切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9257阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 v{[:7]b_=  
    74p=uQ  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of !RD<"  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 4,]z  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear j @HOU~x  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 cfP9b8JG  
    f"}g5eg+  
    %fid=fopen('e21.dat','w');  e#t7  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) [<,i}z  
    M1 =3000;              % Total number of space steps FP_q?=~rFs  
    J =100;                % Steps between output of space (/a#1Pd&  
    T =10;                  % length of time windows:T*T0 ^.HvuG},O  
    T0=0.1;                 % input pulse width 6B=: P3Y  
    MN1=0;                 % initial value for the space output location !5}u\  
    dt = T/N;                      % time step ,|RN?1?U  
    n = [-N/2:1:N/2-1]';           % Index H6t'V%Ys  
    t = n.*dt;   Qu;cl/&  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 00-cT9C3  
    u20=u10.*0.0;                  % input to waveguide 2 CVt:tV  
    u1=u10; u2=u20;                 aVvma=  
    U1 = u1;   F!_8?=|  
    U2 = u2;                       % Compute initial condition; save it in U rijavZS6  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. LN0pC }F  
    w=2*pi*n./T; 9>6DA^  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T u$38"&cmA  
    L=4;                           % length of evoluation to compare with S. Trillo's paper )p^" J|  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 x=M%QFe  
    for m1 = 1:1:M1                                    % Start space evolution ?bH&F  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS !Soz??~o/  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 6|G&d>G$_  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform Db`SNk=  
       ca2 = fftshift(fft(u2)); d2a*xDkv  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation n(h9I'V8)F  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   xMs!FMn[  
       u2 = ifft(fftshift(c2));                        % Return to physical space E#!tXO&,  
       u1 = ifft(fftshift(c1)); 'w z6Zt  
    if rem(m1,J) == 0                                 % Save output every J steps. K'_qi8Z  
        U1 = [U1 u1];                                  % put solutions in U array B%^W$7 q  
        U2=[U2 u2]; %;eD.If}  
        MN1=[MN1 m1]; VtN1 [}  
        z1=dz*MN1';                                    % output location 'CMbq Lk#  
      end , UsY0YC  
    end xWnOOE$i  
    hg=abs(U1').*abs(U1');                             % for data write to excel 4OaU1Y[  
    ha=[z1 hg];                                        % for data write to excel hGy[L3 {  
    t1=[0 t']; T!7B0_  
    hh=[t1' ha'];                                      % for data write to excel file lsaA    
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format r@a]fTf  
    figure(1) ~NMx:PP  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn ve]hE}o/}  
    figure(2) 2{Y~jYt{h  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn K0YQ b&*k  
    7tbY>U8  
    非线性超快脉冲耦合的数值方法的Matlab程序 @PT([1C  
    OUk"aAo  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ZXIw^!8@/  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 =(]Z%Q-V  
    @jxP3:s  
    * '_(.Z:  
    SK*z4p  
    %  This Matlab script file solves the nonlinear Schrodinger equations bu9.Hv T'  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 3_ly"\I\  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear W#P`Y< u$  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 kV+%(Gl8  
    UCt}\IJ  
    C=1;                           >qz#&  
    M1=120,                       % integer for amplitude Y}]-o9Rl  
    M3=5000;                      % integer for length of coupler 16ZyLt  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 5-hnk' ~  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. |A/H*J,  
    T =40;                        % length of time:T*T0. i\,I)S%yJ  
    dt = T/N;                     % time step B<Q)z5KK  
    n = [-N/2:1:N/2-1]';          % Index H$+@O-  
    t = n.*dt;   4*ZY#7h  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Sv_Nb>  
    w=2*pi*n./T; 9=mc3m:Tb(  
    g1=-i*ww./2; N;`/>R4|I  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; vc :%  
    g3=-i*ww./2; YF)]B|I  
    P1=0; _i_P@I<M|~  
    P2=0; pM^ZC  
    P3=1; \h"U+Bv7  
    P=0; Ptc+ypTu  
    for m1=1:M1                 .g3=L  
    p=0.032*m1;                %input amplitude P(3k1SM  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 /5<=m:  
    s1=s10; E.Q]X]q  
    s20=0.*s10;                %input in waveguide 2 Z}TLk^_[  
    s30=0.*s10;                %input in waveguide 3 m"T}em#   
    s2=s20; sH.=Faos  
    s3=s30; hrm<!uKn  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   /O5&)%N  
    %energy in waveguide 1 9O -2  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   m):*>o55  
    %energy in waveguide 2 X$;&Mdo.  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   kU+|QBA@  
    %energy in waveguide 3 ?=ffv]v|  
    for m3 = 1:1:M3                                    % Start space evolution ?G5,}%  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS {#:31)P  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; {zWR)o .=  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; vQ L$.A3>  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform EJ>&\Iq  
       sca2 = fftshift(fft(s2)); [ /YuI@C,@  
       sca3 = fftshift(fft(s3)); ei<0,w[V1{  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   CxTmW5l  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); > 1(J  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); V"Z8-u  
       s3 = ifft(fftshift(sc3)); V^,eW!  
       s2 = ifft(fftshift(sc2));                       % Return to physical space 0'Si ^>bW  
       s1 = ifft(fftshift(sc1)); . %s U)$bH  
    end @zC6`  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Z4EmRa30 p  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); 4Wp5[(bg  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); R0}1:1}$Sn  
       P1=[P1 p1/p10]; K Ax=C}9  
       P2=[P2 p2/p10]; ni&|;"Nt-  
       P3=[P3 p3/p10]; +i!5<nn  
       P=[P p*p]; -?-XO<I  
    end kzjuW  
    figure(1) 0_eqO'"  
    plot(P,P1, P,P2, P,P3); ICb!AsL  
    ] \M+ju  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~