切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8554阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 \bx~*FaX  
    tdF9NFMD  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of U5]pi+r  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of m"9XT)N  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear $) 5Bf3P0  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 zj|/ CxV  
    '>v^6i S  
    %fid=fopen('e21.dat','w'); 1,V`8 [  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Ji;mHFZ*FU  
    M1 =3000;              % Total number of space steps 2F8|I7R  
    J =100;                % Steps between output of space YUdxG/~'  
    T =10;                  % length of time windows:T*T0 H\GkW6  
    T0=0.1;                 % input pulse width f2,1<^{  
    MN1=0;                 % initial value for the space output location CVi`bO4\  
    dt = T/N;                      % time step sgr=w+",Q  
    n = [-N/2:1:N/2-1]';           % Index ?K@t0a   
    t = n.*dt;   oR*=|B  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 e2C<PGUUB  
    u20=u10.*0.0;                  % input to waveguide 2 )=Q)BN[  
    u1=u10; u2=u20;                 Q8MS,7y/  
    U1 = u1;   XTDE53Js&  
    U2 = u2;                       % Compute initial condition; save it in U cMzkL%  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. GyC/_ntn  
    w=2*pi*n./T; - ~4+w  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T w#^U45y1v  
    L=4;                           % length of evoluation to compare with S. Trillo's paper IF@HzT;Q  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ~^vC,]hU  
    for m1 = 1:1:M1                                    % Start space evolution p[2GkP  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ~B$b)`*  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; AA:no=  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ,5|d3dJS  
       ca2 = fftshift(fft(u2)); gq5qRi`q  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation @+_&Y]  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   somfv$'B  
       u2 = ifft(fftshift(c2));                        % Return to physical space F pt-V  
       u1 = ifft(fftshift(c1)); =raA?Bp3;(  
    if rem(m1,J) == 0                                 % Save output every J steps. E-1"+p  
        U1 = [U1 u1];                                  % put solutions in U array (}:C+p 'I  
        U2=[U2 u2]; X;!D};;M  
        MN1=[MN1 m1]; &D#+6M&LK{  
        z1=dz*MN1';                                    % output location <SVmOmJ-K  
      end x "(9II*  
    end K<v:-TjQZ:  
    hg=abs(U1').*abs(U1');                             % for data write to excel e(1k0W4B  
    ha=[z1 hg];                                        % for data write to excel ?G? gy2  
    t1=[0 t']; m h;X~.98  
    hh=[t1' ha'];                                      % for data write to excel file >m_v5K  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format iS@\ =CK  
    figure(1) e@F|NCQ.9  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Y~n` ~(  
    figure(2) tL0`Rvl  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn S)%_weLW7  
    &B!%fd.'  
    非线性超快脉冲耦合的数值方法的Matlab程序 v6e%#=  
    J  fcMca  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   3z{S}~  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 U '[?9/T  
    ,2WH/"  
    |ia@,*KD  
    ;^l_i4A  
    %  This Matlab script file solves the nonlinear Schrodinger equations >kdM:MK  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of R V!o4"\]  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ~hURs;Sb  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 v5T9Y-{`  
    )u@t.)ChAV  
    C=1;                           <?$kI>Ot  
    M1=120,                       % integer for amplitude lv:U%+A  
    M3=5000;                      % integer for length of coupler Q2C)tVK+  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) R9. HD?H@  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. >,h1N$A+  
    T =40;                        % length of time:T*T0. zj]b&In6;  
    dt = T/N;                     % time step Z|^MGyn  
    n = [-N/2:1:N/2-1]';          % Index 2H&{1f\Bf  
    t = n.*dt;   gw Qvao  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Xa`(;CLW?  
    w=2*pi*n./T; 7o{*Z  
    g1=-i*ww./2; +0pW/4x  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; $ u2Cd4  
    g3=-i*ww./2; Sa] mm/ G  
    P1=0; PO ko]@~!i  
    P2=0; U($^E}I2(  
    P3=1; k)E;(  
    P=0; K[ ?R[  
    for m1=1:M1                 tE!'dpG5)  
    p=0.032*m1;                %input amplitude \7E`QY4  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ~eo^`4O{{  
    s1=s10; |vy]8?Ak  
    s20=0.*s10;                %input in waveguide 2 *1;23BiH-  
    s30=0.*s10;                %input in waveguide 3 0|2%#  E  
    s2=s20; jA2ofC  
    s3=s30; ci7~KewJ*  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   \ j]~>9  
    %energy in waveguide 1 ?"@ET9  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   N^@ \tg=  
    %energy in waveguide 2 ;4d.)-<No_  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   N&B>#:  
    %energy in waveguide 3 ZA.fa0n  
    for m3 = 1:1:M3                                    % Start space evolution Cnur"?w@o  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS y@9Y,ZR*  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Kcn\g.  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; fI[dhd6  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform $i&\\QNn  
       sca2 = fftshift(fft(s2)); 70<K .T<b  
       sca3 = fftshift(fft(s3)); 4 ? {*(  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ,iOZ |  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); G4yUC<TqBP  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Orc>.~+f%A  
       s3 = ifft(fftshift(sc3)); &9h  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Ao!=um5D J  
       s1 = ifft(fftshift(sc1)); )tPl<lb  
    end Fhi5LhWe+.  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); aa=b<Cd  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); <W|1<=z(  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); [Ye5Y?  
       P1=[P1 p1/p10]; LO>8 j:  
       P2=[P2 p2/p10]; )GCLK<,swu  
       P3=[P3 p3/p10]; | W?[,|e  
       P=[P p*p]; ./!KE"!  
    end Ko-QR(  
    figure(1) Rc%PZ}es  
    plot(P,P1, P,P2, P,P3); N('3oy#8  
    7X:hIl   
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~