计算脉冲在非线性耦合器中演化的Matlab 程序 'a"Uw"/p[ _AH_<Z( % This Matlab script file solves the coupled nonlinear Schrodinger equations of
M*aYcIU(( % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
SZvC4lOn# % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
kkXe= f% % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
m",G;VN tMyMA}` %fid=fopen('e21.dat','w');
(t,mtdD#1 N = 128; % Number of Fourier modes (Time domain sampling points)
XY<KLO% M1 =3000; % Total number of space steps
8tzL.P^ J =100; % Steps between output of space
]hZk#rp} T =10; % length of time windows:T*T0
}Ggn2 X T0=0.1; % input pulse width
Is9.A_0h MN1=0; % initial value for the space output location
@2TfW]6 dt = T/N; % time step
(R(NEN n = [-N/2:1:N/2-1]'; % Index
)M@^Z(W/a t = n.*dt;
^1Bk*?Yx\x u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
gBZNO! a,d u20=u10.*0.0; % input to waveguide 2
%1)J Rc u1=u10; u2=u20;
?',Wn3A U1 = u1;
4G RHvA. U2 = u2; % Compute initial condition; save it in U
Ii>#9>!F ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
}6*JX\'q w=2*pi*n./T;
P=X)Ktmv g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
m<!CF3g L=4; % length of evoluation to compare with S. Trillo's paper
EF;B)y= dz=L/M1; % space step, make sure nonlinear<0.05
Wj, {lJ, for m1 = 1:1:M1 % Start space evolution
#;UoZJ B u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
FA;B:O@:' u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
}TDq7-(g ca1 = fftshift(fft(u1)); % Take Fourier transform
4v2JrC; ca2 = fftshift(fft(u2));
TJuS)AZ
C c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
S5~(3I
)v c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
C}\kp0mz u2 = ifft(fftshift(c2)); % Return to physical space
JC}T*h>Ee u1 = ifft(fftshift(c1));
%h
v-3L#V if rem(m1,J) == 0 % Save output every J steps.
[5Zi\'~UH) U1 = [U1 u1]; % put solutions in U array
kqGydGh*" U2=[U2 u2];
0\+$j5; MN1=[MN1 m1];
A@reIt z1=dz*MN1'; % output location
_,w*Rv5= end
ozA%u,\7k end
=.,XJIw& hg=abs(U1').*abs(U1'); % for data write to excel
}{v0}-~@ ha=[z1 hg]; % for data write to excel
Z 2lX^z t1=[0 t'];
^b*ub(5Ot hh=[t1' ha']; % for data write to excel file
nyOvB#f %dlmwrite('aa',hh,'\t'); % save data in the excel format
N8X)/W figure(1)
4ZB]n,pfT waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
Kc+9n%sp figure(2)
8an_s%,AW waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
{(h!JeQ {7K l#b 非线性超快脉冲耦合的数值方法的Matlab程序 Htep3Ol3 lLEEre 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
='(;!3ZH Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
Z*'_/Grv? \*c=bz&l Z-aB[hE d%oHcn % This Matlab script file solves the nonlinear Schrodinger equations
u2*."W\ % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
1119Y eL % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
K:Z|# i- % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
OO;I^`Yn >jc17BJq C=1;
O\ w-hk M1=120, % integer for amplitude
d/E0opv M3=5000; % integer for length of coupler
xP 3>8Y N = 512; % Number of Fourier modes (Time domain sampling points)
q4Y'yp`?K; dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
l
Ng)k1 T =40; % length of time:T*T0.
t_qX7P8+' dt = T/N; % time step
7QaZ|\c n = [-N/2:1:N/2-1]'; % Index
]Yf8 t = n.*dt;
w^S]HzMd ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
b+$-f:mj w=2*pi*n./T;
s$/Z+"f( g1=-i*ww./2;
i^eDM.#X g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
0:eK}tC g3=-i*ww./2;
Hlj3z3 P1=0;
RG-,<G` P2=0;
C(}Kfi@6N P3=1;
oSP^
.BJ$ P=0;
Qq\hD@Z| for m1=1:M1
Rz33_ qA p=0.032*m1; %input amplitude
~bfjP2
g s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
kqLpt s1=s10;
9A}nZ1Y s20=0.*s10; %input in waveguide 2
5~"m$/yE s30=0.*s10; %input in waveguide 3
dVBr-+ s2=s20;
G)%r|meKGB s3=s30;
$oZV 54 p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
i.+#a2 %energy in waveguide 1
x%RE3J- p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
Ft8ii|- %energy in waveguide 2
>
Cx;h= p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
h'A
#Yp0, %energy in waveguide 3
wodff_l for m3 = 1:1:M3 % Start space evolution
MUp{2_RA s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
Gdlx0i s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
6)9X+U@ s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
Y IVN;:B. sca1 = fftshift(fft(s1)); % Take Fourier transform
wQX%*GbL2 sca2 = fftshift(fft(s2));
*w1R> sca3 = fftshift(fft(s3));
s?&UFyYb, sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
)eBCO~HS sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
)(`,!s,8) sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
!(qaudX{>k s3 = ifft(fftshift(sc3));
=UFmN" s2 = ifft(fftshift(sc2)); % Return to physical space
/x&52~X5- s1 = ifft(fftshift(sc1));
R?l={N=Wf end
0EUC8Ni p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
yzz(<s:o/ p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
s=)1:jYk p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
@.KFWAm
P1=[P1 p1/p10];
2tdr1+U?g P2=[P2 p2/p10];
X6o
iOs P3=[P3 p3/p10];
T28Q(\C:} P=[P p*p];
](^BQc end
.4,l0Nn`W figure(1)
gOn^}%4.I plot(P,P1, P,P2, P,P3);
~`VD}{[,B B6]M\4v 转自:
http://blog.163.com/opto_wang/