切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8905阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 P-ri=E}>  
    +-E~6^>  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 2Ry1b+\  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of D@!=d@V.  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear i;!H!-sM  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 IpP~Uz  
    ^h{)Gf,+\  
    %fid=fopen('e21.dat','w'); 1KjU ] r2  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) rk)##)  
    M1 =3000;              % Total number of space steps sg+uBCGB  
    J =100;                % Steps between output of space Z!U)I-x&  
    T =10;                  % length of time windows:T*T0 >3c@x  
    T0=0.1;                 % input pulse width ezPz<iZ\N  
    MN1=0;                 % initial value for the space output location ~#kT _*sw)  
    dt = T/N;                      % time step UKM2AZ0lb  
    n = [-N/2:1:N/2-1]';           % Index uL[.ND2._&  
    t = n.*dt;   qL,tYJ<m%  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 dDF .qXq.  
    u20=u10.*0.0;                  % input to waveguide 2 AE} )o)B  
    u1=u10; u2=u20;                 OK\A</8r  
    U1 = u1;   sP ls zC[  
    U2 = u2;                       % Compute initial condition; save it in U H"qOSf{  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. yz0zFfiX  
    w=2*pi*n./T; Yot?=T};3{  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T R58-wUto  
    L=4;                           % length of evoluation to compare with S. Trillo's paper 'Y]mOD^ p  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 )HX|S-qRU=  
    for m1 = 1:1:M1                                    % Start space evolution TC<@e<-%Sq  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS 1AU#%wIEP  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; R+Y4|  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform {l |E:>Q2  
       ca2 = fftshift(fft(u2)); !ET~KL!  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation fJ ,1Ef;Z  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   ",!1m7[wF  
       u2 = ifft(fftshift(c2));                        % Return to physical space J9=m]R8T  
       u1 = ifft(fftshift(c1)); 9]e V?yoA8  
    if rem(m1,J) == 0                                 % Save output every J steps. yrR1[aT  
        U1 = [U1 u1];                                  % put solutions in U array Q:5KZm[[  
        U2=[U2 u2]; l&[;rh  
        MN1=[MN1 m1]; B9wPU1  
        z1=dz*MN1';                                    % output location vBog0KD);s  
      end A\#iXOd  
    end $ibuWb"a  
    hg=abs(U1').*abs(U1');                             % for data write to excel hEw- O;T0  
    ha=[z1 hg];                                        % for data write to excel CP6LHkM9  
    t1=[0 t']; v'BZs   
    hh=[t1' ha'];                                      % for data write to excel file ,u/aT5\_  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format f aLtdQi  
    figure(1) -N"&/)  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn yR4|S2D3xn  
    figure(2) lv]hTH 4T  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn :hM/f  
    &-mX ,   
    非线性超快脉冲耦合的数值方法的Matlab程序 SI=yI-  
    3K_A<j:  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   A* um{E+   
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 qkC/\![@  
    ,dx3zBI  
    C?2' +K  
    #b~JDO(  
    %  This Matlab script file solves the nonlinear Schrodinger equations 46 PoM  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ,13Lq-  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear /FIE:Io  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 W]nSR RWco  
    A$w4PVS  
    C=1;                           PnoPb k[<  
    M1=120,                       % integer for amplitude |M+<m">E  
    M3=5000;                      % integer for length of coupler )LyojwY_g  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) o";Z$tAJkC  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. rSJ9 v :  
    T =40;                        % length of time:T*T0. WH= EPOR,  
    dt = T/N;                     % time step +gLPhX:`  
    n = [-N/2:1:N/2-1]';          % Index `+uhy ,  
    t = n.*dt;   $k2*[sn,  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 3#TV5+x*"`  
    w=2*pi*n./T; AU$Uxwz4  
    g1=-i*ww./2; <^lRUw  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; K5XK%Gl"  
    g3=-i*ww./2; =|YxDas  
    P1=0; +9") KQT  
    P2=0; t8dm)s[r8  
    P3=1; sx`O8t  
    P=0; QI3Nc8t_2  
    for m1=1:M1                 pi ,eIm  
    p=0.032*m1;                %input amplitude qk;{cfzHA  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 E8~}PQW:I  
    s1=s10; >mjNmh7  
    s20=0.*s10;                %input in waveguide 2 _C`K*u 6Z<  
    s30=0.*s10;                %input in waveguide 3 l'TWkQ-  
    s2=s20; Y k5 }`d!:  
    s3=s30; r}jGUe}d  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   n;:rf7hGY  
    %energy in waveguide 1 aG 92ay  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   6#QK%[1!>  
    %energy in waveguide 2 J;f!!<l\  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   |lkNi  
    %energy in waveguide 3 7Ddaf>  
    for m3 = 1:1:M3                                    % Start space evolution yn/rW$  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS 1Q. \s_2  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; E,f>1meN=  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; a! u rew#  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform %C=]1Q=T)  
       sca2 = fftshift(fft(s2)); pe{; ~-|6  
       sca3 = fftshift(fft(s3)); NwZ@#D#[ Y  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   cJL'$`gWf  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ~mR'Q-hi<  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); npNB{J[  
       s3 = ifft(fftshift(sc3)); 6A=8+R'`F  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 4M^G`WA}t9  
       s1 = ifft(fftshift(sc1)); HVC >9_:]  
    end (1NA  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 44F`$.v96  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); \R3H+W  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); mb!9&&2 -t  
       P1=[P1 p1/p10]; r{rQu-|.  
       P2=[P2 p2/p10]; ^*fxR]Y  
       P3=[P3 p3/p10]; ,-OCc!7K  
       P=[P p*p]; 3hK#'."`N  
    end W[}s o6  
    figure(1) T0]*{k(FR  
    plot(P,P1, P,P2, P,P3); w&x!,yd;  
    {je-I9%OK  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~