切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8847阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 9}G.Fr  
    ;hzm&My  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of H}vq2|MN  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of GI']&{  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear f-$%Ck$%,  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @M=xdZNyJ  
    4C m+xAXG  
    %fid=fopen('e21.dat','w'); ;tg9$P<85  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) $^~dqmE2,  
    M1 =3000;              % Total number of space steps ,%Sf,h?"^  
    J =100;                % Steps between output of space TuR.'kE@  
    T =10;                  % length of time windows:T*T0 w\SfzJN  
    T0=0.1;                 % input pulse width .Aj4?AXWc  
    MN1=0;                 % initial value for the space output location J7a_a>Y  
    dt = T/N;                      % time step ^I!u H1G  
    n = [-N/2:1:N/2-1]';           % Index m}`!FaB #  
    t = n.*dt;   f i#p('8  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 A43 mX !g\  
    u20=u10.*0.0;                  % input to waveguide 2 |&wwH&<[z  
    u1=u10; u2=u20;                 V[#eeH)/  
    U1 = u1;   uPh/u!  
    U2 = u2;                       % Compute initial condition; save it in U Lgr(j60s  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. a\_?zi]s&,  
    w=2*pi*n./T; #ATV#/hW  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T {&3{_Ml  
    L=4;                           % length of evoluation to compare with S. Trillo's paper >_esLsPWh]  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 EUGN`t-M  
    for m1 = 1:1:M1                                    % Start space evolution (58}G2}q  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ,;%F\<b  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; K-X@3&X}  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform D0 5JQ*  
       ca2 = fftshift(fft(u2)); _|1m]2'9  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Wks?9 )Is  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ZlEQzL~  
       u2 = ifft(fftshift(c2));                        % Return to physical space ?R#?=<VkG  
       u1 = ifft(fftshift(c1)); *gGL5<%T:  
    if rem(m1,J) == 0                                 % Save output every J steps. 4C]>{osv  
        U1 = [U1 u1];                                  % put solutions in U array >n(Ga9E  
        U2=[U2 u2]; &[#iM0;)W0  
        MN1=[MN1 m1]; Z~[EZgIg  
        z1=dz*MN1';                                    % output location R%EpF'[~[  
      end K."%PdC  
    end E=3UaYr  
    hg=abs(U1').*abs(U1');                             % for data write to excel S:F8` Gh  
    ha=[z1 hg];                                        % for data write to excel Aq3.%,X2H  
    t1=[0 t']; u*w'.5l  
    hh=[t1' ha'];                                      % for data write to excel file FV~ENpncP  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format d$ f3 Cre  
    figure(1) K3*8-Be  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn J n~t>?  
    figure(2)  X<p'&  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn J>w3>8!>7  
    0D==0n  
    非线性超快脉冲耦合的数值方法的Matlab程序 XSBh+)0Ww  
    %Eq4>o?D  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   V(#z{!  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8 o^ h\9I  
    .).}ffhOL  
    G?$0OU  
    :*g3PhNE  
    %  This Matlab script file solves the nonlinear Schrodinger equations L!qXt(`  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 0pW?v:!H  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 7c8A|E0\mF  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 n,l{1 q  
    0r/pZ3/  
    C=1;                           5`t MHgQO  
    M1=120,                       % integer for amplitude 1&2X*$]y  
    M3=5000;                      % integer for length of coupler P-Up v6J3  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) u6#FG9W7  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Gm1[PAj  
    T =40;                        % length of time:T*T0. a9%^Jvm"  
    dt = T/N;                     % time step {];8jdg/?  
    n = [-N/2:1:N/2-1]';          % Index aK+jpi4?  
    t = n.*dt;   0x1#^dII  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. I&Dp~aEM]  
    w=2*pi*n./T; -ufO,tJRLL  
    g1=-i*ww./2; ]>_Ie?L)<  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ]- +%]'  
    g3=-i*ww./2; e6y,)W"WW2  
    P1=0; "54t7  
    P2=0; k. @OFkX.  
    P3=1; 7Z7e}| \W  
    P=0; |XV@/ZGl~  
    for m1=1:M1                 z]d2 rzV(_  
    p=0.032*m1;                %input amplitude &ZR}Z7E*=  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Bsc&#  
    s1=s10; ~k[mowz0  
    s20=0.*s10;                %input in waveguide 2 kKlcK_b;  
    s30=0.*s10;                %input in waveguide 3 u|eV'-R)s  
    s2=s20;  G9qN1q~  
    s3=s30; yKb+bm&5:'  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));    HQ0fY  
    %energy in waveguide 1 ,e93I6  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ~u^MRe|`  
    %energy in waveguide 2 a 9H^e<g  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   l2|[  
    %energy in waveguide 3 WJ[ybzVj  
    for m3 = 1:1:M3                                    % Start space evolution -RK R. ,  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS N)0V6q"  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ^f?>;,<&  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; E|~)"=  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform D.;iz>_}Y  
       sca2 = fftshift(fft(s2)); oEN^O:9e  
       sca3 = fftshift(fft(s3)); Jb1L[sT2  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Ng 3r`S"_<  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); |08'd5  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); duT'$}2@>  
       s3 = ifft(fftshift(sc3)); tX'2 $}  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ='z4bU  
       s1 = ifft(fftshift(sc1)); 0*{ 2^\  
    end BSd\Sg4  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); [19QpK WM  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Eb.k:8?Tn  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); aFf(m-  
       P1=[P1 p1/p10]; q37d:Hp  
       P2=[P2 p2/p10]; "'@>cJ=  
       P3=[P3 p3/p10]; H7Y :l0b  
       P=[P p*p]; \:Vm7Zg  
    end q1_iV.G<  
    figure(1) hwj:$mR  
    plot(P,P1, P,P2, P,P3); .d?2Kc)SV\  
    57~/QEdy  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~