计算脉冲在非线性耦合器中演化的Matlab 程序 Jq'8" XAU%B-l: % This Matlab script file solves the coupled nonlinear Schrodinger equations of
bTaKB- % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
Tz,9>uN % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
QH9t |l % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
_b~{/[s F^NK"<tW %fid=fopen('e21.dat','w');
SscB&{f N = 128; % Number of Fourier modes (Time domain sampling points)
c
Rq2 re M1 =3000; % Total number of space steps
x1.S+: J =100; % Steps between output of space
p/HDG
^T:u T =10; % length of time windows:T*T0
^U*y*l$
T0=0.1; % input pulse width
p2i?)+z MN1=0; % initial value for the space output location
WYUDD_m dt = T/N; % time step
Q,&Li+u| n = [-N/2:1:N/2-1]'; % Index
RDp t = n.*dt;
akzGJ3g u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
WK>|IgK u20=u10.*0.0; % input to waveguide 2
Yg^ &4ZF u1=u10; u2=u20;
d}[cX9U/ U1 = u1;
-SrZ^ U2 = u2; % Compute initial condition; save it in U
;mG*Rad ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
rR> X< w=2*pi*n./T;
3c=kYcj g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
2M-[x"\1/ L=4; % length of evoluation to compare with S. Trillo's paper
20|`jxp dz=L/M1; % space step, make sure nonlinear<0.05
xV)[C )6 for m1 = 1:1:M1 % Start space evolution
tg/UtE`V u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
eyCZ[SC u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
tX{yR'Qhu ca1 = fftshift(fft(u1)); % Take Fourier transform
'p&,'+x ca2 = fftshift(fft(u2));
MYWkEv7 c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
vA1YyaB c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
,_Z(!|
rW u2 = ifft(fftshift(c2)); % Return to physical space
5QMra5N k u1 = ifft(fftshift(c1));
s{Z)<n03 if rem(m1,J) == 0 % Save output every J steps.
5 8bW U1 = [U1 u1]; % put solutions in U array
(90/,@66l U2=[U2 u2];
D0r viO MN1=[MN1 m1];
(jM0YtrD z1=dz*MN1'; % output location
I+8n;I)]X end
50^ux:Uv+N end
*j%x hg=abs(U1').*abs(U1'); % for data write to excel
qz-QVY, ha=[z1 hg]; % for data write to excel
N T`S)P*? t1=[0 t'];
~|V^IJZ22 hh=[t1' ha']; % for data write to excel file
Wh)D_ %dlmwrite('aa',hh,'\t'); % save data in the excel format
h+FM?ct6} figure(1)
<1D|TrP waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
sS>b}u+v#! figure(2)
AI-*5[w#A waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
*VZ|Idp ?l0eU@rwQ 非线性超快脉冲耦合的数值方法的Matlab程序 x#>V50E NBYJ'nA%;f 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
+xFn~b/ Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
Lgg,K//g CJ IuMsZ @NiuT%#c Jj"{C] % This Matlab script file solves the nonlinear Schrodinger equations
$5R2QNg n % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
pH1!6X % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
,QY$:f< % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
9P?0D 35<A:jKS C=1;
b(Nv`'O M1=120, % integer for amplitude
w&p+mJL. M3=5000; % integer for length of coupler
jf~](TK N = 512; % Number of Fourier modes (Time domain sampling points)
G,u=ngZ] dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
\i%'M% T =40; % length of time:T*T0.
va6Fp2n<1* dt = T/N; % time step
>t+U`6xK n = [-N/2:1:N/2-1]'; % Index
7n8nJTU{4j t = n.*dt;
!6!)H8rX ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
/Z:j:l w=2*pi*n./T;
z5E%*] g1=-i*ww./2;
/( Wq g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
T8XrmR&?PX g3=-i*ww./2;
ge~@}iO@ P1=0;
IiU> VLa P2=0;
[jMN*p? P3=1;
xE/?ncTK^ P=0;
e97G]XLR for m1=1:M1
|N.2iN: p=0.032*m1; %input amplitude
7oE0;' s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
|R`"Zu` s1=s10;
f9.?+.^_ s20=0.*s10; %input in waveguide 2
!J$r|IX5 s30=0.*s10; %input in waveguide 3
sh<Q2X
s2=s20;
IDohv[# s3=s30;
i?x gV_q; p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
1[%3kY-h %energy in waveguide 1
k# [!; < p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
#-/W?kD %energy in waveguide 2
iQ'*QbP'Z p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
Ez3fL&* %energy in waveguide 3
>>U>'}@Q for m3 = 1:1:M3 % Start space evolution
3_(_yEKx s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
gjS|3ED s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
@)Qgy}*5 s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
hFrMOc& sca1 = fftshift(fft(s1)); % Take Fourier transform
3SVGx<,2 sca2 = fftshift(fft(s2));
U0x
A~5B sca3 = fftshift(fft(s3));
J<$@X JLS sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
nV'1 $L# sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
acd[rjeT sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
osW"wh_ s3 = ifft(fftshift(sc3));
3:J>-MO s2 = ifft(fftshift(sc2)); % Return to physical space
dSM\:/t s1 = ifft(fftshift(sc1));
OF-k7g7 end
.wfydu)3 p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
$J[( 3 p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
VY?9|};f p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
"Xq_N4 P1=[P1 p1/p10];
~6G
`k^!
P2=[P2 p2/p10];
As:O|!F P3=[P3 p3/p10];
iq#{*:1 P=[P p*p];
D6"=2XR4n end
e4z`:%vy figure(1)
>)>f~ > plot(P,P1, P,P2, P,P3);
&f*orM: [Vd$FDki 转自:
http://blog.163.com/opto_wang/