)ot  
    n = [-N/2:1:N/2-1]';           % Index F\e'z  
    t = n.*dt;   ^ =ikxZyO  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 , ]MX&]  
    u20=u10.*0.0;                  % input to waveguide 2 dXj.e4,m  
    u1=u10; u2=u20;                 /d4xHt5a  
    U1 = u1;   4$^=1ax  
    U2 = u2;                       % Compute initial condition; save it in U L0Cf@~k  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. [Dhc9  
    w=2*pi*n./T; TwN8|ibVmP  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T |F<aw?%  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 6 D O E6  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 K^S#?T|[9  
    for m1 = 1:1:M1                                    % Start space evolution Fi#t88+1  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS f { ueI<  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 2I7P}=  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform |z~?"F6 Y<  
       ca2 = fftshift(fft(u2)); 2g$Wv :E3  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation NXx}KF c  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   &~& i >  
       u2 = ifft(fftshift(c2));                        % Return to physical space FueJe/~t  
       u1 = ifft(fftshift(c1)); dw-r}Qioe  
    if rem(m1,J) == 0                                 % Save output every J steps. ^o 5q- ;a  
        U1 = [U1 u1];                                  % put solutions in U array ,-b9:]{L  
        U2=[U2 u2]; ,P|PPx%@  
        MN1=[MN1 m1]; ?aCR>AY5X  
        z1=dz*MN1';                                    % output location A9#2.5  
      end )mEF_ &  
    end 4c% :?H@2  
    hg=abs(U1').*abs(U1');                             % for data write to excel S4_Y^   
    ha=[z1 hg];                                        % for data write to excel DXUI/C f  
    t1=[0 t']; h^s}8y  
    hh=[t1' ha'];                                      % for data write to excel file nRGH58  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format s0:1G -I  
    figure(1) S("bN{7nE  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn S8y4 p0mV  
    figure(2) v=4TU \b%  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn "FU|I1Xz  
    *<@  
    非线性超快脉冲耦合的数值方法的Matlab程序 J 4gIkZD  
    *+IUGR  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   x83XJFPWL  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^Z!W3q Q  
    ei5S<n  
    Q6BW ax|  
    >Cf`F{X' U  
    %  This Matlab script file solves the nonlinear Schrodinger equations %%_90t  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 34U~7P r9  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear  84{<]y  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 UY+~xzm  
    bHP-Z9riv  
    C=1;                           1/i|  
    M1=120,                       % integer for amplitude IV *}w"r  
    M3=5000;                      % integer for length of coupler BZj[C=#x  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) MMf6QxYf  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. y`BLIEI  
    T =40;                        % length of time:T*T0. uPqPoI>N!  
    dt = T/N;                     % time step d+^;kse  
    n = [-N/2:1:N/2-1]';          % Index %:y-"m1\u$  
    t = n.*dt;   eAqQ~)8^  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ^v},Sa/ot]  
    w=2*pi*n./T; U*b SM8)L*  
    g1=-i*ww./2; @iaN@`5I6s  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; |\ ay^@N  
    g3=-i*ww./2; }Yj S v^  
    P1=0; ]}B&-Yp  
    P2=0; ;gc 2vDMv  
    P3=1; ,&k 5Qq  
    P=0; [9L(4F20  
    for m1=1:M1                 ^R\blJQ<^  
    p=0.032*m1;                %input amplitude &K4o8Qz  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Ue%0.G|<W  
    s1=s10; }O>IPRZ  
    s20=0.*s10;                %input in waveguide 2 Y7p#K<y]9  
    s30=0.*s10;                %input in waveguide 3 ?{[H+hzz0  
    s2=s20; ;?cUF78#  
    s3=s30; VcP#/&B|  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   P8EGd}2{8  
    %energy in waveguide 1 zL|^5p`K  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   k >MgrtJI  
    %energy in waveguide 2 R|vF*0)>W  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   9\;EX  
    %energy in waveguide 3 9qPP{K,Pq2  
    for m3 = 1:1:M3                                    % Start space evolution c{ <3\  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ]* Hz'  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; vi2xonq^  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; qN)cB?+  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform LgaJp_d>9*  
       sca2 = fftshift(fft(s2)); N>z8\y  
       sca3 = fftshift(fft(s3)); +VeLd+Q}  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   HP8pEo0Y  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); `+gF|o9  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); .{} t[U  
       s3 = ifft(fftshift(sc3)); OU##A:gI  
       s2 = ifft(fftshift(sc2));                       % Return to physical space M]2 c-  
       s1 = ifft(fftshift(sc1)); $D89|sy  
    end t EeMl =u  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); DXiD>1(q  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 8}0 D?  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); &a:aW;^A7  
       P1=[P1 p1/p10]; Fc]#\d6  
       P2=[P2 p2/p10]; RS1oPY  
       P3=[P3 p3/p10]; Yv;aQF"a  
       P=[P p*p]; M}vPWWcl  
    end :K~7BJ(HO  
    figure(1) \<8!b {F  
    plot(P,P1, P,P2, P,P3); HqgH\  
    w"e2}iE7  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~