切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8898阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 #GDe0 8rOw  
    zk*c)s  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of r_e7a6  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ^EG\iO2X  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear  c gzwx  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 km^^T_ M/  
    'Jf^`ZT}  
    %fid=fopen('e21.dat','w'); KDl_?9E5  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ")O`mXg-  
    M1 =3000;              % Total number of space steps @_:]J1jw7  
    J =100;                % Steps between output of space ?m$a6'2-,J  
    T =10;                  % length of time windows:T*T0 53-v|'9'  
    T0=0.1;                 % input pulse width ac kqH+'  
    MN1=0;                 % initial value for the space output location "H -"  
    dt = T/N;                      % time step {~|OE -X][  
    n = [-N/2:1:N/2-1]';           % Index jdE5~a+  
    t = n.*dt;   X U/QA [K  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 w.,Q1\*rPp  
    u20=u10.*0.0;                  % input to waveguide 2 LK6; ? m  
    u1=u10; u2=u20;                 )o-Q!<*1  
    U1 = u1;   ZxV"(\$n  
    U2 = u2;                       % Compute initial condition; save it in U I$E.s*B9  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. s&\I=J.  
    w=2*pi*n./T; Y6,Rj:8  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 1]IQg;q  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ~4P%%b0,o  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 I;VuW  
    for m1 = 1:1:M1                                    % Start space evolution FnJ?C&xK  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS V $z} K  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; {hln?'  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform p!k7C&]E  
       ca2 = fftshift(fft(u2)); lds- T  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 54 >-  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   !mWiYpbU+  
       u2 = ifft(fftshift(c2));                        % Return to physical space O6IB. >T  
       u1 = ifft(fftshift(c1)); 5~mh'<:  
    if rem(m1,J) == 0                                 % Save output every J steps. =K{\p`?  
        U1 = [U1 u1];                                  % put solutions in U array TuW%zF/  
        U2=[U2 u2]; `tjH<  
        MN1=[MN1 m1]; GA7}K:LP'k  
        z1=dz*MN1';                                    % output location 6JKqn~0Kk  
      end JQ4{` =,b  
    end Qs9gTBS;  
    hg=abs(U1').*abs(U1');                             % for data write to excel }%Bl>M  
    ha=[z1 hg];                                        % for data write to excel ?wnzTbJN  
    t1=[0 t']; OKF tl  
    hh=[t1' ha'];                                      % for data write to excel file J'N!Omz  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format [D*UT#FM  
    figure(1) H[DUZ,J  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn r}uz7}z %"  
    figure(2) ,V*%V;  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn PJ='tJDj  
    l NQcYv  
    非线性超快脉冲耦合的数值方法的Matlab程序 -V:"l  
    ]p_@@QTC  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   <7-J0btV  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 35tu>^_#V  
    gY@N~'f;"  
    UI>Y0O  
    ~I{n^Q/a  
    %  This Matlab script file solves the nonlinear Schrodinger equations &ZL3{M  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of w`q%#q Rk  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;j4?>3  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Nbp!teH6  
    !9xp cQ>  
    C=1;                           Q>n|^y6  
    M1=120,                       % integer for amplitude tU_y6  
    M3=5000;                      % integer for length of coupler M`ip~7"  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) cI=(\pC  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. v%fu  
    T =40;                        % length of time:T*T0. h,Q3oy\s1  
    dt = T/N;                     % time step A45A:hqs  
    n = [-N/2:1:N/2-1]';          % Index ei rzYt  
    t = n.*dt;   <vXGi  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. )c8j}  
    w=2*pi*n./T; /% N r?V  
    g1=-i*ww./2; hGiz)v~  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; H<^/Ati,|  
    g3=-i*ww./2; .l@xsJn  
    P1=0; |Pg@M  
    P2=0; Offu9`DiZ  
    P3=1; g55`A`5%C  
    P=0; _cu:aktf2  
    for m1=1:M1                 jAud {m*T  
    p=0.032*m1;                %input amplitude /{|fyKo\?  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 Zfyo-Wk  
    s1=s10; L:9F:/G  
    s20=0.*s10;                %input in waveguide 2 H/Llj.-jg  
    s30=0.*s10;                %input in waveguide 3 < P`u}  
    s2=s20; K# Jk _"W  
    s3=s30; L(U"U#QZ  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Fy.\7CL>  
    %energy in waveguide 1 5< ja3  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   @'|)~,"bx  
    %energy in waveguide 2 .-<k>9S7_  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   1bH;!J  
    %energy in waveguide 3 0Q^Ikiv   
    for m3 = 1:1:M3                                    % Start space evolution Uf,4  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS U4cY_p?  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; sVl-N&/  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; +). 0cs0k5  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform g H G  
       sca2 = fftshift(fft(s2)); {uHU]6d3qy  
       sca3 = fftshift(fft(s3)); 0=K9`=5d0  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   9ksE>[7  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); '{(UW.Awo  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); D_x +:1(  
       s3 = ifft(fftshift(sc3)); ;s52{>&F]  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ~ {Mn{  
       s1 = ifft(fftshift(sc1)); 3"P }n  
    end {6}eN|4~#  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ?yj6CL(,  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); P><o,s"v  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); e/^=U7:io  
       P1=[P1 p1/p10]; kS!viJwtT  
       P2=[P2 p2/p10]; VH[hsj  
       P3=[P3 p3/p10]; PK"c4>q  
       P=[P p*p]; $_x^lr  
    end m'f,_ \'  
    figure(1) 0A( +ZMd  
    plot(P,P1, P,P2, P,P3); ;f"0~D2  
    B` k\EL'  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~