切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 7936阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 dMI G2log  
    dkQP.Tj$i  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of [LV>z  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of fOP3`G^\  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear  Qr-,J_  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 F8\JL %  
    }z2[w@M  
    %fid=fopen('e21.dat','w'); Q4g69IE  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Q0g^%  
    M1 =3000;              % Total number of space steps E[FE-{B#  
    J =100;                % Steps between output of space 1`~.!yd8(  
    T =10;                  % length of time windows:T*T0 7IrH(~Fo  
    T0=0.1;                 % input pulse width :edy(vC<  
    MN1=0;                 % initial value for the space output location IUD@Kf]S  
    dt = T/N;                      % time step `1lGAKv  
    n = [-N/2:1:N/2-1]';           % Index sdN1BV2  
    t = n.*dt;   n-OQCz9Xl  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 Qn;,OB k  
    u20=u10.*0.0;                  % input to waveguide 2 eEYz A  
    u1=u10; u2=u20;                 VWk{?*Dp  
    U1 = u1;   %kP=VUXj  
    U2 = u2;                       % Compute initial condition; save it in U CbOCL~ "  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. _KZ TY`/*  
    w=2*pi*n./T; 8KsPAK_  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T N%)q.'M  
    L=4;                           % length of evoluation to compare with S. Trillo's paper $M$-c{>s  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 z00,Vr^m  
    for m1 = 1:1:M1                                    % Start space evolution =}Yz[-I  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS HK VtO%&  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; }q,dJE  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform StiWa<"c  
       ca2 = fftshift(fft(u2)); oFsV0 {x%)  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation ~"8r=8|  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   :BB=E'293  
       u2 = ifft(fftshift(c2));                        % Return to physical space hUEA)c  
       u1 = ifft(fftshift(c1)); dq0!.gBT2  
    if rem(m1,J) == 0                                 % Save output every J steps. $KP&#;9  
        U1 = [U1 u1];                                  % put solutions in U array )^ PWr^  
        U2=[U2 u2]; HumL(S'm  
        MN1=[MN1 m1]; iV!V!0- @  
        z1=dz*MN1';                                    % output location YdN]Tqc  
      end dk0} q6~  
    end -&lD0p>*g  
    hg=abs(U1').*abs(U1');                             % for data write to excel 3^-\=taN<m  
    ha=[z1 hg];                                        % for data write to excel W>'(MB$3  
    t1=[0 t']; "/%o'Fq  
    hh=[t1' ha'];                                      % for data write to excel file I__ a}|T%  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format &q#. >  
    figure(1) MSB/O.  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn m^w{:\p  
    figure(2) ,;f5OUl?[  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ,wngS=  
    AHHV\r  
    非线性超快脉冲耦合的数值方法的Matlab程序 ,hm&]  
    4[)tO-v:Y  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   Vlge*4q  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 \u;`Lf  
    ?-tNRIPW@p  
    LjIkZ'HuF  
    T1'\!6_5  
    %  This Matlab script file solves the nonlinear Schrodinger equations kdaq_O:s  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of qd<I;*WV  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear &y7xL-xP  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 0E)M6 jJ  
    A2 $05a$%  
    C=1;                           <~S]jtL.j:  
    M1=120,                       % integer for amplitude dN7.W   
    M3=5000;                      % integer for length of coupler &xp]9$  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) ?Cx=!k.  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ae](=OQ  
    T =40;                        % length of time:T*T0. = |2F?  
    dt = T/N;                     % time step fK2r6D9  
    n = [-N/2:1:N/2-1]';          % Index cIcu=U  
    t = n.*dt;   ^;tB,7:*V  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. |dDKO  
    w=2*pi*n./T; 2'-84  
    g1=-i*ww./2; %jHe_8=o  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; GRaU]Z]ck  
    g3=-i*ww./2; ?Iq{6O>D.  
    P1=0;  ) TRUx  
    P2=0; 5"X@<;H%  
    P3=1;  +cKOIMu9  
    P=0; 7 p1B"%  
    for m1=1:M1                 1N<n)>X4  
    p=0.032*m1;                %input amplitude eN\+  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 @;N(3| n7  
    s1=s10; ;cZp$ xb3  
    s20=0.*s10;                %input in waveguide 2 w'E?L`c  
    s30=0.*s10;                %input in waveguide 3 #=;vg  
    s2=s20; /)kx`G_  
    s3=s30; EVC]B}  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   B< HN$/  
    %energy in waveguide 1 [rL 8L6,!  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   B^/k`h6J  
    %energy in waveguide 2 *aFY+.;U`  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   =LGSywWM9  
    %energy in waveguide 3 gXM+N(M-  
    for m3 = 1:1:M3                                    % Start space evolution E+LQyvF[  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS uGm?e]7Hx<  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ?%Ww3cU+J  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; UEhFId  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform c{KJNH%7  
       sca2 = fftshift(fft(s2)); (E,Ibz2G:e  
       sca3 = fftshift(fft(s3)); s`0IyQXVU  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   $R NHRA.  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); \ 9iiS(e  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); #9F>21UU  
       s3 = ifft(fftshift(sc3)); =\oL'>q  
       s2 = ifft(fftshift(sc2));                       % Return to physical space .wyuB;:  
       s1 = ifft(fftshift(sc1)); ~sPXkLqK  
    end M&<qGV$A  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); es~1@Jb  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); p \9}}t7n  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); 8R:Glif  
       P1=[P1 p1/p10]; 1N:~5S}s>  
       P2=[P2 p2/p10]; s9OW.i]zX  
       P3=[P3 p3/p10]; 9qgs*]J  
       P=[P p*p]; N u\<Xr8  
    end %5DM ew  
    figure(1) ezCJq`b  
    plot(P,P1, P,P2, P,P3); 'W>y v  
    <;O^3_'  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~