计算脉冲在非线性耦合器中演化的Matlab 程序 sAkr-x?+M [C "\]LiX % This Matlab script file solves the coupled nonlinear Schrodinger equations of
UPh#YV 0/, % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
D4=*yP % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
p>B2bv+L % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
VPUVPq~& 3"y 6|e/5 %fid=fopen('e21.dat','w');
bHwEd%f N = 128; % Number of Fourier modes (Time domain sampling points)
i5 rkP`)j M1 =3000; % Total number of space steps
\/NF??k,jk J =100; % Steps between output of space
T D_@0Rd T =10; % length of time windows:T*T0
Q7s@,c!m_ T0=0.1; % input pulse width
js_`L#t MN1=0; % initial value for the space output location
[oLV,O|s|j dt = T/N; % time step
Gnkar[oa& n = [-N/2:1:N/2-1]'; % Index
Kw
-SOFE t = n.*dt;
5> x_G#W u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
k +-w% u20=u10.*0.0; % input to waveguide 2
`geHSx_ u1=u10; u2=u20;
}E
'r?N U1 = u1;
~G!JqdKJ0 U2 = u2; % Compute initial condition; save it in U
|YJ83nSO~ ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
I~GF%$-G w=2*pi*n./T;
ZwmucY%3 g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
<S@jf4 L=4; % length of evoluation to compare with S. Trillo's paper
Wc3z7xK1@ dz=L/M1; % space step, make sure nonlinear<0.05
;5Sdx5`_ for m1 = 1:1:M1 % Start space evolution
?{ir$M u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
(
ayAP u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
jJ,_-ui ca1 = fftshift(fft(u1)); % Take Fourier transform
fO*jCl ca2 = fftshift(fft(u2));
QZ a.c c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
8|a./%gixs c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
(`tRJWbdz u2 = ifft(fftshift(c2)); % Return to physical space
OK[J
h u1 = ifft(fftshift(c1));
cw Obq\ if rem(m1,J) == 0 % Save output every J steps.
2{OR#v~ U1 = [U1 u1]; % put solutions in U array
%Y^J'' U2=[U2 u2];
[{x}# oRSE MN1=[MN1 m1];
AYts
&+ z1=dz*MN1'; % output location
t^rw@$"} end
Zj`WRH4 end
rpR${%jc hg=abs(U1').*abs(U1'); % for data write to excel
n>M`wF> ha=[z1 hg]; % for data write to excel
&gXh:. t1=[0 t'];
%q {q.(M# hh=[t1' ha']; % for data write to excel file
}r,\0Wm %dlmwrite('aa',hh,'\t'); % save data in the excel format
1\.$=N figure(1)
G=zWhqieh waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
Z~5) )5Ye; figure(2)
hx;f/EPx waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
*IG$"nu ?e7]U*jEU 非线性超快脉冲耦合的数值方法的Matlab程序 ^t;z;.g r~4uIUE{ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
J$dwy$n Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
P15
H[<:Fz d$dy6{/YD j)A#}4jd ep0,4!#FAO % This Matlab script file solves the nonlinear Schrodinger equations
:GHv3hn5 % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
Fnw:alWr % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
K5""%O+ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
7>vm?a^D2& 8%?y)K^
D C=1;
{@Mr7*u M1=120, % integer for amplitude
[Kgb#L'{ M3=5000; % integer for length of coupler
uV/5f#) N = 512; % Number of Fourier modes (Time domain sampling points)
&p0e)o~Ux dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
UO/sv2CN T =40; % length of time:T*T0.
VtreOJ+ dt = T/N; % time step
je4l3Hl n = [-N/2:1:N/2-1]'; % Index
.g*j]!_] t = n.*dt;
PnlI {d ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
Gr"CHz/ w=2*pi*n./T;
D #ddx g1=-i*ww./2;
\mqx ' g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
N.F5)04 g3=-i*ww./2;
}pc9uvmIJ P1=0;
P]E-Wp'p P2=0;
W
U(_N*a P3=1;
|{ jT+ P=0;
*GP2>oEM for m1=1:M1
Y.tx$% p=0.032*m1; %input amplitude
s\ IKSoE s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
nla6QlFYn* s1=s10;
e~'`x38 s20=0.*s10; %input in waveguide 2
my=f}%k= s30=0.*s10; %input in waveguide 3
R%E7 |NAG s2=s20;
e|~MJu+1 s3=s30;
+n3I\7G> p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
D:)Wr, 26 %energy in waveguide 1
Bf_$BCyGW p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
eRauyL"Q+ %energy in waveguide 2
r-2k<#^r p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
d|`Ll %energy in waveguide 3
zmMc*| for m3 = 1:1:M3 % Start space evolution
V7ph^^sC} s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
Uv^\[ s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
)8Va%{j s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
NE995; sca1 = fftshift(fft(s1)); % Take Fourier transform
<N<Q9}`V sca2 = fftshift(fft(s2));
}\pI`;*O| sca3 = fftshift(fft(s3));
jvT'N@ sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
;"3B,Yj sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
3Ob.OwA sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
sdu?#O+c1 s3 = ifft(fftshift(sc3));
Fsx?(?tCMo s2 = ifft(fftshift(sc2)); % Return to physical space
u8e_Lqx? s1 = ifft(fftshift(sc1));
BFLef3~.0 end
'J|2c;M\x p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
IThd\#= p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
?RRO p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
:Pud%}' P1=[P1 p1/p10];
n ]ikc| P2=[P2 p2/p10];
V"FQVtTx7 P3=[P3 p3/p10];
V+d_1]
l P=[P p*p];
xO$P
C, end
>r.]a ` figure(1)
0.aXg " plot(P,P1, P,P2, P,P3);
'CLZ7pV ?ukw6T 转自:
http://blog.163.com/opto_wang/