非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 JP,yRb\
function z = zernfun(n,m,r,theta,nflag)
p]eVby"
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. po!bRk[4
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N E[ttamU
% and angular frequency M, evaluated at positions (R,THETA) on the Gk']Ma2J}
% unit circle. N is a vector of positive integers (including 0), and |)65y
% M is a vector with the same number of elements as N. Each element .<zN/&MXf
% k of M must be a positive integer, with possible values M(k) = -N(k) &_$0lIDQ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, <MyT ;
% and THETA is a vector of angles. R and THETA must have the same ZOBcV,K
% length. The output Z is a matrix with one column for every (N,M) ]~:WGo=_
% pair, and one row for every (R,THETA) pair. LC,6hpmh
% dK Qu
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike yvWM]A
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -A,UqEt
% with delta(m,0) the Kronecker delta, is chosen so that the integral c6T[2Ig
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, az1#:Go
% and theta=0 to theta=2*pi) is unity. For the non-normalized ]++,7Z\AU
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~l8w]R3A
% r"9hpZH
% The Zernike functions are an orthogonal basis on the unit circle. [XhG7Ly
% They are used in disciplines such as astronomy, optics, and Yosfk\D
% optometry to describe functions on a circular domain. YU`}T<;bg
% u]*f^/6Q
% The following table lists the first 15 Zernike functions.
O2:1aG
% M`&78j
% n m Zernike function Normalization DkEf;P
% --------------------------------------------------
8'ut[
% 0 0 1 1 .L~
NX/V
% 1 1 r * cos(theta) 2 y(wb?86#W5
% 1 -1 r * sin(theta) 2 TbD
$lx3>
% 2 -2 r^2 * cos(2*theta) sqrt(6) QM24cm
T
% 2 0 (2*r^2 - 1) sqrt(3) H]}mg='kI
% 2 2 r^2 * sin(2*theta) sqrt(6) t2Px?S?
% 3 -3 r^3 * cos(3*theta) sqrt(8) kni{1Gr
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) cGyR_8:2cv
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) \fsNI T/
% 3 3 r^3 * sin(3*theta) sqrt(8) PLJDRp 2o
% 4 -4 r^4 * cos(4*theta) sqrt(10) u2S8DuJ
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *nK4XgD
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) UX'q64F!
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mM r$~^P:
% 4 4 r^4 * sin(4*theta) sqrt(10) ?kK3%uJy&
% -------------------------------------------------- 8!{
}WLwb
% _^g4/G#13c
% Example 1: "A*;V
% q|}O-A*wa
% % Display the Zernike function Z(n=5,m=1) z(u,$vZ_
% x = -1:0.01:1; qu\U^F
% [X,Y] = meshgrid(x,x); D_?dy4\
% [theta,r] = cart2pol(X,Y); r PTfwhs
% idx = r<=1; Ng2Z7k
% z = nan(size(X)); <KJ|U0/jGd
% z(idx) = zernfun(5,1,r(idx),theta(idx)); |l-O e
% figure D~FIv
% pcolor(x,x,z), shading interp e8E' X
% axis square, colorbar F1S0C>N?5
% title('Zernike function Z_5^1(r,\theta)') w9StW94p
% I/%L,XyRI
% Example 2: /#z"c]#
% Xf{9rZ+
% % Display the first 10 Zernike functions _kc}:
% x = -1:0.01:1; k8!:`jG
% [X,Y] = meshgrid(x,x); 53$;ZO3
% [theta,r] = cart2pol(X,Y); +s6v!({Z
% idx = r<=1; uzI-1@`
% z = nan(size(X)); \<hHZS
% n = [0 1 1 2 2 2 3 3 3 3]; b%KcS&-6
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; oJ tmd}
% Nplot = [4 10 12 16 18 20 22 24 26 28]; :*/g~y(fE
% y = zernfun(n,m,r(idx),theta(idx)); .mNw^>:cq
% figure('Units','normalized') liqVfB%
% for k = 1:10
YCVT0d
% z(idx) = y(:,k); xLb=^Xjec
% subplot(4,7,Nplot(k)) 3<l}gB'S[
% pcolor(x,x,z), shading interp |N}*
% set(gca,'XTick',[],'YTick',[]) 6b%IPbb
% axis square
7|yEf
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) (J?_~(,`"
% end &'`ki0Xh;
% g<ov` bF
% See also ZERNPOL, ZERNFUN2. "bB0$>0,
)G;Hf?M
% Paul Fricker 11/13/2006 E#3tkFF0Z[
#k1IrqUp
t%O)Ti
% Check and prepare the inputs: b@Dt]6_UL
% ----------------------------- XwfR/4
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S_nAO\h
error('zernfun:NMvectors','N and M must be vectors.') NcHU)
end A^$xE6t
(sI`FW_
if length(n)~=length(m) S&.xgBR
error('zernfun:NMlength','N and M must be the same length.') ;" D~F
end )#GF:.B
:P
]D`b6p
n = n(:); <CJy3<$u
m = m(:); ji\&?%(B
if any(mod(n-m,2)) =HB(N|9 _d
error('zernfun:NMmultiplesof2', ... =c$x xEDD
'All N and M must differ by multiples of 2 (including 0).')
]NtBP
end BP l% SL
H |7XfM
if any(m>n) *YX5bpR?
error('zernfun:MlessthanN', ... =y(*?TZH
'Each M must be less than or equal to its corresponding N.') l^KCsea#
end BJ\81 R
`>b,'u6F
if any( r>1 | r<0 ) b#"&]s-
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Vr d16s
end ._t1eb`m{
+Wgfxk'{
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) )pe17T1|
error('zernfun:RTHvector','R and THETA must be vectors.') m>F:dI
end _yX.Apv]
#d<|_
r = r(:); 4.uaWM)2
theta = theta(:); s&'FaqE
length_r = length(r); 7
, _b
if length_r~=length(theta) T$AVMVq
error('zernfun:RTHlength', ... ]T&d_~l
'The number of R- and THETA-values must be equal.') 49<t2^1q
end
hSXJDT2
a1Q%Gn@R
% Check normalization: l]#=I7 6
% -------------------- s[dIWYs#
if nargin==5 && ischar(nflag) H'7s`^-
>I
isnorm = strcmpi(nflag,'norm'); _<DOA:'v
if ~isnorm qJf\,7mi
error('zernfun:normalization','Unrecognized normalization flag.') $.:x3TsA
end {~j/sto-:
else &cJ?mSI
isnorm = false; ~'0ZW<X.
end Lz p}<B
)''V}Zn.X
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x,cvAbwS
% Compute the Zernike Polynomials _%Ua8bR$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =kzp$ i
3:8p="$F
% Determine the required powers of r: S("dU`T?
% ----------------------------------- $+ N~Fa
m_abs = abs(m); {o 5^nd
rpowers = []; nHH
FHnFf
for j = 1:length(n) +Mhk<A[s
rpowers = [rpowers m_abs(j):2:n(j)]; nT+ZSr
end /#&jF:h
rpowers = unique(rpowers); Z
h9D^I
olA+B
% Pre-compute the values of r raised to the required powers, S-ZN}N{,6
% and compile them in a matrix: JZ*.;}"
% ----------------------------- Q<g>WNb
if rpowers(1)==0 #$W0%7
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 1-N+qNSD`
rpowern = cat(2,rpowern{:}); A>e-eD xi
rpowern = [ones(length_r,1) rpowern]; ~:U`^wtQ
else CY{!BV'
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); VCiq'LOR,<
rpowern = cat(2,rpowern{:}); Xdl
dUK[
end z$}9f*W}B
4[JF.O6}
% Compute the values of the polynomials: Lccy~2v>
% -------------------------------------- q#Q %p+
y = zeros(length_r,length(n)); &WL::gy_S
for j = 1:length(n) zJl;|E".
s = 0:(n(j)-m_abs(j))/2; `-{? !
pows = n(j):-2:m_abs(j); surNJ,)
for k = length(s):-1:1 bu <d>XR
p = (1-2*mod(s(k),2))* ... %n8CK->
prod(2:(n(j)-s(k)))/ ... V=th-o3[
prod(2:s(k))/ ... ?6nB=B)/
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {^(uoB C/
prod(2:((n(j)+m_abs(j))/2-s(k))); j}s/)}n|
idx = (pows(k)==rpowers); <?}pCX/O
y(:,j) = y(:,j) + p*rpowern(:,idx); C& XPn;f
end ceD6q~)
TU2oQ1
if isnorm /Z!$bD
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); CDXN%~0h
end XksI .]tfj
end jF
j'6LT9/
% END: Compute the Zernike Polynomials DO~[VK%|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @ <2y+_e
p8@8b "
% Compute the Zernike functions: WLwi
% ------------------------------ 2p#d
idx_pos = m>0; Lk@+iHf
idx_neg = m<0; g\8B;
S;gy:n!t
z = y; ZWGX*F#}P
if any(idx_pos) |4P8N{ L>O
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); $'_Q@ZBq
end lo'#dpt<
if any(idx_neg) UBM#~~sM
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )V>zXy}Y
end -3~S{)
#a~BigZ[G
% EOF zernfun