切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8830阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 b{lkl?@a  
    ]}jY] l  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Qrt> vOUE7  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of f*ZIBTb 9  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear <@:LONe<  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 I)F3sS45}  
    ;PhX[y^*  
    %fid=fopen('e21.dat','w'); `xd{0EvF  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) JheF}/Bx  
    M1 =3000;              % Total number of space steps H He~OxWg  
    J =100;                % Steps between output of space )6Qk|gIu(  
    T =10;                  % length of time windows:T*T0 6"U)d7^  
    T0=0.1;                 % input pulse width $5a%hK  
    MN1=0;                 % initial value for the space output location X8=s k  
    dt = T/N;                      % time step ^DS+O>  
    n = [-N/2:1:N/2-1]';           % Index @~`2L o/  
    t = n.*dt;   gDjs:]/YR  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 |{H-PH*Iz  
    u20=u10.*0.0;                  % input to waveguide 2 m8njP-CZ  
    u1=u10; u2=u20;                 7nL3+Pq  
    U1 = u1;   J2adA9R/,  
    U2 = u2;                       % Compute initial condition; save it in U 5x; y{qT  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. YPqp#X*  
    w=2*pi*n./T; *,d>(\&[f  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T VC@{cVT  
    L=4;                           % length of evoluation to compare with S. Trillo's paper {9C+=v?  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ['rqz1DL5  
    for m1 = 1:1:M1                                    % Start space evolution =e$6o2!'}  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS fdRw:K8  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; F,-S&d  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ghd*EXrF H  
       ca2 = fftshift(fft(u2)); &r Lg/UEV-  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation *eo<5YUHt  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   B!cg)Y?.bd  
       u2 = ifft(fftshift(c2));                        % Return to physical space uM<6][^`  
       u1 = ifft(fftshift(c1)); QcDWVM'v  
    if rem(m1,J) == 0                                 % Save output every J steps. aPMqJ#fIr  
        U1 = [U1 u1];                                  % put solutions in U array ZNvnVW<  
        U2=[U2 u2]; 0cm+:  
        MN1=[MN1 m1]; px1{=~V/  
        z1=dz*MN1';                                    % output location -5 YvtL  
      end T7{Z0-  
    end 9(( QSX  
    hg=abs(U1').*abs(U1');                             % for data write to excel #}rv)  
    ha=[z1 hg];                                        % for data write to excel GKNH{|B$D  
    t1=[0 t']; |Skk1 #  
    hh=[t1' ha'];                                      % for data write to excel file a}+7MEUmZ/  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format R1DXi  
    figure(1) Xbb('MoI63  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn PDnwaK   
    figure(2) }#/,nJm'  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 1MCHwX3/  
    !`G7X  
    非线性超快脉冲耦合的数值方法的Matlab程序 'e4  ;,m  
    \e/'d~F  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   IP`;hC  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 + fQ=G/  
    5Q.bwl:  
    4#z@B1Jx  
    :>.~"uWo{  
    %  This Matlab script file solves the nonlinear Schrodinger equations /f9jLY +  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ^< ,Np+  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear I4Ys ,n  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 z Lw=*  
    +FWkhmTv  
    C=1;                           f-?00*T  
    M1=120,                       % integer for amplitude =yf LqU  
    M3=5000;                      % integer for length of coupler b0 CtQe  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) UpgY}pf}  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. wyk4v}  
    T =40;                        % length of time:T*T0. #KonVM(`  
    dt = T/N;                     % time step DdTTWp/  
    n = [-N/2:1:N/2-1]';          % Index hN6j5.x%  
    t = n.*dt;   {@u;F2?  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. xFpMn}CD  
    w=2*pi*n./T; n:GK0wu.s  
    g1=-i*ww./2; 9IKFrCO9,  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; )jK"\'cK  
    g3=-i*ww./2; {ZH9W  
    P1=0; )POuH*j  
    P2=0; Ch`XwLY9  
    P3=1; )~<8j  
    P=0; qJj;3{X2  
    for m1=1:M1                 8VJUaL@  
    p=0.032*m1;                %input amplitude v ?)-KtX|  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 DYU+?[J  
    s1=s10; ;%Jw9G\h  
    s20=0.*s10;                %input in waveguide 2 4}{HRs?  
    s30=0.*s10;                %input in waveguide 3 Memz>uux  
    s2=s20; &UUIiQm~  
    s3=s30; [ds:LQq)/  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   FrO)3 1z  
    %energy in waveguide 1 <JKRdIx&1  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   -y{o@  
    %energy in waveguide 2 gRuNC=sR  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   *r)/.rK_  
    %energy in waveguide 3 aD,sx#g0  
    for m3 = 1:1:M3                                    % Start space evolution Us'm9 J  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Vh:%e24Z  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; xT I&X9P  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ]&1Kz 2/  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform mu2r#I  
       sca2 = fftshift(fft(s2)); }u&.n pc  
       sca3 = fftshift(fft(s3)); "_JGe#=  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   *M5 =PQfb  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); F kp;G  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ;}{%|UAsx  
       s3 = ifft(fftshift(sc3)); | eIN<RY5  
       s2 = ifft(fftshift(sc2));                       % Return to physical space (b Q1,y  
       s1 = ifft(fftshift(sc1)); %^m6Q!  
    end p6]4YGw*^  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); <k'=_mC_  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); cA1"Nek  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 6~sb8pK.=  
       P1=[P1 p1/p10]; * c] :,5  
       P2=[P2 p2/p10]; etj8M y6=  
       P3=[P3 p3/p10]; !Ac<A.  
       P=[P p*p]; >&tPIrz  
    end jQzq(oDQw  
    figure(1) S1{UVkr  
    plot(P,P1, P,P2, P,P3); !@!,7te  
    '$W@I  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~