切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9029阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Z?[;Japg  
    *%'4.He7V  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of  2 Ua_7  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of q^Lj)zmnK  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear h|dVVCsN  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 g8mVjM\B;  
    a9"x_IVU  
    %fid=fopen('e21.dat','w'); nTY`1w.;  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) HGB96,o f9  
    M1 =3000;              % Total number of space steps }_0?S0<#  
    J =100;                % Steps between output of space Ka2U@fK"  
    T =10;                  % length of time windows:T*T0 WW@/q`h  
    T0=0.1;                 % input pulse width X.xp'/d  
    MN1=0;                 % initial value for the space output location TF|GGY i  
    dt = T/N;                      % time step W+a>*#*  
    n = [-N/2:1:N/2-1]';           % Index 9+9}^B5@A  
    t = n.*dt;   I'BoP  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 BkA>':bUr  
    u20=u10.*0.0;                  % input to waveguide 2 ag14omM-  
    u1=u10; u2=u20;                 J7emoD [  
    U1 = u1;    }Q`Kg8L  
    U2 = u2;                       % Compute initial condition; save it in U LcE!e%3  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ;%]Q%7  
    w=2*pi*n./T; Pp:(PoH  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T XV)ej>A-V  
    L=4;                           % length of evoluation to compare with S. Trillo's paper sqei(OXy  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 @= 6}w_  
    for m1 = 1:1:M1                                    % Start space evolution R8Lp8!F'  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS )#T(2A  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; h -+vM9j  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform `BMg\2Ud*  
       ca2 = fftshift(fft(u2)); k  5xzC&  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation HvK<>9  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   c%Yvj  
       u2 = ifft(fftshift(c2));                        % Return to physical space mR[J Xh9s  
       u1 = ifft(fftshift(c1));  o9#  
    if rem(m1,J) == 0                                 % Save output every J steps. `HgT5}  
        U1 = [U1 u1];                                  % put solutions in U array eek5Xm  
        U2=[U2 u2]; % &4sHDP  
        MN1=[MN1 m1]; 8Y sn8  
        z1=dz*MN1';                                    % output location MT$OjH'Q`  
      end }a"T7y23  
    end (# eB %  
    hg=abs(U1').*abs(U1');                             % for data write to excel . CLiv  
    ha=[z1 hg];                                        % for data write to excel ,/m<=`*N|  
    t1=[0 t']; +~  :1H.  
    hh=[t1' ha'];                                      % for data write to excel file r=s ,Ath  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format hBLJKSv  
    figure(1) +0.$w  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn b3H~a2"d  
    figure(2) niFX8%<hP  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn IcoK22/  
    iwJBhu0@#  
    非线性超快脉冲耦合的数值方法的Matlab程序 E[Tz%x=P  
    _w Cp.[3?t  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   I(s\ Q[  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7sC$hm]  
    `w@fxv   
    6*S|$lo9B  
    x{Gb4=?l  
    %  This Matlab script file solves the nonlinear Schrodinger equations dU3UCD+2y  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of zW!3>(L/  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear z62e4U][  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +Ys<V  
    sn+i[  
    C=1;                           jLI(Z  
    M1=120,                       % integer for amplitude lHV bn7  
    M3=5000;                      % integer for length of coupler pTST\0?  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) {Lk~O)E  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 0 4x[@f`  
    T =40;                        % length of time:T*T0. *["9;_KD  
    dt = T/N;                     % time step .2C}8GGC'  
    n = [-N/2:1:N/2-1]';          % Index AJiEyAC!)5  
    t = n.*dt;   `]FA} wC  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. a"b9h{h@  
    w=2*pi*n./T; S3MMyS8  
    g1=-i*ww./2; "k)( ,  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; xA`Q4"[I  
    g3=-i*ww./2; =mn)].Wg  
    P1=0; 0X~   
    P2=0; !\}Dxt  
    P3=1; S s@\'K3e  
    P=0; I+!w9o2nZ  
    for m1=1:M1                 ^IjKT  
    p=0.032*m1;                %input amplitude o`+6E q0w  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 d?oupW}uu  
    s1=s10; mK%!9F V  
    s20=0.*s10;                %input in waveguide 2 hW~,Uqy  
    s30=0.*s10;                %input in waveguide 3 ]\v'1m"  
    s2=s20; 6ALf`:  
    s3=s30; `5r*4N<  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   )xiic3F  
    %energy in waveguide 1 0<>I\UN0b  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   WLP A51R  
    %energy in waveguide 2 aG%KiJ7KEN  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   |[>`3p"&  
    %energy in waveguide 3 6|V713\  
    for m3 = 1:1:M3                                    % Start space evolution z[M LMf[c  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS K,&)\r kzD  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; N0O8to}V  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; B0?E$8a  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform jF<Y,(C\  
       sca2 = fftshift(fft(s2)); 0F8y8s  
       sca3 = fftshift(fft(s3)); 8v8?D8\=|  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   54_CewL1P]  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); #|v\UJ:Pf/  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); |qH-^b.F  
       s3 = ifft(fftshift(sc3)); 0vbn!<:  
       s2 = ifft(fftshift(sc2));                       % Return to physical space azr|Fz/  
       s1 = ifft(fftshift(sc1)); lE78 Yl]  
    end }y(1mzb  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); SpdQ<]  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); &$lz@Z  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); !e?=I  
       P1=[P1 p1/p10]; gGxgU$`#c  
       P2=[P2 p2/p10]; ZF_*h`B  
       P3=[P3 p3/p10]; sTP`xaY  
       P=[P p*p]; w,SOvbAxX2  
    end ;2(8&.  
    figure(1) a9j f7r1  
    plot(P,P1, P,P2, P,P3); E y1mlW  
    M/x49qO#  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~