切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9175阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Ccw6,2`&  
    rTiW&#  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 8Q&hhmOnz  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of Y7yh0r_  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear R)AFaP |  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `[<j5(T  
    d?RKobk  
    %fid=fopen('e21.dat','w'); GB1[`U%  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) S(^*DV  
    M1 =3000;              % Total number of space steps !4 4)=xW  
    J =100;                % Steps between output of space =gCv`SFW  
    T =10;                  % length of time windows:T*T0 \>8"r,hG|  
    T0=0.1;                 % input pulse width =rV*iLy  
    MN1=0;                 % initial value for the space output location xD}ha  
    dt = T/N;                      % time step f-N:  
    n = [-N/2:1:N/2-1]';           % Index <n iq*  
    t = n.*dt;   -0 [^w  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 AR i_m  
    u20=u10.*0.0;                  % input to waveguide 2 P#/k5]g  
    u1=u10; u2=u20;                 #<X+)B6t  
    U1 = u1;   0f).F  
    U2 = u2;                       % Compute initial condition; save it in U t> J 43  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. 5eI3a!E]O  
    w=2*pi*n./T; ;?>xuC$  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T _7(>0GY  
    L=4;                           % length of evoluation to compare with S. Trillo's paper N 4$!V}pp  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 _cqB p7  
    for m1 = 1:1:M1                                    % Start space evolution #{)=%5=c  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS _L mDF8Q(  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; / c1=`OJ  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform [HJ^'/bB'  
       ca2 = fftshift(fft(u2)); z116i?7EnV  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 7]t$t3I`  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   seh1(q?Va4  
       u2 = ifft(fftshift(c2));                        % Return to physical space eeX^zaKl]  
       u1 = ifft(fftshift(c1)); | I_,;c  
    if rem(m1,J) == 0                                 % Save output every J steps. kw8?:: <  
        U1 = [U1 u1];                                  % put solutions in U array fRp+-QvE  
        U2=[U2 u2]; &>UI{  
        MN1=[MN1 m1]; jTbJL  
        z1=dz*MN1';                                    % output location WQ/H8rOs  
      end =v-BzF15  
    end e_Na_l]  
    hg=abs(U1').*abs(U1');                             % for data write to excel @ !0@f'}e  
    ha=[z1 hg];                                        % for data write to excel 6/ir("LK  
    t1=[0 t']; TAbd[:2{F  
    hh=[t1' ha'];                                      % for data write to excel file <]6])f,y\  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format NIcPjo  
    figure(1) {_0m0 8  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ^nu~q+:+#  
    figure(2) i1]*5;q  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn eMk?#&a)  
    0xbx2jlkY  
    非线性超快脉冲耦合的数值方法的Matlab程序 Fp>iwdjFg  
    `mTpL^f  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   a?bSMt}  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 fZK&h.  
    }D_h*9  
    413,O~^  
    PtySPDClj  
    %  This Matlab script file solves the nonlinear Schrodinger equations . :Q[Z  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of  LAG*H  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 6/`$Y!.ub  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 x8i;uH\8  
    n?vw|'(}  
    C=1;                           +cQGX5 K  
    M1=120,                       % integer for amplitude }gQ FWT  
    M3=5000;                      % integer for length of coupler )N`a4p  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) C8qA+dri  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Kh<xQ:eMy  
    T =40;                        % length of time:T*T0. _5'OQ'P2  
    dt = T/N;                     % time step J;|r00M  
    n = [-N/2:1:N/2-1]';          % Index ydo"H9NOS  
    t = n.*dt;   U4]>8L  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. KE3/sw0  
    w=2*pi*n./T; 5$o]D  
    g1=-i*ww./2; }oH A@o5  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; BgLW!|T[  
    g3=-i*ww./2; '\qd{mM\r  
    P1=0; M>hHTa?W  
    P2=0; +g8wc(<ik  
    P3=1; G}1?lO_d`  
    P=0; <Cc}MDM604  
    for m1=1:M1                 <rd7<@>5D  
    p=0.032*m1;                %input amplitude fC>3{@h}*  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 VT1Nd  
    s1=s10; t2Dx$vT*&  
    s20=0.*s10;                %input in waveguide 2 `2X~3im  
    s30=0.*s10;                %input in waveguide 3 E)liuu! qI  
    s2=s20; 'EFSr!+  
    s3=s30; K7 >Z)21  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   zlC|Spaf  
    %energy in waveguide 1 fx@Hd!nO~"  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   *sI`+4h[  
    %energy in waveguide 2 8F|8zX&  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   "Sp+Q&2U  
    %energy in waveguide 3 s)Bmi  
    for m3 = 1:1:M3                                    % Start space evolution u^H:z0  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS l]Ozy@ Ib  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ?n o.hf  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; !yAg!V KY  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform vJ9 6qX  
       sca2 = fftshift(fft(s2)); '^f,H1oW  
       sca3 = fftshift(fft(s3)); 2Cd#~  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   &6%%_Lw$  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); D<9FSxl6  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); jUjgxP*7m  
       s3 = ifft(fftshift(sc3)); U X)k;h  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 6u>${}  
       s1 = ifft(fftshift(sc1)); S#+Dfa`8X  
    end 9-)D"ZhLe  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); &oJ=   
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); AF5.)Y@.  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));  9?c0cwP?  
       P1=[P1 p1/p10]; /mLOh2 T  
       P2=[P2 p2/p10]; Xq`|'6]/  
       P3=[P3 p3/p10]; uM"G)$I\  
       P=[P p*p];  y/t{*a  
    end FHpS?htRy  
    figure(1) j'Ry.8}  
    plot(P,P1, P,P2, P,P3); "N'tmzifh  
    g:0-` ,[  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~