切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8782阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ],Y+|uX->  
    ~`VD}{[,B  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of )}T0SGY  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of <{A|Xs  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 1.q a//'RW  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~H`(zzk  
    I#](mRJ6  
    %fid=fopen('e21.dat','w'); +q)B4A'J!  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) _,E! <  
    M1 =3000;              % Total number of space steps yA-UXKT  
    J =100;                % Steps between output of space O`='8'6zW\  
    T =10;                  % length of time windows:T*T0 m#t  
    T0=0.1;                 % input pulse width yyu f  
    MN1=0;                 % initial value for the space output location *Duxabo?  
    dt = T/N;                      % time step PH]ui=  
    n = [-N/2:1:N/2-1]';           % Index nV?e(}D  
    t = n.*dt;   "?Xb$V7  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 +L<x0-&  
    u20=u10.*0.0;                  % input to waveguide 2 "pkn  
    u1=u10; u2=u20;                 >[TJ-%V>oR  
    U1 = u1;   ~b SjZ1`  
    U2 = u2;                       % Compute initial condition; save it in U gX *i"Y#  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ewzZb*\  
    w=2*pi*n./T; \d"M&-O  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T p+|(lrYC  
    L=4;                           % length of evoluation to compare with S. Trillo's paper GbbD)  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 UNd+MHE74I  
    for m1 = 1:1:M1                                    % Start space evolution /*) =o+  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ^1w*$5YI  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; D*o[a#2_  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform )w!*6<  
       ca2 = fftshift(fft(u2)); zu|=1C#5h  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ~:lN("9OI  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   BX6]d:S  
       u2 = ifft(fftshift(c2));                        % Return to physical space "ku ?A^f  
       u1 = ifft(fftshift(c1)); P*sb@y>}O  
    if rem(m1,J) == 0                                 % Save output every J steps. B3iU#   
        U1 = [U1 u1];                                  % put solutions in U array L# NW<T  
        U2=[U2 u2]; 1r;.r|  
        MN1=[MN1 m1]; #u6ZCv7u  
        z1=dz*MN1';                                    % output location .#$D\cwV  
      end 9<S};I;  
    end Y'%k G5nF  
    hg=abs(U1').*abs(U1');                             % for data write to excel G9i?yd4n=B  
    ha=[z1 hg];                                        % for data write to excel ^J$?[@qD  
    t1=[0 t']; &nEQ `3~F  
    hh=[t1' ha'];                                      % for data write to excel file +idp1SJ4  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format  Gu P1  
    figure(1) +~]LvZtI_  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ^zVBS7`J  
    figure(2) dJwE/s  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn {QRrAi  
    l\{{iAC]I  
    非线性超快脉冲耦合的数值方法的Matlab程序 a)GT\1q  
    gXI8$W>  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   BSib/)p   
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 >,. x'{  
    "vG~2J  
    R-2V C  
    >X!A/; $  
    %  This Matlab script file solves the nonlinear Schrodinger equations -%#F5br%  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of IHlTp0?  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear =ADdfuKN  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 JHZ`LWq  
    P_f^gB7  
    C=1;                           Ue22,Pp6  
    M1=120,                       % integer for amplitude El)WjcmH  
    M3=5000;                      % integer for length of coupler h16i]V  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ($ l t@j  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. )0W-S9e<  
    T =40;                        % length of time:T*T0. #b?)fqRJL  
    dt = T/N;                     % time step dNMz(~A[Y  
    n = [-N/2:1:N/2-1]';          % Index K9(Su`zr  
    t = n.*dt;   9:tn! <^=I  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. }yW*vy6`  
    w=2*pi*n./T; 2XN];,{  
    g1=-i*ww./2; HQO z  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ?H2{R:  
    g3=-i*ww./2; &=d0'3k>  
    P1=0; j\S}TaH0e  
    P2=0; PRE\ 2lLY  
    P3=1; >^fkHbgNQ  
    P=0; \h}a?T6  
    for m1=1:M1                 >X"V  
    p=0.032*m1;                %input amplitude Q7-d]xJ^  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 t$W~X~//  
    s1=s10; ^cy.iolt  
    s20=0.*s10;                %input in waveguide 2 0=^A{V!m  
    s30=0.*s10;                %input in waveguide 3 yxt `  
    s2=s20; }.j09[<  
    s3=s30; 4pfv?!Oj  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   OAhCW*B  
    %energy in waveguide 1  h7h[! >  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   MSw:Ay [9  
    %energy in waveguide 2 If*t$f>y4N  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ~20O&2  
    %energy in waveguide 3 z sZP\  
    for m3 = 1:1:M3                                    % Start space evolution *&VqAc%qD  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS oMj;9,WK'  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; L,B#%t  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; v)a$;P%  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform s28rj6q  
       sca2 = fftshift(fft(s2)); >pV|c\  
       sca3 = fftshift(fft(s3)); U%~L){<V[  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   6fOh *  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); s$s]D\N  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); xxN=,p  
       s3 = ifft(fftshift(sc3)); rfdT0xfcU  
       s2 = ifft(fftshift(sc2));                       % Return to physical space pg%'_+$~m  
       s1 = ifft(fftshift(sc1)); Xt!%W    
    end Ew|VDD(.  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); \!["U`\.K  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 7Q>*]  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ?u`TX_OsB  
       P1=[P1 p1/p10]; Y^Olcz  
       P2=[P2 p2/p10]; N<\U$\i  
       P3=[P3 p3/p10]; 3 oG5E"G  
       P=[P p*p]; l$_Yl&!q$  
    end Y GZX}-  
    figure(1) W\tSXM-Hg  
    plot(P,P1, P,P2, P,P3); _FET$$>z N  
    JY|f zL  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~