切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8795阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 |*+f N8  
    sm~{fg  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of XH?}0D(  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of "V;5Lp b  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear :DlgNR`bq  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 3 0fsVwE2  
    o"a~  
    %fid=fopen('e21.dat','w'); y(!Y N7_A  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) |%@.@c  
    M1 =3000;              % Total number of space steps  '9Hah  
    J =100;                % Steps between output of space Gw/imXL  
    T =10;                  % length of time windows:T*T0 "#a_--"k9  
    T0=0.1;                 % input pulse width 5D32d1A  
    MN1=0;                 % initial value for the space output location Rt[zZv  
    dt = T/N;                      % time step JQhw>H9&  
    n = [-N/2:1:N/2-1]';           % Index ]H4T80wm&  
    t = n.*dt;   5zqlK-$  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 KAucSd`  
    u20=u10.*0.0;                  % input to waveguide 2 >(} I7  
    u1=u10; u2=u20;                 El}."}l&  
    U1 = u1;   l#W9J.q(  
    U2 = u2;                       % Compute initial condition; save it in U 2$g3ABfV  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. JIl<4 %A  
    w=2*pi*n./T; _djr>C=H"  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 4\.1phe$a  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ecoi4f  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 pt rQ~m-  
    for m1 = 1:1:M1                                    % Start space evolution 19u'{/Y"  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS rl0sN5n  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; <9]9;   
       ca1 = fftshift(fft(u1));                        % Take Fourier transform q^e4  
       ca2 = fftshift(fft(u2)); y3]7^+k  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation vT#$`M<  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   gRk%ObJGqm  
       u2 = ifft(fftshift(c2));                        % Return to physical space l 4zl|6%  
       u1 = ifft(fftshift(c1)); 1q])"l"<  
    if rem(m1,J) == 0                                 % Save output every J steps. =lzRx%tm  
        U1 = [U1 u1];                                  % put solutions in U array ZZ<uiN$  
        U2=[U2 u2]; b#:Pl`n6u  
        MN1=[MN1 m1]; rHir> p  
        z1=dz*MN1';                                    % output location ]ZQ3|ZJ?<  
      end b>B.3E\Pc  
    end \M H\!  
    hg=abs(U1').*abs(U1');                             % for data write to excel S+mZ.aFS0z  
    ha=[z1 hg];                                        % for data write to excel jb!R  
    t1=[0 t']; FZW)C'j  
    hh=[t1' ha'];                                      % for data write to excel file F ;o ^.  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format &B</^:  
    figure(1) TsPx"+>7`  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn {R2gz]v4  
    figure(2) 1<y|,  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn yA8e"$  
    { *"I4  
    非线性超快脉冲耦合的数值方法的Matlab程序 Hl,.6 >F?  
    z$VA]tI(  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   VOkEDH  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 X*'tJN$  
    om`x"x&6  
    I.[2-~yf  
    \"]vSx>  
    %  This Matlab script file solves the nonlinear Schrodinger equations c~@Z  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of YceX)  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear tSr.0'CE  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 6;02_C]\o  
    l (EDe  
    C=1;                           "k)}qI{  
    M1=120,                       % integer for amplitude ~nQv yM!$  
    M3=5000;                      % integer for length of coupler gEVN;G'B<=  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) }tvLe3O  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. }klET   
    T =40;                        % length of time:T*T0. i@=0fHiZQ  
    dt = T/N;                     % time step y"Fp4$qb  
    n = [-N/2:1:N/2-1]';          % Index i'GBj,:  
    t = n.*dt;   EJM6TI"  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 7QXA*.' F  
    w=2*pi*n./T; p;[">["  
    g1=-i*ww./2; '[E|3K5d  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 7oPLO(0L  
    g3=-i*ww./2; K3uNR w  
    P1=0; P}] xz Vy  
    P2=0; 1:7 uS.  
    P3=1; 3ErW3Ac Ou  
    P=0; .AIlv^:|U  
    for m1=1:M1                 ,_STt)  
    p=0.032*m1;                %input amplitude 'W!N1W@  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ?-40bb  
    s1=s10; Pc+8CuN?  
    s20=0.*s10;                %input in waveguide 2 k 8C[fRev  
    s30=0.*s10;                %input in waveguide 3 Ck71N3~W  
    s2=s20; f`zH#{u  
    s3=s30; FtaO@5pS54  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   5XK}8\  
    %energy in waveguide 1 ' }G! D  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   8VbHZ9Q  
    %energy in waveguide 2 :xn/9y+s  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   < r6e23  
    %energy in waveguide 3 zh5$$*\  
    for m3 = 1:1:M3                                    % Start space evolution 85>WK+=  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS (zW;&A  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 8<,b5  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; /%El0X  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform F\' ^DtB  
       sca2 = fftshift(fft(s2)); $$U Mc-Pq  
       sca3 = fftshift(fft(s3)); ~hubh!d=  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   z:RclDm  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); wz!a;]agg  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 0* G5Vd  
       s3 = ifft(fftshift(sc3)); }LXS!Ff:  
       s2 = ifft(fftshift(sc2));                       % Return to physical space aNZJs<3;'D  
       s1 = ifft(fftshift(sc1)); yZ {H  
    end ~i`@  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); cY%[UK$l  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); -JL  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ]_cBd)3P}  
       P1=[P1 p1/p10]; 'ZyHp=RN)  
       P2=[P2 p2/p10]; JfJUOaL  
       P3=[P3 p3/p10]; 4)'8fi  
       P=[P p*p]; G8c 8`~t  
    end s[ {L.9Y  
    figure(1) DU_38tz  
    plot(P,P1, P,P2, P,P3); p&B c<+3e  
    @]*b$6tt  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~