切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8444阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 `62iW3y  
    !-OPzfHrI  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of j1sZRl)D  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of LKx<hl$O  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear b-Q%c xJ  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 FkS$x'~2$  
    hh$V[/iK  
    %fid=fopen('e21.dat','w'); F6vN{ FI  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) $!Pm*s  
    M1 =3000;              % Total number of space steps L]_1z  
    J =100;                % Steps between output of space T`?{Is['(  
    T =10;                  % length of time windows:T*T0 |;[%ZE"  
    T0=0.1;                 % input pulse width =D@+_7\?  
    MN1=0;                 % initial value for the space output location XLeQxp=  
    dt = T/N;                      % time step s>VpbJ3S  
    n = [-N/2:1:N/2-1]';           % Index n!Dy-)!`O  
    t = n.*dt;   a#_=c>h;  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ap7ZT7KW  
    u20=u10.*0.0;                  % input to waveguide 2 ~53uUT|B  
    u1=u10; u2=u20;                 SBNeN]  
    U1 = u1;   D^Cpgha  
    U2 = u2;                       % Compute initial condition; save it in U 2L!wbeTb;  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. [ BpZ{Ql  
    w=2*pi*n./T; Xc!0'P0T  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T aJmSagr69C  
    L=4;                           % length of evoluation to compare with S. Trillo's paper $XOs(>~"r  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 !i`HjV0wS  
    for m1 = 1:1:M1                                    % Start space evolution \*(A1Vk  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 1_aUU,|.  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; $}*bZ~  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ?)# qBE ]  
       ca2 = fftshift(fft(u2)); !pwY@} oL  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation =gYKAr^p5  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   C(Bh<c0@  
       u2 = ifft(fftshift(c2));                        % Return to physical space 7 B<  
       u1 = ifft(fftshift(c1)); }K8W%h<3S  
    if rem(m1,J) == 0                                 % Save output every J steps. i 1{Lx)  
        U1 = [U1 u1];                                  % put solutions in U array &:3uK`  
        U2=[U2 u2]; )e1&[0  
        MN1=[MN1 m1]; ]V 4Fm{]  
        z1=dz*MN1';                                    % output location $0f(Gc|  
      end |lnMT)^D  
    end [nx OGa2  
    hg=abs(U1').*abs(U1');                             % for data write to excel "Q>gQKgL  
    ha=[z1 hg];                                        % for data write to excel )Td;2  
    t1=[0 t']; &m8#^]*  
    hh=[t1' ha'];                                      % for data write to excel file PqhR^re0.  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format YoT< ]'  
    figure(1) )$.::[pNA  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 6w )mo)<X  
    figure(2) ^E)*i#."4  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ^ |xSU_wa  
    19r4J(pV  
    非线性超快脉冲耦合的数值方法的Matlab程序 5\?\ |*WT  
    u@"nVHgMJ  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   &"h 9Awn2  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^~iFG+g5  
    \Y4>_Mk  
    3\!DsPgW  
    n[mVwQ(%  
    %  This Matlab script file solves the nonlinear Schrodinger equations `[&) X  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ]WO0v`xh  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear }u>F}mUa  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 P Tc@MH)  
    nz?jNdyz  
    C=1;                           YM:;mX5B  
    M1=120,                       % integer for amplitude gq'}LcV  
    M3=5000;                      % integer for length of coupler *i=+["A  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) U)PNY  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. S~ff<A>f  
    T =40;                        % length of time:T*T0. &$,%6X"  
    dt = T/N;                     % time step ? bq S{KF  
    n = [-N/2:1:N/2-1]';          % Index !bPsJbIo>  
    t = n.*dt;   {#Lj,o  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. \h#,qTE  
    w=2*pi*n./T; /F(wb_!  
    g1=-i*ww./2; #TXN\YNP  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 1&Fty'p  
    g3=-i*ww./2; n{b(~eL?  
    P1=0; 5 aT>8@$Z^  
    P2=0; {DI`HB[  
    P3=1; "<e<0::  
    P=0; Ez= Q{g  
    for m1=1:M1                 JB_<Haj  
    p=0.032*m1;                %input amplitude /^F_~.u{  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 T~238C{vh  
    s1=s10; "M GX(SQ  
    s20=0.*s10;                %input in waveguide 2 )t$<FP  
    s30=0.*s10;                %input in waveguide 3 :3uCW1  
    s2=s20; nO ^m  
    s3=s30; w;=fi}<G|e  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   iq25|{1$  
    %energy in waveguide 1 8Moe8X#3  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   h6yXW! 8  
    %energy in waveguide 2 l[MP|m#  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   #dvH0LX?  
    %energy in waveguide 3 7lC );  
    for m3 = 1:1:M3                                    % Start space evolution /uh?F  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS L7gZ4Hu=`  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; !zu YO3:  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 015 ;'V#we  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform )@IDmz>  
       sca2 = fftshift(fft(s2)); xb N)z  
       sca3 = fftshift(fft(s3)); sULCYiT|Hn  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   4;rt|X77  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); FnoE\2}9  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); sQ)D.9\~  
       s3 = ifft(fftshift(sc3)); i42M.M6D$  
       s2 = ifft(fftshift(sc2));                       % Return to physical space J'Z!`R|  
       s1 = ifft(fftshift(sc1)); jGeil qPC  
    end z]^u@]@NC  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); g!#M0  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); CQ4MQ<BJ.  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); (}1:]D{)@V  
       P1=[P1 p1/p10]; ]uikE2nn  
       P2=[P2 p2/p10]; }!&Vcf  
       P3=[P3 p3/p10]; \$g,Hgp/<  
       P=[P p*p]; PNSV?RT*pG  
    end q& :UP  
    figure(1) z'W8t|m}Pb  
    plot(P,P1, P,P2, P,P3); q_hkI]  
    csEF^T-  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~