计算脉冲在非线性耦合器中演化的Matlab 程序 &Zf@vD
>`6^1j(3
% This Matlab script file solves the coupled nonlinear Schrodinger equations of ;B7>/q;g
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of v+\E%H
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear }$b/g
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 h IGa);g
6E
%fid=fopen('e21.dat','w'); Tp9LBF
N = 128; % Number of Fourier modes (Time domain sampling points) /
{A]('t
M1 =3000; % Total number of space steps AKS(WNGEp
J =100; % Steps between output of space 2[WQq)\
T =10; % length of time windows:T*T0 D,X$66T ^
T0=0.1; % input pulse width ']qC,;2
MN1=0; % initial value for the space output location \f+R!
dt = T/N; % time step B$7lL
n = [-N/2:1:N/2-1]'; % Index ag] nVE/
t = n.*dt; wv1?v_4
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 <,LeFy\zW
u20=u10.*0.0; % input to waveguide 2 !D z:6r
u1=u10; u2=u20; <q_H 3|
U1 = u1; z9VQsC'K
U2 = u2; % Compute initial condition; save it in U 3Hq0\Y"Y
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. xvgIYc{
w=2*pi*n./T; eNXpRvY
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 1Ce:<.99B
L=4; % length of evoluation to compare with S. Trillo's paper S;CT:kG6Y{
dz=L/M1; % space step, make sure nonlinear<0.05 mNV4"lNR
for m1 = 1:1:M1 % Start space evolution X-t4irZ)
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS Ir]b.6B
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; zO!`sPP
ca1 = fftshift(fft(u1)); % Take Fourier transform u<+;]8[o
ca2 = fftshift(fft(u2)); 0}aJCJ9sx=
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation 4h(aTbHaQ
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift NMOTWA}2
u2 = ifft(fftshift(c2)); % Return to physical space /Fk0j_b
u1 = ifft(fftshift(c1)); +[*UC"
if rem(m1,J) == 0 % Save output every J steps. 60hf)er
U1 = [U1 u1]; % put solutions in U array ;1"K79
U2=[U2 u2]; 8fdOV&&D~i
MN1=[MN1 m1]; tl#hCy
z1=dz*MN1'; % output location J,IOp-
end ytJ |jgp'
end jkfI,T
hg=abs(U1').*abs(U1'); % for data write to excel gAR];(*
ha=[z1 hg]; % for data write to excel FxD" z3D
t1=[0 t']; Th"7p:SE?
hh=[t1' ha']; % for data write to excel file qHvW{0E
%dlmwrite('aa',hh,'\t'); % save data in the excel format %S@XY3jZY
figure(1) {5*+
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn sX@e1*YE_
figure(2) gzw[^d
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn o6{XT.z5qx
CIV6Qe"<
非线性超快脉冲耦合的数值方法的Matlab程序 +K+
== mO&
ib&
|271gG
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 SqEO
]~
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 :?lSa6de
`7'(U)x,F
#Xsby
G|H\(3hHLZ
% This Matlab script file solves the nonlinear Schrodinger equations m.lNKIknQ
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Xf#uK\f
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear .%D] z{''
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 sYXVSNonm
iPE-j#|
C=1; S$V'_
M1=120, % integer for amplitude KX*e2 /0
M3=5000; % integer for length of coupler <Qwi 0$
N = 512; % Number of Fourier modes (Time domain sampling points) p%j@2U
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. UY>{e>/H9
T =40; % length of time:T*T0. ULsz<Hj
dt = T/N; % time step ]jM D'vg^b
n = [-N/2:1:N/2-1]'; % Index pvcf_w`n
t = n.*dt; Ndx='j0
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. r Cmqq/hZ
w=2*pi*n./T; >R.~'A/$F
g1=-i*ww./2; d{DlW
|_
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ~lQ]PKJ"
g3=-i*ww./2; \7W {/v4^
P1=0; Z73 ysn}
P2=0; hWuq
P3=1; GfVMj7{
P=0; /GCSC8T
for m1=1:M1 Be-gGJG
p=0.032*m1; %input amplitude I8?egDkk
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 _"z#I
CT(
s1=s10; y*_g1q$
s20=0.*s10; %input in waveguide 2 EEF}Wf$f
s30=0.*s10; %input in waveguide 3 #r0A<+t{T
s2=s20; Vd|/]Zj
s3=s30; w6Ue5Ix,!
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); \QYs(nm?k
%energy in waveguide 1 'O2{0
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); RU[{!E
%energy in waveguide 2 q-p4k`]
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); +}z
T][9w
%energy in waveguide 3 '0?5K0
2(
for m3 = 1:1:M3 % Start space evolution NW^}u~-f
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS W5sVQ`S-
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; w)3LY F
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; R-Uj\M>
sca1 = fftshift(fft(s1)); % Take Fourier transform cj5pI?@e)
sca2 = fftshift(fft(s2)); Z;lE-`Z*(F
sca3 = fftshift(fft(s3)); {"s9A&
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift u;y1leG
sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); TS@EE&W