切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9287阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 :?#cDyW)  
    hht+bpHl  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of (`mOB6j  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of v=MzI#0L  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 5KaSWw/  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 R=86w_  
    C->[$HcRa  
    %fid=fopen('e21.dat','w'); 8Mb$+^zU  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) q]l\`/R%u  
    M1 =3000;              % Total number of space steps V=9Bto00  
    J =100;                % Steps between output of space Eq7gcDQ  
    T =10;                  % length of time windows:T*T0 h@Dw'w  
    T0=0.1;                 % input pulse width 1gAc,s2  
    MN1=0;                 % initial value for the space output location g TD%4V  
    dt = T/N;                      % time step YiNo#M91  
    n = [-N/2:1:N/2-1]';           % Index vGyppm[0  
    t = n.*dt;   Tvrc%L(]  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 c}\ d5R_L  
    u20=u10.*0.0;                  % input to waveguide 2 %w@ig~vD'  
    u1=u10; u2=u20;                 2dyxKK!\a  
    U1 = u1;   %Fm`Y .l  
    U2 = u2;                       % Compute initial condition; save it in U hhj ,rcsi  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. )SD_}BY%k  
    w=2*pi*n./T; 8fEAYRGd  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T W7]mfy^  
    L=4;                           % length of evoluation to compare with S. Trillo's paper dcR6KG8  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 3]7ipwF2q  
    for m1 = 1:1:M1                                    % Start space evolution h%|9]5(=  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS (ai72#nFtb  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; cnYYs d{  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform E =  ^-Z  
       ca2 = fftshift(fft(u2)); "mG!L$  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 8ZzU^x  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   9Mut p4#  
       u2 = ifft(fftshift(c2));                        % Return to physical space @OrXbG7&>#  
       u1 = ifft(fftshift(c1)); B~e7w 4  
    if rem(m1,J) == 0                                 % Save output every J steps. uRs9}dzv  
        U1 = [U1 u1];                                  % put solutions in U array _"`uqW79  
        U2=[U2 u2]; /$<JCNGv  
        MN1=[MN1 m1]; v.]'%+::#  
        z1=dz*MN1';                                    % output location H|x k${R`  
      end 0sY#MHPT&  
    end xQZ MCd  
    hg=abs(U1').*abs(U1');                             % for data write to excel J$<:/^t  
    ha=[z1 hg];                                        % for data write to excel s+Cl  
    t1=[0 t']; 8L@UB6b\  
    hh=[t1' ha'];                                      % for data write to excel file 64;oB_  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format dUUPhk0  
    figure(1) Q=MCMe  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn dcM+ylB  
    figure(2) *%z<P~}  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn J>/Ci\OB  
    m|(I} |kT3  
    非线性超快脉冲耦合的数值方法的Matlab程序 )m oo?Q  
    +q 4W0  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   {lTR/  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 #r-j.f}yx  
    @m }rQT  
    ysQEJm^|-u  
      zd.1  
    %  This Matlab script file solves the nonlinear Schrodinger equations wV]sGHuF}  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 2OA8 R}  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear XtnIK  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 aEV|>K=6Y'  
    vK[v eFH  
    C=1;                           WX+< 4j  
    M1=120,                       % integer for amplitude EXv\FUzo  
    M3=5000;                      % integer for length of coupler {^2({A#&  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 1"*Nb5s  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. N}eU.#L  
    T =40;                        % length of time:T*T0. E5v|SFD  
    dt = T/N;                     % time step #J'Z5)i|  
    n = [-N/2:1:N/2-1]';          % Index |% la  
    t = n.*dt;   6C@0[Q\ER  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. *8pe<:A#p  
    w=2*pi*n./T; KzxW?Ji$S  
    g1=-i*ww./2; H@ 1[SKBl  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Q-H =wJ4R  
    g3=-i*ww./2; Qu,)wfp~  
    P1=0; Cnb[t[hk+j  
    P2=0; *q\HFI  
    P3=1; L|dab {9  
    P=0; 'd~, o[x  
    for m1=1:M1                 znGZULa#  
    p=0.032*m1;                %input amplitude  3D[:Rf[  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 <yX@@8  
    s1=s10; A`+(VzZgJ  
    s20=0.*s10;                %input in waveguide 2 NzwGc+\7}  
    s30=0.*s10;                %input in waveguide 3 D0,oml  
    s2=s20; 64IeCAMVo  
    s3=s30; {H~8'K-  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   H >@JfYZ0  
    %energy in waveguide 1 >TH-Q[  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   q70YNk}  
    %energy in waveguide 2 \&l*e  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   #b<lt'gC  
    %energy in waveguide 3 ;$k ?&nhY  
    for m3 = 1:1:M3                                    % Start space evolution (STWAwK-  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS z[<pi :  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; AVdd?Ew  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; #I*ht0++  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform oeRYyJ  
       sca2 = fftshift(fft(s2)); J$eZLj  
       sca3 = fftshift(fft(s3)); ocDVCCkxg  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   =~(LJPo6  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ijR*5#5h  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); %te'J G<  
       s3 = ifft(fftshift(sc3)); Is#v6:#^  
       s2 = ifft(fftshift(sc2));                       % Return to physical space WZDokSR  
       s1 = ifft(fftshift(sc1)); k[^}ld[  
    end yx`r;|ds}  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 8B% O%*5`  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); hP6fTZ=Ln  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); P(W\aLp  
       P1=[P1 p1/p10]; `G:qtHn"Q<  
       P2=[P2 p2/p10]; Fg}5V,  
       P3=[P3 p3/p10]; Td=] tVM  
       P=[P p*p];  ]pucv!  
    end FC/>L  
    figure(1) IhFw{=2*  
    plot(P,P1, P,P2, P,P3); - KoA[UJ  
    G~mB=]  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~