切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11453阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 %dr*dA'  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Ktt(l-e+  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有  5 b,|6  
    function z = zernfun(n,m,r,theta,nflag) -`z%<)!Y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Fo%`X[?  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `(P71T  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Uugq.'>  
    %   unit circle.  N is a vector of positive integers (including 0), and :J x%K  
    %   M is a vector with the same number of elements as N.  Each element *V+,X  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) \UM&|yk:  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, )Spa F)N8  
    %   and THETA is a vector of angles.  R and THETA must have the same <}c7E3Uc  
    %   length.  The output Z is a matrix with one column for every (N,M) (Jj xrZ+L  
    %   pair, and one row for every (R,THETA) pair. HFF rS%  
    % 8r@GoG>  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -byaV;T?"  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ]c|JxgU  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral SfrM|o  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3fZoF`<a  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ` l'QAIo  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. O7.eq524  
    % {x..> 4  
    %   The Zernike functions are an orthogonal basis on the unit circle. pzQc UG  
    %   They are used in disciplines such as astronomy, optics, and K)[\IJJM  
    %   optometry to describe functions on a circular domain. fk1d iB  
    % ,+C?UW  
    %   The following table lists the first 15 Zernike functions. mF4OLG3L0  
    % 0jxXUWO  
    %       n    m    Zernike function           Normalization ZJhI|wRwD  
    %       -------------------------------------------------- []yIz1P=j  
    %       0    0    1                                 1 %Q.M& U  
    %       1    1    r * cos(theta)                    2 'IVC!uL,%  
    %       1   -1    r * sin(theta)                    2 Iue=\qUK^  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 2S[:mnK  
    %       2    0    (2*r^2 - 1)                    sqrt(3) >){}nlQf  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) z-"P raP  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 9asA-'fZ  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Al *yx_j  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) g1y@z8Z{  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Yb[)ETf^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) #hu`X6s"  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *r9D+}Y(4  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) T-7( 3#&  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i*&b@.7N  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) FLkZZ\  
    %       -------------------------------------------------- 3|)cT1ej  
    % 0lOan  
    %   Example 1: )u]=^  
    % w_~tY*IwB  
    %       % Display the Zernike function Z(n=5,m=1) !B9 Yw/Ba  
    %       x = -1:0.01:1; \FCPD.2s+  
    %       [X,Y] = meshgrid(x,x); 1E4`&?  
    %       [theta,r] = cart2pol(X,Y); +R{~%ZTK  
    %       idx = r<=1; P+_1*lOG  
    %       z = nan(size(X)); Wap\J7NY  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); XMxm2-%olP  
    %       figure T0b/txS  
    %       pcolor(x,x,z), shading interp P9S)7&+DL  
    %       axis square, colorbar GlJOb|WOX  
    %       title('Zernike function Z_5^1(r,\theta)') Su +<mW  
    % 5UK}AkEe&x  
    %   Example 2: KRP6b:+4L  
    % .]<gm9l  
    %       % Display the first 10 Zernike functions jSdC1,wR  
    %       x = -1:0.01:1; H3iYE~^#  
    %       [X,Y] = meshgrid(x,x); XGYsTquSe  
    %       [theta,r] = cart2pol(X,Y); oGbh *  
    %       idx = r<=1; fmLDufx  
    %       z = nan(size(X)); =t~]@?]1D  
    %       n = [0  1  1  2  2  2  3  3  3  3]; [IHG9Xg  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 5dX0C  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; w=ufJR j  
    %       y = zernfun(n,m,r(idx),theta(idx)); *`Ge8?qC  
    %       figure('Units','normalized') hX-^h2eV  
    %       for k = 1:10 'fzJw  
    %           z(idx) = y(:,k); 'cK{FiIT  
    %           subplot(4,7,Nplot(k)) $t5>1G1j7  
    %           pcolor(x,x,z), shading interp ox";%|PP1  
    %           set(gca,'XTick',[],'YTick',[]) oJE<}~_k  
    %           axis square #a]\3X  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) `J7@G]X;2  
    %       end kaECjZ _&+  
    % "/taatcH  
    %   See also ZERNPOL, ZERNFUN2. !SLfAFcS  
    ,Vz-w;oDn  
    %   Paul Fricker 11/13/2006 =4!m] *y  
    ^0(D2:E  
    sYk#XNH  
    % Check and prepare the inputs: e%9zY{ABR%  
    % ----------------------------- /7.//klN  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) y^ st T^  
        error('zernfun:NMvectors','N and M must be vectors.') Dj0D.}`~  
    end yVpru8+eD  
    d5=&:cF  
    if length(n)~=length(m) rTST_$"_6  
        error('zernfun:NMlength','N and M must be the same length.') 1@~ 1vsJ  
    end ;1r|Bx<5  
     Tx'anP  
    n = n(:); .^ba*qb`{  
    m = m(:); md/h\o&  
    if any(mod(n-m,2)) -BwZ  
        error('zernfun:NMmultiplesof2', ... !rZZ/M"i  
              'All N and M must differ by multiples of 2 (including 0).') OU?.}qc<wE  
    end wRX#^;O9?>  
    h`p=~u +  
    if any(m>n) @v\8+0  
        error('zernfun:MlessthanN', ... j5~~%  
              'Each M must be less than or equal to its corresponding N.') p@@*F+  
    end }/L#<n`Z  
    ? a/\5`gnN  
    if any( r>1 | r<0 ) |h.@Xy  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') dI%Nwl%  
    end 6r h#ATep  
    :{KpnJvd  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) :"K9(XKKU  
        error('zernfun:RTHvector','R and THETA must be vectors.') pqohLA  
    end 1V,DcolRY  
    ' Yy+^iCus  
    r = r(:); 0R-W 9qP  
    theta = theta(:); Zb<D%9  
    length_r = length(r); mWMtz]M}  
    if length_r~=length(theta) "|E'E"_1  
        error('zernfun:RTHlength', ... J7kqyo"  
              'The number of R- and THETA-values must be equal.') gL7rX aj  
    end aZq7(pen  
    Fc^!="H  
    % Check normalization: be(hY{y`  
    % -------------------- 12tAx3p  
    if nargin==5 && ischar(nflag) @"aqnj>+  
        isnorm = strcmpi(nflag,'norm'); E>u U6#v  
        if ~isnorm q0nIJ(  
            error('zernfun:normalization','Unrecognized normalization flag.') zXId up@  
        end v&sl_w/tn  
    else fBBtS S  
        isnorm = false; X7*fmD=Uy  
    end 4Q,|7@  
    zS`KJVm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J(9{P/  
    % Compute the Zernike Polynomials /1xBZf rN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {}H/N   
    ~sNBklK  
    % Determine the required powers of r: )E^Pn|H  
    % ----------------------------------- MG^YT%f  
    m_abs = abs(m); TRE D_6  
    rpowers = []; Z4sS;k]}  
    for j = 1:length(n) d@ ] N  
        rpowers = [rpowers m_abs(j):2:n(j)]; -\25&m!+  
    end p& Kfy~  
    rpowers = unique(rpowers); C4 -y%W"P  
    KC8  
    % Pre-compute the values of r raised to the required powers, #[Rs&$vQm  
    % and compile them in a matrix: s#Xfu\CP  
    % ----------------------------- _]L]_Bh  
    if rpowers(1)==0 R_ )PbFw  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); V \/Qik{h  
        rpowern = cat(2,rpowern{:}); 3XDuo|(  
        rpowern = [ones(length_r,1) rpowern]; 7zowvE?#  
    else 4rpry@1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^AoX|R[1%  
        rpowern = cat(2,rpowern{:}); #9{2aRCJ  
    end O.{  
    p!\ GJ a",  
    % Compute the values of the polynomials: i\x@s>@x}  
    % -------------------------------------- & s:\t L  
    y = zeros(length_r,length(n)); 1E0!?kRK  
    for j = 1:length(n) 7vc4 JO]  
        s = 0:(n(j)-m_abs(j))/2; =>@ X+4Kb  
        pows = n(j):-2:m_abs(j); |<uBJ-5  
        for k = length(s):-1:1 {Ywdhw JP  
            p = (1-2*mod(s(k),2))* ... 3r[ s_Y*  
                       prod(2:(n(j)-s(k)))/              ... z|zEsDh;  
                       prod(2:s(k))/                     ... 4E+8kz'  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0:c3aq&u  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); _v++NyZXx  
            idx = (pows(k)==rpowers); |\94a  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 0IBQE  
        end 46~nwi$,^  
         t[MM=6|Wb  
        if isnorm B;2#Sa.  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); m[BpV.s  
        end E%a&6W  
    end BnaI30-  
    % END: Compute the Zernike Polynomials {Q @?CT  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p$` ^A  
    :SY,;..3e  
    % Compute the Zernike functions: G"".;}AV  
    % ------------------------------ [ u ^/3N  
    idx_pos = m>0; Iz>\qC}  
    idx_neg = m<0; s +E4AG1r  
    n(C M)(ozU  
    z = y; qggRS)a  
    if any(idx_pos) q d:"LS  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); )19#g1rn5  
    end X1BqN+=@9  
    if any(idx_neg) !_W']Crb]]  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); QSwT1P'U  
    end O'QnfpQ*9  
    ]Rxrt~ ZB  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Y@qugQM>  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. &vQ5+  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated n8D'fvY  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive i+lq:St  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 4ywtE}mp  
    %   and THETA is a vector of angles.  R and THETA must have the same \x5>H:\Y  
    %   length.  The output Z is a matrix with one column for every P-value, -iFFXESVX  
    %   and one row for every (R,THETA) pair. =`Ky N/  
    % Yq:/dpA_  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike `>RM:!m6=$  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ]/AU_&  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) qoW$Iw*q)B  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 iTF%}(  
    %   for all p. A5[kYD,_  
    % 6F%6]n  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 {}=5uU2Tu  
    %   Zernike functions (order N<=7).  In some disciplines it is !"aGo1 $$  
    %   traditional to label the first 36 functions using a single mode PTTUI  
    %   number P instead of separate numbers for the order N and azimuthal IWwOP{ <ZQ  
    %   frequency M. .'2"83f  
    % M3dUGM  
    %   Example: i?)bF!J  
    % vY[ u;VU  
    %       % Display the first 16 Zernike functions 5r;)Ppo  
    %       x = -1:0.01:1; ^{NN-  
    %       [X,Y] = meshgrid(x,x); WMFn#.aY5  
    %       [theta,r] = cart2pol(X,Y); =w:H9uj6F  
    %       idx = r<=1; Svs&?B\}{6  
    %       p = 0:15; d[E= HN  
    %       z = nan(size(X)); ,V&E"D{u  
    %       y = zernfun2(p,r(idx),theta(idx)); y;O 6q206  
    %       figure('Units','normalized') h-o;vC9fC  
    %       for k = 1:length(p) Qb;]4[3  
    %           z(idx) = y(:,k); jT;'T$  
    %           subplot(4,4,k) j9cB<atL  
    %           pcolor(x,x,z), shading interp ONc#d'-L  
    %           set(gca,'XTick',[],'YTick',[]) rAgpcp}  
    %           axis square PC%_^BDW  
    %           title(['Z_{' num2str(p(k)) '}']) m5hu;>gt  
    %       end J>nta?/,X  
    % 7mb5z/N  
    %   See also ZERNPOL, ZERNFUN. sr~VvciIy  
    D^{jXNDNO  
    %   Paul Fricker 11/13/2006 6S(`Bw8h  
    DG3Mcf@5  
    s GrI%3[e"  
    % Check and prepare the inputs: &((04<@e  
    % ----------------------------- U1kW1L}B  
    if min(size(p))~=1 i_I`  
        error('zernfun2:Pvector','Input P must be vector.') jank<Q&w  
    end ~0vNs2D,S  
    F[fs^Q6S$  
    if any(p)>35 /&!o]fU1C  
        error('zernfun2:P36', ... XW{cC`&  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ^q<EnsY  
               '(P = 0 to 35).']) y cWY.HD  
    end F<)f&<5E-  
    rPHM_fW(O@  
    % Get the order and frequency corresonding to the function number: swhtlc@@  
    % ---------------------------------------------------------------- cr^R9dv  
    p = p(:); lI5>d(6p  
    n = ceil((-3+sqrt(9+8*p))/2); q?f-h<yRQ  
    m = 2*p - n.*(n+2); @*$"6!3s5  
    #;"lBqxY`  
    % Pass the inputs to the function ZERNFUN: `Cu9y+t  
    % ---------------------------------------- ork{a.1-_w  
    switch nargin D P:}<  
        case 3 X,K`]hb*0_  
            z = zernfun(n,m,r,theta); "&mwrjn"T  
        case 4 >EgMtZ88.<  
            z = zernfun(n,m,r,theta,nflag); Rr\fw'  
        otherwise ASNo6dP 7  
            error('zernfun2:nargin','Incorrect number of inputs.') F<,"{L  
    end >SD?MW 1E  
    L_IvR 4:j~  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) {d,^tG}  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. "6iq_!#L  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of zM'2opiUY  
    %   order N and frequency M, evaluated at R.  N is a vector of Zb~G&. 2g  
    %   positive integers (including 0), and M is a vector with the x ~@%+d  
    %   same number of elements as N.  Each element k of M must be a J5\2`U_FZ  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) vu/P"?F  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is hHsO?([99  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ?qtL*;  
    %   with one column for every (N,M) pair, and one row for every bj 0-72V  
    %   element in R. 1ka58_^  
    % ]@sLX ek  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ~G~:R  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is  ~&_BT`a  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ?w@KF%D  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 L$f:D2Ei  
    %   for all [n,m]. TK%MVLTK  
    % [JVUa2Sm  
    %   The radial Zernike polynomials are the radial portion of the Pv3 e*I((  
    %   Zernike functions, which are an orthogonal basis on the unit _ud !:q  
    %   circle.  The series representation of the radial Zernike l' a<k"  
    %   polynomials is w Yr M2X@  
    % %XZdz =B  
    %          (n-m)/2 *lp{,  
    %            __ "H)D~K~ *  
    %    m      \       s                                          n-2s k #/%#rQM  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r T@DT|lTI  
    %    n      s=0 AW`+lE'?  
    % x% Eu.jj  
    %   The following table shows the first 12 polynomials. eX{Tyd{  
    % ZN(@M@}  
    %       n    m    Zernike polynomial    Normalization %ZZW p%uf  
    %       --------------------------------------------- n0=[N'Tw3  
    %       0    0    1                        sqrt(2) o!|TCwt  
    %       1    1    r                           2 4B@L<Rl{\  
    %       2    0    2*r^2 - 1                sqrt(6) ILXVyU  
    %       2    2    r^2                      sqrt(6) 7j\jOkl V  
    %       3    1    3*r^3 - 2*r              sqrt(8) y Ide]  
    %       3    3    r^3                      sqrt(8) Pb@9<NXm'  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 0D48L5kH#'  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) %%k`+nK~  
    %       4    4    r^4                      sqrt(10) ~,P."  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) uVV;"LVK~  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) rfc;   
    %       5    5    r^5                      sqrt(12) 4w0Y(y  
    %       --------------------------------------------- $~2qEe.h  
    % RU GhhK  
    %   Example: 28PT1 9&  
    % F /% 5 r{  
    %       % Display three example Zernike radial polynomials /YH5s=  
    %       r = 0:0.01:1; c{s%kVOzg  
    %       n = [3 2 5]; 0 6S-3bis  
    %       m = [1 2 1]; Z,m;eCLG]  
    %       z = zernpol(n,m,r); K~Hp%.  
    %       figure tV,Y38e  
    %       plot(r,z) Q[N6#C:(4  
    %       grid on RzLbPSTQ  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') }[*BC5{>  
    % O(oGRK<xM  
    %   See also ZERNFUN, ZERNFUN2. Upkw.`D`  
    r(QjVLjj`k  
    % A note on the algorithm. ?-IjaDC}  
    % ------------------------ ]za1=~[  
    % The radial Zernike polynomials are computed using the series m;d#*}n\p  
    % representation shown in the Help section above. For many special Y!|* `FII  
    % functions, direct evaluation using the series representation can C@i4[g){  
    % produce poor numerical results (floating point errors), because Ad:)5R o  
    % the summation often involves computing small differences between tMWsgK.B  
    % large successive terms in the series. (In such cases, the functions Q+UqLass  
    % are often evaluated using alternative methods such as recurrence -h<Rby  
    % relations: see the Legendre functions, for example). For the Zernike 2qD80W<1  
    % polynomials, however, this problem does not arise, because the P I0[  
    % polynomials are evaluated over the finite domain r = (0,1), and _A%8oY S  
    % because the coefficients for a given polynomial are generally all F&om^G'U  
    % of similar magnitude. >>C(y?g  
    % }+8w  
    % ZERNPOL has been written using a vectorized implementation: multiple H,H=y},  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] [LJ1wBMw  
    % values can be passed as inputs) for a vector of points R.  To achieve {]w @s7E  
    % this vectorization most efficiently, the algorithm in ZERNPOL EJrn4QOs  
    % involves pre-determining all the powers p of R that are required to ,!?&LdPt>  
    % compute the outputs, and then compiling the {R^p} into a single 3+/{}rv  
    % matrix.  This avoids any redundant computation of the R^p, and r-$SF5uv  
    % minimizes the sizes of certain intermediate variables. )0I;+9:D=  
    % cR+9^DzA  
    %   Paul Fricker 11/13/2006 Wl:vO^  
    s innHQ  
    jJF(*D  
    % Check and prepare the inputs: aa1^cw 5}  
    % ----------------------------- Q!<b"8V]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) tNI~<#+lg  
        error('zernpol:NMvectors','N and M must be vectors.') U0/X!@F-  
    end jHj*S9:`  
    \*0ow`|K  
    if length(n)~=length(m) [p+6HF  
        error('zernpol:NMlength','N and M must be the same length.') =sk]/64h``  
    end k%?fy  
    \?_eQKiZ3  
    n = n(:); :N<ZO`l?  
    m = m(:); i(XcNnn6  
    length_n = length(n); 0N~AQu  
    bF'^eR  
    if any(mod(n-m,2)) `eat7O  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') {VPF2JFB[  
    end 0# D4;v  
    tU02t#8  
    if any(m<0) h9,ui^#d$  
        error('zernpol:Mpositive','All M must be positive.') D<zgs2Ex  
    end 3rEBG0cf]  
    ROr..-[u  
    if any(m>n) P%v7(bqL4+  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') <B*}W2\  
    end 1YmB2h[Z  
    fD#VI   
    if any( r>1 | r<0 ) G(-1"7  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') M4rOnIJ  
    end .6yC' 3~;o  
    FfnW  
    if ~any(size(r)==1) oW*e6"<R7  
        error('zernpol:Rvector','R must be a vector.')  opK=Z  
    end M~Yho".  
    |@]`" k  
    r = r(:); @3/.W+  
    length_r = length(r); z}vgp\cuT  
    UC)-Fd  
    if nargin==4 iol.RszlZ|  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); kETu@la}  
        if ~isnorm 0^VA,QkQ\  
            error('zernpol:normalization','Unrecognized normalization flag.') jFBLElE  
        end ssv4#8p3  
    else xeqAFq=9?  
        isnorm = false; Farcd!}  
    end $F!)S  
    rULrGoM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% io_4d2uBh  
    % Compute the Zernike Polynomials Dz4fP;n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ALqP;/  
    \Lxsg! wtJ  
    % Determine the required powers of r: w{J0K; L  
    % ----------------------------------- !JtVp&?  
    rpowers = []; N-fGc?E  
    for j = 1:length(n) |kL^k{=zV  
        rpowers = [rpowers m(j):2:n(j)]; K~p\B  
    end hm=E~wv'L  
    rpowers = unique(rpowers); iX8& mUR  
    ;Ub;AqY  
    % Pre-compute the values of r raised to the required powers, ^lCys  
    % and compile them in a matrix: x4jn45]x@  
    % ----------------------------- \8%64ZL`  
    if rpowers(1)==0 -I7"9}j3  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); yjUSM}$  
        rpowern = cat(2,rpowern{:}); hX\z93an  
        rpowern = [ones(length_r,1) rpowern]; sM)n-Yy#9  
    else X p4x:N  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); d(RSn|[0  
        rpowern = cat(2,rpowern{:}); ZzA4iT=KO  
    end 9/[3xhB4  
    HE911 lc:  
    % Compute the values of the polynomials: mAkR<\?iTF  
    % -------------------------------------- f!;4 -.p`  
    z = zeros(length_r,length_n); RkVU^N"  
    for j = 1:length_n &D, gKT~  
        s = 0:(n(j)-m(j))/2; "V!y"yQ  
        pows = n(j):-2:m(j); rWKc,A[  
        for k = length(s):-1:1 zG|}| //}  
            p = (1-2*mod(s(k),2))* ... ;W6P$@'zs  
                       prod(2:(n(j)-s(k)))/          ... f(Q-W6  
                       prod(2:s(k))/                 ... 4R5+"h:  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... *k:Sg*neVq  
                       prod(2:((n(j)+m(j))/2-s(k))); "f|\":\  
            idx = (pows(k)==rpowers); \(Uw.ri  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ~W'>L++  
        end MsMNP[-l  
         ,>X +tEgR  
        if isnorm Q70LQCms  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); qiQS:0|_  
        end V3&_ST  
    end tZR%s  
    %jKbRiz1u  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  W-9?|ei  
    _&0_@  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 G,+-}~$_  
    >_9w4g_<  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)