切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9430阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 /U|>  
    HkGA$  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of .I6:iB  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of lu]Z2xSv  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear )p,uZ`~v  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ]e*Zx;6oi  
    .Pp;%  
    %fid=fopen('e21.dat','w'); \,U#^Vr  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) SAuZWA4g[  
    M1 =3000;              % Total number of space steps d+ LEi^  
    J =100;                % Steps between output of space Xp(e/QB  
    T =10;                  % length of time windows:T*T0 x2P}8Idg?A  
    T0=0.1;                 % input pulse width 'Gn-8r+  
    MN1=0;                 % initial value for the space output location Rnl 4  
    dt = T/N;                      % time step pt"yJtM'P  
    n = [-N/2:1:N/2-1]';           % Index 6]GEn=t  
    t = n.*dt;   6SYQRK  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 A578g  
    u20=u10.*0.0;                  % input to waveguide 2 &e#>%0aS  
    u1=u10; u2=u20;                 MhE'_sq  
    U1 = u1;   ^ X&`:f  
    U2 = u2;                       % Compute initial condition; save it in U ] D(laqS;"  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. #g.J,L  
    w=2*pi*n./T; XIv{jzgF  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T @;T>*_Yhn  
    L=4;                           % length of evoluation to compare with S. Trillo's paper <tT*.nM\  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 @<GVY))R8  
    for m1 = 1:1:M1                                    % Start space evolution ~2R3MF.C  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS Gi<ik~  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 1QfOD-lv  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform ? J;*  
       ca2 = fftshift(fft(u2)); (<u3<40[YN  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation n+5X*~D  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   9J"Y   
       u2 = ifft(fftshift(c2));                        % Return to physical space _}_lrg}U  
       u1 = ifft(fftshift(c1)); u )'l|Y  
    if rem(m1,J) == 0                                 % Save output every J steps.  (h"Yw  
        U1 = [U1 u1];                                  % put solutions in U array c)N&}hFYC  
        U2=[U2 u2]; j( *;W}*^  
        MN1=[MN1 m1]; 8vN}v3HV&  
        z1=dz*MN1';                                    % output location Y0kDHG  
      end /ae]v+  
    end aLwd#/!  
    hg=abs(U1').*abs(U1');                             % for data write to excel Q77iMb]  
    ha=[z1 hg];                                        % for data write to excel mY+.(N7m  
    t1=[0 t']; nN|zEw]  
    hh=[t1' ha'];                                      % for data write to excel file >s@6rNgf  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format =~Ac=j!q  
    figure(1) GJ>vL  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn tDuQ+|~M  
    figure(2) .Yxx   
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn -0KQR{LI  
    HJY_l  
    非线性超快脉冲耦合的数值方法的Matlab程序 @!92Ok  
    jg ~;s  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   F",S}cK*MH  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 7=.}484>J  
    1dhp/Qh  
    SE0"25\_G  
    R/H ?/  
    %  This Matlab script file solves the nonlinear Schrodinger equations +vxU~WIV&  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of RI#C r+/  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 8T5s6EmIOW  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 b"Hg4i)  
    NN<kO#c+2  
    C=1;                           bSW!2#~  
    M1=120,                       % integer for amplitude Z`fm;7NiVG  
    M3=5000;                      % integer for length of coupler Ji7%=_@'-#  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) %@<}z|.4  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. t I9$m[  
    T =40;                        % length of time:T*T0. PVAs# ~  
    dt = T/N;                     % time step (7nWv43  
    n = [-N/2:1:N/2-1]';          % Index Dk#$PjcRE  
    t = n.*dt;   v})0zz?,1  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. 1=DUFl.  
    w=2*pi*n./T; &`7tX.iMlh  
    g1=-i*ww./2; Sd]`I)  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; nq#k}Qx:  
    g3=-i*ww./2; -\;x>=#B  
    P1=0; YoD1\a|  
    P2=0;  D7%`hU  
    P3=1; C\7qAR\  
    P=0; ;9,<&fe  
    for m1=1:M1                 ?YY'-\h?  
    p=0.032*m1;                %input amplitude w'q}aQS  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 %YhZ#>WT  
    s1=s10;  A_: Bz:  
    s20=0.*s10;                %input in waveguide 2 ?i*kwEj=  
    s30=0.*s10;                %input in waveguide 3 *Yk3y-   
    s2=s20; d+KLtvB%M  
    s3=s30; S#{e@ C  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   |H&2[B"l  
    %energy in waveguide 1 /nEh,<Y)  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   z JWh  
    %energy in waveguide 2 c ?mCt0Cg  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   brN:Ypf-e  
    %energy in waveguide 3 &?(r# T  
    for m3 = 1:1:M3                                    % Start space evolution A{Giz&p  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS /?l@7  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; be`\ O  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ]|[,N>  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform #RK?3?wcr  
       sca2 = fftshift(fft(s2)); ?6B n&qa  
       sca3 = fftshift(fft(s3)); l]whL1N3  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   k<uC[)_  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); tk4~ 8  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); oB8u[ !  
       s3 = ifft(fftshift(sc3)); ZK))91;v  
       s2 = ifft(fftshift(sc2));                       % Return to physical space U7U-H\t7  
       s1 = ifft(fftshift(sc1)); BnH< -n_  
    end Ch607 i=  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); b,YTw  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); xMDx<sk  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); t^. U<M  
       P1=[P1 p1/p10]; 6sb,*uSn%  
       P2=[P2 p2/p10]; hVRpk0IJDK  
       P3=[P3 p3/p10]; MWGW[V;  
       P=[P p*p]; FbQ"ZTN\;Y  
    end P?*$Wf,~n  
    figure(1) ny17(Y =  
    plot(P,P1, P,P2, P,P3); %fMK^H8{  
    K2<Q9 ,vt  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~