切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8710阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 u,f$cR  
    B]C 9f  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of JPt0k  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of HT@/0MF{J  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear NR@n%p  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8t$w/#'@  
    +. `  I  
    %fid=fopen('e21.dat','w'); ]"DsZI-glW  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) !JOM+P:  
    M1 =3000;              % Total number of space steps 12bt\ h9  
    J =100;                % Steps between output of space EWX!:BKf  
    T =10;                  % length of time windows:T*T0 ]>%M%B  
    T0=0.1;                 % input pulse width g5,Bj  
    MN1=0;                 % initial value for the space output location 5kju{2`GF  
    dt = T/N;                      % time step due'c!wW  
    n = [-N/2:1:N/2-1]';           % Index <:gNx%R  
    t = n.*dt;   UrhSX!g/A>  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 =u,8(:R]s  
    u20=u10.*0.0;                  % input to waveguide 2 ?--EIA8mfp  
    u1=u10; u2=u20;                 }-8ZSWog6f  
    U1 = u1;   Z8yt8O  
    U2 = u2;                       % Compute initial condition; save it in U ^<"^}Jh.M  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. \as^z!<  
    w=2*pi*n./T; PE7D)!d T  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T X$4MpXx  
    L=4;                           % length of evoluation to compare with S. Trillo's paper FLE2]cL-  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 {G^f/%  
    for m1 = 1:1:M1                                    % Start space evolution #rs]5tx([  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS @$bEY#*C  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; LE1#pB3TG  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform |5h~&kA  
       ca2 = fftshift(fft(u2)); sBuOKT/j  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation @|hn@!YK  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   UOwEA9q%  
       u2 = ifft(fftshift(c2));                        % Return to physical space u#&ZD|  
       u1 = ifft(fftshift(c1)); UW?(-_8  
    if rem(m1,J) == 0                                 % Save output every J steps. BA 9c-Ay  
        U1 = [U1 u1];                                  % put solutions in U array / ~\ I  
        U2=[U2 u2]; ),u)#`.l G  
        MN1=[MN1 m1]; Munal=wL  
        z1=dz*MN1';                                    % output location F=qG +T  
      end 4sCzUvI~Y1  
    end /eI]!a  
    hg=abs(U1').*abs(U1');                             % for data write to excel m[t4XK  
    ha=[z1 hg];                                        % for data write to excel )^^Eh=Kbj  
    t1=[0 t']; ys#V_ysb  
    hh=[t1' ha'];                                      % for data write to excel file rCTH 5"  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ;94e   
    figure(1) [IgB78_$  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn P nxxW?  
    figure(2) -? |-ux  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn &~SPDiu.t  
    MkCq$MA  
    非线性超快脉冲耦合的数值方法的Matlab程序 )8rN   
    TcP (?v  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   d>f.p"B.gj  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 0M=U >g)  
    AzmISm  
    eInx\/  
    k-`5T mW  
    %  This Matlab script file solves the nonlinear Schrodinger equations 6S2u%-]  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 4-wCk=I  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pg4J)<t#  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *co=<g]4KY  
    ofu {g  
    C=1;                           >n^| eAH  
    M1=120,                       % integer for amplitude qyx  '  
    M3=5000;                      % integer for length of coupler wACx}'+M  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ~$PQ8[=  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ha%3%O8Z  
    T =40;                        % length of time:T*T0. vj?6,Ae  
    dt = T/N;                     % time step "{&?t}rj+  
    n = [-N/2:1:N/2-1]';          % Index Z|h&Zd1z  
    t = n.*dt;   \en}8r9cy  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. :*`5|'G}  
    w=2*pi*n./T; M2.Pf s  
    g1=-i*ww./2; =DT7]fU  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ju AUeGT  
    g3=-i*ww./2; <A_LZi  
    P1=0; mqx#N%  
    P2=0; wj'5D0   
    P3=1; r/32pY  
    P=0; Y~j )B\^{  
    for m1=1:M1                 0CTUcVM#9  
    p=0.032*m1;                %input amplitude <Kq4thR  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ;ZSJ-r  
    s1=s10; Pz/bne;=  
    s20=0.*s10;                %input in waveguide 2 >H*?ktcW  
    s30=0.*s10;                %input in waveguide 3 BJ]4j-^o  
    s2=s20; S\F;b{S1  
    s3=s30; 'rX!E,59  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ];vEj*jCX  
    %energy in waveguide 1 i r-= @@  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   %]zaX-2dm!  
    %energy in waveguide 2 nisW<Q`uB  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   yd-r7iq  
    %energy in waveguide 3 '}Tf9L%  
    for m3 = 1:1:M3                                    % Start space evolution }aPx28:/  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS y7s:Buyc  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ^D{!!)O  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; D(m2^\O[  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform <ah!!  
       sca2 = fftshift(fft(s2)); RO]Vn]qb  
       sca3 = fftshift(fft(s3)); 8w:A""  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   {!$E\e^d  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); bw@"MF{  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); L*rND15  
       s3 = ifft(fftshift(sc3)); ;Tn$c70  
       s2 = ifft(fftshift(sc2));                       % Return to physical space |fJpX5W-l  
       s1 = ifft(fftshift(sc1)); m~LB0u$ac  
    end ~BS Ip .  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); z^KMYvH g  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); y" (-O%Pe  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); @-7h}2P Q  
       P1=[P1 p1/p10]; &at^~ o  
       P2=[P2 p2/p10]; =lE_ Q[P  
       P3=[P3 p3/p10]; O e-FI+7  
       P=[P p*p]; :$>Co\D  
    end (4hCT*  
    figure(1) Y6>@zznk  
    plot(P,P1, P,P2, P,P3);  2]$ 7  
    Jj_ t0"  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~