切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9076阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 )NW6?Pu"  
    2j&@ p>  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ~oD8Rnf  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of )@g;j>  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ` $5UHa2/  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 zA+@FR?  
    -=}3j&,\R  
    %fid=fopen('e21.dat','w'); tpf7_YP_!-  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) g:)DNy  
    M1 =3000;              % Total number of space steps 1(dj[3Mt  
    J =100;                % Steps between output of space Oe]&(  
    T =10;                  % length of time windows:T*T0 iU2KEqCm  
    T0=0.1;                 % input pulse width ~=n#}{/  
    MN1=0;                 % initial value for the space output location %!j:fJ()  
    dt = T/N;                      % time step @ GDX7TPV  
    n = [-N/2:1:N/2-1]';           % Index @e2}BhB2  
    t = n.*dt;   viaJblYj(f  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 9}tG\0tL*  
    u20=u10.*0.0;                  % input to waveguide 2 \ZXLX'-  
    u1=u10; u2=u20;                 'ktHPn ,K  
    U1 = u1;   2 YxTMT  
    U2 = u2;                       % Compute initial condition; save it in U `k{& /]  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. x;E2~&E  
    w=2*pi*n./T; :os z  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T QBJ3iQs1  
    L=4;                           % length of evoluation to compare with S. Trillo's paper quu*xJ;Ci  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 c'fSu;1  
    for m1 = 1:1:M1                                    % Start space evolution 90N`CXas  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS %"$@%"8;3  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; l5t2\Fl  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform $ChK]v 6C  
       ca2 = fftshift(fft(u2)); C*6S@4k  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation u' Qd,  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   vwGeD|Fb5  
       u2 = ifft(fftshift(c2));                        % Return to physical space E8}+k o  
       u1 = ifft(fftshift(c1)); C 'mL&  
    if rem(m1,J) == 0                                 % Save output every J steps. #VbVs l  
        U1 = [U1 u1];                                  % put solutions in U array 0Fr1Ku!  
        U2=[U2 u2]; ,d,\-x-+/  
        MN1=[MN1 m1]; !>^JSHR4t  
        z1=dz*MN1';                                    % output location Wa"(m*hW  
      end HL{$ ^l#v  
    end hq>Csj==@  
    hg=abs(U1').*abs(U1');                             % for data write to excel V_^@  
    ha=[z1 hg];                                        % for data write to excel Z'v-F^  
    t1=[0 t']; mry N}  
    hh=[t1' ha'];                                      % for data write to excel file kAzd8nJ'  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format d.<~&.-$  
    figure(1) 4/> Our 5  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 748CD{KxW  
    figure(2) h rN%  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn w=b(X q+:  
    2h^WYpCm  
    非线性超快脉冲耦合的数值方法的Matlab程序 ,t$,idcT+  
    JN3cg  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   u V6g[J  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ,2[ra9n  
    Yn51U6_S  
    ffDc 6*.Q  
    i^z`"3#LE  
    %  This Matlab script file solves the nonlinear Schrodinger equations !mfJpJ  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ,\PVC@xJ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Zy"=y+e!E;  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 MFit|C  
    0(>rG{u  
    C=1;                           6iezLG 5  
    M1=120,                       % integer for amplitude Bn wzcl  
    M3=5000;                      % integer for length of coupler h+7>#*DH  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) eOl KbJU  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. . 5HQ   
    T =40;                        % length of time:T*T0. Al"3 kRJJ  
    dt = T/N;                     % time step :Waox"#=g  
    n = [-N/2:1:N/2-1]';          % Index 9|r* pK[  
    t = n.*dt;   Ps[$.h  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. +RZ~LA \+  
    w=2*pi*n./T; y f1CXldi  
    g1=-i*ww./2; V-O(U*]  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; VkmRh,T  
    g3=-i*ww./2; g;p)n  
    P1=0; MEZ{j%-a  
    P2=0; KlxN~/gyik  
    P3=1; |  FM }  
    P=0; #} ,x @]p  
    for m1=1:M1                 3-Bl  
    p=0.032*m1;                %input amplitude aC=['a>)  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 |(IO=V4P  
    s1=s10; Q%ad q-B  
    s20=0.*s10;                %input in waveguide 2 'JmBh@A  
    s30=0.*s10;                %input in waveguide 3 ?2J?XS>  
    s2=s20; T`YwJ6N  
    s3=s30; Jn}n*t3  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   0NE{8O0;Fr  
    %energy in waveguide 1 pgc3jP!  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   vn').\,P2O  
    %energy in waveguide 2 U..<iNQE5  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   h^|5|l  
    %energy in waveguide 3 'A{h iY  
    for m3 = 1:1:M3                                    % Start space evolution =jAFgwP\  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS w_-+o^  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; X~U >LLr  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; mO rWJ~=  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform #B}?Zg  
       sca2 = fftshift(fft(s2)); I+?hG6NM  
       sca3 = fftshift(fft(s3)); _]>JB0IY  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   C*~aSl7  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); %IZ)3x3l  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ! >.vh]8g  
       s3 = ifft(fftshift(sc3)); M].8HwC+  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 9(1rh9`=  
       s1 = ifft(fftshift(sc1)); OKue" p  
    end !XE aF]8  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); iw]k5<qKj  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); +c,[ Q  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); HxwlYx,4  
       P1=[P1 p1/p10]; HOW7cV'X  
       P2=[P2 p2/p10]; fv'4f$U  
       P3=[P3 p3/p10]; fib#CY  
       P=[P p*p]; Utl t<  
    end ?m%h`<wgMc  
    figure(1) ISqfU]>[  
    plot(P,P1, P,P2, P,P3); 19u =W(  
    J1F{v)T '?  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~