切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9321阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 pi|=3W  
    `Sx1?@8(  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of J))U YJO  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of [.Rdq]w6  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear L9$`zc  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 *Y':raP  
    \ z3>kvk  
    %fid=fopen('e21.dat','w'); 8w$q4fg0  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) J#DN2y <  
    M1 =3000;              % Total number of space steps &J\<"3  
    J =100;                % Steps between output of space 4KX\'K  
    T =10;                  % length of time windows:T*T0 (zX75QSKV  
    T0=0.1;                 % input pulse width %M*2j%6  
    MN1=0;                 % initial value for the space output location b%QcB[k[WB  
    dt = T/N;                      % time step Ya &\b 6  
    n = [-N/2:1:N/2-1]';           % Index @~QI3)=s  
    t = n.*dt;   bo-L|R&O  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 h0&Oy52  
    u20=u10.*0.0;                  % input to waveguide 2 r>ag( ^J\  
    u1=u10; u2=u20;                 ]]NTvr  
    U1 = u1;   l4> c  
    U2 = u2;                       % Compute initial condition; save it in U m%cwhH_B  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. S}P rgw/  
    w=2*pi*n./T; hb<cynY  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T r+!29  
    L=4;                           % length of evoluation to compare with S. Trillo's paper W6s-epsRmT  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 !C@+CZXLx  
    for m1 = 1:1:M1                                    % Start space evolution $-p9cyk  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS \4KV9wm  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; VfFbZds8f  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 1+#E|YWJ  
       ca2 = fftshift(fft(u2)); qg2Vmj<H  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation v?YxF}  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   +!K*FU=).  
       u2 = ifft(fftshift(c2));                        % Return to physical space  20]p<  
       u1 = ifft(fftshift(c1)); f@ILC=c<  
    if rem(m1,J) == 0                                 % Save output every J steps. YrsE 88QqI  
        U1 = [U1 u1];                                  % put solutions in U array Kk).KgR  
        U2=[U2 u2]; "r~/E|Da<  
        MN1=[MN1 m1]; ^ X-6j[".  
        z1=dz*MN1';                                    % output location @R Jr ~y0  
      end \hWac%#  
    end NX5$x/uz  
    hg=abs(U1').*abs(U1');                             % for data write to excel p^1~o/  
    ha=[z1 hg];                                        % for data write to excel 2;K2|G7  
    t1=[0 t']; @*roW{?!  
    hh=[t1' ha'];                                      % for data write to excel file 1ozb tn  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 1H?I?IT30  
    figure(1) M0T z('~s  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn NwVhJdo  
    figure(2) 6 ZAZJn|  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ";;!c.!^  
    -ykD/  
    非线性超快脉冲耦合的数值方法的Matlab程序 4y.qtiIP>$  
    S0tkqA4  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Vg(M ^2L  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Q_Wg4n5  
    1ASoH,D/  
    [C\B2iU7_M  
    (*_lLM@Cd  
    %  This Matlab script file solves the nonlinear Schrodinger equations tAPf#7{|   
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of cbYQ';{  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear .%!^L#g  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 pfs]pDjS:  
    CDPu(,^  
    C=1;                           6Jq3l_  
    M1=120,                       % integer for amplitude ~6K.5t7  
    M3=5000;                      % integer for length of coupler M?AKJE j5  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 1IlOU|4  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. eL<jA9cJ9  
    T =40;                        % length of time:T*T0. !b=W>5h  
    dt = T/N;                     % time step X:lStO#5  
    n = [-N/2:1:N/2-1]';          % Index da i+"  
    t = n.*dt;   NTEN  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 7xFZJ#  
    w=2*pi*n./T; Cg|\UKfy$  
    g1=-i*ww./2; [$F*R@,&  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; a`[9<AM1#  
    g3=-i*ww./2; \._|_+HiW  
    P1=0; gm%cAme  
    P2=0; %P{3c~?DH  
    P3=1; M ziOpraj  
    P=0; t 4VeXp6  
    for m1=1:M1                 7<Qmpcp =  
    p=0.032*m1;                %input amplitude xI.0m  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 &8Z .m,s]  
    s1=s10; B*Ey&DAV  
    s20=0.*s10;                %input in waveguide 2 B[q"o I`  
    s30=0.*s10;                %input in waveguide 3 J7qTE8W=  
    s2=s20; \ @[Q3.VX  
    s3=s30; .lq83; k  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   S;y4Z:!  
    %energy in waveguide 1 $4}G  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   |fIyq}{7  
    %energy in waveguide 2 m;A[ 2 6X  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   hsT&c|  
    %energy in waveguide 3 A2;6Vz=z  
    for m3 = 1:1:M3                                    % Start space evolution -SfU.XlZl  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS bdLi _k  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; c&x1aF "B  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; d S'J@e=#  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Nu OxEyC  
       sca2 = fftshift(fft(s2)); U82mO+}  
       sca3 = fftshift(fft(s3)); )0]U"Nf ho  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   #vhN$H:&q  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); N'-[>w7vK2  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); znPh7{|<  
       s3 = ifft(fftshift(sc3)); u>G9r#~`k  
       s2 = ifft(fftshift(sc2));                       % Return to physical space =Xg/[J%  
       s1 = ifft(fftshift(sc1)); h5pfmN\-5  
    end @g4o8nH}  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); "wuO[c&%/  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); l^OflZC~  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); D,R',(3  
       P1=[P1 p1/p10]; +iFt)  
       P2=[P2 p2/p10]; n>R(e>  
       P3=[P3 p3/p10]; :enR8MS  
       P=[P p*p]; E1tCY.N{  
    end ."=%]l 0  
    figure(1) h6OQeZ.  
    plot(P,P1, P,P2, P,P3); {=?(v`88  
    EFljUT?&  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~