切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9376阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 `$3P@SO"  
    OT)`)PZ"  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of F%{z E ANm  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ZC^?ng  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Esg:  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 qzo)\,  
    -ucR@P]  
    %fid=fopen('e21.dat','w'); #}Ays#wA>?  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) a{?>F&vnU  
    M1 =3000;              % Total number of space steps 6jl{^dI  
    J =100;                % Steps between output of space (m.jC}J  
    T =10;                  % length of time windows:T*T0 8@T0]vH&  
    T0=0.1;                 % input pulse width F1`mq2^@  
    MN1=0;                 % initial value for the space output location =aehhs>  
    dt = T/N;                      % time step ~ r$I&8  
    n = [-N/2:1:N/2-1]';           % Index MU N:}S  
    t = n.*dt;   >4#\ U!  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 _,-\;  
    u20=u10.*0.0;                  % input to waveguide 2 (hv}K*c{  
    u1=u10; u2=u20;                 :4COPUBpPV  
    U1 = u1;   Ja@ ?.gW  
    U2 = u2;                       % Compute initial condition; save it in U DFGgyFay  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. icK U)  
    w=2*pi*n./T; rj5)b:c}  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T [Kbna>`  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Me;Nn$'%  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ab6D&  
    for m1 = 1:1:M1                                    % Start space evolution 2b :I .  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS mj y+_  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; *I9G"R8  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 0E&XD&D  
       ca2 = fftshift(fft(u2)); !}xRwkN  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation CR|>?9V  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   fK=vLcH  
       u2 = ifft(fftshift(c2));                        % Return to physical space gti=GmL(L  
       u1 = ifft(fftshift(c1)); `k08M)  
    if rem(m1,J) == 0                                 % Save output every J steps. rO1.8KKJ  
        U1 = [U1 u1];                                  % put solutions in U array x/92],.Mz  
        U2=[U2 u2]; B_.>Q8tK;  
        MN1=[MN1 m1]; mOYXd,xd  
        z1=dz*MN1';                                    % output location G&7 } m  
      end ^}GR!990  
    end jg3['hTJT  
    hg=abs(U1').*abs(U1');                             % for data write to excel 1+Y; "tT  
    ha=[z1 hg];                                        % for data write to excel @jD19=  
    t1=[0 t']; 9893{}\cB  
    hh=[t1' ha'];                                      % for data write to excel file v/wR) 9  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ,k/<Nv;  
    figure(1) ]m^ECA$  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn NW Pd~l+  
    figure(2) *P[N.5{  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn /3~}= b  
    KhbbGdmfS$  
    非线性超快脉冲耦合的数值方法的Matlab程序 zPb "6%1B  
    I~c}&'V  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   9, 792b  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 vYG$>*  
    7jF2m'(  
    Al]z =  
    UgLJV2M6  
    %  This Matlab script file solves the nonlinear Schrodinger equations >Q^*h}IdW  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of HM\gOz  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear )i>T\B  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 dtq]_HvTJ  
    8m) E~6  
    C=1;                           ;4]l P  
    M1=120,                       % integer for amplitude cGjkx3l*  
    M3=5000;                      % integer for length of coupler {pB9T3ry]  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) i{/nHrN  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. .'N#qs_  
    T =40;                        % length of time:T*T0. v_@&#!u`  
    dt = T/N;                     % time step y|Zj M  
    n = [-N/2:1:N/2-1]';          % Index :~9F/Jx  
    t = n.*dt;   & |o V\L  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. $d7{q3K&1  
    w=2*pi*n./T; <3Hu(Jx<O  
    g1=-i*ww./2; k$ } 6Qd  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; \t@|-`  
    g3=-i*ww./2; JTB5#S4W  
    P1=0; (*YENT}  
    P2=0; Cqk6Igw  
    P3=1; y<5xlN(+v  
    P=0; DnPV Tp(>  
    for m1=1:M1                 ^zaN?0%S33  
    p=0.032*m1;                %input amplitude bDPT1A`F  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 1YMu\(  
    s1=s10; RpY#_\^hI  
    s20=0.*s10;                %input in waveguide 2 Yt;.Z$i ,  
    s30=0.*s10;                %input in waveguide 3 -n~VMLd?@  
    s2=s20; yf6&'Y{  
    s3=s30; 7e&%R4{b  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Zx]"2U#  
    %energy in waveguide 1 K<+h/Ok  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));    3^zO G2  
    %energy in waveguide 2 ) 4'@=q  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   JEes'H}Y  
    %energy in waveguide 3 Gwkp(9d  
    for m3 = 1:1:M3                                    % Start space evolution FeFH_  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ?wx|n_3<:  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 07+Qai-]  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Wc$1Re{z  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform hw&R .F  
       sca2 = fftshift(fft(s2)); 4m6E~_:F  
       sca3 = fftshift(fft(s3)); <tg>1,C  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   3J}bI {3  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); j7 D\O  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); oa|nQ`[  
       s3 = ifft(fftshift(sc3)); bmO[9 )G  
       s2 = ifft(fftshift(sc2));                       % Return to physical space DP9hvu/85  
       s1 = ifft(fftshift(sc1)); FiqcM-Af4  
    end 6]^}GyM!  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 6^.<5SJ}  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); PZ"=t!  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); /^\6q"'  
       P1=[P1 p1/p10]; L%JmdY;  
       P2=[P2 p2/p10]; ZWSYh>"  
       P3=[P3 p3/p10]; x*[\$E`v  
       P=[P p*p]; g+k0Fw]!  
    end 7 0:a2m  
    figure(1) mPxph>o  
    plot(P,P1, P,P2, P,P3); ; ,]T|> M  
    sD* 8:Hl  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~