计算脉冲在非线性耦合器中演化的Matlab 程序 @)o^uU T
YIw1
% This Matlab script file solves the coupled nonlinear Schrodinger equations of `]Q:-h
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of hxQqa 0B
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear fhL,aCS=
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 /1Ue?)g
DL$@?.?I
%fid=fopen('e21.dat','w'); }=c85f~i
N = 128; % Number of Fourier modes (Time domain sampling points) rj(T~d4
M1 =3000; % Total number of space steps ~e6Brq
J =100; % Steps between output of space (L^]Lk
x)
T =10; % length of time windows:T*T0 pe^u$YE
T0=0.1; % input pulse width 94B\5I}
MN1=0; % initial value for the space output location 0a80 LAK
dt = T/N; % time step 89r DyRJ;
n = [-N/2:1:N/2-1]'; % Index /p8dZ+X
t = n.*dt; %CK^Si%+
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 |*}4 m'c
u20=u10.*0.0; % input to waveguide 2 bv&;R
u1=u10; u2=u20; 'Lu__NfN
U1 = u1; tH-C8Qxy
U2 = u2; % Compute initial condition; save it in U X5j1`t,
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. yUpgoX(6
w=2*pi*n./T; Q ]}Hd-
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T @Y1s$,=xB
L=4; % length of evoluation to compare with S. Trillo's paper C=eF.FB;'
dz=L/M1; % space step, make sure nonlinear<0.05 r-:Uz\gM
for m1 = 1:1:M1 % Start space evolution vM5k_D
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS zux{S;:?
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; {{QELfH2
ca1 = fftshift(fft(u1)); % Take Fourier transform Ytl4kaYS
ca2 = fftshift(fft(u2)); ZMel{w`n
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation +0OLc2
)w
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift )ubiB^g'm
u2 = ifft(fftshift(c2)); % Return to physical space J:Qa5MTWp
u1 = ifft(fftshift(c1)); K*~0"F>"0
if rem(m1,J) == 0 % Save output every J steps. r,h%[JKM
U1 = [U1 u1]; % put solutions in U array /Njd[=B
U2=[U2 u2]; [PDNwh0g5
MN1=[MN1 m1]; ))"6ern
z1=dz*MN1'; % output location abyo4i5T
end #`)(e JF
end
iKT [=c
hg=abs(U1').*abs(U1'); % for data write to excel PpAu!2lt9
ha=[z1 hg]; % for data write to excel MRdduPrM%$
t1=[0 t']; 2.l:O2<
hh=[t1' ha']; % for data write to excel file @0/+_2MH-
%dlmwrite('aa',hh,'\t'); % save data in the excel format z*a:L} $
figure(1) |&zz,+ E
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn MB]<Dyj,
figure(2) * -8&[D0
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn g\&g N
fTK3,s1=
非线性超快脉冲耦合的数值方法的Matlab程序 UWd=!h^dt
f=WDR m]
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 wY[+ZT
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 PamO8^!G
x8V('` }j
w|K'M?N14
8ap%?
% This Matlab script file solves the nonlinear Schrodinger equations |R/%D%_g
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of "i[@P)
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear nH[yJGZYSA
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Al}B34.uh
;z $(nhJ
C=1; /7Cc#P6
M1=120, % integer for amplitude mc? Vq
M3=5000; % integer for length of coupler ?iWi
N = 512; % Number of Fourier modes (Time domain sampling points) ,)Znb=
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. 7`DBS^O]dG
T =40; % length of time:T*T0. |}Nn!Sj>#;
dt = T/N; % time step 5>D>% iaHv
n = [-N/2:1:N/2-1]'; % Index $Avjnm
t = n.*dt; Dv5D~on{
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. {#?N
w=2*pi*n./T; %N>%!m
g1=-i*ww./2; Lh!J >
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; S.-TOE
g3=-i*ww./2; C26>BU<
P1=0; -"'j7t:
P2=0; w"-Lc4t+
P3=1; b*c*r dTx
P=0; >4TaP*_
for m1=1:M1 i@"@9n~
p=0.032*m1; %input amplitude 1mOh{:1u
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 7QiIiWqIWC
s1=s10; vqDu(6!2
s20=0.*s10; %input in waveguide 2 o ,AAC
s30=0.*s10; %input in waveguide 3 !>..Q)z
s2=s20; |
*2w5iR
s3=s30; $P^q!H4D
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); v3~? ;f,l
%energy in waveguide 1 SB H(y)
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); P}n_IV*@
%energy in waveguide 2 v&DI`xn~
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); 'YmIKIw
%energy in waveguide 3 p6>Svcc
for m3 = 1:1:M3 % Start space evolution `T@i. 'X
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS /Kql>$I
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; m
Bu
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; tkeoNuAM
sca1 = fftshift(fft(s1)); % Take Fourier transform %[Wh [zZy
sca2 = fftshift(fft(s2)); CkOz
sca3 = fftshift(fft(s3)); M ?Y;a5{
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift '3/4?wi
sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); @\0ez<.p}
sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 4&<oFW\r
s3 = ifft(fftshift(sc3)); N{9v1`B
s2 = ifft(fftshift(sc2)); % Return to physical space &Cr: