计算脉冲在非线性耦合器中演化的Matlab 程序 ya8MjGo 6 Ty;m>j % This Matlab script file solves the coupled nonlinear Schrodinger equations of
LK5,GWF; % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
~fbFA?g3 % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
XgE\q % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
v#J2yg w}nc^6qH %fid=fopen('e21.dat','w');
HfEU[p7) N = 128; % Number of Fourier modes (Time domain sampling points)
KfD=3h= M1 =3000; % Total number of space steps
&g%9$*gmT J =100; % Steps between output of space
P Llad\ T =10; % length of time windows:T*T0
},zP,y:cH T0=0.1; % input pulse width
|X@ZM MN1=0; % initial value for the space output location
_3v6c dt = T/N; % time step
Wv!#B$J~U n = [-N/2:1:N/2-1]'; % Index
a~jU~('4}w t = n.*dt;
;G_{$)P.o u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
t[/WGF&(R u20=u10.*0.0; % input to waveguide 2
}}L :6^ u1=u10; u2=u20;
r/o1a't; U1 = u1;
MHNuA,cz U2 = u2; % Compute initial condition; save it in U
M,nX@8 _h ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
3VNYDY`> w=2*pi*n./T;
x{y}pH "H g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
.)J7 \z8m L=4; % length of evoluation to compare with S. Trillo's paper
:98<dQIG dz=L/M1; % space step, make sure nonlinear<0.05
2H+!78 for m1 = 1:1:M1 % Start space evolution
h$]=z\= u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
8[@aX;I u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
3[`/rg, ca1 = fftshift(fft(u1)); % Take Fourier transform
W6STjtT3P ca2 = fftshift(fft(u2));
>G`Uc&= c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
IqEE.XhaK c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
UqHk2h- u2 = ifft(fftshift(c2)); % Return to physical space
84(NylZ u1 = ifft(fftshift(c1));
S~L;oX?(! if rem(m1,J) == 0 % Save output every J steps.
nX
4WlH U1 = [U1 u1]; % put solutions in U array
kF{'?R5w U2=[U2 u2];
gt]k#(S MN1=[MN1 m1];
$=&a0O# z1=dz*MN1'; % output location
qaE>]) end
[\|`C4@3a end
s}3g+T\l1w hg=abs(U1').*abs(U1'); % for data write to excel
rvPY ha=[z1 hg]; % for data write to excel
ol^uM .k%_ t1=[0 t'];
B<^yT@Wc hh=[t1' ha']; % for data write to excel file
8<0~j %dlmwrite('aa',hh,'\t'); % save data in the excel format
1{%3OG^' figure(1)
\.!+'2!m waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
:'hc&wk` figure(2)
~1xfE C/ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
gl.uDO%. *GUQz 非线性超快脉冲耦合的数值方法的Matlab程序 | R\PQ/) b3j?@31AD 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
wAt|'wP
: Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
>aw`kr u?Pec:3% (*6kYkUK hD)'bd % This Matlab script file solves the nonlinear Schrodinger equations
>]/RlW[ % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
8/i];/,v*M % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
st4WjX_Q % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
Z|t`}lK @la/sd4` C=1;
,1|Qm8O M1=120, % integer for amplitude
d1[;~) M3=5000; % integer for length of coupler
/w|!SZB N = 512; % Number of Fourier modes (Time domain sampling points)
?ZF~U dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
MP
LgE.n T =40; % length of time:T*T0.
:r+BL@9 dt = T/N; % time step
,_wpYTl*X n = [-N/2:1:N/2-1]'; % Index
GMv.G t = n.*dt;
Fy6(N{hql ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
.5_zh;
` w=2*pi*n./T;
ScCp88KpFI g1=-i*ww./2;
Qq7%{`<} g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
o&U'zaj g3=-i*ww./2;
)I{~Pcq P1=0;
#B$r|rqamq P2=0;
" z8iuF P3=1;
GZq~Pl P=0;
TWU[/>K for m1=1:M1
" J4?Sb < p=0.032*m1; %input amplitude
g6D7Y<}d s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
&mPR[{ s1=s10;
L\cbY6b
s20=0.*s10; %input in waveguide 2
,%^qzoZnT s30=0.*s10; %input in waveguide 3
h 2QJQ|7a s2=s20;
[gkOwU=? s3=s30;
F!RzF7h1 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
C
CDO8 %energy in waveguide 1
0F5QAR
O p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
SuJa?VU1w %energy in waveguide 2
y 1I(^<qO= p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
AqZ()p*z %energy in waveguide 3
A[hvT\X for m3 = 1:1:M3 % Start space evolution
'pa8h L s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
V\m51H1mqo s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
[G<SAWFg7 s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
j>I.d+ sca1 = fftshift(fft(s1)); % Take Fourier transform
IW>\\&pJ sca2 = fftshift(fft(s2));
uS|f|)U& sca3 = fftshift(fft(s3));
=XhxD<kI sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
S-7ryHH*0 sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
Ly~s84k_po sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
3?x}48 s3 = ifft(fftshift(sc3));
zI&). s2 = ifft(fftshift(sc2)); % Return to physical space
@xkI?vK6 s1 = ifft(fftshift(sc1));
P3_&( end
3E$h
W p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
+ab#2~,) p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
5T-CAkR{n p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
8(@Y@`/ P1=[P1 p1/p10];
1,Uf-i P2=[P2 p2/p10];
@wTRoMHPQ P3=[P3 p3/p10];
NGp^/PZX0 P=[P p*p];
&eIwlynm end
0ZJN<AzbA figure(1)
J,_IHzO~Z plot(P,P1, P,P2, P,P3);
~E3"s VD0U]~CWR 转自:
http://blog.163.com/opto_wang/