切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9340阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 -z$2pXT ^  
    TF-Ty  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of uE`|0  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of lkg*AAR?'  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear _i@eOqoC  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 zN)\2  
    8 {]Gh 0+  
    %fid=fopen('e21.dat','w'); f\U&M,L\ '  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ;;hyjFGq%  
    M1 =3000;              % Total number of space steps }k0-?_Z=1  
    J =100;                % Steps between output of space eSNSnh]'  
    T =10;                  % length of time windows:T*T0 6H,=S`V]EK  
    T0=0.1;                 % input pulse width 0DVZRB  
    MN1=0;                 % initial value for the space output location 3,L3C9V'  
    dt = T/N;                      % time step .]s( c!{y  
    n = [-N/2:1:N/2-1]';           % Index 1 3 `0d  
    t = n.*dt;   S5u#g`I]  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 {V% O4/  
    u20=u10.*0.0;                  % input to waveguide 2 )z235}P  
    u1=u10; u2=u20;                 OrEuQ-,i@  
    U1 = u1;   RrdtU7i3  
    U2 = u2;                       % Compute initial condition; save it in U g+ 1=5g  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. TTZxkK  
    w=2*pi*n./T; 7Ljj#!`lUp  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 'Rd*X6dv  
    L=4;                           % length of evoluation to compare with S. Trillo's paper #3yw   
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Vy^yV|`v  
    for m1 = 1:1:M1                                    % Start space evolution L\wpS1L(  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 9Jy2T/l  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; !_-sTZ  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform I,4-  
       ca2 = fftshift(fft(u2)); R=9~*9  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ~J>gVg%66  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ?t0zsq  
       u2 = ifft(fftshift(c2));                        % Return to physical space ~@uY?jr  
       u1 = ifft(fftshift(c1)); !H|82:`t+  
    if rem(m1,J) == 0                                 % Save output every J steps. #>m, Cm  
        U1 = [U1 u1];                                  % put solutions in U array gr`Ar;  
        U2=[U2 u2]; vo6[2.HS  
        MN1=[MN1 m1]; yaRcBT?  
        z1=dz*MN1';                                    % output location c\)&yGE  
      end p=_XMh`;  
    end ezr\T  
    hg=abs(U1').*abs(U1');                             % for data write to excel mDF"&.(j  
    ha=[z1 hg];                                        % for data write to excel mk%"G=w  
    t1=[0 t']; ocl47)  
    hh=[t1' ha'];                                      % for data write to excel file A` o?+2s_  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 3_\{[_W  
    figure(1) De nt?  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn vf'cx:m  
    figure(2) p37zz4  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn oa &z/`@  
    0i*'N ch#i  
    非线性超快脉冲耦合的数值方法的Matlab程序 +eBMn(7Cgv  
    kUg+I_j6*  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   HLSfoQ&)v  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 6/mkJj+"  
    @UpC{M--Wr  
    yD[zzEuQ  
    xv$)u<Ve  
    %  This Matlab script file solves the nonlinear Schrodinger equations Z[k#AgC)  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of lbB.*oQ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;;YcuzQI3  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 lP@)   
    fys5-1@-p  
    C=1;                           P^8^1-b  
    M1=120,                       % integer for amplitude Z\|u9DO  
    M3=5000;                      % integer for length of coupler WXLe,7y  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) uS,p|}Q&  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. fwi};)K  
    T =40;                        % length of time:T*T0. A-a17}fta  
    dt = T/N;                     % time step ~IlF*Zz#}6  
    n = [-N/2:1:N/2-1]';          % Index Hz]4AS  
    t = n.*dt;   Dh&:-  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. KbwTj*k[  
    w=2*pi*n./T; $bZu^d,  
    g1=-i*ww./2; qukjS#>+  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; kRN|TDx(  
    g3=-i*ww./2; X(GmiH /E  
    P1=0; 1m>^{u  
    P2=0; CJ9cCtA  
    P3=1; b|sc'eP#?  
    P=0; aJ :A%+1  
    for m1=1:M1                 (VYR!(17  
    p=0.032*m1;                %input amplitude Qj 6gg  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 u/gm10<OWa  
    s1=s10; 3z,v#2  
    s20=0.*s10;                %input in waveguide 2 N>d|A]zH  
    s30=0.*s10;                %input in waveguide 3 ,8c dXt   
    s2=s20; 8%o~4u3  
    s3=s30; Gr5`1`8|  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   T[0V%Br{d+  
    %energy in waveguide 1 5Noe/6  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   /x  
    %energy in waveguide 2 LkJ$aW/  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   -6rf( ER  
    %energy in waveguide 3 !}>eo2$r^  
    for m3 = 1:1:M3                                    % Start space evolution 8yE!7$Mj  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS mi7sBA9L8  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; owE<7TGPI?  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; G*i.a*9<)  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 5oz>1  
       sca2 = fftshift(fft(s2)); 44|deE3Z  
       sca3 = fftshift(fft(s3)); Z0e-W:&;kF  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   HUj+-  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); $brKl8P  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); i{gDW+N  
       s3 = ifft(fftshift(sc3)); .Qd}.EG  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 7{n\y l?  
       s1 = ifft(fftshift(sc1)); luW <V>  
    end ("_Q  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); L)q`D2|'  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); xME(B@j  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 3PsxOb+  
       P1=[P1 p1/p10]; jEUx q%BH  
       P2=[P2 p2/p10]; fO*)LPen.z  
       P3=[P3 p3/p10]; y0,Ft/D  
       P=[P p*p]; +x(YG(5\w  
    end u\`/Nhn  
    figure(1) 5B%w]n  
    plot(P,P1, P,P2, P,P3); xb%/sz(4  
    j7f5|^/x3  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~