计算脉冲在非线性耦合器中演化的Matlab 程序 L/i'6(=" _%e8GWf % This Matlab script file solves the coupled nonlinear Schrodinger equations of
Db|f"3rq? % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
Nx 42k|8
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
wW%b~JX % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
vNSUrf,r =-r"@2HBq %fid=fopen('e21.dat','w');
Rw?w7?I N = 128; % Number of Fourier modes (Time domain sampling points)
5i[O\@]5 M1 =3000; % Total number of space steps
LKM018H> J =100; % Steps between output of space
|{#St-!-7 T =10; % length of time windows:T*T0
@Tu`0=8 T0=0.1; % input pulse width
E=I'$*C\D MN1=0; % initial value for the space output location
bBi>BP= dt = T/N; % time step
D_l$"35? n = [-N/2:1:N/2-1]'; % Index
LeCc`x,5 t = n.*dt;
dcf,a<K\ u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
"Hw%@]# u20=u10.*0.0; % input to waveguide 2
"yu{b]AU u1=u10; u2=u20;
Qw0k-t0=4 U1 = u1;
Va?]:Q U2 = u2; % Compute initial condition; save it in U
HZ9 >4G3 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
P.Ntjz/B w=2*pi*n./T;
aT,WXW* g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
I'5[8 L=4; % length of evoluation to compare with S. Trillo's paper
Ae2N"%Ej dz=L/M1; % space step, make sure nonlinear<0.05
=F\Xt " for m1 = 1:1:M1 % Start space evolution
EID-ROMO u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
y3efie {J u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
lV'?X% ca1 = fftshift(fft(u1)); % Take Fourier transform
EB3/o7)L ca2 = fftshift(fft(u2));
#6M |T+= c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
n*[ZS[I c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
;mpY cpI u2 = ifft(fftshift(c2)); % Return to physical space
n/v.U,f&l@ u1 = ifft(fftshift(c1));
Yi9Y`~J if rem(m1,J) == 0 % Save output every J steps.
dk7x<$h-h0 U1 = [U1 u1]; % put solutions in U array
ep8UWxB5 U2=[U2 u2];
hJSvx MN1=[MN1 m1];
Uh0g !zzp z1=dz*MN1'; % output location
iQO4IT end
LVUA"'6V end
]y#'U hg=abs(U1').*abs(U1'); % for data write to excel
Tgpu 9V6 ha=[z1 hg]; % for data write to excel
8=D,`wog t1=[0 t'];
(PPC?6s hh=[t1' ha']; % for data write to excel file
&$XTe2 %dlmwrite('aa',hh,'\t'); % save data in the excel format
X+Sqw5rH figure(1)
2D:/.9= 8v waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
V?OTP&+J% figure(2)
_)j\
b waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
MsI R ~ {`):X _$T 非线性超快脉冲耦合的数值方法的Matlab程序 mX>N1zAz #j Tkz 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
3/gR}\= Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
reR@@O 9 m8KDB[N @tSB^&jUWu \dQc!)&C9 % This Matlab script file solves the nonlinear Schrodinger equations
/[?}LrDO % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
!n;3jAl&$ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
+tk`$g % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
@q!T,({kx Ab[o~X" C=1;
qUfoEpW2=6 M1=120, % integer for amplitude
p"P+8"` M3=5000; % integer for length of coupler
[Q:mq=<Z% N = 512; % Number of Fourier modes (Time domain sampling points)
-"zW"v)\ dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
;%0kzIvP T =40; % length of time:T*T0.
;39b.v\^ dt = T/N; % time step
#6a!OQj n = [-N/2:1:N/2-1]'; % Index
-0 xo6'mD t = n.*dt;
^/2HH ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
T
9`AL w=2*pi*n./T;
z4
=OR@ h g1=-i*ww./2;
zf8SpQ2~ g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
[4xZy5V g3=-i*ww./2;
ts<\n-f P1=0;
HT/!+#W. P2=0;
@_t=0Rc P3=1;
0e&&k P=0;
];CIo>
b_( for m1=1:M1
oAifM1*0 p=0.032*m1; %input amplitude
'C}ku>B_r s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
R<fF
^^ s1=s10;
dfAw\7v/ s20=0.*s10; %input in waveguide 2
$S' TW3 s30=0.*s10; %input in waveguide 3
'+Jy//5? s2=s20;
W;8A{3q%N0 s3=s30;
^>%.l'1/( p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
)a0l:jEOc %energy in waveguide 1
XzIC~} p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
kIa16m %energy in waveguide 2
pq]z%\$u p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
7Cp/{l;d %energy in waveguide 3
fn/?I\ for m3 = 1:1:M3 % Start space evolution
/$clk= s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
p*<I_QM! s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
Z79 6;qk s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
EKO'S+~ sca1 = fftshift(fft(s1)); % Take Fourier transform
j=U"t\{ sca2 = fftshift(fft(s2));
4S*ifl sca3 = fftshift(fft(s3));
&u^]YE{ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
|%5pzYe sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
/tG as sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
?7pn%_S s3 = ifft(fftshift(sc3));
p2(ha3PW s2 = ifft(fftshift(sc2)); % Return to physical space
gFuK/]gzI s1 = ifft(fftshift(sc1));
=\u,4 end
$Tv~ *|a p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
J<H]vs p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
8&HBR # p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
&\ca ? # P1=[P1 p1/p10];
prt(xr4@ P2=[P2 p2/p10];
vN
v'%;L P3=[P3 p3/p10];
FO(QsR=\s P=[P p*p];
"5dke^yk0 end
Uc_}=" figure(1)
Z # plot(P,P1, P,P2, P,P3);
2%fzRXhu% i`f!) 1 转自:
http://blog.163.com/opto_wang/