切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11402阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 XjmAM/H4  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! b>9?gmR{  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 7W+{U0 2O  
    function z = zernfun(n,m,r,theta,nflag) e&K7n@  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. -Vs;4-B{9  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N R*lq.7   
    %   and angular frequency M, evaluated at positions (R,THETA) on the R:+?<U&  
    %   unit circle.  N is a vector of positive integers (including 0), and o#D'"Tn!  
    %   M is a vector with the same number of elements as N.  Each element ]ki) (Bb  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 1\AcceJ|(w  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 6BZi4:PDx  
    %   and THETA is a vector of angles.  R and THETA must have the same dKevhm)R"  
    %   length.  The output Z is a matrix with one column for every (N,M) P057]cAat<  
    %   pair, and one row for every (R,THETA) pair. wzcv[C-x  
    % (Zej\lEN  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |O'gT8  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @PK 1  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral iAeq%N1(0  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {$7vd  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized {cjp8W8hS  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. #WE lL2&  
    % kX*.BZI}C  
    %   The Zernike functions are an orthogonal basis on the unit circle. )EcfEym.>  
    %   They are used in disciplines such as astronomy, optics, and =AF;3  
    %   optometry to describe functions on a circular domain. WopA7J,  
    % }h|HT  
    %   The following table lists the first 15 Zernike functions. 8M]QDgd.  
    % !, sQB_09C  
    %       n    m    Zernike function           Normalization @Y ?p-&  
    %       -------------------------------------------------- qZlL6  
    %       0    0    1                                 1 &#9HV  
    %       1    1    r * cos(theta)                    2 DD6K[\  
    %       1   -1    r * sin(theta)                    2 /N")uuv  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) \_)mWK,h  
    %       2    0    (2*r^2 - 1)                    sqrt(3) q AsTiT6r  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) n<eK\ w  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) T:!H^  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) er@.<Dc  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) r jnf30  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) gEmsPk,  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 0&3zBL%Bo  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %+(fdk-k+  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) +JB*1dz>8  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) I]Z"?T  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) }{[p<pU$C  
    %       -------------------------------------------------- 51;Bc[)%  
    % 3g0v,7,Zv  
    %   Example 1: nFefDdP  
    % LRdV_O1e6M  
    %       % Display the Zernike function Z(n=5,m=1) Ng*O/g`%L  
    %       x = -1:0.01:1; cA{,2CYc  
    %       [X,Y] = meshgrid(x,x); n0uL^{B  
    %       [theta,r] = cart2pol(X,Y); @y|JIBBRc  
    %       idx = r<=1; " "CNw-^t  
    %       z = nan(size(X)); >^v,,R8j  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); R78P](1\>  
    %       figure _1jeaV9@  
    %       pcolor(x,x,z), shading interp 1NAtg*`  
    %       axis square, colorbar uK[gI6M  
    %       title('Zernike function Z_5^1(r,\theta)') 461p4)  
    % }9Q<<a  
    %   Example 2: qIO)<5\[%d  
    % +@do<2l]  
    %       % Display the first 10 Zernike functions BbgKaCq  
    %       x = -1:0.01:1; "Fxw"I <  
    %       [X,Y] = meshgrid(x,x); 7V"Jfh4_  
    %       [theta,r] = cart2pol(X,Y); vtq47i  
    %       idx = r<=1; Mu_'C$zA  
    %       z = nan(size(X)); 1Nz#,IdQ  
    %       n = [0  1  1  2  2  2  3  3  3  3]; kP&Ekjt@  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; G%%5lw!y'  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; rWp+kV[Ec>  
    %       y = zernfun(n,m,r(idx),theta(idx)); zbDK$g6  
    %       figure('Units','normalized') 4@@gC&:Y  
    %       for k = 1:10 (V`ddP-  
    %           z(idx) = y(:,k); OuB [[L  
    %           subplot(4,7,Nplot(k)) raZ0B,;eFu  
    %           pcolor(x,x,z), shading interp De49!{\a  
    %           set(gca,'XTick',[],'YTick',[]) n&E/{o(  
    %           axis square "g1Fg.o  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) sv#/78~|  
    %       end Z}>+!Z  
    % WAVEwA`r  
    %   See also ZERNPOL, ZERNFUN2. G+ NTn\  
    K` <`l  
    %   Paul Fricker 11/13/2006 _2xYDi  
    {InW%qSn_  
    i6k~j%0m  
    % Check and prepare the inputs: 'uLYah  
    % ----------------------------- Y_nlIcu  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) eS2VLVxu  
        error('zernfun:NMvectors','N and M must be vectors.') nyPW6VQ0n  
    end 9|>5;Ej  
    2VkA!o4nP  
    if length(n)~=length(m) >yr3C  
        error('zernfun:NMlength','N and M must be the same length.') QaAMiCZFR  
    end ?xo<Fv  
    lp5 b&I_  
    n = n(:); ?MJ5GVeH  
    m = m(:); 0Pg@%>yb~  
    if any(mod(n-m,2)) dg;E,'e_ p  
        error('zernfun:NMmultiplesof2', ... liTAV9<  
              'All N and M must differ by multiples of 2 (including 0).') H&0S  
    end mz^[C7(q'(  
    mtNB09E(  
    if any(m>n) Le,+jm  
        error('zernfun:MlessthanN', ... ~h444Hp=  
              'Each M must be less than or equal to its corresponding N.') !)uXCg9U  
    end PML84*K -  
    2Zi&=Zj"  
    if any( r>1 | r<0 ) Y67i\U>?  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') [&{NgUgu"  
    end zfUkHL6  
    fq0[7Yb  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) s *<T5Z  
        error('zernfun:RTHvector','R and THETA must be vectors.') =L}$#Y8?  
    end .%mjE'  
    "C9.pdP\8  
    r = r(:); G I#TMFz3  
    theta = theta(:); z0 _/JwJn  
    length_r = length(r); v5`Odbc=w  
    if length_r~=length(theta) K#plSD^f=  
        error('zernfun:RTHlength', ... K?mly$  
              'The number of R- and THETA-values must be equal.') 8hvh xp  
    end _ 4+=S)$  
    "RsH'`  
    % Check normalization: DT#Z6A  
    % -------------------- ZQrgYeQl"  
    if nargin==5 && ischar(nflag) ?a-}1A{  
        isnorm = strcmpi(nflag,'norm'); +4Lj}8,  
        if ~isnorm zy[|4Q(?  
            error('zernfun:normalization','Unrecognized normalization flag.') ktK/s!bgY  
        end =|bW >y  
    else pXHeUBY.  
        isnorm = false; ~7&O[  
    end .s<tQU  
    , MU9p*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% '#x<Fo~hT  
    % Compute the Zernike Polynomials vghn+P8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iMOf];O)  
    ? 8)$N  
    % Determine the required powers of r: @GE:<'_:{  
    % ----------------------------------- g3,F+  
    m_abs = abs(m); Q*AgFF%wn  
    rpowers = []; WnC0T5S?U  
    for j = 1:length(n) v4wXa:CJ  
        rpowers = [rpowers m_abs(j):2:n(j)]; +l_$}UN  
    end &0S/]E`_M  
    rpowers = unique(rpowers); M;qV% k  
    \Rvsy;7  
    % Pre-compute the values of r raised to the required powers, b1qli5  
    % and compile them in a matrix: "Q<*H<e  
    % ----------------------------- ecy41y'~:  
    if rpowers(1)==0 ) XHcrm&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); T2MX_rt#D  
        rpowern = cat(2,rpowern{:}); t9 m],aH  
        rpowern = [ones(length_r,1) rpowern]; QYTwGThWR  
    else ^7~w yAr  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %epK-q9[  
        rpowern = cat(2,rpowern{:}); ._z[T@!9  
    end :7Q, `W9  
    "t" &6\  
    % Compute the values of the polynomials: q! U'DDEP  
    % -------------------------------------- '$n#~/#}  
    y = zeros(length_r,length(n)); uP[:P?,t  
    for j = 1:length(n) Yhd|1,m9f  
        s = 0:(n(j)-m_abs(j))/2; xF3H\`{4x  
        pows = n(j):-2:m_abs(j); 4\yKd8I  
        for k = length(s):-1:1 h8_~ OX  
            p = (1-2*mod(s(k),2))* ... _Uz}z#jt  
                       prod(2:(n(j)-s(k)))/              ... f*SAbDE  
                       prod(2:s(k))/                     ... c F (]`49(  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... L)ry!BuHI  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); u +OfUBrf  
            idx = (pows(k)==rpowers); 0Ti>PR5M  
            y(:,j) = y(:,j) + p*rpowern(:,idx); +C !A@  
        end i@ avm7  
         ;"/ "  
        if isnorm ".SQ*'Oc  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 9jwo f}OU  
        end +iPS=?S  
    end %lU$;cY  
    % END: Compute the Zernike Polynomials &j7l#Urq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  VgNt  
    XJ;JDch  
    % Compute the Zernike functions: ico(4KSk  
    % ------------------------------ V-w[\u  
    idx_pos = m>0; 2v<[XNX  
    idx_neg = m<0; ,uP1U@Cas  
    N7xkkAS{  
    z = y; ^MWfFpJV!]  
    if any(idx_pos) 7>m#Y'ppl@  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); qEpP%p  
    end P( W8XC  
    if any(idx_neg) G#! j`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); `v)-v<  
    end E 2DTE  
    \0pJ+@\T9  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) l(zkMR$b8  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. nx,67u/Pb  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated k>n^QHM  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive zT~ GBC-IX  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, DD'<zL[  
    %   and THETA is a vector of angles.  R and THETA must have the same j &Ayk*  
    %   length.  The output Z is a matrix with one column for every P-value, vVLR9"rHM  
    %   and one row for every (R,THETA) pair. s:cS 9A8  
    % Q ;5'I3w  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike mcDW&jwQ  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) K"b vUH  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) =fi.*d?$7  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 lLtC9:  
    %   for all p. VkhK2  
    % &TWO/F+Y  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 M7,|+W/RK  
    %   Zernike functions (order N<=7).  In some disciplines it is %_SE$>v^  
    %   traditional to label the first 36 functions using a single mode /IV:JVT  
    %   number P instead of separate numbers for the order N and azimuthal qm]ljut  
    %   frequency M. ~5}b$qL#`  
    % D?5W1m]E,s  
    %   Example: AD?^.<  
    % &[\rnJ?D  
    %       % Display the first 16 Zernike functions 9i|6  
    %       x = -1:0.01:1; -07(#>  
    %       [X,Y] = meshgrid(x,x); ^Z:x poz,  
    %       [theta,r] = cart2pol(X,Y); S^D ~A8u  
    %       idx = r<=1; N'm:V  
    %       p = 0:15; ) _2!1  
    %       z = nan(size(X)); -R7f/a8  
    %       y = zernfun2(p,r(idx),theta(idx)); {Y'_QW1:2  
    %       figure('Units','normalized') nNilT J   
    %       for k = 1:length(p) `O}. .N]g  
    %           z(idx) = y(:,k); F/EHU?_EI  
    %           subplot(4,4,k) "?qu(}|  
    %           pcolor(x,x,z), shading interp p6}jCGJ  
    %           set(gca,'XTick',[],'YTick',[]) 29Q5s$YD@  
    %           axis square KI>7h.t  
    %           title(['Z_{' num2str(p(k)) '}']) PL+fLCk,I  
    %       end J;T_ 9  
    % dnIBAe  
    %   See also ZERNPOL, ZERNFUN. )If[pw@j  
    Va*Uwy?x/)  
    %   Paul Fricker 11/13/2006 (vj2XiO^+  
    [Q 2t,tQx  
    eIqj7UY_  
    % Check and prepare the inputs: 5&9(d_#H  
    % ----------------------------- {&h&:  
    if min(size(p))~=1 @Qc['V)  
        error('zernfun2:Pvector','Input P must be vector.') >2g CM  
    end 0|^x[dh  
    Fsq S)  
    if any(p)>35 ^~`8 - TE  
        error('zernfun2:P36', ... 8v]{ 5  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... G0]n4"~+?  
               '(P = 0 to 35).']) +.lO8  
    end )uX:f8  
    f1~3y}7^Jq  
    % Get the order and frequency corresonding to the function number: h;ShNU  
    % ---------------------------------------------------------------- )Y *?VqZn  
    p = p(:); 9C4l@ jrF  
    n = ceil((-3+sqrt(9+8*p))/2); l5h9Eq  
    m = 2*p - n.*(n+2); s*8hN*A/,  
    E$ngmm[  
    % Pass the inputs to the function ZERNFUN: Dh9-~}sW'  
    % ---------------------------------------- dIpt&nH&$  
    switch nargin f`IgfJN  
        case 3 QKP9*dz  
            z = zernfun(n,m,r,theta); &% *S  
        case 4 ,^<+5TYM7  
            z = zernfun(n,m,r,theta,nflag); N0qC/da1  
        otherwise >6kWmXK[  
            error('zernfun2:nargin','Incorrect number of inputs.') 1I@4xC #X  
    end I Mv^ 9T:  
    _N-7H\hF  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) M|v.5l#   
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. K?;p:  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of aEk*-v#{  
    %   order N and frequency M, evaluated at R.  N is a vector of Z*TW;h0ZQ3  
    %   positive integers (including 0), and M is a vector with the H3c=B /+  
    %   same number of elements as N.  Each element k of M must be a Qr<%rU^{.  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) N*SgP@Bt  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Xou#38&p>  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ~c="<xBE  
    %   with one column for every (N,M) pair, and one row for every nfJ8Rt   
    %   element in R. #PrV)en  
    % X<m%EXvV  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- &53#`WgJ  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is tT8jC:oVa  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ^i8I 1@ =  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 kdUGmR0d  
    %   for all [n,m]. >b ["T+  
    %  ft'iv  
    %   The radial Zernike polynomials are the radial portion of the 4'd{H Rs  
    %   Zernike functions, which are an orthogonal basis on the unit L@z !,r,  
    %   circle.  The series representation of the radial Zernike jzj{{D[^  
    %   polynomials is NqZRS>60v  
    % bF KP V%`  
    %          (n-m)/2 C^%zV>o  
    %            __ bSr 'ji  
    %    m      \       s                                          n-2s 46zaxcY<!  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r lz)"zV  
    %    n      s=0 ZmULy;{<)  
    % 4v|/+J6G  
    %   The following table shows the first 12 polynomials. Vf?#W,5>=  
    % Wv0'?NL.  
    %       n    m    Zernike polynomial    Normalization qp W#!Vbx  
    %       --------------------------------------------- ' 4~5ez|:  
    %       0    0    1                        sqrt(2) HLe^|  
    %       1    1    r                           2 =GQ^uVf1  
    %       2    0    2*r^2 - 1                sqrt(6) |\a:]SlH  
    %       2    2    r^2                      sqrt(6)  4 Z}bw#  
    %       3    1    3*r^3 - 2*r              sqrt(8) Q@2tT&eL  
    %       3    3    r^3                      sqrt(8) x ct U.)p  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 30_un  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) W"kw>JEt  
    %       4    4    r^4                      sqrt(10) :6u3Mj{  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) kppRQ Q*[  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) N}Ks[2  
    %       5    5    r^5                      sqrt(12) }o^A^  
    %       --------------------------------------------- uit-Q5@~  
    % eU koVr   
    %   Example: eh(Q^E;*  
    % Z) Xs;7  
    %       % Display three example Zernike radial polynomials Ys$YI{  
    %       r = 0:0.01:1; 4VNb`!e  
    %       n = [3 2 5]; C|f7L>qe  
    %       m = [1 2 1]; H\I!J@6g  
    %       z = zernpol(n,m,r); @E}X-r.^f  
    %       figure `XxG"k\/S  
    %       plot(r,z) $a^isd4  
    %       grid on Tj=dL  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') >Mn>P!  
    % -(w~LT$ "  
    %   See also ZERNFUN, ZERNFUN2. d_C4B  
    b#g {`E  
    % A note on the algorithm. L)lQ&z?  
    % ------------------------ ~B!O~nvdQ  
    % The radial Zernike polynomials are computed using the series A$~xG(  
    % representation shown in the Help section above. For many special ^W"Q (sh  
    % functions, direct evaluation using the series representation can Iz )hz9k  
    % produce poor numerical results (floating point errors), because g?~Tguv  
    % the summation often involves computing small differences between n`)7Y`hBhP  
    % large successive terms in the series. (In such cases, the functions (kC} ,}  
    % are often evaluated using alternative methods such as recurrence g6g$nY@Jm  
    % relations: see the Legendre functions, for example). For the Zernike 90T%T2K  
    % polynomials, however, this problem does not arise, because the FxfL+}?Q  
    % polynomials are evaluated over the finite domain r = (0,1), and KO|pJ3  
    % because the coefficients for a given polynomial are generally all HRV*x!|I  
    % of similar magnitude. Hl3)R*&'J  
    % v'@b.R,  
    % ZERNPOL has been written using a vectorized implementation: multiple 0HR|aqPo  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] VkpHzr[k  
    % values can be passed as inputs) for a vector of points R.  To achieve zq;DIWPIoJ  
    % this vectorization most efficiently, the algorithm in ZERNPOL XY{:tR_al  
    % involves pre-determining all the powers p of R that are required to 3eTrtCe$  
    % compute the outputs, and then compiling the {R^p} into a single HmExfW  
    % matrix.  This avoids any redundant computation of the R^p, and =dM.7$6) R  
    % minimizes the sizes of certain intermediate variables. OB6J.dF[%  
    % }t|Plz  
    %   Paul Fricker 11/13/2006 &$c5~9p\B  
    o-~~,n\  
    rKzlK 'U  
    % Check and prepare the inputs: x=5P+_  
    % ----------------------------- !&`}]qQZ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #9`rXEz  
        error('zernpol:NMvectors','N and M must be vectors.') k(EMp1[:nN  
    end mF'-Is  
    mP pvZ  
    if length(n)~=length(m) 5Lsm_"0  
        error('zernpol:NMlength','N and M must be the same length.') gF[6c`-s  
    end MBB5wj  
    xQJIM.  
    n = n(:); _BV`,`8}  
    m = m(:); 3;a R\:p@w  
    length_n = length(n); ATXF,o1  
    ptpW41t}^  
    if any(mod(n-m,2)) 4\N_ G @  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ;1W6"3t-Y  
    end 3ai (x1%  
    2{ o0@  
    if any(m<0) 84=-Lw  
        error('zernpol:Mpositive','All M must be positive.') 7DtIVMiK  
    end lC#RNjDp/~  
    4:vTxNs&S  
    if any(m>n) n%/i:Whs  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') TbLe6x  
    end r6`\d k  
    NZLXN  
    if any( r>1 | r<0 ) 6b?`:$Cw3)  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') X Orcygb2  
    end XRa(sXA3  
    D_d|=i  
    if ~any(size(r)==1) Ic'Q5kfM  
        error('zernpol:Rvector','R must be a vector.') gnt45]@{  
    end }^"0T-ua  
    -~ 0] 7Cpl  
    r = r(:); &Y1`?1;nw  
    length_r = length(r); Kax#OYLpg  
    &hayR_F9  
    if nargin==4 0G5'Y;8  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); y%4 Gp  
        if ~isnorm |olNA*4  
            error('zernpol:normalization','Unrecognized normalization flag.') q] ^,vei  
        end k6@b|  
    else Z>8eD|m%2  
        isnorm = false; Xo Y7/&&  
    end R<_?W#$j  
    ga-{!$b*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :zlpfm2  
    % Compute the Zernike Polynomials Ik j=`,a2B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Gn59 yG!4  
    Z,WubX<  
    % Determine the required powers of r: )1f+ld%R  
    % ----------------------------------- +Hj/0pp  
    rpowers = []; wcZbmJ:  
    for j = 1:length(n) I}+;ME|<2  
        rpowers = [rpowers m(j):2:n(j)]; f&ytK  
    end " 9@,l!  
    rpowers = unique(rpowers); D`Gt  
    SK+@HnKd  
    % Pre-compute the values of r raised to the required powers, @`wn<%o$  
    % and compile them in a matrix: 5`~mqqR5  
    % ----------------------------- <F7V=Er  
    if rpowers(1)==0 D`VFf\7  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); j0FW8!!-g  
        rpowern = cat(2,rpowern{:}); -`7$Qu 2  
        rpowern = [ones(length_r,1) rpowern]; M)JADX  
    else P16YS8$  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /s|{by`we4  
        rpowern = cat(2,rpowern{:}); )11W)G`w  
    end JrDHRIkgm  
    !v9lk9SV  
    % Compute the values of the polynomials: =&7@<vBpy  
    % -------------------------------------- :)IV!_>'d  
    z = zeros(length_r,length_n); kUa)smh  
    for j = 1:length_n |]W2EV ,b  
        s = 0:(n(j)-m(j))/2; k4{:9zL1#?  
        pows = n(j):-2:m(j); `~h4D(n`  
        for k = length(s):-1:1 S~)w\(r  
            p = (1-2*mod(s(k),2))* ... 5mgHlsDzu  
                       prod(2:(n(j)-s(k)))/          ... [i7YVwG4  
                       prod(2:s(k))/                 ... mS%4gx~~_n  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ~W03{9(Vp8  
                       prod(2:((n(j)+m(j))/2-s(k))); Izo!rC  
            idx = (pows(k)==rpowers); NTmi 2c  
            z(:,j) = z(:,j) + p*rpowern(:,idx); aV6#t*\J  
        end cp6WMHLj   
         VWi2(@R^  
        if isnorm %=Tr^{ i  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); i  sW\MB]  
        end i ]o"_=C  
    end s0C:m  
    p[v#EyoC  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    在线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  |_omr&[_  
    nXjP x@  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 5{n*"88  
    e/->_T(I  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)