切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8303阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 8xv\Zj+  
    ?yU#'`q  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of K@,VR3y /  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of gJ7$G3&oZg  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear evR=Z\ _  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 2X]\:<[4  
    Y5opZ G  
    %fid=fopen('e21.dat','w'); lt4UNJ3w  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 5a~1RL  
    M1 =3000;              % Total number of space steps Xo5L:(?K  
    J =100;                % Steps between output of space w '"7~uN  
    T =10;                  % length of time windows:T*T0 P}I*SV0  
    T0=0.1;                 % input pulse width 5jLDe~  
    MN1=0;                 % initial value for the space output location pZjFpd|  
    dt = T/N;                      % time step CP'-CQ\Q  
    n = [-N/2:1:N/2-1]';           % Index hJ@nW5CI  
    t = n.*dt;   <>Im$N ai  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Uoe?5Of(*  
    u20=u10.*0.0;                  % input to waveguide 2 Z4!3I@yZ  
    u1=u10; u2=u20;                 z W _'sC  
    U1 = u1;   AK!G#ug  
    U2 = u2;                       % Compute initial condition; save it in U pi{ahuI#_o  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 3IkG*enI  
    w=2*pi*n./T; 8HOmWQS  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ;1 fML,8  
    L=4;                           % length of evoluation to compare with S. Trillo's paper )'g vaT  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ^n]s}t}csV  
    for m1 = 1:1:M1                                    % Start space evolution 3:( `#YY  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 6>Cubb>  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; }VGiT~2$  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ]VME`]t`  
       ca2 = fftshift(fft(u2)); Bz{ g4!ku  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation D4|_?O3 |m  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   'zb7:[[7%  
       u2 = ifft(fftshift(c2));                        % Return to physical space k y98/6  
       u1 = ifft(fftshift(c1)); uE$o4X  
    if rem(m1,J) == 0                                 % Save output every J steps. 5ZVTI,4K  
        U1 = [U1 u1];                                  % put solutions in U array 1 W u  
        U2=[U2 u2]; M@\'Y$)Y{  
        MN1=[MN1 m1]; Fk(5y)  
        z1=dz*MN1';                                    % output location cOQy|v`KD,  
      end t/Fe"T[,V  
    end "ir*;|  
    hg=abs(U1').*abs(U1');                             % for data write to excel n3N"Ax  
    ha=[z1 hg];                                        % for data write to excel qHCs{ u  
    t1=[0 t']; x _K%  
    hh=[t1' ha'];                                      % for data write to excel file bv/b<N@4?$  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format u_B SWhiW  
    figure(1) Q Y'-]  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn n1Jz49[r  
    figure(2) w%;'uN_  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn MQ44uHJ  
    F 4/Uu"J:  
    非线性超快脉冲耦合的数值方法的Matlab程序 Sg-xm+iSDt  
    /Hmo!"W`  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   M lFvDy  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7;NV 1RV  
    j,XKu5w)Oi  
    3U)8P6Fz  
    (Y([^N q  
    %  This Matlab script file solves the nonlinear Schrodinger equations +0Gep}&z.  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Pc'?p  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Bv8C_-lV/  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ''uI+>Y  
    m+vEs,W.  
    C=1;                           sd53 _s V  
    M1=120,                       % integer for amplitude BvF_9  
    M3=5000;                      % integer for length of coupler Q8?D}h  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) W#j,{&KVn  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. +`8)U3u0  
    T =40;                        % length of time:T*T0. >nQ yF  
    dt = T/N;                     % time step mx~sxYa  
    n = [-N/2:1:N/2-1]';          % Index k 5D'RD  
    t = n.*dt;   ]'(7T#  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. I?>T"nV +'  
    w=2*pi*n./T; Tm\[q  
    g1=-i*ww./2; BA,6f?ktXS  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 8n5nHne  
    g3=-i*ww./2; C`wI6!  
    P1=0; D}sGBsOW  
    P2=0; _eV n#!|  
    P3=1; )1Nnn  
    P=0; cg0 0t+  
    for m1=1:M1                 OL5HofgNm  
    p=0.032*m1;                %input amplitude 4/?}xD|?  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Hs=N0Sk]j  
    s1=s10; 4Z9wzQ>  
    s20=0.*s10;                %input in waveguide 2 <C;> $kX  
    s30=0.*s10;                %input in waveguide 3 "R@N|Qx'  
    s2=s20; a +yI2s4Z  
    s3=s30; UUu-(H-J  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   x9l0UD*+g  
    %energy in waveguide 1 vN:[  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   <0)ud)~u  
    %energy in waveguide 2 ?K {1S  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   Wxau]uix  
    %energy in waveguide 3 ?7)(qnbe"  
    for m3 = 1:1:M3                                    % Start space evolution ^!o}>ls['  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 8zDH<Gb  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; BK9x`Oo2  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; $'YKB8C  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ir:~*|  
       sca2 = fftshift(fft(s2)); y*h1W4:^-  
       sca3 = fftshift(fft(s3)); l/zC##1+.  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   bDBO+qA  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); W#I:j: p  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); qlITQKGG  
       s3 = ifft(fftshift(sc3)); 6h6?BQSE  
       s2 = ifft(fftshift(sc2));                       % Return to physical space rw[{@|)'z  
       s1 = ifft(fftshift(sc1)); V< ApHb  
    end OP`Jc$| 6  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); nVn|$ "r  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); l@r wf$-  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); r>~d[,^$m4  
       P1=[P1 p1/p10]; jS3(>  
       P2=[P2 p2/p10]; t tFY _F~S  
       P3=[P3 p3/p10]; RB7AI !'a?  
       P=[P p*p]; `k]!6osZo  
    end |W*@}D  
    figure(1) |F@xwfgb  
    plot(P,P1, P,P2, P,P3); PuZs 5J3  
    ()M@3={R  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~