切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8740阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 T/7vM6u  
    ZV#$Z  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of '8Qw:fh  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of z"av|(?d  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear K!7q!%Ju  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 )[ w&C_>]  
    Gx;xj0-"  
    %fid=fopen('e21.dat','w'); ,]U[W  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) h+xA?[ c=  
    M1 =3000;              % Total number of space steps 4[_L=zD  
    J =100;                % Steps between output of space D@5s8xv  
    T =10;                  % length of time windows:T*T0 iha9!kf  
    T0=0.1;                 % input pulse width 8vO;IK]9b^  
    MN1=0;                 % initial value for the space output location :Fo4O'UC  
    dt = T/N;                      % time step -=>U =|  
    n = [-N/2:1:N/2-1]';           % Index Lv3XYZgW~  
    t = n.*dt;   w #<^RKk  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 kyK'  
    u20=u10.*0.0;                  % input to waveguide 2 OT%V{hD  
    u1=u10; u2=u20;                 ,$PFI(Whk  
    U1 = u1;   'oCm.~;_  
    U2 = u2;                       % Compute initial condition; save it in U @jKDj]\  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 5R"2Wd  
    w=2*pi*n./T; rx}*u3x=  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T c G*(C  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 4D GY6PS  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 fo;6huz  
    for m1 = 1:1:M1                                    % Start space evolution t,1in4sN  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS zw< 4G[u  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; /bi6>GaC:E  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform drs-mt8  
       ca2 = fftshift(fft(u2)); h$|3dz N  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation }!=gP.Zu^  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   j;G[%gi6{  
       u2 = ifft(fftshift(c2));                        % Return to physical space H)`@2~Y  
       u1 = ifft(fftshift(c1)); [Ek42%  
    if rem(m1,J) == 0                                 % Save output every J steps. DQMPAj.  
        U1 = [U1 u1];                                  % put solutions in U array _2#zeT5  
        U2=[U2 u2]; OZa88&  
        MN1=[MN1 m1]; =g >.X9lr  
        z1=dz*MN1';                                    % output location F G3Sk!O6  
      end )7k&`?Mh  
    end JxnuGkE0[#  
    hg=abs(U1').*abs(U1');                             % for data write to excel D{Oq\*  
    ha=[z1 hg];                                        % for data write to excel d&5c_6oW  
    t1=[0 t']; 8,_ -0_^$  
    hh=[t1' ha'];                                      % for data write to excel file hR!}u}ECd  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format T0YDfo  
    figure(1) TZ:34\u   
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn A3z/Bz4]:#  
    figure(2) nW~$ (Qnd  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn )`mbf|,&t{  
    Yg[ v/[]  
    非线性超快脉冲耦合的数值方法的Matlab程序 ENO? ;  
    wZ$ tJQO  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   abL/Y23 "  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 RZW$!tyI=  
    amMjuyW  
    C1KfXC*|L  
    -% >8.#~G  
    %  This Matlab script file solves the nonlinear Schrodinger equations E2kW=6VO>|  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of `bzr_fJ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear {>wI8  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 5dqQws-,?1  
    ;i.I&*t  
    C=1;                           d3Y(SPO  
    M1=120,                       % integer for amplitude sZ]'DH&_(  
    M3=5000;                      % integer for length of coupler ^p$1D  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) '!Hhd![\=|  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 7AI3|Ts]p  
    T =40;                        % length of time:T*T0. ``+c`F?5  
    dt = T/N;                     % time step \{[D|_   
    n = [-N/2:1:N/2-1]';          % Index #fwzFS \XL  
    t = n.*dt;   ~B<97x(X  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. y!SF/i?Py  
    w=2*pi*n./T; kxygf9I!;  
    g1=-i*ww./2; LE8K)i  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; nDyvX1]  
    g3=-i*ww./2; I<c@uXXV;!  
    P1=0; ;&If9O 1  
    P2=0; ('T4Db  
    P3=1; l8er$8S}  
    P=0; (L`l+t1  
    for m1=1:M1                 MJ1W*'9</W  
    p=0.032*m1;                %input amplitude 5LO4P>fq  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ^CfM|L8>  
    s1=s10; mr@_ %U  
    s20=0.*s10;                %input in waveguide 2 5woIGO3X  
    s30=0.*s10;                %input in waveguide 3 -Uzc"Lx B  
    s2=s20; F='Xj@&O  
    s3=s30; B{;11 u  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   wDB)&b  
    %energy in waveguide 1 NR ;q`Xe-  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   9cVn>Fb  
    %energy in waveguide 2 4\&H?:c.  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   !O~}, pp  
    %energy in waveguide 3 l{nB.m2  
    for m3 = 1:1:M3                                    % Start space evolution }Vs~RJM)}  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS =t@:F  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; '&RZ3@}+  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Dm>T"4B`/  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform n"XdHW0  
       sca2 = fftshift(fft(s2)); se~ *<5  
       sca3 = fftshift(fft(s3)); 9+]ZH.(YE  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   : [A?A4l  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); NdM}xh  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); en Pzy:C  
       s3 = ifft(fftshift(sc3)); T^KCB\\<  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 1f+*Tmc5]Q  
       s1 = ifft(fftshift(sc1)); eA~J4k_  
    end bq c;.4$  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); &W&7bZ$;  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); yfPCGCOW?  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); bk/.<Rt  
       P1=[P1 p1/p10]; [P.@1mV  
       P2=[P2 p2/p10]; C*"Rd   
       P3=[P3 p3/p10]; vs5 D:cZ}  
       P=[P p*p]; `Mo~EHso.  
    end EZ:I$X  
    figure(1) &i4 (s%z#  
    plot(P,P1, P,P2, P,P3); 6&g!ZE'G  
    k\4g|Lya  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~