切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8981阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Skz|*n|eY  
    <9sO  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of \cLSf=  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ?EX"k+G  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear X w.p  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ``A 0WN  
    Z#.f&K )xX  
    %fid=fopen('e21.dat','w'); Jdy=_88MD  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) |7KeR-  
    M1 =3000;              % Total number of space steps *H[Iq!@  
    J =100;                % Steps between output of space QKE9R-K TE  
    T =10;                  % length of time windows:T*T0 R<x'l=,D(  
    T0=0.1;                 % input pulse width -TZ p FT"  
    MN1=0;                 % initial value for the space output location 2Dd|~{%  
    dt = T/N;                      % time step *UW=Mdt  
    n = [-N/2:1:N/2-1]';           % Index Ix|~f1*%  
    t = n.*dt;   8J)xzp`*)  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 }oJAB1'k  
    u20=u10.*0.0;                  % input to waveguide 2 s`Cy a`  
    u1=u10; u2=u20;                 L^^4=ao0  
    U1 = u1;   it2 a  
    U2 = u2;                       % Compute initial condition; save it in U J1XL<7  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Eq:2k)BE  
    w=2*pi*n./T; G4 G5PXi  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T @t1V o}c  
    L=4;                           % length of evoluation to compare with S. Trillo's paper `Bn=?9  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 s s 3t  
    for m1 = 1:1:M1                                    % Start space evolution Qo =Kqv  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS $W;b{H=F  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; I\ | N  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform W9oAjO NE  
       ca2 = fftshift(fft(u2)); +u'I0>)S  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation A>VX*xd  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   p h[\)  
       u2 = ifft(fftshift(c2));                        % Return to physical space MlW 8t[  
       u1 = ifft(fftshift(c1)); KS*oxZ  
    if rem(m1,J) == 0                                 % Save output every J steps. oR p:B &  
        U1 = [U1 u1];                                  % put solutions in U array U1_&gy @y  
        U2=[U2 u2]; N -w(e  
        MN1=[MN1 m1]; 3/JyUh?  
        z1=dz*MN1';                                    % output location [\R>Xcu>  
      end %PJhy2  
    end f f7(  
    hg=abs(U1').*abs(U1');                             % for data write to excel [Vdz^_@Y  
    ha=[z1 hg];                                        % for data write to excel oVCmI"'  
    t1=[0 t']; *V(Fn-6(  
    hh=[t1' ha'];                                      % for data write to excel file (Vg}Hh?p  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format (cv!Y=]  
    figure(1) 6D;^uM2N  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn s=Q(C[%I  
    figure(2) CVXytS?@x  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn _y .]3JNm  
    nW?R"@Zm  
    非线性超快脉冲耦合的数值方法的Matlab程序 ]IJv-(  
    G%u9+XV1#  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   c-j_INGm  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +rWZ|&r%  
    +CM7C%U   
    PNSMcakD  
    >6Lm9&}  
    %  This Matlab script file solves the nonlinear Schrodinger equations # fhEc;t  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of %~*jae!f  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 1px\K8  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 b]gY~cbI8  
    uHNpfKnZ  
    C=1;                           jw6Tj;c  
    M1=120,                       % integer for amplitude zGc(Ef5`M6  
    M3=5000;                      % integer for length of coupler Hoz56y  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 0=v{RQ;W4  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. TJ6#P<M  
    T =40;                        % length of time:T*T0. ;+pOP |P=  
    dt = T/N;                     % time step M,:Bl}  
    n = [-N/2:1:N/2-1]';          % Index u~Tg&0V30  
    t = n.*dt;   [;O^[Iybf:  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ZEbLL4n  
    w=2*pi*n./T; `0#H]=$2h  
    g1=-i*ww./2; Ul Mi.;/^  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 3}&ZOO   
    g3=-i*ww./2; &~5=K  
    P1=0; 8(X0 :  
    P2=0; >{Rb 3Z]  
    P3=1; +yt6(7V*  
    P=0; yZ}d+7T}  
    for m1=1:M1                 <M[U#Q~?~e  
    p=0.032*m1;                %input amplitude Uz8hANN0_  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Tvf~P w  
    s1=s10; ;)!"Ty|  
    s20=0.*s10;                %input in waveguide 2 FuP/tTMU1a  
    s30=0.*s10;                %input in waveguide 3 Zzd/K^gg  
    s2=s20; aw}+'(?8]  
    s3=s30; kRIB<@{  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   #\If]w*j  
    %energy in waveguide 1 :h";c"  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   zREJ#r  
    %energy in waveguide 2 9EF~l9`'U  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   rPq<Xb\  
    %energy in waveguide 3 g{pQ4jKF  
    for m3 = 1:1:M3                                    % Start space evolution r>qA $zD^  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ipKG!  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; #GqTqHNE<  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; JE%A|R<Jl  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform |LYKc.xo  
       sca2 = fftshift(fft(s2)); wFlV=!>,  
       sca3 = fftshift(fft(s3)); P0\eB S  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   DacJ,in_I{  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); xNdIDj@  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ,9/5T:2  
       s3 = ifft(fftshift(sc3)); Q2~5"  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ?=|kC*$/G  
       s1 = ifft(fftshift(sc1)); <lFY7' aY  
    end dhR(_  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); f?0s &Xo  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); O<,r>b,  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ~y\:iL//E  
       P1=[P1 p1/p10]; -2NwF4VL  
       P2=[P2 p2/p10]; LR$z0rDEM  
       P3=[P3 p3/p10]; t;Wotfc[#0  
       P=[P p*p]; - 0~IY  
    end ;A^K_w'  
    figure(1) :Z2tig nL  
    plot(P,P1, P,P2, P,P3); By)3*<5a_  
    !7` [i  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~