切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9407阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 jiLJiYMg  
    ._`rh  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of WjM7s]ZRv  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of .q[}e);)  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ylQj2B,CB  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]yZ%wU9!  
    uKvdL "  
    %fid=fopen('e21.dat','w'); P+OS  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) :Q@/F;Z?  
    M1 =3000;              % Total number of space steps {P_7AM  
    J =100;                % Steps between output of space yTZ o4c "  
    T =10;                  % length of time windows:T*T0 n^O!93a  
    T0=0.1;                 % input pulse width %%>nM'4<  
    MN1=0;                 % initial value for the space output location |\G^:V[.  
    dt = T/N;                      % time step IAq o(Qm  
    n = [-N/2:1:N/2-1]';           % Index M6Np!0G  
    t = n.*dt;   -)}Z $;1a  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 RwOOe7mv  
    u20=u10.*0.0;                  % input to waveguide 2 \x]\W#C  
    u1=u10; u2=u20;                 5s`r&2 w  
    U1 = u1;   u#Jr_ze  
    U2 = u2;                       % Compute initial condition; save it in U xSSEDfq  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ;e/F( J  
    w=2*pi*n./T; ctjQBWE  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T `M 'tuQ M  
    L=4;                           % length of evoluation to compare with S. Trillo's paper NMf#0Nz-  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 N)R5#JX  
    for m1 = 1:1:M1                                    % Start space evolution }f?[m&<  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS QKlsBq  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; NX.5 u8Pf  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform BK6 X)1R  
       ca2 = fftshift(fft(u2)); q^Oj/ws  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 0BhcXH t  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   %DXBl:!Y`  
       u2 = ifft(fftshift(c2));                        % Return to physical space q#8yU\J|,  
       u1 = ifft(fftshift(c1)); jnT Tj l  
    if rem(m1,J) == 0                                 % Save output every J steps. BI%XF 9{  
        U1 = [U1 u1];                                  % put solutions in U array vB{i w}Hi!  
        U2=[U2 u2]; ~?HK,`0h>  
        MN1=[MN1 m1]; dr:x0>  
        z1=dz*MN1';                                    % output location Sp:w _;{#  
      end 3Ke6lV)uq  
    end 1PUZB`"3  
    hg=abs(U1').*abs(U1');                             % for data write to excel F@f4-NR>  
    ha=[z1 hg];                                        % for data write to excel :/$WeAg  
    t1=[0 t']; {tY1$}R  
    hh=[t1' ha'];                                      % for data write to excel file Dm5 Uy^F}  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format 8(L2w|+B<  
    figure(1) 8B?U\cfa^  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn >Bf3X&uS  
    figure(2) -n"wXOx3  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn 1Kk6n UIN  
    vszm9Qf  
    非线性超快脉冲耦合的数值方法的Matlab程序 .'<K$:8@|  
    Q!V:=d  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   m:[I$b6AY  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 WGUw`sc\  
    9*ZlNZ  
    /[\g8U{5B}  
    'g,h  
    %  This Matlab script file solves the nonlinear Schrodinger equations ;<m`mb4x[  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of d!0rq4v7  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear % _E?3  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 prz COw  
    -8Mb~Hfl0  
    C=1;                           3c3;8h$k  
    M1=120,                       % integer for amplitude n{sk  
    M3=5000;                      % integer for length of coupler nM2<u[{gF  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) NGl 8*Af   
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. k)S1Zs~G  
    T =40;                        % length of time:T*T0. ~a`[p\  
    dt = T/N;                     % time step 0r1GGEW`s  
    n = [-N/2:1:N/2-1]';          % Index __.MS6"N  
    t = n.*dt;   C:5- h(#  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. qfE0J;e   
    w=2*pi*n./T; u*)/e9C  
    g1=-i*ww./2; }" vxYB!h3  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; K8X7IE  
    g3=-i*ww./2; J~]@#=,v  
    P1=0; =N\; ?eF(  
    P2=0; L4m Vk  
    P3=1; ZxwrlaA  
    P=0; s~A-qG>  
    for m1=1:M1                 D~ Y6%9  
    p=0.032*m1;                %input amplitude HC6U_d1-6  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 b^ h_`  
    s1=s10; o&E8<e  
    s20=0.*s10;                %input in waveguide 2 >U{iof<  
    s30=0.*s10;                %input in waveguide 3 cE 'LE1DK  
    s2=s20; b3E1S+\=~  
    s3=s30; .F 6US<]  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   |du%c`wl  
    %energy in waveguide 1 3u/JcU-<  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   CE`]X;#y  
    %energy in waveguide 2 :&vX0 Ce:  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   VRQ`-#  
    %energy in waveguide 3 /x ?@M n>  
    for m3 = 1:1:M3                                    % Start space evolution 6-_g1vq  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS I$t8Ko._"  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; h{^v756L  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 4@{c K|  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform EyA ny\"  
       sca2 = fftshift(fft(s2)); H@ 1'El\9  
       sca3 = fftshift(fft(s3)); 3&^hf^yg  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   8Re[]bE  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); \+R%KA/F  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Q /4-7  
       s3 = ifft(fftshift(sc3)); >S7t  
       s2 = ifft(fftshift(sc2));                       % Return to physical space cj>UxU][eS  
       s1 = ifft(fftshift(sc1)); m1pA]}Y/5o  
    end A[+)PkR  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); Qy"Jt]O  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); y2_rm   
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); w{*kbGB8s7  
       P1=[P1 p1/p10]; FE!jN-#  
       P2=[P2 p2/p10]; MrHJ)x"hy  
       P3=[P3 p3/p10]; :6nD"5(  
       P=[P p*p]; gvuv>A}vJ  
    end LVB wWlJ  
    figure(1) q8d](MaX  
    plot(P,P1, P,P2, P,P3); kJ5z['4?  
    .8|wc  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~