切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8856阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 _wXT9`|3  
    ;40Z/#FI  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of r.)n>  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 50 w$PW  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear XOX$uLm  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 62nmm/c  
    0`zdj  
    %fid=fopen('e21.dat','w'); t{UVX%b  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Q=! lbW  
    M1 =3000;              % Total number of space steps sDs.da#*2  
    J =100;                % Steps between output of space  ,7:GLkj  
    T =10;                  % length of time windows:T*T0 Qe F:s|[  
    T0=0.1;                 % input pulse width r1F5'?NZ(0  
    MN1=0;                 % initial value for the space output location G1it 3^*$  
    dt = T/N;                      % time step l`~$cK!  
    n = [-N/2:1:N/2-1]';           % Index gK~Z Ch  
    t = n.*dt;   . AA# G  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 P'iX?+*  
    u20=u10.*0.0;                  % input to waveguide 2 mvH}G8  
    u1=u10; u2=u20;                 L+ew/I>:  
    U1 = u1;   j&dCP@G  
    U2 = u2;                       % Compute initial condition; save it in U ,Gy,bcv{  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Fep@VkN  
    w=2*pi*n./T; K"[jrvZ=  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Ng<ic  
    L=4;                           % length of evoluation to compare with S. Trillo's paper <zY#qFQ2  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 (XR}U6^v]  
    for m1 = 1:1:M1                                    % Start space evolution /V0Put  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS X*#\JF4$i  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; }+lK'6  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform /T qbl^[  
       ca2 = fftshift(fft(u2)); %{'[S0@Z  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation k6DJ(.n'%a  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   O.#R r/+)  
       u2 = ifft(fftshift(c2));                        % Return to physical space [Y@}{[q5  
       u1 = ifft(fftshift(c1)); i.^UkN{  
    if rem(m1,J) == 0                                 % Save output every J steps. .+Q1h61$T  
        U1 = [U1 u1];                                  % put solutions in U array f-^*p  
        U2=[U2 u2]; >9XG+f66E  
        MN1=[MN1 m1]; m.6uLaD"!}  
        z1=dz*MN1';                                    % output location m; =S]3P*  
      end sAO/yG  
    end U(+QrC:  
    hg=abs(U1').*abs(U1');                             % for data write to excel M`#g>~bI#R  
    ha=[z1 hg];                                        % for data write to excel & :W6O)uY  
    t1=[0 t']; )s7EhIP  
    hh=[t1' ha'];                                      % for data write to excel file lp d~U2&  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format L})fYVX  
    figure(1) P{s1NorKDh  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn (j:[<U  
    figure(2) k^JgCC+  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn `6Q+N=k~Z  
    41B.ZE+*qd  
    非线性超快脉冲耦合的数值方法的Matlab程序 QHXpX9  
    e7iQG@i7  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ;E{@)X..|  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 F*z>B >{)  
    IY~I=}  
    {>64-bU  
    VAheus  
    %  This Matlab script file solves the nonlinear Schrodinger equations WSF$xC /~  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of /Re67cMQ*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear _;x`6LM  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7!o#pt7  
    ~yngH0S$[b  
    C=1;                           ;eFV}DWW  
    M1=120,                       % integer for amplitude wko9tdC=U  
    M3=5000;                      % integer for length of coupler !}`[s2ji  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) $rjm MSxi  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 9l[C&0w#\  
    T =40;                        % length of time:T*T0. b*Hk} !qH  
    dt = T/N;                     % time step j$u  
    n = [-N/2:1:N/2-1]';          % Index $^e_4]k  
    t = n.*dt;   BD.l5 ~:  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. pxbuZ9w2Q  
    w=2*pi*n./T; vPZ0?r_5W  
    g1=-i*ww./2; /ml+b8@  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; rCGKE`H  
    g3=-i*ww./2; _M>S=3w  
    P1=0; E^w0X,0XlE  
    P2=0; gpbdK?  
    P3=1; _+~jZ]o N  
    P=0; J1r\Cp+h0  
    for m1=1:M1                 <g&GIFE,  
    p=0.032*m1;                %input amplitude g p9;I*!  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 E9.1~ )  
    s1=s10; PJKxh%J  
    s20=0.*s10;                %input in waveguide 2 (:+Wc^0  
    s30=0.*s10;                %input in waveguide 3 t1#f*G5  
    s2=s20; L]X Lv9J0  
    s3=s30; s }^W2  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   bL:+(/:  
    %energy in waveguide 1 A6;[r #C  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   wqE2n  
    %energy in waveguide 2 vXSpn71Jb  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   tQMz1$  
    %energy in waveguide 3 *MWI`=c  
    for m3 = 1:1:M3                                    % Start space evolution #Guwbg  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS p8CaD4bE  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; >^f]Lgp  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; #b&=CsW`  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ^sJp!hi4=)  
       sca2 = fftshift(fft(s2)); Ej@N}r>X  
       sca3 = fftshift(fft(s3)); li`  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Hw#yw g  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); esv<b>`R  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Pj^Ccd'>=  
       s3 = ifft(fftshift(sc3)); Kna@K$6{w=  
       s2 = ifft(fftshift(sc2));                       % Return to physical space .KYDYdoS'  
       s1 = ifft(fftshift(sc1)); T< <N U"n  
    end MLmk=&d  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); H[/^&1P  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); X*r?@uK5  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); b Olb  
       P1=[P1 p1/p10]; fb!>@@9Z  
       P2=[P2 p2/p10]; 0w$1Yx~C  
       P3=[P3 p3/p10]; *u34~v16,  
       P=[P p*p]; k~1{|HxrE  
    end ,v*\2oG3^  
    figure(1) #/K71Y  
    plot(P,P1, P,P2, P,P3); (jh0cy}|]  
    BLo=@C%w5  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~