计算脉冲在非线性耦合器中演化的Matlab 程序 d<Os TA s z\RmX % This Matlab script file solves the coupled nonlinear Schrodinger equations of
qck/b % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
]xG8vy % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
cP1jw%3P % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
UIl_&| 'O`3FI %fid=fopen('e21.dat','w');
q KM]wu0Et N = 128; % Number of Fourier modes (Time domain sampling points)
.+Ej%|l% M1 =3000; % Total number of space steps
W.|6$hRl) J =100; % Steps between output of space
J qUVGEg T =10; % length of time windows:T*T0
c6HU'%v T0=0.1; % input pulse width
#$w#"Nr9k MN1=0; % initial value for the space output location
2mUu3fZ dt = T/N; % time step
wB)+og-^1f n = [-N/2:1:N/2-1]'; % Index
3CE8+PnT t = n.*dt;
nnG2z@$- u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
Q
8rtZ u20=u10.*0.0; % input to waveguide 2
O i0;.<kX u1=u10; u2=u20;
+V@=G &Ou0 U1 = u1;
;}~=W!yz U2 = u2; % Compute initial condition; save it in U
"Y!dn|3 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
$vBU}~l7 w=2*pi*n./T;
Nd_@J& g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
BFOFes`>~ L=4; % length of evoluation to compare with S. Trillo's paper
6p"c^ dz=L/M1; % space step, make sure nonlinear<0.05
o"FiM5L^. for m1 = 1:1:M1 % Start space evolution
#Qr4Ke$g[l u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
*d@Hnu"q u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
F}]_/cY7B ca1 = fftshift(fft(u1)); % Take Fourier transform
`t1$Ew< ca2 = fftshift(fft(u2));
pxxFm~"d c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
j7 =3\SO c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
pK9^WT@ u2 = ifft(fftshift(c2)); % Return to physical space
2&0<$> u1 = ifft(fftshift(c1));
XO#)i6}G if rem(m1,J) == 0 % Save output every J steps.
)$B+3f U1 = [U1 u1]; % put solutions in U array
#/Fu*0/)` U2=[U2 u2];
38rZ`O*D MN1=[MN1 m1];
D:E~yh)$- z1=dz*MN1'; % output location
}+4Bf+u: end
b0b9#9x end
qb4;l\SfT hg=abs(U1').*abs(U1'); % for data write to excel
$Je"z]cy- ha=[z1 hg]; % for data write to excel
&H&P)Px*_ t1=[0 t'];
5%+}rSn7 hh=[t1' ha']; % for data write to excel file
3Jm'q,TC %dlmwrite('aa',hh,'\t'); % save data in the excel format
'd^gRH<z figure(1)
.w_`d'} waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
7J;~&x figure(2)
^<\} Y waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
3DAGW"F R.H\b! 非线性超快脉冲耦合的数值方法的Matlab程序 kc'0NE4oq X8
)>}#: 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
h+3Z.WKhwP Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
2 dD<] RLz`aBT _P<lG[V fG2&/42J % This Matlab script file solves the nonlinear Schrodinger equations
"&#WMi % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
Oawr S{ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
6
2`PK+ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
;Uqx&5P} 'e>sHL C=1;
DRW.NL o M1=120, % integer for amplitude
2c~?UK[1 M3=5000; % integer for length of coupler
s#4ew} N = 512; % Number of Fourier modes (Time domain sampling points)
!mxh]x<e dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
C^" Hj T =40; % length of time:T*T0.
bsi q9$F dt = T/N; % time step
DIqT>HHZ n = [-N/2:1:N/2-1]'; % Index
aE\BAbD7 t = n.*dt;
,(0XsBL ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
y8hg8J| w=2*pi*n./T;
?>.g;3E$ g1=-i*ww./2;
)fMX!#KP g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
r\n
h.}s g3=-i*ww./2;
@`;Y/', P1=0;
"h^#<bPN P2=0;
PyT}}UKj: P3=1;
H'0*CiHes P=0;
g<iwxF for m1=1:M1
k<'vP{ p=0.032*m1; %input amplitude
4 ?@uF[ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
S`c]Fc s1=s10;
?gR\A8:8 s20=0.*s10; %input in waveguide 2
22/?JWL> s30=0.*s10; %input in waveguide 3
}1]!#yMfq s2=s20;
BY4 R@) s3=s30;
Iwt2}E(e p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
{ 1@4}R4 %energy in waveguide 1
#HM\a p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
^wO_b'@v %energy in waveguide 2
"_1-IE p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
4ljvoJ}xjr %energy in waveguide 3
eY4`k for m3 = 1:1:M3 % Start space evolution
siRnH(^J s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
EK8E s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
\Qi#'c$5+a s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
V"7<[u]K| sca1 = fftshift(fft(s1)); % Take Fourier transform
LN.Bd, sca2 = fftshift(fft(s2));
}r~v,KDb sca3 = fftshift(fft(s3));
/G)KkBC sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
_
7BF+*T sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
X&9^&U=e sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
FU5LYXCs s3 = ifft(fftshift(sc3));
?K4.L?D#J s2 = ifft(fftshift(sc2)); % Return to physical space
5xMA~I 0c s1 = ifft(fftshift(sc1));
7TV>6i+7 end
tIxhSI^ p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
j$|j8? p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
-Ap2NpZ"t p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
Ho )t=qn P1=[P1 p1/p10];
[>$\s=` h P2=[P2 p2/p10];
V`g\ja*Y P3=[P3 p3/p10];
bIb6yVnHi P=[P p*p];
B_."?*|w end
C,|nmlDN figure(1)
C`NBHRa> plot(P,P1, P,P2, P,P3);
W(&Go'9e" >}<29Ii 转自:
http://blog.163.com/opto_wang/