非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #2ZrdD"5kQ
function z = zernfun(n,m,r,theta,nflag) e$p1Th*|]4
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ^6N3n kyZ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ^-csi
% and angular frequency M, evaluated at positions (R,THETA) on the !"o1ve`{
% unit circle. N is a vector of positive integers (including 0), and ^>vO5Ho.
% M is a vector with the same number of elements as N. Each element ?h>%Ix
% k of M must be a positive integer, with possible values M(k) = -N(k) ';fU.uy
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, F|
,Vw{
% and THETA is a vector of angles. R and THETA must have the same 0s+rd&
% length. The output Z is a matrix with one column for every (N,M) (|ct`KU0#
% pair, and one row for every (R,THETA) pair. 7Dx .;
% O) =73e\
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Hm8EYPrJ
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), wFoR,oXtL/
% with delta(m,0) the Kronecker delta, is chosen so that the integral JJbM)B@-
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, vt(}ga
% and theta=0 to theta=2*pi) is unity. For the non-normalized >m;|I/2@
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =`7)X\i@z
% >FEQtD~F
% The Zernike functions are an orthogonal basis on the unit circle. !,-qn)b
% They are used in disciplines such as astronomy, optics, and u1pYlu9IW
% optometry to describe functions on a circular domain. 4%c7#AX[T
% u[6`Jr~
% The following table lists the first 15 Zernike functions. Fm[?@Z&wP
% ek0;8Ds9
% n m Zernike function Normalization l66ipgw_^I
% -------------------------------------------------- yW6[Fpw
% 0 0 1 1 Sj]T{3mi
% 1 1 r * cos(theta) 2 ui#1 +p3G
% 1 -1 r * sin(theta) 2 [jtj~]&mO
% 2 -2 r^2 * cos(2*theta) sqrt(6) Ik@Q@ T"
% 2 0 (2*r^2 - 1) sqrt(3) 6&xW9' 6b:
% 2 2 r^2 * sin(2*theta) sqrt(6) ]=
QCCC
% 3 -3 r^3 * cos(3*theta) sqrt(8) WSpg(\Cs
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) _
/28Cw
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ~:RDw<PWp
% 3 3 r^3 * sin(3*theta) sqrt(8) o`y*yucHI
% 4 -4 r^4 * cos(4*theta) sqrt(10) +D{*L0$D"
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M@LaD 5
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) '\E*W!R.]
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ekk&TTp#
% 4 4 r^4 * sin(4*theta) sqrt(10) #*;fQ&p
% -------------------------------------------------- ` $x#_-Hn
% o4I!VK(C#s
% Example 1: ;HLMU36q
% 77=y!SDP
% % Display the Zernike function Z(n=5,m=1) JXR/K=<^
% x = -1:0.01:1; n-| i
% [X,Y] = meshgrid(x,x); 2"{]A;@
% [theta,r] = cart2pol(X,Y); DGuUI}|)
% idx = r<=1; F#37Qv
% z = nan(size(X)); mLxwJ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); `))J8j"
% figure &fNE9peQFa
% pcolor(x,x,z), shading interp BQfAen]
% axis square, colorbar u4*]jt;H
% title('Zernike function Z_5^1(r,\theta)') o!_; H}pq
% R7;rBEt8
% Example 2: IM&7h!
l"|
% z1KC$~{O
% % Display the first 10 Zernike functions
s?\9i6
% x = -1:0.01:1; ^[?+=1
k
% [X,Y] = meshgrid(x,x); $X\`
7`v
% [theta,r] = cart2pol(X,Y); )b2E/G@X&
% idx = r<=1; *p5T
% z = nan(size(X)); 2Q_{2(nQb
% n = [0 1 1 2 2 2 3 3 3 3]; sT"tS>
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; u.K'"-xt4K
% Nplot = [4 10 12 16 18 20 22 24 26 28]; >p#d;wK4_
% y = zernfun(n,m,r(idx),theta(idx)); IOES3
% figure('Units','normalized') `q{'_\gVt(
% for k = 1:10 6%hEs6-R
% z(idx) = y(:,k); I8oKa$RF
% subplot(4,7,Nplot(k)) rpP+20 v
% pcolor(x,x,z), shading interp mM^8YL
% set(gca,'XTick',[],'YTick',[]) qxCL
% axis square JP% ;rAoJ
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) cM'[;u
% end % |Gzht\
% mbG^fy'
% See also ZERNPOL, ZERNFUN2. 8 P y_Y>
jE5
9h
% Paul Fricker 11/13/2006 ~Wd8>a{w
nsw8[pk
aZCZ/
% Check and prepare the inputs: gl{PLLe[}
% ----------------------------- FbNQ
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3:gO7Uv
error('zernfun:NMvectors','N and M must be vectors.') ~ilBw:L-3
end {_N(S]Z
ZjbG&oc
if length(n)~=length(m) 8[P6c;\
error('zernfun:NMlength','N and M must be the same length.') GM5 6xZ!2T
end r\- k/ 0
Jy[8,X
n = n(:); RpXG gw
m = m(:); lSv;wwEg
if any(mod(n-m,2)) @9P9U`ZP
error('zernfun:NMmultiplesof2', ... (dnc7KrM
'All N and M must differ by multiples of 2 (including 0).') Q6<Uuiw
end =@/^1.`
JWjp<{Q;1
if any(m>n) fe`G^hV
error('zernfun:MlessthanN', ... bH]!~[
'Each M must be less than or equal to its corresponding N.') \B+SzW
end !/9Sb1_ ~
`D4'`Or-U
if any( r>1 | r<0 ) yFtf~8s3
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6? ly.h$
end 5Jd {Ev
Fd.d(
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) T}x%=4<E
error('zernfun:RTHvector','R and THETA must be vectors.') zC;lfy{f=
end m8A1^ R
xJ5!`#=
r = r(:); ^moIMFl
theta = theta(:); RLX^'g+P
length_r = length(r); vyy\^nL
if length_r~=length(theta) 6u3(G j@
error('zernfun:RTHlength', ... X.5LB!I)
'The number of R- and THETA-values must be equal.') -zkL)<7
end qnV9TeU)
nECf2>Yp v
% Check normalization: Pt;Ahmi
% -------------------- !sWBj'[>
if nargin==5 && ischar(nflag) PX/0 jv
isnorm = strcmpi(nflag,'norm'); 6MQ:C'8T&=
if ~isnorm nit7|T@^
error('zernfun:normalization','Unrecognized normalization flag.') @x
]^blq
end n:] 1^wX#
else bncFrzp#o
isnorm = false; 4=cq 76
end nL~
b
<OB~60h"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Mc^7FWkw
% Compute the Zernike Polynomials aBLb i
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =%G[vm/-)
d'D\#+%>=
% Determine the required powers of r: ^<+heX
% ----------------------------------- !qv;F?2
<g
m_abs = abs(m); nmrk-#._@9
rpowers = []; j)*nE./3
for j = 1:length(n) )uWNN"
rpowers = [rpowers m_abs(j):2:n(j)]; d69VgLg
end #C}(7{Vt
rpowers = unique(rpowers); =1Jo-!{{
4tTJE<y
% Pre-compute the values of r raised to the required powers, T0jJp7O
% and compile them in a matrix: NWj@iyi<
% ----------------------------- W{aN S@1
if rpowers(1)==0 _"`h~jB
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $Bb/GXn{\
rpowern = cat(2,rpowern{:}); ,BAF?}04=
rpowern = [ones(length_r,1) rpowern]; 4VgDN(n0@
else i(rY'o2 BN
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #1R
%7*$i
rpowern = cat(2,rpowern{:}); >^N:A
end `h6W@ROb
:"]ei@
% Compute the values of the polynomials: OK(d&
% -------------------------------------- _Oq\YQb v
y = zeros(length_r,length(n)); q5PYc.E([
for j = 1:length(n) ~G:7*:[b
s = 0:(n(j)-m_abs(j))/2; Pq%cuT%
pows = n(j):-2:m_abs(j); Fwqf4&/
for k = length(s):-1:1 '"^JNb^I
p = (1-2*mod(s(k),2))* ... !f6
prod(2:(n(j)-s(k)))/ ... |e>-v
prod(2:s(k))/ ... 2oLa`33c1
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Ea?.HRxl
prod(2:((n(j)+m_abs(j))/2-s(k))); <&iBR
idx = (pows(k)==rpowers); Xg,BK0O
y(:,j) = y(:,j) + p*rpowern(:,idx); 4fswx@l
end AAcbY;
d.A0(*k,
if isnorm }__+[-
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ':3KZ4/C
end T!bu}KO
end *bEsWeP
% END: Compute the Zernike Polynomials xJCpWU3wM
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /&yT2p
t=AR>M!w~
% Compute the Zernike functions: UZ#2*PH2E
% ------------------------------ ;H lv
idx_pos = m>0; `Z-`-IL
idx_neg = m<0;
s25012
1oPT8)[U
z = y; +zsya4r
if any(idx_pos) e+wd>iiB
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); F*f)Dv$p
end .+>}},
if any(idx_neg) _q 8m$4
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); }8HLyK,4
end e 3K
Cp%|Q.?
% EOF zernfun