切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8880阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 [|oOP$u  
    *d,Z ?S/  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ?H(']3X5@  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ?89 _2W  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2vX!j!_  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 iig@$ i#  
    rn%q*_3-o  
    %fid=fopen('e21.dat','w'); OmC F8:\/  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) tJZ3P@ L  
    M1 =3000;              % Total number of space steps 'jd fUB  
    J =100;                % Steps between output of space 7& G#&d  
    T =10;                  % length of time windows:T*T0 1A;f[Rze  
    T0=0.1;                 % input pulse width C!S( !Z,  
    MN1=0;                 % initial value for the space output location 5vqh09-FB  
    dt = T/N;                      % time step Q%^!j_#  
    n = [-N/2:1:N/2-1]';           % Index =9cN{&qf  
    t = n.*dt;   {,zn#hU.R  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ~ZZJ/Cu  
    u20=u10.*0.0;                  % input to waveguide 2 )w&k&TY4H  
    u1=u10; u2=u20;                 YV/JZc f  
    U1 = u1;   X,i^OM_  
    U2 = u2;                       % Compute initial condition; save it in U xC.Tipn>  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. f|-%.,  
    w=2*pi*n./T; ZH8Oidj`  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T xBK is\b  
    L=4;                           % length of evoluation to compare with S. Trillo's paper kJG0X%+w  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 s2iL5N|"Q  
    for m1 = 1:1:M1                                    % Start space evolution 8d*W7>rq  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Dro2R_j{  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; =@0/.oSD  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 2]f?c%)I  
       ca2 = fftshift(fft(u2)); zkmfu~_)  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation a;[=b p  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   xE%sPWbj  
       u2 = ifft(fftshift(c2));                        % Return to physical space /U =eB?>  
       u1 = ifft(fftshift(c1)); FW--|X]8   
    if rem(m1,J) == 0                                 % Save output every J steps. #a=~a=c(^  
        U1 = [U1 u1];                                  % put solutions in U array  N2Q%/}+,  
        U2=[U2 u2]; f%5 s8)  
        MN1=[MN1 m1]; ^h\Y.  
        z1=dz*MN1';                                    % output location ':LV"c4 t  
      end ;$$.L bb8  
    end X*Cvh|  
    hg=abs(U1').*abs(U1');                             % for data write to excel -/ h'uG  
    ha=[z1 hg];                                        % for data write to excel 'r_NA!R  
    t1=[0 t']; !Au9C   
    hh=[t1' ha'];                                      % for data write to excel file mnS F=l;;  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format |\_d^U &`  
    figure(1) bf1EMai"  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn >pq= .)X}  
    figure(2) U CF'%R  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn mj9r#v3.  
    i*-L_!cc:  
    非线性超快脉冲耦合的数值方法的Matlab程序 }Gg:y?  
    K~ShV  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   F9 q9BH  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 La#otuw+?  
    1feS/l$  
    ?wQaM3 |^:  
    WyD L ah^/  
    %  This Matlab script file solves the nonlinear Schrodinger equations UpIt"+d2&  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 6Om)e=gU/  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 8KhE`C9z  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 wc.T;(  
    :Mq-4U.e  
    C=1;                           ppu WcGo  
    M1=120,                       % integer for amplitude A,'JmF$d  
    M3=5000;                      % integer for length of coupler qe"t0w|U?  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) fKN&0N |^R  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. `(@}O?w!1  
    T =40;                        % length of time:T*T0. ?*h 2:a$  
    dt = T/N;                     % time step ?YTngIa  
    n = [-N/2:1:N/2-1]';          % Index \6z_ ;  
    t = n.*dt;   6I`Lszs  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. G(6MLh1  
    w=2*pi*n./T; a= *qsgPGL  
    g1=-i*ww./2; "U DV4<|^k  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; mz kv/  
    g3=-i*ww./2; , e6}p  
    P1=0; N 2\lBi  
    P2=0; sq~9 l|F  
    P3=1; O)E8'Oe"Q  
    P=0; D3BT>zTGK  
    for m1=1:M1                 )lsR8Hi8  
    p=0.032*m1;                %input amplitude X|iWnz+^  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 1ehl=WN  
    s1=s10; |JD"iP:  
    s20=0.*s10;                %input in waveguide 2 G$)f5_]7{  
    s30=0.*s10;                %input in waveguide 3 6*]g~)7`Q~  
    s2=s20; sWc_,[b  
    s3=s30; F}Kkhs {  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   sKK*{+,kh;  
    %energy in waveguide 1 _R 6+bB$  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   fI([vI  
    %energy in waveguide 2 wxx3']:  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   2a 3RRP  
    %energy in waveguide 3 f,_EPh>  
    for m3 = 1:1:M3                                    % Start space evolution Z:2a_A tm  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 6pCQP c*A  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ~Os1ir.  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Arzyq_ Yk  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ~dFdO7  
       sca2 = fftshift(fft(s2)); {hmC=j  
       sca3 = fftshift(fft(s3)); h/a|-V}m&  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   --}5%6  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); )=vQrMyB  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); X?8EPCk  
       s3 = ifft(fftshift(sc3)); S);SfNh%CL  
       s2 = ifft(fftshift(sc2));                       % Return to physical space yD-L:)@"  
       s1 = ifft(fftshift(sc1)); F^/1 u  
    end %gb4(~E+N  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); sOY+ X  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); v3ky;~ke  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ..5rW0lr  
       P1=[P1 p1/p10]; &Is}<Ew  
       P2=[P2 p2/p10]; >&z=ktB  
       P3=[P3 p3/p10]; 4N- T=Ig  
       P=[P p*p]; :47bf<w|Y  
    end PqJB&:ZV  
    figure(1) (5Z*m<]c  
    plot(P,P1, P,P2, P,P3); @g{FNXY$m  
    |v6kZ0B<  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~