切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9172阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Lc!% 3,#.  
    t3.;W/0_  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of $UAmUQg)}_  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of %SL'X`j  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear iXt >!f*  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 W~J@v@..4  
    jiMI&cl  
    %fid=fopen('e21.dat','w'); E4aCL#}D  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Q"KD O-t  
    M1 =3000;              % Total number of space steps PK@hf[YHe  
    J =100;                % Steps between output of space L<encPJt  
    T =10;                  % length of time windows:T*T0 F'DO46  
    T0=0.1;                 % input pulse width 0!YB.=\{_q  
    MN1=0;                 % initial value for the space output location xJ)hGPrAl  
    dt = T/N;                      % time step C3 ^QNhv  
    n = [-N/2:1:N/2-1]';           % Index A"8` 5qa  
    t = n.*dt;   #8G (r9  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ~{hcJ:bI  
    u20=u10.*0.0;                  % input to waveguide 2 /pZ]:.A  
    u1=u10; u2=u20;                 b/:&iG;  
    U1 = u1;   ^b=9{.5  
    U2 = u2;                       % Compute initial condition; save it in U 1H{M0e  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Z> jk\[  
    w=2*pi*n./T; ,rT62w*e  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T M/XxiF  
    L=4;                           % length of evoluation to compare with S. Trillo's paper vq|o}6Et  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 lL.3$Rp;  
    for m1 = 1:1:M1                                    % Start space evolution 5_@ u Be~  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS *Y'@|xf*  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; I6d4<#Q@L  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform #E%0 o  
       ca2 = fftshift(fft(u2)); A` x_M!m  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation fX=o,=-f  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   [hE0 9W  
       u2 = ifft(fftshift(c2));                        % Return to physical space pZ?7'+u$L  
       u1 = ifft(fftshift(c1)); 3[plwe  
    if rem(m1,J) == 0                                 % Save output every J steps. 4viP lO  
        U1 = [U1 u1];                                  % put solutions in U array 5|>FM&  
        U2=[U2 u2]; (he cvJ  
        MN1=[MN1 m1]; j3`# v3  
        z1=dz*MN1';                                    % output location Nf(Np1?;c  
      end dGf:0xE"  
    end WVUa:_5{  
    hg=abs(U1').*abs(U1');                             % for data write to excel Y;ytm #=  
    ha=[z1 hg];                                        % for data write to excel ,;LxFS5\  
    t1=[0 t']; B -XM(C j  
    hh=[t1' ha'];                                      % for data write to excel file bkfwsYZx  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format f$Fa*O-  
    figure(1) ;fLYO6  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn i`-,=RJ  
    figure(2) #p@8m_g  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn "L'0"  
    VPG+]> *  
    非线性超快脉冲耦合的数值方法的Matlab程序 UruD&=AMK  
    YY~BNQn6d  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   n\8;4]n  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 =SJwCT0;  
    GRV#f06  
    5g9lO]WDI  
    @Sb 86Ee  
    %  This Matlab script file solves the nonlinear Schrodinger equations 9aYDi)  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of tHlKo0S$0  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear bvY'=   
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 : tKa1vL  
    sHC4iMIw  
    C=1;                           <xOv0B  
    M1=120,                       % integer for amplitude thWQU"z4  
    M3=5000;                      % integer for length of coupler ;Ml??B]C  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) >_3+s~  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. $FV!HD  
    T =40;                        % length of time:T*T0.  X$:r  
    dt = T/N;                     % time step kkfwICBI  
    n = [-N/2:1:N/2-1]';          % Index Z|&Y1k-h  
    t = n.*dt;   9Yih%d,  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ;4DqtR"7Y  
    w=2*pi*n./T; "YLH]9"=  
    g1=-i*ww./2; Xq"@Z  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; =Kdd+g!  
    g3=-i*ww./2; H]v"_!(\  
    P1=0; tEEeek(!  
    P2=0; o(iv=(o  
    P3=1; |~Q`D dkX  
    P=0; lLD-QO}/  
    for m1=1:M1                 VT.BHZ  
    p=0.032*m1;                %input amplitude <YU+W"jQT  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 xsjJ8>G  
    s1=s10; /9/svPc]  
    s20=0.*s10;                %input in waveguide 2 V'vDXzk\  
    s30=0.*s10;                %input in waveguide 3 ISo{>@a-  
    s2=s20; s':fv[%  
    s3=s30; rN3i5.*/t  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   0fc]RkHs"  
    %energy in waveguide 1 4 I}xygV  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   V,>_L  
    %energy in waveguide 2 Op] L#<&T  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   W)rE_tw,|  
    %energy in waveguide 3 2?; =TJo$  
    for m3 = 1:1:M3                                    % Start space evolution @)0-oa,u+  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ,/ V'(\>  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; q3.L6M  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; oS'M  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform "m^whHj  
       sca2 = fftshift(fft(s2)); *ml&}9  
       sca3 = fftshift(fft(s3)); lNV%R(  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   F^iv1b  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); >AcpJ|V  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); N_jCx*.G  
       s3 = ifft(fftshift(sc3)); }@Mx@ S  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ~'/I[y4t  
       s1 = ifft(fftshift(sc1)); ;1Kxqp z_i  
    end i*16k dI.  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 5gpqN)|)[  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); F">>,Oc)U"  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); .HTX7mA3  
       P1=[P1 p1/p10]; t(SSrM]  
       P2=[P2 p2/p10]; #A|~s;s>N  
       P3=[P3 p3/p10]; C#]%  
       P=[P p*p]; xJ"CAg|B  
    end -"L)<J@gQ?  
    figure(1) ?L|Jc_E  
    plot(P,P1, P,P2, P,P3); \-c8/=  
    B"O5P>  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~