非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 j"fx|6l)
function z = zernfun(n,m,r,theta,nflag) y#8 W1%{x
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. <4<y
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N i7cUp3
% and angular frequency M, evaluated at positions (R,THETA) on the 78 ]Kv^l^_
% unit circle. N is a vector of positive integers (including 0), and ,In%r`{i
% M is a vector with the same number of elements as N. Each element jatlv/,
% k of M must be a positive integer, with possible values M(k) = -N(k) |MagK$o
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, U$3DIJVI
% and THETA is a vector of angles. R and THETA must have the same 0-;>O|U3
% length. The output Z is a matrix with one column for every (N,M) z30 mk
% pair, and one row for every (R,THETA) pair. k+*pg4'
% +@yU `
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike !YI<A\P
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), s:_a.4&Y
% with delta(m,0) the Kronecker delta, is chosen so that the integral G e5Yz.Qv
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 9
W|'~r
% and theta=0 to theta=2*pi) is unity. For the non-normalized g'{?j~g
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (y~%6o6
% &[
],rT
% The Zernike functions are an orthogonal basis on the unit circle. <&2<>*/.y
% They are used in disciplines such as astronomy, optics, and >Vg [A
% optometry to describe functions on a circular domain. VW*?(,#j{
% WRwx[[e6z
% The following table lists the first 15 Zernike functions. M d8(P23hS
% OU}eTc(FeC
% n m Zernike function Normalization 4_sJ0 =z-
% -------------------------------------------------- pLCS\AUTsv
% 0 0 1 1 <m\<yZ2aa
% 1 1 r * cos(theta) 2 0rz1b6F5,
% 1 -1 r * sin(theta) 2 H1L)9oa
% 2 -2 r^2 * cos(2*theta) sqrt(6) AzSu_
% 2 0 (2*r^2 - 1) sqrt(3) YllZ5<}
% 2 2 r^2 * sin(2*theta) sqrt(6)
kPiY|EH
% 3 -3 r^3 * cos(3*theta) sqrt(8) GAZRQ
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) o0>|
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) NZa 7[}H
% 3 3 r^3 * sin(3*theta) sqrt(8) fR~0Fy Gp
% 4 -4 r^4 * cos(4*theta) sqrt(10) uv8kea .(
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~d1=_p:~T
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) c
q[nqjC=
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) aG#d41O
% 4 4 r^4 * sin(4*theta) sqrt(10) mpCu,l+lo
% -------------------------------------------------- 8 hhMuh
% J\w4N",
% Example 1: Y
.cjEeL@
% NZ&ZK@h}.
% % Display the Zernike function Z(n=5,m=1) Rm}5AJ
% x = -1:0.01:1; rx 74v!
% [X,Y] = meshgrid(x,x); _|cSXZ|
% [theta,r] = cart2pol(X,Y); +N7<[hE;
% idx = r<=1; H&%oHyK
% z = nan(size(X)); 6<>1,wbq
% z(idx) = zernfun(5,1,r(idx),theta(idx)); F?"Gln~;
% figure 0Zp5y@V8
% pcolor(x,x,z), shading interp nTGZ2C)c<'
% axis square, colorbar 9N{?J"ido
% title('Zernike function Z_5^1(r,\theta)') q
}>3NCh
% =$^90Q,Z;
% Example 2: (*=>YE'V{
% mMOgx
% % Display the first 10 Zernike functions doe3V-if
% x = -1:0.01:1; l2YClK
% [X,Y] = meshgrid(x,x); uDkX{<_Xe
% [theta,r] = cart2pol(X,Y); qyFeq])
% idx = r<=1; q~5zv4NX
% z = nan(size(X)); MffCk!]
% n = [0 1 1 2 2 2 3 3 3 3]; Ok@`<6v
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 9}a$0H
h
% Nplot = [4 10 12 16 18 20 22 24 26 28]; iAk.pH]a
% y = zernfun(n,m,r(idx),theta(idx)); l0URJRK{*
% figure('Units','normalized') "S6";G^I
% for k = 1:10 )8rF'pxI
% z(idx) = y(:,k); >5Lp;
% subplot(4,7,Nplot(k)) zv0sz])
% pcolor(x,x,z), shading interp zh0T3U0D
% set(gca,'XTick',[],'YTick',[]) .w@B )f*
% axis square !.q99DB
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) `''y,{Fs
% end I=
<eCv
% 8 @(?E[&O>
% See also ZERNPOL, ZERNFUN2. #Y3-P
8!!h6dQgI
% Paul Fricker 11/13/2006 f=Pn,.>tIz
94dd )/a
S ~h*U2
% Check and prepare the inputs: =[!(s/+>L
% ----------------------------- CueC![pj
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $N}t)iA
error('zernfun:NMvectors','N and M must be vectors.') PN8#T:E
end .K(9=yh
H~vrCi~t"
if length(n)~=length(m) Sw"h!\c`
error('zernfun:NMlength','N and M must be the same length.') .U@u |
end
Y/I)ECm
%xG<hNw/
n = n(:); |ka/5o
m = m(:); WjK[% ;Z!
if any(mod(n-m,2)) ^0cbN[~/ns
error('zernfun:NMmultiplesof2', ... {r;_nMfH|[
'All N and M must differ by multiples of 2 (including 0).') z80FMulO
end Sew*0S(
uM_ww6
if any(m>n) 3h=kn@I
error('zernfun:MlessthanN', ... ik/
X!YTu*
'Each M must be less than or equal to its corresponding N.') WwZ3hd
end Z'2AsT
pg7~%E4
if any( r>1 | r<0 ) p U !:
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ~CV.Ci.dG
end 3Og}_
3<M yb
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) P*7G?
error('zernfun:RTHvector','R and THETA must be vectors.') !vJ$$o6#
end I;E?;i
YG8C<g6E7
r = r(:); [pmIQ228
theta = theta(:); eIF6f&
F
length_r = length(r); siCm)B
if length_r~=length(theta) /Mw;oP{&b
error('zernfun:RTHlength', ... :2==7u7v?
'The number of R- and THETA-values must be equal.') N *$GP3]
end ys`oHSf
b/R7Mk1
% Check normalization: DW9MX`!Xc
% -------------------- .AO-S)wHR
if nargin==5 && ischar(nflag) f sh9-iY8e
isnorm = strcmpi(nflag,'norm'); C,eP!_O
if ~isnorm RC1bTM
error('zernfun:normalization','Unrecognized normalization flag.') N*&T)a
end D QxuV1
else P/1YN
isnorm = false; #;^U W
end 3~3tjhw;]9
RnRUJNlaG
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XLaD#J
% Compute the Zernike Polynomials EwV$2AK
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]jVE
wn.6l
`
% Determine the required powers of r: L YB@L06a
% ----------------------------------- oNPvks dC;
m_abs = abs(m); 5m0lk|`
rpowers = []; '5$@I{z
for j = 1:length(n) Q"{Dijc%
rpowers = [rpowers m_abs(j):2:n(j)]; O<L=N-
end l P=I0A-
rpowers = unique(rpowers); 5rck]L'
j_}:=3
% Pre-compute the values of r raised to the required powers, N1c0>{
% and compile them in a matrix: +3-5\t`
% ----------------------------- H9ES|ZJs
if rpowers(1)==0 bK0(c1*a[e
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3'0vLi
rpowern = cat(2,rpowern{:}); :* ]#n
rpowern = [ones(length_r,1) rpowern]; (T pnJq
else "xTVu57Z[
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); JmR2skoV,
rpowern = cat(2,rpowern{:}); <2 [vR|Q*
end #\Y`?
JHm Pa
% Compute the values of the polynomials: ey[Z<i1
% -------------------------------------- 8r+u!$i!H
y = zeros(length_r,length(n)); +8?18@obp
for j = 1:length(n) `~=z0I
s = 0:(n(j)-m_abs(j))/2; 0vSPeZ
pows = n(j):-2:m_abs(j); K*DH_\SPK
for k = length(s):-1:1 ;-py h(
p = (1-2*mod(s(k),2))* ... 0<@['W}G
prod(2:(n(j)-s(k)))/ ... qQDe'f~
prod(2:s(k))/ ... t(roj@!x_o
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... )=K8mt0qob
prod(2:((n(j)+m_abs(j))/2-s(k))); 1DAU*^-
idx = (pows(k)==rpowers); ETU-6qFtO
y(:,j) = y(:,j) + p*rpowern(:,idx); A. tGr(r
end c\rP
-"C
?K2EK'-q
if isnorm ,ps?@lD
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); lv!j
end r`Fs"n#^-4
end oVHe<zE.
% END: Compute the Zernike Polynomials
ZLKbF9lo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% IZ>l
VV$#<D<)
% Compute the Zernike functions: ue7D'
UZL>
% ------------------------------ hV,T889'
idx_pos = m>0; "DvZCf[}
idx_neg = m<0; O-p`9(_m
]C"?xy
z = y; G?,3Zn0
if any(idx_pos) tF/Ni*\^rV
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |H^v8^%>zm
end #U%HGTE0
if any(idx_neg) PDS( /x&
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); x(Ew Hg>;
end nPI$<yW7F
(fl$$$
% EOF zernfun