切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8014阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 biV NZdA  
    5fRrd;  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 0rvBjlFT  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of \/b[V3<"  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear {yDQncq'^  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8tVSai8[  
     DTa!vg  
    %fid=fopen('e21.dat','w'); K0D|p$v  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 1OV] W f  
    M1 =3000;              % Total number of space steps 6s'n r7'0  
    J =100;                % Steps between output of space q[ 9N4nj$<  
    T =10;                  % length of time windows:T*T0 bGkLa/?S  
    T0=0.1;                 % input pulse width `z$P,^g`  
    MN1=0;                 % initial value for the space output location .PV(MV  
    dt = T/N;                      % time step qOIVuzi*  
    n = [-N/2:1:N/2-1]';           % Index 7!wc'~;  
    t = n.*dt;   8nWPt!U:  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 5 D=r7  
    u20=u10.*0.0;                  % input to waveguide 2 ;WAa4r>  
    u1=u10; u2=u20;                 !2>@:CKX  
    U1 = u1;   LzD RyL  
    U2 = u2;                       % Compute initial condition; save it in U /8!n7a7  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. +v$W$s&b-h  
    w=2*pi*n./T; Gpi_p  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T [!MS1v c;  
    L=4;                           % length of evoluation to compare with S. Trillo's paper yFS{8yrRUU  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ,SNt*t1"  
    for m1 = 1:1:M1                                    % Start space evolution 78r0K 5=  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS }h1eB~6M  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Bl^ BtE?-b  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 8I Ip,#%v  
       ca2 = fftshift(fft(u2)); n`@dk_%yI  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation f( Dtv  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   z`.<dNg  
       u2 = ifft(fftshift(c2));                        % Return to physical space ,fqM>Q  
       u1 = ifft(fftshift(c1)); 6kMkFZ}+  
    if rem(m1,J) == 0                                 % Save output every J steps. xR8.1T?8  
        U1 = [U1 u1];                                  % put solutions in U array >2= Y 35j  
        U2=[U2 u2]; RWX!d54&  
        MN1=[MN1 m1]; <1B+@  
        z1=dz*MN1';                                    % output location ~mwIr  
      end 8!HB$vdw7  
    end E m^Dg9  
    hg=abs(U1').*abs(U1');                             % for data write to excel |)C *i  
    ha=[z1 hg];                                        % for data write to excel HVhP |+  
    t1=[0 t']; "RM\<)IF  
    hh=[t1' ha'];                                      % for data write to excel file OZd (~E  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format dsj}GgG?Z  
    figure(1) W/b)OlG"2  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Jgg<u#  
    figure(2) ||.Hv[ ]V*  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 4=EA3`l  
    ``I[1cC  
    非线性超快脉冲耦合的数值方法的Matlab程序 ?L0k|7  
    -(>Ch>O  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   co1aG,>"q  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 VIN0kRQ#  
    >fth iA  
    FvG?%IFM  
    0xO*8aKT  
    %  This Matlab script file solves the nonlinear Schrodinger equations M_-L#FHX  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of eB=&(ZT  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear X,#~[%h$-=  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 f$n5$hJlQ  
    PHEQG]H S  
    C=1;                           }ijQ*ECdl  
    M1=120,                       % integer for amplitude UqyW8TCf?  
    M3=5000;                      % integer for length of coupler p\F%Nj,  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) {:#nrD"  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. <<E 9MIn_  
    T =40;                        % length of time:T*T0. -u4")V>  
    dt = T/N;                     % time step R dwt4A+  
    n = [-N/2:1:N/2-1]';          % Index y22DBB8  
    t = n.*dt;   bk;uKV+<  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. #.[eZ[  
    w=2*pi*n./T; _H@ATut  
    g1=-i*ww./2; 5ya^k{`+ZO  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; |2@*?o"ll  
    g3=-i*ww./2; AO]cnh C  
    P1=0; 9xhc:@B1J  
    P2=0; S4[ #[w`=  
    P3=1; k4hk* 0Jq  
    P=0; 3Jt# Mp  
    for m1=1:M1                 (_<,Oj#*S  
    p=0.032*m1;                %input amplitude S*|/txE'~Y  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 =-X-${/  
    s1=s10; M@<9/xPS  
    s20=0.*s10;                %input in waveguide 2 /*k_`3L  
    s30=0.*s10;                %input in waveguide 3 VN`fZ5*d~  
    s2=s20; e0(aRN{W  
    s3=s30; +egwZ$5I  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   m%apGp'=1  
    %energy in waveguide 1 6hv.;n};  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   g#^MO]pY  
    %energy in waveguide 2 Bf;_~1+vLG  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   &KAe+~aPm  
    %energy in waveguide 3 /]5*;kO`  
    for m3 = 1:1:M3                                    % Start space evolution  Owi/e  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS uf9&o#  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 5Gy#$'kdf  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; LybaE~=  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform %K-8DL8|(  
       sca2 = fftshift(fft(s2)); h_S>Q  
       sca3 = fftshift(fft(s3)); la_c:#ho  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   'ScvteQ  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); <Nqbp  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 5TB6QLPEwY  
       s3 = ifft(fftshift(sc3)); p^k0Rad  
       s2 = ifft(fftshift(sc2));                       % Return to physical space X(MS!RV  
       s1 = ifft(fftshift(sc1)); y32$b,%Xi,  
    end xlu4  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));  =g M@[2  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 3oMHy5  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ^N|8 B?Vg  
       P1=[P1 p1/p10]; _W_< bI34  
       P2=[P2 p2/p10]; kDWEgnXK,v  
       P3=[P3 p3/p10]; S#y[_C?H  
       P=[P p*p]; OM&GypP6&  
    end vQK/xg  
    figure(1) !e~[U-  
    plot(P,P1, P,P2, P,P3); 3u$1W@T(  
    = a60Xv  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~