切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9085阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 3 rV)JA  
    )mS Aog<  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of SVo:%mX  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of _|`S9Nms  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;5?$q  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Ak^g#^c*  
    H9F\<5n]-l  
    %fid=fopen('e21.dat','w'); 5_9mA4gs@  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) L slI!.(  
    M1 =3000;              % Total number of space steps Wyd,7]'z)Z  
    J =100;                % Steps between output of space FY@ErA7~  
    T =10;                  % length of time windows:T*T0 3a_~18W  
    T0=0.1;                 % input pulse width { owK~  
    MN1=0;                 % initial value for the space output location O'*KNJX  
    dt = T/N;                      % time step = a$7OV.  
    n = [-N/2:1:N/2-1]';           % Index ssUWr=mD  
    t = n.*dt;   3{O^q/R  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 ZkSlztL)Tr  
    u20=u10.*0.0;                  % input to waveguide 2 IZoS2^:yw  
    u1=u10; u2=u20;                 HM /2/ /  
    U1 = u1;   mfc\w'  
    U2 = u2;                       % Compute initial condition; save it in U bk44 qL;8  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. [< Bk% B5  
    w=2*pi*n./T; Y/?V%X  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T UOC>H%r~M?  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ^"STM'Zh  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 uS`XWn<CSD  
    for m1 = 1:1:M1                                    % Start space evolution 7VduewKX8  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS aEM2xrhy,  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 4}E|CD/pZ  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform .zZee,kM  
       ca2 = fftshift(fft(u2)); $aDAD4mmm  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation )!z<q}i5  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   V{+'(<SV  
       u2 = ifft(fftshift(c2));                        % Return to physical space V(3^ev/  
       u1 = ifft(fftshift(c1)); T)? : q  
    if rem(m1,J) == 0                                 % Save output every J steps. MH7 n@.t  
        U1 = [U1 u1];                                  % put solutions in U array ""q76cx  
        U2=[U2 u2]; =bgzl=A`  
        MN1=[MN1 m1]; I7,5ID4pn  
        z1=dz*MN1';                                    % output location ammlUWl  
      end %/iD@2r  
    end f9ux+XQk9  
    hg=abs(U1').*abs(U1');                             % for data write to excel iq*]CF  
    ha=[z1 hg];                                        % for data write to excel WR,MqM20  
    t1=[0 t']; |C"(K-do  
    hh=[t1' ha'];                                      % for data write to excel file (d mLEt  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format &y_Ya%Z3*e  
    figure(1) "sh*,K5x|  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn `Y]t*` e|  
    figure(2) [}:;B$,  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn VZF;  
    )}w2'(!X8  
    非线性超快脉冲耦合的数值方法的Matlab程序 ?TTtGbvU  
    t$~CLq5ad  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   W'lejOiw  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %n?&#_G|  
    %x{jmZ$}  
    ,Y9bXC8+dU  
    ISa}Km>Q  
    %  This Matlab script file solves the nonlinear Schrodinger equations v *icoj  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of m-?hHd O  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear gOb"-;Zw  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 5?l8;xe`{f  
    %[S-"k  
    C=1;                           &FrUj>i  
    M1=120,                       % integer for amplitude |Yb]@9 >vn  
    M3=5000;                      % integer for length of coupler oD<aWZ"Z  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) YOOcHo.F  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. cvOCBg38BH  
    T =40;                        % length of time:T*T0. Aq 5CF`e{  
    dt = T/N;                     % time step _\&v A5-  
    n = [-N/2:1:N/2-1]';          % Index 2nra@  
    t = n.*dt;   wCQ.?*7-9Q  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1.  GY`mF1b  
    w=2*pi*n./T; xQUskjv/  
    g1=-i*ww./2; 2P, %}Ms  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; ]?S@g'Jd0Q  
    g3=-i*ww./2; O}s Mqh  
    P1=0; Dc@OrQu  
    P2=0; >:J7u*>$'  
    P3=1; S$N!Dj@e;  
    P=0; !(gMr1}w  
    for m1=1:M1                 '8w}m8{y  
    p=0.032*m1;                %input amplitude Uv)B  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 mP*Ct6628n  
    s1=s10; 1u8 k}  
    s20=0.*s10;                %input in waveguide 2 $ U=j<^R}a  
    s30=0.*s10;                %input in waveguide 3 "f~*4g  
    s2=s20; ;SgPF:T>Q  
    s3=s30; *q&^tn b  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Talmc|h  
    %energy in waveguide 1 >\?RYy,s$  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));    L}=DC =E  
    %energy in waveguide 2 @#r6->%W  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   S:lie*Aux*  
    %energy in waveguide 3 sEymwpm9  
    for m3 = 1:1:M3                                    % Start space evolution 6%^A6U  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS <EKTFHJ!  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 1SF8D`3  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; p!o-+@ava  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform z[Ah9tM%  
       sca2 = fftshift(fft(s2)); A('o &H  
       sca3 = fftshift(fft(s3)); 70<{tjyc  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   #HDP ha  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); w2H^q3*  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 9^+E$V1@  
       s3 = ifft(fftshift(sc3)); ;#bDz}|\AN  
       s2 = ifft(fftshift(sc2));                       % Return to physical space XEBeoOX/  
       s1 = ifft(fftshift(sc1)); G\z5Ue*  
    end dOT7;@   
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); 4 _P6P  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); <KX fh  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); Skg}/Ek  
       P1=[P1 p1/p10]; :al ,zxs  
       P2=[P2 p2/p10]; ;e{e ?,[  
       P3=[P3 p3/p10]; &gF9VY  
       P=[P p*p]; MWv(/_b  
    end Q{|_"sfJ  
    figure(1) p`2Q6  
    plot(P,P1, P,P2, P,P3); L1#_  
    704_ehrlE  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~