切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8536阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 _ n4ma  
    =Gz>ZWF  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of j]O[I^5  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of #%"TU,[+  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear /exl9Ilt]  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 d<? :Q  
    F$ p*G][  
    %fid=fopen('e21.dat','w'); ^3o8F  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) m (:qZW  
    M1 =3000;              % Total number of space steps K0=E4>z,`q  
    J =100;                % Steps between output of space wLe&y4  
    T =10;                  % length of time windows:T*T0 \<x_96jt!\  
    T0=0.1;                 % input pulse width xH#a|iT?(  
    MN1=0;                 % initial value for the space output location @zF:{=+]+  
    dt = T/N;                      % time step VDjIs UUX  
    n = [-N/2:1:N/2-1]';           % Index B^~Bv!tHWr  
    t = n.*dt;   vcU\xk")  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 @~G`~8   
    u20=u10.*0.0;                  % input to waveguide 2 Atq2pL"  
    u1=u10; u2=u20;                 GSnHxs)  
    U1 = u1;   \1C!,C  
    U2 = u2;                       % Compute initial condition; save it in U S_VncTIO  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 7d8qs%nA  
    w=2*pi*n./T; c$:=d4t5$  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T R bc2g"]  
    L=4;                           % length of evoluation to compare with S. Trillo's paper |Umfq:W`y_  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 KqUSTR1e[  
    for m1 = 1:1:M1                                    % Start space evolution nL 07^6(  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS {59VS Nl  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; :42;c:85  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform y"L`bl A9}  
       ca2 = fftshift(fft(u2)); OrJlHMz  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation lT!$\E$1   
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   0QH3,Ps1C  
       u2 = ifft(fftshift(c2));                        % Return to physical space )u/ ^aK53^  
       u1 = ifft(fftshift(c1)); `Mp7 })  
    if rem(m1,J) == 0                                 % Save output every J steps. D4]B>  
        U1 = [U1 u1];                                  % put solutions in U array J K]tcP  
        U2=[U2 u2]; MGKeD+=5  
        MN1=[MN1 m1]; seU^IC<  
        z1=dz*MN1';                                    % output location o ]jP3 $t;  
      end JP,(4h *  
    end  53*, f  
    hg=abs(U1').*abs(U1');                             % for data write to excel 15T[J%7f  
    ha=[z1 hg];                                        % for data write to excel v[DbhIXU  
    t1=[0 t']; p't:bR  
    hh=[t1' ha'];                                      % for data write to excel file q;0&idYC  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format !v4j`A;%  
    figure(1) ^pV>b(?qw  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn RHl=$Hm.%  
    figure(2) zpr@!76  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn jo3}]KC !  
    H?(SSL  
    非线性超快脉冲耦合的数值方法的Matlab程序 A1t~&?  
    akCo+ @  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ZMMo6;  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 X8SRQO^  
    O:=|b]t  
    |}p}`Mb)a  
    ZIL| .<8I  
    %  This Matlab script file solves the nonlinear Schrodinger equations ._MAHBx+G  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of :Ip:sRz  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear !+DJhw&c,  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 <RPoQ'.^  
    XZdr`$zf  
    C=1;                           -0VA!3l  
    M1=120,                       % integer for amplitude TFYTvUn  
    M3=5000;                      % integer for length of coupler LUDJPIk  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 8u'O` j  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 'bI~61{A  
    T =40;                        % length of time:T*T0. 'uf\.F  
    dt = T/N;                     % time step wAl}:|+n  
    n = [-N/2:1:N/2-1]';          % Index =i^<a7M~  
    t = n.*dt;    e_~fJ  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ^?7dOW  
    w=2*pi*n./T; Tq\~<rEo  
    g1=-i*ww./2; X:``{!~geo  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Ph+X{|  
    g3=-i*ww./2; it\DZGsg  
    P1=0; ]dbSa1?  
    P2=0; :EmQ_?(^  
    P3=1; d=Df.H+3  
    P=0; T<f\*1~^  
    for m1=1:M1                 :9F''f$AP  
    p=0.032*m1;                %input amplitude ey\m)6A$  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 %t`SSW7I  
    s1=s10; $~,}yh;  
    s20=0.*s10;                %input in waveguide 2 %t~SOkx  
    s30=0.*s10;                %input in waveguide 3 Q1nDl  
    s2=s20; :`Uyn!w  
    s3=s30; )o9Q5Lq  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   P wB g  
    %energy in waveguide 1 "\/^/vn?  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   6vgBqn[  
    %energy in waveguide 2 ~3bZ+*H>  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   H\| ]!8w5Z  
    %energy in waveguide 3 hH1lgc  
    for m3 = 1:1:M3                                    % Start space evolution Wyq~:vU.S  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS MZ5Y\-nq\  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Cl6m$YUt  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; @1qdd~B}  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Jh43)#G-  
       sca2 = fftshift(fft(s2)); !0ce kSesr  
       sca3 = fftshift(fft(s3)); l 70,Jo?78  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   &v$,pg%-:  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); v. Xoq  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); -*|:v67C&  
       s3 = ifft(fftshift(sc3)); (rr}Pv%yb  
       s2 = ifft(fftshift(sc2));                       % Return to physical space w!WRa8C  
       s1 = ifft(fftshift(sc1)); /}w#Jk4pD  
    end zUs~V`0  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 4O`6h)!NQ  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); bR`rT4.F  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); T0`"kjE  
       P1=[P1 p1/p10]; ]am~aJ|L  
       P2=[P2 p2/p10]; ?h!t$QQ!M  
       P3=[P3 p3/p10]; ,\o<y|+`S  
       P=[P p*p]; T~%H%O(F  
    end BrJ o!@<  
    figure(1) aXdf>2c{JD  
    plot(P,P1, P,P2, P,P3); i s L{9^  
    S~0JoCeo  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~