计算脉冲在非线性耦合器中演化的Matlab 程序 W#bOx0 NI^jQS
M] % This Matlab script file solves the coupled nonlinear Schrodinger equations of
WJ&a9]&C % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
7Eo;TNbb % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
1$S`>M%a % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
/cX%XZg ])9|j %fid=fopen('e21.dat','w');
Qn!KL0w N = 128; % Number of Fourier modes (Time domain sampling points)
lc(}[Z/|V M1 =3000; % Total number of space steps
WNK)IC~c J =100; % Steps between output of space
haSC[[o= T =10; % length of time windows:T*T0
G_E \p%L>] T0=0.1; % input pulse width
ra|Ku! MN1=0; % initial value for the space output location
BCI[jfd 7 dt = T/N; % time step
4XNdsb n = [-N/2:1:N/2-1]'; % Index
Fzk%eHG= t = n.*dt;
e6i m_ Tk u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
Vpe\Okt: u20=u10.*0.0; % input to waveguide 2
ws([bS2h u1=u10; u2=u20;
m85Hx1!p. U1 = u1;
08qM?{zo^ U2 = u2; % Compute initial condition; save it in U
kKs}E| T ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
oIv\Xdc8 1 w=2*pi*n./T;
<i ";5+ g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
#/
HQ?3h] L=4; % length of evoluation to compare with S. Trillo's paper
j2`%sBo dz=L/M1; % space step, make sure nonlinear<0.05
Fql|0Fq for m1 = 1:1:M1 % Start space evolution
S7h?tR*u u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
uwc@~=; u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
fA"9eUu ca1 = fftshift(fft(u1)); % Take Fourier transform
&Vy.)0 ca2 = fftshift(fft(u2));
.H}#,pQ}l c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
.YlhK=d4 c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
XR+ u2 = ifft(fftshift(c2)); % Return to physical space
@ruWnwb u1 = ifft(fftshift(c1));
7srq~;j3 if rem(m1,J) == 0 % Save output every J steps.
>zV U1 = [U1 u1]; % put solutions in U array
+GL[uxe" U2=[U2 u2];
1'!%$D MN1=[MN1 m1];
^D?{[LBc z1=dz*MN1'; % output location
D zdKBJT + end
` 1vDp. end
7{Zs"d{s hg=abs(U1').*abs(U1'); % for data write to excel
Vs9]Gm ha=[z1 hg]; % for data write to excel
EQVa8xt/C t1=[0 t'];
&W{<Yf9 hh=[t1' ha']; % for data write to excel file
Zq{TY)PI] %dlmwrite('aa',hh,'\t'); % save data in the excel format
4Cp)!Bq?/ figure(1)
4O7
{a waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
5 89P$2e1X figure(2)
3XIL; 5 waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
C#@-uo2 ^[.Z~>3!\q 非线性超快脉冲耦合的数值方法的Matlab程序 '3iJ q9 |F49<7XB[~ 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
[8'^" Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
4l@aga yJ*g ; &HtG&RvQf FyqsFTh_ % This Matlab script file solves the nonlinear Schrodinger equations
V?- ]ZkI % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
SedVp cb+ % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
ot,=.%O % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
Rnw v/) E&;;2 C=1;
g(l:>=g]? M1=120, % integer for amplitude
S\sy] 1*?$ M3=5000; % integer for length of coupler
a,eEP43dn N = 512; % Number of Fourier modes (Time domain sampling points)
vT#m 8Kg dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
?nwg.&P T =40; % length of time:T*T0.
->'xjD dt = T/N; % time step
J@qwz[d i n = [-N/2:1:N/2-1]'; % Index
{'6-;2&f t = n.*dt;
+&[X7r< ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
$pajE^d4V w=2*pi*n./T;
p7Z/%~0v: g1=-i*ww./2;
CcZM0 g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
+8.1cDEH\ g3=-i*ww./2;
Pv\-D<&@m P1=0;
NdB:2P P2=0;
#]J"j]L P3=1;
:'sMrf_EA P=0;
^qNZ!V4T for m1=1:M1
y'_2|5!Qs p=0.032*m1; %input amplitude
.$ xTX' s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
[Uw3.CVh s1=s10;
.xe+cK s20=0.*s10; %input in waveguide 2
YJ>P+e\o9 s30=0.*s10; %input in waveguide 3
vk<4P;A(G s2=s20;
#zg"E< s3=s30;
S$qpClXS, p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
.q'{3 %energy in waveguide 1
SHQgI<D7 p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
:Fi$-g %energy in waveguide 2
_ .xicov p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
%JuT'7VB %energy in waveguide 3
[fg-"-+:M for m3 = 1:1:M3 % Start space evolution
vP^V3 s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
=QhK|C!$A s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
Qb@i_SX(fs s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
V eLGxc sca1 = fftshift(fft(s1)); % Take Fourier transform
`%$+rbo~ sca2 = fftshift(fft(s2));
1SG^X-(GM/ sca3 = fftshift(fft(s3));
hs<OzM
sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
m{by% sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
"]B%V!@ sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
j#
n s3 = ifft(fftshift(sc3));
ft?c&h;At s2 = ifft(fftshift(sc2)); % Return to physical space
0A F}wz> s1 = ifft(fftshift(sc1));
c"pu"t@/Z end
ddw^oU p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
g5t`YcL p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
}r|$\ms p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
|b+CXEzo P1=[P1 p1/p10];
Y``]66\Fp P2=[P2 p2/p10];
N^zFKDJG P3=[P3 p3/p10];
4E@_Fn_# P=[P p*p];
MGsY3~!K end
|D1TSv}rZD figure(1)
Ly]J-BTe plot(P,P1, P,P2, P,P3);
kNoS% ?1, #pk 转自:
http://blog.163.com/opto_wang/