切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11060阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 |[apLQ6  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! w U".^ +  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ckDWY<@v  
    function z = zernfun(n,m,r,theta,nflag) >|j8j:S[  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. PB[ Y^q  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N iO$Z?Dyg9  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Bs?B\k=  
    %   unit circle.  N is a vector of positive integers (including 0), and 3m;*gOLk6  
    %   M is a vector with the same number of elements as N.  Each element 3[_zz;Y*d  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Hs9; &C  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ||p>O  
    %   and THETA is a vector of angles.  R and THETA must have the same MSQz,nn  
    %   length.  The output Z is a matrix with one column for every (N,M) {HF,F=W  
    %   pair, and one row for every (R,THETA) pair. lftT55Tki  
    % O@9<7@h+Nl  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 76IjM4&a  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), tJ 3Hg8;  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Al93x  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, mFk6a{+YX  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized b=87k  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. G~. bi<(v  
    % c]Z@L~WW  
    %   The Zernike functions are an orthogonal basis on the unit circle. @#u'z ~a)  
    %   They are used in disciplines such as astronomy, optics, and ,ma4bqRMc  
    %   optometry to describe functions on a circular domain. gdj,e ^  
    % +cXdF  
    %   The following table lists the first 15 Zernike functions. TyGsSc  
    % r &.gOC  
    %       n    m    Zernike function           Normalization [D$% LRX  
    %       -------------------------------------------------- w^EUBRI-  
    %       0    0    1                                 1 PR+L6DT_  
    %       1    1    r * cos(theta)                    2 pw, <0UhV  
    %       1   -1    r * sin(theta)                    2 [}*xxy   
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) .\rJ|HpZ1J  
    %       2    0    (2*r^2 - 1)                    sqrt(3) S\jIs[Dz  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) |'+ [ '  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) R? Ys%~5  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) (_ TKDx_  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) "e;wN3/bF  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) WHkrd8  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) C@F3iwTtp  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) B k yW  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) h.t2;O,b  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^630%YO  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) B[IqLD'6  
    %       -------------------------------------------------- be+]kp  
    % Y I?4e7Z+  
    %   Example 1: SbYs a  
    % -]Mbe2;  
    %       % Display the Zernike function Z(n=5,m=1) K0 6 E:  
    %       x = -1:0.01:1; +Rq7m]  
    %       [X,Y] = meshgrid(x,x); lm[LDtc  
    %       [theta,r] = cart2pol(X,Y); *.P3fVlZ  
    %       idx = r<=1; \L5h&  
    %       z = nan(size(X)); 2;`F` }BA  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); %CaF-m=Pq  
    %       figure |+h8g@;Z  
    %       pcolor(x,x,z), shading interp N*{>8iFo4  
    %       axis square, colorbar U#gv ~)\k  
    %       title('Zernike function Z_5^1(r,\theta)') 0(h'ZV  
    % WoSJp5By$  
    %   Example 2: U/j+\Kc~  
    % ;)rs#T;$  
    %       % Display the first 10 Zernike functions uc?`,;8{`  
    %       x = -1:0.01:1; Q<UKR|6  
    %       [X,Y] = meshgrid(x,x); iJ%`ym4Y  
    %       [theta,r] = cart2pol(X,Y); O8<@+xlX  
    %       idx = r<=1; ~'u %66  
    %       z = nan(size(X)); k<.VR"I p  
    %       n = [0  1  1  2  2  2  3  3  3  3]; G ]JWd  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; |)pgUI2O[  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; K[Ao_v2g  
    %       y = zernfun(n,m,r(idx),theta(idx)); WEZ)>[Xj?  
    %       figure('Units','normalized') ;FH_qF`.  
    %       for k = 1:10 .4cOMiG  
    %           z(idx) = y(:,k); )an,-EIX%  
    %           subplot(4,7,Nplot(k)) A6AIkKjzq  
    %           pcolor(x,x,z), shading interp M].D27  
    %           set(gca,'XTick',[],'YTick',[]) EwuBL6kN  
    %           axis square V+MhS3VD  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Q VJvuiUh  
    %       end Ng;Fhv+  
    % j|c6BdROl  
    %   See also ZERNPOL, ZERNFUN2. R3!3TJ  
    6JZ$; x{j  
    %   Paul Fricker 11/13/2006 "PtOe[Xk  
    f^D4aEU  
    6( ~DS9  
    % Check and prepare the inputs: P6([[mmG  
    % ----------------------------- +ug[TV   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) qcdENIy0b  
        error('zernfun:NMvectors','N and M must be vectors.') dq U.2~9  
    end B_uAa5'  
    ?[~)D}] j  
    if length(n)~=length(m) vp#r :+=  
        error('zernfun:NMlength','N and M must be the same length.') ^{(i;IVG  
    end [-*8 S1  
    OK1f Y`$z  
    n = n(:); 7iM;X2=7}  
    m = m(:); ,`nl";Zc  
    if any(mod(n-m,2)) .|Bmg6g*  
        error('zernfun:NMmultiplesof2', ... HZ.Jc"+M  
              'All N and M must differ by multiples of 2 (including 0).') Q{))+'s2h  
    end ].,T Snb  
    y+D"LeCAad  
    if any(m>n) jy2@t*  
        error('zernfun:MlessthanN', ... {V*OYYI`R  
              'Each M must be less than or equal to its corresponding N.') ukH?O)0O  
    end b/Q\ .!  
    2`]_c=  
    if any( r>1 | r<0 ) }5qjGD  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') eOI#T'5  
    end Q`4]\)Dp  
    x[i Et%_  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 8G0DuMI5  
        error('zernfun:RTHvector','R and THETA must be vectors.') DZ9qIc}Y  
    end TPeBb8v 8D  
    ~RS^O poa  
    r = r(:); . 7EZB  
    theta = theta(:); <78LB/:  
    length_r = length(r); 7h3JH  
    if length_r~=length(theta) UW/{q`)  
        error('zernfun:RTHlength', ... ]p.eFYDh7  
              'The number of R- and THETA-values must be equal.') xK8R![x  
    end _-.~>C  
    {<_9QAS  
    % Check normalization: #:?MtVC  
    % -------------------- <fLk\ =  
    if nargin==5 && ischar(nflag) >=Z@)PAe  
        isnorm = strcmpi(nflag,'norm'); gUq)M  
        if ~isnorm Q(e3-a  
            error('zernfun:normalization','Unrecognized normalization flag.') ^"Nsb&  
        end rH<iUiA?O  
    else ErDt~FH  
        isnorm = false; 2r]!$ hto  
    end VN1a\  
    |NiW r1&i0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 389puDjy  
    % Compute the Zernike Polynomials J&IFn/JK$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QhHexr6  
    4gNF;  
    % Determine the required powers of r: t,8p}2,$  
    % ----------------------------------- #(`@D7S"  
    m_abs = abs(m); 7v~\c%1V  
    rpowers = []; =k(~PB^>  
    for j = 1:length(n) 1jhGshhp  
        rpowers = [rpowers m_abs(j):2:n(j)]; x_3Zd  
    end VK)K#!O8  
    rpowers = unique(rpowers); pSq3\#Twr  
    CbA2?(1o1  
    % Pre-compute the values of r raised to the required powers, sO!YM5v8  
    % and compile them in a matrix: Ye8&cZ*.  
    % ----------------------------- w C0fPPeA  
    if rpowers(1)==0 F;IG@ &  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); TZ7{cekQ  
        rpowern = cat(2,rpowern{:}); 8'2lc  
        rpowern = [ones(length_r,1) rpowern]; ~!,Q<?  
    else #6tb{ws3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~la=rh3  
        rpowern = cat(2,rpowern{:}); E&/D%}Wl  
    end 3d{v5. C#X  
    gJy Ft8Z<  
    % Compute the values of the polynomials: w:z@!<  
    % -------------------------------------- 042sjt  
    y = zeros(length_r,length(n)); jaAv_=93f  
    for j = 1:length(n) J]f\=;z;<a  
        s = 0:(n(j)-m_abs(j))/2; :95wHmk  
        pows = n(j):-2:m_abs(j); CMIjc(m  
        for k = length(s):-1:1 \Mv8pU  
            p = (1-2*mod(s(k),2))* ... )y7SkH|  
                       prod(2:(n(j)-s(k)))/              ... TXi$Q%0W  
                       prod(2:s(k))/                     ... C/Ig.KmXF{  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 27vLI~  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ><X!~by  
            idx = (pows(k)==rpowers); _[SP*" ]H  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 1GY[1M1^  
        end Musz+<]  
         d0b--v/  
        if isnorm }0#cdw#gH  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); vO1P%)  
        end )>ed6A1  
    end =*q:R9V  
    % END: Compute the Zernike Polynomials *|x2"?d-F:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [FKmZzEy  
    ?S8cl7;+  
    % Compute the Zernike functions: qFV=P k  
    % ------------------------------ WT!8.M;Kv  
    idx_pos = m>0; ^c1I'9(r5  
    idx_neg = m<0; aW3yl}`{  
    oOuhbFu  
    z = y; kRgyvA,*;  
    if any(idx_pos) `5`Pv'`  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); eb:mp/  
    end 4];Qpln  
    if any(idx_neg) $7aRf'  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); AQ-P3`bCb  
    end "w`f>]YLA  
    &L-y1'i=j  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 5SX0g(C  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. #JZf]rtp  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated [*?P2.bf  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive G`w,$:,  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Ydmz!CEu  
    %   and THETA is a vector of angles.  R and THETA must have the same x}1(okc  
    %   length.  The output Z is a matrix with one column for every P-value, <l5{!g  
    %   and one row for every (R,THETA) pair. f+s'.z%  
    % E[LXZh  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 2Z,;#t  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) !cnH|ePbI  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ~SZ0Yu:X  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 '[5tc fG#z  
    %   for all p.  iTbmD  
    % RgQ\Cs24Q  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 uGLVY%N  
    %   Zernike functions (order N<=7).  In some disciplines it is ^k^%w/fo  
    %   traditional to label the first 36 functions using a single mode .Rc&EO  
    %   number P instead of separate numbers for the order N and azimuthal nAd 4g|  
    %   frequency M. rN{&$+"2  
    % ~srmlBi6  
    %   Example: Ft`#]=IS  
    % 1&QI1fvx  
    %       % Display the first 16 Zernike functions GG;M/}E9  
    %       x = -1:0.01:1; cY#TH|M  
    %       [X,Y] = meshgrid(x,x); ` M4; aN  
    %       [theta,r] = cart2pol(X,Y); X~G"TT$)  
    %       idx = r<=1; GWA_,/jS%  
    %       p = 0:15; Aid{PGDk  
    %       z = nan(size(X)); %<DRrKt  
    %       y = zernfun2(p,r(idx),theta(idx)); V}9wx%v  
    %       figure('Units','normalized') 5 qG7LO.  
    %       for k = 1:length(p) |=38t8Ge&  
    %           z(idx) = y(:,k); I U 4[}x  
    %           subplot(4,4,k) ;=)CjC8)  
    %           pcolor(x,x,z), shading interp Rl3KE)<  
    %           set(gca,'XTick',[],'YTick',[]) .,m$Cm  
    %           axis square )KBv[|  
    %           title(['Z_{' num2str(p(k)) '}']) +#Ov9b  
    %       end Os@ofnC  
    % 3QUe:8  
    %   See also ZERNPOL, ZERNFUN.  }tv-  
    )zUV6U7v  
    %   Paul Fricker 11/13/2006 p$[*GXR4  
    qg.[M*  
    r7ywK9UL  
    % Check and prepare the inputs: sd8o&6  
    % ----------------------------- A7|"0*62  
    if min(size(p))~=1 ,Z>RvLl  
        error('zernfun2:Pvector','Input P must be vector.') Uk;SY[mU  
    end ^5,ASU  
    "5dh]-m n  
    if any(p)>35 r*+9<8-ZX<  
        error('zernfun2:P36', ... fU)hn  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... M_79\Gz"  
               '(P = 0 to 35).']) yg\A&0I  
    end S~Q7>oNm  
    x:l`e:`y9  
    % Get the order and frequency corresonding to the function number: h.2!d0j]  
    % ---------------------------------------------------------------- {_[l,tdZ  
    p = p(:); Ubn5tN MK  
    n = ceil((-3+sqrt(9+8*p))/2); !0Q(x  
    m = 2*p - n.*(n+2); `$@1NL7>  
    y-sQ"HPN  
    % Pass the inputs to the function ZERNFUN: "_#%W oo  
    % ---------------------------------------- Qr0JJoHT  
    switch nargin sU bZVPDr  
        case 3 X:62 )^~'  
            z = zernfun(n,m,r,theta); qKO\;e*  
        case 4 #v(+3Hp  
            z = zernfun(n,m,r,theta,nflag); 9sE>K)  
        otherwise 'R=o,=  
            error('zernfun2:nargin','Incorrect number of inputs.') qM1$?U  
    end &|{K*pNa  
    &# @1n  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) YKM(qh2  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ~^5uOeTZ~  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of i:[B#|%  
    %   order N and frequency M, evaluated at R.  N is a vector of y"9TS,lmK  
    %   positive integers (including 0), and M is a vector with the `L;I/Hp  
    %   same number of elements as N.  Each element k of M must be a le[5a=e(  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) &12aI |u^<  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is HE( U0<9c  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Hss{Sb(  
    %   with one column for every (N,M) pair, and one row for every vNtbb]')m  
    %   element in R. %pg*oX1VK6  
    % ?xG #4P<C=  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Wq>j;\3b3  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is U`8)rtYw  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to :nXB w%0x  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 R/^ rh  
    %   for all [n,m]. }'X}!_9w>  
    % ]\3dJ^q|%  
    %   The radial Zernike polynomials are the radial portion of the k2;8~LqF  
    %   Zernike functions, which are an orthogonal basis on the unit <N`rcKE%~P  
    %   circle.  The series representation of the radial Zernike bpU^|r^W  
    %   polynomials is *aT!|;  
    % 6Q wL  
    %          (n-m)/2 P)}:lTe  
    %            __ Nv ew^c)x  
    %    m      \       s                                          n-2s _@RW7iP>  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r t(_XB|AKm  
    %    n      s=0 YInW)My.h  
    % Ic r'l$PE  
    %   The following table shows the first 12 polynomials. f,uxoAS  
    % @\q~OyV  
    %       n    m    Zernike polynomial    Normalization S%T1na^x  
    %       --------------------------------------------- hB^"GYZ  
    %       0    0    1                        sqrt(2) )8N/t6Q  
    %       1    1    r                           2 RdY#B;  
    %       2    0    2*r^2 - 1                sqrt(6) .[_&>@bmrP  
    %       2    2    r^2                      sqrt(6) :8 )4:4$^  
    %       3    1    3*r^3 - 2*r              sqrt(8) >i ~zG6H  
    %       3    3    r^3                      sqrt(8) > voUh;L  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10)  43VuH  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) IM@Qe|5  
    %       4    4    r^4                      sqrt(10) HL!-4kN <$  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) +5HOT{wj  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) |LjCtm)@+  
    %       5    5    r^5                      sqrt(12) :?^(&3;  
    %       --------------------------------------------- AzQ}}A;TSx  
    % M,{F/Yu  
    %   Example: #".{i+3E  
    % +,KuYa{lu  
    %       % Display three example Zernike radial polynomials `}=Fw0  
    %       r = 0:0.01:1; sy#Gb#=#  
    %       n = [3 2 5]; L NE]#8ue  
    %       m = [1 2 1]; +?L~fM69B  
    %       z = zernpol(n,m,r); onmO>q*  
    %       figure vLC&C-f  
    %       plot(r,z) !#?tA/t@  
    %       grid on r94BEC 2  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') jjbw.n+1  
    % JBg>E3*N  
    %   See also ZERNFUN, ZERNFUN2. $i2gOz  
    ZcQm(my  
    % A note on the algorithm. npe*A  
    % ------------------------ CkflEmfe  
    % The radial Zernike polynomials are computed using the series jQdfFR  
    % representation shown in the Help section above. For many special tDwXb>  
    % functions, direct evaluation using the series representation can %Wu8RG}  
    % produce poor numerical results (floating point errors), because q)vD "{0.  
    % the summation often involves computing small differences between m|y]j4  
    % large successive terms in the series. (In such cases, the functions +GGj*sD  
    % are often evaluated using alternative methods such as recurrence "8rP?B(  
    % relations: see the Legendre functions, for example). For the Zernike ae<KUThm.  
    % polynomials, however, this problem does not arise, because the Ue\&  
    % polynomials are evaluated over the finite domain r = (0,1), and 7oWv'  
    % because the coefficients for a given polynomial are generally all C/w;g3  
    % of similar magnitude. /bb4nM_E/  
    % LRI_s>7  
    % ZERNPOL has been written using a vectorized implementation: multiple \\T I4A^#  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ;L)}blN.  
    % values can be passed as inputs) for a vector of points R.  To achieve R5FjJ>JE  
    % this vectorization most efficiently, the algorithm in ZERNPOL C6Mb(&  
    % involves pre-determining all the powers p of R that are required to 0$ (}\hMLt  
    % compute the outputs, and then compiling the {R^p} into a single r*$"]{m}  
    % matrix.  This avoids any redundant computation of the R^p, and fvx0]of  
    % minimizes the sizes of certain intermediate variables. '2vlfQ@8a~  
    % N,O[pTwj  
    %   Paul Fricker 11/13/2006 r({(;  
    GphG/C (  
    +X&B'  
    % Check and prepare the inputs: #A/jGv^  
    % ----------------------------- X}Csl~W8in  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) J2R<'(  
        error('zernpol:NMvectors','N and M must be vectors.') \}2Wd`kD  
    end f(C0&"4e  
    H Ow][}M_w  
    if length(n)~=length(m) -R8RAwsLG  
        error('zernpol:NMlength','N and M must be the same length.') Vr^wesT\Hx  
    end 'D-imLV<<  
    %iGME%oXr  
    n = n(:); olJ9Kfc0  
    m = m(:); ^\CQWgY(  
    length_n = length(n); (I+-wki"e  
    bT;C8i4b\H  
    if any(mod(n-m,2)) sv[)?1S  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') SUx0!_f*R  
    end -{w&ya4X  
    J3'"-,Hv  
    if any(m<0) rd"]$_P8O  
        error('zernpol:Mpositive','All M must be positive.') <ya3|ycnS  
    end  qV}zV\Nz  
    0I cyi#N  
    if any(m>n) +]__zm/^  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') N7E[wOP  
    end mA4v  4z  
    [W2p}4(  
    if any( r>1 | r<0 ) !At_^hSqz  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Qj=l OhM  
    end *n*OVI8L  
    -0kwS4Hx2  
    if ~any(size(r)==1) V^0*S=N  
        error('zernpol:Rvector','R must be a vector.') YgDgd\  
    end S:5Nh^K  
    dv,8iOL  
    r = r(:); Gzs x0%`)  
    length_r = length(r); HU'd/5fun  
    Ve=0_GR0  
    if nargin==4 ;6]+/e7O  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); z><JbSE?  
        if ~isnorm & =frt3  
            error('zernpol:normalization','Unrecognized normalization flag.') 1jV^\ x0  
        end 8Yj(/S3y  
    else 2M;{|U  
        isnorm = false; Pc$<Cv|vz  
    end KomF)KQ2r  
    p#?1l/f"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *R&g'y^d  
    % Compute the Zernike Polynomials :+;F"_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7' 6m;b~F  
    D~1nh%x_  
    % Determine the required powers of r: w@"|S_E  
    % ----------------------------------- ,mRN;|N  
    rpowers = []; P2oR C3~  
    for j = 1:length(n) v/^2K,[0>  
        rpowers = [rpowers m(j):2:n(j)]; l"MEX/   
    end k}BNFv8  
    rpowers = unique(rpowers); 2x{3'^+l  
    >N*QK6"=|  
    % Pre-compute the values of r raised to the required powers, C!.6:Aj  
    % and compile them in a matrix: eAl&[_o|S  
    % ----------------------------- @z2RMEC~  
    if rpowers(1)==0 H,uOshR  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #v`G4d  
        rpowern = cat(2,rpowern{:}); 8en85 pp8P  
        rpowern = [ones(length_r,1) rpowern]; =}V`O>  
    else ?d_Cy\G  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); EatpORq  
        rpowern = cat(2,rpowern{:}); YZoH{p9f  
    end }R J2\CP  
    ypml22)kz  
    % Compute the values of the polynomials: ]];7ozS)X  
    % -------------------------------------- U %KoG-#  
    z = zeros(length_r,length_n); oACE:h9U  
    for j = 1:length_n 7?kvrIuY&  
        s = 0:(n(j)-m(j))/2;  @P~ u k  
        pows = n(j):-2:m(j); *|4~ 0w  
        for k = length(s):-1:1 bG5c~  
            p = (1-2*mod(s(k),2))* ... AQFx>:in  
                       prod(2:(n(j)-s(k)))/          ... }X AoMp  
                       prod(2:s(k))/                 ... '[A>eC++  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Bd7A-T)q!  
                       prod(2:((n(j)+m(j))/2-s(k))); yP"_j&ef7  
            idx = (pows(k)==rpowers); *{tJ3<t(1  
            z(:,j) = z(:,j) + p*rpowern(:,idx); =g&0CFF<  
        end Ya>cGaLq  
         *M8 4Dry`y  
        if isnorm #S1)n[  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); k1%Ek#5  
        end ZLO _5#<  
    end M r@M~ -  
    +}:c+Z<  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  \'j%q\Bl;  
    'J+Vw9 s7  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 [bE9Y;  
    ;J2=6np  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)