切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8668阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 B9_0 Yq  
    YJ5;a\QxN  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of o^Y'e+T"  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of mP)<;gm,  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear $Q:5KNF+p  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^/Hj^4~_U  
    .~5cNu'#m  
    %fid=fopen('e21.dat','w'); e;=G|E  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Hc@Z7eQ3^  
    M1 =3000;              % Total number of space steps (WW,]#^  
    J =100;                % Steps between output of space t3/!esay  
    T =10;                  % length of time windows:T*T0 w?AE8n$8  
    T0=0.1;                 % input pulse width Oh:SH|=]#  
    MN1=0;                 % initial value for the space output location >NE]TZ.F  
    dt = T/N;                      % time step 'Ph4(Yg  
    n = [-N/2:1:N/2-1]';           % Index iR#jBqXD  
    t = n.*dt;   Y5 4*mn  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 )^!-Aj\x  
    u20=u10.*0.0;                  % input to waveguide 2 =*'X  
    u1=u10; u2=u20;                 0zpP$q$  
    U1 = u1;   }}qR~.[  
    U2 = u2;                       % Compute initial condition; save it in U `bZ_=UAb  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. _<.R\rX&  
    w=2*pi*n./T; sI`i  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T |y%pP/;&!  
    L=4;                           % length of evoluation to compare with S. Trillo's paper zck)D^,aO  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 :;" 3k64  
    for m1 = 1:1:M1                                    % Start space evolution !00%z  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS wH#k~`M  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 'q*1HNwGp  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform NUL~zb  
       ca2 = fftshift(fft(u2)); j )F~C8*  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation oRu S_X  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   c2"eq2'BS  
       u2 = ifft(fftshift(c2));                        % Return to physical space ]-.Q9cjc$q  
       u1 = ifft(fftshift(c1)); zMrZ[AU  
    if rem(m1,J) == 0                                 % Save output every J steps. 33Mr9Doon  
        U1 = [U1 u1];                                  % put solutions in U array 3F}d,aB A  
        U2=[U2 u2]; JsPuxu_  
        MN1=[MN1 m1]; {/7'uD\ H  
        z1=dz*MN1';                                    % output location .^kTb2$X  
      end uR"]w7=  
    end Q)a*bPz  
    hg=abs(U1').*abs(U1');                             % for data write to excel <{-DYRiN  
    ha=[z1 hg];                                        % for data write to excel 5o~Z>  
    t1=[0 t']; vJq`l3&  
    hh=[t1' ha'];                                      % for data write to excel file "Pys3=h  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format m@c2'*&Y  
    figure(1) `Ze fSmb  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn y6j TT%  
    figure(2) 9J]LV'f7  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn h}`<pq  
    xD lC]loi7  
    非线性超快脉冲耦合的数值方法的Matlab程序 Nq~bO_-I  
    &(.ZHF  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   eB]ZnJ2^=  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 mU&J,C  
    rWvJ{-%  
    A`r&"i OKA  
    f:utw T  
    %  This Matlab script file solves the nonlinear Schrodinger equations (~#PzE :  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of "{0kg'fU  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 9Pb0Olh  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 q5RLIstQ\  
    R\+$^G}#6  
    C=1;                           cA Lu  
    M1=120,                       % integer for amplitude xjX5PQu  
    M3=5000;                      % integer for length of coupler 5g&'n  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Aio0++ r-  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. L]tyL)  
    T =40;                        % length of time:T*T0. uuC/F_='B  
    dt = T/N;                     % time step $Y4 Ao-@  
    n = [-N/2:1:N/2-1]';          % Index [wOO)FjT  
    t = n.*dt;   ?QMs<  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. l;;:3:  
    w=2*pi*n./T; &`%C'KZ  
    g1=-i*ww./2; =Tj0dfO|"  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; -J6}7>4^8}  
    g3=-i*ww./2; 4v?S` w:6  
    P1=0; eX$Biv1N  
    P2=0; F% |(pHk  
    P3=1; 7:;V[/  
    P=0; O ,;SA  
    for m1=1:M1                 Cv=0&S.  
    p=0.032*m1;                %input amplitude qj/P4*6E  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 :dj@i6  
    s1=s10; #QB`'2)vw  
    s20=0.*s10;                %input in waveguide 2 }Ag2c; aaq  
    s30=0.*s10;                %input in waveguide 3 p*'?(o:=  
    s2=s20; w7W-=\Hvh  
    s3=s30; 9!OpW:bR|  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   WgL! @g  
    %energy in waveguide 1 :H87x?e[  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   5u!cA4e"  
    %energy in waveguide 2 5u8Sxfm",  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Yk5kC 0B  
    %energy in waveguide 3 XU54skN  
    for m3 = 1:1:M3                                    % Start space evolution R3<+z  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS $pKS['J0  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; !`WuLhB`  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; f0uiNy(r$  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform (+@.L7>m+t  
       sca2 = fftshift(fft(s2)); &d2/F i+  
       sca3 = fftshift(fft(s3)); Psv!`K  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   "&ks8 3  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); E0|aI4S4  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); BCj&z{5"7e  
       s3 = ifft(fftshift(sc3)); (1o^Dn3  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ;Cy@TzO/|  
       s1 = ifft(fftshift(sc1)); Mc6y'w  
    end jL8zH  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 4j*}|@x  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); I5~DC  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Q&J,"Vxw  
       P1=[P1 p1/p10]; y/ FisX  
       P2=[P2 p2/p10]; s6$3[9Vh&9  
       P3=[P3 p3/p10]; `#]\Wnp~y  
       P=[P p*p]; Vh<`MS0X  
    end s5pY)6)  
    figure(1) ymzm x$o=  
    plot(P,P1, P,P2, P,P3); :U 9R 1^}A  
    |); >wV"  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~