切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11184阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 S!<1C Fh  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! H9["ZRL,Q  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 9E (VU.  
    function z = zernfun(n,m,r,theta,nflag) h^P>,dy0  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. web =AQ5I4  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :<OInKE>Cx  
    %   and angular frequency M, evaluated at positions (R,THETA) on the }mjJglK!N  
    %   unit circle.  N is a vector of positive integers (including 0), and "+REv_:  
    %   M is a vector with the same number of elements as N.  Each element SWjOJjn  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) !A"`jc~x:  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :\@WY  
    %   and THETA is a vector of angles.  R and THETA must have the same lD!o4ZAo  
    %   length.  The output Z is a matrix with one column for every (N,M) }2.^n{Y  
    %   pair, and one row for every (R,THETA) pair. 27-<q5q  
    %  H}NW?  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike rsP3?.E  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), "hU'o&  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral eH2.,wY1  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )* @Oz  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized EO'[AU%~  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. f[n#Eu}   
    % '#SacJ\L7  
    %   The Zernike functions are an orthogonal basis on the unit circle. pa&*n=&cL  
    %   They are used in disciplines such as astronomy, optics, and 9$,?Grw~  
    %   optometry to describe functions on a circular domain. Eb`U^*A  
    % "t+VF 4r  
    %   The following table lists the first 15 Zernike functions. 5=g{%X  
    % . `lcxC  
    %       n    m    Zernike function           Normalization I"E5XVC);  
    %       -------------------------------------------------- im^G{3z  
    %       0    0    1                                 1 tr2@{xb  
    %       1    1    r * cos(theta)                    2 #F5O>9hA  
    %       1   -1    r * sin(theta)                    2 jxL5L[  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) &oevgG  
    %       2    0    (2*r^2 - 1)                    sqrt(3) $4`RJ{ZJw]  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) WlVC0&  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) `j088<?j  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) rMqWXGl`(  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) WKZ9i2hcdf  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 3OV#H%  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ^3QHB1I  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rr2'bf<]  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) :8U=L'4  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lhAwTOn`Q  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 3ug{1 M3  
    %       -------------------------------------------------- $kJvPwRO  
    % E.?|L-fy  
    %   Example 1: g% :Q86u  
    % E7+ y W  
    %       % Display the Zernike function Z(n=5,m=1) Z>Nr"7k  
    %       x = -1:0.01:1; 4E:HO\  
    %       [X,Y] = meshgrid(x,x); h2+vl@X  
    %       [theta,r] = cart2pol(X,Y); =^4 vz=2  
    %       idx = r<=1; Kz!-w  
    %       z = nan(size(X)); GVZ/`^ndM  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); in-/  
    %       figure G*e/Ft.wf8  
    %       pcolor(x,x,z), shading interp ]j0v.[SX  
    %       axis square, colorbar NA[yT  
    %       title('Zernike function Z_5^1(r,\theta)') _ Onsfv  
    % uk_?2?>-5  
    %   Example 2: qt+vmi+~  
    % r4jW=?|  
    %       % Display the first 10 Zernike functions l%lkDh!$"  
    %       x = -1:0.01:1; yowvq4e  
    %       [X,Y] = meshgrid(x,x); M cE$=Vv  
    %       [theta,r] = cart2pol(X,Y); UNq!|  
    %       idx = r<=1; `!5 ZF@Q>e  
    %       z = nan(size(X)); L #p-AK  
    %       n = [0  1  1  2  2  2  3  3  3  3]; nCEt*~t9VE  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :{%6< j  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ofl3G {u  
    %       y = zernfun(n,m,r(idx),theta(idx)); -O3^q.   
    %       figure('Units','normalized') |)i- c`x  
    %       for k = 1:10 T30!'F(*,  
    %           z(idx) = y(:,k); WA~|:S+  
    %           subplot(4,7,Nplot(k)) qX`?4"4  
    %           pcolor(x,x,z), shading interp 0U ?1Yh7 m  
    %           set(gca,'XTick',[],'YTick',[]) (L8H.|.  
    %           axis square u&".kk  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])  =w0Rq~  
    %       end aDR<5_Yb  
    % ^]^Y~$u  
    %   See also ZERNPOL, ZERNFUN2. !)ey~Suh  
    nK1XJp  
    %   Paul Fricker 11/13/2006 <WtX> \]l(  
    ):jK sP ,  
    -ZH]i}$  
    % Check and prepare the inputs: 8$-Wz:X&  
    % ----------------------------- ho ?.\Jq  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) VR2BdfKU,  
        error('zernfun:NMvectors','N and M must be vectors.') WZdA<<,:o  
    end %FLz}QW*  
    Q<P],}?:  
    if length(n)~=length(m) OF,<K%A  
        error('zernfun:NMlength','N and M must be the same length.') =:v\}/  
    end Fe%Q8RIh_  
    *-T3'beg  
    n = n(:); BgJ;\NV  
    m = m(:); N \[Cuh8Fe  
    if any(mod(n-m,2)) $}2m%$vJO  
        error('zernfun:NMmultiplesof2', ... AF ZHS\  
              'All N and M must differ by multiples of 2 (including 0).') ]plg@  
    end -4Zf0r1u  
    ]IXKoJUf  
    if any(m>n) b\"JXfw  
        error('zernfun:MlessthanN', ... GKH 7Xx(  
              'Each M must be less than or equal to its corresponding N.') D$;mur'  
    end h|mh_T{+  
    Duj9PV`2  
    if any( r>1 | r<0 ) z<ptrH  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') [zn`vT  
    end G<9MbMG  
    20d[\P(.  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) k4'rDJfB  
        error('zernfun:RTHvector','R and THETA must be vectors.') }7+G'=XI/  
    end 0vQ@n7  
    ;n00kel$  
    r = r(:); ?o$6w(]''  
    theta = theta(:); 'h%)@q)J)  
    length_r = length(r); !FZb3U@  
    if length_r~=length(theta) -uqJ~gD  
        error('zernfun:RTHlength', ... F'*y2FC  
              'The number of R- and THETA-values must be equal.') Ti#2D3  
    end *5hg}[n2  
    zPWG^  
    % Check normalization: 7ml,  
    % -------------------- s[nXr   
    if nargin==5 && ischar(nflag) #,Fk  
        isnorm = strcmpi(nflag,'norm'); U P GS  
        if ~isnorm .AH#D}m  
            error('zernfun:normalization','Unrecognized normalization flag.') "639oB  
        end zIf/jk  
    else H5S>|"`e`e  
        isnorm = false; h35x'`g7+r  
    end (ST />")L  
    `22F@JYN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1&ZG6#16q  
    % Compute the Zernike Polynomials +IK~a9t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `XB(d@%  
    HtgVD~[]  
    % Determine the required powers of r: *^ \xH,.  
    % ----------------------------------- 5.0BaVwi  
    m_abs = abs(m); $L)9'X   
    rpowers = []; OvX z+C,  
    for j = 1:length(n) 79n,bb5  
        rpowers = [rpowers m_abs(j):2:n(j)]; ,jQkR^]j-  
    end F]N9ZWn /  
    rpowers = unique(rpowers); 25XD fi75  
    [~` ; .7~  
    % Pre-compute the values of r raised to the required powers, _]E"hr6a  
    % and compile them in a matrix: #yFDC@gH1  
    % ----------------------------- '=G4R{  
    if rpowers(1)==0 iS&fp[Th  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <@.f#  
        rpowern = cat(2,rpowern{:}); \vT0\1:|i  
        rpowern = [ones(length_r,1) rpowern]; Vx;f/CH3!  
    else z|=l^u6uS  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); r4@!QR<h  
        rpowern = cat(2,rpowern{:}); ?9mFI(r~  
    end %E3|b6k\  
    8|.( Y  
    % Compute the values of the polynomials: usZmf=p-r  
    % -------------------------------------- 6 K P  
    y = zeros(length_r,length(n)); B#&U5fSw+0  
    for j = 1:length(n) 'vgw>\X(  
        s = 0:(n(j)-m_abs(j))/2; _:x/\ 8P  
        pows = n(j):-2:m_abs(j); Mc>]ZAzr  
        for k = length(s):-1:1 *^bqpW2$q  
            p = (1-2*mod(s(k),2))* ... 9IIQon  
                       prod(2:(n(j)-s(k)))/              ... R44JK  
                       prod(2:s(k))/                     ... @OZW1p  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #[ vmS  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 4xk'R[v  
            idx = (pows(k)==rpowers); 36,qh.LKn  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Qf6]qJa|  
        end nmn$$=~)  
         Q1mz~r  
        if isnorm tQ< ou,   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); K 4j'e6  
        end kG[u$[B  
    end 9w[7X"#n  
    % END: Compute the Zernike Polynomials AFGWlC#`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t/yGMR=  
    A-aukJg9  
    % Compute the Zernike functions: ;hA>?o_i(  
    % ------------------------------ H2 5Mx>|d  
    idx_pos = m>0; %L.,:mtq)  
    idx_neg = m<0; NC)Iu  
    j +\I4oFN  
    z = y; PaP47>(  
    if any(idx_pos) Tm-Nz7U^^  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {'l^{"GO"  
    end tu#VZAPW@  
    if any(idx_neg) Qv(}*iq]  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); GM%%7^uE  
    end &, hhH_W  
    F-k3'eyY  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) }]$%aMxy T  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. "*CQ<@+  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated N%v}$58Z  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Q#Q]xJH  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, =o^oMn  
    %   and THETA is a vector of angles.  R and THETA must have the same |&eZ[Sy(=l  
    %   length.  The output Z is a matrix with one column for every P-value, jku_0Q0*?  
    %   and one row for every (R,THETA) pair. kE;h[No&K  
    % Y*/:IYr`  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike G7yCGT)vQ  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) [tGAo/  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Vz6p^kMB  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 /) sA{q 4  
    %   for all p. td%]l1  
    % j9)P3=s  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ,V'+16xW  
    %   Zernike functions (order N<=7).  In some disciplines it is hNgbHzW  
    %   traditional to label the first 36 functions using a single mode )8VrGg?  
    %   number P instead of separate numbers for the order N and azimuthal EtvZk9d6h*  
    %   frequency M. u&yAMWl  
    % };6[Byf  
    %   Example: [* ,k  
    % f2ygN6(>  
    %       % Display the first 16 Zernike functions dP63bV  
    %       x = -1:0.01:1; xpCzx=n3.m  
    %       [X,Y] = meshgrid(x,x); [y-0w.V=oE  
    %       [theta,r] = cart2pol(X,Y); c,pR+DP  
    %       idx = r<=1; 3>Y G  
    %       p = 0:15; )w(-Xc?P  
    %       z = nan(size(X)); Kq#\P  
    %       y = zernfun2(p,r(idx),theta(idx)); Dg3S n|!f  
    %       figure('Units','normalized') 1;?n]L`T  
    %       for k = 1:length(p) Ss6mN;&D  
    %           z(idx) = y(:,k); CB_ww=  
    %           subplot(4,4,k) ATl.Qku@  
    %           pcolor(x,x,z), shading interp X`xmV!  
    %           set(gca,'XTick',[],'YTick',[]) qp3J/(F  
    %           axis square \H|tc#::{  
    %           title(['Z_{' num2str(p(k)) '}']) ^0vK >  
    %       end Xu\FcQ{  
    % .RF ijr  
    %   See also ZERNPOL, ZERNFUN. qPqpRi  
    T9w;4XF  
    %   Paul Fricker 11/13/2006 95LZG1]Rb  
    T n.Cj5  
    !iUFD*~r~  
    % Check and prepare the inputs: *`$Y!uzG:\  
    % ----------------------------- 2yZ/'}Mw  
    if min(size(p))~=1 hG51jVYtw  
        error('zernfun2:Pvector','Input P must be vector.') h6J0b_3h4  
    end Z Ear~  
    tQ0iie1Ys  
    if any(p)>35 j#L"fW^GM  
        error('zernfun2:P36', ... uqe{F+;8&  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Y~z3fd  
               '(P = 0 to 35).']) +g/TDwyVH  
    end }dcXuX4{r  
    XTboFrf  
    % Get the order and frequency corresonding to the function number: Ilt!O^  
    % ---------------------------------------------------------------- ,dn6z#pb+  
    p = p(:); mp]}-bR)  
    n = ceil((-3+sqrt(9+8*p))/2); .m%/JquMFM  
    m = 2*p - n.*(n+2); ) H=}bqn  
    u'Ja9m1  
    % Pass the inputs to the function ZERNFUN: vEQw`OC  
    % ---------------------------------------- Y'K+O  
    switch nargin N zrHWVD  
        case 3 3j<:g%5  
            z = zernfun(n,m,r,theta); 1eQfc{[g  
        case 4 |NuX9!S  
            z = zernfun(n,m,r,theta,nflag); :yg:sU  
        otherwise .U}"ONd9e  
            error('zernfun2:nargin','Incorrect number of inputs.') ;MRK*sfw{  
    end cHqT1EY  
    'dJ#NT25  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) yC%zX}5  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. %Xe#'qNq)  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of VN3"$@-POK  
    %   order N and frequency M, evaluated at R.  N is a vector of kH;DAphk  
    %   positive integers (including 0), and M is a vector with the t2bv nh  
    %   same number of elements as N.  Each element k of M must be a _FpZc ?=  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) x? 10^~R  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ]0[Gc \h}  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix B=<>OYH  
    %   with one column for every (N,M) pair, and one row for every 9)c{L<o}T  
    %   element in R. ~yX8p7qr  
    % (L`7-6e(Ab  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- (RXOv"''=  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ~rnbuIh  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 8{0=tOXx{  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ,=TY:U;?  
    %   for all [n,m]. 1co;U  
    % ^Om0~)"q  
    %   The radial Zernike polynomials are the radial portion of the 6_UCRo5h%  
    %   Zernike functions, which are an orthogonal basis on the unit pFB^l|\ ]  
    %   circle.  The series representation of the radial Zernike nK!yu?mS  
    %   polynomials is 31VDlcn E  
    % rC !!X  
    %          (n-m)/2 /#<R  
    %            __ gKPqWh  
    %    m      \       s                                          n-2s seQSDCsvw*  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 1w` ]2  
    %    n      s=0 $ ,:3I*}be  
    % u& 4i=K'x8  
    %   The following table shows the first 12 polynomials. #'5C*RO  
    % d+caGpaR  
    %       n    m    Zernike polynomial    Normalization u"$=:GK  
    %       --------------------------------------------- _cRCG1CJ  
    %       0    0    1                        sqrt(2) 9N+3S2sBx&  
    %       1    1    r                           2 7lLh4__;`6  
    %       2    0    2*r^2 - 1                sqrt(6) >Bw<THx  
    %       2    2    r^2                      sqrt(6) |\}&mBR  
    %       3    1    3*r^3 - 2*r              sqrt(8) @Sr{6g*I  
    %       3    3    r^3                      sqrt(8) ?&gqGU}  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) cVV@MC  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) @p$Nw.{'  
    %       4    4    r^4                      sqrt(10) o [ Je  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ?IN'Dc9&%-  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) h0cdRi  
    %       5    5    r^5                      sqrt(12) *\-$.w)k  
    %       --------------------------------------------- nE&`~  
    % ]2_b_ok  
    %   Example: _YK66cS3E/  
    % WX-J4ieL  
    %       % Display three example Zernike radial polynomials ]NEr]sc-"F  
    %       r = 0:0.01:1; h]+UK14m  
    %       n = [3 2 5]; ^cz4nW<  
    %       m = [1 2 1]; hR4\:s+[  
    %       z = zernpol(n,m,r); CD! Aa  
    %       figure u?Uu>9@Z  
    %       plot(r,z) @%^JB  
    %       grid on %#jW  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') p{vGc-zP .  
    % SzTa[tJ+  
    %   See also ZERNFUN, ZERNFUN2. {}n]\zO %  
    >iV2>o_  
    % A note on the algorithm. ZLGglT'EW>  
    % ------------------------ ;],Js1 m  
    % The radial Zernike polynomials are computed using the series s+-V^{Ht  
    % representation shown in the Help section above. For many special 6"L,#aKm^  
    % functions, direct evaluation using the series representation can d}w}VL8l  
    % produce poor numerical results (floating point errors), because mXPA1#qo  
    % the summation often involves computing small differences between PY@BgL=/  
    % large successive terms in the series. (In such cases, the functions T Ob(  
    % are often evaluated using alternative methods such as recurrence 6/3oW}O o  
    % relations: see the Legendre functions, for example). For the Zernike M*-]<!))7  
    % polynomials, however, this problem does not arise, because the gTQc=,3l3  
    % polynomials are evaluated over the finite domain r = (0,1), and zl3GWj|?\7  
    % because the coefficients for a given polynomial are generally all $~,J8?)(z  
    % of similar magnitude. h}U>K4BJ  
    % \zT{zO&!  
    % ZERNPOL has been written using a vectorized implementation: multiple 3sK^ (  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] fq[1|Q  
    % values can be passed as inputs) for a vector of points R.  To achieve -`A+Qp)  
    % this vectorization most efficiently, the algorithm in ZERNPOL R*`=Bk0+  
    % involves pre-determining all the powers p of R that are required to /8? u2 q  
    % compute the outputs, and then compiling the {R^p} into a single 6QYHPz  
    % matrix.  This avoids any redundant computation of the R^p, and 96d&vm~m1  
    % minimizes the sizes of certain intermediate variables. Djr/!j  
    % $vLGX>H  
    %   Paul Fricker 11/13/2006 ,@]*Xgt=  
    KIGMWS^^  
    @s|G18@  
    % Check and prepare the inputs: U1)!X@F{  
    % ----------------------------- 8xb({e4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ul Mc8z  
        error('zernpol:NMvectors','N and M must be vectors.') aT~=<rEDy  
    end )B9/P>c  
    >H,5MM!  
    if length(n)~=length(m) s>I~%+V.?:  
        error('zernpol:NMlength','N and M must be the same length.') Y M,UM>  
    end m2\[L/W]  
    :I2spBx  
    n = n(:); j%)@f0Ng  
    m = m(:); m^o?{ (K  
    length_n = length(n); fP/;t61Z  
    jpkKdQX)  
    if any(mod(n-m,2)) v[\GhVb  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ^8=e8O  
    end @;X#/dZe  
    0C4Os p  
    if any(m<0) i.0d>G><@  
        error('zernpol:Mpositive','All M must be positive.') :0kKw=p1R  
    end %RIlu[J  
    w$0*5n>)  
    if any(m>n) (7C$'T-ZK  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') |)OC1=As  
    end zgl$ n  
    f{-,"6Y1  
    if any( r>1 | r<0 ) ~cf)wrP  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') JYnyo$m/  
    end (\%J0kR3[  
    D^S"6v" z  
    if ~any(size(r)==1) 0E7h+]bh|  
        error('zernpol:Rvector','R must be a vector.') eB9F35[  
    end l% p4.CX  
    Q2'`K|T  
    r = r(:); bD=R/yA  
    length_r = length(r); ;;N#'.xD  
    I9h{fB  
    if nargin==4 3uL$+F  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); y]g5S-G  
        if ~isnorm %ed TW[C`  
            error('zernpol:normalization','Unrecognized normalization flag.') LhSXz>AX  
        end em2Tet  
    else *i"Mu00b  
        isnorm = false; t$PJ*F67M  
    end #!>`$  
    cR/e Zfl  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 65GC7 >[  
    % Compute the Zernike Polynomials PHMp, z8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _TyQC1 d  
    v}<z_i5/C.  
    % Determine the required powers of r: i "aQm  
    % ----------------------------------- s>=$E~qq  
    rpowers = []; Pk5 %lu  
    for j = 1:length(n)  CVZ 4:p  
        rpowers = [rpowers m(j):2:n(j)]; X;v{,P=J  
    end KVHK~Y-G  
    rpowers = unique(rpowers); ceLr;}?Ws  
    88}04  
    % Pre-compute the values of r raised to the required powers, oJZ0{^  
    % and compile them in a matrix: OqX+ R4S  
    % ----------------------------- &zPM# Q  
    if rpowers(1)==0 ~Fo`Pr_  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); '.e 5Ku  
        rpowern = cat(2,rpowern{:}); ^y~oXS(  
        rpowern = [ones(length_r,1) rpowern]; Ok phbAX  
    else + B7UGI  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); dB Hki*.u  
        rpowern = cat(2,rpowern{:});  HS|x  
    end V/ZWyYxjLi  
    9Dyw4'W.N  
    % Compute the values of the polynomials:  aqwW`\  
    % -------------------------------------- ]@qD4:  
    z = zeros(length_r,length_n); oTA'=<W?D  
    for j = 1:length_n p+2uK|T9  
        s = 0:(n(j)-m(j))/2; .yb8<qs  
        pows = n(j):-2:m(j); -./ Y  
        for k = length(s):-1:1 /sVmQqVY  
            p = (1-2*mod(s(k),2))* ... 0qBXL;sE  
                       prod(2:(n(j)-s(k)))/          ... fVZ_*'v  
                       prod(2:s(k))/                 ... r<*Y1;7H'  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... z=LO$,JW`  
                       prod(2:((n(j)+m(j))/2-s(k))); gIcPKj"8${  
            idx = (pows(k)==rpowers); d%Ku 'Jy  
            z(:,j) = z(:,j) + p*rpowern(:,idx); U27ja|W^  
        end |h:3BV_  
         =OR&,xt  
        if isnorm ;e~K<vMm;y  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); os(}X(   
        end 5JZZvc$au  
    end 94XRf"^  
    }Z`@Z'  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  4!}fCP ty  
    }lb.3fqiA  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 5PL,~Y  
    -% f DfjP  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)