切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 7875阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 UQ8bN I7  
    ;4~U,+Av  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of r6.N4eW.L  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Kn}ub+ "J  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ^^?q$1k6r*  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 \ L]|-f(4  
    mP}#Ccji?  
    %fid=fopen('e21.dat','w'); T~>#2N-Z  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) (.X]F_ *sc  
    M1 =3000;              % Total number of space steps d>i13d AI  
    J =100;                % Steps between output of space _a -]?R  
    T =10;                  % length of time windows:T*T0 ]n v( aM?d  
    T0=0.1;                 % input pulse width Fvl`2W94;  
    MN1=0;                 % initial value for the space output location d/U."V}  
    dt = T/N;                      % time step jPJAWXB4a  
    n = [-N/2:1:N/2-1]';           % Index ] |Zb\{  
    t = n.*dt;   %|IUqjg  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 M7dU@Ag  
    u20=u10.*0.0;                  % input to waveguide 2 isK;mU?<  
    u1=u10; u2=u20;                 P%>?[9!Nt  
    U1 = u1;   ]H[8Z|i""  
    U2 = u2;                       % Compute initial condition; save it in U *Xr$/N  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. rY}B-6qJn  
    w=2*pi*n./T; P:!)9/.2  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T oyeG$mpg  
    L=4;                           % length of evoluation to compare with S. Trillo's paper _m'ysCjA  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ,0?!ov|  
    for m1 = 1:1:M1                                    % Start space evolution ujzW|HW^v  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 1/iE`Si  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; bXdY\&fE  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform m4/er539T  
       ca2 = fftshift(fft(u2)); La,QB3K/  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation AR B7>"  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   F[E? A95W  
       u2 = ifft(fftshift(c2));                        % Return to physical space ^Kq|ID AP  
       u1 = ifft(fftshift(c1)); ;e{5)@h$  
    if rem(m1,J) == 0                                 % Save output every J steps. ef]B9J~h  
        U1 = [U1 u1];                                  % put solutions in U array fE25(wCz7  
        U2=[U2 u2]; }T(z4P3  
        MN1=[MN1 m1]; SG'JE}jzO  
        z1=dz*MN1';                                    % output location ])T/sO#'  
      end %+tV/7|F  
    end bBE+jqi 2  
    hg=abs(U1').*abs(U1');                             % for data write to excel [ ]p"3 i  
    ha=[z1 hg];                                        % for data write to excel dHII.=lT  
    t1=[0 t']; &8?`<   
    hh=[t1' ha'];                                      % for data write to excel file G$=-,6kZO  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format WZ~> BM  
    figure(1) =*MR(b>  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Z)9R9s  
    figure(2) }~I|t!GL  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn g(m_yXIx  
    ti_u!kNv  
    非线性超快脉冲耦合的数值方法的Matlab程序 KD*O%@X5C  
    ecFi (eMD  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   1f//wk|  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 3% vis\~^  
    )%j"  
    tOg=zXm   
    YoSQN/Z  
    %  This Matlab script file solves the nonlinear Schrodinger equations b! tludb  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ,2zKQ2z  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear jnBC;I[:  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 X;EJ&g/  
    {;n0/   
    C=1;                           p;->hn~D'5  
    M1=120,                       % integer for amplitude ?qT(3C9p  
    M3=5000;                      % integer for length of coupler -c={+z "  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) A*0*sZ0  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. GX38~pq  
    T =40;                        % length of time:T*T0. A ,<@m2  
    dt = T/N;                     % time step HdCk!Fv  
    n = [-N/2:1:N/2-1]';          % Index &?T${*~  
    t = n.*dt;   UrK"u{G  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. GOr}/y;  
    w=2*pi*n./T; K&S@F!#g  
    g1=-i*ww./2; rPTfpeqN)  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; cU | _  
    g3=-i*ww./2; +x]e-P%  
    P1=0; E fSMFPM  
    P2=0; Qj!d^8  
    P3=1; 5$^c@ 0  
    P=0; i+ic23$4M  
    for m1=1:M1                 'j#a%j@{  
    p=0.032*m1;                %input amplitude 78w4IICk  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 m+T2vi  
    s1=s10; /v$]X4 S`  
    s20=0.*s10;                %input in waveguide 2 (Y;'[.  
    s30=0.*s10;                %input in waveguide 3 SALCuo"L  
    s2=s20; `7_n}8NVC  
    s3=s30; M?hFCt3Y  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   8S=c^_PJ  
    %energy in waveguide 1 rC rr"O#j  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   %zQ2:iT5@=  
    %energy in waveguide 2 %kW3hQ<$  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Y_lCcu#OA  
    %energy in waveguide 3 mxhW|}_-j  
    for m3 = 1:1:M3                                    % Start space evolution 4#@0T"T~M  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS !Bncx`pl  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; S41)l!+2  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; \S5V}!_  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform O 3}P07  
       sca2 = fftshift(fft(s2)); HnK/A0jM  
       sca3 = fftshift(fft(s3)); 2K~tDNv7  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   44|03Ty  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); + 1f{_v  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); :|fl?{E  
       s3 = ifft(fftshift(sc3)); _!;\R7]  
       s2 = ifft(fftshift(sc2));                       % Return to physical space {4)5]62>u  
       s1 = ifft(fftshift(sc1)); J\GKqt;5@  
    end TP^\e_k  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); NIL^UN}  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); N$ *>suQ,  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); T/ Ez*iQW  
       P1=[P1 p1/p10]; Y?e3Bx7*b  
       P2=[P2 p2/p10]; uTUa4 ^]*  
       P3=[P3 p3/p10]; nu(eLUU  
       P=[P p*p]; wEv*1y4  
    end DW4MA<UQ  
    figure(1) m9cj7  
    plot(P,P1, P,P2, P,P3); |:/ @t  
    *<;&>w8  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~