计算脉冲在非线性耦合器中演化的Matlab 程序 7l}~4dm2J psD[j W % This Matlab script file solves the coupled nonlinear Schrodinger equations of
$i&\\QNn % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
70<K.T<b % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
4? {*( % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
,iOZ| G4yUC<TqBP %fid=fopen('e21.dat','w');
pSrsp r N = 128; % Number of Fourier modes (Time domain sampling points)
UQdyv(jXq M1 =3000; % Total number of space steps
B_@7IbB J =100; % Steps between output of space
YnxU(v'\ T =10; % length of time windows:T*T0
7sN0`7 T0=0.1; % input pulse width
c+;S<g0 MN1=0; % initial value for the space output location
<W|1<=z( dt = T/N; % time step
#f9qlM32
n = [-N/2:1:N/2-1]'; % Index
!>|`ly$6 t = n.*dt;
2^bgC~2C1 u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
F=5kF/}x-z u20=u10.*0.0; % input to waveguide 2
Z`"n:'& u1=u10; u2=u20;
3d U#Ueu U1 = u1;
MVuP
|&:n U2 = u2; % Compute initial condition; save it in U
(6[Wr}SW5 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
SW-0h4 w=2*pi*n./T;
d:3= 1x g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
{9:hg9;E* L=4; % length of evoluation to compare with S. Trillo's paper
A xR\ned dz=L/M1; % space step, make sure nonlinear<0.05
P59uALi for m1 = 1:1:M1 % Start space evolution
M[vCpa u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
>!G5]?taa u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
/]l f>\x1 ca1 = fftshift(fft(u1)); % Take Fourier transform
`NoCH[$!+ ca2 = fftshift(fft(u2));
x[a'(5PwY c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
'w`d$c/p c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
`~KAk u2 = ifft(fftshift(c2)); % Return to physical space
tpz=}q u1 = ifft(fftshift(c1));
~:s!].H if rem(m1,J) == 0 % Save output every J steps.
"#J}A0 U1 = [U1 u1]; % put solutions in U array
gTyW#verh$ U2=[U2 u2];
}(rzH}X@ MN1=[MN1 m1];
h?3f5G*&H z1=dz*MN1'; % output location
]N_140N~ end
95% :AQLV end
ILIRI[7( hg=abs(U1').*abs(U1'); % for data write to excel
2PI #ie4 ha=[z1 hg]; % for data write to excel
{8W |W2o$! t1=[0 t'];
R3cG<MjmK hh=[t1' ha']; % for data write to excel file
cxk=|
?l %dlmwrite('aa',hh,'\t'); % save data in the excel format
Cb<~i figure(1)
?/^VOj4& waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
@nW'(x( figure(2)
fV v$K& waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
ar=hx+ Q9nu"x
% 非线性超快脉冲耦合的数值方法的Matlab程序 2voNgY gZ~y}@Ly 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
(''$'5~ Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
-1#e^9Ve\ X ^9t jeyaT^F(
Z|f^nH#-C % This Matlab script file solves the nonlinear Schrodinger equations
!/[AQ{**T! % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
R2 'C s % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
oF`-cyj" % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
`~sf}S
: %Ud.SJ3 C=1;
N n:m+ZDo^ M1=120, % integer for amplitude
9n-RXVL+ M3=5000; % integer for length of coupler
chM t5L+5 N = 512; % Number of Fourier modes (Time domain sampling points)
; \Y- dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
)bF)RLZ T =40; % length of time:T*T0.
vs*_;vx dt = T/N; % time step
(d1V1t2r6 n = [-N/2:1:N/2-1]'; % Index
p3i
qW,[@ t = n.*dt;
(}~ 1{C@ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
Ebmqq#SHjX w=2*pi*n./T;
BZ8h*|uT" g1=-i*ww./2;
\0xzBs1! g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
8'>.#vyMGv g3=-i*ww./2;
i,\t]EJAU P1=0;
mOgx&ns;j P2=0;
`1DU b7< P3=1;
_AA`R`p; P=0;
v#zfs' for m1=1:M1
}d$vcEI$3 p=0.032*m1; %input amplitude
Zm?G'06 s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
uBV^nUjS"m s1=s10;
Bx_8@+ s20=0.*s10; %input in waveguide 2
K.c6Rg s30=0.*s10; %input in waveguide 3
9~*_(yjF s2=s20;
jnx+wcd s3=s30;
GN8`xR{J* p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
D<$j`r %energy in waveguide 1
E9
:|8#b p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
y$"~^8"z %energy in waveguide 2
9.]Cy8 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
?3e!A9x %energy in waveguide 3
cJ1{2R for m3 = 1:1:M3 % Start space evolution
\ltE rd- s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
Qt)7mf s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
X,Q6 s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
(W{ rv6cq sca1 = fftshift(fft(s1)); % Take Fourier transform
+$Ddd`J' sca2 = fftshift(fft(s2));
GNj/jU<o! sca3 = fftshift(fft(s3));
:$u{ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
$Adp sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
ahz@HX sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
8O}A/*1FJ s3 = ifft(fftshift(sc3));
'3Y0D1`v s2 = ifft(fftshift(sc2)); % Return to physical space
J/H#d')c s1 = ifft(fftshift(sc1));
'8((;N|I^ end
8M5!5Jzv p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
()rx>?x5 p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
QvT-&| p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
({}O
M=_ P1=[P1 p1/p10];
9X*eE P2=[P2 p2/p10];
x Jj8njuq4 P3=[P3 p3/p10];
2Q;Y@%G P=[P p*p];
EUYa =- end
D[FfJcV'$ figure(1)
cnjj)
c plot(P,P1, P,P2, P,P3);
[M zc^I& !ktA"Jx 转自:
http://blog.163.com/opto_wang/