计算脉冲在非线性耦合器中演化的Matlab 程序 OW@"j;6
3` qg|ark*1u % This Matlab script file solves the coupled nonlinear Schrodinger equations of
gm=C0Sp? % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
yeBfzKI{b % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
ZS=;) % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
]6s/y ,4 q^( %fid=fopen('e21.dat','w');
hJ8%r_ N = 128; % Number of Fourier modes (Time domain sampling points)
eVB43]g M1 =3000; % Total number of space steps
F! Cn'* J =100; % Steps between output of space
T 1_B0H2 T =10; % length of time windows:T*T0
hl] y): T0=0.1; % input pulse width
oiC@ / MN1=0; % initial value for the space output location
y?A*$6 dt = T/N; % time step
+$xw0)| n = [-N/2:1:N/2-1]'; % Index
qR_Np5nHF t = n.*dt;
>n(dyU @ u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
z`I%3U5( u20=u10.*0.0; % input to waveguide 2
<|]i3_Z u1=u10; u2=u20;
b?VByJl U1 = u1;
mAY/J0_ U2 = u2; % Compute initial condition; save it in U
pGF;,h> ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
jTZi<
Y:bB w=2*pi*n./T;
g1_z=(i`Z g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
#<U@SMv L=4; % length of evoluation to compare with S. Trillo's paper
[O|c3; dz=L/M1; % space step, make sure nonlinear<0.05
*uP;rUY for m1 = 1:1:M1 % Start space evolution
fe"w--v u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
Da!vGr u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
1zw,;m n ca1 = fftshift(fft(u1)); % Take Fourier transform
0pl'*r*9 ca2 = fftshift(fft(u2));
.j"heYF) c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
/u`Opv&I c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
( ]0F3@k#s u2 = ifft(fftshift(c2)); % Return to physical space
' V*}d u1 = ifft(fftshift(c1));
w5rtYTI if rem(m1,J) == 0 % Save output every J steps.
lUp%1x+ U1 = [U1 u1]; % put solutions in U array
KK]R@{ r U2=[U2 u2];
$sZ4r>- MN1=[MN1 m1];
g
4|ai*^ z1=dz*MN1'; % output location
=|dm#w_L" end
AE`UnlUSF end
Ux{QYjFE hg=abs(U1').*abs(U1'); % for data write to excel
4>fj@X(3 ha=[z1 hg]; % for data write to excel
(~! @Uz5 t1=[0 t'];
6 b?K-)kL hh=[t1' ha']; % for data write to excel file
T+rym8.p %dlmwrite('aa',hh,'\t'); % save data in the excel format
nD>X?yz2 figure(1)
k`]76C7 waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
zlTLp-^Y figure(2)
N~or.i&a waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
20}]b*C} -*Qg^1]i+ 非线性超快脉冲耦合的数值方法的Matlab程序 'O9Yu{M VkJTcC:1 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
_ Qek|> Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
Z0D&ayzkh^ xB?!nd s?nj@:4 p]Qe5@NT % This Matlab script file solves the nonlinear Schrodinger equations
q$IU!I4 % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
NNTrH\SU# % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
SrOv*
D 3 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
JHVndK4L hp}rCy|01 C=1;
#BS!J&a M1=120, % integer for amplitude
z&um9rXR M3=5000; % integer for length of coupler
eecIF0hp N = 512; % Number of Fourier modes (Time domain sampling points)
;ByCtVm2 dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
?qn4ea-\P T =40; % length of time:T*T0.
e%{7CR'~TD dt = T/N; % time step
P9Eh,j0_ n = [-N/2:1:N/2-1]'; % Index
S"87 <o t = n.*dt;
;i+(Q%LO ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
:J )^gc w=2*pi*n./T;
t*6C?zEAU g1=-i*ww./2;
0tMzVxS g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
^{++h?cS) g3=-i*ww./2;
//Xz P1=0;
qEdY]t P2=0;
F^TOLwix P3=1;
P>x88M P=0;
KK-+vq for m1=1:M1
YxA nh p=0.032*m1; %input amplitude
P/]8+_K s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
BP4vOZ0$ s1=s10;
C)9-{Yp s20=0.*s10; %input in waveguide 2
a<+Rw{ s30=0.*s10; %input in waveguide 3
5`K'2 s2=s20;
,c;#~y s3=s30;
6G-XZko~a p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
U^-J_yq %energy in waveguide 1
@OHNz!Lj:d p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
B8upv~U6 %energy in waveguide 2
y6s/S. p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
"[Tr"nI %energy in waveguide 3
: B1
"=ly for m3 = 1:1:M3 % Start space evolution
\(5Bi3PA} s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
(m.jC}J s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
8@T0]vH& s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
F1`mq2^@ sca1 = fftshift(fft(s1)); % Take Fourier transform
=aehhs> sca2 = fftshift(fft(s2));
PM {L}tEQ sca3 = fftshift(fft(s3));
~ r$I&8 sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
qrt2uE{K sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
2fPMZ7Zd3 sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
15DlD`QV s3 = ifft(fftshift(sc3));
o
i~,}E_ s2 = ifft(fftshift(sc2)); % Return to physical space
$ WWi2cI; s1 = ifft(fftshift(sc1));
[FWB end
z:{R4#(Q p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
-**fT?n p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
?C6` p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
h 'is#X 6: P1=[P1 p1/p10];
O9p^P%U " P2=[P2 p2/p10];
H"2,Q
T P3=[P3 p3/p10];
>v%UV:7ap P=[P p*p];
EVbDI yFn end
a$6pA@7} figure(1)
/J,&G:
Er plot(P,P1, P,P2, P,P3);
m :]F&s (Pt*|@i2c 转自:
http://blog.163.com/opto_wang/