切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11602阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ?gGHj-HYJ  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 11;MN  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 $/Uq0U  
    function z = zernfun(n,m,r,theta,nflag) (CWtLi"z  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |M;7>'YNC*  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )zDCu`  
    %   and angular frequency M, evaluated at positions (R,THETA) on the j^RmrOg ,  
    %   unit circle.  N is a vector of positive integers (including 0), and <lJ345Q  
    %   M is a vector with the same number of elements as N.  Each element PLBr P  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) a/xn'"eli  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, M kXmA`cP  
    %   and THETA is a vector of angles.  R and THETA must have the same E|shs=I  
    %   length.  The output Z is a matrix with one column for every (N,M) SNk=b6`9  
    %   pair, and one row for every (R,THETA) pair. Z6MO^_m2  
    % Q S;f\'1bb  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 'i|YlMFIg  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /PXzwP_(A  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral b^vQpiz  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, tw)mepwB  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized mgU<htMr1  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2=!RQv~%  
    % Xne1gms  
    %   The Zernike functions are an orthogonal basis on the unit circle. S~G ]~gt  
    %   They are used in disciplines such as astronomy, optics, and t\O16O7S  
    %   optometry to describe functions on a circular domain.  &q*Aj17  
    % QIFgQ0{  
    %   The following table lists the first 15 Zernike functions. rEz^  
    % k$:|-_(w  
    %       n    m    Zernike function           Normalization p!AAFmc  
    %       -------------------------------------------------- &_8 947  
    %       0    0    1                                 1 {R{=+2K!|k  
    %       1    1    r * cos(theta)                    2 KD.]i' d<  
    %       1   -1    r * sin(theta)                    2 |CbikE}kL  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 0jWVp- y  
    %       2    0    (2*r^2 - 1)                    sqrt(3) < I``&>  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) lr&a;aZp  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) lPAQ3t!,  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) w_VP J  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Z0r'S]fe  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) buHJB*?9  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) vW@=<aS Z  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) K wVbbC3  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) es0hm2HT3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) wVtwx0|1  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) A^SgI-y|  
    %       -------------------------------------------------- E=O\0!F|b  
    % [()koU#w.  
    %   Example 1: )fAUum  
    % |k00Z+O(  
    %       % Display the Zernike function Z(n=5,m=1) |;{6& S  
    %       x = -1:0.01:1; >y+B  
    %       [X,Y] = meshgrid(x,x); <wHP2|<l*  
    %       [theta,r] = cart2pol(X,Y); Yx`n:0  
    %       idx = r<=1; b| (: [nB  
    %       z = nan(size(X)); "d}Gp9+$VY  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ]hV*r@d  
    %       figure &uVnZ@o42  
    %       pcolor(x,x,z), shading interp ;mi%F3  
    %       axis square, colorbar AbOf6%Env  
    %       title('Zernike function Z_5^1(r,\theta)') M D#jj3y  
    %  LFV%&y|L  
    %   Example 2: 0<*<$U  
    % :Llb< MY2  
    %       % Display the first 10 Zernike functions /dIzY0<aO  
    %       x = -1:0.01:1; HjwE+:w  
    %       [X,Y] = meshgrid(x,x); B`sAk %  
    %       [theta,r] = cart2pol(X,Y); 62NsJ<#>  
    %       idx = r<=1; pQQH)`J|t  
    %       z = nan(size(X)); /g.U&oI]D  
    %       n = [0  1  1  2  2  2  3  3  3  3]; asqV~n  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; b\5F]r  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; "ocyK}l.?  
    %       y = zernfun(n,m,r(idx),theta(idx)); y>ktcuML  
    %       figure('Units','normalized') Wa~=bH  
    %       for k = 1:10 IAyp2  
    %           z(idx) = y(:,k); ]I6  J7A[  
    %           subplot(4,7,Nplot(k)) .jK4?}]  
    %           pcolor(x,x,z), shading interp ?&uu[y  
    %           set(gca,'XTick',[],'YTick',[]) 8xMX  
    %           axis square 5`_SN74o  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 2 ? 4!K.  
    %       end #p{4^  
    % 5Yndc)Z  
    %   See also ZERNPOL, ZERNFUN2. u]G\H!Wk Q  
    {\\T gs  
    %   Paul Fricker 11/13/2006 - ! S_ryL  
    ^kSqsT"  
    !TcJ)0   
    % Check and prepare the inputs: 23jwAsSo  
    % ----------------------------- 7x8  yxE  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) o;R I*I  
        error('zernfun:NMvectors','N and M must be vectors.') 5E <kwi  
    end J,6yYIq  
    ;9'OOz|+1  
    if length(n)~=length(m) Zgb!E]V[  
        error('zernfun:NMlength','N and M must be the same length.') IUct  
    end *n"{J(Jt`  
    yF/jFn  
    n = n(:); B|X!>Q<g  
    m = m(:); |+"(L#wk  
    if any(mod(n-m,2)) .tr!(O],h  
        error('zernfun:NMmultiplesof2', ... 9Gz=lc[!7  
              'All N and M must differ by multiples of 2 (including 0).') W!(LF7_!  
    end (4-CF3D  
    \.}c9*)  
    if any(m>n) ^d xTm1Z  
        error('zernfun:MlessthanN', ... BD7N i^qI$  
              'Each M must be less than or equal to its corresponding N.') Vf1^4 t  
    end EB|}fz  
    _Bj":rzY  
    if any( r>1 | r<0 ) |vzl. ^"-  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^d73Ig:8q  
    end -35;j'a  
    (C)p9-,  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Uoix  
        error('zernfun:RTHvector','R and THETA must be vectors.') 3irl (;v  
    end )BfAw  
    YZJyk:H\  
    r = r(:); 2I{"XB  
    theta = theta(:); ,"79P/C  
    length_r = length(r); _h1mF<\ X^  
    if length_r~=length(theta) ygl0k \  
        error('zernfun:RTHlength', ... [=`q>|;pOv  
              'The number of R- and THETA-values must be equal.') |! "eWTJ  
    end 11;zNjD|  
    \z} Ic%Tp  
    % Check normalization: {BU;$  
    % -------------------- +x}<IS8  
    if nargin==5 && ischar(nflag) 7E!5G2XX~~  
        isnorm = strcmpi(nflag,'norm'); ""~ajy  
        if ~isnorm Rbv;?'O$L  
            error('zernfun:normalization','Unrecognized normalization flag.') T^]}Oy@e,J  
        end #gw]'&{8D  
    else seeB S/%  
        isnorm = false; ^T-V ^^#(  
    end kB%JNMF{A  
    FHI ;)wn=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a7%]Y}$  
    % Compute the Zernike Polynomials iO; 7t@]-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pj% |\kbNs  
    uWE^hz"  
    % Determine the required powers of r: _v]MsT-q  
    % ----------------------------------- x ]ot 2  
    m_abs = abs(m); "kqPmeI  
    rpowers = []; R ViuJ;  
    for j = 1:length(n) @7n"yp*"  
        rpowers = [rpowers m_abs(j):2:n(j)]; !jR=pIfq  
    end uY'HT|@:{  
    rpowers = unique(rpowers); "C`Ub  
    {.mngRQF  
    % Pre-compute the values of r raised to the required powers, @Do= k  
    % and compile them in a matrix: 7Hu3>4<  
    % ----------------------------- +=8VTC n?  
    if rpowers(1)==0 ,s;Uf F  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); jrh43 \$*  
        rpowern = cat(2,rpowern{:}); `*KHS A  
        rpowern = [ones(length_r,1) rpowern]; VY\&8n}e(  
    else 8Uxne2e  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }RqK84K  
        rpowern = cat(2,rpowern{:}); $iz|\m  
    end 5/Uy{Xt  
    [ !OxZ!  
    % Compute the values of the polynomials: ,zY$8y]  
    % -------------------------------------- tIgN$BHR>  
    y = zeros(length_r,length(n)); W5MTD]J   
    for j = 1:length(n) f& '  
        s = 0:(n(j)-m_abs(j))/2; 4HA<P6L  
        pows = n(j):-2:m_abs(j); B^9j@3Ux  
        for k = length(s):-1:1 ?6Y?a2 |  
            p = (1-2*mod(s(k),2))* ... 3m)y|$R  
                       prod(2:(n(j)-s(k)))/              ... -3Vx76Y  
                       prod(2:s(k))/                     ... M =r)I~  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s->^=dy  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); V "h +L7T  
            idx = (pows(k)==rpowers); J/*`7Pd  
            y(:,j) = y(:,j) + p*rpowern(:,idx); c0u^zH<  
        end [ibu/ W$  
         | %Vh`HT  
        if isnorm b SU~XGPB  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 'b{]:Y  
        end <UQbt N-B\  
    end tZG:Pr1U@  
    % END: Compute the Zernike Polynomials @sC`!Rmy'-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _aT5jR=  
    :6\qpex  
    % Compute the Zernike functions: 9qG6Pb  
    % ------------------------------ *!7 O~yQ  
    idx_pos = m>0; ~R92cH>L  
    idx_neg = m<0; JFk lUgg  
    \P`hq^;  
    z = y; 6,{$J  
    if any(idx_pos) k+pr \d~  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); c\ lkD-\  
    end N//K Ph  
    if any(idx_neg) '1s0D]  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');  ZExlGC  
    end B_m8{44zM  
    OpYY{f  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) b}TS0+TF  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ckE-",G  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated L0WN\|D  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive |4 0`B% Z  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, b2&0Hx  
    %   and THETA is a vector of angles.  R and THETA must have the same Gu\q%'I  
    %   length.  The output Z is a matrix with one column for every P-value, bAtSVu  
    %   and one row for every (R,THETA) pair. `&ckZiq  
    % n8ZZ#}Nhg  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike -z%^)VE  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ^sLdAC  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) x-&@wMqkc  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 LuvY<~u  
    %   for all p. nk' s_a*Z  
    % CN8Y\<Ar  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 tG22#F`  
    %   Zernike functions (order N<=7).  In some disciplines it is % ^1V4  
    %   traditional to label the first 36 functions using a single mode JO6)-U$7UG  
    %   number P instead of separate numbers for the order N and azimuthal +}os&[S  
    %   frequency M. K F!Yf\  
    % @O^6&\s>  
    %   Example: >V8-i`  
    % u^ 8{Z;mm  
    %       % Display the first 16 Zernike functions =R$u[~Xl2X  
    %       x = -1:0.01:1; )W _v:?A9  
    %       [X,Y] = meshgrid(x,x); Tqn@P  
    %       [theta,r] = cart2pol(X,Y); Ig0VW)@  
    %       idx = r<=1; w-L=LWL\  
    %       p = 0:15; q ,]L$  
    %       z = nan(size(X)); ra gXn  
    %       y = zernfun2(p,r(idx),theta(idx)); mLLDE;7|}  
    %       figure('Units','normalized') j/c&xv 7=  
    %       for k = 1:length(p) eF-."1  
    %           z(idx) = y(:,k); O:{~urV  
    %           subplot(4,4,k) o~y;j75{.*  
    %           pcolor(x,x,z), shading interp =wV<hg)C  
    %           set(gca,'XTick',[],'YTick',[]) Pw`8Wj  
    %           axis square R=2FNP  
    %           title(['Z_{' num2str(p(k)) '}']) IDriGZZ<)6  
    %       end E,x+JeKV  
    % ( 2E\p  
    %   See also ZERNPOL, ZERNFUN. T;a}#56{^  
    ^7WN{0  
    %   Paul Fricker 11/13/2006 " 9wvPC ^  
    1FL~ndJs  
    =Toy Zm\  
    % Check and prepare the inputs: 9ZsVy  
    % ----------------------------- Q1I6$8:7  
    if min(size(p))~=1 ! Y~FLA_  
        error('zernfun2:Pvector','Input P must be vector.') U}rU~3N  
    end qv KG-|j  
    _FU_Ubkr  
    if any(p)>35 A>;bHf@  
        error('zernfun2:P36', ... u$Jz~:=,  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... }I6veagK  
               '(P = 0 to 35).']) ;) z:fToh  
    end ;rGwc$?|  
    Y>dzR)~3[  
    % Get the order and frequency corresonding to the function number: nuMD!qu!nZ  
    % ---------------------------------------------------------------- Vl=l?A8  
    p = p(:); vm7z,FfN  
    n = ceil((-3+sqrt(9+8*p))/2); +RMSA^  
    m = 2*p - n.*(n+2); SaAFz&WRl  
    .*S#aq4S  
    % Pass the inputs to the function ZERNFUN: ^Hnb }L  
    % ---------------------------------------- P90yI  
    switch nargin 'ud{m[|  
        case 3 li'YDtMKCY  
            z = zernfun(n,m,r,theta); $)ijN^hV  
        case 4 o!Ieb  
            z = zernfun(n,m,r,theta,nflag); 6"5A%{ J  
        otherwise gpvYb7Of0  
            error('zernfun2:nargin','Incorrect number of inputs.') *-=(Q`3  
    end Zd}9O jz5  
    gw3K+P  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) fF$<7O)+]  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 5j<mbt}  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of vMi;+6'n>  
    %   order N and frequency M, evaluated at R.  N is a vector of 9N%We|L,c  
    %   positive integers (including 0), and M is a vector with the a}BYov  
    %   same number of elements as N.  Each element k of M must be a J6s`'gFns  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) \FbvHr,  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is u<6<iD3y  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix uk< 4+x,2)  
    %   with one column for every (N,M) pair, and one row for every jk; clwyz/  
    %   element in R. x=hiQ>BIO0  
    % i&Tbz!  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- (cAIvgI  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is HZzDVCU  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to .779pT!,M  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 L%*!`TN  
    %   for all [n,m]. 3nIU1e  
    % Sz)' ogl  
    %   The radial Zernike polynomials are the radial portion of the SIF/-{i(X  
    %   Zernike functions, which are an orthogonal basis on the unit J{p1|+h%  
    %   circle.  The series representation of the radial Zernike +qtJaYf/0  
    %   polynomials is *v jmy/3  
    % )BZ.Sv  
    %          (n-m)/2 53;}Nt#R  
    %            __ |"X*@s\'  
    %    m      \       s                                          n-2s p*R;hU  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r f}#~-.NGs  
    %    n      s=0 | C;=-|  
    % W+aP}rZm:  
    %   The following table shows the first 12 polynomials. G6q }o)[m)  
    % Zw 26  
    %       n    m    Zernike polynomial    Normalization zH?!  
    %       --------------------------------------------- 6@h/*WElG  
    %       0    0    1                        sqrt(2) knu,"<  
    %       1    1    r                           2 ~NrG` D}  
    %       2    0    2*r^2 - 1                sqrt(6) -j# 2}[J7  
    %       2    2    r^2                      sqrt(6) 1y4|{7bb  
    %       3    1    3*r^3 - 2*r              sqrt(8) )0.kv2o.  
    %       3    3    r^3                      sqrt(8) b$d;Qx  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 5Md=-,'J!  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) fIx+IL s  
    %       4    4    r^4                      sqrt(10) `quw9j9`C\  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 0rQMLx  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) |B?m,U$A!  
    %       5    5    r^5                      sqrt(12)  <$A  
    %       --------------------------------------------- !1jBC.G1  
    % v+W&9>  
    %   Example: #px+;k 5  
    % 1E[J%Rh\ l  
    %       % Display three example Zernike radial polynomials .KB^3pOpx  
    %       r = 0:0.01:1; [N-Di"  
    %       n = [3 2 5]; }Sm(]y  
    %       m = [1 2 1]; s [RAHU  
    %       z = zernpol(n,m,r); e/KDw  
    %       figure R$h<<v)%  
    %       plot(r,z) ?qv !w~m<  
    %       grid on IA fc T!{  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') g+8OekzB5  
    % [SjqOTon{  
    %   See also ZERNFUN, ZERNFUN2. +xh`Q=A  
    I13y6= d  
    % A note on the algorithm. %^)fmu  
    % ------------------------ 2prU  
    % The radial Zernike polynomials are computed using the series @+&LYy72  
    % representation shown in the Help section above. For many special P>y@kPi   
    % functions, direct evaluation using the series representation can m<<+  
    % produce poor numerical results (floating point errors), because QGMV}y  
    % the summation often involves computing small differences between euK5pA>L  
    % large successive terms in the series. (In such cases, the functions 5c@,bIl *  
    % are often evaluated using alternative methods such as recurrence v^sv<4*%  
    % relations: see the Legendre functions, for example). For the Zernike !4ocZmj\  
    % polynomials, however, this problem does not arise, because the aj-Km`5r}  
    % polynomials are evaluated over the finite domain r = (0,1), and Hc;[Cs0  
    % because the coefficients for a given polynomial are generally all +r�  
    % of similar magnitude. prUN)r@U   
    %  g T6z9  
    % ZERNPOL has been written using a vectorized implementation: multiple k90YV(  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] BwN0!lsF3  
    % values can be passed as inputs) for a vector of points R.  To achieve <.%4 ! }f8  
    % this vectorization most efficiently, the algorithm in ZERNPOL 3p$?,0ELH  
    % involves pre-determining all the powers p of R that are required to : p1u(hflS  
    % compute the outputs, and then compiling the {R^p} into a single =1@u  
    % matrix.  This avoids any redundant computation of the R^p, and ,5P0S0*{  
    % minimizes the sizes of certain intermediate variables. s-NX o  
    % M :=J^0  
    %   Paul Fricker 11/13/2006 ^L,K& Jd  
    8 v6(qBK  
    xBj 9y u  
    % Check and prepare the inputs: dUD[e,?  
    % ----------------------------- h,(26 y/s  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) j}#w )M  
        error('zernpol:NMvectors','N and M must be vectors.') ,=uD^n:  
    end "6("9"  
    SjK  
    if length(n)~=length(m) 8:q1~`?5"b  
        error('zernpol:NMlength','N and M must be the same length.') B5`EoZ  
    end :ffY6L+  
    ;'gWu  
    n = n(:); eYc$ dPE  
    m = m(:); !@5 9)  
    length_n = length(n); ^23~ZHu  
    5frX   
    if any(mod(n-m,2)) ~kV/!=  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ~EW(Gs!=C  
    end 5G}?fSQ>  
    0RzEY!9g+  
    if any(m<0) W PC]%:L"  
        error('zernpol:Mpositive','All M must be positive.') ),_@WW;k  
    end S0$8@"~=  
    GWGSd\z  
    if any(m>n) "BAK !N$9  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Oz.HH  
    end >e lJkq|  
    (xycJ`N  
    if any( r>1 | r<0 ) //B&k`u  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 6]i-E>p3R  
    end k``_EiV4t  
    REQ\>UO_  
    if ~any(size(r)==1) > [)7U _|p  
        error('zernpol:Rvector','R must be a vector.') L]7=?vN=8  
    end $Ph|e)p  
    ]IaMp788  
    r = r(:); K&u_R  
    length_r = length(r); p;a,#IJu  
    ;J'LS  
    if nargin==4 b\f O8{k  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); gE-tjoJ  
        if ~isnorm 5#6|j?_a  
            error('zernpol:normalization','Unrecognized normalization flag.') t6rRU~;}  
        end F k7?xc  
    else 39c2pV[  
        isnorm = false; '(6z. toQ  
    end XE RUo  
    I]|Pq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \Dm";Ay>  
    % Compute the Zernike Polynomials qfF~D0}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RIR\']WN  
    q$L%36u~/  
    % Determine the required powers of r: +:2klJ  
    % ----------------------------------- 4X/-4'  
    rpowers = []; W<{h,j8  
    for j = 1:length(n) O *C;Vqt  
        rpowers = [rpowers m(j):2:n(j)];  y`iBFC;_  
    end $V;i '(&7  
    rpowers = unique(rpowers); MBK^FR-K  
    Gf6p'(\zun  
    % Pre-compute the values of r raised to the required powers, ]2A^1Del  
    % and compile them in a matrix: B^=-Z8  
    % ----------------------------- -12UN(&&Z  
    if rpowers(1)==0 2YL?,uLS  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Z9E\,Ly  
        rpowern = cat(2,rpowern{:}); =>S]q71  
        rpowern = [ones(length_r,1) rpowern]; >dXGee>'M  
    else Q>qUk@  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (M|Dx\_  
        rpowern = cat(2,rpowern{:}); d7^}tM  
    end u~N?N W Q  
    HdI8f!X'TG  
    % Compute the values of the polynomials: Ep_HcX`  
    % -------------------------------------- Z{.8^u1I  
    z = zeros(length_r,length_n); ZmqKQO  
    for j = 1:length_n Wb,KjtX  
        s = 0:(n(j)-m(j))/2; ";lVa'HMZ  
        pows = n(j):-2:m(j); uh_RGM&  
        for k = length(s):-1:1 Oxnp0 s  
            p = (1-2*mod(s(k),2))* ... G&SB-  
                       prod(2:(n(j)-s(k)))/          ... .8g)av+  
                       prod(2:s(k))/                 ... of~4Q{f$6  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... >h1}~jW+  
                       prod(2:((n(j)+m(j))/2-s(k))); .~db4d]  
            idx = (pows(k)==rpowers); _RYxD"m y  
            z(:,j) = z(:,j) + p*rpowern(:,idx); *-WpZGh  
        end }v;V=%N+v  
         P;y45b  
        if isnorm OnziG+ak  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Mexk~z A^  
        end bRDYGuC  
    end T"Y+m-<%  
    ^#-l q)  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  o|:b;\)b  
    BO&bmfp7,  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 <lPG=Xt  
    C!!M%P  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)