切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10631阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 pNb2t/8%%  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! \~hrS/$[$  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #%;Uh  
    function z = zernfun(n,m,r,theta,nflag) |eu8;~A  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. cz9J&Le>  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N '8;bc@cE  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ;W?#l$R  
    %   unit circle.  N is a vector of positive integers (including 0), and I8gNg Z  
    %   M is a vector with the same number of elements as N.  Each element U4!KO;Jc  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ?y-^Fq|h  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, H d|p@$I  
    %   and THETA is a vector of angles.  R and THETA must have the same g5nJ0=9  
    %   length.  The output Z is a matrix with one column for every (N,M) |c/=9Bb  
    %   pair, and one row for every (R,THETA) pair. F$a s#.7FF  
    % D m0)%#  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :|W=2( >  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), nc;e NB  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ,m#  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, KHAc!4lA  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized t.9s49P  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m].  +|LM"  
    % '.bf88D  
    %   The Zernike functions are an orthogonal basis on the unit circle. n&:ohOH%  
    %   They are used in disciplines such as astronomy, optics, and sjyr9AF  
    %   optometry to describe functions on a circular domain. Am F[#)90P  
    % 8 MO-QO  
    %   The following table lists the first 15 Zernike functions. KmNnW1T  
    % PB@IPnB-  
    %       n    m    Zernike function           Normalization gE6'A  
    %       -------------------------------------------------- V$ H(a`!  
    %       0    0    1                                 1 b{<?E };%  
    %       1    1    r * cos(theta)                    2 N#ggT9>X  
    %       1   -1    r * sin(theta)                    2 %nZ:)J>kz  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) # sw4)*v  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 9 -pt}U  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) >aAM&4  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) s/7Z.\  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) fd )v{OC  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) WLl8oE< X  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) s0iG |vw  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Vc9rc}  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w0~%,S  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ^m#tWb)f  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +.!D>U$)}  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) BH0m[9nU;  
    %       --------------------------------------------------  T01Iu  
    % -P}A26qB  
    %   Example 1: ]Ucw&B* @  
    % NBPP?\1  
    %       % Display the Zernike function Z(n=5,m=1) MDlH[PJ@i  
    %       x = -1:0.01:1; ii?T:T@  
    %       [X,Y] = meshgrid(x,x); D6L+mTN  
    %       [theta,r] = cart2pol(X,Y); :i<*~0r<  
    %       idx = r<=1; ,m{R m0  
    %       z = nan(size(X)); ;U=b 6xE  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); AXlVH%'  
    %       figure hWy@?r.  
    %       pcolor(x,x,z), shading interp ?y? 9;;  
    %       axis square, colorbar yh E%X  
    %       title('Zernike function Z_5^1(r,\theta)') KUJLx  
    % 1b%Oi.;  
    %   Example 2: EnWv9I<  
    % EIRDH'[L  
    %       % Display the first 10 Zernike functions J1G}l5N  
    %       x = -1:0.01:1; qSNCBn '  
    %       [X,Y] = meshgrid(x,x); t1hQ0B  
    %       [theta,r] = cart2pol(X,Y); {5Bj*m5  
    %       idx = r<=1; 8'*x88+  
    %       z = nan(size(X)); ;5ki$)v"  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 8{ZTHY -  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 86{>X5+  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; , '0#q  
    %       y = zernfun(n,m,r(idx),theta(idx)); 1b~21n  
    %       figure('Units','normalized') ?b+Y])SJK  
    %       for k = 1:10 c]{}|2u  
    %           z(idx) = y(:,k); M 2hZ'  
    %           subplot(4,7,Nplot(k)) (X "J)x aQ  
    %           pcolor(x,x,z), shading interp V*@aE  
    %           set(gca,'XTick',[],'YTick',[]) j,.M!q]  
    %           axis square -zFJ)!/?  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) y$%oR6 K7-  
    %       end .Exvuo`F  
    % \8xSfe  
    %   See also ZERNPOL, ZERNFUN2. on 7 n4  
    q TJ0}F  
    %   Paul Fricker 11/13/2006 `PbY(6CF  
    ^t})T*hM0  
    %'1iT!g8  
    % Check and prepare the inputs: tY;<S}[@7w  
    % ----------------------------- A1prYD  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6=/sEzS'  
        error('zernfun:NMvectors','N and M must be vectors.') uP* kvi:e  
    end VNTbjn]  
    r,JQR)l0@V  
    if length(n)~=length(m) 8H4NNj Oy  
        error('zernfun:NMlength','N and M must be the same length.') Ye3o}G9z  
    end 44 u)F@)  
    I#2$CSJ  
    n = n(:); kU/MvoV  
    m = m(:); {g.YGO  
    if any(mod(n-m,2)) ?(gha  
        error('zernfun:NMmultiplesof2', ... dM;\)jm  
              'All N and M must differ by multiples of 2 (including 0).') *F1TZ_GS  
    end >8"(go+02  
    A M[f  
    if any(m>n) ~6;I"0b5  
        error('zernfun:MlessthanN', ... ESB^"|9  
              'Each M must be less than or equal to its corresponding N.') svmb~n&x6  
    end zwV!6xG  
    Zp7Pw   
    if any( r>1 | r<0 ) 7dY_b  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') )vO"S  
    end oT\K P  
    cjL)M=pIS  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) pL,XHR@Iv  
        error('zernfun:RTHvector','R and THETA must be vectors.') yz K<yvN  
    end d'96$e o~  
    |p/ *OFC6  
    r = r(:); uZL]mwkj]  
    theta = theta(:); Sesdhuy.@  
    length_r = length(r); Z|C,HF+m.  
    if length_r~=length(theta) /[_aK0U3  
        error('zernfun:RTHlength', ... e#/&A5#Ya  
              'The number of R- and THETA-values must be equal.') znE1t%V  
    end 8vuTF*{yZ  
    HVus\s\&y%  
    % Check normalization: ^<!R%"o-  
    % -------------------- .L^*9Y0)  
    if nargin==5 && ischar(nflag) ,;t:x|{%  
        isnorm = strcmpi(nflag,'norm'); {A==av  
        if ~isnorm =W7-;&  
            error('zernfun:normalization','Unrecognized normalization flag.') |aLK_]!  
        end ei4LE XQ16  
    else [@9S-$Xa  
        isnorm = false; `:=1*7)?  
    end 5)< Y3nU~  
    z" tz-~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F% n}vA`  
    % Compute the Zernike Polynomials (H uvo9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #8h7C8]&  
    D\5+2 G  
    % Determine the required powers of r: In1{&sS  
    % ----------------------------------- 79;uHR&S  
    m_abs = abs(m); KS8@A/f  
    rpowers = []; kKlNhP(  
    for j = 1:length(n) ufk2zL8y  
        rpowers = [rpowers m_abs(j):2:n(j)]; nnn\  
    end hk=[v7  
    rpowers = unique(rpowers); ;)h?P.]  
    QD0x^v8  
    % Pre-compute the values of r raised to the required powers, .bY>++CAPA  
    % and compile them in a matrix: We$ n  
    % ----------------------------- 5[)5K?%  
    if rpowers(1)==0 G%HG6  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); f~W+Rt7o  
        rpowern = cat(2,rpowern{:}); SWw!s&lP&  
        rpowern = [ones(length_r,1) rpowern]; 5 <k)tF%  
    else zV}:~;w  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); C5^WJx[  
        rpowern = cat(2,rpowern{:}); L|WrdT D;  
    end 2z{B  
    ?u#s?$Y?  
    % Compute the values of the polynomials: YT?Lt!cl=  
    % -------------------------------------- Jd/d\P  
    y = zeros(length_r,length(n)); YD[AgToo0  
    for j = 1:length(n) -6J <{1V  
        s = 0:(n(j)-m_abs(j))/2; jywS<9c@  
        pows = n(j):-2:m_abs(j); w#)u+^-  
        for k = length(s):-1:1 U+'zz#0qN  
            p = (1-2*mod(s(k),2))* ... }< '6FxR  
                       prod(2:(n(j)-s(k)))/              ... 3ux7^au  
                       prod(2:s(k))/                     ... i tNuY<"  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... G0!6rDu2,  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); jR}EBaI}  
            idx = (pows(k)==rpowers); M-].l3  
            y(:,j) = y(:,j) + p*rpowern(:,idx); oH17!$Fly  
        end } O+xs3Uv  
         1\,k^Je7  
        if isnorm 6IRRRtO(  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 9nVb$pfe#  
        end (hOD  
    end ASov/<D_q  
    % END: Compute the Zernike Polynomials ^U,iDK_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mf g>69,w  
    5|0/$ SWd*  
    % Compute the Zernike functions: 517"x@6Q  
    % ------------------------------ _O}U4aGMTC  
    idx_pos = m>0; F(.`@OO  
    idx_neg = m<0; R\ 8[6H  
    3.Mpd  
    z = y; .lj5pmD  
    if any(idx_pos) ]8wm1_qV  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 00D.Jn  
    end u(3 uZ:  
    if any(idx_neg) kwaZn~  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); tvf.K+  
    end - q9m@!L  
    JtY$AP$  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) g&$5!ifgi  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 5N>flQ  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated -[vw 8  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 3}g>/F ~  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 2HVqJib4Yn  
    %   and THETA is a vector of angles.  R and THETA must have the same /L2ZI1v  
    %   length.  The output Z is a matrix with one column for every P-value, }@6yROy.  
    %   and one row for every (R,THETA) pair. !Z>,dN  
    % -*[)CR-{  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike >pZ _  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 9$U>St  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) yqK_|7I+  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 &S*{a  
    %   for all p. cM9> V2:P  
    % U) xeta+  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 < ~CY?  
    %   Zernike functions (order N<=7).  In some disciplines it is gktlwiCZ  
    %   traditional to label the first 36 functions using a single mode L-U4 8 i  
    %   number P instead of separate numbers for the order N and azimuthal % +  
    %   frequency M. K!(WcoA&2i  
    % 20 $Tky_  
    %   Example: gO*Gf2AG  
    % dk1q9Tx  
    %       % Display the first 16 Zernike functions 65@GXn[W_  
    %       x = -1:0.01:1; f#AuZ]h  
    %       [X,Y] = meshgrid(x,x); ER-Xd9R  
    %       [theta,r] = cart2pol(X,Y); 'bZw-t!M@  
    %       idx = r<=1; LjGLi>kI~  
    %       p = 0:15; &<#1G u_  
    %       z = nan(size(X)); jX'pUO  
    %       y = zernfun2(p,r(idx),theta(idx)); SZ4y\I  
    %       figure('Units','normalized') ;7E"@b,tPN  
    %       for k = 1:length(p)  WSeiW  
    %           z(idx) = y(:,k); B^/Cx  
    %           subplot(4,4,k) Q ijO%)  
    %           pcolor(x,x,z), shading interp ~FI} [6Dd  
    %           set(gca,'XTick',[],'YTick',[]) d72( g$F  
    %           axis square \QSD*  
    %           title(['Z_{' num2str(p(k)) '}']) S]T71W<i  
    %       end }Dcpe M?  
    % /^{Q(R(X<  
    %   See also ZERNPOL, ZERNFUN. b; ;y|H  
    N0D5N(kH%  
    %   Paul Fricker 11/13/2006 Z$Ps_Ik  
    ;CL^2{  
    V#1v5mWVx  
    % Check and prepare the inputs: T|oDJ]\J  
    % ----------------------------- ]+^4Yq>2  
    if min(size(p))~=1 -"^"& )  
        error('zernfun2:Pvector','Input P must be vector.') ,-$%>Uv   
    end )"P.n-aF  
    Nt<Ac&6 s  
    if any(p)>35 zhRF>Y`  
        error('zernfun2:P36', ... Z'^.H3YvL  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... hZe9Y?)  
               '(P = 0 to 35).']) H lFVc  
    end Um/ g&k  
    S=w~bz, /  
    % Get the order and frequency corresonding to the function number: z}VCiS0  
    % ---------------------------------------------------------------- =5pwNi_S  
    p = p(:); J{EK}'  
    n = ceil((-3+sqrt(9+8*p))/2); \FO 4A  
    m = 2*p - n.*(n+2); hoPh#? G  
    kmfz.:j{  
    % Pass the inputs to the function ZERNFUN: L<<v   
    % ---------------------------------------- eBECY(QMQ  
    switch nargin =o"sBVj  
        case 3 5= MM^$QG  
            z = zernfun(n,m,r,theta); 6l>016 x  
        case 4 eLN(NSPoS  
            z = zernfun(n,m,r,theta,nflag); l`K5fk  
        otherwise q*J-ii  
            error('zernfun2:nargin','Incorrect number of inputs.') c%n%,R>  
    end 'aZAWY d  
    Ce3  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Vuo 8[h>  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 1Yv#4t  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of b{JxTT}03  
    %   order N and frequency M, evaluated at R.  N is a vector of ?K?v64[  
    %   positive integers (including 0), and M is a vector with the ?jBh=X\]:  
    %   same number of elements as N.  Each element k of M must be a _RzcMX  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) N` rOlEk  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 1(U\vMb  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix [W,maT M"  
    %   with one column for every (N,M) pair, and one row for every o[eIwGxZ  
    %   element in R. d5B96;3  
    % nR~L$Wu5_a  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- G@n%P~  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is )%5T*}j  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to '| |),>~  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 A|U_$!cLZ  
    %   for all [n,m]. wms8z  
    % ?_c*(2i&^  
    %   The radial Zernike polynomials are the radial portion of the ?l<u%o  
    %   Zernike functions, which are an orthogonal basis on the unit KEj-y+  
    %   circle.  The series representation of the radial Zernike |LDo<pE*V4  
    %   polynomials is nK9A=H'Hc  
    % S}*%l)vfR  
    %          (n-m)/2 #G ZGk?  
    %            __ "&/&v  
    %    m      \       s                                          n-2s NLxsxomj  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r `#~HCl  
    %    n      s=0 wMB<^zZmv  
    % LA^H213N|  
    %   The following table shows the first 12 polynomials. k/#& ]8(  
    % ~FV Z0%+,  
    %       n    m    Zernike polynomial    Normalization bP 2IX  
    %       --------------------------------------------- L~jKx)S%  
    %       0    0    1                        sqrt(2) Ls^$E  
    %       1    1    r                           2 3E361?ubM  
    %       2    0    2*r^2 - 1                sqrt(6) .ZrQ{~t  
    %       2    2    r^2                      sqrt(6) ^CwzA B  
    %       3    1    3*r^3 - 2*r              sqrt(8) :bgi*pR{  
    %       3    3    r^3                      sqrt(8) }A"%YDrNbG  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ^\<1Y''  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ewtoAru  
    %       4    4    r^4                      sqrt(10) hQfxz,X  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) WVf>>E^1  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) m+Yj"RMx&  
    %       5    5    r^5                      sqrt(12) &?<o692  
    %       --------------------------------------------- L6O@q`\z  
    % U>^ -Db]  
    %   Example:  3y?ig2  
    % h^5'i} @u  
    %       % Display three example Zernike radial polynomials HBL)_c{/O  
    %       r = 0:0.01:1; Bk 1Q.Un  
    %       n = [3 2 5]; 9)QvJ87e@7  
    %       m = [1 2 1]; ds4)Nk4%O  
    %       z = zernpol(n,m,r); 4+`<'t]Q  
    %       figure #$Z|)i]w  
    %       plot(r,z)  wYS,|=y  
    %       grid on dHnId2@#  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') A|Yq Bl  
    % #]|9aVrr  
    %   See also ZERNFUN, ZERNFUN2. S3Tww]q  
    HQ+:0" B  
    % A note on the algorithm. GjA;o3(  
    % ------------------------ kG+CT  
    % The radial Zernike polynomials are computed using the series vGC^1AM  
    % representation shown in the Help section above. For many special quU%9m \S`  
    % functions, direct evaluation using the series representation can Ajhrsa\~a  
    % produce poor numerical results (floating point errors), because Db= iJ68  
    % the summation often involves computing small differences between 5_nkN`x  
    % large successive terms in the series. (In such cases, the functions +MeEy{;  
    % are often evaluated using alternative methods such as recurrence `{/z\  
    % relations: see the Legendre functions, for example). For the Zernike Bj J$I^  
    % polynomials, however, this problem does not arise, because the oG5JJpLT  
    % polynomials are evaluated over the finite domain r = (0,1), and ab' f:  
    % because the coefficients for a given polynomial are generally all lBL;aTzo  
    % of similar magnitude. o;\0xuM@  
    % VzMoWD;  
    % ZERNPOL has been written using a vectorized implementation: multiple LC\Ys\/,U  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Vl?R?K=`~J  
    % values can be passed as inputs) for a vector of points R.  To achieve q'M-a tE.  
    % this vectorization most efficiently, the algorithm in ZERNPOL (9$/r/-a  
    % involves pre-determining all the powers p of R that are required to d"nE+pgE  
    % compute the outputs, and then compiling the {R^p} into a single C 9,p-  
    % matrix.  This avoids any redundant computation of the R^p, and r%$-F2.p  
    % minimizes the sizes of certain intermediate variables. z8= Gc$w!  
    % {`~{%2ayq7  
    %   Paul Fricker 11/13/2006 dLal 15Pb  
    6$b"tdP  
    [cru+c+O:  
    % Check and prepare the inputs: 4fZ$&)0&  
    % ----------------------------- Cfb/f]*M  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *n2Q_o  
        error('zernpol:NMvectors','N and M must be vectors.') Jnm{i|6N  
    end +*d,non6v  
    xK0VWi  
    if length(n)~=length(m) +vLuzM-  
        error('zernpol:NMlength','N and M must be the same length.') @=b0>^\m  
    end kte Dh7  
    klKAwCQ,  
    n = n(:); B.K"1o  
    m = m(:); *6q8kQsz^1  
    length_n = length(n); (OYR, [*  
    ph30/*8  
    if any(mod(n-m,2)) \h :Rw|  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') g 6>R yjN  
    end Q9 kKk  
    -t?S:9 [w  
    if any(m<0) Nt&}T  
        error('zernpol:Mpositive','All M must be positive.') . %tc7`k8  
    end /!JpmI  
    RXt`y62yK  
    if any(m>n) u$&7fmZ  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') phbdV8$L  
    end 3oxQ[.o  
     t\{q,4  
    if any( r>1 | r<0 ) EFf<| v  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') eOD;@4lR  
    end '7wI 2D  
    mv SNKS  
    if ~any(size(r)==1) X+P& up06  
        error('zernpol:Rvector','R must be a vector.') 1b;Aru~l  
    end 5D-xm$8C  
    vV#Jl) A  
    r = r(:); <3 AkF# C9  
    length_r = length(r); /Rx%}~x/m  
    B HoZ}1_  
    if nargin==4 F]z xx  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); RX=C)q2c  
        if ~isnorm 0OEyJ|g  
            error('zernpol:normalization','Unrecognized normalization flag.') 0l.+yr}PE  
        end @XDU !<N  
    else (LTm!"Q  
        isnorm = false; OjE wJ$$  
    end ?*4&Z.~J  
    6g@j,iFy  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )f(#Fn  
    % Compute the Zernike Polynomials n9t8RcJS:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3UD_2[aqN(  
    I@+dE V`Lf  
    % Determine the required powers of r: 0RYh4'=F  
    % ----------------------------------- <|hvH  
    rpowers = []; eO (VSjo'`  
    for j = 1:length(n) I#Iu:,OT  
        rpowers = [rpowers m(j):2:n(j)]; S<88>|&n]  
    end D gY2:&0  
    rpowers = unique(rpowers); jf*M}Q1jHE  
    Z)62/`C)  
    % Pre-compute the values of r raised to the required powers, -g;iMqh#  
    % and compile them in a matrix: w;}P<K  
    % ----------------------------- [% |i  
    if rpowers(1)==0 i?qS8h{  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Rw^4S@~T  
        rpowern = cat(2,rpowern{:}); #kA/,qyM  
        rpowern = [ones(length_r,1) rpowern]; s7(mNpo  
    else =6ZZ/+6b  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); vs7Hg )F  
        rpowern = cat(2,rpowern{:}); 9N5 &N3  
    end asj^K|.z  
    b0 PF7PEEQ  
    % Compute the values of the polynomials: >e=tem~/  
    % -------------------------------------- oq^#mJL  
    z = zeros(length_r,length_n); ^Ml)g=Fq  
    for j = 1:length_n _+ oX9  
        s = 0:(n(j)-m(j))/2; -XkCbxZ  
        pows = n(j):-2:m(j); Iy8Ehwejd  
        for k = length(s):-1:1 G9N6iKP!  
            p = (1-2*mod(s(k),2))* ... 3"6lPUS  
                       prod(2:(n(j)-s(k)))/          ... r*&gd|sn  
                       prod(2:s(k))/                 ... LUHj3H  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... *-3K],^a  
                       prod(2:((n(j)+m(j))/2-s(k))); ,m8l /wG  
            idx = (pows(k)==rpowers); HB||'gIC  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 9,`WQ+OI  
        end ]6GdB3?UVM  
         :nC Gqg  
        if isnorm b5No>U) /  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); pu0IhDMn  
        end L'H'E,  
    end ucL}fnY1  
    Xb?P'nD  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ]oT8H?%*Y  
    n/W@H Im#  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 di.yh3N$  
    e"}JHXs  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)