切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9036阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 &s}sA+w  
    Zos.WS#  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of -zJ V(`  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of *q,nALs  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear m;rr7{7X  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 edcz%IOM(  
    L>g6 9D !  
    %fid=fopen('e21.dat','w'); )CE]s)6+2  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 5bXpj86mY  
    M1 =3000;              % Total number of space steps LH+Bu%s  
    J =100;                % Steps between output of space >?ar  
    T =10;                  % length of time windows:T*T0 L >"O[@  
    T0=0.1;                 % input pulse width ??P\v0E  
    MN1=0;                 % initial value for the space output location :*[mvF  
    dt = T/N;                      % time step 5Uy *^C7M^  
    n = [-N/2:1:N/2-1]';           % Index .{?; #Cdn  
    t = n.*dt;   "x$L 2>9  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Qx|HvT2P  
    u20=u10.*0.0;                  % input to waveguide 2 5%QYe]D  
    u1=u10; u2=u20;                 !T:7xEr  
    U1 = u1;   =?+w5oI0  
    U2 = u2;                       % Compute initial condition; save it in U qLxcr/fK  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. m*jE\+)=^  
    w=2*pi*n./T; B=^M& {  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T *>zOWocxD  
    L=4;                           % length of evoluation to compare with S. Trillo's paper K8-1?-W  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 eNi#% ?=WB  
    for m1 = 1:1:M1                                    % Start space evolution G,P k3>I'  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS &FOq c  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; Lk$Mfm5"M  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform mC\<fo-u  
       ca2 = fftshift(fft(u2)); gp 11/ .  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ;@gI*i N"  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   bJ"2|VNH(  
       u2 = ifft(fftshift(c2));                        % Return to physical space MNTVG&h  
       u1 = ifft(fftshift(c1)); NRP) 'E  
    if rem(m1,J) == 0                                 % Save output every J steps. "%dENK  
        U1 = [U1 u1];                                  % put solutions in U array L7GNcV]c  
        U2=[U2 u2]; }2*qv4},!  
        MN1=[MN1 m1]; "5FP$oR  
        z1=dz*MN1';                                    % output location ^qBm%R(  
      end |?^N@  
    end .=G3wox3  
    hg=abs(U1').*abs(U1');                             % for data write to excel Z[Iej:o5  
    ha=[z1 hg];                                        % for data write to excel aL;zN%Tw  
    t1=[0 t']; Ge?DD,a c  
    hh=[t1' ha'];                                      % for data write to excel file 9fTl6?x  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 4, Vx3QFZ  
    figure(1) edpRx"_  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn =^*EM<WG)  
    figure(2) H=WB6~8)  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn iK1{SgXrFI  
    47*2QL^zj  
    非线性超快脉冲耦合的数值方法的Matlab程序 B>d49(jy  
    5S&Qj7kr  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ouoIbA9X  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 fwzyCbks  
    [9~EH8  
    7TypzgXNe  
    7J$rA.tu  
    %  This Matlab script file solves the nonlinear Schrodinger equations d_Zj W  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ' Gx\  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear P@5-3]m=  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Y Kp@ n8A  
    G\k&s F  
    C=1;                           3^q9ll7Op  
    M1=120,                       % integer for amplitude .),9a,  
    M3=5000;                      % integer for length of coupler 'h~IbP  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) eW3?3l`fvt  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. \7xc*v [  
    T =40;                        % length of time:T*T0. (~F}O  
    dt = T/N;                     % time step J?Q@f  
    n = [-N/2:1:N/2-1]';          % Index sH1 ucZ>9Y  
    t = n.*dt;   3&c'3y:b  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. eDNY|}$}v  
    w=2*pi*n./T; \ E5kpm  
    g1=-i*ww./2; {LqYb:/C5U  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 4 PU@W o  
    g3=-i*ww./2; &n83>Q  
    P1=0; !&@t  
    P2=0; " ~6&rt  
    P3=1; ix?Z:pIS0  
    P=0; &lzCRRnvt  
    for m1=1:M1                 ?aTC+\=  
    p=0.032*m1;                %input amplitude VRY@}>W'  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ab)ckRC  
    s1=s10; Qch'C0u  
    s20=0.*s10;                %input in waveguide 2 6 9uDc  
    s30=0.*s10;                %input in waveguide 3 #Ak9f-pf  
    s2=s20; |r+hj<K  
    s3=s30; PT&qys 2k  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   XJS^{=/  
    %energy in waveguide 1 juM~X5b  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Sv>CVp*  
    %energy in waveguide 2 !@ AnwV]  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   t0:~BYXu  
    %energy in waveguide 3 =ty{ugM<  
    for m3 = 1:1:M3                                    % Start space evolution ,~l4-x.,  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS bsI?=lO  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; -I#<?=0B  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; wn<k "6x  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform %,Y^Tp  
       sca2 = fftshift(fft(s2)); S|yDGT1  
       sca3 = fftshift(fft(s3)); W7~OU(}[`  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   }ri7@HCY4  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); NcSi%]  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 6Ol)SQE,  
       s3 = ifft(fftshift(sc3)); %5Elj<eHZ  
       s2 = ifft(fftshift(sc2));                       % Return to physical space $Nj'_G\}  
       s1 = ifft(fftshift(sc1)); oVfRp.a  
    end t`V U<  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); $"Ci{iE  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); |*]<*qnZt  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); HGj[\kU~  
       P1=[P1 p1/p10]; poi39B/Vt  
       P2=[P2 p2/p10]; kCoEdQ_  
       P3=[P3 p3/p10]; \[B#dw#  
       P=[P p*p]; BBl9<ne$  
    end akgvV~5  
    figure(1) SvQj'5~<  
    plot(P,P1, P,P2, P,P3); H3ob 8+J  
    ET6}V"UD  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~