切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8937阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 P;>!wU~*  
    /t5g"n3  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of xpz`))w  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of _rG-#BKW8L  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear P 4H*jy@?  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 fGG 9zB6  
    sB8p( L  
    %fid=fopen('e21.dat','w'); n }TTq6B  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Bd QQ9$@5  
    M1 =3000;              % Total number of space steps eA10xpM0  
    J =100;                % Steps between output of space [e1\A&T  
    T =10;                  % length of time windows:T*T0 pj j}K  
    T0=0.1;                 % input pulse width ym[+Rw  
    MN1=0;                 % initial value for the space output location O2$!'!hz  
    dt = T/N;                      % time step [(!Q-8  
    n = [-N/2:1:N/2-1]';           % Index (+@faP   
    t = n.*dt;   ItMl4P`|  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 R:BBF9sK?  
    u20=u10.*0.0;                  % input to waveguide 2 EJv!tyJ\[  
    u1=u10; u2=u20;                 d{?)q  
    U1 = u1;   0:HC;J  
    U2 = u2;                       % Compute initial condition; save it in U ;g6 nHek  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Hc>([?P%t  
    w=2*pi*n./T; E=A/4p6\$  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T +<H !3sW  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Mi<*6j0  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 KqFmFcf|  
    for m1 = 1:1:M1                                    % Start space evolution @f-0X1C."N  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS /Ql6]8.P  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Qz'O{f  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform  h=:*7>}  
       ca2 = fftshift(fft(u2)); <.: 5Vx(Aw  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 9'D8[p%  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ozT._ C  
       u2 = ifft(fftshift(c2));                        % Return to physical space XL=2wh  
       u1 = ifft(fftshift(c1)); hcj{%^p  
    if rem(m1,J) == 0                                 % Save output every J steps. twAw01".  
        U1 = [U1 u1];                                  % put solutions in U array  n})  
        U2=[U2 u2]; CzK%x?~]  
        MN1=[MN1 m1]; ?exALv'B  
        z1=dz*MN1';                                    % output location * .oi3m  
      end Lqg7D\7j  
    end x/pC%25  
    hg=abs(U1').*abs(U1');                             % for data write to excel VOD1xWrb  
    ha=[z1 hg];                                        % for data write to excel 9Y;}JVS  
    t1=[0 t']; Uy:@,DW  
    hh=[t1' ha'];                                      % for data write to excel file no eb f  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ^.nwc#  
    figure(1) h\Z3yAYd  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn =#7s+d-  
    figure(2) JiG8jB7%}  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn BASO$?jf4  
    M|5^':Y  
    非线性超快脉冲耦合的数值方法的Matlab程序 "#[o?_GaJ  
    4X<Oux*  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   4KN0i  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 AEBw#v!,o  
    h;&&@5@lM  
    hj%}GP{{  
    bfcD5:q  
    %  This Matlab script file solves the nonlinear Schrodinger equations h}Fu"zK  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of J+-,^8)  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear A{xSbbDk  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Rt*-#`I $  
    :/n ?4K^  
    C=1;                           LX&=uv%-^  
    M1=120,                       % integer for amplitude qg/Y;tGSx  
    M3=5000;                      % integer for length of coupler gEX:S(1 QP  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 8Xt=eL/P  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. W+fkWq7`Xx  
    T =40;                        % length of time:T*T0. }s8*QfK>  
    dt = T/N;                     % time step Z3&XTsq  
    n = [-N/2:1:N/2-1]';          % Index M)bC%(xJ  
    t = n.*dt;   ',v0vyO8  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 3/]f4D{MMY  
    w=2*pi*n./T; X7(rg W8  
    g1=-i*ww./2; So3,Z'z=  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; F 5b]/;|  
    g3=-i*ww./2; ^v()iF !  
    P1=0; aC $h_  
    P2=0; bYRQI=gW':  
    P3=1; 4c493QOd  
    P=0; 67EDkknt  
    for m1=1:M1                 *R1d4|/G  
    p=0.032*m1;                %input amplitude nJnO/~|  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ^^U)WB  
    s1=s10; pJ<)intcbE  
    s20=0.*s10;                %input in waveguide 2 qCv}+d)  
    s30=0.*s10;                %input in waveguide 3 zXA= se0U  
    s2=s20; 2l;ge>D J  
    s3=s30; QZeb+r  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   IWSEssP  
    %energy in waveguide 1 &AkzSgP  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   vErbX3RY2  
    %energy in waveguide 2 _ ;v _L  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   -F~9f>  
    %energy in waveguide 3 mAtG&my)  
    for m3 = 1:1:M3                                    % Start space evolution 0.3[=a4 3  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS "@):*3 4  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 60SenHKles  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; )xXrs^  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform G+%5V5GS  
       sca2 = fftshift(fft(s2)); jw&}N6^G  
       sca3 = fftshift(fft(s3)); }sm56}_  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   tF)k6*+  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); uvAy#,  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); dh7)N}2  
       s3 = ifft(fftshift(sc3)); n Y.Umj  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 3vEjf  
       s1 = ifft(fftshift(sc1)); 5}(YMsUb  
    end iKCTYXN1(  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ff2.| 20  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); omDi<-  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 0L 4]z'5  
       P1=[P1 p1/p10]; ^~hhdwu3a  
       P2=[P2 p2/p10]; x#!{5;V&K  
       P3=[P3 p3/p10]; 7~k~S>sO  
       P=[P p*p]; 7xa@wa?!L  
    end %d~9at6-B  
    figure(1) *~MiL9m+?  
    plot(P,P1, P,P2, P,P3); A/W7 ;D  
    2v; 7ohK  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~