切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10443阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 -bE{yT)7  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! P/ug'  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 \N7 E!82  
    function z = zernfun(n,m,r,theta,nflag) h-#Glse<  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ^oPf>\),C  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 2j( w*k q~  
    %   and angular frequency M, evaluated at positions (R,THETA) on the jcevpKkRG  
    %   unit circle.  N is a vector of positive integers (including 0), and >#xpg&2x  
    %   M is a vector with the same number of elements as N.  Each element W;u~}k<  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ]<{BDXIGIE  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, lE%0ifu  
    %   and THETA is a vector of angles.  R and THETA must have the same hOw7"'# !  
    %   length.  The output Z is a matrix with one column for every (N,M) pdmeB  
    %   pair, and one row for every (R,THETA) pair. ud! iy  
    % V. :imj  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike <.RgMPi  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), V#5BZU-  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  ^d4#  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, a o\+%s  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized _ @ \  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. z\Qg 3BS  
    % HR)joD*q;[  
    %   The Zernike functions are an orthogonal basis on the unit circle.  #*?5  
    %   They are used in disciplines such as astronomy, optics, and `2Ff2D ^ ?  
    %   optometry to describe functions on a circular domain. aBol9`6  
    % %mh K1,  
    %   The following table lists the first 15 Zernike functions. 6g( 2O[n.  
    % Q%q_  
    %       n    m    Zernike function           Normalization yO$]9  
    %       -------------------------------------------------- ~#@sZ0/<  
    %       0    0    1                                 1 1R1J/Z*V/  
    %       1    1    r * cos(theta)                    2 kS3wa3bT  
    %       1   -1    r * sin(theta)                    2 t$R|lv5<  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) W=]QTx,J  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Oh-HfJyi  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) b pExYyt  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ;o"}7'4*R%  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ^!N_Nx/M  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) D.U)R7(  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) +7d%)t  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) LlX 7g _!  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lhJT&  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 9cX ~  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >wz-p nD  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) |cUlXg=  
    %       -------------------------------------------------- H?UmHww E  
    % LW0't} z  
    %   Example 1: !x|OgvJ  
    % )O2giVq7[0  
    %       % Display the Zernike function Z(n=5,m=1) j<wWPv  
    %       x = -1:0.01:1; H2|&  
    %       [X,Y] = meshgrid(x,x); fg+Q7'*Vq  
    %       [theta,r] = cart2pol(X,Y); 8X[G)J;  
    %       idx = r<=1; 1}B W   
    %       z = nan(size(X)); Ah) _mxK  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); )m \}ITf  
    %       figure X=mzo\Aos  
    %       pcolor(x,x,z), shading interp x gnt)&7T  
    %       axis square, colorbar Xn9TQ"[4  
    %       title('Zernike function Z_5^1(r,\theta)') O0';j!?X  
    % rh?!f(_@  
    %   Example 2: &*/8Ojv)9  
    % dX,2cK[aG  
    %       % Display the first 10 Zernike functions 7bCTR2e\@w  
    %       x = -1:0.01:1; ``$At,m  
    %       [X,Y] = meshgrid(x,x); ko $bCG%  
    %       [theta,r] = cart2pol(X,Y); a~DR$^m  
    %       idx = r<=1; N:\I]M  
    %       z = nan(size(X)); K zKHC  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ID E3>D  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; _(TavL>l =  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; P%g[!9 '  
    %       y = zernfun(n,m,r(idx),theta(idx)); fp|b@  
    %       figure('Units','normalized') 8'@pX<  
    %       for k = 1:10 +#A >[,U  
    %           z(idx) = y(:,k); -Q<3Q_  
    %           subplot(4,7,Nplot(k)) k 2_ "  
    %           pcolor(x,x,z), shading interp Vq -!1.v3  
    %           set(gca,'XTick',[],'YTick',[]) p4bQCI  
    %           axis square Q!z g=_z-  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) uhbo/7d'7  
    %       end +_3> T''_  
    % :p%nQF,*f  
    %   See also ZERNPOL, ZERNFUN2. U[ u9RB  
    >-c;  
    %   Paul Fricker 11/13/2006 IM7k\  
    w%GEOIj}  
    FzXVNUMP  
    % Check and prepare the inputs: =YR/X@&  
    % ----------------------------- 2_ <  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) b6'%nR*f  
        error('zernfun:NMvectors','N and M must be vectors.') A d=NJhzl  
    end 4?jXbC k~x  
    (|Y[5O)  
    if length(n)~=length(m) (S&X??jfB5  
        error('zernfun:NMlength','N and M must be the same length.') ~^UQw? ;  
    end ?r"m*fY%  
    6,ylk f3  
    n = n(:); %19TJn%J$  
    m = m(:); #(?EL@5  
    if any(mod(n-m,2)) j$4Tot  
        error('zernfun:NMmultiplesof2', ... +D& W!m  
              'All N and M must differ by multiples of 2 (including 0).') Z6 E-FuO  
    end #E3Y; b%v  
    <2HI. @^  
    if any(m>n) G sm5L<rx  
        error('zernfun:MlessthanN', ... DO'$J9;*  
              'Each M must be less than or equal to its corresponding N.') -^Baxkq(YM  
    end LZqx6~]O  
    >t.2!Z_RQ  
    if any( r>1 | r<0 ) ]/XNfb  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') vClD)Ar  
    end =q.2S; ?  
    & ;ie+/B  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .36z  
        error('zernfun:RTHvector','R and THETA must be vectors.') g|a2z_R  
    end .ZJt  
    ~3dBt@%0  
    r = r(:); ff**)Xdh  
    theta = theta(:); QHUoAa`6v  
    length_r = length(r); \h~;n)FI  
    if length_r~=length(theta) N1jj\.nB  
        error('zernfun:RTHlength', ... 3+;]dqZ  
              'The number of R- and THETA-values must be equal.') 79AOvh  
    end L NmsvU  
    'QFf 7A  
    % Check normalization: S^HuQe!#  
    % -------------------- oC#@9>+@+"  
    if nargin==5 && ischar(nflag) '-p<E"#4Z  
        isnorm = strcmpi(nflag,'norm'); L5 Rj;qhi  
        if ~isnorm (y7U}Sb'  
            error('zernfun:normalization','Unrecognized normalization flag.') CaX&T2(  
        end S\ JV96  
    else #(FG+Bk  
        isnorm = false; n a])bBn  
    end yHT8I  
    &]iX>m.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /m%i"kki  
    % Compute the Zernike Polynomials J 6U3}SO=y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,~w)~fMb8  
    *`YR-+0  
    % Determine the required powers of r: '9>z4G*Td  
    % ----------------------------------- f7mP4[+dS  
    m_abs = abs(m); sNZ{OD+  
    rpowers = []; v?F~fRH  
    for j = 1:length(n) K]yCt~A$  
        rpowers = [rpowers m_abs(j):2:n(j)]; V)V\M6  
    end 0&E{[~Pv  
    rpowers = unique(rpowers); ]e@'9`G-'  
    sc\4.Ux%Q  
    % Pre-compute the values of r raised to the required powers, R@-rc|FunJ  
    % and compile them in a matrix: OWT5Bjl  
    % ----------------------------- zp x  
    if rpowers(1)==0 -&oJ@Aa  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :jKD M  
        rpowern = cat(2,rpowern{:}); Z.Z+cFi  
        rpowern = [ones(length_r,1) rpowern]; h1} x2  
    else m!L&_ Z|j  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  T},Nqt<  
        rpowern = cat(2,rpowern{:}); {.v-  
    end 73OFFKbsk  
    C vfm ,BL  
    % Compute the values of the polynomials: z@iu$DZ  
    % -------------------------------------- y[BUWas(  
    y = zeros(length_r,length(n)); @2c Gx/1#  
    for j = 1:length(n) D6@c&  
        s = 0:(n(j)-m_abs(j))/2; (Vnv"= (  
        pows = n(j):-2:m_abs(j); N '2Nv  
        for k = length(s):-1:1 V\r!H>  
            p = (1-2*mod(s(k),2))* ... @U08v_,  
                       prod(2:(n(j)-s(k)))/              ... CKeT%3  
                       prod(2:s(k))/                     ... #9uNJla  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {>'GE16x  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); w K0vKdi  
            idx = (pows(k)==rpowers); me"}1REa  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 2'UWPZgE  
        end |{]W (/  
         -\xNuU  
        if isnorm %H Pwu &  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); -}Vnr\f  
        end bim}{wMb  
    end U[1Rw6  
    % END: Compute the Zernike Polynomials tJ`tXO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9}LcJ  
    ;5QdT{$H  
    % Compute the Zernike functions: Y3^UJe7E  
    % ------------------------------ 1S .~Vh0Q,  
    idx_pos = m>0; 1{{z[w#  
    idx_neg = m<0; y5gTd_-  
    tGv5pe*r  
    z = y; CR3<9=Lv>  
    if any(idx_pos) n?'I&0>M  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;zk& 7P0  
    end ?Co)7}N  
    if any(idx_neg) IJ >qs8  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ^ z!g3  
    end  1$nlRQi  
    W u?A} fH  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) #_oN.1u57  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. U~h f,Oxi  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated SLI(;, s  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive c:? tn  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, k2]fUP  
    %   and THETA is a vector of angles.  R and THETA must have the same Jc8^m0_  
    %   length.  The output Z is a matrix with one column for every P-value, Wgp}v93  
    %   and one row for every (R,THETA) pair. n[|*[II  
    % Gs`[\<;LI  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike H{yUKZH*  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 7T7 A\  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 'F-; uN  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 XR2Gw 4]  
    %   for all p. ldFK3+V  
    % OGA_3|[S   
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 NJ%>|`FEi7  
    %   Zernike functions (order N<=7).  In some disciplines it is /?(\6Z_A  
    %   traditional to label the first 36 functions using a single mode R9 +0ZoS  
    %   number P instead of separate numbers for the order N and azimuthal )I&,kH)+  
    %   frequency M. HRP  
    % Ddu1>"p-x  
    %   Example: d`eX_]Z  
    % 7dxe03h  
    %       % Display the first 16 Zernike functions TPE1}8p17  
    %       x = -1:0.01:1; z?Hi u6c-  
    %       [X,Y] = meshgrid(x,x); N+0[p@0  
    %       [theta,r] = cart2pol(X,Y); <vb%i0+b.^  
    %       idx = r<=1; . {\lbI  
    %       p = 0:15; zeqwmV=  
    %       z = nan(size(X)); ! !KA9mP  
    %       y = zernfun2(p,r(idx),theta(idx)); C0O$iWs=  
    %       figure('Units','normalized') HGiO}|q :  
    %       for k = 1:length(p) \}Hi\k+h':  
    %           z(idx) = y(:,k); :}B=Bk/q  
    %           subplot(4,4,k) Yee% <<S  
    %           pcolor(x,x,z), shading interp %2q0lFdcM  
    %           set(gca,'XTick',[],'YTick',[]) ^pc?oDPSg  
    %           axis square |!Uul0O  
    %           title(['Z_{' num2str(p(k)) '}']) $l W 7me  
    %       end Cf~ vT"  
    % v?Ds|  
    %   See also ZERNPOL, ZERNFUN. dQ.:xu}~  
    JK jVrx> @  
    %   Paul Fricker 11/13/2006 4lp9 0sa  
    gRsV -qS  
    NsJ]Tp5!  
    % Check and prepare the inputs: xGkc_  
    % ----------------------------- 6P$jMjs  
    if min(size(p))~=1 > r %:!o  
        error('zernfun2:Pvector','Input P must be vector.') /l%+l@  
    end Jn\@wF9xd  
    5+Ld1nom  
    if any(p)>35 r9 5hW  
        error('zernfun2:P36', ... f,(@K%  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... E*"-U!?)l2  
               '(P = 0 to 35).']) .Ce0yAl~  
    end QJH((  
    '=V1'I*  
    % Get the order and frequency corresonding to the function number: )a=FhSB[G  
    % ---------------------------------------------------------------- hy}n&h  
    p = p(:); 6Zx'$F.iqK  
    n = ceil((-3+sqrt(9+8*p))/2); EYy|JT]B  
    m = 2*p - n.*(n+2); l0&U7gr  
    (~Hwq:=.  
    % Pass the inputs to the function ZERNFUN: 77/j}Pxh  
    % ---------------------------------------- (>,}C/-UG  
    switch nargin 4#Rq}/h  
        case 3  qDK\MQ!  
            z = zernfun(n,m,r,theta); xXQW|#X\  
        case 4 L?&Trq7i  
            z = zernfun(n,m,r,theta,nflag); !h.bD/? K  
        otherwise &0Bs?oq_  
            error('zernfun2:nargin','Incorrect number of inputs.') Ir?ehA  
    end E]&tgZO  
    (GJX[$@  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) cS;O]>/5  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. J]gtgt^   
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 5cZKk/"Ad}  
    %   order N and frequency M, evaluated at R.  N is a vector of 'Im&&uSkr  
    %   positive integers (including 0), and M is a vector with the HI!bq%TZ4  
    %   same number of elements as N.  Each element k of M must be a lj+}5ySG/  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) G&\!!i|IQ  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is `XK+Y  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ^!x}e+ o  
    %   with one column for every (N,M) pair, and one row for every VCCG_K9'  
    %   element in R. g 6!#n  
    % M^?=!!US^  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- L.$+W}  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 40Z/;,wp{  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Jh`6@d  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 e*/ya8p?  
    %   for all [n,m]. =G-u "QJ6  
    % 3=Va0}#&  
    %   The radial Zernike polynomials are the radial portion of the qp`G5bw  
    %   Zernike functions, which are an orthogonal basis on the unit -) \!@n0  
    %   circle.  The series representation of the radial Zernike aj6{  
    %   polynomials is fS- 31<?  
    % (IIOVv 1J  
    %          (n-m)/2 .,( ,<  
    %            __ *+>R^\uT  
    %    m      \       s                                          n-2s Fwfe5`9'  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r >a5avSn  
    %    n      s=0 o](nK5?  
    % :rX/I LAr  
    %   The following table shows the first 12 polynomials. -nKBSls  
    % u9^R ?y  
    %       n    m    Zernike polynomial    Normalization ^bckl tSo  
    %       --------------------------------------------- #zv'N  
    %       0    0    1                        sqrt(2) wA>bLPTw  
    %       1    1    r                           2 bcy( ?(  
    %       2    0    2*r^2 - 1                sqrt(6) !Knv/:+  
    %       2    2    r^2                      sqrt(6) ,O}2LaK.O  
    %       3    1    3*r^3 - 2*r              sqrt(8) yi9c+w)b  
    %       3    3    r^3                      sqrt(8) K#],4OG  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) uH?lj&  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Y'S9   
    %       4    4    r^4                      sqrt(10) D $[/|%3  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) vy+9Q5@W  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) BlvNBB1^  
    %       5    5    r^5                      sqrt(12) dk9nhS+faJ  
    %       --------------------------------------------- C},$(2>0+  
    % DUK.-|a7  
    %   Example: BA+:}81&<q  
    % r]vD]  
    %       % Display three example Zernike radial polynomials G$HLta  
    %       r = 0:0.01:1; JI}p{ yI  
    %       n = [3 2 5]; Y)X58_En  
    %       m = [1 2 1]; #O .-/&Z  
    %       z = zernpol(n,m,r); &Jw4^ob  
    %       figure M B,P#7|  
    %       plot(r,z) hrr;=q$  
    %       grid on k^PqB+P!  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') vDAv/l9  
    % SY}iU@xo  
    %   See also ZERNFUN, ZERNFUN2. ,As78^E{  
    ]m(5>h#  
    % A note on the algorithm. oFeflcSz  
    % ------------------------ NR)[,b\v  
    % The radial Zernike polynomials are computed using the series :4D#hOI  
    % representation shown in the Help section above. For many special !jDqRXi(  
    % functions, direct evaluation using the series representation can YMx zj  
    % produce poor numerical results (floating point errors), because dsxaxbVj%  
    % the summation often involves computing small differences between C4P7,  
    % large successive terms in the series. (In such cases, the functions \..(!>,%F  
    % are often evaluated using alternative methods such as recurrence s=nE'/q1|  
    % relations: see the Legendre functions, for example). For the Zernike q[3b i!Q  
    % polynomials, however, this problem does not arise, because the T7.u7@V2  
    % polynomials are evaluated over the finite domain r = (0,1), and 4l?98  
    % because the coefficients for a given polynomial are generally all PHa#;6!5  
    % of similar magnitude. ~;;_POm  
    % ]&ptld;  
    % ZERNPOL has been written using a vectorized implementation: multiple : |c,.uO  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] :;XHA8  
    % values can be passed as inputs) for a vector of points R.  To achieve NB&u^8b  
    % this vectorization most efficiently, the algorithm in ZERNPOL 8&=+Mw  
    % involves pre-determining all the powers p of R that are required to 1LjYV  
    % compute the outputs, and then compiling the {R^p} into a single H\3CvFm  
    % matrix.  This avoids any redundant computation of the R^p, and ~QsQ7SAs  
    % minimizes the sizes of certain intermediate variables. xy|-{  
    % 9CWUhS   
    %   Paul Fricker 11/13/2006 NoJo-vo*  
    j$]t`6gG  
    [21tT/  
    % Check and prepare the inputs: #U&G$E`7  
    % ----------------------------- 9_ Qm_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ):+H`Hcm  
        error('zernpol:NMvectors','N and M must be vectors.') g-%uw[pf  
    end +>OEp * j  
    )vS## -[_  
    if length(n)~=length(m)  j>s%q .  
        error('zernpol:NMlength','N and M must be the same length.') &fj&UBA  
    end @ec QVk  
    xL>0&R  
    n = n(:); |l ~BdP  
    m = m(:); .#h ]_%  
    length_n = length(n); |U^ ff^]  
    Vb 4Qt#o  
    if any(mod(n-m,2)) `>8|  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ?k_=?m  
    end Q$,8yTM  
    M14_w,  
    if any(m<0) ORx,n7-  
        error('zernpol:Mpositive','All M must be positive.') #OWwg`AWv  
    end !4jS=Lhe>  
    <$D)uY K  
    if any(m>n) 3Ua g[ms  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ]jHB'Y  
    end 8`VMdo9  
    6w}:w?=6  
    if any( r>1 | r<0 ) I/WnF"yP  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') w.l#Z} k  
    end 'KQu z)-  
    Y+?bo9CES!  
    if ~any(size(r)==1) $z mES tcm  
        error('zernpol:Rvector','R must be a vector.') Ky nZzR  
    end 5Ll[vBW  
    &7DE$ S  
    r = r(:); $;;?'!%.  
    length_r = length(r); Zc9 n0t[  
    V7[qf "  
    if nargin==4 @/0aj  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); KUyua~tF  
        if ~isnorm LOida#R  
            error('zernpol:normalization','Unrecognized normalization flag.') "4t Ry9q  
        end 8:&@MZQ&!  
    else 2CxdNj  
        isnorm = false; >uuX<\cW  
    end ,+X8?9v  
    -~(0:@o ;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5h> gz  
    % Compute the Zernike Polynomials CYrL|{M]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #^v5Eo  
    Y*}Sq|y  
    % Determine the required powers of r: e;6Sj  
    % ----------------------------------- >Le mTr  
    rpowers = []; H7SqM D*y9  
    for j = 1:length(n) f8&=D4)-w  
        rpowers = [rpowers m(j):2:n(j)]; \:=Phbn  
    end v;$^1I  
    rpowers = unique(rpowers); gN]`$==c[  
    .M! (|KE4  
    % Pre-compute the values of r raised to the required powers, DSjo%Brd-  
    % and compile them in a matrix: lpp'.HTP  
    % ----------------------------- vGAPQg6*  
    if rpowers(1)==0 *TXq/ 3g  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]DUH_<3"E  
        rpowern = cat(2,rpowern{:}); ]Pd*w`R  
        rpowern = [ones(length_r,1) rpowern]; B\=&v8  
    else Z?x]HB`r  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2)8lJXM$L  
        rpowern = cat(2,rpowern{:}); u51/B:+   
    end isd[l-wAmf  
    $o@?D^  
    % Compute the values of the polynomials: Rp<Xu6r  
    % -------------------------------------- =[k9{cVW  
    z = zeros(length_r,length_n); =az$WRV+7!  
    for j = 1:length_n SA&wW\Ym]  
        s = 0:(n(j)-m(j))/2; Sph+kiy|  
        pows = n(j):-2:m(j); e!-'O0-Kw  
        for k = length(s):-1:1 ;,A\bmC  
            p = (1-2*mod(s(k),2))* ... O:x=yj%^  
                       prod(2:(n(j)-s(k)))/          ... r"Bf@va  
                       prod(2:s(k))/                 ... @!MbPS  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... RTU:J67E  
                       prod(2:((n(j)+m(j))/2-s(k))); g/@CESfm'  
            idx = (pows(k)==rpowers); sooh yK8  
            z(:,j) = z(:,j) + p*rpowern(:,idx); -(iJ<  
        end ]S[r$<r$  
         H{XW?O^@  
        if isnorm m,KY_1%M  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); UEeqk"t^  
        end 2<O8=I _  
    end i!HGM=f  
    _NkN3f5 1L  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    8426
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  u)`|q_y+8  
    B" m:<@ "  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 }c4E 2c  
    8TZA T%4  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)