切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8742阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 &Zf@vD  
    >`6^1j(3  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ;B7>/q;g  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of v+\E%H  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear }$b/g  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 h IGa);g  
     6E  
    %fid=fopen('e21.dat','w'); Tp9LBF  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) / {A]('t  
    M1 =3000;              % Total number of space steps AKS(WNGEp  
    J =100;                % Steps between output of space 2[W Qq)\  
    T =10;                  % length of time windows:T*T0 D,X$66T ^  
    T0=0.1;                 % input pulse width ']qC,;2  
    MN1=0;                 % initial value for the space output location \f+R!  
    dt = T/N;                      % time step B$7lL  
    n = [-N/2:1:N/2-1]';           % Index ag] nVE/  
    t = n.*dt;   wv1?v_4  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 <,LeFy\zW  
    u20=u10.*0.0;                  % input to waveguide 2 !Dz:6r  
    u1=u10; u2=u20;                 <q_H 3|  
    U1 = u1;   z9VQsC'K  
    U2 = u2;                       % Compute initial condition; save it in U 3Hq0\Y"Y  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. xvgIYc{  
    w=2*pi*n./T; eNXpRvY  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 1Ce:<.99B  
    L=4;                           % length of evoluation to compare with S. Trillo's paper S;CT:kG6Y{  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 mNV4"lNR  
    for m1 = 1:1:M1                                    % Start space evolution X-t4irZ)  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Ir]b. 6B  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; zO!`sPP  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform u<+;]8[o  
       ca2 = fftshift(fft(u2)); 0}aJCJ9sx=  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 4h(aTbHaQ  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   NMOTWA }2  
       u2 = ifft(fftshift(c2));                        % Return to physical space /Fk0j_b  
       u1 = ifft(fftshift(c1)); +[*UC"  
    if rem(m1,J) == 0                                 % Save output every J steps. 60hf)er  
        U1 = [U1 u1];                                  % put solutions in U array ;1"K79  
        U2=[U2 u2]; 8fdOV&&D~i  
        MN1=[MN1 m1]; tl#hCy  
        z1=dz*MN1';                                    % output location J,IOp-  
      end ytJ |jgp'  
    end jkfI,T  
    hg=abs(U1').*abs(U1');                             % for data write to excel gAR];(*  
    ha=[z1 hg];                                        % for data write to excel FxD"z3D  
    t1=[0 t']; Th"7p:SE?  
    hh=[t1' ha'];                                      % for data write to excel file qHv W{0E  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format %S@XY3jZY  
    figure(1) {5*+  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn sX@e1*YE_  
    figure(2) gzw[^d  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn o6{XT.z5qx  
    CIV6 Qe"<  
    非线性超快脉冲耦合的数值方法的Matlab程序 +K+ == mO&  
    ib& |271gG  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   SqEO ] ~  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 :?lSa6de  
    `7'(U)x,F  
    #Xsby  
    G|H\(3hHLZ  
    %  This Matlab script file solves the nonlinear Schrodinger equations m.lNKIknQ  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Xf#uK\f  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear .%D] z{''  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 sYXVSNonm  
    iPE-j#|  
    C=1;                           S$V'_  
    M1=120,                       % integer for amplitude KX*e2 /0  
    M3=5000;                      % integer for length of coupler <Qwi 0$  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) p%j@2U  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. UY>{e>/H9  
    T =40;                        % length of time:T*T0. ULsz<Hj  
    dt = T/N;                     % time step ]jM D'vg^b  
    n = [-N/2:1:N/2-1]';          % Index pvcf_w`n  
    t = n.*dt;   Ndx='j0  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. r Cmqq/hZ  
    w=2*pi*n./T; >R.~'A/$F  
    g1=-i*ww./2; d{DlW |_  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ~lQ]PKJ"  
    g3=-i*ww./2; \7W {/v4^  
    P1=0; Z73 ysn}  
    P2=0; hWuq  
    P3=1; GfVMj7{  
    P=0; /GCSC8T  
    for m1=1:M1                 Be-gGJG  
    p=0.032*m1;                %input amplitude I8?egDkk  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 _"z#I CT(  
    s1=s10; y*_g1q$  
    s20=0.*s10;                %input in waveguide 2 EEF}Wf$f  
    s30=0.*s10;                %input in waveguide 3 #r0A<+t{T  
    s2=s20; Vd|/]Zj  
    s3=s30; w6Ue5Ix,!  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   \QYs(nm?k  
    %energy in waveguide 1 'O2{0  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   RU[{!E  
    %energy in waveguide 2 q-p4k`]  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   +}z T][9w  
    %energy in waveguide 3 '0?5K0 2(  
    for m3 = 1:1:M3                                    % Start space evolution NW^}u~-f  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS W5sVQ`S-  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; w)3LYF  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; R-Uj\M>  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform cj5p I?@e)  
       sca2 = fftshift(fft(s2)); Z;lE-`Z*(F  
       sca3 = fftshift(fft(s3)); {"s9A&  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   u;y1leG  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); TS@EE&Wq  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); D*_ F@}=  
       s3 = ifft(fftshift(sc3)); vO <;Gnh~  
       s2 = ifft(fftshift(sc2));                       % Return to physical space bQ_i&t\yzB  
       s1 = ifft(fftshift(sc1)); *:)#'cenI  
    end gTiDV{ Ip  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); gM_Z/$  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); qC IZW  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); &>sG x K  
       P1=[P1 p1/p10]; .viA+V  
       P2=[P2 p2/p10]; Bxz{rR0XV  
       P3=[P3 p3/p10]; J6\<>5 A?  
       P=[P p*p]; } %rF}>$A  
    end lD\lFN(:  
    figure(1) <XGOcekG  
    plot(P,P1, P,P2, P,P3); 3Qn! `  
    -%"MAIJnX  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~