切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9138阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 lFTF ,G  
    [HCAmnb  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of J>u 7,  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of B<C*  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Duc#$YfGm  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 * S=\l@EW  
    D@!=d@V.  
    %fid=fopen('e21.dat','w'); ?_I[,N?@41  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) me OMq1  
    M1 =3000;              % Total number of space steps 4.IU!.Uo  
    J =100;                % Steps between output of space #> j.$2G>  
    T =10;                  % length of time windows:T*T0 6;|n]m\Vd  
    T0=0.1;                 % input pulse width MNSbtT*^  
    MN1=0;                 % initial value for the space output location 2(/g}  
    dt = T/N;                      % time step Yv:55+e!|  
    n = [-N/2:1:N/2-1]';           % Index bf9a 1<\  
    t = n.*dt;   $V1;la!  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 QR1{ w'c  
    u20=u10.*0.0;                  % input to waveguide 2 ar:+;.n  
    u1=u10; u2=u20;                 4C FB"?n0  
    U1 = u1;   8P=o4lO+  
    U2 = u2;                       % Compute initial condition; save it in U otk}y8  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. EY \H=@A  
    w=2*pi*n./T; b, :QT~g=  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T <n(*Xak{a  
    L=4;                           % length of evoluation to compare with S. Trillo's paper _1U1(^)  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ?wO-cnl  
    for m1 = 1:1:M1                                    % Start space evolution 6P';DB  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ;pnD0bH  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 8>7& E-  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 4q<=K=F  
       ca2 = fftshift(fft(u2)); R9B&dvG  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation L:9F:/G  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   H/Llj.-jg  
       u2 = ifft(fftshift(c2));                        % Return to physical space 23h% < ,  
       u1 = ifft(fftshift(c1)); 8jyG" %WO  
    if rem(m1,J) == 0                                 % Save output every J steps. L(U"U#QZ  
        U1 = [U1 u1];                                  % put solutions in U array Fy.\7CL>  
        U2=[U2 u2]; 5< ja3  
        MN1=[MN1 m1]; @'|)~,"bx  
        z1=dz*MN1';                                    % output location KCWc`Oz  
      end Ntbg`LGf'!  
    end uJ6DO#d`P  
    hg=abs(U1').*abs(U1');                             % for data write to excel aXL{TD:]  
    ha=[z1 hg];                                        % for data write to excel U4cY_p?  
    t1=[0 t']; 2 aL)  
    hh=[t1' ha'];                                      % for data write to excel file $]8h $  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format *W kIq>  
    figure(1) i F+vl]  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn $#]]K  
    figure(2) 7PkJ-JBA  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Mb]rY>B4  
    qM.bF&&Go  
    非线性超快脉冲耦合的数值方法的Matlab程序 lv]hTH 4T  
    <A# l 35  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   0C>%LJ8r  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 &-mX ,   
    !tp1:'KG  
    8KRba4[  
    g>J<%z, }2  
    %  This Matlab script file solves the nonlinear Schrodinger equations AhNq/?Q Q~  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Hbpqyl%O>  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear v.]Q$q^  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4)("v-p  
    &SrO)  
    C=1;                           *f?4   
    M1=120,                       % integer for amplitude ZfB " E  
    M3=5000;                      % integer for length of coupler zSFDUZ]A3  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Kh MSL  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. qs QNjt  
    T =40;                        % length of time:T*T0. OD5m9XS  
    dt = T/N;                     % time step L>YU,I\o  
    n = [-N/2:1:N/2-1]';          % Index 3Oi nK['  
    t = n.*dt;   qv@$ZLR  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. m o:D9  
    w=2*pi*n./T; lg b?)=  
    g1=-i*ww./2; o9H^?Rut  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; tuhA 9}E  
    g3=-i*ww./2; GxKqD;;u?=  
    P1=0; _~T!9  
    P2=0; >>5NX"{  
    P3=1; kbMYMx.[  
    P=0; QPfc(Z  
    for m1=1:M1                 ~SnSEhE  
    p=0.032*m1;                %input amplitude IqD_GL)Ms  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 L\#<JxY$p  
    s1=s10; 1[yq0^\]M[  
    s20=0.*s10;                %input in waveguide 2 X3V'Cy/sy  
    s30=0.*s10;                %input in waveguide 3 6C+"`(u%V  
    s2=s20; 8f3vjK'  
    s3=s30; J52 o g4l  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   :at$HCaK  
    %energy in waveguide 1 Ba/Yl  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ]~E0gsq  
    %energy in waveguide 2 4A2?Uhp y  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   l@ap]R  
    %energy in waveguide 3 d{E}6)1=  
    for m3 = 1:1:M3                                    % Start space evolution 7__Q1 > o  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 7IjQi=#:  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 9s_,crq5  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; yfC^x%d7G  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform k+DR]icv  
       sca2 = fftshift(fft(s2)); I:d[Q s  
       sca3 = fftshift(fft(s3)); :.45u}[  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   PgRDKygE  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); INyk3`FT  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 7%{ |  
       s3 = ifft(fftshift(sc3)); T9879[ZU\  
       s2 = ifft(fftshift(sc2));                       % Return to physical space [mPjP%{=@  
       s1 = ifft(fftshift(sc1)); 14"J d\M8  
    end ?|ZTaX6A  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); as>L[jyG/  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); #2EI\E&$  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); `8Lo{P  
       P1=[P1 p1/p10]; ]TyisaT  
       P2=[P2 p2/p10]; .({smN,B  
       P3=[P3 p3/p10]; Ey4z.s'-l  
       P=[P p*p]; P'O#I}Dmw<  
    end 8{Fsm;UsY  
    figure(1) HO' '&hz  
    plot(P,P1, P,P2, P,P3); /0eYMG+K=  
    J:kmqk!  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~