切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9199阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 'a"Uw"/p[  
    _AH_<Z(  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of M*aYcIU((  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of SZvC4lOn#  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear kkXe=f%  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 m",G;VN  
    tMyMA}`  
    %fid=fopen('e21.dat','w'); (t,mtdD#1  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) XY<KLO%  
    M1 =3000;              % Total number of space steps 8tzL.P^  
    J =100;                % Steps between output of space ]hZk #rp}  
    T =10;                  % length of time windows:T*T0 }Ggn2 X  
    T0=0.1;                 % input pulse width Is9.A_0h  
    MN1=0;                 % initial value for the space output location @2TfW]6  
    dt = T/N;                      % time step (R(NEN  
    n = [-N/2:1:N/2-1]';           % Index )M@^Z(W/a  
    t = n.*dt;   ^1Bk*?Yx\x  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 gBZNO! a,d  
    u20=u10.*0.0;                  % input to waveguide 2 %1)JRc  
    u1=u10; u2=u20;                 ?',Wn3A  
    U1 = u1;   4G RHvA.  
    U2 = u2;                       % Compute initial condition; save it in U Ii>#9>!F  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. }6*JX\'q  
    w=2*pi*n./T; P=X)Ktmv  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T m<!CF3g  
    L=4;                           % length of evoluation to compare with S. Trillo's paper EF;B)y=  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Wj, {lJ,  
    for m1 = 1:1:M1                                    % Start space evolution #;UoZJ B  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS FA;B :O@:'  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; }TDq7-(g  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 4v2JrC;  
       ca2 = fftshift(fft(u2)); TJuS)AZ C  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation S5~(3I )v  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   C}\kp0mz  
       u2 = ifft(fftshift(c2));                        % Return to physical space JC}T*h>Ee  
       u1 = ifft(fftshift(c1)); %h v-3L#V  
    if rem(m1,J) == 0                                 % Save output every J steps. [5Zi\'~UH)  
        U1 = [U1 u1];                                  % put solutions in U array kqGydGh*"  
        U2=[U2 u2]; 0\+$j5;  
        MN1=[MN1 m1]; A@reIt  
        z1=dz*MN1';                                    % output location _,w*Rv5=  
      end ozA%u,\7k  
    end =.,XJIw&  
    hg=abs(U1').*abs(U1');                             % for data write to excel }{v0}-~@  
    ha=[z1 hg];                                        % for data write to excel Z 2lX^z  
    t1=[0 t']; ^b*ub(5Ot  
    hh=[t1' ha'];                                      % for data write to excel file nyOvB#f  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format N8X)/W  
    figure(1) 4ZB]n,pfT  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Kc+9n%sp  
    figure(2) 8an_s%,AW  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn {(h!JeQ  
    {7Kl #b  
    非线性超快脉冲耦合的数值方法的Matlab程序 Htep3Ol3  
    lLEEre  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ='(;!3ZH  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Z*'_/Grv?  
    \*c=bz&l  
    Z-aB[hE  
    d%oHcn  
    %  This Matlab script file solves the nonlinear Schrodinger equations u2*."W\  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 1119YeL  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear K:Z|# i-  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 OO;I^`Yn  
    >jc17BJq  
    C=1;                           O\w-hk  
    M1=120,                       % integer for amplitude d/E0opv  
    M3=5000;                      % integer for length of coupler xP 3>8Y  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) q4Y'yp`?K;  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. l Ng)k1  
    T =40;                        % length of time:T*T0. t_qX7P8+'  
    dt = T/N;                     % time step 7Q aZ|\c  
    n = [-N/2:1:N/2-1]';          % Index ]Y f8  
    t = n.*dt;   w^S]HzMd  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. b+$-f:mj  
    w=2*pi*n./T; s$/ Z+"f(  
    g1=-i*ww./2; i^ eDM.#X  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 0:eK}tC  
    g3=-i*ww./2; Hlj3z3  
    P1=0; RG- ,<G`  
    P2=0; C(}Kfi@6N  
    P3=1; oSP^ .BJ$  
    P=0; Qq\hD@Z|  
    for m1=1:M1                 Rz33_ qA  
    p=0.032*m1;                %input amplitude ~bfjP2 g  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 kqLpt  
    s1=s10; 9A}nZ1Y  
    s20=0.*s10;                %input in waveguide 2 5 ~"m$/yE  
    s30=0.*s10;                %input in waveguide 3 dVBr-+  
    s2=s20; G)%r|meKGB  
    s3=s30; $oZV 54  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   i.+#a2   
    %energy in waveguide 1 x%RE3J-  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Ft8ii|-  
    %energy in waveguide 2 > Cx;h=  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   h'A #Yp0,  
    %energy in waveguide 3 wodff_l  
    for m3 = 1:1:M3                                    % Start space evolution MUp{2_RA  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS Gdlx0i  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 6)9X+U@  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; Y IVN;:B.  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform wQX%*GbL2  
       sca2 = fftshift(fft(s2)); *w1R>  
       sca3 = fftshift(fft(s3)); s?&UFyYb,  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   )eBCO~HS  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); )(`,!s,8)  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); !(qaudX{>k  
       s3 = ifft(fftshift(sc3)); =UF mN"  
       s2 = ifft(fftshift(sc2));                       % Return to physical space /x&52~X5-  
       s1 = ifft(fftshift(sc1)); R?l={N=Wf  
    end 0EUC8Ni  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); yzz(<s:o/  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); s=)1:jY k  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); @. KFWAm  
       P1=[P1 p1/p10]; 2tdr1+U?g  
       P2=[P2 p2/p10]; X6o iOs  
       P3=[P3 p3/p10]; T28Q(\C:}  
       P=[P p*p]; ](^BQc  
    end .4,l0Nn`W  
    figure(1) gOn^}%4.I  
    plot(P,P1, P,P2, P,P3); ~`VD}{[,B  
    B6]M\4v  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~