计算脉冲在非线性耦合器中演化的Matlab 程序 (C)p9-, 2 8u_!f[ % This Matlab script file solves the coupled nonlinear Schrodinger equations of
AkiDL=;w % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
{+ b7sA3 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
9-m=*|p % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
Oa>Ppldeg XRQ4\bMA8 %fid=fopen('e21.dat','w');
7 Fsay+a N = 128; % Number of Fourier modes (Time domain sampling points)
dUdT7ixo M1 =3000; % Total number of space steps
hK|Ul]qI J =100; % Steps between output of space
6D_D' ;o T =10; % length of time windows:T*T0
@`Su0W+. T0=0.1; % input pulse width
k$}fWR MN1=0; % initial value for the space output location
w@fi{H(R dt = T/N; % time step
Fv`,3aNB n = [-N/2:1:N/2-1]'; % Index
`~q <N t = n.*dt;
vY`s'%WV u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
;YL i{ u20=u10.*0.0; % input to waveguide 2
lqpp)Cq u1=u10; u2=u20;
jb!i$/%w U1 = u1;
El"Q'(:/U U2 = u2; % Compute initial condition; save it in U
'@P^0+B!(. ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
+X]vl=0 w=2*pi*n./T;
ENY+^7 g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
-d:Jta!}{ L=4; % length of evoluation to compare with S. Trillo's paper
"U"Z 3* dz=L/M1; % space step, make sure nonlinear<0.05
%D "I for m1 = 1:1:M1 % Start space evolution
Dv`c<+q(# u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
D^;Uq8NDKq u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
^_mj ca1 = fftshift(fft(u1)); % Take Fourier transform
q'MZ R'<@ ca2 = fftshift(fft(u2));
"g8M0[7e3 c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
b>JDH1) c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
|$_sX9\`?| u2 = ifft(fftshift(c2)); % Return to physical space
]e@Oiq u1 = ifft(fftshift(c1));
$ L]lHji if rem(m1,J) == 0 % Save output every J steps.
DM>eVS3} U1 = [U1 u1]; % put solutions in U array
S|+o-[e8O U2=[U2 u2];
FaJ &GOM, MN1=[MN1 m1];
5l*&>C[(i z1=dz*MN1'; % output location
nzeX[* end
jRV/A!4 end
q> C'BIr hg=abs(U1').*abs(U1'); % for data write to excel
:*\P n!r ha=[z1 hg]; % for data write to excel
_:27]K: t1=[0 t'];
@f_+=}|dc hh=[t1' ha']; % for data write to excel file
/&94 eC %dlmwrite('aa',hh,'\t'); % save data in the excel format
6)Lk-D figure(1)
"snw4if waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
1|wL\I figure(2)
6!FQzFCZq waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
~&bq0( HyWCMK6b 非线性超快脉冲耦合的数值方法的Matlab程序 *;*r8[U}q h'F=YF$o 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
Tnm.A? Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
83q6Sv ~qOa\#x_ [cp+i^f L;I]OC^J % This Matlab script file solves the nonlinear Schrodinger equations
CeC6hGR5 % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
}`~+]9< % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
sON|w86B % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
@<&m|qtMsz %bfQ$a: C=1;
~Jz6O U*z M1=120, % integer for amplitude
N?"] M3=5000; % integer for length of coupler
w+CA1q< N = 512; % Number of Fourier modes (Time domain sampling points)
kW&TJP+5* dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
+; AZ+w]ZF T =40; % length of time:T*T0.
:20W\P<O!A dt = T/N; % time step
Jg|XH
L) n = [-N/2:1:N/2-1]'; % Index
,01"SWE t = n.*dt;
0:Ol7 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
9-*uPK]m9 w=2*pi*n./T;
oM`0y@QCf g1=-i*ww./2;
0KOgw*>_ g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
p=}Nn( g3=-i*ww./2;
@J`"[%U P1=0;
,nDaqQ-C!! P2=0;
6V01F8&w P3=1;
SI-Ops~e P=0;
R/z=p_6p7` for m1=1:M1
@6T/Tdz p=0.032*m1; %input amplitude
!d0kV,F: s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
;MdlwQ$` s1=s10;
FQ5U$x.[P s20=0.*s10; %input in waveguide 2
Z>5b;8 s30=0.*s10; %input in waveguide 3
~FG]wNgS s2=s20;
v
z '&%( s3=s30;
[K0(RDV)% p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
'16b2n+F@# %energy in waveguide 1
fS78>*K p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
'AH0ww_)n %energy in waveguide 2
@r/nF5 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
^,T(mKS %energy in waveguide 3
HRfYl,S, for m3 = 1:1:M3 % Start space evolution
_>X+ZlpU: s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
eV?2LtT#5 s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
2!=f hN s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
O[JL+g4
sca1 = fftshift(fft(s1)); % Take Fourier transform
I(BQ34q sca2 = fftshift(fft(s2));
4u})+2W sca3 = fftshift(fft(s3));
{[?(9u7R sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
(M.&^w;`, sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
%aVq+kC h sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
i6Emhji s3 = ifft(fftshift(sc3));
\n|EM@=eE s2 = ifft(fftshift(sc2)); % Return to physical space
PBTnIU s1 = ifft(fftshift(sc1));
JYbL?N end
ou{2@" p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
V{3x!+q p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
ok\vQs(a p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
z/@slT P1=[P1 p1/p10];
6fEqqUeV P2=[P2 p2/p10];
1ztG;\ P3=[P3 p3/p10];
>V8-i` P=[P p*p];
u^8{Z;mm end
=R$u[~Xl2X figure(1)
)W
_v:?A9 plot(P,P1, P,P2, P,P3);
Tqn@P Ig0VW)@ 转自:
http://blog.163.com/opto_wang/