非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 l?/.uNw
function z = zernfun(n,m,r,theta,nflag) G{cTQH|
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. CY4_=
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N D-8>?`n\
% and angular frequency M, evaluated at positions (R,THETA) on the %YaUc{.%
% unit circle. N is a vector of positive integers (including 0), and @MV%&y*z.
% M is a vector with the same number of elements as N. Each element DJ9;{,gm
% k of M must be a positive integer, with possible values M(k) = -N(k) VhAZncw
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 28j=q-9Z
% and THETA is a vector of angles. R and THETA must have the same Bn"r;pqWiT
% length. The output Z is a matrix with one column for every (N,M) WLAJqmC]
% pair, and one row for every (R,THETA) pair. 9o7d3 ir)
% Rro{A+[,X
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike J\%<.S>
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !7g
E
% with delta(m,0) the Kronecker delta, is chosen so that the integral 1@ j>2>i
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |-zwl8E
% and theta=0 to theta=2*pi) is unity. For the non-normalized :);]E-ch
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !k&~|_$0@
% 8dw]i1t<
% The Zernike functions are an orthogonal basis on the unit circle. FNDLqf!j
% They are used in disciplines such as astronomy, optics, and MGO.dRy_
% optometry to describe functions on a circular domain. _e.b#{=9
% ~EU[?
% The following table lists the first 15 Zernike functions. tH:K6^oR
% xX'Uq_Jv
% n m Zernike function Normalization n/"T7Y\2
% -------------------------------------------------- vII8>x%*
% 0 0 1 1 f= }Mr8W'
% 1 1 r * cos(theta) 2 e^@/Bm+B
% 1 -1 r * sin(theta) 2 6,xoxNoPP3
% 2 -2 r^2 * cos(2*theta) sqrt(6) >:]fN61#
% 2 0 (2*r^2 - 1) sqrt(3) x~GV#c
% 2 2 r^2 * sin(2*theta) sqrt(6) 6QRfju'
% 3 -3 r^3 * cos(3*theta) sqrt(8) ~MY(6P
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) mm=Y(G[_%y
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Xl6)&
% 3 3 r^3 * sin(3*theta) sqrt(8) Z"gllpDr$
% 4 -4 r^4 * cos(4*theta) sqrt(10) -aNTFt~|[
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $Yz &x%Lb
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) =tcPYYD
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) EGwY|+3
% 4 4 r^4 * sin(4*theta) sqrt(10) FZ>*<&
% -------------------------------------------------- ZZC=
7FB
% u,F d[[t
% Example 1: P:k(=CzZ@J
% e#^|NQ<'A
% % Display the Zernike function Z(n=5,m=1) 6\,^MI
% x = -1:0.01:1; J'O`3!Oy/
% [X,Y] = meshgrid(x,x); 0iXqAa
% [theta,r] = cart2pol(X,Y); MatC2-aV1
% idx = r<=1; Y%:p(f<
% z = nan(size(X)); tL+8nTL
% z(idx) = zernfun(5,1,r(idx),theta(idx)); l7{hq}@;cC
% figure ?<frU ,{
% pcolor(x,x,z), shading interp z K8#gif@
% axis square, colorbar @\l>
<R9V
% title('Zernike function Z_5^1(r,\theta)') 5 J|;RtcR
% dr6 dK
% Example 2: F'CUkVC0~P
% zFi+6I$
% % Display the first 10 Zernike functions wHZ!t,g
% x = -1:0.01:1; `A
<yDy
% [X,Y] = meshgrid(x,x); lO $M6l
% [theta,r] = cart2pol(X,Y); SA>;]6)`(
% idx = r<=1; !P Gow
% z = nan(size(X)); G^mk<pH
% n = [0 1 1 2 2 2 3 3 3 3]; ,.`^Wx6F
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; =w A< F
% Nplot = [4 10 12 16 18 20 22 24 26 28]; om_&|9B)
% y = zernfun(n,m,r(idx),theta(idx)); 8)POEY4
% figure('Units','normalized') N~>?w#?J
% for k = 1:10 9jPb-I-
% z(idx) = y(:,k); >!)VkDAG
% subplot(4,7,Nplot(k)) f!$J_dz
% pcolor(x,x,z), shading interp vWkKNB
% set(gca,'XTick',[],'YTick',[]) T4!]^_t^
% axis square ` `;$Kr
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Ok`U*j
% end A[ iPs9
% j[U0,]
% See also ZERNPOL, ZERNFUN2. d7^XP
f,L
% Paul Fricker 11/13/2006 Y|VzeJC
|16
:Zoq
:s'%IGy>:
% Check and prepare the inputs: #8z\i2I
% ----------------------------- wO!hVm,Ta
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5N/]/
error('zernfun:NMvectors','N and M must be vectors.') *>'R
R<
end 2mlE;.}8
#P9VX5Tg
if length(n)~=length(m) fBLd5
error('zernfun:NMlength','N and M must be the same length.') 8&UuwZ6i-
end =!CuCV7$1O
I@S<D"af
n = n(:); F>b6fUtR
m = m(:); -KNJCcBJ
if any(mod(n-m,2)) E7h}0DX
error('zernfun:NMmultiplesof2', ... Qx,G3m[}
'All N and M must differ by multiples of 2 (including 0).') ,?d%&3z<a
end |fI%L9
Ksp;bfe
if any(m>n) Y>#c2@^i<
error('zernfun:MlessthanN', ... VDPN1+1*
'Each M must be less than or equal to its corresponding N.') U KJY.W!w4
end r#Fu<so,
a2rv4d=
if any( r>1 | r<0 ) ZkIQ-;wx
error('zernfun:Rlessthan1','All R must be between 0 and 1.') >ATW/9r
end " /'=gE
YQ)m?=+J
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) K?tk&0
error('zernfun:RTHvector','R and THETA must be vectors.') $"FdS,*qKl
end jFXU
xf
UJH{vjIv
r = r(:); Ji!-G4.n"
theta = theta(:); -0X> y
length_r = length(r); 0@Ijk(|
if length_r~=length(theta) g7P1]CZ}
error('zernfun:RTHlength', ... IID(mmy6
L
'The number of R- and THETA-values must be equal.') 2$o[
end
flB,_
9vbh5xX
% Check normalization: 6-=_i)kzq
% -------------------- :}JZKj!}M
if nargin==5 && ischar(nflag) u7=[~l&L
isnorm = strcmpi(nflag,'norm'); ~/U0S.C
if ~isnorm ?},ItJ#>)q
error('zernfun:normalization','Unrecognized normalization flag.') 1;P\mff3Y
end Ax0,7,8y
else (6BCFl:/Q<
isnorm = false; /(V=Um^0
end 4PWr;&
S2R[vB4).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C P#79=1
% Compute the Zernike Polynomials 2jW>uk4/i
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K*Jtyy}r
K8J2eV\
% Determine the required powers of r: 88>Uu!M=f
% ----------------------------------- gHx-m2N
m_abs = abs(m); _o.Z`]
rpowers = []; ^PQV3\N
for j = 1:length(n) #FB>}:L{h*
rpowers = [rpowers m_abs(j):2:n(j)]; W\,lII0
end \Wc/kY3&
rpowers = unique(rpowers); Y*k<NeDyn
17cW8\
% Pre-compute the values of r raised to the required powers, q&E5[/VK:
% and compile them in a matrix: >t2b?(h/x
% ----------------------------- v)yimIHzo
if rpowers(1)==0 kMl<
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); S7a6ntei
rpowern = cat(2,rpowern{:}); 2]9<%-=S
rpowern = [ones(length_r,1) rpowern]; h`]/3Ma*:
else @S7=6RKa[
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); $/TA5h
rpowern = cat(2,rpowern{:}); ^qqHq
end F?} *ovy
~It+|X=Kx
% Compute the values of the polynomials: 5{q/z^]
% -------------------------------------- j#,M@CE
y = zeros(length_r,length(n)); d;SRK @
for j = 1:length(n) ~{YgM/c|dt
s = 0:(n(j)-m_abs(j))/2; 4p8jV*:@{
pows = n(j):-2:m_abs(j); #U52\3G
for k = length(s):-1:1 &t/<yq}{
p = (1-2*mod(s(k),2))* ... |u"R(7N*
prod(2:(n(j)-s(k)))/ ...
sGls^J)
prod(2:s(k))/ ... eH
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /Q8A"'Nk
prod(2:((n(j)+m_abs(j))/2-s(k))); [7 `Dgnmq
idx = (pows(k)==rpowers); :5M}Iz7
y(:,j) = y(:,j) + p*rpowern(:,idx); H}V*<mgw
end %`T5a<
+Nbk\%
if isnorm GFdJFQio
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6r=)V$K<
end j' KobyX<
end k^5Rf
% END: Compute the Zernike Polynomials "tB"j9Jb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4VJzs$
!VX_'GyK
% Compute the Zernike functions: 'Y{ux>
% ------------------------------ UUf1T@-
idx_pos = m>0; 0nz@O^*g(
idx_neg = m<0; WFB|lNf&
J5p!-N`NS
z = y; Ym{%"EB
if any(idx_pos) @b*T4hwA.
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3ZL7N$N}7
end &9dr+o-(~
if any(idx_neg) P9i9<pR
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); uU(G_E ?
end p:<gFZb
Gx_`|I{P
% EOF zernfun