非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 sI6coe5n
function z = zernfun(n,m,r,theta,nflag) YpEH(tq
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. {fS~G2@1
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Ar'k6NX
% and angular frequency M, evaluated at positions (R,THETA) on the :r9<wbr)k0
% unit circle. N is a vector of positive integers (including 0), and *g[MGyF"
% M is a vector with the same number of elements as N. Each element zQaD&2 q
% k of M must be a positive integer, with possible values M(k) = -N(k) l;}3J3/qq]
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, hd@jm^k
% and THETA is a vector of angles. R and THETA must have the same du_~P"[
% length. The output Z is a matrix with one column for every (N,M) -mLS\TF S
% pair, and one row for every (R,THETA) pair. f-Zi!AGh>
% Ix+eP|8F
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike vF1Fcp.@
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ik-E_U2
% with delta(m,0) the Kronecker delta, is chosen so that the integral -lm)xpp1
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, I %|;M%B
% and theta=0 to theta=2*pi) is unity. For the non-normalized (h'Bz6K
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. pKaU
[1x?%
% 'PWA
% The Zernike functions are an orthogonal basis on the unit circle. H:cAORLB
% They are used in disciplines such as astronomy, optics, and ~]SCf@pRk
% optometry to describe functions on a circular domain. Lr0:yo
% st)qw]Dn;Y
% The following table lists the first 15 Zernike functions. !wTrWD!
% b*1yvkX5
% n m Zernike function Normalization 2WC$r8E
% -------------------------------------------------- ]EdZ,`B4
% 0 0 1 1 v Q,<Ke+d
% 1 1 r * cos(theta) 2 ;.=]Ar}
% 1 -1 r * sin(theta) 2 ch33+~Nn
% 2 -2 r^2 * cos(2*theta) sqrt(6) D!&]jkUN
% 2 0 (2*r^2 - 1) sqrt(3) I>{o]^xw-D
% 2 2 r^2 * sin(2*theta) sqrt(6) % _nmv
% 3 -3 r^3 * cos(3*theta) sqrt(8) h.q9p!
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) [ps4i_
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) d|>/eb.R
% 3 3 r^3 * sin(3*theta) sqrt(8) \}W !
% 4 -4 r^4 * cos(4*theta) sqrt(10) *Sps^Wl
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) WjOP2CVv|
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) pfHfw,[
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #_WkV
% 4 4 r^4 * sin(4*theta) sqrt(10) i6<uj
% -------------------------------------------------- l+j
!CvtI
% ),Hr
% Example 1: 'I$kDM mwh
% u~PZK.Uf0
% % Display the Zernike function Z(n=5,m=1) o2[$XONTl
% x = -1:0.01:1; 0#4A0[vV
% [X,Y] = meshgrid(x,x); @0(%ayi2Y
% [theta,r] = cart2pol(X,Y); |AS~sjWSJ
% idx = r<=1; /B)2L]6p
% z = nan(size(X)); Gn<0Fy2
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 'KDt%?24
% figure E1SWZ&';
% pcolor(x,x,z), shading interp 7M8 cF>o
% axis square, colorbar -[}Aka,f!
% title('Zernike function Z_5^1(r,\theta)') q3C
% "Mz#1Laby`
% Example 2: &hrMpD6z6i
%
En)Ptz#0
% % Display the first 10 Zernike functions A1r%cs
% x = -1:0.01:1; T}/|nOu
5
% [X,Y] = meshgrid(x,x); U({N'y=
% [theta,r] = cart2pol(X,Y); N3N~z1x0h
% idx = r<=1; 5h |aX
% z = nan(size(X)); s\<UDW
% n = [0 1 1 2 2 2 3 3 3 3]; UA4c4~$S
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; W =;,ls
% Nplot = [4 10 12 16 18 20 22 24 26 28]; "U+c`V=w
% y = zernfun(n,m,r(idx),theta(idx)); 8!YQ9T [
% figure('Units','normalized') ug.|ag'R
% for k = 1:10 ~!=Am:-wr
% z(idx) = y(:,k); #RbdQH !
% subplot(4,7,Nplot(k)) ^4NRmlb
% pcolor(x,x,z), shading interp {]dG 9
% set(gca,'XTick',[],'YTick',[]) <B>hvuCoH
% axis square rIb~@cR)
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @,7r<6E
% end $2+s3)
% &*Xrh7K2e
% See also ZERNPOL, ZERNFUN2. hnH<m7
P j,H]
% Paul Fricker 11/13/2006 JdLPIfI^
'IFA>}e7W
H\H7a.@nkF
% Check and prepare the inputs: TspX7<6r
% ----------------------------- crOSr/I$
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }V*?~.R
error('zernfun:NMvectors','N and M must be vectors.')
J9OL>!J
end -agB ]j
d2V\T+=
if length(n)~=length(m) egBk7@Ko
error('zernfun:NMlength','N and M must be the same length.') j}d):3!
end FPkk\[EU
pJs`/
n = n(:); 8EMBqhl
m = m(:); IZm6.F
if any(mod(n-m,2)) $_;rqTk]g
error('zernfun:NMmultiplesof2', ... U;IGV~oT
'All N and M must differ by multiples of 2 (including 0).') ~cyKPg6
end B8?9L8M}
ju3@F8AI
if any(m>n) 4`mf^Kf
error('zernfun:MlessthanN', ... H }]Zp
'Each M must be less than or equal to its corresponding N.') S7WHOr9XMV
end }st~$JsV1
bCr
W'}:de
if any( r>1 | r<0 ) mdyl;e{0
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]kx<aQ^
end <bo^u w
tu"-]^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) J%|;
error('zernfun:RTHvector','R and THETA must be vectors.') Er|&4-9
end
B9y5NX
XR9kxTuk
r = r(:); Y:\]d1C
theta = theta(:); }No #_{
length_r = length(r); ^|6#Vx
if length_r~=length(theta) -^yc<%U
error('zernfun:RTHlength', ... ULu@"
'The number of R- and THETA-values must be equal.') 5Za<]qxr
end SmD#hE[
TTl9xs,nO
% Check normalization: `7y3C\zyQ
% -------------------- @%2crJnkS
if nargin==5 && ischar(nflag) Sz<:WY/(x
isnorm = strcmpi(nflag,'norm'); #<B?+gzFM{
if ~isnorm \p(0H6
error('zernfun:normalization','Unrecognized normalization flag.') ,r~^<m
end {d'B._#i
else "%+||IyW
isnorm = false; xzA!,75@U
end :Zkjtr.\
tDah@_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !`7evV:
% Compute the Zernike Polynomials -6uLww=w4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y7CXE6Y
l{.PyU5)
% Determine the required powers of r: [tSv{
% ----------------------------------- .#Z'CZO|
m_abs = abs(m); RA!m,"RM
rpowers = []; bv(+$YR
for j = 1:length(n) "N_@q2zF
rpowers = [rpowers m_abs(j):2:n(j)]; UtJfO`m9P
end BR?DW~7J j
rpowers = unique(rpowers); )'g4Ty
+h/OQ]`/m
% Pre-compute the values of r raised to the required powers, p=eSJ*
% and compile them in a matrix: RrrlfF ms
% ----------------------------- SeS ZMv
if rpowers(1)==0 %
q!i
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )BI%cD
rpowern = cat(2,rpowern{:}); IcQpbF0
rpowern = [ones(length_r,1) rpowern]; *P7n YjG
else n} !')r
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Y>FLc* h
rpowern = cat(2,rpowern{:}); !,Gavt7f
end 2Hx*kh2
QD^= ;!
% Compute the values of the polynomials: 5>CeFy
% -------------------------------------- RT'5i$q[
y = zeros(length_r,length(n)); v,N!cp1
for j = 1:length(n) kO^
s = 0:(n(j)-m_abs(j))/2; i@WO>+iB
pows = n(j):-2:m_abs(j); !@Vj&>mH$
for k = length(s):-1:1 ak3WER|f#
p = (1-2*mod(s(k),2))* ... qkc,93B3
prod(2:(n(j)-s(k)))/ ... S\sy^Kt~4:
prod(2:s(k))/ ... &1=,?s]&
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Bqa_l|
prod(2:((n(j)+m_abs(j))/2-s(k))); K)`R?CZ:s
idx = (pows(k)==rpowers); ~e,K
y(:,j) = y(:,j) + p*rpowern(:,idx); :mCGY9d4L
end \!uf*=d
n]5Pfg|a
if isnorm I 6<LKI/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); #3?"#),q
end L:lnm9<
end L7(.dO0C
% END: Compute the Zernike Polynomials =8p[ (<F=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o!y<:CGL
Ly, ];
% Compute the Zernike functions: r[kHVT8
% ------------------------------ .g}Y!
l
idx_pos = m>0; [tt_>O
idx_neg = m<0; DX3jE p2
MfLus40;n
z = y; R~TG5^(
if any(idx_pos) rvnm*e,
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M5`m5qc3
end T_)+l)
if any(idx_neg) :t+LuH g
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )0;O<G] d
end flBJO.2
!g>mjD
% EOF zernfun