切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9398阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 8B+^vF   
    {&qsh9ob  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of >,vW  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of -mo ' $1  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear rB|:r\Z(jG  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~cj:AIF  
    MJpTr5Vs  
    %fid=fopen('e21.dat','w'); ibUPd."W  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ]!o,S{a&  
    M1 =3000;              % Total number of space steps U I|@5:J  
    J =100;                % Steps between output of space p:   
    T =10;                  % length of time windows:T*T0  grA L4  
    T0=0.1;                 % input pulse width i j;'4GzQL  
    MN1=0;                 % initial value for the space output location 9sU,.T  
    dt = T/N;                      % time step jAHn`Bxz  
    n = [-N/2:1:N/2-1]';           % Index sc>)X{eb  
    t = n.*dt;   n8aiGnd=v  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 bO3KaOC8N  
    u20=u10.*0.0;                  % input to waveguide 2 -vAG5x/,  
    u1=u10; u2=u20;                 }mZ*f y0t  
    U1 = u1;   jt?%03iuk  
    U2 = u2;                       % Compute initial condition; save it in U ,?~,"IQyi[  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. |sM#g1D@  
    w=2*pi*n./T; , )3+hnFY  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T {j*+:Gj0V  
    L=4;                           % length of evoluation to compare with S. Trillo's paper *.Hnt\4|  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 7B"aFnK;[J  
    for m1 = 1:1:M1                                    % Start space evolution R! xc $`N  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS g~u!,Zc  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Ap18qp  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform HV(*6b@  
       ca2 = fftshift(fft(u2)); i.,B 0s] Z  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation q`zR6  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   iPNs EQ0We  
       u2 = ifft(fftshift(c2));                        % Return to physical space vu >@_hv  
       u1 = ifft(fftshift(c1)); m]pvJJ@  
    if rem(m1,J) == 0                                 % Save output every J steps. o!0a8i  
        U1 = [U1 u1];                                  % put solutions in U array czi!q1<vg  
        U2=[U2 u2]; OZ9j3Q;a$  
        MN1=[MN1 m1]; ')~HOCBSE  
        z1=dz*MN1';                                    % output location hmk5 1  
      end f\w4F'^tj  
    end /^ 7 9|$E  
    hg=abs(U1').*abs(U1');                             % for data write to excel YP97D n  
    ha=[z1 hg];                                        % for data write to excel oC>~r 1.j  
    t1=[0 t']; h0}-1kVT^  
    hh=[t1' ha'];                                      % for data write to excel file 7@]hu^)rry  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format wj~8KHan  
    figure(1) x9s`H)  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn R_DQtLI  
    figure(2) C,.{y`s'  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 1h{_v!X  
    FQ^uX]<3j  
    非线性超快脉冲耦合的数值方法的Matlab程序 `?m(Z6'  
    :7*\|2zA  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   H[U*' 2TJ  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ePdzQsnVe  
    { )K(}~VD  
    EatDT*!  
    \/zS@fz  
    %  This Matlab script file solves the nonlinear Schrodinger equations 0C_Qp%Z  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of IA^DfdZY  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 1-<Xi-=^{t  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Rv o<ISp  
    mAKi%)  
    C=1;                           f}3bYF  
    M1=120,                       % integer for amplitude !{\c`Z<#  
    M3=5000;                      % integer for length of coupler U {v_0\ES  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) " WL  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. vS<e/e+  
    T =40;                        % length of time:T*T0. % VZ\4+8S  
    dt = T/N;                     % time step L.[2l Q  
    n = [-N/2:1:N/2-1]';          % Index ' 'N@ <|  
    t = n.*dt;   @^@-A\7[KO  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. E ..[F<5  
    w=2*pi*n./T; c8MNo'h  
    g1=-i*ww./2; \GP c_m:qL  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Atw^C+"vW&  
    g3=-i*ww./2; =r8(9:F!  
    P1=0; 54&2SU$kx  
    P2=0; Joj8'  
    P3=1; g?wogCs5  
    P=0; @"0qS:s]X  
    for m1=1:M1                 ," v%  
    p=0.032*m1;                %input amplitude =?hlgQ  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 !h\3cs`QU  
    s1=s10; eS|p3jk;  
    s20=0.*s10;                %input in waveguide 2 u@Lu.t!],  
    s30=0.*s10;                %input in waveguide 3 hJ :+*46  
    s2=s20; 52,a5TVG  
    s3=s30; .>e~J+oL  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   0fNBy^(K  
    %energy in waveguide 1 g(Nf.hko  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   8*ysuL#  
    %energy in waveguide 2 va.wdk g  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   @ ri. r1  
    %energy in waveguide 3 w,7 GC5j\  
    for m3 = 1:1:M3                                    % Start space evolution +tF,E^  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS h2]Od(^[  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; zb(u?U  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; }sZ]SE  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform }PJ:9<G y  
       sca2 = fftshift(fft(s2)); :|g{ gi  
       sca3 = fftshift(fft(s3)); as8<c4:v  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   mB\|<2  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); E {MSi"  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); <LE>WfmC  
       s3 = ifft(fftshift(sc3)); QX4I+x~oo\  
       s2 = ifft(fftshift(sc2));                       % Return to physical space JC-L80-  
       s1 = ifft(fftshift(sc1)); wP i=+  
    end ?/~1z*XUW  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); .:0nK bW  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ZO~N|s6B^  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ]_h"2|  
       P1=[P1 p1/p10]; E^!%m8--  
       P2=[P2 p2/p10]; 1<F/boF~  
       P3=[P3 p3/p10]; ]iPdAwc.1  
       P=[P p*p]; &'R]oeag  
    end ;Ba f&xK  
    figure(1) $f%_ 4 =  
    plot(P,P1, P,P2, P,P3); nC w1H kW  
    -mXEbsm  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~