非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 `$;%%/tx
function z = zernfun(n,m,r,theta,nflag) ,8p-EH
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Q;2kbVWY
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @DR?^
q p
% and angular frequency M, evaluated at positions (R,THETA) on the zq^eL=%:
% unit circle. N is a vector of positive integers (including 0), and N':d
T
% M is a vector with the same number of elements as N. Each element ?y* yl
% k of M must be a positive integer, with possible values M(k) = -N(k) ug`Jn&x!
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ~|wh/]{b9
% and THETA is a vector of angles. R and THETA must have the same .a]av
% length. The output Z is a matrix with one column for every (N,M) 8`b_,(\ N
% pair, and one row for every (R,THETA) pair. ;ahI}}
% $>l65)(E\
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike HFj@NRE6
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #|l#
% with delta(m,0) the Kronecker delta, is chosen so that the integral PsS8b
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 98l-
% and theta=0 to theta=2*pi) is unity. For the non-normalized ^zS|O]Tx
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (TGG?V
% VelX+|w
% The Zernike functions are an orthogonal basis on the unit circle. #5IfF~*i
% They are used in disciplines such as astronomy, optics, and D
z>7.'3
% optometry to describe functions on a circular domain. ,n{|d33
% M059"X="
% The following table lists the first 15 Zernike functions. hKK"D:?PRs
% 2I~a{:O
% n m Zernike function Normalization iJ`v3PP
% -------------------------------------------------- yD&UH_ 1g
% 0 0 1 1 Y5Z<uD
% 1 1 r * cos(theta) 2 ?)c9!hR
% 1 -1 r * sin(theta) 2 xOpCybmc
% 2 -2 r^2 * cos(2*theta) sqrt(6) V0$:t^^
% 2 0 (2*r^2 - 1) sqrt(3) XM*%n8q7#N
% 2 2 r^2 * sin(2*theta) sqrt(6) a: OuDjFp
% 3 -3 r^3 * cos(3*theta) sqrt(8) O:O
+Q!58
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) bcprhb
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) |S VL%agZ
% 3 3 r^3 * sin(3*theta) sqrt(8) ApAHa]Ccp
% 4 -4 r^4 * cos(4*theta) sqrt(10) <NX6m|DD
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) e~BUAz
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) %MUwd@,
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ji|tc9#6
% 4 4 r^4 * sin(4*theta) sqrt(10) 3HmJixy
% -------------------------------------------------- }#f~"-O
% .3T#:Hl
% Example 1: GCA?sFwo>
% 6/ thhP3`-
% % Display the Zernike function Z(n=5,m=1) V\o&{7!
% x = -1:0.01:1; wTY8={p]
% [X,Y] = meshgrid(x,x); &!FWo@
% [theta,r] = cart2pol(X,Y); iYxpIqWw
% idx = r<=1; HOAgRhzE
% z = nan(size(X)); {B
lM<
% z(idx) = zernfun(5,1,r(idx),theta(idx)); a)Ca:p
% figure 4m$Xjj`vE
% pcolor(x,x,z), shading interp 3DO
^vV
% axis square, colorbar 9"~,ha7S$
% title('Zernike function Z_5^1(r,\theta)') zc#aQ.
% o@0p
% Example 2: 6o/!H
% 2f$6}m'Ad
% % Display the first 10 Zernike functions G+xdh
% x = -1:0.01:1; o}K!p%5_
% [X,Y] = meshgrid(x,x); [6Gb@jG
% [theta,r] = cart2pol(X,Y); U#!f^@&AB
% idx = r<=1; ,] ,dOIOwn
% z = nan(size(X)); #!X4\+)
% n = [0 1 1 2 2 2 3 3 3 3]; n XOJ
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 6> Szxkz
% Nplot = [4 10 12 16 18 20 22 24 26 28]; wtw
% y = zernfun(n,m,r(idx),theta(idx)); I=I'O?w
% figure('Units','normalized') r/vRaOg>X
% for k = 1:10 r8E)GBH-|
% z(idx) = y(:,k); 5b2_{6t
% subplot(4,7,Nplot(k)) L.@o
% pcolor(x,x,z), shading interp 7 a}qnk%
% set(gca,'XTick',[],'YTick',[]) -?$Hr\
% axis square jQ s"8[=s
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !4f0VQI
% end _ *O^|QbM
% HsGyNkr?r
% See also ZERNPOL, ZERNFUN2. ]dKLzW:l
&u'$q
% Paul Fricker 11/13/2006 CcHf1
_CI
gOA
T~rPpi&
% Check and prepare the inputs: C"P40VQoo
% ----------------------------- M6P`~emX2
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) v}$KlT
error('zernfun:NMvectors','N and M must be vectors.') f|f9[h'
end *3A[C-1~.
lklMdsIdj
if length(n)~=length(m) ,5_Hen=PI
error('zernfun:NMlength','N and M must be the same length.') O!D0hW4
end o7*z@R"
#FBq8iJ
n = n(:); .(0'l@#fT
m = m(:); sacaL4[_<
if any(mod(n-m,2)) ^Z{W1uYi
error('zernfun:NMmultiplesof2', ... 8)D5loS
'All N and M must differ by multiples of 2 (including 0).') 9o]h}Xc
end x05yU
p<2A4="&
if any(m>n) =~i~SG/f
error('zernfun:MlessthanN', ... y-TS?5Dr]
'Each M must be less than or equal to its corresponding N.') 32r2<QrX
end ESl-k2
h98_6Dw(]
if any( r>1 | r<0 ) ,3t('SE
error('zernfun:Rlessthan1','All R must be between 0 and 1.') vPn( ~d_
end 5m`@ 4%)zp
.&AS-">Z
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <303PPX^6
error('zernfun:RTHvector','R and THETA must be vectors.') J3oj}M*
end uj_ OWre
Efm37Kv5l
r = r(:); a3wTcp "r
theta = theta(:); ZLBv\VQ
length_r = length(r); 06 kjJ4
if length_r~=length(theta) .~+I"V{yF
error('zernfun:RTHlength', ... Rl7V~dUY
'The number of R- and THETA-values must be equal.') ik@g; >pQD
end u.t(78N
"(6]K}k@
% Check normalization: >bia
FK>t
% -------------------- J
00%,Ju_
if nargin==5 && ischar(nflag) =rV*iLy
isnorm = strcmpi(nflag,'norm'); xD}ha
if ~isnorm f -N:
error('zernfun:normalization','Unrecognized normalization flag.') QfuKpcT&
end NJG-~w
else X&1R6O
isnorm = false; }xx[=t=nUf
end 9Z,vpTE
#:{Bd8PS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p m+_s]s,
% Compute the Zernike Polynomials b]v.jgD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }|rnyYA
o*2TH2
% Determine the required powers of r: }JXAG/<
% ----------------------------------- bDa(@QJ-
m_abs = abs(m); 7(;M
rpowers = []; X'4g\)*
for j = 1:length(n) 8Yr_$5R
rpowers = [rpowers m_abs(j):2:n(j)]; JG xuB*}
end YN1P9j#0d
rpowers = unique(rpowers); - Dm/7Sxd`
Hmt}@
% Pre-compute the values of r raised to the required powers, :yN;_bC!b%
% and compile them in a matrix: Y_3{\g|x
% ----------------------------- 12\h| S~
if rpowers(1)==0 S) /(~
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); SomA`y+ERn
rpowern = cat(2,rpowern{:}); ^YddVp
rpowern = [ones(length_r,1) rpowern]; Y27x;U
else -4|\,=j
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); CzKU;~D=B
rpowern = cat(2,rpowern{:}); gVM9*3LH6
end c"w}<8
eRkvNI
% Compute the values of the polynomials: ]iewukB4
% -------------------------------------- c:0nOP
y = zeros(length_r,length(n)); 5;wA7@
for j = 1:length(n) +H5=zf2
s = 0:(n(j)-m_abs(j))/2; 1b:3'E.#w
pows = n(j):-2:m_abs(j); MA\"JAP/
for k = length(s):-1:1 ~y.{WuUD
p = (1-2*mod(s(k),2))* ... 5mwtlC':l?
prod(2:(n(j)-s(k)))/ ... vdFy}#X
prod(2:s(k))/ ... R}MdBE
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .4c* _$
prod(2:((n(j)+m_abs(j))/2-s(k))); 1
"'t5?XW
idx = (pows(k)==rpowers); GAONgz|ZI
y(:,j) = y(:,j) + p*rpowern(:,idx);
3n;UXYJ%
end gs)wQgJ [
{&,9Zy]"S
if isnorm iR;Sd >)
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); &kKopJH
end X{A|{ u=
end P;o6rQf
% END: Compute the Zernike Polynomials SoZ$1$o2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |QwX
Z?k4Kb
% Compute the Zernike functions: $]IX11.m
% ------------------------------ vzl+0"
idx_pos = m>0; %n-:mSus
idx_neg = m<0; s`W\`w}
$\kqh$")
z = y; U4]>8L
if any(idx_pos) KE3/sw0
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5$o]D
end }oHA@o5
if any(idx_neg) {3@lvoDT
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4.)hC b
end d;`bX+K
?bwF$Ku
% EOF zernfun