切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8012阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 !eE;MaS>  
    vn"+x_  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of :+*q,lX8  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of i$ CN{c*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 6G0Y,B7&  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 YRRsbm{  
    TpIx!R9  
    %fid=fopen('e21.dat','w'); ^]{m*bEkR  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) |X6/Y@N  
    M1 =3000;              % Total number of space steps K}e:zR;;^  
    J =100;                % Steps between output of space &Ay[mZQ 7  
    T =10;                  % length of time windows:T*T0 'ugc=-0pd  
    T0=0.1;                 % input pulse width CaE1h9  
    MN1=0;                 % initial value for the space output location /|MHZ$Y9w?  
    dt = T/N;                      % time step m(DJ6CSa  
    n = [-N/2:1:N/2-1]';           % Index 4Fs5@@>X  
    t = n.*dt;   B/F6WQdZ  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 m]Gxep0%  
    u20=u10.*0.0;                  % input to waveguide 2 fWk,k*Z 9  
    u1=u10; u2=u20;                 g:rjt1w`D  
    U1 = u1;   ]/ffA|"U`  
    U2 = u2;                       % Compute initial condition; save it in U XV %DhR=  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 2>+(OL4l  
    w=2*pi*n./T; 1=U NA :t<  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T s:ZYiZ-  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Q}6!t$Vk  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 @]F1J  
    for m1 = 1:1:M1                                    % Start space evolution h'm-]v  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS xP+`scv*m#  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; xmXuBp:M(R  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform rZ#ZY  
       ca2 = fftshift(fft(u2)); ='G-wX&k  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation }huFv*<@'  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   CR8szMa  
       u2 = ifft(fftshift(c2));                        % Return to physical space ATzFs]~K;  
       u1 = ifft(fftshift(c1)); V]Z!x.x"=y  
    if rem(m1,J) == 0                                 % Save output every J steps. RzOcz=A}  
        U1 = [U1 u1];                                  % put solutions in U array \@!"7._=  
        U2=[U2 u2]; YM r2|VEU[  
        MN1=[MN1 m1]; euiP<[|h=  
        z1=dz*MN1';                                    % output location HE|XDcYO  
      end h ]6: `5-  
    end D8 BmC  
    hg=abs(U1').*abs(U1');                             % for data write to excel M~ eXC  
    ha=[z1 hg];                                        % for data write to excel H5!e/4iz  
    t1=[0 t']; aDZ,9}  
    hh=[t1' ha'];                                      % for data write to excel file 'B\7P*L"p  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format SUC'o"  
    figure(1) F?+\J =LT  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn mJNw<T4!/  
    figure(2) 'zhv#&O  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn E! GH$%:;  
    ~J:]cy)Q  
    非线性超快脉冲耦合的数值方法的Matlab程序 cNl NJ  
    >r\q6f#J4  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ~YRG9TK  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Bw/8-:eb  
    1Eh6ti  
    8_Nyy/K#F  
    G_]zymXQ  
    %  This Matlab script file solves the nonlinear Schrodinger equations m gE r+  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of %WF]mF T_  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear uL{CUt  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 2!Qg1hM  
    Fs(FI\^  
    C=1;                           BIh^b?:zU  
    M1=120,                       % integer for amplitude vzFo"  
    M3=5000;                      % integer for length of coupler p?2^JJpUb  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) i_e%HG  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. s[bQO1g;*  
    T =40;                        % length of time:T*T0. ;-AC}jG  
    dt = T/N;                     % time step 46##(4RF  
    n = [-N/2:1:N/2-1]';          % Index =Hbf()cN)  
    t = n.*dt;   v>0I=ut  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. C2{*m{ D  
    w=2*pi*n./T; oy-y Q YX  
    g1=-i*ww./2; MfZamu5+F  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; (YM2Cv{4  
    g3=-i*ww./2; hVIv->  
    P1=0; *#9?9SYSk  
    P2=0; ;,/4Ry22j-  
    P3=1; {l"(EeW6)  
    P=0; zY9CoadZ  
    for m1=1:M1                 2]]}Xvx4#  
    p=0.032*m1;                %input amplitude -AN5LE9-  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 n^|SN9 _r  
    s1=s10; ^8KxU  
    s20=0.*s10;                %input in waveguide 2 )#8}xAjV  
    s30=0.*s10;                %input in waveguide 3 d uP0US  
    s2=s20; "U!Vdt2vp  
    s3=s30; #(QS5J&Qq  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   NL,6<ZOon,  
    %energy in waveguide 1 . '>d7  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   =h xyR;  
    %energy in waveguide 2 n&,X ']z.  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   P?^%i  
    %energy in waveguide 3 osc A\r  
    for m3 = 1:1:M3                                    % Start space evolution d_!}9  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS !jf!\Uu[U  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; {#~A `crO  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; V-3;7  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform AZf69z  
       sca2 = fftshift(fft(s2)); YYL3a=;`a  
       sca3 = fftshift(fft(s3)); c/^l2CJ0  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   +koW3>  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ht#,v5oG>f  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); PjofW%7F  
       s3 = ifft(fftshift(sc3)); H_,4N_hL  
       s2 = ifft(fftshift(sc2));                       % Return to physical space Sk:x.oOZ  
       s1 = ifft(fftshift(sc1)); 0"Euf41  
    end L1WvX6  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Xvk+1:D  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ^q`RaX)  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); VCVKh  
       P1=[P1 p1/p10]; !Na@T]J  
       P2=[P2 p2/p10]; X,c`,B03  
       P3=[P3 p3/p10]; yY{  
       P=[P p*p]; g6+5uvpd  
    end @-Y,9mM   
    figure(1) re,}}'  
    plot(P,P1, P,P2, P,P3); 9R">l5u  
    }u1h6rd `  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~