计算脉冲在非线性耦合器中演化的Matlab 程序 )NW6?Pu" 2j&@p> % This Matlab script file solves the coupled nonlinear Schrodinger equations of
~oD8Rnf % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
)@g;j> % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
`$5UHa2/ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
zA+@FR? -=}3j&,\R %fid=fopen('e21.dat','w');
tpf7_YP_!- N = 128; % Number of Fourier modes (Time domain sampling points)
g:)DNy M1 =3000; % Total number of space steps
1(dj[3Mt J =100; % Steps between output of space
Oe]&( T =10; % length of time windows:T*T0
iU2KEqCm T0=0.1; % input pulse width
~=n#}{/ MN1=0; % initial value for the space output location
%!j:fJ() dt = T/N; % time step
@ GDX7TPV n = [-N/2:1:N/2-1]'; % Index
@e2}BhB2 t = n.*dt;
viaJblYj(f u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
9}tG\0tL* u20=u10.*0.0; % input to waveguide 2
\ZXLX'- u1=u10; u2=u20;
'ktHPn
,K U1 = u1;
2 YxT MT U2 = u2; % Compute initial condition; save it in U
`k{& /] ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
x;E2~&E w=2*pi*n./T;
:osz g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
QBJ3iQs1 L=4; % length of evoluation to compare with S. Trillo's paper
quu*xJ;Ci dz=L/M1; % space step, make sure nonlinear<0.05
c'fSu;1 for m1 = 1:1:M1 % Start space evolution
90N`CXas u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
%"$@%"8;3 u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
l5t2\Fl ca1 = fftshift(fft(u1)); % Take Fourier transform
$ChK]v
6C ca2 = fftshift(fft(u2));
C*6S@4k c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
u' Qd, c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
vwGeD|Fb5 u2 = ifft(fftshift(c2)); % Return to physical space
E8}+k o u1 = ifft(fftshift(c1));
C'mL& if rem(m1,J) == 0 % Save output every J steps.
#VbVsl U1 = [U1 u1]; % put solutions in U array
0Fr1Ku! U2=[U2 u2];
,d,\-x-+/ MN1=[MN1 m1];
!>^JSHR4t z1=dz*MN1'; % output location
Wa"(m*hW end
HL{$ ^l#v end
hq>Csj==@ hg=abs(U1').*abs(U1'); % for data write to excel
V_^@ ha=[z1 hg]; % for data write to excel
Z'v-F^ t1=[0 t'];
mryN} hh=[t1' ha']; % for data write to excel file
kAzd8nJ' %dlmwrite('aa',hh,'\t'); % save data in the excel format
d.<~&.-$ figure(1)
4/>Our 5 waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
748CD{KxW figure(2)
h rN% waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
w=b(X
q+: 2h^WYpCm 非线性超快脉冲耦合的数值方法的Matlab程序 ,t$,idcT+ JN3cg 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
uV6g[J Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
,2[ra9n Yn51U6_S ffDc6*.Q i^z`"3#LE % This Matlab script file solves the nonlinear Schrodinger equations
!mfJpJ % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
,\PVC@xJ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
Zy"=y+e!E; % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
MFit|C 0(>rG{u C=1;
6iezLG5 M1=120, % integer for amplitude
Bn wzcl M3=5000; % integer for length of coupler
h+7># *DH N = 512; % Number of Fourier modes (Time domain sampling points)
eOlKbJU dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
.5HQ
T =40; % length of time:T*T0.
Al"3 kRJJ dt = T/N; % time step
:Waox"#=g n = [-N/2:1:N/2-1]'; % Index
9|r* pK[ t = n.*dt;
Ps[$.h ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
+RZ~LA\+ w=2*pi*n./T;
yf1CXldi g1=-i*ww./2;
V-O(U*] g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
VkmRh,T g3=-i*ww./2;
g;p)n P1=0;
MEZ{j%-a P2=0;
KlxN~/gyik P3=1;
| FM
} P=0;
#} ,x @]p for m1=1:M1
3-Bl p=0.032*m1; %input amplitude
aC=['a>) s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
|(IO=V4P s1=s10;
Q%ad q-B s20=0.*s10; %input in waveguide 2
'JmBh@A s30=0.*s10; %input in waveguide 3
?2J?XS> s2=s20;
T`YwJ6N s3=s30;
Jn}n*t3 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
0NE{8O0;Fr %energy in waveguide 1
pgc3jP! p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
vn').\,P2O %energy in waveguide 2
U..<iNQE5 p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
h^|5|l %energy in waveguide 3
'A{h iY for m3 = 1:1:M3 % Start space evolution
=jAFgwP\ s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
w_-+o^ s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
X~U >LLr s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
mO rWJ~= sca1 = fftshift(fft(s1)); % Take Fourier transform
#B}?Zg sca2 = fftshift(fft(s2));
I+?hG6NM sca3 = fftshift(fft(s3));
_]>JB0IY sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
C*~aSl7 sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
%IZ)3x3l
sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
!>.vh]8g s3 = ifft(fftshift(sc3));
M].8HwC + s2 = ifft(fftshift(sc2)); % Return to physical space
9(1rh9`= s1 = ifft(fftshift(sc1));
OKue" p end
!XE aF]8 p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
iw]k5<qKj p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
+c,[ Q p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
HxwlYx,4 P1=[P1 p1/p10];
HOW7cV'X P2=[P2 p2/p10];
fv'4f$U P3=[P3 p3/p10];
fib#CY P=[P p*p];
Utl
t< end
?m%h`<wgMc figure(1)
ISqfU]>[ plot(P,P1, P,P2, P,P3);
19u =W( J1F{v)T'? 转自:
http://blog.163.com/opto_wang/