切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9147阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 JmB7tRM8  
    t4)~A5s  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of HRO :U%  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 5Z{i't0CQ  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Y$SZqW0!/  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 HHa XK  
    )70-q yA  
    %fid=fopen('e21.dat','w'); HJ[@;F|aU  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) X%Jq9_  
    M1 =3000;              % Total number of space steps >#).3  
    J =100;                % Steps between output of space oiYI$ql3L  
    T =10;                  % length of time windows:T*T0 1~\YJEsb}d  
    T0=0.1;                 % input pulse width 9:zW$Gt&  
    MN1=0;                 % initial value for the space output location eqD|3YX  
    dt = T/N;                      % time step z zL@3/<j  
    n = [-N/2:1:N/2-1]';           % Index :f (UZmV$  
    t = n.*dt;   zr%2oFeX,  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 E O^j,x g  
    u20=u10.*0.0;                  % input to waveguide 2 ~i 'Ib_%h  
    u1=u10; u2=u20;                 9[}L=n  
    U1 = u1;   Yt79W  
    U2 = u2;                       % Compute initial condition; save it in U }$5S@,  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Lqy]bnY  
    w=2*pi*n./T; Dz$GPA   
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T o/273I  
    L=4;                           % length of evoluation to compare with S. Trillo's paper t|q@~B :  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 71`)@y,Z,  
    for m1 = 1:1:M1                                    % Start space evolution jyRSe^x  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS P)x&9OHV  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; -Z )j"J  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 4PG]L`J{  
       ca2 = fftshift(fft(u2));  GZ.Xx  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation A?[06R5E#  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   kGm-jh  
       u2 = ifft(fftshift(c2));                        % Return to physical space tA'O66.  
       u1 = ifft(fftshift(c1)); Y?G9d6]Lk6  
    if rem(m1,J) == 0                                 % Save output every J steps. Y?Ph%i2E  
        U1 = [U1 u1];                                  % put solutions in U array  5,  
        U2=[U2 u2]; ?B> { rj  
        MN1=[MN1 m1];  ,r\  
        z1=dz*MN1';                                    % output location x=(y  
      end nojJGeW%  
    end -0[?6.(s"  
    hg=abs(U1').*abs(U1');                             % for data write to excel \q9wo*A  
    ha=[z1 hg];                                        % for data write to excel {&Kck>C'  
    t1=[0 t']; NzB"u+jB  
    hh=[t1' ha'];                                      % for data write to excel file J`/t;xk  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ! h7?Ap  
    figure(1) bHx09F]  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn D"kss5>w  
    figure(2) C+ \c(M a  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn G&qO{" Js  
    .}'49=c  
    非线性超快脉冲耦合的数值方法的Matlab程序 98 dl -?  
    /'KCW_Q  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   z|,YO6(L  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 z8v]Kt&  
    rqJ'm?>cr  
    <Uj~S  
    #O3Y#2lI  
    %  This Matlab script file solves the nonlinear Schrodinger equations fyYHwG  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of >fG=(1"  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear N.r8dC  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 s|*0cK!K^  
    N|t!G^rP  
    C=1;                           ko-|hBNv  
    M1=120,                       % integer for amplitude FKhmg&+>  
    M3=5000;                      % integer for length of coupler 7K"{}:  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) -!d'!; ]  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. VRe7Q0  
    T =40;                        % length of time:T*T0. (9gL  
    dt = T/N;                     % time step qfJi[8".  
    n = [-N/2:1:N/2-1]';          % Index bs_>!H1  
    t = n.*dt;   1< gY  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1.  J+hiz3N  
    w=2*pi*n./T; 5q<cZ)v#&  
    g1=-i*ww./2; &<??,R14  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; uY6]rt_#a  
    g3=-i*ww./2; %H)^k${  
    P1=0; Vf28R,~m  
    P2=0; 7 'T3W c  
    P3=1; DxuT23. (  
    P=0; Uk@du7P1k  
    for m1=1:M1                 4oxAC; L  
    p=0.032*m1;                %input amplitude Kkfza  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 dJvT2s.t[  
    s1=s10; \#)|6w-  
    s20=0.*s10;                %input in waveguide 2 "AN*2)e4  
    s30=0.*s10;                %input in waveguide 3 <V[Qs3uo(  
    s2=s20; ANIx0*Yl(  
    s3=s30; +pcGxje\  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   V\1pn7~V  
    %energy in waveguide 1 Jd]kg,/  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   f\p#3IwwH  
    %energy in waveguide 2 Os)jfKn2  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   4gR;,%E\TO  
    %energy in waveguide 3 j p"hbV  
    for m3 = 1:1:M3                                    % Start space evolution zx #HyO[a  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS exW|c~|m{A  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; G_ -8*.  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; CG[2  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform gc<w nm|  
       sca2 = fftshift(fft(s2)); w.7p D  
       sca3 = fftshift(fft(s3)); HB|R1<t;HB  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   !841/TRb  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ?/@ U#Qy  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); e\8|6< o[  
       s3 = ifft(fftshift(sc3)); j\hI, mc  
       s2 = ifft(fftshift(sc2));                       % Return to physical space -uk}Fou  
       s1 = ifft(fftshift(sc1)); ]Rk4"i  
    end }}?,({T|n  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 1hTE^\W  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 7\0}te  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); *F:)S"3_~e  
       P1=[P1 p1/p10]; U ;%cp  
       P2=[P2 p2/p10]; If>bE!_BO  
       P3=[P3 p3/p10]; Uf}u`"$F  
       P=[P p*p]; {s7 3(B"  
    end " ""k}M2A  
    figure(1) c1Rn1M,2k  
    plot(P,P1, P,P2, P,P3);  i)!2DXn  
    qr@ <'wp/  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~