计算脉冲在非线性耦合器中演化的Matlab 程序 pi|=3W
`Sx1?@8(
% This Matlab script file solves the coupled nonlinear Schrodinger equations of J))U YJO
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of [.Rdq]w6
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear L9$`zc
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *Y':raP
\
z3>kvk
%fid=fopen('e21.dat','w'); 8w$q4fg0
N = 128; % Number of Fourier modes (Time domain sampling points) J# DN2y<
M1 =3000; % Total number of space steps &J\<"3
J =100; % Steps between output of space 4 KX\'K
T =10; % length of time windows:T*T0 (zX75QSKV
T0=0.1; % input pulse width %M*2 j%6
MN1=0; % initial value for the space output location b%QcB[k[WB
dt = T/N; % time step Ya&\ b 6
n = [-N/2:1:N/2-1]'; % Index @~QI3)=s
t = n.*dt; bo-L|R&O
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 h0&Oy52
u20=u10.*0.0; % input to waveguide 2 r>ag(^J\
u1=u10; u2=u20; ]]NTvr
U1 = u1; l4>c
U2 = u2; % Compute initial condition; save it in U m%cwhH_B
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. S}P rgw/
w=2*pi*n./T; hb<cynY
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T r+!29
L=4; % length of evoluation to compare with S. Trillo's paper W6s-epsRmT
dz=L/M1; % space step, make sure nonlinear<0.05 !C@+CZXLx
for m1 = 1:1:M1 % Start space evolution $-p9cyk
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS \4KV9wm
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; VfFbZds8f
ca1 = fftshift(fft(u1)); % Take Fourier transform 1+#E|YWJ
ca2 = fftshift(fft(u2)); qg2Vmj<H
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation v?YxF}
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift +!K*FU=).
u2 = ifft(fftshift(c2)); % Return to physical space
20]p<
u1 = ifft(fftshift(c1)); f@ILC=c<
if rem(m1,J) == 0 % Save output every J steps. YrsE
88QqI
U1 = [U1 u1]; % put solutions in U array Kk).KgR
U2=[U2 u2]; "r~/E|Da<
MN1=[MN1 m1]; ^ X-6j[".
z1=dz*MN1'; % output location @R Jr
~y0
end \hWac%#
end NX5$x/uz
hg=abs(U1').*abs(U1'); % for data write to excel p^1~o/
ha=[z1 hg]; % for data write to excel 2;K2|G7
t1=[0 t']; @*roW{?!
hh=[t1' ha']; % for data write to excel file 1ozb
tn
%dlmwrite('aa',hh,'\t'); % save data in the excel format 1H?I?IT30
figure(1) M0T z('~s
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn NwVhJdo
figure(2) 6ZAZJn|
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn ";;!c. !^
-ykD/
非线性超快脉冲耦合的数值方法的Matlab程序 4y.qtiIP>$
S0tkqA4
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 Vg(M ^2L
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Q_Wg4n5
1ASoH,D/
[C\B2iU7_M
(*_lLM@Cd
% This Matlab script file solves the nonlinear Schrodinger equations tAPf#7{|
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of cbYQ';{
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear .%!^L#g
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 pfs]pDjS:
CDPu(,^
C=1; 6Jq3l_
M1=120, % integer for amplitude ~6K.5t7
M3=5000; % integer for length of coupler M?AKJE j5
N = 512; % Number of Fourier modes (Time domain sampling points) 1IlOU|4
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. eL<jA9cJ9
T =40; % length of time:T*T0. !b=W>5h
dt = T/N; % time step X:lStO#5
n = [-N/2:1:N/2-1]'; % Index dai+"
t = n.*dt; NTEN
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. 7xFZJ#
w=2*pi*n./T; Cg|\UKfy$
g1=-i*ww./2; [$F*R@,&
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; a`[9<AM1#
g3=-i*ww./2; \._|_+HiW
P1=0; gm%cAme
P2=0; %P{3c~?DH
P3=1; M ziOpraj
P=0; t 4VeXp6
for m1=1:M1 7<Qmpcp =
p=0.032*m1; %input amplitude xI.0m
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 &8Z.m,s]
s1=s10; B*Ey&DAV
s20=0.*s10; %input in waveguide 2 B[q"oI`
s30=0.*s10; %input in waveguide 3 J7qTE8 W=
s2=s20; \ @[Q3.VX
s3=s30; .lq83;
k
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); S;y4Z:!
%energy in waveguide 1 $4}G
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); |fIyq}{7
%energy in waveguide 2 m;A[2 6X
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); hsT&c|
%energy in waveguide 3 A2;6Vz=z
for m3 = 1:1:M3 % Start space evolution -SfU.XlZl
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS b dLi_k
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; c&x1aF "B
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; d S'J @e=#
sca1 = fftshift(fft(s1)); % Take Fourier transform NuOxEyC
sca2 = fftshift(fft(s2)); U82mO+}
sca3 = fftshift(fft(s3)); )0]U"Nf ho
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift #vhN$H :&q
sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); N'-[>w7vK2
sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); znPh7{|<