切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9170阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 :/y1yM  
    8*8Zc/{  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of .^N/peU q  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of GMMp|WV|  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear A~Y^VEn  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 D<|qaHB=  
    }xBc0g r  
    %fid=fopen('e21.dat','w'); 1v,Us5s<"6  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) j2Tr $gx<  
    M1 =3000;              % Total number of space steps @|<<H3I  
    J =100;                % Steps between output of space !xP8# |1  
    T =10;                  % length of time windows:T*T0 OC1I&",Ai|  
    T0=0.1;                 % input pulse width -M%_\;"de  
    MN1=0;                 % initial value for the space output location I([!]z  
    dt = T/N;                      % time step Z^V6K3GSz-  
    n = [-N/2:1:N/2-1]';           % Index ?z}=B  
    t = n.*dt;   =3q/F7-  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Wm_4avXtO  
    u20=u10.*0.0;                  % input to waveguide 2 x\F,SEj  
    u1=u10; u2=u20;                 VS9`{  
    U1 = u1;   5nv<^>[J  
    U2 = u2;                       % Compute initial condition; save it in U >2~+.WePu  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. " Om[~-31  
    w=2*pi*n./T; hJwC~HG5  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T %FXfqF9  
    L=4;                           % length of evoluation to compare with S. Trillo's paper NLS%Sq  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 cs T2B[f9D  
    for m1 = 1:1:M1                                    % Start space evolution j;s"q]"x]  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS *:>"q ej  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; qY~`8 x  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform L!=4N!j  
       ca2 = fftshift(fft(u2)); QA2borfy  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Sl-v W  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   Jj,U RD&0R  
       u2 = ifft(fftshift(c2));                        % Return to physical space ._8KsuJG  
       u1 = ifft(fftshift(c1)); 4D[ '^q  
    if rem(m1,J) == 0                                 % Save output every J steps. 4!+pc-}-  
        U1 = [U1 u1];                                  % put solutions in U array [ j3&/  
        U2=[U2 u2]; vr0WS3  
        MN1=[MN1 m1]; ~.A)bp  
        z1=dz*MN1';                                    % output location &krwf ]|  
      end /rq VB|M  
    end ox:[f9.5  
    hg=abs(U1').*abs(U1');                             % for data write to excel 6b%WHLUeT  
    ha=[z1 hg];                                        % for data write to excel j'%$XvI  
    t1=[0 t']; 8'<-:KG  
    hh=[t1' ha'];                                      % for data write to excel file FL(6?8zK  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format \"CZI<=TB  
    figure(1) }e2(T  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Q-MQ9'  
    figure(2) ?*?RP)V  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn tj Gd )  
    9Xl`pEhC  
    非线性超快脉冲耦合的数值方法的Matlab程序 %^I88,$&L  
    JNkwEZhHyg  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   #ggf' QIHp  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 /%0<p,T  
    C0S^h<iSe*  
    %=?cZfFqO  
    9:`(Q3Ei  
    %  This Matlab script file solves the nonlinear Schrodinger equations F%i^XA]a*  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of -8r  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear TJ: ]SB  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Ku\Y'ub  
    ,$'])A?$  
    C=1;                           ;QW3CEaUq  
    M1=120,                       % integer for amplitude dxZu2&gi  
    M3=5000;                      % integer for length of coupler 9cEv&3  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) TjQvAkT  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. uq, { tV  
    T =40;                        % length of time:T*T0. ~4s'0 w^  
    dt = T/N;                     % time step nBHnkbKoy  
    n = [-N/2:1:N/2-1]';          % Index A5i:x$ww  
    t = n.*dt;   s<9RKfm  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. DXa=|T  
    w=2*pi*n./T; Q$:![}[(  
    g1=-i*ww./2; EL8NZ%:v:  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; &v"3*.org@  
    g3=-i*ww./2; G:pEE:W[  
    P1=0; z I+\Oll#Q  
    P2=0; AX= 1b,s  
    P3=1; 4O;OjUI0a  
    P=0; mt5KbA>nU  
    for m1=1:M1                 M/):e$S  
    p=0.032*m1;                %input amplitude ep=qf/vd<  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 1j:Wh  
    s1=s10; i&vaeP25)  
    s20=0.*s10;                %input in waveguide 2 \0mb 3Q'  
    s30=0.*s10;                %input in waveguide 3 [5uRS}!  
    s2=s20; TQ{Han!  
    s3=s30; Kx=4~  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   $KLD2BAL  
    %energy in waveguide 1 N nk@h  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Ea?XT&,  
    %energy in waveguide 2 *P 3V  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   /}Lt,9  
    %energy in waveguide 3 D K=cVpN%s  
    for m3 = 1:1:M3                                    % Start space evolution ++aL4:  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS x7vctjM|  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; FL8g5I  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; om |"S  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform TYlbU<  
       sca2 = fftshift(fft(s2)); "Ae@lINn[y  
       sca3 = fftshift(fft(s3)); $uap8nN  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ^':!1  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); N.4q.  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); B9T!j]'  
       s3 = ifft(fftshift(sc3)); ,oNOC3 U  
       s2 = ifft(fftshift(sc2));                       % Return to physical space /;tPNp{!dw  
       s1 = ifft(fftshift(sc1)); FJ %  
    end p|Q*5TO  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); fm(e3]  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); =xsTDjH>  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ZkIgL  
       P1=[P1 p1/p10]; #[e  
       P2=[P2 p2/p10]; <L{(Mj%Z  
       P3=[P3 p3/p10]; wtT}V=_  
       P=[P p*p]; 8a_[B~  
    end { .*y  
    figure(1) ;L|uIg;.s  
    plot(P,P1, P,P2, P,P3); 2_ :n  
    r}0\}~'?c  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~