切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8185阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ?QsQnQ  
    8hXl%{6d3  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 4F)-"ck  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of hq%?=2'9?  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear t'?.8}?)I&  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 kr+D,h01  
    ,3?Q(=j  
    %fid=fopen('e21.dat','w'); T3~k>"W  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) t|a2;aq_  
    M1 =3000;              % Total number of space steps W6f/T3  
    J =100;                % Steps between output of space ~KHVY)@P  
    T =10;                  % length of time windows:T*T0 R(('/JC  
    T0=0.1;                 % input pulse width Uhe=h&e2k@  
    MN1=0;                 % initial value for the space output location N8k00*p65  
    dt = T/N;                      % time step AB=daie  
    n = [-N/2:1:N/2-1]';           % Index mlixIW2  
    t = n.*dt;   A$<.a'&T!  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 9zZr^{lUl  
    u20=u10.*0.0;                  % input to waveguide 2 0":ib0=  
    u1=u10; u2=u20;                 }&/o'w2wY  
    U1 = u1;   e]`[yf  
    U2 = u2;                       % Compute initial condition; save it in U <<@bl@9'  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. yXz*5W_0D  
    w=2*pi*n./T; p qfUW+>  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T Ewu O&q  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ~kShq%  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 kB3H="3[[  
    for m1 = 1:1:M1                                    % Start space evolution $8;R[SU6Y  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS F=`AY^u0  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; aAJU`=uq  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ozAS[B6  
       ca2 = fftshift(fft(u2)); cJN7bA {  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation T@G?t0  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   W=vG$  
       u2 = ifft(fftshift(c2));                        % Return to physical space &f"-d  
       u1 = ifft(fftshift(c1)); xGu r  
    if rem(m1,J) == 0                                 % Save output every J steps. 0TCBQ~"  
        U1 = [U1 u1];                                  % put solutions in U array K#EvFs`s;  
        U2=[U2 u2]; 9  TvV=  
        MN1=[MN1 m1]; eb.O#Y  
        z1=dz*MN1';                                    % output location aEM%R<e  
      end A9f)tqbc  
    end +g` 'J$  
    hg=abs(U1').*abs(U1');                             % for data write to excel I Y2)?"A  
    ha=[z1 hg];                                        % for data write to excel kgnmGuka  
    t1=[0 t']; q;QbUO  
    hh=[t1' ha'];                                      % for data write to excel file U@gn;@\  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format E5)b  
    figure(1) H$@`,{M629  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn (&}i`}v_  
    figure(2) |<#{"'/=  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn <\Eh1[F  
    ,RJtm%w  
    非线性超快脉冲耦合的数值方法的Matlab程序 MNC*Glj=  
    R<[qGt|L  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   :|_'fNd+!  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 \Kl+ 5%L  
    cV 5CaaL  
    ~p1j`r;  
    ^.#jF#u~  
    %  This Matlab script file solves the nonlinear Schrodinger equations vV[eWd.o6M  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of g6Q!8  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear  {k>Ca  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 qR(\5}  
    h!&prYx  
    C=1;                           "]z-: \ V  
    M1=120,                       % integer for amplitude 8S%52W|  
    M3=5000;                      % integer for length of coupler F{EnOr`,m=  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 3|1i lP  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. SF&BbjBE0  
    T =40;                        % length of time:T*T0. |p><'Q% *  
    dt = T/N;                     % time step 6b+b/>G0  
    n = [-N/2:1:N/2-1]';          % Index ]Bm/eRy"  
    t = n.*dt;   ^~G8?]w  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. "i U}]e0  
    w=2*pi*n./T; jgbLN/_{  
    g1=-i*ww./2; _{r=.W+ w  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; lz"OC<D}(  
    g3=-i*ww./2; 6xWe=QGE  
    P1=0; Fe]B&n  
    P2=0; Ys@}3\Mc  
    P3=1; MKy[hT:  
    P=0; c.,2GwW  
    for m1=1:M1                 Rniq(FA x  
    p=0.032*m1;                %input amplitude #tZ4N7  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 >)spqu]  
    s1=s10; jJuW-(/4[  
    s20=0.*s10;                %input in waveguide 2 g{8,Wx,,  
    s30=0.*s10;                %input in waveguide 3 D&}3$ 7>  
    s2=s20; O>^C4c!  
    s3=s30; sB^<6W!`(  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   e '2F#  
    %energy in waveguide 1 0BH_'ZW  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Z$0 uH*h  
    %energy in waveguide 2 #bl6sa{E  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ?RK]FP"A  
    %energy in waveguide 3 Au4yBm u  
    for m3 = 1:1:M3                                    % Start space evolution J]&y$?C  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS G`\f  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; +RnkJ* l  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; %,D<O,N  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform 0JlZs]  
       sca2 = fftshift(fft(s2)); cfcim.jB  
       sca3 = fftshift(fft(s3)); t%'Z<DmG+  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   Q\cjPc0y  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); JMH8MH*  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); -PS#Z0>  
       s3 = ifft(fftshift(sc3)); g>dA$h%  
       s2 = ifft(fftshift(sc2));                       % Return to physical space #a`a$A  
       s1 = ifft(fftshift(sc1)); \>C YC|  
    end f}1&HI8r  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); q|Qk2M  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ]`&Yqg  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); [P 06lIO  
       P1=[P1 p1/p10]; |1b_3?e  
       P2=[P2 p2/p10]; 2I&o69x?  
       P3=[P3 p3/p10]; Xtp"QY p  
       P=[P p*p]; 'ow.=1N-  
    end .h9l7 nZt  
    figure(1) #|*F1K  
    plot(P,P1, P,P2, P,P3); _cc#Qlw 7  
    7.Z@Wr?  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~