切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8995阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 @)o^uU T  
    YIw1  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of `]Q:-h  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of hxQqa 0B  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear fhL,aCS=  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 /1Ue?)g  
    DL$@?.?I  
    %fid=fopen('e21.dat','w'); }=c85f~i  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) rj(T~d4  
    M1 =3000;              % Total number of space steps ~e6Brq  
    J =100;                % Steps between output of space (L^]Lk x)  
    T =10;                  % length of time windows:T*T0 pe^u$YE  
    T0=0.1;                 % input pulse width 94B\5I}  
    MN1=0;                 % initial value for the space output location 0 a80 LAK  
    dt = T/N;                      % time step 89r DyRJ;  
    n = [-N/2:1:N/2-1]';           % Index /p8dZ+X  
    t = n.*dt;   %CK^Si%+  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 |*}4 m'c  
    u20=u10.*0.0;                  % input to waveguide 2 bv&;R  
    u1=u10; u2=u20;                 'Lu__NfN  
    U1 = u1;   tH-C8Qxy  
    U2 = u2;                       % Compute initial condition; save it in U X5 j1`t,  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. yUpgoX(6  
    w=2*pi*n./T; Q ]}Hd-  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T @Y1s$,=xB  
    L=4;                           % length of evoluation to compare with S. Trillo's paper C=eF.FB;'  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 r-:Uz\gM  
    for m1 = 1:1:M1                                    % Start space evolution vM5k_D  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS zux{S; :?  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; {{QELfH2  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Ytl4kaYS  
       ca2 = fftshift(fft(u2)); ZMel{w`n  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation +0OLc2 )w  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   )ubiB^g'm  
       u2 = ifft(fftshift(c2));                        % Return to physical space J:Qa5MTWp  
       u1 = ifft(fftshift(c1)); K*~0"F>"0  
    if rem(m1,J) == 0                                 % Save output every J steps. r,h%[JKM  
        U1 = [U1 u1];                                  % put solutions in U array /Njd[= B  
        U2=[U2 u2]; [PDNwh0g5  
        MN1=[MN1 m1]; ))"6ern  
        z1=dz*MN1';                                    % output location abyo4i5T  
      end #`)(e JF  
    end  iKT[=c  
    hg=abs(U1').*abs(U1');                             % for data write to excel PpAu!2lt9  
    ha=[z1 hg];                                        % for data write to excel MRdduPrM%$  
    t1=[0 t']; 2.l:O2<  
    hh=[t1' ha'];                                      % for data write to excel file @0/+_2MH-  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format z*a:L}$  
    figure(1) |&zz,+E  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn MB]<Dyj,  
    figure(2) *-8&[D0  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn g\&g N  
    fTK3,s1=  
    非线性超快脉冲耦合的数值方法的Matlab程序 UWd=!h^dt  
    f=WDR m]  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   wY[+ZT  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 PamO8^!G  
    x8V('`}j  
    w|K'M?N14  
    8ap%?  
    %  This Matlab script file solves the nonlinear Schrodinger equations |R/%D%_g  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of "i[@P)  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear nH[yJGZYSA  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Al} B34.uh  
    ;z$(nhJ  
    C=1;                           /7Cc#P6  
    M1=120,                       % integer for amplitude mc? Vq  
    M3=5000;                      % integer for length of coupler ?iWi  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ,)Znb=  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 7`DBS^O]dG  
    T =40;                        % length of time:T*T0. |}Nn!Sj>#;  
    dt = T/N;                     % time step 5>D>% iaHv  
    n = [-N/2:1:N/2-1]';          % Index $Avjnm  
    t = n.*dt;   Dv5D~on{  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. {#?N  
    w=2*pi*n./T; %N>%!m  
    g1=-i*ww./2; Lh!J >  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; S.-TOE  
    g3=-i*ww./2; C26>BU<  
    P1=0; -"' j7t:  
    P2=0; w"-Lc4t+  
    P3=1; b*c*r dTx  
    P=0; >4TaP*_  
    for m1=1:M1                 i@"@9n~  
    p=0.032*m1;                %input amplitude 1mOh{:1u  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 7QiIiWqIWC  
    s1=s10; vqDu(6!2  
    s20=0.*s10;                %input in waveguide 2 o,AAC  
    s30=0.*s10;                %input in waveguide 3 !>..Q)z  
    s2=s20; | *2w5iR  
    s3=s30; $P^q!H4D  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   v3~?;f,l  
    %energy in waveguide 1 SB H(y)  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   P}n_IV*@  
    %energy in waveguide 2 v&DI`xn~  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   'YmIKIw  
    %energy in waveguide 3 p6>Svcc  
    for m3 = 1:1:M3                                    % Start space evolution `T@i.'X  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS /Kql>$I  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; m Bu  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; tkeoNuAM  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform %[Wh [zZy  
       sca2 = fftshift(fft(s2)); CkOz  
       sca3 = fftshift(fft(s3)); M?Y;a5{  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   '3 /4?wi  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); @\0ez<.p}  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 4&<oFW\r  
       s3 = ifft(fftshift(sc3)); N{9v1`B  
       s2 = ifft(fftshift(sc2));                       % Return to physical space &Cr:6W@A  
       s1 = ifft(fftshift(sc1)); iVhJ t#_b  
    end o=1Uh,S3R  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); |W,& Hl7  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); e^6)Zz1\  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); P{kur} T  
       P1=[P1 p1/p10]; bh,[ 3X%  
       P2=[P2 p2/p10]; EN<F# Y3E  
       P3=[P3 p3/p10]; -$,TMqM  
       P=[P p*p]; DE}K~}sbd  
    end Xix L  R  
    figure(1) Gw/Pk4R  
    plot(P,P1, P,P2, P,P3); 36}?dRw#p  
    4Tb #fH%  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~