计算脉冲在非线性耦合器中演化的Matlab 程序 y_-0tI\J BW*rIn<?G % This Matlab script file solves the coupled nonlinear Schrodinger equations of
T:yE(OBf % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
JL{VD
/f % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
7~.9=I'A % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
u\;C;I-? ' Fywv %fid=fopen('e21.dat','w');
/@TF5]Ri N = 128; % Number of Fourier modes (Time domain sampling points)
BUXpCxQ M1 =3000; % Total number of space steps
'zuIBOH`j3 J =100; % Steps between output of space
yl+gL?IES T =10; % length of time windows:T*T0
j'"J%e] T0=0.1; % input pulse width
fuf"Ae MN1=0; % initial value for the space output location
vV-`jsq20H dt = T/N; % time step
6mxfLlZ n = [-N/2:1:N/2-1]'; % Index
\\;jw[P0 t = n.*dt;
1K50Z.o&@ u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
`7V]y- u20=u10.*0.0; % input to waveguide 2
<}9lZEqY u1=u10; u2=u20;
Ean5b>\ U1 = u1;
],Do6
@M- U2 = u2; % Compute initial condition; save it in U
^o&. fQ* ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
q#9RW(o w=2*pi*n./T;
v;D~Pa g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
H8}oIA"b L=4; % length of evoluation to compare with S. Trillo's paper
7?w*] dz=L/M1; % space step, make sure nonlinear<0.05
HvJs1)Wo& for m1 = 1:1:M1 % Start space evolution
{q^[a-h> u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
i5@z< \ u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
>@
. ca1 = fftshift(fft(u1)); % Take Fourier transform
*_\_'@1|J) ca2 = fftshift(fft(u2));
{8bSB.?R c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
_ZSR.w}j/ c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
"b3"TPfK u2 = ifft(fftshift(c2)); % Return to physical space
}y gD3:vN7 u1 = ifft(fftshift(c1));
3"~!nn0; if rem(m1,J) == 0 % Save output every J steps.
%YqEzlzF U1 = [U1 u1]; % put solutions in U array
?) d~cJ U2=[U2 u2];
5#E`=C% MN1=[MN1 m1];
,/|T-Ka z1=dz*MN1'; % output location
5M*:}* end
(V2fRv end
ml
}{|Yz hg=abs(U1').*abs(U1'); % for data write to excel
Y9XEP7 ha=[z1 hg]; % for data write to excel
1\I}2; t1=[0 t'];
AFE~
v\Gz hh=[t1' ha']; % for data write to excel file
LyFN.2qw %dlmwrite('aa',hh,'\t'); % save data in the excel format
6?c7$Y figure(1)
mxdr,Idx waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
tf`^v6m%] figure(2)
28d'7El$ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
OYn}5RN Se =`N 非线性超快脉冲耦合的数值方法的Matlab程序 c(s.5p ^ }b.%Im<3R 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
I^$fMdT Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
]>Es4 s h>m"GpF
x oe-\ozJ0 Wdbed U~`Q % This Matlab script file solves the nonlinear Schrodinger equations
{&1/V % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
~oY^;/ j % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
d>qY{Fdz % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
*u;Iw{.{ .U]-j\ C=1;
1=Z0w +v{ M1=120, % integer for amplitude
0YDR1dO(* M3=5000; % integer for length of coupler
'?(% Zxw%& N = 512; % Number of Fourier modes (Time domain sampling points)
1/J=uH dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
t;\Y{` T =40; % length of time:T*T0.
}:)&u|d_ dt = T/N; % time step
ER.}CM6{[ n = [-N/2:1:N/2-1]'; % Index
FVJGL t = n.*dt;
hM@>q&q_ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
@b2aNS<T w=2*pi*n./T;
A6(/;+n g1=-i*ww./2;
+T Dw+ g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
-e:`|(Mo g3=-i*ww./2;
P+/e2Y P1=0;
o!A+&{ P2=0;
;u)I\3`*! P3=1;
DN:EB@ P=0;
[Z$[rOF for m1=1:M1
20Wg=p9L p=0.032*m1; %input amplitude
7zG_(83)K s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
{3aua:q s1=s10;
YNi.SXH s20=0.*s10; %input in waveguide 2
&
>fQp(f s30=0.*s10; %input in waveguide 3
$6SW;d+>n s2=s20;
dvUic-w<j s3=s30;
$qj2w"' p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
P/_['7 %energy in waveguide 1
@~a%/GQ#n* p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
ZPYS$Ydy %energy in waveguide 2
(SAs- p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
KPUV@eQ, %energy in waveguide 3
/mzlH for m3 = 1:1:M3 % Start space evolution
<wD-qT W s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
$(x] s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
e$rZ5X s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
IjnU?Bf sca1 = fftshift(fft(s1)); % Take Fourier transform
g[4WzDF* sca2 = fftshift(fft(s2));
}@d @3 sca3 = fftshift(fft(s3));
lrIe"H@ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
--BW9]FW sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
7B66]3v sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
K]w'&Qm8W s3 = ifft(fftshift(sc3));
/N.U/MPL_ s2 = ifft(fftshift(sc2)); % Return to physical space
X#^[<5 s1 = ifft(fftshift(sc1));
z<' u1l3 end
|P?*5xPB p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
nAlQ7' p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
:Zw2'IV p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
>i?oC^QM P1=[P1 p1/p10];
[(7S .5I P2=[P2 p2/p10];
FGq[\B P3=[P3 p3/p10];
.HABNPNg( P=[P p*p];
7s^'d,P end
U| R_OLWAg figure(1)
KF:78C plot(P,P1, P,P2, P,P3);
~*];pV]A[ BnF^u5kv % 转自:
http://blog.163.com/opto_wang/