计算脉冲在非线性耦合器中演化的Matlab 程序 uQH]
sXEIC#rq
% This Matlab script file solves the coupled nonlinear Schrodinger equations of 0cKsGDm
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of m-4#s
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear &iw,||#
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Wjq9f;
J \|~k2~
%fid=fopen('e21.dat','w'); Epp>L.?r
N = 128; % Number of Fourier modes (Time domain sampling points) ;6R9k]5P%
M1 =3000; % Total number of space steps r=3`Eb"t
J =100; % Steps between output of space %[KnpJ{\
T =10; % length of time windows:T*T0 d+)L K~
T0=0.1; % input pulse width N KgEs
MN1=0; % initial value for the space output location \y?*} L
dt = T/N; % time step 9^g8VlQdT
n = [-N/2:1:N/2-1]'; % Index BMO,eQcB
t = n.*dt; &Qda|
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 5'f_~>1Wt
u20=u10.*0.0; % input to waveguide 2 _+P*XY5
u1=u10; u2=u20; %8I^&~E1
U1 = u1; 3HXeBW
U2 = u2; % Compute initial condition; save it in U ^_v94!a9
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. {J1rjrPo
w=2*pi*n./T; 9\?&u_ U"
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T R5QW4i9
L=4; % length of evoluation to compare with S. Trillo's paper xib}E[-l#
dz=L/M1; % space step, make sure nonlinear<0.05 !]s=9(O
for m1 = 1:1:M1 % Start space evolution V^FM-bg%9
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS 7Fpa%N/WL
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; YIW9z{rrs
ca1 = fftshift(fft(u1)); % Take Fourier transform <H]PP6_g:
ca2 = fftshift(fft(u2)); /Z*$k{qIR&
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation =>PX~/o
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift ynra%"sd
u2 = ifft(fftshift(c2)); % Return to physical space *IbDA
u1 = ifft(fftshift(c1)); z5({A2q
if rem(m1,J) == 0 % Save output every J steps. }P%gwgPK
U1 = [U1 u1]; % put solutions in U array wT+60X'
U2=[U2 u2]; )?&mCI*
MN1=[MN1 m1]; w7~]c,$y.
z1=dz*MN1'; % output location PT,*KYF_O"
end } %0w25
end yg}L,JJU<
hg=abs(U1').*abs(U1'); % for data write to excel m8L %!6o
ha=[z1 hg]; % for data write to excel exSwx-zxI
t1=[0 t']; o"RE4s\G~r
hh=[t1' ha']; % for data write to excel file oIOeX1$V
%dlmwrite('aa',hh,'\t'); % save data in the excel format ! weYOOu
figure(1) 7Y~5gn
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn JYjc^m
figure(2) !^L}LtqHI
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn (*eX'^Q)d
.Sw4{m[g
非线性超快脉冲耦合的数值方法的Matlab程序 ;QuxTmWp^
GPAC0K^p
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 fU.hb%m)Q\
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 >/.jB/q
myXGMN$i
0j;|IU\
2\$<&]q
% This Matlab script file solves the nonlinear Schrodinger equations .-s!} P"
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of PTpCiiA@
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ~:!&