计算脉冲在非线性耦合器中演化的Matlab 程序 K($+ILZ
;6 d-+(@
% This Matlab script file solves the coupled nonlinear Schrodinger equations of <<qzZ+u
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ;dZZOocV1
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear +7WpJ;C4
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @/As|)
dmkGIg}
%fid=fopen('e21.dat','w'); U"@p3$2QW
N = 128; % Number of Fourier modes (Time domain sampling points) |I"&Z+m
M1 =3000; % Total number of space steps @fo(#i&
J =100; % Steps between output of space JM0+-,dl[
T =10; % length of time windows:T*T0 ^o Ds*F
T0=0.1; % input pulse width !T)_(}|6}
MN1=0; % initial value for the space output location jZ5ac=D&I
dt = T/N; % time step ?t\GHQ$$?
n = [-N/2:1:N/2-1]'; % Index rFC9y o
t = n.*dt; V0,5c`H c
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 yP-$@Ry
u20=u10.*0.0; % input to waveguide 2 m#Z9wf] F
u1=u10; u2=u20; po]<sB
U1 = u1; 90JWU$K
U2 = u2; % Compute initial condition; save it in U "3 2Ua3m:G
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. >3 p8o@:
w=2*pi*n./T; rjfWty%6pX
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 1$}Tn
L=4; % length of evoluation to compare with S. Trillo's paper Xsb.xxK.
dz=L/M1; % space step, make sure nonlinear<0.05 BB1_EdoG
for m1 = 1:1:M1 % Start space evolution j}@LiH'Q
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS P%w!4v~"
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ^N ;TCn
ca1 = fftshift(fft(u1)); % Take Fourier transform 'R$/Qt;uA
ca2 = fftshift(fft(u2)); hQzT
=0
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation H,/=<Th;i
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift YyYp-0#
u2 = ifft(fftshift(c2)); % Return to physical space Rdj3dg'<
u1 = ifft(fftshift(c1)); 5``usn/&Kj
if rem(m1,J) == 0 % Save output every J steps. Bz,Xg-k+
U1 = [U1 u1]; % put solutions in U array )cOBP}j+
U2=[U2 u2];
VD,g3B p
MN1=[MN1 m1]; |l|$Q;
z1=dz*MN1'; % output location j~Ci*'*L
end Y?oeP^V'u
end |t$%kpp
hg=abs(U1').*abs(U1'); % for data write to excel \dB z-H'@
ha=[z1 hg]; % for data write to excel |a0@4
:
t1=[0 t']; L)H/t6}i
hh=[t1' ha']; % for data write to excel file 4
;6,h6a
%dlmwrite('aa',hh,'\t'); % save data in the excel format V2m=
m}HQ
figure(1) qvh8~[
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn ~-yq,x
figure(2) 33"!K>wC
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn Oeg^%Y
\H PB{
;
非线性超快脉冲耦合的数值方法的Matlab程序 ~WmA55
=':SOO7
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 mX@xV*
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 HXB&
6
Q`=d5Uvw
k1D|Cpnp
` apCu
% This Matlab script file solves the nonlinear Schrodinger equations )DQcf]I
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of R C!~eJG!
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 7Sycy#D
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 (3m^@2i
u3 4.
C=1; 6D4u?P,
M1=120, % integer for amplitude Lp{uA4:=K
M3=5000; % integer for length of coupler *2m{i:3
N = 512; % Number of Fourier modes (Time domain sampling points) py/#h$eY
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. ln09_Lr
T =40; % length of time:T*T0. P>]*pD
dt = T/N; % time step ;T!ZO@1X
n = [-N/2:1:N/2-1]'; % Index %wq;<'W
t = n.*dt; KW36nY\7
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. -0*z"a9<p8
w=2*pi*n./T; S]c&