计算脉冲在非线性耦合器中演化的Matlab 程序 `$3P@SO"
OT)`)PZ"
% This Matlab script file solves the coupled nonlinear Schrodinger equations of F%{z EANm
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ZC^?ng
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Esg:
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 q zo)\,
-ucR@P]
%fid=fopen('e21.dat','w'); #}Ays#wA>?
N = 128; % Number of Fourier modes (Time domain sampling points) a{?>F&vnU
M1 =3000; % Total number of space steps 6jl{^dI
J =100; % Steps between output of space (m.jC}J
T =10; % length of time windows:T*T0 8@T0]vH&
T0=0.1; % input pulse width F1`mq2^@
MN1=0; % initial value for the space output location =aehhs>
dt = T/N; % time step ~ r$I&8
n = [-N/2:1:N/2-1]'; % Index MUN:}S
t = n.*dt; >4#\ U!
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 _,- \;
u20=u10.*0.0; % input to waveguide 2 (hv}K*c{
u1=u10; u2=u20; :4COPUBpPV
U1 = u1; Ja@?.gW
U2 = u2; % Compute initial condition; save it in U DFGgyFay
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. icK U)
w=2*pi*n./T; rj5)b:c}
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T [Kbna>`
L=4; % length of evoluation to compare with S. Trillo's paper Me;Nn$'%
dz=L/M1; % space step, make sure nonlinear<0.05 ab 6D &
for m1 = 1:1:M1 % Start space evolution 2b:I.
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS mj y+_
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; *I9G"R8
ca1 = fftshift(fft(u1)); % Take Fourier transform 0E&XD&D
ca2 = fftshift(fft(u2)); !}xRwkN
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation CR|>?9V
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift fK=vLcH
u2 = ifft(fftshift(c2)); % Return to physical space gti=GmL(L
u1 = ifft(fftshift(c1));
`k08M)
if rem(m1,J) == 0 % Save output every J steps. rO1.8KKJ
U1 = [U1 u1]; % put solutions in U array x/92],.Mz
U2=[U2 u2]; B_.>Q8tK;
MN1=[MN1 m1]; mOYXd,xd
z1=dz*MN1'; % output location G&7 } m
end ^}GR!990
end jg3['hTJT
hg=abs(U1').*abs(U1'); % for data write to excel 1+Y;
"tT
ha=[z1 hg]; % for data write to excel @jD19=
t1=[0 t']; 9893{}\cB
hh=[t1' ha']; % for data write to excel file v/wR)9
%dlmwrite('aa',hh,'\t'); % save data in the excel format ,k/<Nv;
figure(1) ] m^ECA$
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn NW Pd~l+
figure(2) *P[N.5{
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn /3~}= b
KhbbGdmfS$
非线性超快脉冲耦合的数值方法的Matlab程序 zPb"6%1B
I~c}&'V
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 9,
792b
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 vYG$>*
7jF2m'(
Al]z=
UgLJV2M6
% This Matlab script file solves the nonlinear Schrodinger equations >Q^*h}IdW
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of HM\gOz
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear )i>T\B
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 dtq]_HvTJ
8m)E~6
C=1; ;4]l P
M1=120, % integer for amplitude cGjkx3l*
M3=5000; % integer for length of coupler {pB9T3ry]
N = 512; % Number of Fourier modes (Time domain sampling points) i{ /nHrN
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. .'N#qs_
T =40; % length of time:T*T0. v_@!u`
dt = T/N; % time step y|Zj
M
n = [-N/2:1:N/2-1]'; % Index :~9F/Jx
t = n.*dt; & |o V\L
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. $d7{ q3K&1
w=2*pi*n./T; <3Hu(Jx<O
g1=-i*ww./2; k$} 6Qd
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; \t@|-`
g3=-i*ww./2; JTB5#S4W
P1=0; (*Y ENT}
P2=0; Cqk6I gw
P3=1; y<5xlN(+v
P=0; DnPV
Tp(>
for m1=1:M1 ^zaN?0%S33
p=0.032*m1; %input amplitude bDPT1A`F
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 1YMu\(
s1=s10; RpY#_\^hI
s20=0.*s10; %input in waveguide 2 Yt;.Z$i ,
s30=0.*s10; %input in waveguide 3 -n~VMLd?@
s2=s20; yf6&'Y{
s3=s30; 7e&%R4{b
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); Zx]"2U#
%energy in waveguide 1 K<+h/Ok
p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1)))); 3^zOG2
%energy in waveguide 2 ) 4'@=q
p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1)))); JEes'H}Y
%energy in waveguide 3 Gwkp(9d
for m3 = 1:1:M3 % Start space evolution FeFH_
s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS ?wx|n_3<:
s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 07+Qai-]
s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Wc$1Re{z
sca1 = fftshift(fft(s1)); % Take Fourier transform hw&R.F
sca2 = fftshift(fft(s2)); 4m6E~_:F
sca3 = fftshift(fft(s3)); <tg>1,C
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift 3J}bI{3
sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); j7 D\O
sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); oa|nQ`[
s3 = ifft(fftshift(sc3)); bmO[9
)G
s2 = ifft(fftshift(sc2)); % Return to physical space DP9hvu/85
s1 = ifft(fftshift(sc1)); FiqcM-Af4
end 6]^}GyM!
p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 6^.<