切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8587阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 K~Nx;{{d  
    OIJNOuI  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of K G<. s<  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of sB`.G  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear o1lhVM`15  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 3N c#6VI  
    w_qX~d/  
    %fid=fopen('e21.dat','w'); 0"}qND  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) #0$fZ  
    M1 =3000;              % Total number of space steps *ThP->&:(  
    J =100;                % Steps between output of space /M!b3bmA  
    T =10;                  % length of time windows:T*T0 XX&4OV,^%D  
    T0=0.1;                 % input pulse width eFKF9m  
    MN1=0;                 % initial value for the space output location 8! eYax   
    dt = T/N;                      % time step RGEgYOO  
    n = [-N/2:1:N/2-1]';           % Index F3nYMf  
    t = n.*dt;   MTXh-9DA  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 8k +^jj  
    u20=u10.*0.0;                  % input to waveguide 2 !aQb Kp  
    u1=u10; u2=u20;                 Rax]svc  
    U1 = u1;   >|zMN$:  
    U2 = u2;                       % Compute initial condition; save it in U (;VlK#rnC  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. sbv2*fno5  
    w=2*pi*n./T; | KtI:n4d  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T XM1; >#kz  
    L=4;                           % length of evoluation to compare with S. Trillo's paper %9vl  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Jlp nR#@  
    for m1 = 1:1:M1                                    % Start space evolution IC"Z.'Ph  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS q"(b}3  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; lT^/ 8Z<g  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform /U26IbJ  
       ca2 = fftshift(fft(u2)); cl04fqX  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ibH!bS{  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   KE[!{O^(a  
       u2 = ifft(fftshift(c2));                        % Return to physical space "hi d3"G  
       u1 = ifft(fftshift(c1)); *'w?j)}A9g  
    if rem(m1,J) == 0                                 % Save output every J steps. _=Z?5{7S >  
        U1 = [U1 u1];                                  % put solutions in U array *Xcqnu('  
        U2=[U2 u2]; &cGa~#-u  
        MN1=[MN1 m1]; y>^FKN/  
        z1=dz*MN1';                                    % output location 2nf<RE>  
      end m^%@bu,  
    end ; DXsPpZC  
    hg=abs(U1').*abs(U1');                             % for data write to excel j+9;Rvt2  
    ha=[z1 hg];                                        % for data write to excel &&% oazR=  
    t1=[0 t']; igx~6G*  
    hh=[t1' ha'];                                      % for data write to excel file =U7P\s w2  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ) >te|@}o  
    figure(1) "7q!u,u  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn }1 ,\ *)5  
    figure(2) UpaF>,kM  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ?wP/l  
    `^ZhxFX  
    非线性超快脉冲耦合的数值方法的Matlab程序 {8I,uQO  
    Ptm=c6H('  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   '8Cg2v5&w  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 {o SdVRI  
    dBw7l}  
    3{)!T;Wd  
    2##;[  
    %  This Matlab script file solves the nonlinear Schrodinger equations GQ(*k)'a  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of H +' 6*akV  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear &@K6;T  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 FI,K 0sO/|  
    e%s1D  
    C=1;                           _h+7 KK  
    M1=120,                       % integer for amplitude GKc?  
    M3=5000;                      % integer for length of coupler D V\7KKJE  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Fr~\ZL  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. |LW5dtQ  
    T =40;                        % length of time:T*T0. x<h|$$4S  
    dt = T/N;                     % time step oam$9 q  
    n = [-N/2:1:N/2-1]';          % Index ~x7CI  
    t = n.*dt;   )T6:@n^]h  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. N a$.VT  
    w=2*pi*n./T; 5vFM0  
    g1=-i*ww./2; + -uQ] ^n  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; -T}r$A  
    g3=-i*ww./2; /qKA1-R}4  
    P1=0; Wv|CJN;4  
    P2=0; mqHcD8X  
    P3=1; {#st>%i  
    P=0; Atb`Q'Yrw  
    for m1=1:M1                 xax[# Vl4  
    p=0.032*m1;                %input amplitude SwsJ<Dq^z  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ~s-bA#0S  
    s1=s10; ^&D5J\][  
    s20=0.*s10;                %input in waveguide 2 A!,c@Kv 3  
    s30=0.*s10;                %input in waveguide 3 0BNH~,0u  
    s2=s20; x <a}*8"  
    s3=s30; ,4S[<(T"  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   h/oun2C  
    %energy in waveguide 1 j,Mbl"P  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   k-H6c  
    %energy in waveguide 2 *^%+PQ  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   (/2rj[F&  
    %energy in waveguide 3 cRH(@b Xr  
    for m3 = 1:1:M3                                    % Start space evolution B `.aQ  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS DXG`%<ZMn  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; X{Fr  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ~n8UN<  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform whYk"N  
       sca2 = fftshift(fft(s2)); xT+#K5  
       sca3 = fftshift(fft(s3)); v-N4&9)%9  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   /lbj!\~  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); e`co:HO`#  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 8o[gzW:Q)U  
       s3 = ifft(fftshift(sc3)); HU'w[r 6a  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 'j*Q   
       s1 = ifft(fftshift(sc1)); >-\^)z  
    end etT9}RbQ  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); cpl Ny?UIC  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); k>F!S`a&m  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); w>8HS+  
       P1=[P1 p1/p10]; sZ~03QvkT  
       P2=[P2 p2/p10]; +_ /ys!  
       P3=[P3 p3/p10]; w,X)g{^T  
       P=[P p*p]; )Nqx=ms[(!  
    end @`)>- k  
    figure(1) iZ>P>x\  
    plot(P,P1, P,P2, P,P3); n-2!<`UFX  
    !@])Ut@tN  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~