切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9065阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 ;=VK _3"  
    V@n(v\F  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of renmz,dJ,  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of .cT$h?+jyl  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear mGpkM?Y"  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 k3/JQ]'D  
    0?Tk* X  
    %fid=fopen('e21.dat','w'); q8 xc70: R  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) aRO_,n9  
    M1 =3000;              % Total number of space steps )-?uX.E{  
    J =100;                % Steps between output of space zNr_W[  
    T =10;                  % length of time windows:T*T0 ?Y6la.bc{  
    T0=0.1;                 % input pulse width 4R*<WdT(  
    MN1=0;                 % initial value for the space output location JIbzh?$aD  
    dt = T/N;                      % time step 95?5=T F  
    n = [-N/2:1:N/2-1]';           % Index qe6C|W~n  
    t = n.*dt;   OwiWnS<  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 `k{ff  
    u20=u10.*0.0;                  % input to waveguide 2 FQ|LA[~  
    u1=u10; u2=u20;                 Hu9-<upc&  
    U1 = u1;   !OoaE* s  
    U2 = u2;                       % Compute initial condition; save it in U Kjn&  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. &pMlt7  
    w=2*pi*n./T; kLPO+lg+  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T AY/-j$5+?  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Ro'4/{}+  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 \p@nH%@v  
    for m1 = 1:1:M1                                    % Start space evolution o.A} ``  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS $~G0#JL  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; J!A/r<  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform fJn3"D'  
       ca2 = fftshift(fft(u2)); LF9aw4:>Ou  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation DA4edFAuE  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   cGpN4|*rQ  
       u2 = ifft(fftshift(c2));                        % Return to physical space #}t 1   
       u1 = ifft(fftshift(c1)); M89-*1  
    if rem(m1,J) == 0                                 % Save output every J steps. B=q)}aWc  
        U1 = [U1 u1];                                  % put solutions in U array %KJhtd"q  
        U2=[U2 u2]; d)hzi  
        MN1=[MN1 m1]; -@ UN]K  
        z1=dz*MN1';                                    % output location 9#s95R O  
      end 3<jAp#bE  
    end C6D=>%uY  
    hg=abs(U1').*abs(U1');                             % for data write to excel 36^C0uNdX  
    ha=[z1 hg];                                        % for data write to excel mHI4wS>()+  
    t1=[0 t']; 7SA-OFM  
    hh=[t1' ha'];                                      % for data write to excel file VeD+U~ d  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format nv_m!JG7  
    figure(1) XC7Ty'#"KX  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn 0$f_or9T  
    figure(2) `b^#quz  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn iJdrY 6qd  
    y,y/PyN)  
    非线性超快脉冲耦合的数值方法的Matlab程序 C>JekPeM  
    OXIu>jF  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   I!F}`d  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 i)@U.-*5m  
    =q"w2b&  
    ~ C/Yv&58  
    cYq']$]  
    %  This Matlab script file solves the nonlinear Schrodinger equations je- , S>U  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of X ]pR,\B  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 8u:v:>D.'  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 @pqY9_:P1  
    kO..~@ aY  
    C=1;                           )tN?: l  
    M1=120,                       % integer for amplitude ?dJ/)3I%F  
    M3=5000;                      % integer for length of coupler ,u ?wYW;  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) u@=+#q~/P  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. u|m[(-`  
    T =40;                        % length of time:T*T0. S{^6iR  
    dt = T/N;                     % time step XI@6a9Uk  
    n = [-N/2:1:N/2-1]';          % Index e'k;A{Oh  
    t = n.*dt;   {(m+M  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1.  l5ZADK4  
    w=2*pi*n./T; &jXca|wAR  
    g1=-i*ww./2; 2A*X Hvwb  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 1AV1d%F  
    g3=-i*ww./2; jy\W_CT  
    P1=0; ?Kx6Sf<i  
    P2=0; A6?qIy  
    P3=1; AkYupP2]v  
    P=0; xQNw&'|UU  
    for m1=1:M1                 *<`7|BH3  
    p=0.032*m1;                %input amplitude Lf,CxZL5  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ]+}ZfHp  
    s1=s10; `DgaO-Dg3  
    s20=0.*s10;                %input in waveguide 2 71k!k&Im  
    s30=0.*s10;                %input in waveguide 3 Fe_::NVvk  
    s2=s20; 38V $<w  
    s3=s30; %|:;Ti  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   IZ4W_NN  
    %energy in waveguide 1 f p v= P  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   @!z$Sp=  
    %energy in waveguide 2 k%EWkM)?  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ntrY =Y  
    %energy in waveguide 3 ! 6p>P4TT  
    for m3 = 1:1:M3                                    % Start space evolution A|p@\3 P*A  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS ( GFgt_  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; c8^+^.=pX  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; &ui:DZAxj|  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform C-s>1\I  
       sca2 = fftshift(fft(s2)); |Hx%f  
       sca3 = fftshift(fft(s3)); kJ%{ [1fr  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   /[\6oa  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 33=Mm/<m$P  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ~mN g[]  
       s3 = ifft(fftshift(sc3)); ?60>'Xj j  
       s2 = ifft(fftshift(sc2));                       % Return to physical space _v1bTg"?  
       s1 = ifft(fftshift(sc1)); (\Rwf}gyR  
    end %iK%$  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Nc G,0K  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); AC 9{*K[  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); >}ro[x`K  
       P1=[P1 p1/p10]; E)KB@f<g*  
       P2=[P2 p2/p10]; R'S c  
       P3=[P3 p3/p10]; e(?:g@]-r  
       P=[P p*p]; n?y'c^  
    end jK3giT  
    figure(1) sFbfFUd  
    plot(P,P1, P,P2, P,P3); 8B}'\e4i  
    PYdIP\<V  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~