计算脉冲在非线性耦合器中演化的Matlab 程序 icb*L ~qm ':3[?d1Es % This Matlab script file solves the coupled nonlinear Schrodinger equations of
=?Ui(?tI % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
"7'P Lo3O % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
p8 Ao{ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
iCLH &Q#*Nnb3 %fid=fopen('e21.dat','w');
1$+8wDVwad N = 128; % Number of Fourier modes (Time domain sampling points)
*AP"[W M1 =3000; % Total number of space steps
684d&\(s J =100; % Steps between output of space
Bgn%d4W;G T =10; % length of time windows:T*T0
_-3n'i8 T0=0.1; % input pulse width
``eam8Az_U MN1=0; % initial value for the space output location
zvVo-{6 dt = T/N; % time step
w$Fg0JS n = [-N/2:1:N/2-1]'; % Index
Rj4C-X4= t = n.*dt;
YYT#{>& u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
<_ENC>NP u20=u10.*0.0; % input to waveguide 2
D6H?*4f] u1=u10; u2=u20;
R7U%v"F>` U1 = u1;
O@4 J=P=w U2 = u2; % Compute initial condition; save it in U
gO)":!_n W ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
jCXBp>9$M w=2*pi*n./T;
N#ZWW6 g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
22=sh;y+2 L=4; % length of evoluation to compare with S. Trillo's paper
Rk[a|T & dz=L/M1; % space step, make sure nonlinear<0.05
Uqb]&2 for m1 = 1:1:M1 % Start space evolution
&x[7?Y L u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
":vEWp+g u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
El@*Fo ca1 = fftshift(fft(u1)); % Take Fourier transform
ZX64kk+ ca2 = fftshift(fft(u2));
[`oVMR c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
<e?Eva%t` c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
8#VD u( u2 = ifft(fftshift(c2)); % Return to physical space
"TJ*mN.i{} u1 = ifft(fftshift(c1));
g&85L$
if rem(m1,J) == 0 % Save output every J steps.
A= 5Ebu!z U1 = [U1 u1]; % put solutions in U array
} ck<R U2=[U2 u2];
C l,vBjl h MN1=[MN1 m1];
8*@{}O## z1=dz*MN1'; % output location
fggs
;Le end
gFKJbjT| end
pmvd%X\f hg=abs(U1').*abs(U1'); % for data write to excel
Ei):\,Nv ha=[z1 hg]; % for data write to excel
5QLK t1=[0 t'];
4l%1D.3-O hh=[t1' ha']; % for data write to excel file
/1v9U|j %dlmwrite('aa',hh,'\t'); % save data in the excel format
tV`=o$` figure(1)
^a_a%ws waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
*;]}`r figure(2)
L/r_MtN waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
fO&`A:JY <K`E*IaW 非线性超快脉冲耦合的数值方法的Matlab程序 BhzD V *$W&jfW 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
CDRbYO Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
flo$[]`.7 m;]wKd" } P ," _OTVQo Ap % This Matlab script file solves the nonlinear Schrodinger equations
n)98NSVDbT % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
- ~|Gwr" % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
j}eb
_K+I % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
ESIP+ *H/3xPh,* C=1;
twq~.:<o M1=120, % integer for amplitude
NFZ(*v1U M3=5000; % integer for length of coupler
[i/!ovcY N = 512; % Number of Fourier modes (Time domain sampling points)
DJL.P6 -W dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
,M;9|kE* T =40; % length of time:T*T0.
uW(-? dt = T/N; % time step
JRo/ HY+ n = [-N/2:1:N/2-1]'; % Index
^0}ma*gi~ t = n.*dt;
+h4W<YnW ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
BZ?C k[E]Z w=2*pi*n./T;
#mw!_]
g1=-i*ww./2;
o+A1-&qhN g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
$M 8&&M g3=-i*ww./2;
8YQuq.(>a P1=0;
B5;%R01A P2=0;
,UMr_ e{| P3=1;
Giv,%3' P=0;
eZa*WI= for m1=1:M1
vTO9XHc E p=0.032*m1; %input amplitude
q2vD)r s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
OL>>/T s1=s10;
@@Ybg6.+* s20=0.*s10; %input in waveguide 2
*9EwZwE_K s30=0.*s10; %input in waveguide 3
q>.7VN[
vE s2=s20;
#dWz,e3 s3=s30;
tF`L]1r> p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
\Y)HSJR;e %energy in waveguide 1
pT]hPuC p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
_xaum %energy in waveguide 2
#T_!-;(Z p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
Uz^N6q %energy in waveguide 3
#&}-
q
RA for m3 = 1:1:M3 % Start space evolution
vn^O m-\ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
#cfiN b}GX s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
SN}K=)KF# s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
xz8e1M sca1 = fftshift(fft(s1)); % Take Fourier transform
)t|:_Z sca2 = fftshift(fft(s2));
2`$*HPj+G sca3 = fftshift(fft(s3));
0+FPAqX sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
)4
4Y`v sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
Xxg|01 sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
sm/aL^4 s3 = ifft(fftshift(sc3));
f,TW|Y'{g s2 = ifft(fftshift(sc2)); % Return to physical space
AOR?2u s1 = ifft(fftshift(sc1));
u /F!8# end
F?Lt-a+ p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
avRtYL p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
f1 x&Fk p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
T7,]^
1 P1=[P1 p1/p10];
*#Cx-J P2=[P2 p2/p10];
_`udd)Y2 P3=[P3 p3/p10];
+#FqC/`l P=[P p*p];
6dIPgie3w end
bej(Ds0 figure(1)
Te+(7
Z plot(P,P1, P,P2, P,P3);
lKf58
mB <a6pjx>y 转自:
http://blog.163.com/opto_wang/