计算脉冲在非线性耦合器中演化的Matlab 程序 {j%'EJ5
;eYm+e^?.
% This Matlab script file solves the coupled nonlinear Schrodinger equations of aw
z(W>
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of i
v7^!
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear qV^Z@N+,
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 &S/@i|_
+Tnn'^4
%fid=fopen('e21.dat','w'); `Pa z
N = 128; % Number of Fourier modes (Time domain sampling points) GAK!qLy9
M1 =3000; % Total number of space steps sTx23RJ9
J =100; % Steps between output of space R"NR-iU
T =10; % length of time windows:T*T0 kWVaHZr
T0=0.1; % input pulse width .!yXto:
MN1=0; % initial value for the space output location K.k%Tg[ ~
dt = T/N; % time step Bf37/kkf(
n = [-N/2:1:N/2-1]'; % Index $j?zEz
t = n.*dt; SJ(<u2J]
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 +AGI)uQQ
u20=u10.*0.0; % input to waveguide 2 N#(p_7M
u1=u10; u2=u20; V/C":!;
U1 = u1; )erI3?k
U2 = u2; % Compute initial condition; save it in U b 4o`eR
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. M`6rI
w=2*pi*n./T; B(+J?0Dj
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T .wj?}Fr?97
L=4; % length of evoluation to compare with S. Trillo's paper ^Ec);Z
dz=L/M1; % space step, make sure nonlinear<0.05 6M({T2e
for m1 = 1:1:M1 % Start space evolution 0s>ozAJ
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS D?yiK=:08`
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; UVND1XV^f
ca1 = fftshift(fft(u1)); % Take Fourier transform =ELl86=CG
ca2 = fftshift(fft(u2)); -:mT8'.F-
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation WvV!F?uqZ
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift 8UY[$lc
u2 = ifft(fftshift(c2)); % Return to physical space Aj9<4N
u1 = ifft(fftshift(c1)); AUZ^XiK
if rem(m1,J) == 0 % Save output every J steps. vumA W*
U1 = [U1 u1]; % put solutions in U array $9LI v
U2=[U2 u2]; 3[*E>:)qh
MN1=[MN1 m1]; ;onhc*{lv
z1=dz*MN1'; % output location qX,TX
3
end AmSrc.
end X8l|^[2F
hg=abs(U1').*abs(U1'); % for data write to excel Qq,w6ekr
ha=[z1 hg]; % for data write to excel $CT2E
t1=[0 t']; oT=XCa5
hh=[t1' ha']; % for data write to excel file ){~]-VK
%dlmwrite('aa',hh,'\t'); % save data in the excel format U]!~C 1cmw
figure(1) Q]n a_'_
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn B!>hHQ2
figure(2) {,kA'Px)
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn M$@Donx
t@hE}R
非线性超快脉冲耦合的数值方法的Matlab程序 >M `ryM2=D
NT3Ti
?J,
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 ?<