切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9179阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 y>)MAzz~\  
    moaodmt]x  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ~+=E"9Oo  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of  ; HP#bx  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear K\~v&  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 q P'[&h5Y  
    ] ;&"1A  
    %fid=fopen('e21.dat','w'); /e .D /;]  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) V\"1wV~E  
    M1 =3000;              % Total number of space steps RvR:e|  
    J =100;                % Steps between output of space 22|"K**3J|  
    T =10;                  % length of time windows:T*T0 -IbbPuRq  
    T0=0.1;                 % input pulse width *<UGgnmLE  
    MN1=0;                 % initial value for the space output location Y|:YrZSC  
    dt = T/N;                      % time step UTvs |[  
    n = [-N/2:1:N/2-1]';           % Index VE*j*U j  
    t = n.*dt;   uS&LG#a  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 &lq^dFP&Su  
    u20=u10.*0.0;                  % input to waveguide 2 Hxn<(gd G  
    u1=u10; u2=u20;                 A*Rn<{U  
    U1 = u1;   ]{Z8  
    U2 = u2;                       % Compute initial condition; save it in U \@8*TS  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. D,E$_0  
    w=2*pi*n./T; K I`11lJW~  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T SD^E7W$?  
    L=4;                           % length of evoluation to compare with S. Trillo's paper F(;jM(  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ^j[Ku  
    for m1 = 1:1:M1                                    % Start space evolution o(zTNk5d  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS /z#F,NB  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ld95[cTP  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform mbGcDG[HQ  
       ca2 = fftshift(fft(u2)); >K5~:mx#3  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation S*xhX1yUi  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   McP~}"!^  
       u2 = ifft(fftshift(c2));                        % Return to physical space Li]k7w?H  
       u1 = ifft(fftshift(c1)); 0U%Xm[:  
    if rem(m1,J) == 0                                 % Save output every J steps. Co[n--@C  
        U1 = [U1 u1];                                  % put solutions in U array -p]>Be+^x  
        U2=[U2 u2]; %<AS?Ry  
        MN1=[MN1 m1]; hF.6}28U1  
        z1=dz*MN1';                                    % output location r ^ Y~mq  
      end $o"g73`3  
    end JtFiFaCxY  
    hg=abs(U1').*abs(U1');                             % for data write to excel 4#7Umj  
    ha=[z1 hg];                                        % for data write to excel .yX>.>"T|  
    t1=[0 t']; 26 ?23J ;  
    hh=[t1' ha'];                                      % for data write to excel file nEyI t&> 9  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ?&xlT+JM  
    figure(1) rd" &QB{  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn /BT1oWi1y  
    figure(2) R:f7LRF/\  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn "$DldHC  
    gB >pd?d  
    非线性超快脉冲耦合的数值方法的Matlab程序 wFb@1ae\  
    fnWsm4  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   *i@T!O(1)M  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 drIK(u\_  
    +sRP<as  
    r :NH6tAL  
    vd(dNu&,<  
    %  This Matlab script file solves the nonlinear Schrodinger equations kW +G1|  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ,VWGq@o%  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear tt{`\1q  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 nj  
    A="fj  
    C=1;                           H-2_j  
    M1=120,                       % integer for amplitude &[~[~m|  
    M3=5000;                      % integer for length of coupler N+J>7_k   
    N = 512;                      % Number of Fourier modes (Time domain sampling points) fhr-Y'  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ;ctU&`  
    T =40;                        % length of time:T*T0. (Q_2ODKo  
    dt = T/N;                     % time step )2V@p~k?  
    n = [-N/2:1:N/2-1]';          % Index :".w{0l@  
    t = n.*dt;   "{ FoA3g|  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ${>DhfF  
    w=2*pi*n./T; a:b^!H>#  
    g1=-i*ww./2; a q kix"J  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; CV3DMA  
    g3=-i*ww./2; ="3,}qR  
    P1=0; ^yJ:+m;6K  
    P2=0; -TS? fne)  
    P3=1; R04J3D|  
    P=0; /WYh[XKe  
    for m1=1:M1                 Q;wB{vr$  
    p=0.032*m1;                %input amplitude Q6x%  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 $H;+}VQ  
    s1=s10; >)3VbO  
    s20=0.*s10;                %input in waveguide 2 ] D6|o5  
    s30=0.*s10;                %input in waveguide 3 2yxi= XWZ  
    s2=s20; *Ru2:}?MpS  
    s3=s30; c{4R*|^  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   "lrA%~3%[P  
    %energy in waveguide 1 PU Cx]5  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   tl^m=(ZQ  
    %energy in waveguide 2 >{t+4p4k.  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   IT&i,`cJ~F  
    %energy in waveguide 3 */_@a?  
    for m3 = 1:1:M3                                    % Start space evolution x5F@ad 9  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS jyQVSQ s  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; m8AAp1=  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 4U{m7[  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ^Plc}W7h  
       sca2 = fftshift(fft(s2)); EY$?^iS  
       sca3 = fftshift(fft(s3)); 61|B]ei/  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   C0(sAF@  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); >3P9 i ;W  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); k{-`]qiK  
       s3 = ifft(fftshift(sc3)); |^ iA6)Q  
       s2 = ifft(fftshift(sc2));                       % Return to physical space _l T0H u  
       s1 = ifft(fftshift(sc1)); O^NP0E  
    end )E-E0Hl>7  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ;($1Z7j+  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ]]/lC  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); }p{;^B  
       P1=[P1 p1/p10]; c,$mWTC  
       P2=[P2 p2/p10]; DqlK.  
       P3=[P3 p3/p10]; <\ETPL,<  
       P=[P p*p]; S_5?U2%D  
    end '=#5(O%pp  
    figure(1) =YHt9fb$c  
    plot(P,P1, P,P2, P,P3); Spo +@G  
    xYwkFB$$*  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~