切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9154阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 |R9Lben',  
    BmX'%5ho  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of uE's&H  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of h0PDFMM<  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear gs'M^|e)  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 NpH8=H9  
    D;Qx9^.  
    %fid=fopen('e21.dat','w'); 2`f{D~w  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) EsGu#lD2  
    M1 =3000;              % Total number of space steps cZh0\Dy U  
    J =100;                % Steps between output of space p1KhI;^  
    T =10;                  % length of time windows:T*T0 Ljy797{f  
    T0=0.1;                 % input pulse width aN0[6+KP;  
    MN1=0;                 % initial value for the space output location st RM *.  
    dt = T/N;                      % time step  ~71U s  
    n = [-N/2:1:N/2-1]';           % Index P=n_wE  
    t = n.*dt;   [inlxJD  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 juHL$SGC  
    u20=u10.*0.0;                  % input to waveguide 2 =*\.zr  
    u1=u10; u2=u20;                 g"P%sA/E+  
    U1 = u1;   M|DMoi8x  
    U2 = u2;                       % Compute initial condition; save it in U Sb`[+i' `  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 64/ZfXD  
    w=2*pi*n./T; M/<ypJ  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T JH.XZM&  
    L=4;                           % length of evoluation to compare with S. Trillo's paper uuY^Q;^I*  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 kd'b_D[$H  
    for m1 = 1:1:M1                                    % Start space evolution W;OGdAa_  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS b9j}QK  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ]F y' M  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform (kxS0 ]=  
       ca2 = fftshift(fft(u2)); ;73S;IPR  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Q#p)?:o/  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   9<Pg2#*N0  
       u2 = ifft(fftshift(c2));                        % Return to physical space rRe5Q  
       u1 = ifft(fftshift(c1)); 0nwi5  
    if rem(m1,J) == 0                                 % Save output every J steps. Xw4Eti._D  
        U1 = [U1 u1];                                  % put solutions in U array 2w.FC  
        U2=[U2 u2]; u n v:sV#b  
        MN1=[MN1 m1]; R (f:UC  
        z1=dz*MN1';                                    % output location }QI \K  
      end 8:TX9`,  
    end bg zd($)u  
    hg=abs(U1').*abs(U1');                             % for data write to excel AIHH@z   
    ha=[z1 hg];                                        % for data write to excel -N' (2'  
    t1=[0 t']; KTm^}')C8  
    hh=[t1' ha'];                                      % for data write to excel file b-& rMML  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format #z(:n5$F  
    figure(1) 1TZ[i  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn m^ xTV-#l@  
    figure(2) gNZwD6GMe?  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn kZ% AGc  
    E^-c,4'F  
    非线性超快脉冲耦合的数值方法的Matlab程序 !BoGSI  
    fV"Y/9}(  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ;?Pz0,{h  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 9 /H~hEVK  
    l+Wux$6U  
    8>C4w 5kF  
    ,Q"'q0hM=  
    %  This Matlab script file solves the nonlinear Schrodinger equations 0fqcPi  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of =IL\T8y09  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear +-!3ruwSn  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004  7UBDd1  
    3/RwCtc  
    C=1;                           b~.$1oZ  
    M1=120,                       % integer for amplitude  LDg9@esi  
    M3=5000;                      % integer for length of coupler s\d3u`G  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Gpu[<Z4  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. n{QyqI  
    T =40;                        % length of time:T*T0. mlByE,S2E  
    dt = T/N;                     % time step .F ?ww}2p]  
    n = [-N/2:1:N/2-1]';          % Index "Da 1BuX\  
    t = n.*dt;   ?A@y4<8R|  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 12^uu)6Xm,  
    w=2*pi*n./T; :-x?g2MY  
    g1=-i*ww./2; 0N1t.3U  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ranem0KQ)]  
    g3=-i*ww./2;  hlVC+%8  
    P1=0; f,O10`4s  
    P2=0; Xq1#rK(  
    P3=1; I[%IW4jJ  
    P=0; KGJSGvo+y  
    for m1=1:M1                 t]&.'n,  
    p=0.032*m1;                %input amplitude n~lB}  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 `ulQ C  
    s1=s10; >)K3  
    s20=0.*s10;                %input in waveguide 2 P"7` :a  
    s30=0.*s10;                %input in waveguide 3 s`x2Go  
    s2=s20; 0Px Hf*  
    s3=s30; !hHe`  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   bm;iX*~  
    %energy in waveguide 1 7T[L5-g  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   T]0K4dp+  
    %energy in waveguide 2 4b}p[9k  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Ls2OnL9  
    %energy in waveguide 3 u/W{JPlL  
    for m3 = 1:1:M3                                    % Start space evolution \0|x<~#j'  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS C 9%bD  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; TD\TVK3P  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; i<S \x  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform pKLcg"{[F  
       sca2 = fftshift(fft(s2)); ta&z lZt  
       sca3 = fftshift(fft(s3)); UW":&`i  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   (B` NnL$  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); NL.3qx  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); _U}|Le@ e  
       s3 = ifft(fftshift(sc3)); :/6:&7s  
       s2 = ifft(fftshift(sc2));                       % Return to physical space U$D:gZ  
       s1 = ifft(fftshift(sc1)); *effDNE!  
    end Gh_5$@ hF  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ]9 @4P$I  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 86%k2~L  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); /;_$:`|/  
       P1=[P1 p1/p10]; <2*+Y|Lk2  
       P2=[P2 p2/p10]; kX V  
       P3=[P3 p3/p10]; C=c&.-Nb9  
       P=[P p*p]; @{V`g8P>  
    end %w_MRC  
    figure(1) ="T}mc  
    plot(P,P1, P,P2, P,P3); h(2{+Y+  
    p!DdX  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~