计算脉冲在非线性耦合器中演化的Matlab 程序 y{&{=1# )D6'k{6 M % This Matlab script file solves the coupled nonlinear Schrodinger equations of
0{U ]STj % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
df21t^0/ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
X-*KQ+? % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
:JTRRv pUCEYR %fid=fopen('e21.dat','w');
vkNZ -`+I N = 128; % Number of Fourier modes (Time domain sampling points)
;:8jxkx6% M1 =3000; % Total number of space steps
eE#81]'6a J =100; % Steps between output of space
7>W+Uq T =10; % length of time windows:T*T0
?vL^:f[" T0=0.1; % input pulse width
5~ *'>y MN1=0; % initial value for the space output location
>h/)r6 dt = T/N; % time step
it/C y\f n = [-N/2:1:N/2-1]'; % Index
)|59FOWg t = n.*dt;
F|
,Vw{ u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
0s+rd& u20=u10.*0.0; % input to waveguide 2
~,M;+T}[r u1=u10; u2=u20;
$@ T6g U1 = u1;
fed[^wW U2 = u2; % Compute initial condition; save it in U
R"8})a
gw ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
?=|)n% w=2*pi*n./T;
E:dT_x<Y g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
CwH)6uA L=4; % length of evoluation to compare with S. Trillo's paper
<Vr]2mw dz=L/M1; % space step, make sure nonlinear<0.05
Hjo:;s for m1 = 1:1:M1 % Start space evolution
^}Dv$\;6 u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
LzEE]i u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
$+)x)1 ca1 = fftshift(fft(u1)); % Take Fourier transform
{_k!!p6 ca2 = fftshift(fft(u2));
6"rFfdns c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
BHRrXC\ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
#IL~0t u2 = ifft(fftshift(c2)); % Return to physical space
([4{n u1 = ifft(fftshift(c1));
CpP$HrQ if rem(m1,J) == 0 % Save output every J steps.
]>S$R&a U1 = [U1 u1]; % put solutions in U array
8'g*}[ U2=[U2 u2];
]mJAKycE% MN1=[MN1 m1];
CB{k;H z1=dz*MN1'; % output location
B#Oc8`1Y end
+=29y@c end
?XTg%U
hg=abs(U1').*abs(U1'); % for data write to excel
|]]pHC_/W ha=[z1 hg]; % for data write to excel
ay7+H7^|hZ t1=[0 t'];
NdED8 iRc hh=[t1' ha']; % for data write to excel file
,{mf+ 3&$, %dlmwrite('aa',hh,'\t'); % save data in the excel format
\PtC figure(1)
_>:=<xyOq waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
q%=7<( w figure(2)
v,x%^gv 0 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
(1r>50Ge nF!_q;+Vp 非线性超快脉冲耦合的数值方法的Matlab程序 !\D]\|Bo Pi]s<3PL 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
oE|{|27X Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
(j"~]T!)1 ,*}g
r %Cbc@=k XKPt[$ab % This Matlab script file solves the nonlinear Schrodinger equations
Y[8co<p % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
JXR/K=<^ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
oe_[h]Hgl % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
8Q)mmkI\= K&a]pL6D C=1;
RxDxLU2kt M1=120, % integer for amplitude
(Ss77~W7 M3=5000; % integer for length of coupler
gJ[q
{b N = 512; % Number of Fourier modes (Time domain sampling points)
}zfLm`vJ dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
I>4Tbwy.- T =40; % length of time:T*T0.
a518N*]j dt = T/N; % time step
]zR;%p n = [-N/2:1:N/2-1]'; % Index
{HJ`%xN| t = n.*dt;
[{!j9E?( ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
Er+3S@sfq, w=2*pi*n./T;
ThqfZl=V g1=-i*ww./2;
*$Wx*Jo g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
)eGu4iEPM g3=-i*ww./2;
^9V8 M9 P1=0;
@aPu}Hi P2=0;
9oau_Q# P3=1;
[@?.}! P=0;
][K8\ for m1=1:M1
g}og@UY7# p=0.032*m1; %input amplitude
eRqexqO! s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
tS/APSY s1=s10;
^)P5(fJ s20=0.*s10; %input in waveguide 2
<IkD=X s30=0.*s10; %input in waveguide 3
K}*p(1$u s2=s20;
1X_!%Z s3=s30;
U!UX"r p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
H=SMDj)s+ %energy in waveguide 1
VS@W.0/ p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
ZYt"=\_ %energy in waveguide 2
.+~kJ0~Y p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
@_:?N(%( %energy in waveguide 3
zSvHv s for m3 = 1:1:M3 % Start space evolution
\]:NOmI^' s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
+z?f,`.* s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
]` Gz_e s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
?j$8Uy$$ sca1 = fftshift(fft(s1)); % Take Fourier transform
UU~;B sca2 = fftshift(fft(s2));
n)7$xYuH sca3 = fftshift(fft(s3));
R\=\6( " sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
z8[|LF-dx sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
l{SPV8[i sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
%1d6j<7 s3 = ifft(fftshift(sc3));
~ilBw:L-3 s2 = ifft(fftshift(sc2)); % Return to physical space
2X|jq4 s1 = ifft(fftshift(sc1));
-#z'A end
P*=3$-` p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
zSufU2 p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
<y/AEY1 p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
f6A['<%o P1=[P1 p1/p10];
00x^zu?N P2=[P2 p2/p10];
!_z>w6uR
P3=[P3 p3/p10];
{'bkU9+ P=[P p*p];
b6M)qt9R end
Q6<Uuiw figure(1)
=@/^1.` plot(P,P1, P,P2, P,P3);
JWjp<{Q;1 BQmafpp` 转自:
http://blog.163.com/opto_wang/