切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9220阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 )wU.|9o]M  
    _I;+p eq  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of F<8Rr#Z  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 1(V>8}zn  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear esCm`?qCP  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 xpo<1Sr>S  
    klC;fm2C  
    %fid=fopen('e21.dat','w'); b-}nv`9C  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) |1d;0*HIgX  
    M1 =3000;              % Total number of space steps a`.] 8Jy)  
    J =100;                % Steps between output of space cP[3p :  
    T =10;                  % length of time windows:T*T0 lWj|7  
    T0=0.1;                 % input pulse width R:+2}kS5e{  
    MN1=0;                 % initial value for the space output location 2mVcT3  
    dt = T/N;                      % time step 74*1|S <  
    n = [-N/2:1:N/2-1]';           % Index (eS/Q%ZGK  
    t = n.*dt;   K-Bf=7F,  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 b2;+a(  
    u20=u10.*0.0;                  % input to waveguide 2  SJY<#_b  
    u1=u10; u2=u20;                 HJl$v#]#+  
    U1 = u1;   (17%/80-J  
    U2 = u2;                       % Compute initial condition; save it in U $~UQKv>  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. e %VJ:Dj  
    w=2*pi*n./T; MS{purD  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T \VmqK&9   
    L=4;                           % length of evoluation to compare with S. Trillo's paper HJpkR<h  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 9z9z:PU  
    for m1 = 1:1:M1                                    % Start space evolution :O:Rfmr~  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS a\an  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; $x&@!/&|pv  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform /{pVYY  
       ca2 = fftshift(fft(u2)); 41luFtE9  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation (fON\)l  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   +RexQE  
       u2 = ifft(fftshift(c2));                        % Return to physical space xEBiBsk d  
       u1 = ifft(fftshift(c1)); 2`(-l{3  
    if rem(m1,J) == 0                                 % Save output every J steps. Uq/#\7/rL  
        U1 = [U1 u1];                                  % put solutions in U array \tFg10  
        U2=[U2 u2]; d#:&Uw  
        MN1=[MN1 m1]; +pU\;x  
        z1=dz*MN1';                                    % output location r(`;CY]@  
      end j&(2ze:=*$  
    end #~um F%#  
    hg=abs(U1').*abs(U1');                             % for data write to excel A:Z$i5%'  
    ha=[z1 hg];                                        % for data write to excel 0-~Y[X"9.  
    t1=[0 t']; J_tj9+r^  
    hh=[t1' ha'];                                      % for data write to excel file eCB(!Y|  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format q0Fq7rWP  
    figure(1) ]@OGp:Hz  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn O[Xl*9P  
    figure(2) usiv`.  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Dt,b\6  
    5Cxh >,k  
    非线性超快脉冲耦合的数值方法的Matlab程序 BCV<( @c  
    WjZJQK  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   WrhC q6  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 6'y+Ev$9  
    zAEq)9Y"l'  
    %Kd&A*  
    dzDh V{  
    %  This Matlab script file solves the nonlinear Schrodinger equations i:`ur  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of lcgT9 m#  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear MdK!Y  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .+3= H@8h  
    GSg|Gz""J0  
    C=1;                           Z qX  U  
    M1=120,                       % integer for amplitude FUzIuz 6  
    M3=5000;                      % integer for length of coupler 6GCwc1g  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) BQWEC,*N  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. lTe}[@(  
    T =40;                        % length of time:T*T0. o Xwoi!  
    dt = T/N;                     % time step P_+S;(QQ~d  
    n = [-N/2:1:N/2-1]';          % Index md7Aqh  
    t = n.*dt;   7"F w8;k  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. D+{h@^C9Z  
    w=2*pi*n./T; 9_'xq.uP  
    g1=-i*ww./2; L%`~`3%n-  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; (gBP`*2  
    g3=-i*ww./2; r{qM!(T  
    P1=0; E",s]  
    P2=0; 9 O| "Ws>{  
    P3=1; )#[?pYd  
    P=0; \FN"0P(G  
    for m1=1:M1                 m`C(y$8fU  
    p=0.032*m1;                %input amplitude jLC,<V*  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 FH}n]T  
    s1=s10; b)@%gS\F  
    s20=0.*s10;                %input in waveguide 2 KquHc-fzqr  
    s30=0.*s10;                %input in waveguide 3 kXS_:f;M  
    s2=s20; j Efrxlj  
    s3=s30; pc&/'zb  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   aNb=gjLpt  
    %energy in waveguide 1 Ixm< wKwW#  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   LFy5tX#  
    %energy in waveguide 2 }Q_IqI[7  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   CYrVP%xRA  
    %energy in waveguide 3 `L`*jA+_  
    for m3 = 1:1:M3                                    % Start space evolution !o~% F5|t  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Acr\2!))  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 9,Zg'4",d  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; PCnE-$QH  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform W"4E0!r  
       sca2 = fftshift(fft(s2)); # 'G/&&<  
       sca3 = fftshift(fft(s3)); 6gwjrGje\  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   BZEY^G  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); @PuJre4!;L  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); RL |.y~  
       s3 = ifft(fftshift(sc3)); )0`;leli  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 6NJ"ty9Bp  
       s1 = ifft(fftshift(sc1)); !>b>"\b  
    end q a#Fa)g*  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 6PT ,m  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); K"Vv=  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); c#nFm&}dm  
       P1=[P1 p1/p10]; HZCEr6}(  
       P2=[P2 p2/p10]; Nkn0G _  
       P3=[P3 p3/p10]; I<|)uK7  
       P=[P p*p]; w=d#y )1  
    end uS bOGhP  
    figure(1) ,@%1q)S?A  
    plot(P,P1, P,P2, P,P3); r~F T,  
    GdEkA  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~