切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8635阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 - o$S=  
    `9B xDp]I  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of pMM-LY7%{  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of H6 ( ~6Bp5  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear '\H{Y[  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ?u` ?_us  
    lb2mWsg"  
    %fid=fopen('e21.dat','w'); ,G S8Gu  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) \K9XG/XIx  
    M1 =3000;              % Total number of space steps oOy@X =cw  
    J =100;                % Steps between output of space )p4o4 aM  
    T =10;                  % length of time windows:T*T0 ^ ]SS\=7  
    T0=0.1;                 % input pulse width V=Iau_  
    MN1=0;                 % initial value for the space output location &_HSrU  
    dt = T/N;                      % time step =\e}fyuK  
    n = [-N/2:1:N/2-1]';           % Index [Maon.t!l  
    t = n.*dt;    7=0uG  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 TD].*9  
    u20=u10.*0.0;                  % input to waveguide 2 FjRJSMwO,  
    u1=u10; u2=u20;                 (P~Jzp9u  
    U1 = u1;   Wznz  
    U2 = u2;                       % Compute initial condition; save it in U 38b%km#  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. Qzw~\KY:  
    w=2*pi*n./T; *E+2E^B  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T + _rjA_  
    L=4;                           % length of evoluation to compare with S. Trillo's paper GeWB"(t  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 >~_y\  
    for m1 = 1:1:M1                                    % Start space evolution 9E)*X  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS +2O('}t  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; }>b4s!k,  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform d%Jl9!u  
       ca2 = fftshift(fft(u2)); ^LaI{UDw%h  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 'Sppm;?  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   5s8S;Pb]<  
       u2 = ifft(fftshift(c2));                        % Return to physical space A3*ti!X<6  
       u1 = ifft(fftshift(c1)); *>V6KW  
    if rem(m1,J) == 0                                 % Save output every J steps. $"0 t1  
        U1 = [U1 u1];                                  % put solutions in U array U2 <*BRJ  
        U2=[U2 u2]; 9m0`;~!  
        MN1=[MN1 m1]; &eQzfx=|km  
        z1=dz*MN1';                                    % output location x9xb4ZW  
      end bI TOA  
    end {/uBZ(   
    hg=abs(U1').*abs(U1');                             % for data write to excel n{d}]V@  
    ha=[z1 hg];                                        % for data write to excel 0{F"b'h  
    t1=[0 t']; e &^BPzg  
    hh=[t1' ha'];                                      % for data write to excel file }X$vriW  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format fO[X<|9  
    figure(1) 3H%R`ha  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn lyI rO"o  
    figure(2) @;qC % +^  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn !CtY.Lp  
    {R `IA|T#k  
    非线性超快脉冲耦合的数值方法的Matlab程序 Wy@Z)z?  
    /D`M?nD7  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Ev0GAc1  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 $_k'!/5  
    Wa #,>  
    gGw6c" FRQ  
    y$r^UjJEO  
    %  This Matlab script file solves the nonlinear Schrodinger equations )&1yt4 x6%  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of nT` NfN  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ;!, ]}2w*X  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 6?Q&>V26Y  
    Fe.Y4\xz  
    C=1;                           >C+0LF`U  
    M1=120,                       % integer for amplitude yiQke   
    M3=5000;                      % integer for length of coupler K~<pD:s  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) Qc;`n ck  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. _DMj )enH"  
    T =40;                        % length of time:T*T0. P{)H7B>  
    dt = T/N;                     % time step SW (7!`  
    n = [-N/2:1:N/2-1]';          % Index 7IBm(#  
    t = n.*dt;   ,r{*o6  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. n} GIf&  
    w=2*pi*n./T; AJ2Xq*fk  
    g1=-i*ww./2; _bqiS]:  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; Fly@"W4a  
    g3=-i*ww./2; 0(Y$xg  
    P1=0; &YO5N4X~o  
    P2=0; HQ7-,!XO  
    P3=1; j$T2ff6  
    P=0; MVjc.^  
    for m1=1:M1                 LnZ*,>1 Z  
    p=0.032*m1;                %input amplitude -Hh$3U v  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 }1TfKS]m>  
    s1=s10; D4s*J21)D  
    s20=0.*s10;                %input in waveguide 2 ?Ee?Ol?i2  
    s30=0.*s10;                %input in waveguide 3 'Vy$d<@s[  
    s2=s20; fbB(W E+  
    s3=s30; /AJ ^wY  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   t"2WJ-1k}  
    %energy in waveguide 1 <3P?rcd,5K  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   7$x@;%xd  
    %energy in waveguide 2 5U|f"3&8  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ZgtW  
    %energy in waveguide 3 \>cZ=  
    for m3 = 1:1:M3                                    % Start space evolution lcJ`OLG  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS a: iIfdd4'  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 3Aaj+=]W  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; S#jH2fRo  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform }n 6BI}n  
       sca2 = fftshift(fft(s2)); zVxiCyU  
       sca3 = fftshift(fft(s3)); x?:WR*5w  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   o1MbHBb  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); Br]VCp   
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); ~IE:i-Kz  
       s3 = ifft(fftshift(sc3)); o|]xj'  
       s2 = ifft(fftshift(sc2));                       % Return to physical space aC]~   
       s1 = ifft(fftshift(sc1)); <$UMMA  
    end s?~Abj_  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); !aa^kcEjnL  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); RduA0@g0  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); i= ~HXr}  
       P1=[P1 p1/p10]; zq4,%$y8|  
       P2=[P2 p2/p10]; 7*'_&0   
       P3=[P3 p3/p10]; 3tnYK&  
       P=[P p*p]; W}Nd3  
    end &wNN| fH  
    figure(1) Zx}=c4I(y  
    plot(P,P1, P,P2, P,P3); 1Na CGD"  
    IZJV6clM  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~