计算脉冲在非线性耦合器中演化的Matlab 程序 mTb2d?NS Bcd0 % This Matlab script file solves the coupled nonlinear Schrodinger equations of
4/mj"PBKL % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
x9{Sl[2& % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
Ekg N6S`} % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
8YJqM,t5) b/D9P~cE %fid=fopen('e21.dat','w');
J4K|KS7
N = 128; % Number of Fourier modes (Time domain sampling points)
j.yr5% M1 =3000; % Total number of space steps
l66ipgw_^I J =100; % Steps between output of space
y!{/'{?P T =10; % length of time windows:T*T0
ui#1 +p3G T0=0.1; % input pulse width
9{]r+z: MN1=0; % initial value for the space output location
XM5;AcD dt = T/N; % time step
5sV/N] ! n = [-N/2:1:N/2-1]'; % Index
_
/28Cw t = n.*dt;
~:RDw<PWp u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
~1wdAq`'a u20=u10.*0.0; % input to waveguide 2
+D{*L0$D" u1=u10; u2=u20;
M@LaD 5 U1 = u1;
'\E*W!R.] U2 = u2; % Compute initial condition; save it in U
oE|{|27X ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
(j"~]T!)1 w=2*pi*n./T;
,*}g
r g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
%Cbc@=k L=4; % length of evoluation to compare with S. Trillo's paper
XKPt[$ab dz=L/M1; % space step, make sure nonlinear<0.05
Y[8co<p for m1 = 1:1:M1 % Start space evolution
krnk%ug u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
@*`UOgP7 u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
z&HN>7 ca1 = fftshift(fft(u1)); % Take Fourier transform
tU~H@' ca2 = fftshift(fft(u2));
W0?Y%Da(4m c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
cI4qgV c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
RT+30Q? u2 = ifft(fftshift(c2)); % Return to physical space
f6_|dvY3 u1 = ifft(fftshift(c1));
lt(-,md if rem(m1,J) == 0 % Save output every J steps.
J/&*OC U1 = [U1 u1]; % put solutions in U array
]2sZu7 U2=[U2 u2];
Q j~W-^/ - MN1=[MN1 m1];
,;ruH^ z1=dz*MN1'; % output location
'8pPGh9D end
u{lDof> end
fOjt` ~ToI hg=abs(U1').*abs(U1'); % for data write to excel
D(ntVR ha=[z1 hg]; % for data write to excel
8!fAv$g0 t1=[0 t'];
%IH|zSr)EM hh=[t1' ha']; % for data write to excel file
GHsdLe=t0# %dlmwrite('aa',hh,'\t'); % save data in the excel format
D!E 9@*Lf figure(1)
'FA)LuAok waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
U@t?jTMBkO figure(2)
g#<?OFl waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
>D^7v(& [,?A$Z*Z| 非线性超快脉冲耦合的数值方法的Matlab程序 AiHDoV+- YHv,Z|.w 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
T+`GOFx Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
-N!soJ< 2d J)4 Pv$"DEXA2 RknSWuFKt % This Matlab script file solves the nonlinear Schrodinger equations
&l}xBQAL % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
&\D<n;3 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
](6vG$\ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
X1PlW8pd \7w85$ C=1;
`[u>NEb M1=120, % integer for amplitude
MKYE]D; M3=5000; % integer for length of coupler
D@1^:'$V N = 512; % Number of Fourier modes (Time domain sampling points)
btz3f9 dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
52R.L9Ai T =40; % length of time:T*T0.
+q?0A^C> dt = T/N; % time step
^WYG?/{4 n = [-N/2:1:N/2-1]'; % Index
v@1Jhns t = n.*dt;
^|12~d_.T ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
{.8)gVBmA w=2*pi*n./T;
uC ;PP=z g1=-i*ww./2;
8i$`oMv[y g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
b0CaoSWo g3=-i*ww./2;
[B;Ek\ 5W P1=0;
I8wVvs;k P2=0;
!_z>w6uR
P3=1;
$W]guG P=0;
k 5kX for m1=1:M1
>-WOw p=0.032*m1; %input amplitude
4U1fPyt s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
a_MnQ@ s1=s10;
BQmafpp` s20=0.*s10; %input in waveguide 2
DMpd(ws s30=0.*s10; %input in waveguide 3
BJ2W}R s2=s20;
l]=$< s3=s30;
s|`)' p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
otVdx&%] %energy in waveguide 1
,colGth54 p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
6y!?xot %energy in waveguide 2
0s[3:bZ\Ia p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
>V=@[B(0 %energy in waveguide 3
}n8;A;axi for m3 = 1:1:M3 % Start space evolution
$ =a$z" s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
\(t>(4s_~ s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
,+evP=(cX s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
$d[:4h~ sca1 = fftshift(fft(s1)); % Take Fourier transform
4^9_E&Fa sca2 = fftshift(fft(s2));
Eu~wbU"% sca3 = fftshift(fft(s3));
q)y8Bv| sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
{/!"}{G1e sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
7}85o
J sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
J~`%Nj5> s3 = ifft(fftshift(sc3));
vK~KeZ\,p= s2 = ifft(fftshift(sc2)); % Return to physical space
L 'Rapu s1 = ifft(fftshift(sc1));
\`# 0,pLr end
iFchD\E*o p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
m3e49 bP p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
=xP{f<` p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
mQuaO#
I, P1=[P1 p1/p10];
|^!@ P2=[P2 p2/p10];
6;V1PK>9 P3=[P3 p3/p10];
IcA~f@ P=[P p*p];
1<e%)? G end
K0a
50@B] figure(1)
SXF_)1QO\W plot(P,P1, P,P2, P,P3);
sUMn
(@r '~a$f;: Dv 转自:
http://blog.163.com/opto_wang/