切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8926阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 fc:87ZR{K  
    L9hL@  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of unYPvrd  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of x?6^EB|@  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear lKQjG+YF  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *>iJ=H  
    :n <l0  
    %fid=fopen('e21.dat','w'); ( K-7z  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) :'t"kS  
    M1 =3000;              % Total number of space steps ~&0lWa  
    J =100;                % Steps between output of space mFpj@=^_G  
    T =10;                  % length of time windows:T*T0 ! , ]Fx  
    T0=0.1;                 % input pulse width U2_;  
    MN1=0;                 % initial value for the space output location T}p|_)&y  
    dt = T/N;                      % time step JKYtBXOl  
    n = [-N/2:1:N/2-1]';           % Index fm%4ab30T  
    t = n.*dt;   `T2DGv  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 |a1zJ_t4  
    u20=u10.*0.0;                  % input to waveguide 2 'bji2#z[  
    u1=u10; u2=u20;                 muK)Y w[#N  
    U1 = u1;   UQ e1rf  
    U2 = u2;                       % Compute initial condition; save it in U R$/q=*k  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1.  M+=q"#&  
    w=2*pi*n./T; i+-=I+L3  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ^s8JW"H  
    L=4;                           % length of evoluation to compare with S. Trillo's paper %AgCE"!  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 BaCzN;)  
    for m1 = 1:1:M1                                    % Start space evolution }/xdHt  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 00W_XhJ  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;  Mv%B#J  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform _=5\$6  
       ca2 = fftshift(fft(u2)); }q/[\3  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation sQzr+]+#9  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   $iy(+}  
       u2 = ifft(fftshift(c2));                        % Return to physical space \bSakh71  
       u1 = ifft(fftshift(c1)); R'1"`@f G  
    if rem(m1,J) == 0                                 % Save output every J steps. ^3&-!<*  
        U1 = [U1 u1];                                  % put solutions in U array Df $Yn  
        U2=[U2 u2]; dI,H:g  
        MN1=[MN1 m1]; n  8|  
        z1=dz*MN1';                                    % output location k"`^vV[{F  
      end ]%5gPfv[T  
    end Yj>\WH  
    hg=abs(U1').*abs(U1');                             % for data write to excel w^$$'5=  
    ha=[z1 hg];                                        % for data write to excel MIv,$  
    t1=[0 t']; %+$!ctn  
    hh=[t1' ha'];                                      % for data write to excel file # WL5p.  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 1rmN)  
    figure(1) N jA\*M9  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn GsWf$/iC:  
    figure(2) `? f sU  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn $)O\i^T  
    DV bY   
    非线性超快脉冲耦合的数值方法的Matlab程序 wlX K2D  
    H: ;S1D  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   |SsmVW$B|  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Of$gs-  
    @v\jL+B+m  
    #fe zUU  
    h3-dJgb  
    %  This Matlab script file solves the nonlinear Schrodinger equations (7P VfS>;  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Bk4|ik}  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear <C7/b#4>\  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 p["20 ?^  
    gG6BEsGa,  
    C=1;                           3n TpL#  
    M1=120,                       % integer for amplitude ^t)alNGos  
    M3=5000;                      % integer for length of coupler I#t# %!InH  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) cA B^]j  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ^$\#aTyFK  
    T =40;                        % length of time:T*T0. x@"`KiEUs  
    dt = T/N;                     % time step ML_[Z_Q<z  
    n = [-N/2:1:N/2-1]';          % Index q/\Hh9`  
    t = n.*dt;   Zv1/J}+  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. BO=j*.YKy  
    w=2*pi*n./T; "C%* 'k  
    g1=-i*ww./2; LfS]m>>e  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; :j!N7c{  
    g3=-i*ww./2; /T/7O  
    P1=0; []eZO_o6j  
    P2=0; q"^T}d d,  
    P3=1; N%+C5e<  
    P=0; *6*/kV? F  
    for m1=1:M1                 *Ry "`"  
    p=0.032*m1;                %input amplitude Uv /?/;si  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 EY 9N{  
    s1=s10; ID v|i.q3  
    s20=0.*s10;                %input in waveguide 2 !F*CEcB  
    s30=0.*s10;                %input in waveguide 3 ,!g%`@u  
    s2=s20; cY\"{o"C  
    s3=s30; wrt^0n'r)c  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   79(Px2H2  
    %energy in waveguide 1 be{tyV  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ;F'/[l{+  
    %energy in waveguide 2 5U&?P   
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ns1@=f cO  
    %energy in waveguide 3 4wQ>HrS)(  
    for m3 = 1:1:M3                                    % Start space evolution ZnYoh/  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS q'awV5y  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; |G]M"3^  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; [ 6t!}q  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform k%?A=h  
       sca2 = fftshift(fft(s2)); rn8t<=ptH3  
       sca3 = fftshift(fft(s3)); r6eApKZ>f6  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   }7jg>3ng(  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); %7bZnK`C  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); t{)J#8:g  
       s3 = ifft(fftshift(sc3)); BPzlt  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ?rgk  
       s1 = ifft(fftshift(sc1)); )D q/fW  
    end YV0K&d  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Fps.Fhm  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ?rn#S8nNx<  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 2r=A'  
       P1=[P1 p1/p10]; l6EDl0~r  
       P2=[P2 p2/p10]; Hh1OD?N)  
       P3=[P3 p3/p10]; <+c6CM$#}V  
       P=[P p*p]; :X6A9jmd  
    end e7.!=R{6  
    figure(1) kdry a  
    plot(P,P1, P,P2, P,P3); [8QE}TFic  
    jFBnP,WQ  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~