计算脉冲在非线性耦合器中演化的Matlab 程序 `62iW3y !-OPzfHrI % This Matlab script file solves the coupled nonlinear Schrodinger equations of
j1sZRl)D % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
LKx<hl$O % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
b-Q%cxJ % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
FkS$x'~2$ hh$V[/iK %fid=fopen('e21.dat','w');
F6vN{FI N = 128; % Number of Fourier modes (Time domain sampling points)
$!Pm*s M1 =3000; % Total number of space steps
L]_1z J =100; % Steps between output of space
T`?{Is['( T =10; % length of time windows:T*T0
|;[%ZE" T0=0.1; % input pulse width
=D@+_7\? MN1=0; % initial value for the space output location
XLeQxp= dt = T/N; % time step
s>VpbJ3S n = [-N/2:1:N/2-1]'; % Index
n!Dy-)!`O t = n.*dt;
a#_=c>h; u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
ap7ZT7KW u20=u10.*0.0; % input to waveguide 2
~53uUT|B u1=u10; u2=u20;
SBNeN] U1 = u1;
D ^Cpgha U2 = u2; % Compute initial condition; save it in U
2L!wbeTb; ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
[
BpZ{Ql w=2*pi*n./T;
Xc!0'P0T g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
aJmSagr69C L=4; % length of evoluation to compare with S. Trillo's paper
$XOs(>~"r dz=L/M1; % space step, make sure nonlinear<0.05
!i`HjV0wS for m1 = 1:1:M1 % Start space evolution
\*(A1Vk u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
1_aUU,|. u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
$}* bZ~ ca1 = fftshift(fft(u1)); % Take Fourier transform
?)#qBE ] ca2 = fftshift(fft(u2));
!pwY@}oL c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
=gYKAr^p5 c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
C(Bh<c0@ u2 = ifft(fftshift(c2)); % Return to physical space
7
B< u1 = ifft(fftshift(c1));
}K8W%h<3S if rem(m1,J) == 0 % Save output every J steps.
i 1{Lx) U1 = [U1 u1]; % put solutions in U array
&:3uK` U2=[U2 u2];
)e1&[0 MN1=[MN1 m1];
]V4Fm{] z1=dz*MN1'; % output location
$0f( G c| end
|lnMT)^D end
[nx
OGa2 hg=abs(U1').*abs(U1'); % for data write to excel
"Q>gQKgL ha=[z1 hg]; % for data write to excel
)Td;2 t1=[0 t'];
&m8#^]* hh=[t1' ha']; % for data write to excel file
PqhR^re0. %dlmwrite('aa',hh,'\t'); % save data in the excel format
YoT<]' figure(1)
)$.::[pNA waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
6w )mo)<X figure(2)
^E)*i#."4 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
^ |xSU_wa 19r4J(pV
非线性超快脉冲耦合的数值方法的Matlab程序 5\?\|* WT u@ "nVHgMJ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
&"h 9Awn2 Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
^~iFG+g5 \Y4>_Mk 3\ !DsPgW n[mVwQ(% % This Matlab script file solves the nonlinear Schrodinger equations
`[&) X % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
]WO0v`xh % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
}u>F}mUa % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
P Tc@MH) nz?jNdyz C=1;
YM:;mX5B M1=120, % integer for amplitude
gq'}LcV M3=5000; % integer for length of coupler
*i=+["A N = 512; % Number of Fourier modes (Time domain sampling points)
U)PNY dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
S~ff<A>f T =40; % length of time:T*T0.
&$,%6X" dt = T/N; % time step
?bq S{KF n = [-N/2:1:N/2-1]'; % Index
!bPsJbIo> t = n.*dt;
{#Lj,o ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
\h#,qTE w=2*pi*n./T;
/F(wb_! g1=-i*ww./2;
#TXN\YNP g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
1&Fty'p g3=-i*ww./2;
n{b(~eL? P1=0;
5
aT>8@$Z^ P2=0;
{DI`HB[ P3=1;
"<e<0:: P=0;
Ez= Q{g for m1=1:M1
JB_<Haj p=0.032*m1; %input amplitude
/^F_~.u{ s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
T~238C{vh s1=s10;
"M GX(SQ s20=0.*s10; %input in waveguide 2
)t$<FP s30=0.*s10; %input in waveguide 3
:3uCW1 s2=s20;
n O^m s3=s30;
w;=fi}<G|e p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
iq25|{1$ %energy in waveguide 1
8Moe8X#3 p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
h6yXW!8 %energy in waveguide 2
l[MP|m# p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
#dvH0LX? %energy in waveguide 3
7lC ); for m3 = 1:1:M3 % Start space evolution
/uh?F s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
L7gZ4Hu=` s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
!zu YO3: s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
015
;'V#we sca1 = fftshift(fft(s1)); % Take Fourier transform
)@IDmz> sca2 = fftshift(fft(s2));
xbN)z sca3 = fftshift(fft(s3));
sULCYiT|Hn sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
4;rt|X77 sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
FnoE\2}9 sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
sQ)D.9\~ s3 = ifft(fftshift(sc3));
i42M.M6D $ s2 = ifft(fftshift(sc2)); % Return to physical space
J'Z!`R| s1 = ifft(fftshift(sc1));
jGeil
qPC end
z]^u@]@NC p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
g!#M0 p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
CQ4MQ<BJ. p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
(}1:]D{)@V P1=[P1 p1/p10];
]uikE2nn P2=[P2 p2/p10];
}!&Vc f P3=[P3 p3/p10];
\$g,Hgp/< P=[P p*p];
PNSV?RT*pG end
q&:UP figure(1)
z'W8t|m}Pb plot(P,P1, P,P2, P,P3);
q_hkI] csEF^T- 转自:
http://blog.163.com/opto_wang/