切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8731阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 i>i@r ;:|  
    Se+sgw_"  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of `sOCJ|rc5  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of EaGh`*"w(7  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear szN`"Yi){  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $]EG|]"Ns  
    G\&4_MS  
    %fid=fopen('e21.dat','w'); 0TK+R43_  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 8nw_Jatk1  
    M1 =3000;              % Total number of space steps o%X@Bz  
    J =100;                % Steps between output of space XNkw9*IT  
    T =10;                  % length of time windows:T*T0 ykc$B5*  
    T0=0.1;                 % input pulse width Tq[=&J  
    MN1=0;                 % initial value for the space output location K4NB#  
    dt = T/N;                      % time step xTNWT_d  
    n = [-N/2:1:N/2-1]';           % Index `!Ei H<H}  
    t = n.*dt;   y)o!F^  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 833KU_ N  
    u20=u10.*0.0;                  % input to waveguide 2 6=a($s!   
    u1=u10; u2=u20;                 .dwb@$  
    U1 = u1;   @1ZLr  
    U2 = u2;                       % Compute initial condition; save it in U ORk8^0\  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. {^ 1s  
    w=2*pi*n./T; +[M5x[[$  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ujsJ;\c  
    L=4;                           % length of evoluation to compare with S. Trillo's paper E8#RG-ci  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 V}(snG,  
    for m1 = 1:1:M1                                    % Start space evolution 3OTq  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS HV ab14}E  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Cp(,+ dD  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform GY 4?}T^s  
       ca2 = fftshift(fft(u2)); W#!![JDc  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation \hv1"WaJ  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   3D70`u  
       u2 = ifft(fftshift(c2));                        % Return to physical space 9^l_\:4  
       u1 = ifft(fftshift(c1)); pv8"E?9,k  
    if rem(m1,J) == 0                                 % Save output every J steps. Ag QR"Nu6  
        U1 = [U1 u1];                                  % put solutions in U array ;Q>(%"z};  
        U2=[U2 u2]; A7SBm`XJ)p  
        MN1=[MN1 m1]; L9[? qFp  
        z1=dz*MN1';                                    % output location .PBma/w W  
      end M6U/. n  
    end } _Yk.@J5  
    hg=abs(U1').*abs(U1');                             % for data write to excel 1"{3v@yi  
    ha=[z1 hg];                                        % for data write to excel 3Qmok@4e)  
    t1=[0 t']; /~*U'.V  
    hh=[t1' ha'];                                      % for data write to excel file J'B6l#N  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Q|Uq.UjY  
    figure(1) w A<JJ_R  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn |Z}uN!Jm  
    figure(2) {<%zcNKl^L  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Qag@#!&n  
    e!wBNcG2  
    非线性超快脉冲耦合的数值方法的Matlab程序 O{hGh{y  
    =;Gy"F1 dp  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   'V=w?G 5  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 s8iJl+Jm  
    ^50#R< Ny  
    NidG|Yg~Z  
    Un\h[m  
    %  This Matlab script file solves the nonlinear Schrodinger equations -~T?xs0_  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of JK0L&t<  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 3l"7$B  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 J@'}lG  
    13(JW  
    C=1;                           h7mJXS)t|  
    M1=120,                       % integer for amplitude f;M7y:A8q,  
    M3=5000;                      % integer for length of coupler 1!<k-vt  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) U{n< n8  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. z OkUR9  
    T =40;                        % length of time:T*T0. e(E6 t_  
    dt = T/N;                     % time step ~3 4Ly  
    n = [-N/2:1:N/2-1]';          % Index !Tuc#yFw  
    t = n.*dt;   o<2H~2/  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. )u~LzE]{_  
    w=2*pi*n./T; 9Cbf[\J!bq  
    g1=-i*ww./2; o =)hUr  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; l(|@ dp  
    g3=-i*ww./2; D/C,Q|Ya6  
    P1=0; |KFRC)g  
    P2=0; .r!:` 6  
    P3=1; sS#Lnj^`%  
    P=0; #MYhKySku  
    for m1=1:M1                 Z"rrbN1  
    p=0.032*m1;                %input amplitude IKSe X  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ImQ?<g8$  
    s1=s10; !DFT}eu  
    s20=0.*s10;                %input in waveguide 2 v~i/e+.h>y  
    s30=0.*s10;                %input in waveguide 3 ~ldqg2c  
    s2=s20; gE8p**LT+  
    s3=s30; sp*_;h3'  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   7N0V`&}T  
    %energy in waveguide 1 #x Z7%    
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   |4NH}XVYJ>  
    %energy in waveguide 2 `PK1zSr  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   w7}m T3p,)  
    %energy in waveguide 3 ;QbMVY  
    for m3 = 1:1:M3                                    % Start space evolution m }I@:s2  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS tpp. 9  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; td{M%D,R"  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; P wL]v.:  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform y\7 -!  
       sca2 = fftshift(fft(s2)); kx=.K'd5H  
       sca3 = fftshift(fft(s3)); 3x2*K_A5:Q  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ]H8,}  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); )Cl!,m)~  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); m~a'  
       s3 = ifft(fftshift(sc3)); {w*5uI%%e  
       s2 = ifft(fftshift(sc2));                       % Return to physical space FWpcWmS`s  
       s1 = ifft(fftshift(sc1)); 9C[i#+_3M  
    end M]PH1 2Ob  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); pj?wQ'  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); $w{!}U2+-  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); FTvFtdY  
       P1=[P1 p1/p10];  meQ>mW  
       P2=[P2 p2/p10]; )`5k fj  
       P3=[P3 p3/p10]; $oKT-G  
       P=[P p*p]; tVJ}NI #  
    end ?g*#l d()  
    figure(1) f4Aevh:  
    plot(P,P1, P,P2, P,P3); 1"k"<{%  
    F&? &8.  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~