切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8988阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 kYhV1I  
    ZveNe~D7C  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ,i jB3J  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of &SG5 f[  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 4U8N7  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 eRqPZb"6MR  
    pCf9"LLer  
    %fid=fopen('e21.dat','w'); _/czH<   
    N = 128;                       % Number of Fourier modes (Time domain sampling points) f,|g|&C  
    M1 =3000;              % Total number of space steps $>8O2p7W  
    J =100;                % Steps between output of space J9*i`8kU.  
    T =10;                  % length of time windows:T*T0 qfkd Q/fP  
    T0=0.1;                 % input pulse width "{S6iH)]8  
    MN1=0;                 % initial value for the space output location lak,lDt]  
    dt = T/N;                      % time step mm9uhlV8  
    n = [-N/2:1:N/2-1]';           % Index s{Og3qUy  
    t = n.*dt;   EI9;J-c  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 -Qn l)JB  
    u20=u10.*0.0;                  % input to waveguide 2 4]HW!J  
    u1=u10; u2=u20;                 d,b]#fj  
    U1 = u1;   yq?\.~ax  
    U2 = u2;                       % Compute initial condition; save it in U '3w%K+eJY  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. <vE|QxpR  
    w=2*pi*n./T; A<] $[2qPj  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T abAw#XQ8  
    L=4;                           % length of evoluation to compare with S. Trillo's paper m-qu<4A/U|  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 =9Vo[  
    for m1 = 1:1:M1                                    % Start space evolution .Y|wG<E  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS V'tqsKQ!  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; G|*&owJ  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform p+pu_T;~  
       ca2 = fftshift(fft(u2)); A^E 6)A=  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation [8<0Q_?,  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   (wFoI}s  
       u2 = ifft(fftshift(c2));                        % Return to physical space \11+~  
       u1 = ifft(fftshift(c1)); cij8'( "+!  
    if rem(m1,J) == 0                                 % Save output every J steps. PqIskv+  
        U1 = [U1 u1];                                  % put solutions in U array  &1f3e  
        U2=[U2 u2]; ?@z/#3b  
        MN1=[MN1 m1]; !PA><F  
        z1=dz*MN1';                                    % output location !>"fDz<w`  
      end k*u6'IKi.4  
    end _s+G02/q1  
    hg=abs(U1').*abs(U1');                             % for data write to excel diNAT`|?#  
    ha=[z1 hg];                                        % for data write to excel b9ud8wLE[  
    t1=[0 t']; (&1.!R[X  
    hh=[t1' ha'];                                      % for data write to excel file @tJ4^<`P{  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format r7sA;Y\  
    figure(1) 2">de/jS  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn OTGy[jY"  
    figure(2) k+%&dEE|vH  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn bEB2q\|Je  
    W':b6}?  
    非线性超快脉冲耦合的数值方法的Matlab程序 qDTdYf  
    v k= |TE  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   d&+0JI<  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 hj&~Dn(  
    gkX7,J-0  
    tUuARo7#  
    d/T&J=  
    %  This Matlab script file solves the nonlinear Schrodinger equations }a/z.&x]V  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Fg 8lX9L  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear @)x*62r+  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 qe'ssX;  
    ?E_;[(Mcr  
    C=1;                           Zwz co  
    M1=120,                       % integer for amplitude m[(_fOd  
    M3=5000;                      % integer for length of coupler 7AS_Aw1L  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Vhh=GJ  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 9=j)g  
    T =40;                        % length of time:T*T0. _g fmo  
    dt = T/N;                     % time step {NQCe0S+p  
    n = [-N/2:1:N/2-1]';          % Index Q-!gO  
    t = n.*dt;   +zd/<  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. YF-A8gXS  
    w=2*pi*n./T; 0{uaSR  
    g1=-i*ww./2; o<iU;15  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;  \m~p;B  
    g3=-i*ww./2; : 8j7}'  
    P1=0; O@ H.k<zn  
    P2=0; c{dabzL y  
    P3=1; t,dm3+R  
    P=0; u#rbc"  
    for m1=1:M1                 >MKj~Ud  
    p=0.032*m1;                %input amplitude u]7wd3(  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 (X Oz0.W  
    s1=s10; P[-do  
    s20=0.*s10;                %input in waveguide 2 MoQ\~/Z|  
    s30=0.*s10;                %input in waveguide 3 -Ci&h  
    s2=s20; (hdu+^Qj=  
    s3=s30; ~b m'i%$k  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   oPF]]Imu  
    %energy in waveguide 1 jDqG9]  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   ,~&HL7 v  
    %energy in waveguide 2 GA$fueiQNs  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   <ShA_+Nd  
    %energy in waveguide 3 ;9WUt,R  
    for m3 = 1:1:M3                                    % Start space evolution \y:48zd  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS T)OR HJ&,  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; rX /'  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; m2"e ]I  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform @MB)B5  
       sca2 = fftshift(fft(s2)); +-(,'slov  
       sca3 = fftshift(fft(s3)); Z)$@1Q4P?1  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   $H[q5(_~  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); H8[A*uYL  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 4oH ,_sr  
       s3 = ifft(fftshift(sc3)); })P!7t  
       s2 = ifft(fftshift(sc2));                       % Return to physical space [`qdpzUp&  
       s1 = ifft(fftshift(sc1)); 0+$gR~^^  
    end d"miPR  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); dr}PjwW%  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 8 /t';  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Uavl%Q  
       P1=[P1 p1/p10]; knYp"<qj  
       P2=[P2 p2/p10]; ls&H oJ7  
       P3=[P3 p3/p10]; ~gW^9nWYU  
       P=[P p*p]; kyvl>I0q@  
    end fglfnx0{  
    figure(1) LtX53c  
    plot(P,P1, P,P2, P,P3); xQDQgvwa  
    [2Zy~`*y{  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~