切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9308阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 sAkr-x?+M  
    [C "\]LiX  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of UPh#YV 0/,  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of D4=*yP  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear p>B2bv+L  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 VPUVPq~&  
    3"y 6|e/5  
    %fid=fopen('e21.dat','w'); bHwEd%f  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) i5 rkP`)j  
    M1 =3000;              % Total number of space steps \/NF??k,jk  
    J =100;                % Steps between output of space T D _@0Rd  
    T =10;                  % length of time windows:T*T0 Q7s@,c!m_  
    T0=0.1;                 % input pulse width  js_`L#t  
    MN1=0;                 % initial value for the space output location [oLV,O|s|j  
    dt = T/N;                      % time step Gnkar[oa&  
    n = [-N/2:1:N/2-1]';           % Index Kw -SOFE  
    t = n.*dt;   5>x_G#W  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 k +-w%  
    u20=u10.*0.0;                  % input to waveguide 2 `geHSx_  
    u1=u10; u2=u20;                 }E 'r?N  
    U1 = u1;   ~G!JqdKJ0  
    U2 = u2;                       % Compute initial condition; save it in U |YJ83nSO~  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. I~GF%$-G  
    w=2*pi*n./T; ZwmucY%3  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T <S@jf4  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Wc3z7xK1@  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ;5Sdx5`_  
    for m1 = 1:1:M1                                    % Start space evolution ?{ir$M  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ( ay AP  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; jJ ,_-ui  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform f O*jCl  
       ca2 = fftshift(fft(u2)); QZ a.c  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 8|a./%gixs  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   (`tRJWbdz  
       u2 = ifft(fftshift(c2));                        % Return to physical space OK [J h  
       u1 = ifft(fftshift(c1)); cw Obq\  
    if rem(m1,J) == 0                                 % Save output every J steps. 2{OR#v~  
        U1 = [U1 u1];                                  % put solutions in U array % Y^J''  
        U2=[U2 u2]; [{x}# oRSE  
        MN1=[MN1 m1]; AYts &+  
        z1=dz*MN1';                                    % output location t^rw@$"}  
      end Zj`WRH4  
    end rpR${%jc  
    hg=abs(U1').*abs(U1');                             % for data write to excel n>M`wF>  
    ha=[z1 hg];                                        % for data write to excel &gXh:.  
    t1=[0 t']; %q{q.(M#  
    hh=[t1' ha'];                                      % for data write to excel file }r,\0Wm  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 1\.$=N  
    figure(1) G=zWhqieh  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Z~5) )5Ye;  
    figure(2) hx;f/E Px  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn *IG$"nu  
    ?e7]U*jEU  
    非线性超快脉冲耦合的数值方法的Matlab程序 ^t;z;.g  
    r~4uIUE{  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   J$dwy$n  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 P15 H[<:Fz  
    d$dy6{/YD  
    j)A#}4jd  
    ep0,4!#FAO  
    %  This Matlab script file solves the nonlinear Schrodinger equations :GHv3hn5  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Fnw:alWr  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear K5""%O+  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7>vm?a^D2&  
    8%?y)K^ D  
    C=1;                           {@Mr7*u  
    M1=120,                       % integer for amplitude [Kg b#L'{  
    M3=5000;                      % integer for length of coupler uV/5f#)  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) &p0e)o~Ux  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. UO/sv2CN  
    T =40;                        % length of time:T*T0. VtreOJ+  
    dt = T/N;                     % time step je4l3Hl  
    n = [-N/2:1:N/2-1]';          % Index .g*j]!_]  
    t = n.*dt;   PnlI {d  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Gr"CHz/  
    w=2*pi*n./T; D #ddx  
    g1=-i*ww./2; \ mqx '  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; N.F5)04  
    g3=-i*ww./2; }pc9uvmIJ  
    P1=0; P]E-Wp'p  
    P2=0; W U(_N*a  
    P3=1; |{jT+  
    P=0; *GP2>oEM  
    for m1=1:M1                 Y.tx$%  
    p=0.032*m1;                %input amplitude s\ IKSoE  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 nla6QlFYn*  
    s1=s10; e~'` x38  
    s20=0.*s10;                %input in waveguide 2 my=f}%k=  
    s30=0.*s10;                %input in waveguide 3 R%E7 |NAG  
    s2=s20; e|~MJu+1  
    s3=s30; +n3I\7G>  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   D:)Wr, 26  
    %energy in waveguide 1 Bf_$BCyGW  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   eRauyL"Q+  
    %energy in waveguide 2 r-2k<#^r  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   d|`Ll  
    %energy in waveguide 3 zmMc*|  
    for m3 = 1:1:M3                                    % Start space evolution V7ph^^sC}  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Uv^\[   
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; )8Va%{j  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; NE995;  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform <N<Q9}`V  
       sca2 = fftshift(fft(s2)); }\pI`;*O|  
       sca3 = fftshift(fft(s3)); jvT'N@  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ;"3B,Yj  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 3Ob.OwA  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); sdu?#O+c1  
       s3 = ifft(fftshift(sc3)); Fsx?(?tCMo  
       s2 = ifft(fftshift(sc2));                       % Return to physical space u8e_Lqx?  
       s1 = ifft(fftshift(sc1)); BFLef3~.0  
    end 'J|2c;M\x  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); IThd\#=  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ?RRO  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); :Pud%}'  
       P1=[P1 p1/p10]; n ]ikc|  
       P2=[P2 p2/p10]; V"FQVtTx7  
       P3=[P3 p3/p10]; V+d_1] l  
       P=[P p*p]; xO$P C,  
    end >r.]a`  
    figure(1) 0.aXg"  
    plot(P,P1, P,P2, P,P3); 'CLZ7 pV  
    ?ukw6T  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~