切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9353阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 o  A* G  
    J` { 6l  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of &@"]+33  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 0e["]Tlnm  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 1gO2C $  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 IGX:H)&*  
    "%8A :^1  
    %fid=fopen('e21.dat','w'); v}J;ZIb  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) tNs~M4TVVH  
    M1 =3000;              % Total number of space steps 1-I Swd'u  
    J =100;                % Steps between output of space 7=4A;Ybq  
    T =10;                  % length of time windows:T*T0 O\;=V`z-  
    T0=0.1;                 % input pulse width ~#:e*:ro  
    MN1=0;                 % initial value for the space output location .V6-(d  
    dt = T/N;                      % time step ]Pn !nSg  
    n = [-N/2:1:N/2-1]';           % Index cd;NpN  
    t = n.*dt;   o7&4G$FX~  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 RK9>dkW  
    u20=u10.*0.0;                  % input to waveguide 2 J3S&3+2G  
    u1=u10; u2=u20;                 sPNfbCOz  
    U1 = u1;   s_jBu  
    U2 = u2;                       % Compute initial condition; save it in U 2>S~I"o0  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ZeasYSo4P  
    w=2*pi*n./T; X_; *`,<T  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T HW=xvA+  
    L=4;                           % length of evoluation to compare with S. Trillo's paper kR.wOJ7'  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ]0c Pml  
    for m1 = 1:1:M1                                    % Start space evolution #:3r4J%+~  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS QL"gWr`R  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; oL/o*^  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform :s8A:mx  
       ca2 = fftshift(fft(u2)); ;kaHN;4?  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 4YbC(f  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   hN`gB#N3  
       u2 = ifft(fftshift(c2));                        % Return to physical space t\j!K2  
       u1 = ifft(fftshift(c1)); SA6hbcYk  
    if rem(m1,J) == 0                                 % Save output every J steps. &J"YsY  
        U1 = [U1 u1];                                  % put solutions in U array =.m6FRsU  
        U2=[U2 u2]; nR5bs;gk"  
        MN1=[MN1 m1]; mp `PE=  
        z1=dz*MN1';                                    % output location 2?i\@r@E|  
      end J;~|p h  
    end ||TtNH  
    hg=abs(U1').*abs(U1');                             % for data write to excel snk$^  
    ha=[z1 hg];                                        % for data write to excel zjbE 7^ N  
    t1=[0 t']; -oBI+v&  
    hh=[t1' ha'];                                      % for data write to excel file F1|zXg)  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format z<C[nR$N  
    figure(1) K, (65>86;  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn xi {|  
    figure(2) >M^&F6  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 'ND36jHcRD  
    }6~)bLzI}  
    非线性超快脉冲耦合的数值方法的Matlab程序 `ypL]$cW  
    qR,.W/eS8  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   XK3]AYH  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 9\51Z:>  
    lC9S\s  
    6zYaA  
    i^%-aBZ  
    %  This Matlab script file solves the nonlinear Schrodinger equations X7cWgo66T  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of cqQRU  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear IlHY%8F{  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 2:J,2=%  
    >_Uj?F:  
    C=1;                           u7k|7e=xk  
    M1=120,                       % integer for amplitude RebTg1vGu  
    M3=5000;                      % integer for length of coupler #4y,a_)  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) )bW5yG!  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. sMi{"`37  
    T =40;                        % length of time:T*T0. vj3isI4lU  
    dt = T/N;                     % time step _'JRo%{xGX  
    n = [-N/2:1:N/2-1]';          % Index J/S{FxNe]  
    t = n.*dt;   _^; ;i4VZ  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. S[U/qO)m  
    w=2*pi*n./T; %_tk7x  
    g1=-i*ww./2; >~&(P_<b  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; agY5Dg7  
    g3=-i*ww./2; 4;\Y?M}g?  
    P1=0; nYov>x]  
    P2=0; `` -k{C#F  
    P3=1; G.ud1,S#  
    P=0; ^gm>!-Gx  
    for m1=1:M1                 xKW"X   
    p=0.032*m1;                %input amplitude "]<}Hy  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 i`~~+6`J  
    s1=s10; .}p|`3$P  
    s20=0.*s10;                %input in waveguide 2 )VY10 R)$  
    s30=0.*s10;                %input in waveguide 3 !QTPWA  
    s2=s20; LVmY=d>  
    s3=s30; t&f" jPu>  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   @ KJV1t`  
    %energy in waveguide 1 Qu}N:P9l?X  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   #NJ<[Gew  
    %energy in waveguide 2 ;Vo mFp L  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   c(:Oyba  
    %energy in waveguide 3 ;Id"n7W  
    for m3 = 1:1:M3                                    % Start space evolution a 2Et,WA%  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS VKf6|ae  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; @Z=wE3T@  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; qL>v&Rd<  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ".M:`BoW4  
       sca2 = fftshift(fft(s2)); \>;%Ji  
       sca3 = fftshift(fft(s3)); ~y@& }  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   !OQuEJR  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); &NP6%}bR`  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); @WJf)  
       s3 = ifft(fftshift(sc3)); R_9 o!s TZ  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 7V/Zr  
       s1 = ifft(fftshift(sc1)); f\=6I3z  
    end Re\o v x9  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); zi_[ V@Es/  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); >.@MR<H#5  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 4L $};L  
       P1=[P1 p1/p10]; [U']kt  
       P2=[P2 p2/p10]; q06@SD$   
       P3=[P3 p3/p10]; /gX%ABmS  
       P=[P p*p]; :W%4*-FP  
    end lux9o$ %  
    figure(1) No~ 6s.H  
    plot(P,P1, P,P2, P,P3); p`L L   
    sOC| B  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~