切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10684阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 wP'`!O[W  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! HukHZ;5  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 g wk\[I`;  
    function z = zernfun(n,m,r,theta,nflag) V[% r5!83H  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. %j'lWwi  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N L\"$R":3{d  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ~{HA!C#  
    %   unit circle.  N is a vector of positive integers (including 0), and 6rk/74gI,a  
    %   M is a vector with the same number of elements as N.  Each element \]^|IViIQ  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) W1#3+  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 4VK5TWg  
    %   and THETA is a vector of angles.  R and THETA must have the same Q)v8hNyUmA  
    %   length.  The output Z is a matrix with one column for every (N,M) /(Y\ <  
    %   pair, and one row for every (R,THETA) pair. C~ >'pS6%5  
    % Re=bJ|wo  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike a].Bn#AH!C  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !0cfz5t  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral WvR}c  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, L&eO?I=,  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized SN+&'?$WD  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0DN:{dJz  
    % 4}gwMjU-B  
    %   The Zernike functions are an orthogonal basis on the unit circle. \HRQSfGt  
    %   They are used in disciplines such as astronomy, optics, and p_qH7W  
    %   optometry to describe functions on a circular domain. "5{\0CfS  
    % " <=^Sm  
    %   The following table lists the first 15 Zernike functions. }(gXlF  
    % ;DGp7f#9  
    %       n    m    Zernike function           Normalization (|Xf=q,Le  
    %       -------------------------------------------------- rGoB&% pc  
    %       0    0    1                                 1 |ek*wo  
    %       1    1    r * cos(theta)                    2 {`-EX  
    %       1   -1    r * sin(theta)                    2 f3nib8B'  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) sH6srwI  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Y5K!DMK Y  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) h$lY,7  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) g-6!+>w*>e  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) CvlAn7r,@  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) )U8F6GIC&}  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) MECR0S9  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) fz<Y9h=  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m"u 9AOHk  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) /bg8oB4  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) | YvO$4=s  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) GJ!usv u  
    %       -------------------------------------------------- H.'_NCF&;L  
    % DT_012 z  
    %   Example 1: 8amtTM  
    % T_pE'U%[  
    %       % Display the Zernike function Z(n=5,m=1) G$ipWi  
    %       x = -1:0.01:1; ci ,o'`Q  
    %       [X,Y] = meshgrid(x,x); N+h|Ffnp  
    %       [theta,r] = cart2pol(X,Y); p_tMl%K  
    %       idx = r<=1; }Dk_gom_  
    %       z = nan(size(X)); NH4EsV]  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); b@nbXm]Z  
    %       figure ?jy^WF`  
    %       pcolor(x,x,z), shading interp A9F Z`  
    %       axis square, colorbar BC&Et62*  
    %       title('Zernike function Z_5^1(r,\theta)') )\p@E3Uxf  
    % }k'8*v}8  
    %   Example 2: \\)3:1X  
    % &AA u:  
    %       % Display the first 10 Zernike functions _Tev503  
    %       x = -1:0.01:1; 8> Gp #T  
    %       [X,Y] = meshgrid(x,x); 3vDV   
    %       [theta,r] = cart2pol(X,Y); NeUpl./b  
    %       idx = r<=1; f'*HP%+Y  
    %       z = nan(size(X)); >pz/wTOi  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ;sb0,2YyP  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; lkBab$S)  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; I C7n;n9  
    %       y = zernfun(n,m,r(idx),theta(idx)); 6]na#<  
    %       figure('Units','normalized') hnL(~  
    %       for k = 1:10 yU&A[DZQ  
    %           z(idx) = y(:,k); E/Y.f  
    %           subplot(4,7,Nplot(k)) /TS>I8V!  
    %           pcolor(x,x,z), shading interp M`A bH19  
    %           set(gca,'XTick',[],'YTick',[]) WF_G GF{  
    %           axis square H`m| R  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Q-Bci Bh$  
    %       end foaNB=,  
    % $  5  
    %   See also ZERNPOL, ZERNFUN2. o"K{^ L~u  
    Kq{9 :G  
    %   Paul Fricker 11/13/2006 cYW F)WAog  
    [K%J t  
    o{m$b2BW  
    % Check and prepare the inputs: X2Y-TE T  
    % ----------------------------- N(/DC)DJg  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) SC"=M^E  
        error('zernfun:NMvectors','N and M must be vectors.') \Ui8Sgeei  
    end liPUK#  
    ]'M Ly#9  
    if length(n)~=length(m) z$H |8L  
        error('zernfun:NMlength','N and M must be the same length.') dLG5yx\js  
    end J1&G1\G|s=  
    B3e{'14  
    n = n(:); r!#NFek}  
    m = m(:); bQEQHqY5  
    if any(mod(n-m,2)) 7_n@iUG2n  
        error('zernfun:NMmultiplesof2', ... xs+MvXTC  
              'All N and M must differ by multiples of 2 (including 0).') cD]{ Nn  
    end n+j'FfSz  
    rEz=\yY^j'  
    if any(m>n) o=4d2V%m  
        error('zernfun:MlessthanN', ... i$"B  
              'Each M must be less than or equal to its corresponding N.') !Vv$  
    end !&ac}uD^g  
    EivZI<<a  
    if any( r>1 | r<0 ) {>>f5o 3  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') A1>R8Zuhy  
    end Mryi6XT  
    qtD3<iWV  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) { ~FYiX  
        error('zernfun:RTHvector','R and THETA must be vectors.') 8xZN4ck_@  
    end K%$%9y  
    UvxJ _  
    r = r(:); kT!FC0E{  
    theta = theta(:); 2U)H2 %  
    length_r = length(r); 'C!b($Y  
    if length_r~=length(theta) ?RA^Y N*9  
        error('zernfun:RTHlength', ... \P+lb-~\"  
              'The number of R- and THETA-values must be equal.') )!e-5O49r  
    end d*7 Tjs{\  
    I( G8cK  
    % Check normalization: rG}o!I`z  
    % -------------------- ^1Y0JQ  
    if nargin==5 && ischar(nflag) ^+Ec}+ Q  
        isnorm = strcmpi(nflag,'norm'); gNo.&G [  
        if ~isnorm gBf %9F  
            error('zernfun:normalization','Unrecognized normalization flag.') 5<Xq7|Jt  
        end ie=tM'fb  
    else WdnCRFO?l  
        isnorm = false; #=q)>+\  
    end A#f@0W:  
    Pv+[N{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 39BGwKXb  
    % Compute the Zernike Polynomials 0".pw; .}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8 U B?X  
    4-lEo{IIM  
    % Determine the required powers of r: <pK72  
    % ----------------------------------- U8\[8~Xftn  
    m_abs = abs(m); 1#&*xF "  
    rpowers = []; y8D'V)B  
    for j = 1:length(n)  Jx[IHE  
        rpowers = [rpowers m_abs(j):2:n(j)]; 8m2-fuJz  
    end Yq $(Ex  
    rpowers = unique(rpowers); wMT?p/9Blm  
    '&xv)tno  
    % Pre-compute the values of r raised to the required powers, x3MV"hm2  
    % and compile them in a matrix: )?:V5UO\  
    % ----------------------------- XA-DJ  
    if rpowers(1)==0 "'~'xaU!=a  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W52AX.Nm  
        rpowern = cat(2,rpowern{:}); % tN{  
        rpowern = [ones(length_r,1) rpowern]; k"LbB#Q  
    else > 't=r  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `sAz1/N  
        rpowern = cat(2,rpowern{:}); ? !MDg_oHd  
    end E dhT;!  
    2fu|X#R  
    % Compute the values of the polynomials: 7^ A;.x  
    % -------------------------------------- k ?X  
    y = zeros(length_r,length(n)); %J!+f-:=  
    for j = 1:length(n) :lcZ )6&S  
        s = 0:(n(j)-m_abs(j))/2; 9_n!.zA<  
        pows = n(j):-2:m_abs(j); KLGhsx35  
        for k = length(s):-1:1 .#2YJ~  
            p = (1-2*mod(s(k),2))* ... :[ F`tDL  
                       prod(2:(n(j)-s(k)))/              ... 3U!\5Nsby  
                       prod(2:s(k))/                     ... -%I]Q9  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... NX4!G>v  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Rf+ogLa=  
            idx = (pows(k)==rpowers); /8VM.fr$  
            y(:,j) = y(:,j) + p*rpowern(:,idx); z)='MKrEt-  
        end #DXC 6f  
         " 6Hka{  
        if isnorm TyY[8J|  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); x JQde 4  
        end 3)^-A4~E  
    end )@DH&  
    % END: Compute the Zernike Polynomials c{Nk"gEfRA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0(iTnzx0  
    {s6;6>-kPW  
    % Compute the Zernike functions: HF" v \  
    % ------------------------------ "gADHt=MIR  
    idx_pos = m>0; RY2`v pv  
    idx_neg = m<0; Uc/MPCqZ  
    lpQsmd#  
    z = y; ^a4y+!  
    if any(idx_pos) WBFG_])  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); rR@ t5  
    end s PYG?P(l  
    if any(idx_neg) (Hb i+IHV  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); JEL =,0J  
    end aL$m  
    ~'2)E/IeV  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Z;M]^?  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ]#]|]>& <  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated R| [mp%Q  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ; {$9Sc $  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, n&Bolt(tO  
    %   and THETA is a vector of angles.  R and THETA must have the same Wu(6FQ`H  
    %   length.  The output Z is a matrix with one column for every P-value, SV}q8z\  
    %   and one row for every (R,THETA) pair. s7e)Mt  
    % o65:)z u  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike -e_ IDE  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) uUu]JDdz  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi)  s.&ewf\  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Z[<rz6%cB  
    %   for all p. jE|Ju:}&  
    % R h zf.kp  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 'yxRz5  
    %   Zernike functions (order N<=7).  In some disciplines it is c-.t8X,5(~  
    %   traditional to label the first 36 functions using a single mode ESp)%  
    %   number P instead of separate numbers for the order N and azimuthal NXb_hF  
    %   frequency M. o<ak&LX`9  
    % < ek_n;R  
    %   Example: 6AV@O  
    % vY0C(jK  
    %       % Display the first 16 Zernike functions ]`)50\pdw  
    %       x = -1:0.01:1; ^Lr)STh  
    %       [X,Y] = meshgrid(x,x); (dn(:<_$  
    %       [theta,r] = cart2pol(X,Y); K-(k6<h  
    %       idx = r<=1; W8+Daw1Nr  
    %       p = 0:15; =$;i  
    %       z = nan(size(X)); W}p>jP}  
    %       y = zernfun2(p,r(idx),theta(idx)); `p1szZD&  
    %       figure('Units','normalized') :bFCnV`Q  
    %       for k = 1:length(p) v1%rlP  
    %           z(idx) = y(:,k); )/kkvI()l  
    %           subplot(4,4,k) i lk\&J~I  
    %           pcolor(x,x,z), shading interp >fRI^Q,  
    %           set(gca,'XTick',[],'YTick',[]) }w .[ZeP  
    %           axis square n:d]Z2b  
    %           title(['Z_{' num2str(p(k)) '}']) 9,wd,,ta  
    %       end X-&t!0O4}`  
    % |fnP@k  
    %   See also ZERNPOL, ZERNFUN. D{g6M>,\  
    ,{P*ZK3u  
    %   Paul Fricker 11/13/2006 4UD<g+|  
    x LR 2H>B}  
    )\#w=P  
    % Check and prepare the inputs: 5W_u|z+/g  
    % ----------------------------- Lh.?G#EM  
    if min(size(p))~=1 8?#4<4Ql8  
        error('zernfun2:Pvector','Input P must be vector.') aHx(~&hRcL  
    end COPH)Bdq.  
    ,5^XjU3c=  
    if any(p)>35 A8 V7\  
        error('zernfun2:P36', ... Z]f_? @0  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... G;:n*_QXE  
               '(P = 0 to 35).']) )cOw9&#s  
    end t=M:L[bis;  
    oe,I vnt  
    % Get the order and frequency corresonding to the function number: J%`-K"NB  
    % ---------------------------------------------------------------- A*#.7Np!"  
    p = p(:); EfHo1Yn&  
    n = ceil((-3+sqrt(9+8*p))/2); HnU; N S3J  
    m = 2*p - n.*(n+2); h{xC0NC)  
    |>o]+V  
    % Pass the inputs to the function ZERNFUN: :L gFd  
    % ---------------------------------------- .y'iF>QQ\  
    switch nargin 'L|& qy@  
        case 3 5|S|S))_Q  
            z = zernfun(n,m,r,theta); iq'hel  
        case 4 }= OI (Wy  
            z = zernfun(n,m,r,theta,nflag); 3aIP^I1  
        otherwise Ay\=&4dv  
            error('zernfun2:nargin','Incorrect number of inputs.') }z{2~ 0,  
    end kDJ $kv  
    b|mWEB.p  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) sf{rs*bgp  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. <vxj*M;  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Zzy!D  
    %   order N and frequency M, evaluated at R.  N is a vector of *Ju$A  
    %   positive integers (including 0), and M is a vector with the O.61-rp  
    %   same number of elements as N.  Each element k of M must be a `4^-@}  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) x'IVP[xh`A  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is XaT9`L<  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix "|P8L| @*  
    %   with one column for every (N,M) pair, and one row for every reo  
    %   element in R. ~)>O=nR  
    % K_/-mwA v  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- eeKErpj8A  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is TZ#(G  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to hM}rf6B  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 8!8 yA  
    %   for all [n,m]. R@*mMWW,  
    % 0($@9k4!/  
    %   The radial Zernike polynomials are the radial portion of the lmmB=F  
    %   Zernike functions, which are an orthogonal basis on the unit Gk~QgD/Pix  
    %   circle.  The series representation of the radial Zernike q\+khy,k  
    %   polynomials is ['9awgkr/  
    % cuv?[ M  
    %          (n-m)/2 <}e2\x  
    %            __ 5=< y%VF  
    %    m      \       s                                          n-2s @tv3\eD  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r FR%9Qb7  
    %    n      s=0 c6 O1Z\M@\  
    % IE/F =Wr  
    %   The following table shows the first 12 polynomials. SvR:tyF  
    % 7G,{BBB  
    %       n    m    Zernike polynomial    Normalization {NmpTb  
    %       --------------------------------------------- uu08q<B5b)  
    %       0    0    1                        sqrt(2) b*C\0D  
    %       1    1    r                           2 :|j,x7&/{  
    %       2    0    2*r^2 - 1                sqrt(6) w[`2t{^j  
    %       2    2    r^2                      sqrt(6) O>8|Lc  
    %       3    1    3*r^3 - 2*r              sqrt(8) |Z\?nZ~  
    %       3    3    r^3                      sqrt(8) i%~^3/K  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) D@jG+k-Lm  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) DeqTr:  
    %       4    4    r^4                      sqrt(10) rHS;wT  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) \}CQo0v  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 2|="!c8K  
    %       5    5    r^5                      sqrt(12) 8:W," "  
    %       --------------------------------------------- *g0}pD;r  
    % 82w;}(!  
    %   Example: 4k}3^.#  
    % BGk>:Z`  
    %       % Display three example Zernike radial polynomials /-Saz29f^Q  
    %       r = 0:0.01:1; [VvTR#^  
    %       n = [3 2 5]; +y%"[6c|  
    %       m = [1 2 1]; NO(^P+s  
    %       z = zernpol(n,m,r); q. i2BoOd  
    %       figure \BIa:}9O  
    %       plot(r,z) a/})X[2  
    %       grid on jZRf{  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') b=V"$(Q  
    % j$2rU'  
    %   See also ZERNFUN, ZERNFUN2. <n8K"(sy}  
    >[,ywRJ#_}  
    % A note on the algorithm. %[1\d)  
    % ------------------------ u\L=nCtLby  
    % The radial Zernike polynomials are computed using the series <Mdyz!  
    % representation shown in the Help section above. For many special .Vohd@s9l  
    % functions, direct evaluation using the series representation can Vjv~RNGF  
    % produce poor numerical results (floating point errors), because 5m.{ayE  
    % the summation often involves computing small differences between />wM#)o2  
    % large successive terms in the series. (In such cases, the functions i5f8}`w  
    % are often evaluated using alternative methods such as recurrence Y|'0bujr  
    % relations: see the Legendre functions, for example). For the Zernike ll]MBq  
    % polynomials, however, this problem does not arise, because the 0F"W~OQ6  
    % polynomials are evaluated over the finite domain r = (0,1), and (lNV\Za  
    % because the coefficients for a given polynomial are generally all C*+gQeK  
    % of similar magnitude. <F>^ffwGH-  
    % ;$`5L"I5$  
    % ZERNPOL has been written using a vectorized implementation: multiple jkTh)Bm|'  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ,F&TSzH[@v  
    % values can be passed as inputs) for a vector of points R.  To achieve .f1  
    % this vectorization most efficiently, the algorithm in ZERNPOL }6Ut7J]a|  
    % involves pre-determining all the powers p of R that are required to =H<I` J'  
    % compute the outputs, and then compiling the {R^p} into a single {ylY"FA  
    % matrix.  This avoids any redundant computation of the R^p, and -?jI{].:8  
    % minimizes the sizes of certain intermediate variables. &U_YDUQ'L  
    % Ry$zF~[   
    %   Paul Fricker 11/13/2006 8R3x74fL  
    <7U\@si4  
    [uJfmrEH  
    % Check and prepare the inputs: 8OS@gpz  
    % ----------------------------- J$aE:g6'  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Q9i&]V[`  
        error('zernpol:NMvectors','N and M must be vectors.') r JvtE}x1  
    end  X.q,  
    cO8':P5Q  
    if length(n)~=length(m) a#huK~$~  
        error('zernpol:NMlength','N and M must be the same length.') $#ve^.VHv  
    end fbTq?4&Q  
    m;_gNh8Ee  
    n = n(:); _u[2R=h  
    m = m(:); $ \yZ;Z:  
    length_n = length(n); :V9%R~h/  
    cuw 7P  
    if any(mod(n-m,2)) b7^Db6qu  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') '-,$@l#  
    end Wz8 MV -D  
    B4D#T lB  
    if any(m<0) 8 vp*U  
        error('zernpol:Mpositive','All M must be positive.') KT 4h3D`,  
    end Bf21u 9  
    1BjMVMH  
    if any(m>n) y[D8rFw  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') .83{NF  
    end <:n !qQS6  
    s~z~9#G(6  
    if any( r>1 | r<0 ) gNWTzz<[f>  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') rexNsKRK_  
    end r_x|2 A oO  
    Qm"&=<  
    if ~any(size(r)==1) $_ BoG  
        error('zernpol:Rvector','R must be a vector.') xg;o<y KF  
    end PM?F;mj  
    <Jf[N=  
    r = r(:); QX`T-)T e  
    length_r = length(r); (^G @-eh  
    aPwUC:>`D  
    if nargin==4 _.{I1*6Y2  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); cIS?EW]S%X  
        if ~isnorm 2Y7u M;8  
            error('zernpol:normalization','Unrecognized normalization flag.') t=;P1d?E;  
        end >p`ZcFNs"  
    else HM]mOmL90N  
        isnorm = false; G%HuB5:u  
    end TwI'}J|w  
    .eHOG]H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  z@8W  
    % Compute the Zernike Polynomials m-HL7&iG$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L25v7U  
    }e K.\_t=  
    % Determine the required powers of r: q`0wG3  
    % ----------------------------------- 4Zn"K}q  
    rpowers = []; mm:g9j  
    for j = 1:length(n) E*Z# fa  
        rpowers = [rpowers m(j):2:n(j)]; _C%:AFPP>  
    end 3FgTM(  
    rpowers = unique(rpowers); T&q0TBT  
    -z~;f<+I`  
    % Pre-compute the values of r raised to the required powers, k d9<&.y{  
    % and compile them in a matrix: -<{;.~nI.  
    % ----------------------------- _)U.5f<   
    if rpowers(1)==0 h]jy):9L  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?/1Eu47  
        rpowern = cat(2,rpowern{:}); mUdj2vB$+'  
        rpowern = [ones(length_r,1) rpowern]; 2X,`t%o  
    else 0@tN3u?dx  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); k^#+Wma7  
        rpowern = cat(2,rpowern{:}); J3z:U&%=  
    end E;bv;RUio  
    )gHfbUYS  
    % Compute the values of the polynomials: i}gsxq%  
    % -------------------------------------- /Y`u4G()  
    z = zeros(length_r,length_n); )Y &RMYy  
    for j = 1:length_n fc<~R  
        s = 0:(n(j)-m(j))/2; 4de:hE   
        pows = n(j):-2:m(j); f 0r?cZ  
        for k = length(s):-1:1 @#2KmM~I  
            p = (1-2*mod(s(k),2))* ... H7{I[>:  
                       prod(2:(n(j)-s(k)))/          ... gLK_b;:  
                       prod(2:s(k))/                 ... sW&5Mu-  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... B2^*Sr[  
                       prod(2:((n(j)+m(j))/2-s(k))); #GuN.`__n,  
            idx = (pows(k)==rpowers); z(n Ba]^[F  
            z(:,j) = z(:,j) + p*rpowern(:,idx); uZml.#@4  
        end =$-+~  
         Q;?rqi ,  
        if isnorm "O/ 6SV  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); isU4D  
        end NHQi_U  
    end ez14f$cJ+  
    85_Qb2<'r  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    851
    光币
    831
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  MS:,I?  
    5gkQ6& m  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 o_BRsJy  
    Lq2jXy5#n  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)