切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8851阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 N1LR _vS"  
    7t@jj%F  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Fi7pq2  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of c?q#?K aF  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 1-w1k ^e  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !m_'<=)B4~  
    3D<P [.bS  
    %fid=fopen('e21.dat','w'); Yn J=&21  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) !vImmhI!I  
    M1 =3000;              % Total number of space steps W!IK>IW"  
    J =100;                % Steps between output of space 'J!P:.=a>  
    T =10;                  % length of time windows:T*T0 v`wPdb  
    T0=0.1;                 % input pulse width IDLA-Vxo  
    MN1=0;                 % initial value for the space output location /x$jd )C  
    dt = T/N;                      % time step HO' ELiZ_q  
    n = [-N/2:1:N/2-1]';           % Index v+Mt/8  
    t = n.*dt;   +pf 7  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 {tWfLfzU  
    u20=u10.*0.0;                  % input to waveguide 2 w'L;`k;Q  
    u1=u10; u2=u20;                 $#KSvo{otI  
    U1 = u1;   h!d#=.R  
    U2 = u2;                       % Compute initial condition; save it in U YJ3970c/M  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. uidE/7  
    w=2*pi*n./T; ^~(bm$4r  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T S;|%'Sn|j9  
    L=4;                           % length of evoluation to compare with S. Trillo's paper !>>$'.nb@~  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Oh8;YE-%  
    for m1 = 1:1:M1                                    % Start space evolution  #lJF$  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS [=V8  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; xss D2*l  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Xc Pn  
       ca2 = fftshift(fft(u2)); dX+DE(y  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation N18Zsdrp  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   C}+(L3Z  
       u2 = ifft(fftshift(c2));                        % Return to physical space jq}5(*k  
       u1 = ifft(fftshift(c1)); `0 .5aa  
    if rem(m1,J) == 0                                 % Save output every J steps. A;2?!i#f  
        U1 = [U1 u1];                                  % put solutions in U array }]g>PY  
        U2=[U2 u2]; }r,k*I'K  
        MN1=[MN1 m1]; {BKI8vy  
        z1=dz*MN1';                                    % output location %kVpW& ~  
      end JY>]u*=  
    end \J1Jn~  
    hg=abs(U1').*abs(U1');                             % for data write to excel OM, uR3,  
    ha=[z1 hg];                                        % for data write to excel M%$zor  
    t1=[0 t']; :k(aH Ua  
    hh=[t1' ha'];                                      % for data write to excel file %PkJ7-/b|^  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format cT.1oaAM0  
    figure(1) -.z~u/uL  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn yq;gBIiZ  
    figure(2) 0eUsvzz 15  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ;PLby]=O  
    n*_FC  
    非线性超快脉冲耦合的数值方法的Matlab程序 ~~yo& ]  
    >L=l{F6 p  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   !FO||z(vb  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 F;MFw2G  
    JsiJ=zo<  
    FQ O6w'  
    N$_Rzh"9rr  
    %  This Matlab script file solves the nonlinear Schrodinger equations x:?1fvVR  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ,T1 t`  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear O<o_MZN  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 wcV~z:&^5  
    1[B?nk  
    C=1;                           *K0CUir|  
    M1=120,                       % integer for amplitude WH'[~O  
    M3=5000;                      % integer for length of coupler $Cf_RFH0  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ^iTjr$hQ;  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. e'7!aysj  
    T =40;                        % length of time:T*T0. x2K.5q>  
    dt = T/N;                     % time step JO1c9NyKr  
    n = [-N/2:1:N/2-1]';          % Index gbKms ; :  
    t = n.*dt;   QEtZ]p1H@  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. - d>)  
    w=2*pi*n./T; Ym!Ia&n  
    g1=-i*ww./2; ]A!Gr(FHQ  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; *a+~bX)18  
    g3=-i*ww./2; <Ep P;  
    P1=0; SD JAk&Z}R  
    P2=0;  !@bN  
    P3=1; ^WM)UZEBC  
    P=0; L! Q&?xP  
    for m1=1:M1                 +KD~/}C%-  
    p=0.032*m1;                %input amplitude LI(Wu6*Y  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 v\f 41M7D  
    s1=s10; sFB; /*C  
    s20=0.*s10;                %input in waveguide 2 l} h<2  
    s30=0.*s10;                %input in waveguide 3 6K* 7%8Y/G  
    s2=s20; #msk'MVt  
    s3=s30; &a-:ZA@  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Y_f6y 9?ZE  
    %energy in waveguide 1 g!aM-B^C  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ,D~C40f  
    %energy in waveguide 2 })s s.  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   AA yzT*^  
    %energy in waveguide 3 | F: ?  
    for m3 = 1:1:M3                                    % Start space evolution Xt9?7J#\T  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS eK3J9 ;X  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; hv7!x=?8  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 3LX<&."z  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform SOeL@!_  
       sca2 = fftshift(fft(s2)); wCc:HfmjJ  
       sca3 = fftshift(fft(s3)); o),i2  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ~@L$}Eu  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); j1<@ *W&b  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); m",$M>  
       s3 = ifft(fftshift(sc3)); e 0!a &w  
       s2 = ifft(fftshift(sc2));                       % Return to physical space o-7>^wV%BD  
       s1 = ifft(fftshift(sc1)); P1H`NOC  
    end {P-KU RQ  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); -zMXc"'C^k  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); H}JH339  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); /koNcpJ  
       P1=[P1 p1/p10]; #p*OLQ3~  
       P2=[P2 p2/p10]; '{U56^b]  
       P3=[P3 p3/p10]; j3z&0sc2(0  
       P=[P p*p]; 2{**bArV  
    end r"J1C  
    figure(1) fl+ [(x<  
    plot(P,P1, P,P2, P,P3); rN} {v}n  
    F]SexP4:A  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~