非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 y/Paq^Hd
function z = zernfun(n,m,r,theta,nflag) -n+=[M
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. SfEgmp-m
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 48W$,
% and angular frequency M, evaluated at positions (R,THETA) on the X\V1c$13CK
% unit circle. N is a vector of positive integers (including 0), and )jm}h7,
% M is a vector with the same number of elements as N. Each element bw&8"k>D?
% k of M must be a positive integer, with possible values M(k) = -N(k) [,yoFm%"
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Gdb6 U{
% and THETA is a vector of angles. R and THETA must have the same lN-vFna
% length. The output Z is a matrix with one column for every (N,M) j/ow8Jmc*
% pair, and one row for every (R,THETA) pair. y)C nH4{
% nj]l'~Y0
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .T#h5[S2x
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ko2 ?q
% with delta(m,0) the Kronecker delta, is chosen so that the integral zU}Ru&T9
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |@!4BA
% and theta=0 to theta=2*pi) is unity. For the non-normalized Lzm9Kh;
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Mj2`p#5wKh
% N7=lSBm
% The Zernike functions are an orthogonal basis on the unit circle. tHgu#k0
% They are used in disciplines such as astronomy, optics, and
_xjw:
% optometry to describe functions on a circular domain. F-D9nI4{X
% :
M=0o<
% The following table lists the first 15 Zernike functions. wxS.!9K
% 0g o{gUI
% n m Zernike function Normalization :2ILN.&
% -------------------------------------------------- Utd`T+AF*
% 0 0 1 1 ~
HN
% 1 1 r * cos(theta) 2 $F2A
% 1 -1 r * sin(theta) 2 NGIt~"e7R4
% 2 -2 r^2 * cos(2*theta) sqrt(6) ;&RBg+Pr
% 2 0 (2*r^2 - 1) sqrt(3) Ymt.>8L
% 2 2 r^2 * sin(2*theta) sqrt(6) }M7{~ov#s
% 3 -3 r^3 * cos(3*theta) sqrt(8) 3)cH\gsg9
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) (JenTL`%u
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) @
LPs.e
% 3 3 r^3 * sin(3*theta) sqrt(8) m~c6b{F3Z-
% 4 -4 r^4 * cos(4*theta) sqrt(10) "{>BP$Jz
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) a=@]Ov/
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) -]n\|U<
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )09>#!*
% 4 4 r^4 * sin(4*theta) sqrt(10) uW;[FTcqy$
% -------------------------------------------------- %'+}-w
% N(c`h
% Example 1: :O)\+s-
% EC;R^)
% % Display the Zernike function Z(n=5,m=1) DL<b)# h#
% x = -1:0.01:1; wB'GV1|jL
% [X,Y] = meshgrid(x,x); U</Vcz
% [theta,r] = cart2pol(X,Y); IX+!+XC"U
% idx = r<=1;
ERTjY%A
% z = nan(size(X)); K4U_sCh#f
% z(idx) = zernfun(5,1,r(idx),theta(idx)); pz4lC=H%o
% figure +6~ut^YiM.
% pcolor(x,x,z), shading interp ~ p~
% axis square, colorbar @3*S:;x
% title('Zernike function Z_5^1(r,\theta)') {gT4Oq__
% Z; 6N7U
% Example 2: "zE>+zRl
% ly9tI-E
% % Display the first 10 Zernike functions `@3{}
% x = -1:0.01:1; @V}!elV
% [X,Y] = meshgrid(x,x); KwAc Ga}J
% [theta,r] = cart2pol(X,Y); t4d^DZDh!
% idx = r<=1; F%< ZEVm
% z = nan(size(X)); .RW&=1D6
% n = [0 1 1 2 2 2 3 3 3 3]; dp}s]`x+
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; DMdVE P"m
% Nplot = [4 10 12 16 18 20 22 24 26 28]; k^@dDLr"
% y = zernfun(n,m,r(idx),theta(idx)); mE"(d*fe'
% figure('Units','normalized') #=uV, dw
% for k = 1:10 /$NR@56
\
% z(idx) = y(:,k); D]=V6l=
% subplot(4,7,Nplot(k)) 1`Z:/]hl
% pcolor(x,x,z), shading interp do[w&`jw8
% set(gca,'XTick',[],'YTick',[]) 7TW&=(
% axis square W\EvMV"
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]WYddiF
% end :8t;_f
% ZHM NG~!
% See also ZERNPOL, ZERNFUN2. ]!>tP,<`'
B4/\=MXb
% Paul Fricker 11/13/2006 \RS0mb
7 I/a
hsAk7KC
% Check and prepare the inputs: :JXGgl<y
% ----------------------------- XwZR
Kh\>=
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) lJ
Jn@A
error('zernfun:NMvectors','N and M must be vectors.') U<|*V5
end \_)[FC@
Nt,:`o |
if length(n)~=length(m) \MDhm,H<
error('zernfun:NMlength','N and M must be the same length.')
CH$K_\
end "_0sW3rG
9\Md.>
n = n(:); >H5_,A}f
m = m(:); G){A&F
if any(mod(n-m,2)) o&$Of
error('zernfun:NMmultiplesof2', ... 14`S9SL{V
'All N and M must differ by multiples of 2 (including 0).') \E1CQP-
end .6c
Bx
p`Ok(C_
if any(m>n) 6!@p$ pm)a
error('zernfun:MlessthanN', ... ]+5Y\~I
'Each M must be less than or equal to its corresponding N.') G0u
H6x?
end [(; .D
T"DG$R,Aj
if any( r>1 | r<0 ) |RH^|2:x9Q
error('zernfun:Rlessthan1','All R must be between 0 and 1.') *7{{z%5Pu
end NC3XJ
4
+h? Gps
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) "
1h~P,
error('zernfun:RTHvector','R and THETA must be vectors.') )}J}d)
end T"e"?JSRJ
RF
[81/w]
r = r(:); _D{{C
theta = theta(:); J;k8 a2$_
length_r = length(r); [5PQrf~Mo
if length_r~=length(theta) a+B3`6
error('zernfun:RTHlength', ... QsPZ dC
'The number of R- and THETA-values must be equal.') * $|9e
end swg*fhJFB
w&Z.rB?
% Check normalization: lvG+9e3+
% -------------------- h^f?rWD:nz
if nargin==5 && ischar(nflag) Ow{NI-^K
isnorm = strcmpi(nflag,'norm'); G%dzJpC(
if ~isnorm 0?''v>%
error('zernfun:normalization','Unrecognized normalization flag.') &23{(]eO
end +.a->SZ5"
else ?'si^N
isnorm = false; be]Zx`)k
end l]L"Ex{
w x,gth*p
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n[7=
% Compute the Zernike Polynomials (Bss%\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n],"!>=+
${tBu#$-d
% Determine the required powers of r: dF^`6-K1
% ----------------------------------- *>T@3G.{Rm
m_abs = abs(m); VO<P9g$UD
rpowers = []; _o-01gu.
for j = 1:length(n) vv D515i
rpowers = [rpowers m_abs(j):2:n(j)]; A<-3u
end ^x_+&
rpowers = unique(rpowers); *X2dS
{
B7n1'?
% Pre-compute the values of r raised to the required powers, <%"CQT6g%
% and compile them in a matrix: qJK6S4O]
% ----------------------------- QaLVIsnfN
if rpowers(1)==0 !Xzy:
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); mpzm6Ieu
rpowern = cat(2,rpowern{:}); {'o\#4Wk
rpowern = [ones(length_r,1) rpowern]; Vah.tOU
else `<?((l%;R
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Zb2.o5#}
rpowern = cat(2,rpowern{:}); w_#5Na}>d
end O*1la/~m
9 j1
tcT
% Compute the values of the polynomials: (o8?j^ -v
% -------------------------------------- b|U3\Fmc
y = zeros(length_r,length(n)); \P9HAz'6
for j = 1:length(n) Ns-3\~QSi
s = 0:(n(j)-m_abs(j))/2; k&o1z'<C
pows = n(j):-2:m_abs(j); 9]|G-cyt
for k = length(s):-1:1 2w:cdAv$
p = (1-2*mod(s(k),2))* ... ETaLE[T%1
prod(2:(n(j)-s(k)))/ ... A
w)P%r
prod(2:s(k))/ ... %loe8yt
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 1y.!x~Pi,
prod(2:((n(j)+m_abs(j))/2-s(k))); (ChL$!x
idx = (pows(k)==rpowers); =mh)b]].4\
y(:,j) = y(:,j) + p*rpowern(:,idx); !{4bC
end M9wj
};vy
Mh5 =]O+
if isnorm #zKF/H|_R
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); oHx =Cg;
end ^4tz*i
end U=ie|
3
% END: Compute the Zernike Polynomials d+g+{p>?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B1 [O9 U:
/N`E4bKBR
% Compute the Zernike functions: 1 =9 Kwd
% ------------------------------ }'Yk#Q
idx_pos = m>0; QfsTUAfR
idx_neg = m<0; J/ ^|Y6
=#{i;CC%
z = y; 8(0q,7)y
if any(idx_pos) ]73BJ
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Js!V,={iX
end GA@Zfcg
if any(idx_neg) ahm@ +/2
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); wQ/FJoB
end /(skIvE|
D[R<H((
% EOF zernfun