切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8986阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 6w(6}m.L^  
    <-D0u?8  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of IuRmEL_Q_  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of $+3}po\  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear dRaNzK)M  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 FcYFovS  
    7El[ >  
    %fid=fopen('e21.dat','w'); /(BMG/Tb  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Hqn#yInA7~  
    M1 =3000;              % Total number of space steps /gu%:vq  
    J =100;                % Steps between output of space vc+ARgvH+  
    T =10;                  % length of time windows:T*T0 [.S#rGYk  
    T0=0.1;                 % input pulse width qh2ON>e;  
    MN1=0;                 % initial value for the space output location ,J{ei7TN  
    dt = T/N;                      % time step 2m35R&  
    n = [-N/2:1:N/2-1]';           % Index %ve:hym*  
    t = n.*dt;   JMz;BAHT  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 N 0= ac5  
    u20=u10.*0.0;                  % input to waveguide 2 !cAyTl(_  
    u1=u10; u2=u20;                 %d(^d  
    U1 = u1;   c(n&A~*AJ%  
    U2 = u2;                       % Compute initial condition; save it in U u( wGl_  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. e*;c(3>(  
    w=2*pi*n./T; B{C??g8/  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T QZ:8+[oy  
    L=4;                           % length of evoluation to compare with S. Trillo's paper *i- _6s  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 $} =krz:r  
    for m1 = 1:1:M1                                    % Start space evolution %JHGiCv|  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ?$6Y2  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; B,@c; K  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform N%"Y  
       ca2 = fftshift(fft(u2)); YJ;j x0  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation L_+k12lm  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   (jFGa2{  
       u2 = ifft(fftshift(c2));                        % Return to physical space v%s`~~u%^  
       u1 = ifft(fftshift(c1)); I]&#Dl/  
    if rem(m1,J) == 0                                 % Save output every J steps. LjUy*mxw  
        U1 = [U1 u1];                                  % put solutions in U array W81E!RyP`  
        U2=[U2 u2]; R&Jm +3N  
        MN1=[MN1 m1]; r!HwXeEn/  
        z1=dz*MN1';                                    % output location 'iGzkf}j  
      end +tk{"s^r*  
    end ""1^k2fj  
    hg=abs(U1').*abs(U1');                             % for data write to excel 2#<xAR  
    ha=[z1 hg];                                        % for data write to excel L}}y'^(  
    t1=[0 t']; 1!1 beR]  
    hh=[t1' ha'];                                      % for data write to excel file l*kPOyB  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 3&[>u;Bp  
    figure(1) j|/]#@Yr  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 9v }G{mQ#  
    figure(2) 7A\~)U @  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn MwR 0@S}*  
    0LfU=X0#7  
    非线性超快脉冲耦合的数值方法的Matlab程序 jGEt+\"/QJ  
    ae*Mf7  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   \yd s5g!:  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 oA =4=`  
    |iR T! ]  
    mN>h5G>a  
    =ZDAeVz3w  
    %  This Matlab script file solves the nonlinear Schrodinger equations =7C%P%yt  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of mXUGe:e8  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear NLrPSqz  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 VGceD$<  
    '{J&M|<A  
    C=1;                           B:e @0049  
    M1=120,                       % integer for amplitude \L(*]:EP  
    M3=5000;                      % integer for length of coupler Pj4/xX  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) e#Z$o($t  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. L dm?JrU  
    T =40;                        % length of time:T*T0. +> WM[o^I  
    dt = T/N;                     % time step (d<4"!  
    n = [-N/2:1:N/2-1]';          % Index ;[W"mlM  
    t = n.*dt;   )E,\H@A  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. RheRe  
    w=2*pi*n./T;  -Y H<  
    g1=-i*ww./2; Ci<ATho  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; *3&fqBg  
    g3=-i*ww./2; ]6{*^4kX  
    P1=0; ,daKC  
    P2=0; |{@8m9JR  
    P3=1; uFLx  
    P=0; 66'?&Xx'  
    for m1=1:M1                  wAz&"rS  
    p=0.032*m1;                %input amplitude Oer^Rk  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 RtCkVxaEx  
    s1=s10; >TP7 }u|  
    s20=0.*s10;                %input in waveguide 2 Ma\Gb+>  
    s30=0.*s10;                %input in waveguide 3 dpFVN[\oK  
    s2=s20; lr{?"tl_  
    s3=s30; Z-U-N  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ]_8qn'7  
    %energy in waveguide 1 L9@&2?k  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   EM/@T}  
    %energy in waveguide 2 Ai/b\:V9S  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   w 1Ec_y{  
    %energy in waveguide 3 *JaqTI,e  
    for m3 = 1:1:M3                                    % Start space evolution ;?6No(/  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS /MF! GM  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; (&P9+Tl  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 8-lOB  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 4<?8M vF  
       sca2 = fftshift(fft(s2)); `KCh*i  
       sca3 = fftshift(fft(s3)); ~j#]tElb  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   V%_4%  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); z)xSN;x  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ?  BE6  
       s3 = ifft(fftshift(sc3)); "F}'~HWZp  
       s2 = ifft(fftshift(sc2));                       % Return to physical space :gB[O>'<m  
       s1 = ifft(fftshift(sc1)); <N`J`J-[  
    end PI~1GyJr@;  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 0V{(Ru.O  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 2<][%> '  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); x+h~gckLb  
       P1=[P1 p1/p10]; e+]6OV&+  
       P2=[P2 p2/p10]; =;3fq-  
       P3=[P3 p3/p10]; A 5+rd{k/  
       P=[P p*p]; cPl`2&p  
    end |hO~X~P  
    figure(1) p[@5&_u(z  
    plot(P,P1, P,P2, P,P3); b-Z4 Jo G  
    q\q=PB6r  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~