切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 7934阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 w~ Tg?RH:  
    t G_4>-Y#w  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of f$I=o N  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 'a#lBzu\b  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear zPt<b!q  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 YT(N][V  
    h"FI]jK|}  
    %fid=fopen('e21.dat','w'); VD=H=Ju  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) br I;}m  
    M1 =3000;              % Total number of space steps *X0>Ru[  
    J =100;                % Steps between output of space 3H2~?CaJ  
    T =10;                  % length of time windows:T*T0 "O34 E?ql.  
    T0=0.1;                 % input pulse width !XPjRdq  
    MN1=0;                 % initial value for the space output location M2Q,&>M   
    dt = T/N;                      % time step HP# SR';E  
    n = [-N/2:1:N/2-1]';           % Index Af3|l  
    t = n.*dt;   @*z"Hi>4  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 $*q|}Tvl#  
    u20=u10.*0.0;                  % input to waveguide 2 Tmzbh 9  
    u1=u10; u2=u20;                 ]?^V xB7L  
    U1 = u1;   <)7aNW.  
    U2 = u2;                       % Compute initial condition; save it in U JR!-1tnc  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. =%<=Bn  
    w=2*pi*n./T; U5Hi9fe  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T "*d6E}wG  
    L=4;                           % length of evoluation to compare with S. Trillo's paper <KMCNCU\+  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 *5)UIRd  
    for m1 = 1:1:M1                                    % Start space evolution VN`.*B|9[  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 3FBLCD3  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 'Lu<2=a~  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform EI_-5TtRD  
       ca2 = fftshift(fft(u2)); Oeh A3$|#  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation PaCC UF  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   hRf l\Q[  
       u2 = ifft(fftshift(c2));                        % Return to physical space 8t!jo.g  
       u1 = ifft(fftshift(c1)); ^/C\:hw  
    if rem(m1,J) == 0                                 % Save output every J steps. OZ&/&?!XE  
        U1 = [U1 u1];                                  % put solutions in U array yqN`R\d  
        U2=[U2 u2]; =B}IsBn'J  
        MN1=[MN1 m1]; gFR}WBl/  
        z1=dz*MN1';                                    % output location pGs?Y81  
      end ciS +.%7  
    end ~F"S]  
    hg=abs(U1').*abs(U1');                             % for data write to excel M9iX_4  
    ha=[z1 hg];                                        % for data write to excel H^d?(Svh  
    t1=[0 t']; /.]u%;%r[  
    hh=[t1' ha'];                                      % for data write to excel file E;Z(v  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format +ktv : d  
    figure(1) 6KddHyFz  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn D ,kxB~  
    figure(2) u W]gBhO$O  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn qPDNDkjDD  
    N@d~gE&^  
    非线性超快脉冲耦合的数值方法的Matlab程序 5wue2/gl  
    aC1z.?!U  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   p%DU1+SA  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 V0;"Qa@q  
    Bsa;,  
    $8\u  
    N<Sl88+U  
    %  This Matlab script file solves the nonlinear Schrodinger equations iT'doF  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of m)A:w.o  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 2 7)If E  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 S~/2Bw!2  
    yrxX[Hg?@  
    C=1;                           =Kj{wA O  
    M1=120,                       % integer for amplitude gX" -3w  
    M3=5000;                      % integer for length of coupler 2Qe&FeT  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 3Q,&D'];[  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. '8 .JnCg  
    T =40;                        % length of time:T*T0. T=PqA)Ym  
    dt = T/N;                     % time step wO]e%BTO  
    n = [-N/2:1:N/2-1]';          % Index R+HX'W  
    t = n.*dt;   kL DpZ{  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 8H7#[?F  
    w=2*pi*n./T;  \ ca<L  
    g1=-i*ww./2; ?^U?ua6  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; r D@*xMW  
    g3=-i*ww./2; %`i*SF(gV  
    P1=0; ]N 9N][n  
    P2=0; "qgwuWbM  
    P3=1; |%|03}Q  
    P=0; ,:mL\ZED  
    for m1=1:M1                 e]VW\ 6J&  
    p=0.032*m1;                %input amplitude t+v %%N_  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ==Egy:<:Q  
    s1=s10; G2|jS@L#  
    s20=0.*s10;                %input in waveguide 2 {py%-W  
    s30=0.*s10;                %input in waveguide 3 B@*b 9  
    s2=s20; N**)8(  
    s3=s30; LDQ,SS,  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   !q+ #JW  
    %energy in waveguide 1 dFBFXy  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   0`"oR3JY  
    %energy in waveguide 2 p3vf7eqn  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   PA'&]piPl:  
    %energy in waveguide 3 x'g4DYl  
    for m3 = 1:1:M3                                    % Start space evolution uH*6@aYPo  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS \-yI dKj  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; f-18nF7{  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; m""+ $  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ]EKg)E  
       sca2 = fftshift(fft(s2)); glLVT i  
       sca3 = fftshift(fft(s3)); [mzed{p]]  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   uE.BB#  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); u)<]Pb})r  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); JOuyEPy  
       s3 = ifft(fftshift(sc3)); 8?iI;(  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ah*{NR)  
       s1 = ifft(fftshift(sc1)); _^W;J/He  
    end JlYZ\  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); OjhX:{"59  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));  ,]EhDW6  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); yx Om=V  
       P1=[P1 p1/p10]; nYSe0w  
       P2=[P2 p2/p10]; =.z;:0]'n  
       P3=[P3 p3/p10]; m%6VwV7U  
       P=[P p*p]; A'#d:lOA  
    end "}v.>L<P  
    figure(1) 0Fb ];:a  
    plot(P,P1, P,P2, P,P3); Xr  <H^X  
    2VRGTx  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~