计算脉冲在非线性耦合器中演化的Matlab 程序 +jYO?uaT J"QXu M % This Matlab script file solves the coupled nonlinear Schrodinger equations of
} Uki)3( % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
/Y5I0Ko Uw % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
'EU{%\qM % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
c_c]0Tm 5,`U3na, %fid=fopen('e21.dat','w');
wVkms N = 128; % Number of Fourier modes (Time domain sampling points)
K y~
9's M1 =3000; % Total number of space steps
W"S,~y J =100; % Steps between output of space
)~xL_yW_X T =10; % length of time windows:T*T0
H|;6K`O_ T0=0.1; % input pulse width
JbpKstc; MN1=0; % initial value for the space output location
6g4CUP'Y dt = T/N; % time step
4r#O._Z n = [-N/2:1:N/2-1]'; % Index
6la# 0U23 t = n.*dt;
u\=gps/Z u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
_d6mf4M]5 u20=u10.*0.0; % input to waveguide 2
loN!&YceW u1=u10; u2=u20;
='u'/g$'& U1 = u1;
f gI.q U2 = u2; % Compute initial condition; save it in U
iz]Vb{5n% ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
v'i"Q w=2*pi*n./T;
Hn)K;?H4 g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
d,[.=Jqv[ L=4; % length of evoluation to compare with S. Trillo's paper
sj a;NL dz=L/M1; % space step, make sure nonlinear<0.05
lnL&v'{ for m1 = 1:1:M1 % Start space evolution
RrKAgw u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
GjZ@fnF u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
mNN,}nHu ca1 = fftshift(fft(u1)); % Take Fourier transform
#3u3WTk+ ca2 = fftshift(fft(u2));
G~_5E]8 c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
@_^QBw0 c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
~-x8@ / u2 = ifft(fftshift(c2)); % Return to physical space
UXD?gK1 u1 = ifft(fftshift(c1));
Nge_ Ks if rem(m1,J) == 0 % Save output every J steps.
Gir_.yc/ U1 = [U1 u1]; % put solutions in U array
>0)E\_ u U2=[U2 u2];
+*,rOK`C MN1=[MN1 m1];
!+& NG&1 z1=dz*MN1'; % output location
idnn%iO end
H^xrFXg~z end
vW]Frb hg=abs(U1').*abs(U1'); % for data write to excel
G&:[G>iSm^ ha=[z1 hg]; % for data write to excel
SdC505m0* t1=[0 t'];
N%;Q[*d@/ hh=[t1' ha']; % for data write to excel file
GbUcNROr %dlmwrite('aa',hh,'\t'); % save data in the excel format
Q_QmyD~m figure(1)
]Vhhx`0 waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
T[a1S ?_*T figure(2)
6nt$o)[ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
8(ny^]v| RK(uC-l 非线性超快脉冲耦合的数值方法的Matlab程序 7p3 ;b"' AKx\U?ei7 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
}D
dg Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
;hF >iw s=#IoNh @dX0gHU[c asP>(Li % This Matlab script file solves the nonlinear Schrodinger equations
Uo(\1&? % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
Rg)\o(J % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
g*t.g@B<2 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
+A
W6 >yV` ^T'+dGU` C=1;
FMY
r6/I M1=120, % integer for amplitude
As@~%0 S M3=5000; % integer for length of coupler
X^% I 3 N = 512; % Number of Fourier modes (Time domain sampling points)
]]o7ej dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
1w+OnJI? T =40; % length of time:T*T0.
Oz^+;P1 dt = T/N; % time step
qA9*t n = [-N/2:1:N/2-1]'; % Index
G,{L=xOh t = n.*dt;
3Zsqx=w ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
tnqW!F~ w=2*pi*n./T;
\ ^EjE g1=-i*ww./2;
X ~4^$x g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
RTA9CR)JP4 g3=-i*ww./2;
l1jS2O( P1=0;
x)G/YUv76 P2=0;
yHQ.EZ~% P3=1;
`@ qSDW!b P=0;
Q9K
Gf; for m1=1:M1
8/b_4!5c p=0.032*m1; %input amplitude
9L%&4V}BIS s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
}n=Tw92g s1=s10;
\ :})R{ s20=0.*s10; %input in waveguide 2
Y~=5umNSX s30=0.*s10; %input in waveguide 3
y>2v 9;Qp s2=s20;
[lS'GszA s3=s30;
aEXV^5;,pJ p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
tRbZ^5x\@ %energy in waveguide 1
dcU|y%k% p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
WSDNTfpI %energy in waveguide 2
f:7Y p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
F
xFK %energy in waveguide 3
~SM2W% for m3 = 1:1:M3 % Start space evolution
TW3:Y\ p s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
PG<N\ s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
n$`Nx\ v s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
HLYM(Pz sca1 = fftshift(fft(s1)); % Take Fourier transform
\Zoo9Wy
sca2 = fftshift(fft(s2));
NXeo&+F sca3 = fftshift(fft(s3));
SKLQAE5 sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
Z I}m~7 sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
5`x9+XvoN sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
iCAd7=o s3 = ifft(fftshift(sc3));
b@1QE s2 = ifft(fftshift(sc2)); % Return to physical space
dUb(C1h s1 = ifft(fftshift(sc1));
6ap,XFRMh end
Z|8f7@k{|+ p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
\vQ_:-A p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
lS?f?n^ p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
`9K'I-hv<8 P1=[P1 p1/p10];
::TUSz2/2 P2=[P2 p2/p10];
7Fy^K;V" P3=[P3 p3/p10];
Tj:+:B(HB P=[P p*p];
q<hN\kBs end
r{%NMj figure(1)
a$aI% plot(P,P1, P,P2, P,P3);
{B\.8)&8 gmLw. |- 转自:
http://blog.163.com/opto_wang/