切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9368阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 CB{% ~  
    1OJD!juL$  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of ||a 5)D  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of :Fz;nG-G  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear v!n\A}^:  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7pMQ1- (  
    w DswK "T  
    %fid=fopen('e21.dat','w'); d0ThhO  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) ++n"` ]o,  
    M1 =3000;              % Total number of space steps W iqlc  
    J =100;                % Steps between output of space 1t haQ"  
    T =10;                  % length of time windows:T*T0 20750G  
    T0=0.1;                 % input pulse width ,S 5tkTa  
    MN1=0;                 % initial value for the space output location f_a.BTtNO  
    dt = T/N;                      % time step ,3l=44*  
    n = [-N/2:1:N/2-1]';           % Index ~SgW+sDF u  
    t = n.*dt;   eYZ{mo7  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 FjF:Eh  
    u20=u10.*0.0;                  % input to waveguide 2 gDE',)3Q,  
    u1=u10; u2=u20;                 Rp$t;=SMD  
    U1 = u1;   qplz !=  
    U2 = u2;                       % Compute initial condition; save it in U NfvvwG;M  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. "9 ,z"k  
    w=2*pi*n./T; y^7;I-  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T M\O6~UFq!  
    L=4;                           % length of evoluation to compare with S. Trillo's paper ,RIGV[u  
    dz=L/M1;                       % space step, make sure nonlinear<0.05  $0>>Z  
    for m1 = 1:1:M1                                    % Start space evolution u&/[sq x  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS \?uaHX`1  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; m8'B7|s  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 37GJ}%Qs  
       ca2 = fftshift(fft(u2)); 8Q&.S)hrN  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation zK`fX  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Gh}k9-L  
       u2 = ifft(fftshift(c2));                        % Return to physical space 0!X;C!v;  
       u1 = ifft(fftshift(c1)); pwo5Ij,~q  
    if rem(m1,J) == 0                                 % Save output every J steps. zy\p,  
        U1 = [U1 u1];                                  % put solutions in U array ;d$PQi  
        U2=[U2 u2]; 9l) .L L  
        MN1=[MN1 m1]; *#+e_)d  
        z1=dz*MN1';                                    % output location (qd$wv^ h  
      end ?w'a^+H  
    end 4/YEkD  
    hg=abs(U1').*abs(U1');                             % for data write to excel W:D'k^u  
    ha=[z1 hg];                                        % for data write to excel @V{s'V   
    t1=[0 t']; AZ' "M{wiI  
    hh=[t1' ha'];                                      % for data write to excel file cpz'upVOZ  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format `L p3snS  
    figure(1) T \%{zz_(  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn %qA@)u53  
    figure(2) JTbg8b  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn &"GHD{ix  
    ^Q!qJav  
    非线性超快脉冲耦合的数值方法的Matlab程序 Kq!E<|yM  
    cx%[hM09  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。    .b] 32Ww  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 AQkH3p/W  
    0tbximmDb  
    me]O  
    iC-WQkQY  
    %  This Matlab script file solves the nonlinear Schrodinger equations K..L8#SC  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of DVCO( fz  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Mda~@)7$  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 5Pmmt&#/Z  
    XE8~R5  
    C=1;                           r,}U-S.w  
    M1=120,                       % integer for amplitude qh}M!p2  
    M3=5000;                      % integer for length of coupler v%Rc wVt|  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) W\09h Z6  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Mf0!-bu  
    T =40;                        % length of time:T*T0. K07SbL7g!p  
    dt = T/N;                     % time step }`k >6B  
    n = [-N/2:1:N/2-1]';          % Index gQy {OU  
    t = n.*dt;   mq~rD)T  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. (ov=D7>t0  
    w=2*pi*n./T; o6f^DG3*  
    g1=-i*ww./2; \+OP!`  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; d"zbY\`  
    g3=-i*ww./2; N<wy"N{iS  
    P1=0; $47cKit|k:  
    P2=0; x17cMfCH%  
    P3=1; `>:ozN#)\  
    P=0; BNU]NcA#*,  
    for m1=1:M1                 B"N8NVn  
    p=0.032*m1;                %input amplitude \ZdV|23  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 6itp Mck  
    s1=s10; `jY*0{  
    s20=0.*s10;                %input in waveguide 2 M$O}roOa  
    s30=0.*s10;                %input in waveguide 3 _%WJ7~>  
    s2=s20; 4>]^1J7Wz  
    s3=s30; ;)ff Gg>  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   ;u;YfOr  
    %energy in waveguide 1 |a@$KF$  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   s=`1wkh0  
    %energy in waveguide 2 gE8=#%1<  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   :nki6Rkowt  
    %energy in waveguide 3 cy=,Dr9O  
    for m3 = 1:1:M3                                    % Start space evolution _2{i}L  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS zRyZrt,%&  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 2YvhzL[um  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; #5HJW[9  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform $I(2}u?1+d  
       sca2 = fftshift(fft(s2)); 9:0JWW^so  
       sca3 = fftshift(fft(s3)); <qH>[ \  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   d!) &@k  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); uiq)?XUKv  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); k,0RpE  
       s3 = ifft(fftshift(sc3)); xM85^B'  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 7NG^X"N{Ul  
       s1 = ifft(fftshift(sc1)); ^T\JFzV  
    end *LJN2;  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); )W9 $_<Z  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); & i|x2; v  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ~ ar8e  
       P1=[P1 p1/p10]; L+Q"z*W  
       P2=[P2 p2/p10]; jYKs| J)[  
       P3=[P3 p3/p10]; btb-MSkO  
       P=[P p*p]; yI\  
    end k^I4z^O=-;  
    figure(1) xy`aR< L  
    plot(P,P1, P,P2, P,P3); (1\!6  
    j6Acd~y\2  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~