计算脉冲在非线性耦合器中演化的Matlab 程序 v&oE!s# 2^N
4( % This Matlab script file solves the coupled nonlinear Schrodinger equations of
~$} `R= % soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of
6-C9[[g< % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
;(M`Wy]2 % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
fbp6lE i~
D, %fid=fopen('e21.dat','w');
"2:]9j N = 128; % Number of Fourier modes (Time domain sampling points)
PW)XDo7 M1 =3000; % Total number of space steps
sxcpWSGA^ J =100; % Steps between output of space
Cn4o^6? " T =10; % length of time windows:T*T0
O.4ty)* T0=0.1; % input pulse width
Z{nJ\` MN1=0; % initial value for the space output location
6(
TG/J dt = T/N; % time step
r
J'm>&Ps n = [-N/2:1:N/2-1]'; % Index
5at\!17TY t = n.*dt;
X?5M)MP+I u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10
%IG cn48J u20=u10.*0.0; % input to waveguide 2
@4dB$QF`& u1=u10; u2=u20;
_
h\wH; U1 = u1;
* Zb-YA U2 = u2; % Compute initial condition; save it in U
Zn&S7a>7 ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
l(|@ dp w=2*pi*n./T;
D/C,Q|Ya6 g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T
|KFRC)g L=4; % length of evoluation to compare with S. Trillo's paper
.r!:` 6 dz=L/M1; % space step, make sure nonlinear<0.05
sS#Lnj^`% for m1 = 1:1:M1 % Start space evolution
#MYhKySku u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS
Z"rrbN1 u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2;
IKSe X ca1 = fftshift(fft(u1)); % Take Fourier transform
ImQ?<g8$ ca2 = fftshift(fft(u2));
En%PIkxeR c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation
bf]W_I]B c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift
@mM'V5_# u2 = ifft(fftshift(c2)); % Return to physical space
#:"F-3A0 u1 = ifft(fftshift(c1));
9qxB/5d_ if rem(m1,J) == 0 % Save output every J steps.
2OFrv=F U1 = [U1 u1]; % put solutions in U array
#xZ7% U2=[U2 u2];
|4NH}XVYJ> MN1=[MN1 m1];
`PK1zSr z1=dz*MN1'; % output location
w7}m
T3p,) end
;QbMVY end
m }I@:s2 hg=abs(U1').*abs(U1'); % for data write to excel
tpp. 9 ha=[z1 hg]; % for data write to excel
|~vo t1=[0 t'];
P wL]v. : hh=[t1' ha']; % for data write to excel file
y\7 -! %dlmwrite('aa',hh,'\t'); % save data in the excel format
kx=.K'd5H figure(1)
3x2*K_A5:Q waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn
]H8,} figure(2)
)Cl!, m)~ waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn
m~a' {w*5uI%%e 非线性超快脉冲耦合的数值方法的Matlab程序 FWpcWmS`s :^".cs?g 在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的
论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。
W.b?MPy] Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
Ng=XH"ce~ J
WaI[n} %7WQb]y '?Fw]z1$ % This Matlab script file solves the nonlinear Schrodinger equations
(izGF;N+ % for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of
_(=[d % Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear
b
z3& % pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004
Bu4J8eLx mD@#,B7A C=1;
yxq+<A4,a M1=120, % integer for amplitude
9AQMB1D*v4 M3=5000; % integer for length of coupler
8nn%wps N = 512; % Number of Fourier modes (Time domain sampling points)
c zTr_> dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05.
U_!Wg| T =40; % length of time:T*T0.
L|hsGm\ dt = T/N; % time step
&qfnCM0Y n = [-N/2:1:N/2-1]'; % Index
\[</|]'[ t = n.*dt;
d$~q ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1.
,n&@O,XGy
w=2*pi*n./T;
FJ]BB4
K g1=-i*ww./2;
_ZUtQ49 g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0;
Qu4Bd|`(k g3=-i*ww./2;
~RdJP'YF- P1=0;
2S'{$m)
P2=0;
yu8xTh$: P3=1;
0N02 E P=0;
yhnhORSY; for m1=1:M1
(80 Tbi~+ p=0.032*m1; %input amplitude
r9:Cq s10=p.*sech(p.*t); %input soliton pulse in waveguide 1
:H/CiN s1=s10;
>jI(^8? s20=0.*s10; %input in waveguide 2
xD[O8vQE s30=0.*s10; %input in waveguide 3
LU$aCw5 B; s2=s20;
OhUEp g[ s3=s30;
Imi;EHW p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));
*fs'%"w- %energy in waveguide 1
xb`,9.a7 p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));
|ymw])L %energy in waveguide 2
8}9B*m p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));
K/)*P4C- %energy in waveguide 3
t+C9QXY for m3 = 1:1:M3 % Start space evolution
|l5ol@2* s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1; % 1st step, Solve nonlinear part of NLS
Af'L=0 s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2;
qfF/X"#0 s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3;
Qoa gy L sca1 = fftshift(fft(s1)); % Take Fourier transform
j*2Q{ik>J sca2 = fftshift(fft(s2));
1eiV[z$? sca3 = fftshift(fft(s3));
XN+~g.0 sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz); % 2nd step, frequency domain phase shift
FdrH, sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz);
5LJUD>f9Z sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz);
Mf [v 7\
s3 = ifft(fftshift(sc3));
$#|iKi<Y@j s2 = ifft(fftshift(sc2)); % Return to physical space
{J_1.uN= s1 = ifft(fftshift(sc1));
H oA[UT end
rl#[HbPM p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1))));
VXr'Z p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));
%Ot2bhK; p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1))));
Snm
m(. P1=[P1 p1/p10];
i-6,r [< P2=[P2 p2/p10];
<A% } P3=[P3 p3/p10];
ldEZ _g^ P=[P p*p];
:)/%*<vq, end
Vn:BasS% figure(1)
H"~]|@g-p plot(P,P1, P,P2, P,P3);
'FVh/};Y.D )"Ef* /+ 转自:
http://blog.163.com/opto_wang/