计算脉冲在非线性耦合器中演化的Matlab 程序 T/7vM 6u ZV#$Z % This Matlab script file solves the coupled nonlinear Schrodinger equations of
'8Qw:f h % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
z"av|(?d % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
K!7q!%Ju % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
)[ w&C_>] Gx;xj0-" %fid=fopen('e21.dat','w');
,]U[W N = 128; % Number of Fourier modes (Time domain sampling points)
h+xA?[c= M1 =3000; % Total number of space steps
4[_L=zD J =100; % Steps between output of space
D@5s8xv T =10; % length of time windows:T*T0
i ha9!kf T0=0.1; % input pulse width
8vO;IK]9b^ MN1=0; % initial value for the space output location
:Fo4O'UC dt = T/N; % time step
-=>U
=| n = [-N/2:1:N/2-1]'; % Index
Lv3XYZgW~ t = n.*dt;
w#<^RKk u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
kyK' u20=u10.*0.0; % input to waveguide 2
OT%V{hD u1=u10; u2=u20;
,$PFI(Whk U1 = u1;
'oCm.~;_ U2 = u2; % Compute initial condition; save it in U
@jKDj]\ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
5R"2Wd w=2*pi*n./T;
rx}*u3x=
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
c G*(C L=4; % length of evoluation to compare with S. Trillo's paper
4D GY6PS dz=L/M1; % space step, make sure nonlinear<0.05
fo;6huz for m1 = 1:1:M1 % Start space evolution
t,1in4sN u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
zw<
4G[u u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
/bi6>GaC:E ca1 = fftshift(fft(u1)); % Take Fourier transform
drs-mt8 ca2 = fftshift(fft(u2));
h$|3dz N c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
}!=gP.Zu^ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
j;G[%gi6{ u2 = ifft(fftshift(c2)); % Return to physical space
H)`@2~Y
u1 = ifft(fftshift(c1));
[Ek42% if rem(m1,J) == 0 % Save output every J steps.
DQMPAj. U1 = [U1 u1]; % put solutions in U array
_2#zeT5 U2=[U2 u2];
OZa88& MN1=[MN1 m1];
=g >.X9lr z1=dz*MN1'; % output location
F G3Sk!O6 end
)7k&`?Mh end
JxnuGkE0[# hg=abs(U1').*abs(U1'); % for data write to excel
D {Oq\* ha=[z1 hg]; % for data write to excel
d&5c_6oW t1=[0 t'];
8,_ -0_^$ hh=[t1' ha']; % for data write to excel file
hR!}u}ECd %dlmwrite('aa',hh,'\t'); % save data in the excel format
T0YDfo figure(1)
TZ:34\u waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
A3z/Bz4]:# figure(2)
nW~$
(Qnd waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
)`mbf|,&t{ Yg[ v/[] 非线性超快脉冲耦合的数值方法的Matlab程序 ENO? ; wZ$tJQO 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
abL/Y23
" Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
RZW$!tyI= amMjuyW C1KfXC*|L -%>8.#~G % This Matlab script file solves the nonlinear Schrodinger equations
E2kW=6VO>| % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
`bzr_fJ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
{>wI8 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
5dqQws-,?1 ;i.I&*t C=1;
d3Y(SPO M1=120, % integer for amplitude
sZ]'DH&_( M3=5000; % integer for length of coupler
^p$1D N = 512; % Number of Fourier modes (Time domain sampling points)
'!Hhd![\=| dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
7AI3|Ts]p T =40; % length of time:T*T0.
``+c`F?5 dt = T/N; % time step
\{[D|_
n = [-N/2:1:N/2-1]'; % Index
#fwzFS \XL t = n.*dt;
~B<97x(X ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
y!SF/i?Py w=2*pi*n./T;
kxygf9I!; g1=-i*ww./2;
LE8K)i g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
nDyvX1] g3=-i*ww./2;
I<c@uXXV;! P1=0;
;&If9O1 P2=0;
('T4Db P3=1;
l8er$8S} P=0;
(L`l+t1 for m1=1:M1
MJ1W*'9</W p=0.032*m1; %input amplitude
5LO4P>fq s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
^CfM|L8> s1=s10;
mr@_%U s20=0.*s10; %input in waveguide 2
5woIGO3X s30=0.*s10; %input in waveguide 3
-Uzc"Lx B s2=s20;
F='Xj@&O s3=s30;
B{;11u p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
wDB)&b %energy in waveguide 1
NR;q`Xe- p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
9cVn>Fb %energy in waveguide 2
4\&H?:c. p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
!O~},pp %energy in waveguide 3
l{nB.m2 for m3 = 1:1:M3 % Start space evolution
}Vs~RJM)} s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
=t@:F s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
'&RZ3@}+ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
Dm>T"4B`/ sca1 = fftshift(fft(s1)); % Take Fourier transform
n"XdHW0 sca2 = fftshift(fft(s2));
se~ *<5 sca3 = fftshift(fft(s3));
9+]ZH.(YE sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
:[A?A4l sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
NdM}xh sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
enPzy:C s3 = ifft(fftshift(sc3));
T^KCB\\< s2 = ifft(fftshift(sc2)); % Return to physical space
1f+*Tmc5]Q s1 = ifft(fftshift(sc1));
eA~J4k_ end
bq c;.4$ p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
&W&7bZ$; p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
yfPCGCOW? p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
bk/.<Rt P1=[P1 p1/p10];
[P.@1mV P2=[P2 p2/p10];
C*"Rd P3=[P3 p3/p10];
vs5
D:cZ} P=[P p*p];
`Mo~EHso. end
EZ:I$X figure(1)
&i4
(s%z# plot(P,P1, P,P2, P,P3);
6&g!ZE'G k\4g|Lya 转自:
http://blog.163.com/opto_wang/