切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9182阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ?' .AeoE-  
    .a]#AFX  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of .Zczya  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of I7oA7@zv  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear qEr?4h  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 N=BG0t$  
    LXK!4(xaW  
    %fid=fopen('e21.dat','w'); /j$=?Rp  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) GeTk/tU  
    M1 =3000;              % Total number of space steps /7 Tm2Vj8  
    J =100;                % Steps between output of space IgG[Pr'D  
    T =10;                  % length of time windows:T*T0 v^b4WS+.:  
    T0=0.1;                 % input pulse width Os@b8V 8,A  
    MN1=0;                 % initial value for the space output location 6sSwSS  
    dt = T/N;                      % time step x_nwD"   
    n = [-N/2:1:N/2-1]';           % Index Mg.%&vH\  
    t = n.*dt;   ^iMr't\b  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 h<U?WtWT-p  
    u20=u10.*0.0;                  % input to waveguide 2 &7f8\TG|  
    u1=u10; u2=u20;                 o=3hWbe  
    U1 = u1;   O`9c!_lis  
    U2 = u2;                       % Compute initial condition; save it in U &bW,N  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. aX^T[  
    w=2*pi*n./T; 3&+dyhL'w  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T  /ooGyF  
    L=4;                           % length of evoluation to compare with S. Trillo's paper yx5e  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 ::oFL#+  
    for m1 = 1:1:M1                                    % Start space evolution %hsCB .r>|  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS e4tIO   
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; ;Z d_2CZ  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform b$,Hlh,^  
       ca2 = fftshift(fft(u2)); G kjfDY:  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation RW L0@\  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   +7 H)s  
       u2 = ifft(fftshift(c2));                        % Return to physical space $+'H000x  
       u1 = ifft(fftshift(c1)); Reikf}9Q  
    if rem(m1,J) == 0                                 % Save output every J steps. vd4@jZ5  
        U1 = [U1 u1];                                  % put solutions in U array Io]FDPN  
        U2=[U2 u2]; V:kRr cX  
        MN1=[MN1 m1]; f1MRmp-f'  
        z1=dz*MN1';                                    % output location \b"rf697 ,  
      end ?8-!hU@QC  
    end 'dwT&v]@  
    hg=abs(U1').*abs(U1');                             % for data write to excel &J6`Q<U!  
    ha=[z1 hg];                                        % for data write to excel (`.OS)&  
    t1=[0 t']; :Z//  
    hh=[t1' ha'];                                      % for data write to excel file fY!?rZ)$  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 4k;FZo]S  
    figure(1) OoSk^U)  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ! I@w3`  
    figure(2) <?nIO  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn }csA|cC  
    a;HAuy`M x  
    非线性超快脉冲耦合的数值方法的Matlab程序 r)iEtT!p*  
    I\. |\^  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   N)X Tmh2v|  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !g|O.mt  
    Hb=#`  
    |Kd#pYt%O  
    P}@AH02  
    %  This Matlab script file solves the nonlinear Schrodinger equations 4XN \p  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of "6f`hy  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear =0)|psCsM  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 +F; 2FD$  
    QtW9!p7(  
    C=1;                           2Vx4"fHP#N  
    M1=120,                       % integer for amplitude #fuUAbU0X  
    M3=5000;                      % integer for length of coupler o<Zlm)"%1  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) I=0c\ U}  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 9-42A7g^C  
    T =40;                        % length of time:T*T0. /Q1*Vh4  
    dt = T/N;                     % time step mU/o%|h  
    n = [-N/2:1:N/2-1]';          % Index /Y0~BQC7!  
    t = n.*dt;   "V|Rq]_+%  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. `OfhzOp  
    w=2*pi*n./T; J>Ar(p  
    g1=-i*ww./2; l]]NVBA])  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Vebv!  
    g3=-i*ww./2; $BwWQ?lp  
    P1=0; % N8I'*u  
    P2=0; P#O" {+`  
    P3=1; <o(;~  
    P=0; hG1$YE  
    for m1=1:M1                 WyO*8b_ D  
    p=0.032*m1;                %input amplitude v vErzUxN  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 CD`a-]6qA  
    s1=s10; xs"i_se  
    s20=0.*s10;                %input in waveguide 2 ]es|%j 2  
    s30=0.*s10;                %input in waveguide 3 <XeDJ8 '  
    s2=s20; k1B ](@xt  
    s3=s30; '.|}  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Wmbc `XC  
    %energy in waveguide 1 {<-s&%/r  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   v$}^$8`  
    %energy in waveguide 2 L ]')=J+  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   FQWjL>NB  
    %energy in waveguide 3 yq~  
    for m3 = 1:1:M3                                    % Start space evolution '}hSh  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS v `S5[{6  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; .}dLqw  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 7Jb&~{DVk  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform [+[ W\6  
       sca2 = fftshift(fft(s2)); yX&# rI  
       sca3 = fftshift(fft(s3)); :w^:Z$-hf  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   \]x`f3F  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); LK h=jB^bT  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); $xu2ZBK  
       s3 = ifft(fftshift(sc3)); : /5+p>Ep}  
       s2 = ifft(fftshift(sc2));                       % Return to physical space t #(NfzN  
       s1 = ifft(fftshift(sc1)); 2"6L\8hd2  
    end @fd<  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Z!v,;MW  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); BVal U  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ^A ]4  
       P1=[P1 p1/p10]; ~A0AB `7  
       P2=[P2 p2/p10]; 2f(`HSC'  
       P3=[P3 p3/p10]; +wQ5m8E  
       P=[P p*p]; N<JI^%HBgP  
    end SqAz((  
    figure(1) dX?j /M-  
    plot(P,P1, P,P2, P,P3); m-{DhJV  
    /M5.Z~|/  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~