切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11370阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 '1aOdEZA*  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 89l}6p/L  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 umj7-fh  
    function z = zernfun(n,m,r,theta,nflag) ){/y-ixH  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. dW91nTQ:  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 6w54+n  
    %   and angular frequency M, evaluated at positions (R,THETA) on the N$. ''D?7D  
    %   unit circle.  N is a vector of positive integers (including 0), and edm&,ph]  
    %   M is a vector with the same number of elements as N.  Each element X|b~,X%N  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 2'++G[z  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, _A(J^;?  
    %   and THETA is a vector of angles.  R and THETA must have the same FQ[::*-  
    %   length.  The output Z is a matrix with one column for every (N,M) 1m&(3% #{  
    %   pair, and one row for every (R,THETA) pair. .DT1Jvl  
    % UOq$88sr  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike g{&ux k);  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ,Ti#g8j  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  oo2VT  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ";Lpf]<  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Qv8Z64#  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. K@h v[4  
    % 3ZC[H'|  
    %   The Zernike functions are an orthogonal basis on the unit circle. J,k{Bm  
    %   They are used in disciplines such as astronomy, optics, and K }r%OOn0  
    %   optometry to describe functions on a circular domain. q4VOK 'N  
    % b afYjF< 3  
    %   The following table lists the first 15 Zernike functions. S\Q/ "Y  
    % o zv><e#  
    %       n    m    Zernike function           Normalization d6_ CsqV  
    %       -------------------------------------------------- "g0L n5&  
    %       0    0    1                                 1 iNha<iS+  
    %       1    1    r * cos(theta)                    2 |d8/ZD  
    %       1   -1    r * sin(theta)                    2 {BgGG@e  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) R# gip  
    %       2    0    (2*r^2 - 1)                    sqrt(3) #[2]B8NZ  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) &B[$l`1  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Z$T1nm%lo:  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) #b:8-Lt:M  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) fAJQ8nb{@]  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) a(bgPkPP  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) NoV2<m$  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @ %kCe>r  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) iN_G|w[d  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #;H+Kb5O  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) T-eeYw?Yf  
    %       -------------------------------------------------- 7kHEY5s "  
    % i9_ZK/*  
    %   Example 1: nx=Zl:Q}  
    % w$pBACX  
    %       % Display the Zernike function Z(n=5,m=1) ?DA,]aa-  
    %       x = -1:0.01:1; :v=Yo  
    %       [X,Y] = meshgrid(x,x); ) =sm{R%T  
    %       [theta,r] = cart2pol(X,Y);  |G{TA  
    %       idx = r<=1; *l^h;RSx  
    %       z = nan(size(X)); ?> }bg  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); C;M.dd  
    %       figure (@~d9PvB>  
    %       pcolor(x,x,z), shading interp dtr8u  
    %       axis square, colorbar YcT!`B   
    %       title('Zernike function Z_5^1(r,\theta)') RD<l<+C^~  
    % lQY?!oj&q  
    %   Example 2: //Ck1cI#h  
    % h`,dg%J*B  
    %       % Display the first 10 Zernike functions a6fMx~  
    %       x = -1:0.01:1; +U% = w8b  
    %       [X,Y] = meshgrid(x,x); $Ic: c  
    %       [theta,r] = cart2pol(X,Y); Xh;Pbm|K  
    %       idx = r<=1; 94LFElE3  
    %       z = nan(size(X)); ._Wm%'uX  
    %       n = [0  1  1  2  2  2  3  3  3  3]; \XD&0inv  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; )k{zRq:d  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 1 @tVfn}  
    %       y = zernfun(n,m,r(idx),theta(idx)); \|RP-8  
    %       figure('Units','normalized') G ,An8GR%&  
    %       for k = 1:10 !0{":4 \  
    %           z(idx) = y(:,k); w-pdpbHV  
    %           subplot(4,7,Nplot(k)) }hv>LL  
    %           pcolor(x,x,z), shading interp .|;`qU o  
    %           set(gca,'XTick',[],'YTick',[]) .-Ggvw  
    %           axis square *^ g7kCe(  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;"Q{dOvp  
    %       end VD#`1g<  
    % +h.$ <=  
    %   See also ZERNPOL, ZERNFUN2. !O~EIz  
    p eQD]v  
    %   Paul Fricker 11/13/2006 M S)(\&N  
    a 39Kl_\  
    AtGk _tpVZ  
    % Check and prepare the inputs: @.6l^"L  
    % ----------------------------- B0T[[%~3M  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [/.o>R#J(  
        error('zernfun:NMvectors','N and M must be vectors.') -Xb]=Yf-  
    end hlWTsi4N  
    wz3BtCx  
    if length(n)~=length(m) 3@f@4t@5V  
        error('zernfun:NMlength','N and M must be the same length.') Zu951+&`  
    end LS}dt?78`V  
    6lpfk&  
    n = n(:); 4{7O}f  
    m = m(:); GcmN40  
    if any(mod(n-m,2)) v,#*%Gn`%  
        error('zernfun:NMmultiplesof2', ... yS%IE>?  
              'All N and M must differ by multiples of 2 (including 0).') -SnP+X!  
    end n$i}r\ so  
    J39,x=8LL  
    if any(m>n) 8wKF.+_A  
        error('zernfun:MlessthanN', ... ) ,1MR=  
              'Each M must be less than or equal to its corresponding N.') c4E=qgP  
    end uU=O0?'zq  
    zZE 2%fqM  
    if any( r>1 | r<0 ) l$=Y(Xk  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') R] L|&{   
    end 7vax[,a I  
    3C{3"bP  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) wyvrNru<l4  
        error('zernfun:RTHvector','R and THETA must be vectors.') H48`z'o  
    end ZbD_AP  
    ve;#o<  
    r = r(:); zBg>I=hiG  
    theta = theta(:); \x\_I1|  
    length_r = length(r); 2A'!kd$2  
    if length_r~=length(theta) k\rzvo=U  
        error('zernfun:RTHlength', ... "$#X[ .  
              'The number of R- and THETA-values must be equal.') !l-^JPb  
    end ?UuJk  
    2YI#J.6]H  
    % Check normalization: 5RD\XgyN]  
    % -------------------- # Un>g4>Rh  
    if nargin==5 && ischar(nflag) tp"dho  
        isnorm = strcmpi(nflag,'norm'); Ad!= *n  
        if ~isnorm *Y(v!x \L  
            error('zernfun:normalization','Unrecognized normalization flag.') IMjz#|c  
        end #/!fLU@  
    else hqOy*!8'@  
        isnorm = false; rjqQWfShY  
    end (:v|(Gn/  
    {YnR]|0&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  &0! f_  
    % Compute the Zernike Polynomials /cM<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G Xx7/X  
    xrb %-vT  
    % Determine the required powers of r: r:Uqtqxh  
    % ----------------------------------- l,5<g-r V  
    m_abs = abs(m); m:U.ao6  
    rpowers = []; {nTQc2T?;  
    for j = 1:length(n) xdw"JS}  
        rpowers = [rpowers m_abs(j):2:n(j)]; V8AF;1c?-'  
    end Sz4G,c  
    rpowers = unique(rpowers); M\\t)=q  
    pt[H5  
    % Pre-compute the values of r raised to the required powers, i Lr*W#E  
    % and compile them in a matrix: #m yiZL %  
    % ----------------------------- z/09~Hc  
    if rpowers(1)==0 k+Ew+j1_  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); n/*BK;  
        rpowern = cat(2,rpowern{:}); mHcxK@qw  
        rpowern = [ones(length_r,1) rpowern]; 1 ?X(q  
    else .<ux Z  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ::bK{yZm   
        rpowern = cat(2,rpowern{:}); Hjl{M>z  
    end uFxhr2 <z  
    ?S&pq?   
    % Compute the values of the polynomials: LS1r}cl  
    % -------------------------------------- :6R0=oz  
    y = zeros(length_r,length(n)); 2ZHeOKJ-  
    for j = 1:length(n) ia=eFWt.  
        s = 0:(n(j)-m_abs(j))/2; OT-!n  
        pows = n(j):-2:m_abs(j); Np$peT[  
        for k = length(s):-1:1 l"9.zPvT<  
            p = (1-2*mod(s(k),2))* ... Fh  t$7V  
                       prod(2:(n(j)-s(k)))/              ... =fA* b  
                       prod(2:s(k))/                     ...  -)  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... * ]uo/g  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); K5X,J/n  
            idx = (pows(k)==rpowers); NR3]MGBKv  
            y(:,j) = y(:,j) + p*rpowern(:,idx); S<), ,(  
        end $gKMVgD"  
         #H]b Xr  
        if isnorm d V+%x"[:  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1O" Mo  
        end #XSs.i{  
    end s-^B)0T!  
    % END: Compute the Zernike Polynomials oq00)I1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y k=o  
    hCXSC*;  
    % Compute the Zernike functions: }~gBnq_DDU  
    % ------------------------------ L0ZgxG3:g  
    idx_pos = m>0; ~~J xw ]  
    idx_neg = m<0; rKZ1 c,y  
    GL4-v[]6I  
    z = y; P_:A%T  
    if any(idx_pos) {O\>"2}m'f  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); "&jWC  
    end ziFg+i%s  
    if any(idx_neg) N^,@s"g  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); P}=u8(u  
    end a%3V< "f  
    B+e$S%HV  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) *Q= 3v  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. rL+K Sb  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated P(z#Wk  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive :Ja]Vt  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ] r8 hMv  
    %   and THETA is a vector of angles.  R and THETA must have the same R-xWZRl>  
    %   length.  The output Z is a matrix with one column for every P-value, D9OI ",h  
    %   and one row for every (R,THETA) pair. T<!&6,N A  
    % I]S8:w![  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Q/e$Ttt4J  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 7|~j=,HU+Z  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) l}|KkW\y  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ~N</;{}fL4  
    %   for all p. )ESF)aKMiz  
    % YXD6GJWo  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 m%8idjnG  
    %   Zernike functions (order N<=7).  In some disciplines it is k M/cD`  
    %   traditional to label the first 36 functions using a single mode _)4YxmK%  
    %   number P instead of separate numbers for the order N and azimuthal P%Fkd3e+  
    %   frequency M. {? -@`FR-  
    % ] i;xeo,  
    %   Example: J{98x zb  
    % JaC =\\B  
    %       % Display the first 16 Zernike functions 7C7eX J9q  
    %       x = -1:0.01:1; O0?.$f9 s  
    %       [X,Y] = meshgrid(x,x); 8"2 Y$*)(  
    %       [theta,r] = cart2pol(X,Y); & w{""'  
    %       idx = r<=1; zE"ME*ou  
    %       p = 0:15; zu6Y*{$>g  
    %       z = nan(size(X)); 'BE &lW  
    %       y = zernfun2(p,r(idx),theta(idx)); 3EGQ$  
    %       figure('Units','normalized') yGN@Hd:9  
    %       for k = 1:length(p) j(j o8  
    %           z(idx) = y(:,k); 2FHWOy /N@  
    %           subplot(4,4,k) 5<-_"/_  
    %           pcolor(x,x,z), shading interp n-q  
    %           set(gca,'XTick',[],'YTick',[]) W}6(;tI  
    %           axis square 5B+>28G%  
    %           title(['Z_{' num2str(p(k)) '}']) {Mt4QA5iZ  
    %       end tz(\|0WDQ  
    % ,X Zo0 !  
    %   See also ZERNPOL, ZERNFUN. hr%O4&sa  
    /|{Yot e  
    %   Paul Fricker 11/13/2006 y( M-   
    E|u#W3-:  
    >YPC &@9   
    % Check and prepare the inputs: hdB.u^!  
    % ----------------------------- 8nOMyNpy~M  
    if min(size(p))~=1 = ;sEi:HC  
        error('zernfun2:Pvector','Input P must be vector.') ["|' f  
    end >h3r\r\n3  
    v ?b9TE  
    if any(p)>35 \I r&&%  
        error('zernfun2:P36', ... *2O4*Q1  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... K9v@L6pY=  
               '(P = 0 to 35).']) ]w!gv /;  
    end x <^vJ1  
    }]w/`TF  
    % Get the order and frequency corresonding to the function number: w9D<^(_}/  
    % ---------------------------------------------------------------- J(*QtF  
    p = p(:); k/+-Tq;  
    n = ceil((-3+sqrt(9+8*p))/2); R["2kEF  
    m = 2*p - n.*(n+2); %mR roR6  
    ZKKz?reM'  
    % Pass the inputs to the function ZERNFUN: %JBFG.+  
    % ---------------------------------------- <1tFwC|4BJ  
    switch nargin FC.d]XA%/d  
        case 3 8D[8(5  
            z = zernfun(n,m,r,theta); ZM oV!lu  
        case 4 rM6^pzxe  
            z = zernfun(n,m,r,theta,nflag); Q9X7- \n  
        otherwise 1(C3;qlVD  
            error('zernfun2:nargin','Incorrect number of inputs.') i3I'n*  
    end O!+LM{> F  
    B9`^JYT<  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 9tmYrhb$  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. [Af&K22M(X  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of q0Fq7rWP  
    %   order N and frequency M, evaluated at R.  N is a vector of g ]|K@sm  
    %   positive integers (including 0), and M is a vector with the mIVnc`3s  
    %   same number of elements as N.  Each element k of M must be a @/}{Trmg/  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) M0`nr}g  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is }^uUw&   
    %   a vector of numbers between 0 and 1.  The output Z is a matrix E@\e37e  
    %   with one column for every (N,M) pair, and one row for every @xR7>-$0p  
    %   element in R. WrhC q6  
    % 6'y+Ev$9  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- zAEq)9Y"l'  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is %Kd&A*  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to dzDh V{  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 i:`ur  
    %   for all [n,m]. lcgT9 m#  
    % )@.bkzW  
    %   The radial Zernike polynomials are the radial portion of the 9`}Wp2  
    %   Zernike functions, which are an orthogonal basis on the unit GSg|Gz""J0  
    %   circle.  The series representation of the radial Zernike Z qX  U  
    %   polynomials is FUzIuz 6  
    % wsp&U .z  
    %          (n-m)/2 v{Cts3?Br  
    %            __ >E^?<}E~.  
    %    m      \       s                                          n-2s 4kGA`XhS*  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r \a+F/I$hwa  
    %    n      s=0 A+%oE  
    % dq%N,1.F  
    %   The following table shows the first 12 polynomials. dDN#>|  
    % 0gPz|v>z  
    %       n    m    Zernike polynomial    Normalization 'U]= T<  
    %       --------------------------------------------- -e#YWMo(  
    %       0    0    1                        sqrt(2) b Jt397  
    %       1    1    r                           2 ]c{Zh?0  
    %       2    0    2*r^2 - 1                sqrt(6) \7Hzj0hSi  
    %       2    2    r^2                      sqrt(6) E> Ukxi1  
    %       3    1    3*r^3 - 2*r              sqrt(8) X0 &1ICZ  
    %       3    3    r^3                      sqrt(8) V x1C4  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) P<GY"W+r R  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) P0U=lj/ b  
    %       4    4    r^4                      sqrt(10) r$=MBeT  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) `we2zT  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) GutH}Kz"&  
    %       5    5    r^5                      sqrt(12) &n|! '/H  
    %       --------------------------------------------- N8(xz-6  
    % kRNr`yfN  
    %   Example: [dFxW6n  
    % `*e',j2}UU  
    %       % Display three example Zernike radial polynomials 5%kt;ODS  
    %       r = 0:0.01:1; \~:Kp Kq  
    %       n = [3 2 5]; jPYed@[+  
    %       m = [1 2 1]; uRG0} >]|U  
    %       z = zernpol(n,m,r); (:E_m|00;  
    %       figure PCnE-$QH  
    %       plot(r,z) <uNBsYMuC  
    %       grid on d.tjLeY  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') gWA)V*}f  
    % 'qQ 5K o  
    %   See also ZERNFUN, ZERNFUN2. P, !si#  
    !zLd ,`  
    % A note on the algorithm. UK+;/Mtg  
    % ------------------------ 3 D,PbAd  
    % The radial Zernike polynomials are computed using the series  ])}{GW  
    % representation shown in the Help section above. For many special h8 >7si  
    % functions, direct evaluation using the series representation can QU16X  
    % produce poor numerical results (floating point errors), because [P8Y  
    % the summation often involves computing small differences between G_zJuE$V  
    % large successive terms in the series. (In such cases, the functions k\|G%0Jw  
    % are often evaluated using alternative methods such as recurrence wl2rw93  
    % relations: see the Legendre functions, for example). For the Zernike :gDIGBK,  
    % polynomials, however, this problem does not arise, because the Yo @>O98  
    % polynomials are evaluated over the finite domain r = (0,1), and rklr^ e  
    % because the coefficients for a given polynomial are generally all ;%2/  
    % of similar magnitude. 7{f&L '  
    % 1g9Q vz3  
    % ZERNPOL has been written using a vectorized implementation: multiple sR,]eo<p&  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] qu BTRW9  
    % values can be passed as inputs) for a vector of points R.  To achieve 8#'<SB  
    % this vectorization most efficiently, the algorithm in ZERNPOL 0F=UZf&  
    % involves pre-determining all the powers p of R that are required to eS fT +UL  
    % compute the outputs, and then compiling the {R^p} into a single AuUT 'E@E  
    % matrix.  This avoids any redundant computation of the R^p, and n l Xg8t^G  
    % minimizes the sizes of certain intermediate variables. %Fq"4%  
    % *c7kB}/  
    %   Paul Fricker 11/13/2006 +l@H[r;$  
    OGg9e  
    z*ZEw  
    % Check and prepare the inputs: 7&XU]I  
    % ----------------------------- K@U"^ `G2  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =$Sf]L  
        error('zernpol:NMvectors','N and M must be vectors.') (7`goi7M  
    end *D #H-]9  
    N72z5[..  
    if length(n)~=length(m) iN+Dmq5  
        error('zernpol:NMlength','N and M must be the same length.') QKc3Q5)@j  
    end %d($\R-*O  
    *CA|}l  
    n = n(:); \lCr~D5  
    m = m(:); 6#vD>@H  
    length_n = length(n); EAxg>}'1j  
    ~6.AE/ow  
    if any(mod(n-m,2)) 8Fx~i#FT  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') +e<P7}ZQ  
    end hD{+V!{  
    ??=CAU%\  
    if any(m<0) VE4!=4  
        error('zernpol:Mpositive','All M must be positive.') kU_bLC?>D  
    end cf1Ve\(YGI  
    $5yS`Iq S  
    if any(m>n) yk!,{Q?<$  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') (`GO@  
    end xB]~%nC[O  
    QW6F24  
    if any( r>1 | r<0 ) #!rng]p  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') w;0NtV|  
    end  LD: w wH  
    jC ,foqL  
    if ~any(size(r)==1) dMw7Lp&  
        error('zernpol:Rvector','R must be a vector.') +`kfcA#pi  
    end ?'CIt5n+\{  
    YKf,vHau  
    r = r(:); y`:}~nUdT  
    length_r = length(r); k6ER GQ9|I  
    8HX(1nNj}  
    if nargin==4 .a:"B\B`  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Xw`vf7z*  
        if ~isnorm `j(\9j ok  
            error('zernpol:normalization','Unrecognized normalization flag.') yU\&\fD>j  
        end 5g&.P\c{  
    else P .3j |)NW  
        isnorm = false; T=:O(R1*0  
    end E:4`x_~qQ  
    N/DcaHFYo  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }DxXt  
    % Compute the Zernike Polynomials e{:P!r aM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H!4!1J.=xw  
    Zq2dCp%  
    % Determine the required powers of r: @}!1Uk3ud  
    % ----------------------------------- %lbSV}V)  
    rpowers = []; wg^#S  
    for j = 1:length(n) ;{ XKZ}  
        rpowers = [rpowers m(j):2:n(j)]; T2Z;)e$m_  
    end i]Lt8DiRq  
    rpowers = unique(rpowers); VxLq,$B76  
    l?NRQTG  
    % Pre-compute the values of r raised to the required powers, _Z.lr\  
    % and compile them in a matrix: b(_PCVC  
    % ----------------------------- bWt>tEnf  
    if rpowers(1)==0 l] WV gu  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); SOE#@{IXBa  
        rpowern = cat(2,rpowern{:}); \o?zL7  
        rpowern = [ones(length_r,1) rpowern]; t]P[>{y  
    else ^HLi1w|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); xYc)iH6&  
        rpowern = cat(2,rpowern{:}); w}G2m)(  
    end Z{EHV7  
    -. L)-%wIV  
    % Compute the values of the polynomials: |]RV[S3v  
    % -------------------------------------- `i8osX[&p  
    z = zeros(length_r,length_n); .S`Ue,H  
    for j = 1:length_n x|_%R v  
        s = 0:(n(j)-m(j))/2; bENfEOf,  
        pows = n(j):-2:m(j); NOP~?p  
        for k = length(s):-1:1 M-K<w(,X  
            p = (1-2*mod(s(k),2))* ... }5RfY| ;  
                       prod(2:(n(j)-s(k)))/          ... J<p<5):R;  
                       prod(2:s(k))/                 ... }el. qZ  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 00Tm0rY  
                       prod(2:((n(j)+m(j))/2-s(k))); :J@q Xa  
            idx = (pows(k)==rpowers); @4B+<,i   
            z(:,j) = z(:,j) + p*rpowern(:,idx); s!~M,zsQN  
        end {lT9gJ+  
         3uwu}aw  
        if isnorm miCt)Qd  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); qo}-m7  
        end ?O8NyCeb7  
    end U/>f" F  
    LU_@8i:  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  |O+R%'z'<  
    /Or76kE  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ZZ!d:1'7  
    CLQ\Is^]  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)