切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8974阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 l"7#(a  
    'Z]wh.]T  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ?\kuP ?\  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of K {  FZ/  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear NwxDxIIH/)  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 i5=~tS  
    {VXucGI|  
    %fid=fopen('e21.dat','w'); &F:.OVzX  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) [k0/ZfFwV  
    M1 =3000;              % Total number of space steps LJom+PxF$x  
    J =100;                % Steps between output of space -:kIIK   
    T =10;                  % length of time windows:T*T0 , 6Jw   
    T0=0.1;                 % input pulse width 4U16'd  
    MN1=0;                 % initial value for the space output location jSSEfy>^  
    dt = T/N;                      % time step MMUlA$*t  
    n = [-N/2:1:N/2-1]';           % Index 5^R?+<rd  
    t = n.*dt;   ef)zf+o  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 a6Joa&`dv  
    u20=u10.*0.0;                  % input to waveguide 2 t-5 Y,}j  
    u1=u10; u2=u20;                 ~L>86/hP,N  
    U1 = u1;   !Qf*d;wxn(  
    U2 = u2;                       % Compute initial condition; save it in U =6+99<G|%M  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 4UUbX  
    w=2*pi*n./T; y=.bn!u}z  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T AW E ab  
    L=4;                           % length of evoluation to compare with S. Trillo's paper $7ix(WL<%  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 }'faf{W  
    for m1 = 1:1:M1                                    % Start space evolution nt+OaXe5D  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS i(OeE"YA  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; oam;hmw  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform qGX#(,E9;  
       ca2 = fftshift(fft(u2)); ZzjCS2U  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 4 R(m$!E!  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   |2%|=   
       u2 = ifft(fftshift(c2));                        % Return to physical space q3#+G:nh  
       u1 = ifft(fftshift(c1)); &r~s3S{pQ  
    if rem(m1,J) == 0                                 % Save output every J steps. RKE"}|i +S  
        U1 = [U1 u1];                                  % put solutions in U array x(xi%?G  
        U2=[U2 u2]; X:I2wJDs\  
        MN1=[MN1 m1]; PEm2w#X%L  
        z1=dz*MN1';                                    % output location .Zj`_5C  
      end GmaNi  
    end _Gf-s51s  
    hg=abs(U1').*abs(U1');                             % for data write to excel p:K%-^  
    ha=[z1 hg];                                        % for data write to excel y4LUC;[n  
    t1=[0 t']; 1_#;+S  
    hh=[t1' ha'];                                      % for data write to excel file q5L^>"  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format f$6N  
    figure(1) cJv/)hRaz  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn P tLWFO  
    figure(2) d6 ef)mw  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn \@WVeFr  
    (ie%zrhS  
    非线性超快脉冲耦合的数值方法的Matlab程序 biU_ImJ>0  
    ^=n7E  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Nh_\{ &r  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 fK+ 5   
    =JgR c7  
    [U8/nT  
    *i^$xjOa  
    %  This Matlab script file solves the nonlinear Schrodinger equations M?UUT8,  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of U1X"UN)  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Kx&" 9g$  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |bnYHP$!  
    y.J>}[\&x  
    C=1;                           GCq4{_B\Q  
    M1=120,                       % integer for amplitude X-_VuM_p  
    M3=5000;                      % integer for length of coupler VQ| {Q}  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) pCrm `hy(  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. *jbPy?%oY  
    T =40;                        % length of time:T*T0. :;yrYAyT3  
    dt = T/N;                     % time step o2U5irU  
    n = [-N/2:1:N/2-1]';          % Index )LIn1o_,  
    t = n.*dt;   7/51_=%kR  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 77yYdil^W+  
    w=2*pi*n./T; .ex;4( -!  
    g1=-i*ww./2; =g! Pw]  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ThgJ '  
    g3=-i*ww./2; N+B!AK0.  
    P1=0; |[Fb&x  
    P2=0; S-88m/"]s  
    P3=1; Qd kus 214  
    P=0; -5+Yz9pv[  
    for m1=1:M1                 }Le]qoW['  
    p=0.032*m1;                %input amplitude 7~XA92  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 )Yy5u'}  
    s1=s10; 2#R$-* ;#  
    s20=0.*s10;                %input in waveguide 2 6>rz=yAM_  
    s30=0.*s10;                %input in waveguide 3 n}IGxum8`  
    s2=s20; 8|=C/k  
    s3=s30; 4n6AK`E  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ,++HiYOG}e  
    %energy in waveguide 1 t^"8M6BqC;  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   4RB%r  
    %energy in waveguide 2 ]"uG04"Vk  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   qi7C.w;  
    %energy in waveguide 3 jaodcT0  
    for m3 = 1:1:M3                                    % Start space evolution v0oVbHO5<  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS } SW p~3P  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; IiqqdU]  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 5%WAnh  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform l3>e-kP  
       sca2 = fftshift(fft(s2)); x4c|/}\)*  
       sca3 = fftshift(fft(s3)); 2SC-c `9)  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   UTKyPCfj  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); $M,<=.oT  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); I <D7 Jj  
       s3 = ifft(fftshift(sc3)); 03v+eT  
       s2 = ifft(fftshift(sc2));                       % Return to physical space m\XsU?SuX  
       s1 = ifft(fftshift(sc1)); 6`Tx meIP  
    end cYK:Y!|`F  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); L<@*6QH  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); xw}yl4WT{  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 0 a{hCx|$J  
       P1=[P1 p1/p10]; iSezrN  
       P2=[P2 p2/p10]; 2} pZyS  
       P3=[P3 p3/p10]; U'ctO%  
       P=[P p*p]; vRC >=y*=  
    end _MTZuhY  
    figure(1) B._YT   
    plot(P,P1, P,P2, P,P3); [(x*!,=  
    UzaAL9k  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~