切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9024阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 UOY1^wY  
    ?-VN+ d7  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of zEGwQp<  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 07#!b~N  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear E|TzrH  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @!S$gTz  
    y5#_@  
    %fid=fopen('e21.dat','w'); A gPg0(G  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) c;e ,)$)-|  
    M1 =3000;              % Total number of space steps Z\Q7#dl  
    J =100;                % Steps between output of space I|M*yObl6  
    T =10;                  % length of time windows:T*T0 W) _B(;$]  
    T0=0.1;                 % input pulse width "gO5dZ\0  
    MN1=0;                 % initial value for the space output location ]+Vcuzq/  
    dt = T/N;                      % time step `7j,njCX.  
    n = [-N/2:1:N/2-1]';           % Index '71btd1  
    t = n.*dt;   83h3C EQ  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 $@x kKe"  
    u20=u10.*0.0;                  % input to waveguide 2 pxF!<nN1,  
    u1=u10; u2=u20;                 yx-"YV}5  
    U1 = u1;   3k/Mig T  
    U2 = u2;                       % Compute initial condition; save it in U #7>CLjI  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. !d^`YEfE  
    w=2*pi*n./T; P TP2QAt  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T >"[u.1J_'I  
    L=4;                           % length of evoluation to compare with S. Trillo's paper +~@Y#>+./l  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 7[)(;-  
    for m1 = 1:1:M1                                    % Start space evolution 9~_6mR<  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS W1s|7  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; t0q@] 0B5  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform RoTT%c P_  
       ca2 = fftshift(fft(u2)); Px8E~X<@  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation PEWzqZ|!;  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   `zL9d lZ  
       u2 = ifft(fftshift(c2));                        % Return to physical space (07d0<<[  
       u1 = ifft(fftshift(c1)); *G^]j )/  
    if rem(m1,J) == 0                                 % Save output every J steps. ^#o.WL%4/B  
        U1 = [U1 u1];                                  % put solutions in U array OrBFe *2y  
        U2=[U2 u2]; GZ={G2@=I  
        MN1=[MN1 m1]; l0_V-|x  
        z1=dz*MN1';                                    % output location j;3o9!.s:  
      end YV msWuF  
    end |2# Ro*  
    hg=abs(U1').*abs(U1');                             % for data write to excel e#('`vGB  
    ha=[z1 hg];                                        % for data write to excel v^tKT&  
    t1=[0 t']; |`nVr>QF&  
    hh=[t1' ha'];                                      % for data write to excel file D4\I;M^  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format R<=t{vTJ5  
    figure(1) [wR8q,2  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn eBB D9 SI  
    figure(2) 0TpA3K  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 2XtQ"`)  
    iCS/~[  
    非线性超快脉冲耦合的数值方法的Matlab程序 m+g>s&1H  
    =FnZkJ  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   [xPE?OD  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 f"Iyo:Wt  
    cF2/}m]  
    .tNB07=7  
    <Va>5R_d<  
    %  This Matlab script file solves the nonlinear Schrodinger equations \K6J{;#L  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of S\A[Z&k 0  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear wu')Q/v  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Z ux2VepT  
    s<b7/;w'  
    C=1;                           wLbngO=VG  
    M1=120,                       % integer for amplitude oB9m\o7$  
    M3=5000;                      % integer for length of coupler Q 1Ao65  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) X\%3uPQ  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. yH^*Fp8V  
    T =40;                        % length of time:T*T0. @Xmk Im  
    dt = T/N;                     % time step _HsvF[\[  
    n = [-N/2:1:N/2-1]';          % Index bed+Ur&  
    t = n.*dt;   '_)t R;s  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. `vw.~OBl  
    w=2*pi*n./T; V*}zwm s6  
    g1=-i*ww./2; %a `dO EO  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; w3>|mDA}I  
    g3=-i*ww./2; AHGcWS\,X  
    P1=0; iE(grI3  
    P2=0; rRYf.~UH@P  
    P3=1; V{{x~Q9  
    P=0; (#]KjpIK  
    for m1=1:M1                 pZxL?N!  
    p=0.032*m1;                %input amplitude $ *A3p  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 d}_c (  
    s1=s10; @_3$(*n$~  
    s20=0.*s10;                %input in waveguide 2 lQ"i]};<D  
    s30=0.*s10;                %input in waveguide 3 DlI5} Jh  
    s2=s20; ?W_U{=anl  
    s3=s30; 7g9^Jn  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   RZA\-?cO)  
    %energy in waveguide 1 `@7tWX0  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   'Aj>+H<B  
    %energy in waveguide 2 |T*qAJ8c  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   <J-Z;r(gQN  
    %energy in waveguide 3 ISew]R2  
    for m3 = 1:1:M3                                    % Start space evolution `x)bw  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS  HU9y{H  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 6l'y  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; UI C? S  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 8 -A7  
       sca2 = fftshift(fft(s2)); $:!T/*p*  
       sca3 = fftshift(fft(s3)); bl_WN|SQ  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   zi .,?Q  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); \DK*> k  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ()?co<@(l  
       s3 = ifft(fftshift(sc3)); Xkom@F~]  
       s2 = ifft(fftshift(sc2));                       % Return to physical space `g N68:B  
       s1 = ifft(fftshift(sc1)); 3:lp"C51  
    end nD\os[ 3  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); u^%')Ncp  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ]bb}[#AY  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 3ohcHQ/a  
       P1=[P1 p1/p10]; yuEOQ\!(u  
       P2=[P2 p2/p10]; +Q31K7Gr  
       P3=[P3 p3/p10]; J5_Y\@  
       P=[P p*p]; F  t/ x 5  
    end "B3:m-'  
    figure(1) Wy*7jB  
    plot(P,P1, P,P2, P,P3); :<k|u!b}y  
    % T\N@  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~