切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 7855阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 7l}~4dm2J  
    psD[j W  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of $i&\\QNn  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 70<K .T<b  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 4 ? {*(  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ,iOZ |  
    G4yUC<TqBP  
    %fid=fopen('e21.dat','w'); pSrsp r  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) UQdyv(jXq  
    M1 =3000;              % Total number of space steps B_@7IbB  
    J =100;                % Steps between output of space YnxU(v'\  
    T =10;                  % length of time windows:T*T0 7sN0`7  
    T0=0.1;                 % input pulse width c+;S<g 0  
    MN1=0;                 % initial value for the space output location <W|1<=z(  
    dt = T/N;                      % time step #f 9qlM32  
    n = [-N/2:1:N/2-1]';           % Index !>|`ly$6  
    t = n.*dt;   2^bgC~2C1  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 F=5kF/}x-z  
    u20=u10.*0.0;                  % input to waveguide 2 Z`"n:'&  
    u1=u10; u2=u20;                 3dU#Ueu  
    U1 = u1;   MVuP |&:n  
    U2 = u2;                       % Compute initial condition; save it in U (6[Wr}SW5  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. S W-0h4  
    w=2*pi*n./T; d:3= 1x  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T {9:hg9;E*  
    L=4;                           % length of evoluation to compare with S. Trillo's paper A xR\ ned  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 P59uALi  
    for m1 = 1:1:M1                                    % Start space evolution M[vCpa  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS >!G5]?taa  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; /]l f>\x1  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform `NoCH[$!+  
       ca2 = fftshift(fft(u2)); x[a'(5PwY  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 'w `d$c/p  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   `~KAk  
       u2 = ifft(fftshift(c2));                        % Return to physical space tpz=} q  
       u1 = ifft(fftshift(c1)); ~:s!].H  
    if rem(m1,J) == 0                                 % Save output every J steps. " #J}A0  
        U1 = [U1 u1];                                  % put solutions in U array gTyW#verh$  
        U2=[U2 u2]; }(rzH}X@  
        MN1=[MN1 m1]; h?3f5G*&H  
        z1=dz*MN1';                                    % output location ]N_140N~  
      end 95% :AQLV  
    end ILIRI[7 (  
    hg=abs(U1').*abs(U1');                             % for data write to excel 2PI #ie4  
    ha=[z1 hg];                                        % for data write to excel {8W |W2o$!  
    t1=[0 t']; R3cG<MjmK  
    hh=[t1' ha'];                                      % for data write to excel file cxk=| ?l  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Cb<~i  
    figure(1) ?/^VOj4&  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn @nW'(x(  
    figure(2) fVv$K&  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ar=hx+  
    Q9nu"x %  
    非线性超快脉冲耦合的数值方法的Matlab程序 2voNgY  
    gZ ~y}@L y  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   (''$' 5~  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 -1#e^9Ve\  
    X^9t  
    jeyaT^F(   
    Z|f^nH#-C  
    %  This Matlab script file solves the nonlinear Schrodinger equations !/[AQ{**T!  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of R2'C s  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear oF` -cyj"  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 `~sf}S :  
    %Ud.SJ 3  
    C=1;                           N n:m+ZDo^  
    M1=120,                       % integer for amplitude 9n-RXVL+  
    M3=5000;                      % integer for length of coupler chMt5L+5  
    N = 512;                      % Number of Fourier modes (Time domain sampling points)  ; \Y-  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. )bF)RL Z  
    T =40;                        % length of time:T*T0. vs* _;vx  
    dt = T/N;                     % time step (d1V1t2r6  
    n = [-N/2:1:N/2-1]';          % Index p3i qW,[@  
    t = n.*dt;   (}~ 1{C@  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. Ebmqq#SHjX  
    w=2*pi*n./T; BZ8h*|uT"  
    g1=-i*ww./2; \0xzBs1!  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 8'>.#vyMGv  
    g3=-i*ww./2; i,\t]EJAU  
    P1=0; mOgx&ns;j  
    P2=0; `1DU b7<  
    P3=1; _AA`R`p;  
    P=0; v #zfs'  
    for m1=1:M1                 }d$vcEI$3  
    p=0.032*m1;                %input amplitude Zm?G'06  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 uBV^nUjS"m  
    s1=s10; Bx_8@+  
    s20=0.*s10;                %input in waveguide 2 K .c6Rg  
    s30=0.*s10;                %input in waveguide 3 9~*_(yjF  
    s2=s20; jnx+wcd  
    s3=s30; GN8`xR{J*  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   D<$j`r  
    %energy in waveguide 1 E9 :|8#b  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   y$"~^8"z  
    %energy in waveguide 2 9.]Cy8  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ?3e!A9x  
    %energy in waveguide 3 cJ1{2R  
    for m3 = 1:1:M3                                    % Start space evolution \ltErd-  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Qt)7mf  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; X,Q 6  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; (W{rv6cq  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform +$Ddd`J'  
       sca2 = fftshift(fft(s2)); GNj/jU<o!  
       sca3 = fftshift(fft(s3)); :$u{  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift    $Adp  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ahz@HX  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 8O}A/*1FJ  
       s3 = ifft(fftshift(sc3)); '3Y0D1`v  
       s2 = ifft(fftshift(sc2));                       % Return to physical space J/H#d')c  
       s1 = ifft(fftshift(sc1)); '8((;N|I^  
    end 8M5!5Jzv  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); ()rx>?x5  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); QvT-&|  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ({}O M=_  
       P1=[P1 p1/p10]; 9X*eE  
       P2=[P2 p2/p10]; x Jj8njuq4  
       P3=[P3 p3/p10]; 2Q;Y@%G  
       P=[P p*p]; EUYa =-  
    end D[FfJcV'$  
    figure(1) cnjj) c  
    plot(P,P1, P,P2, P,P3); [M zc^I&  
    !ktA"Jx  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~