切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8912阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 N}#Rw2Vl  
     bUcp8  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of s)WA9PiC  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ^iONC&r  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear `t/j6 e]  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 C+' -TLeu  
    aL:|Dr3SX  
    %fid=fopen('e21.dat','w'); 1%_RXQVG  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 3(oMASf  
    M1 =3000;              % Total number of space steps J$6WUz:?  
    J =100;                % Steps between output of space d92Z;FWb  
    T =10;                  % length of time windows:T*T0 BWxfY^,'&6  
    T0=0.1;                 % input pulse width ?kR1T0lKkE  
    MN1=0;                 % initial value for the space output location OJu>#   
    dt = T/N;                      % time step /xUF@%rT  
    n = [-N/2:1:N/2-1]';           % Index E3 % ~!ZC  
    t = n.*dt;   tMw65Xei6b  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 93*d:W8Vr  
    u20=u10.*0.0;                  % input to waveguide 2 g-K;J4 K%  
    u1=u10; u2=u20;                 },d^y:m  
    U1 = u1;   [;wJM|Z J0  
    U2 = u2;                       % Compute initial condition; save it in U ;B@#,6t/  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. _&]7  
    w=2*pi*n./T; s?HK2b^;D  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T PE5*]+lW.  
    L=4;                           % length of evoluation to compare with S. Trillo's paper '1D $ ;  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 P%:?"t+J`;  
    for m1 = 1:1:M1                                    % Start space evolution lG-B) F  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS *OA(v^@tx7  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; kSV(T'#x  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform )n)AmNpq   
       ca2 = fftshift(fft(u2)); wn@~80)$  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation (kR NqfX  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   +(= -95qZ  
       u2 = ifft(fftshift(c2));                        % Return to physical space <%YW/k"o  
       u1 = ifft(fftshift(c1)); E2M<I;:EA  
    if rem(m1,J) == 0                                 % Save output every J steps. E#_/#J]UQn  
        U1 = [U1 u1];                                  % put solutions in U array |fKT@2(  
        U2=[U2 u2]; 4^r6RS@z  
        MN1=[MN1 m1]; /Pe xtj<  
        z1=dz*MN1';                                    % output location z6)N![ X  
      end )P7ep  
    end DY#195H  
    hg=abs(U1').*abs(U1');                             % for data write to excel K+|XI|1p  
    ha=[z1 hg];                                        % for data write to excel F^/KD<cgK  
    t1=[0 t']; 2V]a+Cgk  
    hh=[t1' ha'];                                      % for data write to excel file 1?BLL;[a8  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ng/h6 S  
    figure(1) B:X%k/{  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 6/ 5c|  
    figure(2) y7/4u-_c  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Sj I,v+  
    2->Lz  
    非线性超快脉冲耦合的数值方法的Matlab程序 CmXLD} L_x  
    R]yce2w"z  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   S(CkA\[rz  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 &Y^4>y%  
    v@]SddP,?  
    lD0a<L 3  
    Gx$m"Jeq\  
    %  This Matlab script file solves the nonlinear Schrodinger equations Qw5-/p=t  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of =COQv=GT  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear mn03KF=n]  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 2T}>9X  
    =~JVU  
    C=1;                           ,y'6vW`%g9  
    M1=120,                       % integer for amplitude s7n7u7$j  
    M3=5000;                      % integer for length of coupler gs!'*U)  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) DTH}=r-  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. T%oJmp?0  
    T =40;                        % length of time:T*T0. Sed 8Q-m  
    dt = T/N;                     % time step /RJ]MQ\*O  
    n = [-N/2:1:N/2-1]';          % Index U\Y0v.11  
    t = n.*dt;   }J6:D]Q  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ?{aC-3VAT  
    w=2*pi*n./T; ~]?s A{  
    g1=-i*ww./2; QOK,-  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; $1B?@~&  
    g3=-i*ww./2; x*:VE57,z  
    P1=0; `uMc.:5\  
    P2=0; V|@bITJ?7  
    P3=1; "Y^j=?1k  
    P=0; LU;zpXg\  
    for m1=1:M1                 =v^#MU{k?  
    p=0.032*m1;                %input amplitude `Y.~eE  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 |pS]zD  
    s1=s10; [K,P)V>K  
    s20=0.*s10;                %input in waveguide 2 @5wc 3y  
    s30=0.*s10;                %input in waveguide 3 )NhC+=N  
    s2=s20; im9 w|P5  
    s3=s30; LZ_0=Xx%  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Dqo#+_v  
    %energy in waveguide 1 ROn@tW  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   "p3<-06  
    %energy in waveguide 2 5?H wM[`  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   tz2=l.1  
    %energy in waveguide 3 '*L6@e#U  
    for m3 = 1:1:M3                                    % Start space evolution w>cqsTq  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS #8M?y*<I  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; hDTC~~J/  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; x#3*C|A  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform z/"*-+j  
       sca2 = fftshift(fft(s2)); -5  
       sca3 = fftshift(fft(s3)); UFT JobU  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   RtR@wZ2\s  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 9tv,,I;iU  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); sgi5dQ  
       s3 = ifft(fftshift(sc3)); jZ-s6r2=  
       s2 = ifft(fftshift(sc2));                       % Return to physical space $.C-_L  
       s1 = ifft(fftshift(sc1)); al}J^MJ  
    end TW>GYGz  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); $adZ|Q\  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); czIAx1R9  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); &~+QPnI>Pm  
       P1=[P1 p1/p10]; ^CLQs;zXE  
       P2=[P2 p2/p10]; hsrf2Xw[  
       P3=[P3 p3/p10]; mrRid}2  
       P=[P p*p]; g/f6N z  
    end aOd#f:{y  
    figure(1) ]w>o=<?b  
    plot(P,P1, P,P2, P,P3); v[|W\y@H/3  
    ^wWbW&<Tg  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~