切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9186阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 S=) c7t?a  
    <!>\ n\A  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of EB!ne)X  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 37kFbR@x  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Jg=!GU/::  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 g?"QahH G  
    o 7kg.w|  
    %fid=fopen('e21.dat','w'); W=^.s>7G  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) K\9CW%W  
    M1 =3000;              % Total number of space steps m_0y]RfG  
    J =100;                % Steps between output of space ``jNj1t{}  
    T =10;                  % length of time windows:T*T0 [k%hl`}  
    T0=0.1;                 % input pulse width YOLzCnI4  
    MN1=0;                 % initial value for the space output location +U<YM94?  
    dt = T/N;                      % time step asYk #;z\"  
    n = [-N/2:1:N/2-1]';           % Index i,ZEUdd*_  
    t = n.*dt;   uFSU|SDd.  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 }#D=Rf?2\P  
    u20=u10.*0.0;                  % input to waveguide 2 >R]M:Wx  
    u1=u10; u2=u20;                 082iE G  
    U1 = u1;   { DP9^hg  
    U2 = u2;                       % Compute initial condition; save it in U Ga02Zk  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. -W^{)%4g  
    w=2*pi*n./T; =QVkY7  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 'u v=D  
    L=4;                           % length of evoluation to compare with S. Trillo's paper <!RkkU& 6  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 R&(OWF;~,  
    for m1 = 1:1:M1                                    % Start space evolution ZT!8h$SE:  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS j H2)8~P  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; &Iy5@8  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform N8Rq7i3F?a  
       ca2 = fftshift(fft(u2)); rZdOU?U  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 2LUsqL\m}.  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   {H[N|\  
       u2 = ifft(fftshift(c2));                        % Return to physical space ;=0mL,  
       u1 = ifft(fftshift(c1)); M^oL.'  
    if rem(m1,J) == 0                                 % Save output every J steps. 6vbKKn`ST  
        U1 = [U1 u1];                                  % put solutions in U array (n7xYGfYS  
        U2=[U2 u2]; N 5Om~D  
        MN1=[MN1 m1]; EF:ec9 .  
        z1=dz*MN1';                                    % output location ;iX~3[]  
      end %" bI2  
    end sc+%v1Y#}  
    hg=abs(U1').*abs(U1');                             % for data write to excel *d=}HO/  
    ha=[z1 hg];                                        % for data write to excel HL"c yxe  
    t1=[0 t']; V WZpEi  
    hh=[t1' ha'];                                      % for data write to excel file G@ ot^n3  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format b>p_w%d[[J  
    figure(1) 9*s8%pL  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn G 0pq'7B  
    figure(2) 05ClPT\BCr  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn n(Nu  
    El9T>!Z  
    非线性超快脉冲耦合的数值方法的Matlab程序 :'wxm3f  
    wicsf<]  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   c\o_U9=n  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @>46.V{P}B  
    Wo&22,EB  
    h?dSn:Y\?  
    MV$E_@pg  
    %  This Matlab script file solves the nonlinear Schrodinger equations ]>)shH=Yx  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ^V;r  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear o`Z3}  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `uPO+2  
    I-!7 EC2{!  
    C=1;                           >4wigc  
    M1=120,                       % integer for amplitude OAq-(_H  
    M3=5000;                      % integer for length of coupler S>x@9$( ym  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Y<W9LF  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Xxh^4vKjX  
    T =40;                        % length of time:T*T0. !b!An; ',  
    dt = T/N;                     % time step 16Ka>=G  
    n = [-N/2:1:N/2-1]';          % Index TU_'1  
    t = n.*dt;   bX38=.up  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. #0r^<Yn  
    w=2*pi*n./T; [x 7Rq_^  
    g1=-i*ww./2; h *;c"/7  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; '{cND  
    g3=-i*ww./2; U3Gg:onuE  
    P1=0; 4 `l$0m@>  
    P2=0; y g(Na  
    P3=1; g0biw?  
    P=0; [p'2#Et  
    for m1=1:M1                 a7_Q8iMe  
    p=0.032*m1;                %input amplitude 90+Vw`Gz=  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 4S 4MQ  
    s1=s10; prS%lg>  
    s20=0.*s10;                %input in waveguide 2 > )Qq^?U  
    s30=0.*s10;                %input in waveguide 3 1d49&-N  
    s2=s20; 2*`kkS  
    s3=s30; NaoOgZ?  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   /xgC`]-  
    %energy in waveguide 1 t9<BQg  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   $9\8?gS  
    %energy in waveguide 2 l5^Q  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   `_LQs9J0J  
    %energy in waveguide 3 Bkq4V$D_  
    for m3 = 1:1:M3                                    % Start space evolution 7n .A QII  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS c[M4l  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; YYI0iM>  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; n,2p)#?  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform [4qvQ7Y !  
       sca2 = fftshift(fft(s2)); uYs45 G  
       sca3 = fftshift(fft(s3)); DHn\ =M  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ,~$sJ2 g7  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); CaCApL  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); P2ySjgd  
       s3 = ifft(fftshift(sc3)); ~-sgk"$  
       s2 = ifft(fftshift(sc2));                       % Return to physical space <^;~8:0]  
       s1 = ifft(fftshift(sc1)); B_Gcz5  
    end aO |@w"p8  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ?8grK  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); _0naqa!JyH  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); z I9jxwXU  
       P1=[P1 p1/p10]; =1>G * ,  
       P2=[P2 p2/p10]; s +S6'g--  
       P3=[P3 p3/p10]; 8}[<3K%*g  
       P=[P p*p]; ok,O/|E}?  
    end ByoI+n* U  
    figure(1) nY;Sk#9  
    plot(P,P1, P,P2, P,P3); ~,F]~|U7l  
    y<IHZq`C3  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~