切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9362阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 kbp( a+5  
    x+y!P  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of y(3c{y@~X  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of .4C[D{4  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear Lr?4Y  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `KJYm|@i  
    -wRyMY_ D  
    %fid=fopen('e21.dat','w'); L+~YCat|$U  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) 7?!Z+r  
    M1 =3000;              % Total number of space steps keQXJ0  
    J =100;                % Steps between output of space "^ 6lvZP(  
    T =10;                  % length of time windows:T*T0 DR yESi  
    T0=0.1;                 % input pulse width XL7;^AE^Wl  
    MN1=0;                 % initial value for the space output location Ns!3- Y  
    dt = T/N;                      % time step L740s[,`o#  
    n = [-N/2:1:N/2-1]';           % Index W93JY0Ls9|  
    t = n.*dt;   {~p7*j^0  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 lO2T/1iMTW  
    u20=u10.*0.0;                  % input to waveguide 2 JXLWRe  
    u1=u10; u2=u20;                 `zzKD2y  
    U1 = u1;   42J';\)oP  
    U2 = u2;                       % Compute initial condition; save it in U U.hERe ~X  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Vy% :\p+  
    w=2*pi*n./T; }6CXJ+-UR  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T "0H56#eW  
    L=4;                           % length of evoluation to compare with S. Trillo's paper b%[ nB  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 fZ6 fV=HEF  
    for m1 = 1:1:M1                                    % Start space evolution u JQaHL!  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS /K,|k EE'n  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 5rfH;`  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ne"?90~  
       ca2 = fftshift(fft(u2)); zD)IU_GWa  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ckf<N9  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   eg2U+g4  
       u2 = ifft(fftshift(c2));                        % Return to physical space 2 ]V>J  
       u1 = ifft(fftshift(c1)); i[2bmd!H  
    if rem(m1,J) == 0                                 % Save output every J steps. k'@7ZH  
        U1 = [U1 u1];                                  % put solutions in U array 0;FqX*  
        U2=[U2 u2]; pM&]&Nk  
        MN1=[MN1 m1]; # cN_y  
        z1=dz*MN1';                                    % output location H}sS4[z  
      end \o:ELa HY  
    end /UpD$,T|^|  
    hg=abs(U1').*abs(U1');                             % for data write to excel 1tc]rC4h  
    ha=[z1 hg];                                        % for data write to excel =&q-[JW  
    t1=[0 t']; e8AjO$49  
    hh=[t1' ha'];                                      % for data write to excel file Xq,UV  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format >~5lYD  
    figure(1) kqKj7L  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn `dv}a-Q)c  
    figure(2) 't|Un G  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn cBLR#Yu;O5  
    ceFsGdS  
    非线性超快脉冲耦合的数值方法的Matlab程序 [lNqT1%]  
    K\IYx|Hm a  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   &Y54QE".  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 _{LN{iqDv  
    Uvjdx(fY[a  
    %RQC9!  
    K\{b!Cfr^  
    %  This Matlab script file solves the nonlinear Schrodinger equations \7Gg2;TA6o  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ]#Vo}CVP  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear bJQ5- *F  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $J QWfGwR  
    7P<r`,~k-  
    C=1;                           V~(EVF{h  
    M1=120,                       % integer for amplitude 4M @ oj  
    M3=5000;                      % integer for length of coupler $!YKZ0)B'0  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 7FmbV/&c  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. 0jxO |N2)  
    T =40;                        % length of time:T*T0. I1Hw"G"&  
    dt = T/N;                     % time step omM&{ }8g  
    n = [-N/2:1:N/2-1]';          % Index W@I 02n2 H  
    t = n.*dt;   yZYK wKG  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. P?9nTG  
    w=2*pi*n./T; $; Q$W9+  
    g1=-i*ww./2; ]2Sfkl0  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; |@ikx{W  
    g3=-i*ww./2; tg.|$n  
    P1=0; GWF/[%  
    P2=0; 9z5\*b s  
    P3=1; k? 3S  
    P=0; TZ?Os4+  
    for m1=1:M1                 }JRP,YNh  
    p=0.032*m1;                %input amplitude 01U *_\  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 A2m_q>> !  
    s1=s10; j*uXB^ 4  
    s20=0.*s10;                %input in waveguide 2 9 YP*f  
    s30=0.*s10;                %input in waveguide 3 `J72+RA  
    s2=s20; ?h/xAl  
    s3=s30; 8YNu<   
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   =%!e(N'p  
    %energy in waveguide 1 MaZM%W8Z  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   <,\ `Psa)N  
    %energy in waveguide 2 uxWFM $  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   q5Fs)B  
    %energy in waveguide 3 bf& }8I$  
    for m3 = 1:1:M3                                    % Start space evolution 9 |' |BC  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS #EJhAJ  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Aj [?aL  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; !X^Hi=aV  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform {vs 4vS6  
       sca2 = fftshift(fft(s2)); c\At0.QCA  
       sca3 = fftshift(fft(s3)); w{pUUo:<  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   @.'z* |z  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); XMGx ^mn  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); <"W?<VjO  
       s3 = ifft(fftshift(sc3)); l :/&E 6 9  
       s2 = ifft(fftshift(sc2));                       % Return to physical space pD"YNlB^  
       s1 = ifft(fftshift(sc1)); X*i/A<Y`=  
    end W+_RhJ  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); WzjL-a(  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); >*IN  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ~ |6dH  
       P1=[P1 p1/p10]; WvujcmOf  
       P2=[P2 p2/p10]; }^9]jSq5  
       P3=[P3 p3/p10]; #?dUv#  
       P=[P p*p]; eqq`TT#Z  
    end !=3Rg-'d1  
    figure(1) L'l F/qe^  
    plot(P,P1, P,P2, P,P3); *I0Tbc O  
    PocYFhWQ`  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~