非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 X:*Ut3"
function z = zernfun(n,m,r,theta,nflag) 1!x-_h}
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. M.Fu>Xi
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +M+ht
% and angular frequency M, evaluated at positions (R,THETA) on the H-Uy~Ry*T
% unit circle. N is a vector of positive integers (including 0), and .Qpqbp 8
% M is a vector with the same number of elements as N. Each element {-sy,EYcw
% k of M must be a positive integer, with possible values M(k) = -N(k) f3 lKdXnP
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, D3LW49
% and THETA is a vector of angles. R and THETA must have the same SnF3I
% length. The output Z is a matrix with one column for every (N,M) *3hqz<p4:
% pair, and one row for every (R,THETA) pair. {YCquoF
% =H_|007C
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike U!"+~d)
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $I L7c]Gw
% with delta(m,0) the Kronecker delta, is chosen so that the integral *g^U=t
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, lE+v@Kb:
% and theta=0 to theta=2*pi) is unity. For the non-normalized Rx$5#K!%M
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. mAk@Q|u
% ;r[@;2p*(
% The Zernike functions are an orthogonal basis on the unit circle. vjI>TIy
% They are used in disciplines such as astronomy, optics, and V4GcW|P4y
% optometry to describe functions on a circular domain. %3 ecV$
% =GpO}t">
% The following table lists the first 15 Zernike functions. ~n#rATbxf
% +_gPZFpbx
% n m Zernike function Normalization r'/7kF- 5
% -------------------------------------------------- @|xcrEnP}B
% 0 0 1 1 +I0?D
% 1 1 r * cos(theta) 2 sgDlT=c'
% 1 -1 r * sin(theta) 2 !GcH )
% 2 -2 r^2 * cos(2*theta) sqrt(6) 8$3G c"=
% 2 0 (2*r^2 - 1) sqrt(3) c+/SvRx^>
% 2 2 r^2 * sin(2*theta) sqrt(6) q<rB(j-(
% 3 -3 r^3 * cos(3*theta) sqrt(8) y; Up@.IG
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) d-g&TSGd
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) tWYKW 3~]
% 3 3 r^3 * sin(3*theta) sqrt(8) 5V\\w~&/
% 4 -4 r^4 * cos(4*theta) sqrt(10) >ZKE
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Hq h
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) D}l^ow
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f5+a6s9
% 4 4 r^4 * sin(4*theta) sqrt(10) hf
rF7{yj
% -------------------------------------------------- ^1M :wXr
% D^To:N7U
% Example 1: 0t<]Uf
% m98j`t
% % Display the Zernike function Z(n=5,m=1) WR=e$;
% x = -1:0.01:1; A,rgN;5fb
% [X,Y] = meshgrid(x,x); zJS,f5L6)
% [theta,r] = cart2pol(X,Y); Q*mzfsgr
% idx = r<=1; KFBo1^9N
% z = nan(size(X)); zlIXia5
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 't
\:@-tQ
% figure IC>OxYg*
% pcolor(x,x,z), shading interp `6`NuZ*6g
% axis square, colorbar dhpEBJ
% title('Zernike function Z_5^1(r,\theta)') dIe-z7x
% <#JJS}TLk
% Example 2: PhF3' ">
% .?9+1.`
% % Display the first 10 Zernike functions "0Uh(9Fv
% x = -1:0.01:1; P9vN5|"M
% [X,Y] = meshgrid(x,x); 8SK}#44Xz
% [theta,r] = cart2pol(X,Y); .|$6Pi%!
% idx = r<=1; &mDKpYrB
% z = nan(size(X)); 4;WeB
% n = [0 1 1 2 2 2 3 3 3 3]; di}YHMTx
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; LJDX6]4n
% Nplot = [4 10 12 16 18 20 22 24 26 28]; T1c2J,+}R
% y = zernfun(n,m,r(idx),theta(idx)); 8;/`uB:zV
% figure('Units','normalized') 7$'%*|C.
% for k = 1:10 "*|plB
% z(idx) = y(:,k); \ Xow#@[
% subplot(4,7,Nplot(k)) %m1k^
% pcolor(x,x,z), shading interp *IUw$|Z6z)
% set(gca,'XTick',[],'YTick',[]) ivsp):W
% axis square #z 3tSnmp
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) LS@[O])$'
% end ~>zml1aJ6
% 2f ]CnD0$
% See also ZERNPOL, ZERNFUN2. $>1 'pV
% Uybp
% Paul Fricker 11/13/2006 oomB/"Z
Y ::\;s
Vd^_4uqnV
% Check and prepare the inputs: XH&Fn+
% ----------------------------- b;K>Q!(|
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /*s:ehj
error('zernfun:NMvectors','N and M must be vectors.') 4&;.>{:;
end vAiNOpz#
yaV=e1W
if length(n)~=length(m) [?$ZB),L8
error('zernfun:NMlength','N and M must be the same length.') |j53'>N[
end [q]"_4L0;d
fI(u-z~,
n = n(:); z)"7qqA
m = m(:); ^~}|X%q3
if any(mod(n-m,2)) z!27#gbL
error('zernfun:NMmultiplesof2', ... c\~H_ ~F
'All N and M must differ by multiples of 2 (including 0).') Q>[*Y/`I
end (yQ]n91 Q,
#+Z3!VS
if any(m>n) $+P9@Q$
error('zernfun:MlessthanN', ... 3`_jNPV1
'Each M must be less than or equal to its corresponding N.') F_;oZ
end *u.6,jw
iA*Z4FKkT
if any( r>1 | r<0 ) Rro|P_
error('zernfun:Rlessthan1','All R must be between 0 and 1.') p%e!&:!
end (;YO]U4
I$0JAy
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /9dV!u!;
error('zernfun:RTHvector','R and THETA must be vectors.') '8>h4s4
end GXB4&Q!C
l!e8=QlJ
r = r(:); NhQIpzL)
theta = theta(:); ;AKtbS;H
length_r = length(r); <b"ynoM.A
if length_r~=length(theta) )l*H$8
error('zernfun:RTHlength', ... )%%RI_JT
'The number of R- and THETA-values must be equal.') awuUaE
end 5}
|O
Us.yKAHPV
% Check normalization: %lNWaA
% -------------------- !3Fj`Oh
if nargin==5 && ischar(nflag) B#o(21s
isnorm = strcmpi(nflag,'norm'); ~jAOGo/&6
if ~isnorm =:`1!W0I
error('zernfun:normalization','Unrecognized normalization flag.') R[
S*ON
end _=B(jJZ
else nS[0g^}
isnorm = false; >JS\H6
end l)D18
jo=XxA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g.f!Uc{
% Compute the Zernike Polynomials lJoMJS;S]}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (xK=/()}q
qhVDC
% Determine the required powers of r: k#`.!yI,
% ----------------------------------- ^te9f%>$l
m_abs = abs(m); Nt67Ye3;
rpowers = []; ZA>hN3fE'
for j = 1:length(n) TJ7on.;
rpowers = [rpowers m_abs(j):2:n(j)]; J/w?Fa<
end ^R1
nOo/
rpowers = unique(rpowers); VJD$nh
#M5
>!E:$;i@
% Pre-compute the values of r raised to the required powers, m\U@L+L
% and compile them in a matrix: gd.P%KC!g
% ----------------------------- N<Rb<p%
if rpowers(1)==0 Kr=DoQ."d8
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -x3QgDno
rpowern = cat(2,rpowern{:}); vuuID24:
rpowern = [ones(length_r,1) rpowern]; w |>:mQnU
else T{]Tb=
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]N-K`c]
rpowern = cat(2,rpowern{:}); z|}Anc[\
end ;W?e@ Lgxk
6 )0$UW
% Compute the values of the polynomials: HCb7`(@
% -------------------------------------- U?>P6p
y = zeros(length_r,length(n)); \`{ YqO T
for j = 1:length(n) E~2}rK+#)
s = 0:(n(j)-m_abs(j))/2; 9g"a`a?c
pows = n(j):-2:m_abs(j); [rU8%
for k = length(s):-1:1 p4<&N MG
p = (1-2*mod(s(k),2))* ... fbNVmjb$)
prod(2:(n(j)-s(k)))/ ... !s\-i6S>
prod(2:s(k))/ ... n1DD+@
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... n0O- Bxhl
prod(2:((n(j)+m_abs(j))/2-s(k))); W: cOzJ
idx = (pows(k)==rpowers); } UHuFff,
y(:,j) = y(:,j) + p*rpowern(:,idx); 65=i`!f
end l *yml
"1&C\}.7
if isnorm P
et0yH
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 50l=B]M
end xV~`sqf
end 7tUl$H;I/R
% END: Compute the Zernike Polynomials KxGK`'E'r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4punJg~1
Xko[Z;4v8'
% Compute the Zernike functions: (3%NudkwT
% ------------------------------ FX+Ra@I!
idx_pos = m>0; E{_p&FF
idx_neg = m<0; -1:yqF.x
n_v|fxF1
z = y; kJlRdt2
if any(idx_pos) BB|w-W=Kd
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); +[V?3Gdb
end xx#;)]WT
if any(idx_neg) 31
QT
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); g.s~Ph- G
end 0{@E=}}h
BQ)zm
% EOF zernfun