切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8954阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 es6]c%o:t^  
    "9^OT  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of L2Vj2o"x?  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of P9W!xvV`w  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear K!<3|d  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 _;!$1lM[  
    kgv29j?k;  
    %fid=fopen('e21.dat','w'); Q2)CbHSz  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 6)h~9iK  
    M1 =3000;              % Total number of space steps qlNB\~HCe  
    J =100;                % Steps between output of space  >7$h  
    T =10;                  % length of time windows:T*T0 "n, %Hh  
    T0=0.1;                 % input pulse width * YR>u @  
    MN1=0;                 % initial value for the space output location 3nbTK3,  
    dt = T/N;                      % time step !r#36kO  
    n = [-N/2:1:N/2-1]';           % Index ,Qh9}I7;C  
    t = n.*dt;   hU~up a<dD  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ?^by3\,VZ  
    u20=u10.*0.0;                  % input to waveguide 2 d(_;@%p1X  
    u1=u10; u2=u20;                 N|3a(mtiZ'  
    U1 = u1;   PiVp(; rtQ  
    U2 = u2;                       % Compute initial condition; save it in U =e"RE/q2  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. x,fX mgE  
    w=2*pi*n./T; ev[!:*6P  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ml1My1  
    L=4;                           % length of evoluation to compare with S. Trillo's paper B;A< pNT  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 UfNcI[xr  
    for m1 = 1:1:M1                                    % Start space evolution "<$JU@P  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS +Y_]<  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; uE ^uP@d  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform *v:o`{vM[  
       ca2 = fftshift(fft(u2)); S] R.:T_%  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation [!S%nYs&8L  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   1Xkl.FcFw  
       u2 = ifft(fftshift(c2));                        % Return to physical space nkO4~p  
       u1 = ifft(fftshift(c1)); 6sQY)F7p  
    if rem(m1,J) == 0                                 % Save output every J steps. L$3{L"/   
        U1 = [U1 u1];                                  % put solutions in U array jV.9d@EC  
        U2=[U2 u2]; ]^6r7nfR6|  
        MN1=[MN1 m1]; ai]KH7  
        z1=dz*MN1';                                    % output location iI$;%uY3g  
      end _x]q`[Dih  
    end [2.;gZj  
    hg=abs(U1').*abs(U1');                             % for data write to excel [+wLy3_  
    ha=[z1 hg];                                        % for data write to excel ,KaO8^PB  
    t1=[0 t']; 7Ml OBPh  
    hh=[t1' ha'];                                      % for data write to excel file }Ryrd!3bY  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format G<FB:?|  
    figure(1) X?z CB  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn LJwy,-  
    figure(2) ;XI=Y"h{%  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ZRP[N)Ld$  
    A(1WQUu j  
    非线性超快脉冲耦合的数值方法的Matlab程序 `s\E"QeZN  
    ^5Ob(FvU  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   [N_)V kpr  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *EF`s~  
    h%ba!  
    l}XnCOIT,  
    eEX*\1Gg  
    %  This Matlab script file solves the nonlinear Schrodinger equations IQyw>_~]  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ;0nL1R]w(  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear o(@^V!}V  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +<^c2diX  
    ?#|in}  
    C=1;                           gCZm7dgo  
    M1=120,                       % integer for amplitude t]XF*fZH  
    M3=5000;                      % integer for length of coupler |6w {%xC?"  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) '^`%  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. yhxZ^ (I  
    T =40;                        % length of time:T*T0. _53N uEM1  
    dt = T/N;                     % time step y:VY8a 4  
    n = [-N/2:1:N/2-1]';          % Index )vD|VLV   
    t = n.*dt;   L[. )!c8k  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. w^)_Fk3  
    w=2*pi*n./T; ADT8A."R[  
    g1=-i*ww./2; K{`3,U2Wx  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; #OsUF,NU  
    g3=-i*ww./2; }3 S6TJ+  
    P1=0; <(x!P=NM-  
    P2=0; #F:\_!2c  
    P3=1; znNv;-q  
    P=0; N3&n"w _d  
    for m1=1:M1                 Z#flu Q%V  
    p=0.032*m1;                %input amplitude 8RJa;JsH  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 _MzdbUb5,  
    s1=s10; wQrD(Dv(yA  
    s20=0.*s10;                %input in waveguide 2 f=Kt[|%'e  
    s30=0.*s10;                %input in waveguide 3 43/!pW  
    s2=s20; DX<xkS[P  
    s3=s30; vve[.Lud'  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   1zIrU6H2;_  
    %energy in waveguide 1 s AlOX`t  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   vf h*`G$  
    %energy in waveguide 2 Z]k+dJ[-  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Dlx-mm_  
    %energy in waveguide 3  r95$( N  
    for m3 = 1:1:M3                                    % Start space evolution 3NlG,e'T2  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS G~19Vv*;  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; y9-}LET3j  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ~.<}/GP]_  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform b)+;@wa~  
       sca2 = fftshift(fft(s2)); l1D"*J 2`  
       sca3 = fftshift(fft(s3)); m.>y(TI  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ez^b{s`  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ziG]BZ  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); RRJN@|"  
       s3 = ifft(fftshift(sc3)); =d1i<iw?-  
       s2 = ifft(fftshift(sc2));                       % Return to physical space LO;Z3Q>#0  
       s1 = ifft(fftshift(sc1)); Kv#TJn  
    end KL+,[M@ F  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); <UBB&}R0  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); %^<A` Q_  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); _|KeB(W  
       P1=[P1 p1/p10]; k+As#7V  
       P2=[P2 p2/p10]; )jaNFJ 3  
       P3=[P3 p3/p10]; \t+q1S1  
       P=[P p*p]; 9|&%"~6'  
    end TDjjaO  
    figure(1) `I)ftj%  
    plot(P,P1, P,P2, P,P3); qh~S)^zFJ  
    tC'@yX  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~