切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10941阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 .aVHd<M  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! T)$ 6H}[c  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #2ZrdD"5kQ  
    function z = zernfun(n,m,r,theta,nflag) e$p1Th*|]4  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ^6N3 nkyZ  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ^-c si   
    %   and angular frequency M, evaluated at positions (R,THETA) on the !"o1ve`{  
    %   unit circle.  N is a vector of positive integers (including 0), and ^>vO5Ho.  
    %   M is a vector with the same number of elements as N.  Each element ?h>%Ix  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ';fU.uy  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, F| ,Vw{  
    %   and THETA is a vector of angles.  R and THETA must have the same 0s+rd&  
    %   length.  The output Z is a matrix with one column for every (N,M) (|ct`KU0#  
    %   pair, and one row for every (R,THETA) pair. 7Dx .;  
    % O)=73e\  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Hm8EYPr J  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), wFoR,oXtL/  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral JJbM)B@-  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, vt(}ga  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized >m;|I/2@  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =`7)X\i@z  
    % >FE QtD~F  
    %   The Zernike functions are an orthogonal basis on the unit circle. !,-qn)b  
    %   They are used in disciplines such as astronomy, optics, and u1pYlu9IW  
    %   optometry to describe functions on a circular domain. 4%c7#AX[T  
    % u[6`Jr~  
    %   The following table lists the first 15 Zernike functions. Fm[?@Z&wP  
    % ek0;8Ds9  
    %       n    m    Zernike function           Normalization l66ipgw_^I  
    %       -------------------------------------------------- yW6[Fpw  
    %       0    0    1                                 1 Sj]T{3mi  
    %       1    1    r * cos(theta)                    2 ui#1+p3G  
    %       1   -1    r * sin(theta)                    2 [jtj~]&mO  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Ik@Q@ T"  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 6&xW9' 6b:  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ]= QCCC  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) WSpg(\Cs  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) _ /2 8Cw  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ~:RDw<PWp  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) o`y*yucHI  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) +D{*L0$D"  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M@LaD 5  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) '\E*W!R.]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ekk&TTp#  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) #*;fQ&p  
    %       -------------------------------------------------- `$x#_-Hn  
    % o4I!VK(C#s  
    %   Example 1: ; HLMU36q  
    % 77=y!SDP  
    %       % Display the Zernike function Z(n=5,m=1) JXR/K=<^  
    %       x = -1:0.01:1; n-| i  
    %       [X,Y] = meshgrid(x,x); 2" {]A;@  
    %       [theta,r] = cart2pol(X,Y); DGuUI}|)  
    %       idx = r<=1; F# 37Qv  
    %       z = nan(size(X)); m LxwJ  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); `))J8j"  
    %       figure &fNE9peQFa  
    %       pcolor(x,x,z), shading interp BQfAen]  
    %       axis square, colorbar u4*]jt;H  
    %       title('Zernike function Z_5^1(r,\theta)') o!_; H}pq  
    % R7;rBEt8  
    %   Example 2: IM&7h! l"|  
    % z1KC$~{O  
    %       % Display the first 10 Zernike functions s? \9i6  
    %       x = -1:0.01:1; ^[?+=1 k  
    %       [X,Y] = meshgrid(x,x); $X\` 7`v  
    %       [theta,r] = cart2pol(X,Y); )b2E/G@X&  
    %       idx = r<=1; *p5T  
    %       z = nan(size(X)); 2Q_{2(nQb  
    %       n = [0  1  1  2  2  2  3  3  3  3]; sT"tS>  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; u.K'"-xt4K  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; >p#d;wK4_  
    %       y = zernfun(n,m,r(idx),theta(idx));  IOES3  
    %       figure('Units','normalized') `q{'_\gVt(  
    %       for k = 1:10 6%hEs6-R  
    %           z(idx) = y(:,k); I8oKa$RF  
    %           subplot(4,7,Nplot(k)) rpP+20v  
    %           pcolor(x,x,z), shading interp mM^8YL  
    %           set(gca,'XTick',[],'YTick',[]) qx CL  
    %           axis square JP% ;rAoJ  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) cM'[;u  
    %       end % |Gzht\  
    % mbG^fy'  
    %   See also ZERNPOL, ZERNFUN2. 8P y_Y>  
    jE5 9h  
    %   Paul Fricker 11/13/2006 ~Wd8>a{w  
    nsw8[pk  
    a ZCZ/  
    % Check and prepare the inputs: gl{P LLe[}  
    % ----------------------------- FbNQ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3:gO7Uv  
        error('zernfun:NMvectors','N and M must be vectors.') ~ilBw:L-3  
    end {_N(S]Z  
    ZjbG&oc  
    if length(n)~=length(m) 8[P6c;\  
        error('zernfun:NMlength','N and M must be the same length.') GM56xZ!2T  
    end r\- k/0  
     Jy[8,X  
    n = n(:); RpXGgw  
    m = m(:); lSv;wwEg  
    if any(mod(n-m,2)) @9P9U`ZP  
        error('zernfun:NMmultiplesof2', ... (dnc7KrM  
              'All N and M must differ by multiples of 2 (including 0).') Q 6<Uui w  
    end =@/^1.`  
    JWjp<{Q; 1  
    if any(m>n) fe`G^hV  
        error('zernfun:MlessthanN', ... bH]!~[  
              'Each M must be less than or equal to its corresponding N.') \B +SzW  
    end !/9Sb1_~  
    `D4'`Or-U  
    if any( r>1 | r<0 ) yFtf~8s3  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6? ly. h$  
    end 5Jd {Ev  
    Fd.d(  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) T}x%=4<E  
        error('zernfun:RTHvector','R and THETA must be vectors.') zC;lfy{f=  
    end m8A1^ R  
    xJ5!` #=  
    r = r(:); ^moIMFl  
    theta = theta(:); RLX^'g+P  
    length_r = length(r); vy y\^nL  
    if length_r~=length(theta) 6u3(G j@  
        error('zernfun:RTHlength', ... X.5LB!I)  
              'The number of R- and THETA-values must be equal.') -zkL)<7  
    end qnV9TeU)  
    nECf2>Yp v  
    % Check normalization: Pt;Ahmi  
    % -------------------- !sWBj'[>  
    if nargin==5 && ischar(nflag) PX/0  jv  
        isnorm = strcmpi(nflag,'norm'); 6MQ:C'8T&=  
        if ~isnorm nit7|T@^  
            error('zernfun:normalization','Unrecognized normalization flag.') @x ]^blq  
        end n:] 1^wX#  
    else bncFrzp#o  
        isnorm = false; 4=cq76  
    end nL~ b   
    <OB~60h"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Mc^7FWkw  
    % Compute the Zernike Polynomials aBLb i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =%G[vm/-)  
    d'D\#+%> =  
    % Determine the required powers of r: ^<+heX  
    % ----------------------------------- !qv;F?2 <g  
    m_abs = abs(m); nmrk-#._@9  
    rpowers = []; j)*nE./3  
    for j = 1:length(n) )uWNN"  
        rpowers = [rpowers m_abs(j):2:n(j)]; d69VgLg  
    end #C}(7{Vt  
    rpowers = unique(rpowers); =1Jo-!{{  
    4tTJE<y  
    % Pre-compute the values of r raised to the required powers, T0jJp7O  
    % and compile them in a matrix: NWj@iyi<  
    % ----------------------------- W{aNS@1  
    if rpowers(1)==0 _"`h~jB  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $Bb/GXn{\  
        rpowern = cat(2,rpowern{:}); ,BAF?} 04=  
        rpowern = [ones(length_r,1) rpowern]; 4VgDN(n0@  
    else i(rY'o2 BN  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #1R %7*$i  
        rpowern = cat(2,rpowern{:}); >^N :A  
    end `h6W@ROb  
    :"]ei@  
    % Compute the values of the polynomials: OK(d&   
    % -------------------------------------- _Oq\YQb v  
    y = zeros(length_r,length(n)); q5PYc.E([  
    for j = 1:length(n) ~G:7*:[b  
        s = 0:(n(j)-m_abs(j))/2;  Pq%cuT%  
        pows = n(j):-2:m_abs(j); Fwqf4&/  
        for k = length(s):-1:1 '"^JNb^I  
            p = (1-2*mod(s(k),2))* ... !f 6  
                       prod(2:(n(j)-s(k)))/              ... |e >-v  
                       prod(2:s(k))/                     ... 2oLa`33c1  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Ea?.H Rxl  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); <& iBR  
            idx = (pows(k)==rpowers); Xg,BK0O  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 4fswx@l  
        end AAcbY;  
         d .A0(*k,  
        if isnorm }__+[-  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ':3KZ4/C  
        end T!bu}KO  
    end *b EsWeP  
    % END: Compute the Zernike Polynomials xJCpWU3wM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /&yT2p  
    t=AR>M!w~  
    % Compute the Zernike functions: UZ#2*PH2E  
    % ------------------------------ ;H lv  
    idx_pos = m>0; `Z-`-IL  
    idx_neg = m<0;  s25012  
    1oPT8)[U  
    z = y; +zsya4r  
    if any(idx_pos) e+wd>iiB  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); F*f)Dv$p  
    end . +>}},  
    if any(idx_neg) _q 8m$4  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); }8HLyK,4  
    end e 3K  
    Cp%|Q.?  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) e\<I:7%Rg  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Y*Pr  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Ot?rsr  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive !ZRV\31%  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1,  X_lNnk  
    %   and THETA is a vector of angles.  R and THETA must have the same t`  Sh!e  
    %   length.  The output Z is a matrix with one column for every P-value, nV,a|V5Xm  
    %   and one row for every (R,THETA) pair. SZ_hGD0  
    % <$ 5\^y,V  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike DcOLK\  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) b}fH$.V@  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) '&9b*u";x(  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 xInWcQ  
    %   for all p. ^N]*Zf~N?  
    % WCH>9Z>cj  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 8PQt8G.  
    %   Zernike functions (order N<=7).  In some disciplines it is %X3T<3<  
    %   traditional to label the first 36 functions using a single mode 9;PtY dJ8  
    %   number P instead of separate numbers for the order N and azimuthal FEkx&9]  
    %   frequency M. [lf[J&}X  
    % TtzB[F  
    %   Example: m`/OO;/;  
    % ?IK[]=!  
    %       % Display the first 16 Zernike functions #r\uh\Cy  
    %       x = -1:0.01:1; u7S7lR"lxW  
    %       [X,Y] = meshgrid(x,x); F J)la9  
    %       [theta,r] = cart2pol(X,Y); x`4">:IA  
    %       idx = r<=1; Hxjh P(  
    %       p = 0:15; r;-\z(h  
    %       z = nan(size(X)); MD+Q_  
    %       y = zernfun2(p,r(idx),theta(idx)); 2?&h{PA+  
    %       figure('Units','normalized') 0VPa=AW  
    %       for k = 1:length(p) dI`b AP;\  
    %           z(idx) = y(:,k); xT%CY(:9X  
    %           subplot(4,4,k) KyjN'F$  
    %           pcolor(x,x,z), shading interp oYW:p tJ  
    %           set(gca,'XTick',[],'YTick',[]) ./u3z|q1  
    %           axis square KcHW>IBxdv  
    %           title(['Z_{' num2str(p(k)) '}']) |1#*`2j\=9  
    %       end Ls( &.  
    % J=  T!  
    %   See also ZERNPOL, ZERNFUN. b^0=X!bg  
    d+8Sypv^4*  
    %   Paul Fricker 11/13/2006 8/k* "^3  
    m}rUc29cS,  
    |(]XZ!{  
    % Check and prepare the inputs: WmeV[iI  
    % ----------------------------- +5voAx!  
    if min(size(p))~=1 HUZI7rC[=)  
        error('zernfun2:Pvector','Input P must be vector.') $%ps:ui~X  
    end )KG.:BO<  
    q.*k J/L  
    if any(p)>35 Dc U$sf*  
        error('zernfun2:P36', ... L^dF )y?  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... O.i.<VD7  
               '(P = 0 to 35).']) C-&\qAo?<:  
    end D KR2b`J  
    !IcP O  
    % Get the order and frequency corresonding to the function number: d-y8c  
    % ---------------------------------------------------------------- 8 K'3iw>z  
    p = p(:); U 1vZ r{\  
    n = ceil((-3+sqrt(9+8*p))/2); A|7%j0T  
    m = 2*p - n.*(n+2); U<K)'l6#2n  
    r[K%8Y8`  
    % Pass the inputs to the function ZERNFUN: rytves%;C  
    % ----------------------------------------  Vmt$]/  
    switch nargin ^? }-x  
        case 3 0-6rIdDTM  
            z = zernfun(n,m,r,theta); ]V^ >aUlj  
        case 4 ~m3Q^ue  
            z = zernfun(n,m,r,theta,nflag); n86LU Sj5  
        otherwise 4}`z^P<C  
            error('zernfun2:nargin','Incorrect number of inputs.') ;?4EVZ#o  
    end DZ"'GQSg  
    Q\rf J||  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Jr5dw=B gw  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. `*6|2  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of !0dQfj^_  
    %   order N and frequency M, evaluated at R.  N is a vector of rGQ2 ve  
    %   positive integers (including 0), and M is a vector with the k3K*{"z  
    %   same number of elements as N.  Each element k of M must be a 'Lq+ONX5  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ]VL} eHZ  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ?Z2`8]-E  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ;4l8Qg 7  
    %   with one column for every (N,M) pair, and one row for every Idb*,l|<  
    %   element in R. Q3Pu<j}Y  
    % ,OWk[0/  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- n]df)a  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is #9gx4U  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ?5FlbiT  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 LaO8)lqR  
    %   for all [n,m]. d?&`Z Vl  
    % M6mgJonN|  
    %   The radial Zernike polynomials are the radial portion of the <rtKPlb//  
    %   Zernike functions, which are an orthogonal basis on the unit /5)*epF+  
    %   circle.  The series representation of the radial Zernike ynv{ rMl  
    %   polynomials is ").gPmC  
    % VwpC UW  
    %          (n-m)/2 <l(n)|H1P  
    %            __ 2TU V9Z  
    %    m      \       s                                          n-2s U$mDAi$  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r )by7 [I0v  
    %    n      s=0 md*U  
    % VcGl8~#9  
    %   The following table shows the first 12 polynomials. UAPd["`)y  
    % k:I,$"y4  
    %       n    m    Zernike polynomial    Normalization Pr1q X5>=  
    %       --------------------------------------------- y{/7z}d  
    %       0    0    1                        sqrt(2) Kf1J;*i|\  
    %       1    1    r                           2 <4+P37^ ~  
    %       2    0    2*r^2 - 1                sqrt(6) jB8Q% {%  
    %       2    2    r^2                      sqrt(6) ||JUP}eP  
    %       3    1    3*r^3 - 2*r              sqrt(8) E/g"}yR  
    %       3    3    r^3                      sqrt(8) K fD. J)  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) KJRAW]?{  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ;+<IWDo  
    %       4    4    r^4                      sqrt(10) )O"E#%  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) kL%ot<rt)w  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) I<O$);DV'  
    %       5    5    r^5                      sqrt(12) ._^}M<o L  
    %       --------------------------------------------- yI 2UmhA  
    % g E _+r  
    %   Example: ZA+dtEE=f9  
    % .ojEKu+EJ'  
    %       % Display three example Zernike radial polynomials [EDX@Kdq)  
    %       r = 0:0.01:1; 'g!T${  
    %       n = [3 2 5]; Hl`OT5 pNf  
    %       m = [1 2 1]; tsAV46S  
    %       z = zernpol(n,m,r); U3X5tED  
    %       figure _8a;5hS  
    %       plot(r,z) qFD ZD)K  
    %       grid on ,U3  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') S[1<Qrv]  
    % sSh{.XuB+3  
    %   See also ZERNFUN, ZERNFUN2. ~f h  
    C< 9x\JY%  
    % A note on the algorithm. M@R"-$Z  
    % ------------------------ j:h}ka/!p  
    % The radial Zernike polynomials are computed using the series i'm<{ v  
    % representation shown in the Help section above. For many special ^1najUpQ_n  
    % functions, direct evaluation using the series representation can H].|K/-p  
    % produce poor numerical results (floating point errors), because O;H6`JQ  
    % the summation often involves computing small differences between '{"Rjv7  
    % large successive terms in the series. (In such cases, the functions 23wztEp{a  
    % are often evaluated using alternative methods such as recurrence 4yxQq7 m,  
    % relations: see the Legendre functions, for example). For the Zernike ob\-OMNs@  
    % polynomials, however, this problem does not arise, because the d5$D[,`1  
    % polynomials are evaluated over the finite domain r = (0,1), and S@/{34,  
    % because the coefficients for a given polynomial are generally all *4}_2"[  
    % of similar magnitude. =6u@ JpOl  
    % Wef%f] u  
    % ZERNPOL has been written using a vectorized implementation: multiple ^ Oh  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 0 0N[ : %  
    % values can be passed as inputs) for a vector of points R.  To achieve #7]Jz.S  
    % this vectorization most efficiently, the algorithm in ZERNPOL ,^:{!?v  
    % involves pre-determining all the powers p of R that are required to z&6_}{2,]  
    % compute the outputs, and then compiling the {R^p} into a single 1,-C*T}nR  
    % matrix.  This avoids any redundant computation of the R^p, and )2&3D"V  
    % minimizes the sizes of certain intermediate variables. V4[-:k  
    % iH8we,s'  
    %   Paul Fricker 11/13/2006 4>d4g\Z0L  
    geme_  
    GC')50T J  
    % Check and prepare the inputs: UzxL" `^7  
    % ----------------------------- PVIOe}N  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) mtmC,jnD  
        error('zernpol:NMvectors','N and M must be vectors.') }bb,Iib  
    end .9bi%=hP  
    XQo\27Fo  
    if length(n)~=length(m) ~*HQPp?v  
        error('zernpol:NMlength','N and M must be the same length.') duaF?\vv  
    end 9{u=  
    @G4Z  
    n = n(:); KN}#8.'>3  
    m = m(:); x3q^}sj%  
    length_n = length(n); Rl Oy,/-<  
    !"N,w9MbD  
    if any(mod(n-m,2)) 39v Bsc  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 7hHID>,o9%  
    end (!* l+}  
    `?z('FV  
    if any(m<0) }9^:(ty2A  
        error('zernpol:Mpositive','All M must be positive.') _%e8GWf  
    end =A'>1N  
    t%:7W[_s  
    if any(m>n) v \:AOY'  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 7m2iL#5[  
    end c,a8#Og  
    0Y8gUpe3P6  
    if any( r>1 | r<0 ) t\M6 d6  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') &W45.2  
    end @Tu`0 =8  
    9<gW~ s>  
    if ~any(size(r)==1) ji/`OS-iq  
        error('zernpol:Rvector','R must be a vector.') |/Vq{gxp+  
    end `i`P}W!F  
    y!b"Cj  
    r = r(:); jj{:=l ZB  
    length_r = length(r); Y2L{oQ.C2  
    I): c#  
    if nargin==4 1S?~ c25=h  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); #:?:gY<  
        if ~isnorm Qsbyy>o)  
            error('zernpol:normalization','Unrecognized normalization flag.') [j6]!p]S$  
        end G#%Sokkb'  
    else I'5[8  
        isnorm = false; Ae2N"%Ej  
    end =F \Xt "  
    F@<cp ?dR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JG;}UuHYM  
    % Compute the Zernike Polynomials U^_\V BAk  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p*<Jg l  
    cxR.:LD}  
    % Determine the required powers of r: /` M#  
    % ----------------------------------- hJSvx  
    rpowers = []; @fA{;@N  
    for j = 1:length(n) aVR!~hvFs  
        rpowers = [rpowers m(j):2:n(j)]; QvbH " 7  
    end 6.]~7n  
    rpowers = unique(rpowers); 8=D,`wog  
    F:jNv3W1  
    % Pre-compute the values of r raised to the required powers, 9,8/DW.K  
    % and compile them in a matrix: 3FvVM0l"  
    % ----------------------------- N_92,xI#  
    if rpowers(1)==0 mX>N1zAz  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); T`^Jw s{;7  
        rpowern = cat(2,rpowern{:}); m ^FKE:  
        rpowern = [ones(length_r,1) rpowern]; g{Av =66Z  
    else \dQc!)&C9  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GG%;~4#2  
        rpowern = cat(2,rpowern{:}); >K'dgJ245  
    end 0:Bpvl5  
    /S J><  
    % Compute the values of the polynomials: B9,39rG/7+  
    % -------------------------------------- ^Zvb3RJg  
    z = zeros(length_r,length_n); [.&JQ  
    for j = 1:length_n =oVC*b  
        s = 0:(n(j)-m(j))/2; 8GBKFNR 8  
        pows = n(j):-2:m(j); ]-t>F  
        for k = length(s):-1:1 ^/2HH  
            p = (1-2*mod(s(k),2))* ... 8Dl(zYK;  
                       prod(2:(n(j)-s(k)))/          ... )*_G/<N) |  
                       prod(2:s(k))/                 ... ts<\n-f  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... E!ZLVR.K  
                       prod(2:((n(j)+m(j))/2-s(k))); +UWv}|  
            idx = (pows(k)==rpowers); \A^8KVE!  
            z(:,j) = z(:,j) + p*rpowern(:,idx); lV:feX  
        end }Tk:?U{  
         ^X6e\]yj  
        if isnorm rMVcoO@3  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); [f\Jcjc  
        end xtCMK1# x  
    end gJp6ReZ#  
    f"gYXaVF+  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Bw`?zd\*  
    ~v/` `s  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 .':17 $c`H  
    u}R|q  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)