切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10530阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Y8o)FVcyNy  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ?)u@Rf9>  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 P!+'1KR  
    function z = zernfun(n,m,r,theta,nflag) J6L  K  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. *=+td)S/1  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <8d^^0  
    %   and angular frequency M, evaluated at positions (R,THETA) on the gx\&_) w N  
    %   unit circle.  N is a vector of positive integers (including 0), and N4L|;?  
    %   M is a vector with the same number of elements as N.  Each element E ,|xJjh  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) dIRm q+d^  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 1:f9J  
    %   and THETA is a vector of angles.  R and THETA must have the same 1n:8s'\  
    %   length.  The output Z is a matrix with one column for every (N,M) S$Q8>u6Wk  
    %   pair, and one row for every (R,THETA) pair. }Ub6eXf(2  
    % c@/(B:@  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3b+d"`Y^S  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Hhari!R XC  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral dt`{!lts'  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^(|vsFzn  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized m0cP(  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. W!?7D0q  
    % ^xij{W`|  
    %   The Zernike functions are an orthogonal basis on the unit circle. ;S57w1PbVA  
    %   They are used in disciplines such as astronomy, optics, and mo[Zb0>  
    %   optometry to describe functions on a circular domain. .)<(Oj|4  
    % 8;Yx<woR  
    %   The following table lists the first 15 Zernike functions. ds?v'|  
    % o[cV1G  
    %       n    m    Zernike function           Normalization N1|$$9G+  
    %       -------------------------------------------------- X!m9lV<  
    %       0    0    1                                 1 S%yd5<%_  
    %       1    1    r * cos(theta)                    2 u"d~!j1  
    %       1   -1    r * sin(theta)                    2 ? P( ZA  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ,)iKH]lY=  
    %       2    0    (2*r^2 - 1)                    sqrt(3) L7V G`h;  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Mi/&f   
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) )tl.s)"N  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ,:Lb7bFv>  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ad:&$  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) k[HAkB \{  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) .8P.)%  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Er+nk`UR_  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Kwg4sr5"D  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s;64N'HH  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Z| V`B `  
    %       -------------------------------------------------- QoG cWJ  
    % `kU/NKq  
    %   Example 1: 'rr^2d]`ST  
    % ^d~1E Er  
    %       % Display the Zernike function Z(n=5,m=1) mL_j4=ER@  
    %       x = -1:0.01:1; 6Qx#%,U^ J  
    %       [X,Y] = meshgrid(x,x); `~ * @q!  
    %       [theta,r] = cart2pol(X,Y); /6h(6 *JI  
    %       idx = r<=1; DBT&DS  
    %       z = nan(size(X)); pGK;1gVj  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 9Iz%ht  
    %       figure t| 'N+-T3  
    %       pcolor(x,x,z), shading interp $`- 4Ax4%  
    %       axis square, colorbar U )l,'y2  
    %       title('Zernike function Z_5^1(r,\theta)') yRiP{$E  
    % A _XhuQB;d  
    %   Example 2: T9u<p=p  
    % hYM@?/(q  
    %       % Display the first 10 Zernike functions Q~j`YmR|  
    %       x = -1:0.01:1; :P@rkT3Qt  
    %       [X,Y] = meshgrid(x,x); k}0^&Quc4  
    %       [theta,r] = cart2pol(X,Y); \@1=stK:F  
    %       idx = r<=1; !}r% u."  
    %       z = nan(size(X)); CJXg@\\/  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ]f_6 '|5 A  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; `zE}1M%y  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; >$,y5 AJ&  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]s GHG^I6  
    %       figure('Units','normalized') 9`w)  
    %       for k = 1:10 hQDTS>U  
    %           z(idx) = y(:,k); +C(/ Lyo}  
    %           subplot(4,7,Nplot(k)) S-'fS2  
    %           pcolor(x,x,z), shading interp y(=#WlK }  
    %           set(gca,'XTick',[],'YTick',[]) y:h}z).  
    %           axis square C,pJ`:P  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -atGlu2  
    %       end &2=dNREJ}1  
    % ,ML[Wr'2  
    %   See also ZERNPOL, ZERNFUN2. A6pjRxg  
    GKFq+]W  
    %   Paul Fricker 11/13/2006 Kbb78S30  
    S.d^T](  
    *s>BG1$<  
    % Check and prepare the inputs: k!KDWb  
    % ----------------------------- = pzn u+,  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `/MvQ/  
        error('zernfun:NMvectors','N and M must be vectors.') NSFs\a@1  
    end nYt/U\n!  
    QEu=-7@>  
    if length(n)~=length(m) f~_th @K  
        error('zernfun:NMlength','N and M must be the same length.') n]u<!.X  
    end !E-Pa5s  
    ]+m/;&0  
    n = n(:); `St.+6^J  
    m = m(:); Ii^5\v|C  
    if any(mod(n-m,2)) F1Hh7 F  
        error('zernfun:NMmultiplesof2', ... >N?2""  
              'All N and M must differ by multiples of 2 (including 0).') jh.@-  
    end !Y:0c#MPH  
    wprX!)w<i  
    if any(m>n) TcGoSj<Z  
        error('zernfun:MlessthanN', ... xGG,2W+z  
              'Each M must be less than or equal to its corresponding N.') C^z\([k0er  
    end i]#+1Hf  
    `WOYoec   
    if any( r>1 | r<0 ) 1<<kA:d  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 1<h>B:  
    end BkZV!Eg  
    )|I5j];L  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .<K iMh  
        error('zernfun:RTHvector','R and THETA must be vectors.') ]D!k&j~P  
    end wHem5E  
    $ A9%UhV  
    r = r(:); )Y8",Ig  
    theta = theta(:); XZ/[v8  
    length_r = length(r); @Kgl%[NmX  
    if length_r~=length(theta) P@]8pIB0d^  
        error('zernfun:RTHlength', ... $7'g Rb4  
              'The number of R- and THETA-values must be equal.') n3`&zY  
    end +~ #U7xgq/  
    ;=< ^0hxer  
    % Check normalization: fof2 xcH!  
    % -------------------- (?*BB3b`  
    if nargin==5 && ischar(nflag) c0Dmq)HK?  
        isnorm = strcmpi(nflag,'norm');  P N*JR  
        if ~isnorm 4\&  
            error('zernfun:normalization','Unrecognized normalization flag.') *E~VKx1  
        end o|j*t7  
    else 34QfgMyH  
        isnorm = false; TbehR:B5g  
    end j2P n<0U  
    7DfTfTU6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M@thI%lR  
    % Compute the Zernike Polynomials >l+EJ3W  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sIl33kmv  
    =ORf%f5"'  
    % Determine the required powers of r: PjIeZ&p  
    % ----------------------------------- Ce'pis   
    m_abs = abs(m); %ObD2)s6:^  
    rpowers = []; I=Oy-  
    for j = 1:length(n) RAjkH`  
        rpowers = [rpowers m_abs(j):2:n(j)]; WM)F0@"  
    end &-1./?  
    rpowers = unique(rpowers); T|"7sPgGR  
    ;p ]y)3  
    % Pre-compute the values of r raised to the required powers, \NqEw@91B  
    % and compile them in a matrix: - /c7n F  
    % ----------------------------- b59{)u4F  
    if rpowers(1)==0 6TH!vuQ1(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ba@=^Fa;  
        rpowern = cat(2,rpowern{:}); k?VQi5M  
        rpowern = [ones(length_r,1) rpowern]; p[2GkP  
    else ~B$b)`*  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); AA:no=  
        rpowern = cat(2,rpowern{:}); jFerYv&K~  
    end m/`IGT5J  
    +3,|"g::  
    % Compute the values of the polynomials: = c~I .  
    % -------------------------------------- 9B +wYJp  
    y = zeros(length_r,length(n)); ,eQ[Fi!!  
    for j = 1:length(n) c0 WFlj9b  
        s = 0:(n(j)-m_abs(j))/2; vRPS4@9'  
        pows = n(j):-2:m_abs(j); jLcHY-P0V  
        for k = length(s):-1:1 T[Pa/j{  
            p = (1-2*mod(s(k),2))* ... G*\h\ @  
                       prod(2:(n(j)-s(k)))/              ... XV'fW~j\  
                       prod(2:s(k))/                     ... =ex'22  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... FXo2Y]K3`L  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); *wi}>_\  
            idx = (pows(k)==rpowers); 4B?!THjk  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Gowp <9 F  
        end 8G ]w,eF  
         nE y]`  
        if isnorm 4%*hGh=  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ;T ZGC).6  
        end uG>nV  
    end :G)<}j"sM  
    % END: Compute the Zernike Polynomials =z:U~D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # X.+  
    S:Tm23pe  
    % Compute the Zernike functions: /f1'm@8;  
    % ------------------------------ !k~z5z'=py  
    idx_pos = m>0; ?kt=z4h9(  
    idx_neg = m<0; he )ulB  
    S*%iiD)  
    z = y; l9{#sas  
    if any(idx_pos) .F0]6#(  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); r9ke,7?  
    end  r@T| e  
    if any(idx_neg) S=gW(c2'  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ] mj v;C  
    end <?$kI>Ot  
    Fc0jQ@4=  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) '\*A"8;h  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. $P?{O3:V  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated fkW(Dt,  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive R!{7OkC  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, #t5juX9Ho9  
    %   and THETA is a vector of angles.  R and THETA must have the same X}apxSd"  
    %   length.  The output Z is a matrix with one column for every P-value, >rwYDT#m]  
    %   and one row for every (R,THETA) pair. hU,$|_WDy  
    % uFe'$vI  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike PN\V[#nS  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) e?)yb^7K  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) u g6r]0]  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 96W4 c]NT  
    %   for all p. u[t>Tg2R  
    % Tcs3>lJ}   
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 P $h;SK  
    %   Zernike functions (order N<=7).  In some disciplines it is dy_.(r5[L]  
    %   traditional to label the first 36 functions using a single mode }Z6nN)[|0Y  
    %   number P instead of separate numbers for the order N and azimuthal H!JWc'(<$  
    %   frequency M. #v qz{R~nM  
    % psD[j W  
    %   Example: #D:RhqjK  
    % K%<GU1]-]  
    %       % Display the first 16 Zernike functions X'2Gi  
    %       x = -1:0.01:1; #5d8?n  
    %       [X,Y] = meshgrid(x,x); $Z7:#cZ Y  
    %       [theta,r] = cart2pol(X,Y); --/-D5  
    %       idx = r<=1; h]C2 8=N  
    %       p = 0:15; Bi_J5 If  
    %       z = nan(size(X)); 6 ZHv,e`?  
    %       y = zernfun2(p,r(idx),theta(idx)); NhtEW0xCr  
    %       figure('Units','normalized') w?;b7i  
    %       for k = 1:length(p) jmPp-} tS7  
    %           z(idx) = y(:,k); ,$i<@2/=m  
    %           subplot(4,4,k) ~D!ESe*=  
    %           pcolor(x,x,z), shading interp !>|`ly$6  
    %           set(gca,'XTick',[],'YTick',[]) Et0&E  
    %           axis square ZW2s[p r  
    %           title(['Z_{' num2str(p(k)) '}']) ! ZA}b[  
    %       end #,Bj!'Q'-  
    % Z>HNe9pr  
    %   See also ZERNPOL, ZERNFUN. J]]\&MtaO  
    ypT9 8  
    %   Paul Fricker 11/13/2006 67 O<*M  
    2 _Jb9:/X  
    /p[y1  
    % Check and prepare the inputs: ]h!*T{:  
    % ----------------------------- F$C+R&V_  
    if min(size(p))~=1 T;%+]:w<  
        error('zernfun2:Pvector','Input P must be vector.') Pd& ,G$l  
    end }Y$VB%&Hy  
    HqDa2q4  
    if any(p)>35 1Y2a* J  
        error('zernfun2:P36', ... 'T{pdEn8u  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... JSUzEAKe  
               '(P = 0 to 35).']) (77Dif0)'  
    end gTyW#verh$  
    @s?oJpo  
    % Get the order and frequency corresonding to the function number: SFOQM*H  
    % ---------------------------------------------------------------- ?xf~!D  
    p = p(:); !?Tzk&'  
    n = ceil((-3+sqrt(9+8*p))/2); `;T? 9n  
    m = 2*p - n.*(n+2); 3?]S,~!F  
    t>-XT|lV  
    % Pass the inputs to the function ZERNFUN: 0Mq6yu^  
    % ---------------------------------------- I>8 Bc  
    switch nargin /. f!  
        case 3 gFgcxe6  
            z = zernfun(n,m,r,theta); <6gU2@1  
        case 4 hkL w&;WJr  
            z = zernfun(n,m,r,theta,nflag); mURX I'JkX  
        otherwise :nTkg[49pJ  
            error('zernfun2:nargin','Incorrect number of inputs.') *Y^5M"AB_  
    end CVi<~7Am\  
    I  *1#  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) &fh.w]\  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. O7E;W| ]  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of q|m#IVc  
    %   order N and frequency M, evaluated at R.  N is a vector of =r=^bNO  
    %   positive integers (including 0), and M is a vector with the >!CH7wX  
    %   same number of elements as N.  Each element k of M must be a FC|y'j 0  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 'Sm/t/g"|  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is +G>aj '\M|  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 2-/YYe;C  
    %   with one column for every (N,M) pair, and one row for every WllCcD1  
    %   element in R. ">v_uq a  
    % t(Cq(.u`:  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 9QO!vx  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is j>0SE  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 'bd=,QW  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ZfF`kD\  
    %   for all [n,m]. V1AEjh  
    % xX[{E x   
    %   The radial Zernike polynomials are the radial portion of the u&Ie%@:h9R  
    %   Zernike functions, which are an orthogonal basis on the unit 4?* `:  
    %   circle.  The series representation of the radial Zernike "y3dwSS  
    %   polynomials is 5[0l08'D  
    % 9e|{z9z[l  
    %          (n-m)/2 \ltErd-  
    %            __ Qt)7mf  
    %    m      \       s                                          n-2s X,Q 6  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r NiU tH  
    %    n      s=0 %u<&^8EL+#  
    % UwzE'#Q-  
    %   The following table shows the first 12 polynomials. 8=b{'s^^F  
    % #m[w=Pu}  
    %       n    m    Zernike polynomial    Normalization GHJQ d&G8G  
    %       --------------------------------------------- Ynt&cdK9  
    %       0    0    1                        sqrt(2) *+zy\AhkP  
    %       1    1    r                           2 0VWCm( f-  
    %       2    0    2*r^2 - 1                sqrt(6) I NFz X  
    %       2    2    r^2                      sqrt(6) UOOR0$4  
    %       3    1    3*r^3 - 2*r              sqrt(8) J_)z:`[yE  
    %       3    3    r^3                      sqrt(8) v f/$`IJ  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) h1D~AgZOVj  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 8EVF<@{]  
    %       4    4    r^4                      sqrt(10) |M0,%~Kt  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) '44nk(hM69  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) @O*ev| o@x  
    %       5    5    r^5                      sqrt(12) [M zc^I&  
    %       --------------------------------------------- u"CIPc{Sr  
    % ~6Ee=NaLzP  
    %   Example: [{fF)D<tC  
    % 9-e[S3ziM  
    %       % Display three example Zernike radial polynomials n?KS]ar>  
    %       r = 0:0.01:1; Dk. 9&9mz  
    %       n = [3 2 5]; It,n +A  
    %       m = [1 2 1]; LQ&d|giA  
    %       z = zernpol(n,m,r); Duo#WtC  
    %       figure , T%pGku  
    %       plot(r,z) IQ27FV|3  
    %       grid on 0e5-\a  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') \]d*h]Hms  
    % Rc m(Y7  
    %   See also ZERNFUN, ZERNFUN2. S0o,)`ZB  
    `peJ s~V  
    % A note on the algorithm. y^+[eT&  
    % ------------------------ XC8z|A-@  
    % The radial Zernike polynomials are computed using the series ?p/kuv{\o#  
    % representation shown in the Help section above. For many special QW"6]  
    % functions, direct evaluation using the series representation can >c'_xa?^G  
    % produce poor numerical results (floating point errors), because j~0ZE -e  
    % the summation often involves computing small differences between m3v* ,~  
    % large successive terms in the series. (In such cases, the functions < c4RmnA  
    % are often evaluated using alternative methods such as recurrence /dP8F  
    % relations: see the Legendre functions, for example). For the Zernike x /Ky: Ky  
    % polynomials, however, this problem does not arise, because the eG)/&zQ8  
    % polynomials are evaluated over the finite domain r = (0,1), and .f!eRV.&  
    % because the coefficients for a given polynomial are generally all <t|9`l_XW  
    % of similar magnitude. =[-- Hf  
    % -gX2{dW  
    % ZERNPOL has been written using a vectorized implementation: multiple !NY^(^   
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] PQI,vr'R  
    % values can be passed as inputs) for a vector of points R.  To achieve Q*J ~wuE2  
    % this vectorization most efficiently, the algorithm in ZERNPOL ?lw[  
    % involves pre-determining all the powers p of R that are required to 'C?f"P:X{  
    % compute the outputs, and then compiling the {R^p} into a single $@f3=NJ4k  
    % matrix.  This avoids any redundant computation of the R^p, and d/99!+r  
    % minimizes the sizes of certain intermediate variables. p<nBS" /  
    % ;<GTtt# D  
    %   Paul Fricker 11/13/2006 ;s/b_RN  
    :phD?\!w8t  
    m ?tnk?oX  
    % Check and prepare the inputs: ).`a-Pv  
    % ----------------------------- s&_O2(l  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T_B.p*\BM  
        error('zernpol:NMvectors','N and M must be vectors.') <TROs!x$a  
    end }Knq9cf  
    *UxB`iA  
    if length(n)~=length(m) GB0b|9(6D"  
        error('zernpol:NMlength','N and M must be the same length.') ImY*cW=M  
    end 9@EnmtR  
    <T% hfW  
    n = n(:); =gv/9ce)3  
    m = m(:); s6h Wq&C  
    length_n = length(n); `1v!sSR0R  
    I; }%k;v6  
    if any(mod(n-m,2)) d/zX%  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') l@F e(^5E  
    end |g^W @.P  
    C>;8`6_!gU  
    if any(m<0) iiDkk  
        error('zernpol:Mpositive','All M must be positive.') PC7.+;1  
    end H+&w7ER  
    bh"v{V`=0  
    if any(m>n) m@2xC,@  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') M !XFb  
    end U)1qsUDF  
    C`<} nx1  
    if any( r>1 | r<0 ) m95$V&  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') toZI.cSg4  
    end 3E@&wpj  
    Xz@;`>8i  
    if ~any(size(r)==1)  M!DoR6  
        error('zernpol:Rvector','R must be a vector.') TB[2!ZW  
    end Kd1\D!#!6  
    E4ee_`p  
    r = r(:); b!P;xLcb  
    length_r = length(r); &t:MWb;  
    7B2Og{P  
    if nargin==4 F5q1VEe  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); :Lzj'Ij  
        if ~isnorm p6\9H G  
            error('zernpol:normalization','Unrecognized normalization flag.') XdVC>6  
        end rz7b%WY  
    else r+Cha%&D  
        isnorm = false; bu5)~|?{t  
    end AG0x)  
    g<c^\WG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F RUt}*  
    % Compute the Zernike Polynomials 9'aR-tFun;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1vd+p!n  
    8rNxd=!  
    % Determine the required powers of r: dju{&wo~4  
    % ----------------------------------- > n\ Q [W  
    rpowers = []; CI{TgL:l  
    for j = 1:length(n) 0evZg@JP`  
        rpowers = [rpowers m(j):2:n(j)]; (ajX ;/  
    end x;aZ&  
    rpowers = unique(rpowers); &!MKqJ@t  
     \hc9Rk  
    % Pre-compute the values of r raised to the required powers, m&8_i`%<  
    % and compile them in a matrix: 2*FZ@?X@r  
    % ----------------------------- 50`r}s}  
    if rpowers(1)==0 ' ]Y:gmM"  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ms3/P|{"p  
        rpowern = cat(2,rpowern{:}); a]ey..m  
        rpowern = [ones(length_r,1) rpowern]; k/Q]K e  
    else T^SOq:m&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _<Tz 1>j=  
        rpowern = cat(2,rpowern{:}); mL+ps x+  
    end 3Mt6iZW  
    |u=57II#xK  
    % Compute the values of the polynomials: dGN*K}5  
    % -------------------------------------- `Y9@?s Q  
    z = zeros(length_r,length_n); D1a2|^zt  
    for j = 1:length_n H^0KNMf(  
        s = 0:(n(j)-m(j))/2; CeemR>\t  
        pows = n(j):-2:m(j); VgL<uxq  
        for k = length(s):-1:1 m0YDO 0  
            p = (1-2*mod(s(k),2))* ... ~Q\[b%>J  
                       prod(2:(n(j)-s(k)))/          ... ?y kIi/  
                       prod(2:s(k))/                 ... L;<]wKs  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... cl5:|)  
                       prod(2:((n(j)+m(j))/2-s(k))); 5j %jhby?  
            idx = (pows(k)==rpowers); c-{]H8$v  
            z(:,j) = z(:,j) + p*rpowern(:,idx); W X9BS$}0  
        end *}=W wG  
         yR-.OF,c  
        if isnorm 7IR n  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 5@\<:Zmi  
        end Zs)9O Ju  
    end PeZ=ONY5  
    ]RJ2`xf  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5477
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  &%^[2^H8"  
    l.C {Ar  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 qWo|LpxWt  
    Y~Zg^x2  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)