切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8167阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 h D/b O  
    Do|`wpR  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of YtrMJ"  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of :q4 Mnr  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ^ffh  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 LHWh-h(s  
    !lF|90=  
    %fid=fopen('e21.dat','w'); Om0S^4y]x  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) y*6r&989  
    M1 =3000;              % Total number of space steps dR_hPBn/@  
    J =100;                % Steps between output of space QE5 85s5  
    T =10;                  % length of time windows:T*T0 g5to0  
    T0=0.1;                 % input pulse width $sO}l  
    MN1=0;                 % initial value for the space output location 2Xgw7` !L  
    dt = T/N;                      % time step * #;rp~  
    n = [-N/2:1:N/2-1]';           % Index ^dP@QMly6  
    t = n.*dt;   z@ A5t4+3  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 )[)-.{q  
    u20=u10.*0.0;                  % input to waveguide 2 +Z[%+x92  
    u1=u10; u2=u20;                 /kVy#sT|  
    U1 = u1;   9ffRY,1@  
    U2 = u2;                       % Compute initial condition; save it in U <S0!$.Kg*<  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. -zz9k=q  
    w=2*pi*n./T; zT~ GBC-IX  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T i\rI j0+  
    L=4;                           % length of evoluation to compare with S. Trillo's paper M42D5|tZc  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 *(d^ k;  
    for m1 = 1:1:M1                                    % Start space evolution tO?*x/XC{  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS m= fmf(  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; S-yd-MtQp  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ld[]f*RuW  
       ca2 = fftshift(fft(u2)); $Y aL3n  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation =W !m`  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   A Sy7")5  
       u2 = ifft(fftshift(c2));                        % Return to physical space fC%;|V'Nd  
       u1 = ifft(fftshift(c1)); rf1nC$Sop  
    if rem(m1,J) == 0                                 % Save output every J steps. 4 '9h^C&  
        U1 = [U1 u1];                                  % put solutions in U array h2aJa@;S  
        U2=[U2 u2]; Zml9 ndzT  
        MN1=[MN1 m1]; x)vYc36H  
        z1=dz*MN1';                                    % output location JEBo!9  
      end G68N@g  
    end rmQGzQnun  
    hg=abs(U1').*abs(U1');                             % for data write to excel hY'"^?OP  
    ha=[z1 hg];                                        % for data write to excel 5'V'~Q%  
    t1=[0 t']; >o>'@)I?e6  
    hh=[t1' ha'];                                      % for data write to excel file ~w[zX4@  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format :@b>,{*4zS  
    figure(1) 9f,HjRP  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn F<-Pbtw  
    figure(2) 'Dk(jpYB  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn -R7f/a8  
    ~?b(2gn  
    非线性超快脉冲耦合的数值方法的Matlab程序 D|-]"(2i  
    u{p\8v%7  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   /e{Oqhf[n  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 R!pV`N  
    <O\z`aA'q  
    tg8VFH2q.z  
    XcfTE m  
    %  This Matlab script file solves the nonlinear Schrodinger equations "hlIGJ?_=  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ={L:q8v)  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 6lWO8j^BN  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 X?7$JV-:  
    ir,Zc\C  
    C=1;                           ,$;CII v  
    M1=120,                       % integer for amplitude cF vGpZ  
    M3=5000;                      % integer for length of coupler Vj?.'(  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) DD3J2J  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. {8B\-LUR  
    T =40;                        % length of time:T*T0. Zp__  
    dt = T/N;                     % time step ^jmnE.8R  
    n = [-N/2:1:N/2-1]';          % Index b0t];Gc%b  
    t = n.*dt;   < m9O0  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. IG9Q~7@  
    w=2*pi*n./T; 09%eaoW  
    g1=-i*ww./2; uqO51V~  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ZA9']u%EJ  
    g3=-i*ww./2; x(=kh%\;  
    P1=0; Bgs~1E@8V  
    P2=0; !w)Mm P Xb  
    P3=1; >$Fc=~;Ba  
    P=0; T:!sfhrZ~<  
    for m1=1:M1                 r 2   
    p=0.032*m1;                %input amplitude s)M2Z3>+  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 nO|S+S_9  
    s1=s10; g3Xz-  
    s20=0.*s10;                %input in waveguide 2 A|>C3S  
    s30=0.*s10;                %input in waveguide 3 *UyV@  
    s2=s20; ToMX7xz6  
    s3=s30; %*19S.=l  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ASYUKh,h  
    %energy in waveguide 1 Zi[)(agAT  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   H|TzD "2N  
    %energy in waveguide 2 3x=F  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ]nQ$:%HP  
    %energy in waveguide 3 x1}q!)e  
    for m3 = 1:1:M3                                    % Start space evolution cLYc""=  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Zgg7pL)#c  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; "pWdz}!  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; V.-?aXQ*  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform no/]Me!j=  
       sca2 = fftshift(fft(s2)); <#s-hQ  
       sca3 = fftshift(fft(s3)); i L m1l  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   "FXS;Jf  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 0}^-, Q,  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Fhsmpe~  
       s3 = ifft(fftshift(sc3)); b?bYPN+  
       s2 = ifft(fftshift(sc2));                       % Return to physical space gP`!MlY@  
       s1 = ifft(fftshift(sc1)); Ffxk] o&%c  
    end ,m"ztu-  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); f C^l9CRY  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); FSQ&J|O  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); v|/3Mi9mz  
       P1=[P1 p1/p10]; o6y,M!p@  
       P2=[P2 p2/p10]; &=?`;K  
       P3=[P3 p3/p10]; 7 IHD?pnZ  
       P=[P p*p]; _kx  
    end w7Pe< vT  
    figure(1) Qr<%rU^{.  
    plot(P,P1, P,P2, P,P3); /-hF<oNQ  
     vV[dJ%  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~