切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9144阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 =I4.Gf"~f  
    }=GM ?,7b  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of _vrWj<wyf  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 1kFjas `g  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear YdOUv|tZC  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 W"sr$K2m|  
    jXIEp01  
    %fid=fopen('e21.dat','w'); = HE m)  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ,b' 4CF  
    M1 =3000;              % Total number of space steps [&VxaJ("3  
    J =100;                % Steps between output of space ?SX_gYe9  
    T =10;                  % length of time windows:T*T0 DX@}!6|T  
    T0=0.1;                 % input pulse width MW@DXbKVl  
    MN1=0;                 % initial value for the space output location Y6eEGo"K.+  
    dt = T/N;                      % time step rz6jx  
    n = [-N/2:1:N/2-1]';           % Index :R+],m il  
    t = n.*dt;   v]bAWo  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 FMS2.E  
    u20=u10.*0.0;                  % input to waveguide 2 Q4%IxR?  
    u1=u10; u2=u20;                 a$+#V=bA  
    U1 = u1;   gMZ&,n4  
    U2 = u2;                       % Compute initial condition; save it in U ;nk@XFJ  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ,L%p  
    w=2*pi*n./T; 60PYCqWc  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T E~He~wHWe  
    L=4;                           % length of evoluation to compare with S. Trillo's paper && C~@WY,r  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 "6V_/u5M;=  
    for m1 = 1:1:M1                                    % Start space evolution ay[+2"  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS w-: D  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; jOl1_  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 1URsHV!xcM  
       ca2 = fftshift(fft(u2)); 4(m3c<'P  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ?UK:sF| (O  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   d| \#?W&  
       u2 = ifft(fftshift(c2));                        % Return to physical space ? ).(fP  
       u1 = ifft(fftshift(c1)); nHU3%%%cU  
    if rem(m1,J) == 0                                 % Save output every J steps. z(UX't (q  
        U1 = [U1 u1];                                  % put solutions in U array :yD@5)  
        U2=[U2 u2]; A_Gp&acs$  
        MN1=[MN1 m1]; 1UyH0`&  
        z1=dz*MN1';                                    % output location y''V"Be  
      end Kq6qXc\x  
    end @7|)RSBQz  
    hg=abs(U1').*abs(U1');                             % for data write to excel ^'Zh;WjI7  
    ha=[z1 hg];                                        % for data write to excel N7B}O*;  
    t1=[0 t']; B}5XRgq  
    hh=[t1' ha'];                                      % for data write to excel file *2:Yf7rvI+  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format `w=!o.1  
    figure(1) v<fWc971  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn /O"0L/hc^  
    figure(2) %0(>!SY  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn MZi8Fo'  
    ]Hj`2\KD.d  
    非线性超快脉冲耦合的数值方法的Matlab程序 fW[.r==Kf  
    Y D+QX@  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   *EE|?vn  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 A'v[SUW'm  
    5oa]dco  
    Z{16S=0  
    %>]#vQ|  
    %  This Matlab script file solves the nonlinear Schrodinger equations % NwoU%q  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of sp,(&Y]US  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear P#9-bYNU  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 WFks|D:sB  
    Ua!Odju*w  
    C=1;                           v_.j/2U  
    M1=120,                       % integer for amplitude .=aMjrME  
    M3=5000;                      % integer for length of coupler 6!o/~I#  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) :if5z2PE/  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ^)'||Ly  
    T =40;                        % length of time:T*T0. _4S7wOq5  
    dt = T/N;                     % time step -*5yY#fw}  
    n = [-N/2:1:N/2-1]';          % Index k dUc&  
    t = n.*dt;   Ut=0~x.=<  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. n7'<3t  
    w=2*pi*n./T; -y<rM0"NE  
    g1=-i*ww./2; c{ZqQtfM  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; JG1LS$p^  
    g3=-i*ww./2; Is~yVB02  
    P1=0; yl|R:/2V  
    P2=0; ,9+nfj  
    P3=1; <C2c" =b  
    P=0; T&e%/  
    for m1=1:M1                 i@%L_[MtA  
    p=0.032*m1;                %input amplitude (jt*u (C&Y  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 $Jt8d|UP  
    s1=s10; Y-?51g[u  
    s20=0.*s10;                %input in waveguide 2 >4Fd xa  
    s30=0.*s10;                %input in waveguide 3 ROcY'-  
    s2=s20; ">0 /8]l  
    s3=s30; g8B&u u #  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   <:H  
    %energy in waveguide 1 (p'/p  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   :1%VZvWk*  
    %energy in waveguide 2 _p?I{1O  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   !k ;[^>  
    %energy in waveguide 3 &7JEb]1C  
    for m3 = 1:1:M3                                    % Start space evolution p` ^:Q*C"  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS +X{cN5Y K  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; F5Cqv0H V  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; k$Nx6?8E  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform oKZ[0(4<  
       sca2 = fftshift(fft(s2)); :a#|  
       sca3 = fftshift(fft(s3)); i] V F'tG  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   pyGFDB5_P  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 75' Ua$  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); BNF++<s  
       s3 = ifft(fftshift(sc3));  ||bA  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ](idf(j  
       s1 = ifft(fftshift(sc1)); _ +u sn.  
    end t>fA!K%{  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); /6?tgr  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); xUV_2n+  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); $,!dan<eA  
       P1=[P1 p1/p10]; !^rITiy  
       P2=[P2 p2/p10]; U]1>?,Nk'3  
       P3=[P3 p3/p10]; >:(6{}b  
       P=[P p*p]; 3g4vpKg6c  
    end AqTR.}H  
    figure(1) h/fb<jIP1  
    plot(P,P1, P,P2, P,P3); )L&n)w  
    _CYmG"mY  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~