计算脉冲在非线性耦合器中演化的Matlab 程序 gHVD,Jr =${ImMwj % This Matlab script file solves the coupled nonlinear Schrodinger equations of
&e5,\TQ % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
V#V<Kz % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
@|@6pXR. % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
g HKA:j`c me@EKspX %fid=fopen('e21.dat','w');
?wMS[Kj N = 128; % Number of Fourier modes (Time domain sampling points)
iLf*m~Q M1 =3000; % Total number of space steps
[ejl #'*5 J =100; % Steps between output of space
G_6!w// T =10; % length of time windows:T*T0
{Ty?OZ T0=0.1; % input pulse width
;>jOB>b{h MN1=0; % initial value for the space output location
kl#)0yqN0 dt = T/N; % time step
6?= ^8 n = [-N/2:1:N/2-1]'; % Index
BzI( t = n.*dt;
L7s
_3\ u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
_&PF (/w u20=u10.*0.0; % input to waveguide 2
@;>Xy!G u1=u10; u2=u20;
9D51@b6k U1 = u1;
xd]7?L@h.I U2 = u2; % Compute initial condition; save it in U
|}<!O@<| ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
I.)9:7 w=2*pi*n./T;
GD#W=O g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
CV* L=4; % length of evoluation to compare with S. Trillo's paper
Ir3|PehB dz=L/M1; % space step, make sure nonlinear<0.05
ux>LciNq for m1 = 1:1:M1 % Start space evolution
| @p u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
da5fKK/s u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
B-tLRLWn ca1 = fftshift(fft(u1)); % Take Fourier transform
O\^D
6\ v ca2 = fftshift(fft(u2));
G3de<?K.[V c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
AI3\eH+ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
c.h_&~0qf u2 = ifft(fftshift(c2)); % Return to physical space
$TavvO%# u1 = ifft(fftshift(c1));
pcPRkYT[M if rem(m1,J) == 0 % Save output every J steps.
5z"[{#/ U1 = [U1 u1]; % put solutions in U array
]VK9d;0D U2=[U2 u2];
"IJcKoB MN1=[MN1 m1];
lsB.>N lU z1=dz*MN1'; % output location
KL8WT6!RZ end
;;n=(cM|z end
FO?I}G22 hg=abs(U1').*abs(U1'); % for data write to excel
.jRv8x b ha=[z1 hg]; % for data write to excel
8iN@n8O t1=[0 t'];
$kn"S>jV hh=[t1' ha']; % for data write to excel file
SNtOHTQ %dlmwrite('aa',hh,'\t'); % save data in the excel format
)iCg,?SSw= figure(1)
a`S3v waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
;Yn_*M/* figure(2)
Ct}rj-L<i waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
`}*jjnr" 7kQ,D,c' 非线性超快脉冲耦合的数值方法的Matlab程序 t++\&!F q??N, 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
FSS~E [(DL Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
cb9@
0^- Bt"*a=t; .;NoKO7) X*rB`M7, % This Matlab script file solves the nonlinear Schrodinger equations
x DX_s:A % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
L&qY709 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
@wW)#!Mou % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
S-G#+Ue2 fFd"21> C=1;
,\E5et4 M1=120, % integer for amplitude
jp+#N
pH M3=5000; % integer for length of coupler
Dlo4Wy N = 512; % Number of Fourier modes (Time domain sampling points)
1Yy*G-7} dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
uCGn9] T =40; % length of time:T*T0.
g<N3 L [ dt = T/N; % time step
f{f|frs n = [-N/2:1:N/2-1]'; % Index
%{^kmlO t = n.*dt;
&^@IAjxn ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
<N\#6m w=2*pi*n./T;
_@ @"' g1=-i*ww./2;
\DRYqLT` g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
vKNxL^x g3=-i*ww./2;
v@
OM P1=0;
~n!7 ?4%U P2=0;
u"M^qRhD P3=1;
wfc+E9E P=0;
%~YQlN for m1=1:M1
ED
R*1!d p=0.032*m1; %input amplitude
i+Btz- s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
)J!=X`b s1=s10;
h_ J|uu s20=0.*s10; %input in waveguide 2
|Xa|%f s30=0.*s10; %input in waveguide 3
hOF>Dj s2=s20;
)z2hyGX s3=s30;
Se&%Dr3Nv p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
[:C!g#o %energy in waveguide 1
t&Z:G<; p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
Vr%!rQ %energy in waveguide 2
}8&L?B;90 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
t!}?nw%$ %energy in waveguide 3
];G$~[ for m3 = 1:1:M3 % Start space evolution
H1g"09?h6o s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
oi}\;TG s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
D1<$]r, s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
E[E[Za^Y sca1 = fftshift(fft(s1)); % Take Fourier transform
L~xzfO sca2 = fftshift(fft(s2));
7q,M2v; sca3 = fftshift(fft(s3));
/-jk_8@a sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
=8)q-{p3 sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
IOi 6'
1l sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
sy.U]QG s3 = ifft(fftshift(sc3));
v_Y'o
_
s2 = ifft(fftshift(sc2)); % Return to physical space
Gn%gSH/ s1 = ifft(fftshift(sc1));
.]W A/} end
[XP3 p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
; 'J{ylRQ p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
&`4v,l^Zi6 p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
7A[`%.!F6 P1=[P1 p1/p10];
$N1UEvC%Q P2=[P2 p2/p10];
u6(>?r- P3=[P3 p3/p10];
L(!mm P=[P p*p];
zSFqy'b.M- end
S\O6B1<: figure(1)
^ 04|tda plot(P,P1, P,P2, P,P3);
y*5bF0 d^.fB+)A3 转自:
http://blog.163.com/opto_wang/