切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9129阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 W#bOx0  
    NI^jQS M]  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of  WJ&a9]&C  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 7Eo;TNbb  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 1$S`>M%a  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 /cX%XZg  
    ])9|j  
    %fid=fopen('e21.dat','w'); Qn!KL0w  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) lc(}[Z/|V  
    M1 =3000;              % Total number of space steps WNK)IC~c  
    J =100;                % Steps between output of space haSC[[o=  
    T =10;                  % length of time windows:T*T0 G_E \p%L>]  
    T0=0.1;                 % input pulse width ra|Ku!  
    MN1=0;                 % initial value for the space output location BCI[jfd7  
    dt = T/N;                      % time step 4XNdsb  
    n = [-N/2:1:N/2-1]';           % Index Fzk%eHG=  
    t = n.*dt;   e6i m_ Tk  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Vpe\Okt:  
    u20=u10.*0.0;                  % input to waveguide 2 w s([bS2h  
    u1=u10; u2=u20;                 m85H x1!p.  
    U1 = u1;   08qM?{z o^  
    U2 = u2;                       % Compute initial condition; save it in U kKs}E| T  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. oIv\Xdc81  
    w=2*pi*n./T; <i ";5+  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T #/ HQ?3h]  
    L=4;                           % length of evoluation to compare with S. Trillo's paper j2`%sBo  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Fql|0Fq  
    for m1 = 1:1:M1                                    % Start space evolution S7h?tR*u  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS uwc@~=;  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; fA"9eUu  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform &Vy.)0  
       ca2 = fftshift(fft(u2)); .H}#,pQ}l  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation .YlhK=d4  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   XR+  
       u2 = ifft(fftshift(c2));                        % Return to physical space @ruWnwb  
       u1 = ifft(fftshift(c1)); 7srq~;j3  
    if rem(m1,J) == 0                                 % Save output every J steps. > zV  
        U1 = [U1 u1];                                  % put solutions in U array +GL[uxe "  
        U2=[U2 u2]; 1'!%$D  
        MN1=[MN1 m1]; ^D?{[LBc  
        z1=dz*MN1';                                    % output location D zdKBJT+  
      end ` 1v Dp.  
    end 7{Zs"d{s  
    hg=abs(U1').*abs(U1');                             % for data write to excel Vs9]Gm  
    ha=[z1 hg];                                        % for data write to excel EQVa8xt/C  
    t1=[0 t']; &W{< Yf9  
    hh=[t1' ha'];                                      % for data write to excel file Zq{TY)PI]  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 4Cp)!Bq?/  
    figure(1) 4O7 {a  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 589P$2e1X  
    figure(2) 3XIL; 5  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn C#@-uo2  
    ^[.Z~>3!\q  
    非线性超快脉冲耦合的数值方法的Matlab程序 '3iJq9  
    |F49<7XB[~  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   [8'^"  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4l@aga  
    yJ*g ;  
    &HtG&RvQf  
    FyqsFTh_  
    %  This Matlab script file solves the nonlinear Schrodinger equations V?- ]ZkI  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of SedVp cb+  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ot,=.%O  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Rnw v/)  
    E&;;2  
    C=1;                           g(l:>=g]?  
    M1=120,                       % integer for amplitude S\sy] 1*?$  
    M3=5000;                      % integer for length of coupler a,eEP43dn  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) vT#m 8Kg  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ?nwg.&P  
    T =40;                        % length of time:T*T0. ->'xjD  
    dt = T/N;                     % time step J@qwz[d i  
    n = [-N/2:1:N/2-1]';          % Index {'6-;2&f  
    t = n.*dt;   +&[X7r<  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. $pajE^d4V  
    w=2*pi*n./T; p7Z/%~0v:  
    g1=-i*ww./2; CcZM0  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; +8.1cDEH\  
    g3=-i*ww./2; Pv\-D<&@m  
    P1=0; NdB:2P  
    P2=0;  #]J"j]L  
    P3=1; :'sMrf_EA  
    P=0; ^qNZ!V4T  
    for m1=1:M1                 y'_2|5!Qs  
    p=0.032*m1;                %input amplitude .$xTX'  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 [Uw3.CVh  
    s1=s10; .xe+cK  
    s20=0.*s10;                %input in waveguide 2 YJ>P+e\o9  
    s30=0.*s10;                %input in waveguide 3 vk<4P;A(G  
    s2=s20;  #zg"E<  
    s3=s30; S$qpClXS,  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   .q'{ 3  
    %energy in waveguide 1 SHQgI<D7  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   :Fi$-g  
    %energy in waveguide 2 _.xicov  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   %JuT'7VB  
    %energy in waveguide 3 [fg-"-+:M  
    for m3 = 1:1:M3                                    % Start space evolution vP^V3  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS =QhK|C!$A  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Qb@i_SX(fs  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; V eLGxc  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform `%$+rbo~  
       sca2 = fftshift(fft(s2)); 1SG^X-(GM/  
       sca3 = fftshift(fft(s3)); hs<OzM  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   m{by%  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); "]B%V!@  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); j# n  
       s3 = ifft(fftshift(sc3)); ft?c&h;At  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 0A F}wz>  
       s1 = ifft(fftshift(sc1)); c"pu"t@/Z  
    end ddw^oU  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); g5t`YcL  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); }r|$\ms  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); |b+CXEzo  
       P1=[P1 p1/p10]; Y``]66\Fp  
       P2=[P2 p2/p10]; N^zFKDJG  
       P3=[P3 p3/p10]; 4E@_Fn_#  
       P=[P p*p]; MGsY3~!K  
    end |D1TSv}rZD  
    figure(1) Ly]J-BTe  
    plot(P,P1, P,P2, P,P3); kNoS% ?1,  
    #pk  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~