切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11022阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 `Z`o[]%  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! +jGUp\h%9;  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 n\4sNoFI  
    function z = zernfun(n,m,r,theta,nflag) H[iR8<rhQ  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. j{NcDe pLn  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N hzy#%FaB  
    %   and angular frequency M, evaluated at positions (R,THETA) on the @yn1#E,  
    %   unit circle.  N is a vector of positive integers (including 0), and k Rp$[^ma  
    %   M is a vector with the same number of elements as N.  Each element h\OMWJ~  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) EYKV}`  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ?xCWg.#l4V  
    %   and THETA is a vector of angles.  R and THETA must have the same <a%RKjQvT  
    %   length.  The output Z is a matrix with one column for every (N,M) NB)22 %  
    %   pair, and one row for every (R,THETA) pair. ]AB4w+6!  
    % P?YcZAJT*  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike oei2$uu  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ,A!0:+  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral USyOHHPW@  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, YZ^;xV  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ksli-Px  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. *Ag,/Cm]  
    % fnU;DS] W  
    %   The Zernike functions are an orthogonal basis on the unit circle. 10e~Yc  
    %   They are used in disciplines such as astronomy, optics, and Z[zRZ2'i5  
    %   optometry to describe functions on a circular domain. ,CQg6- [  
    % &\M<>>IB  
    %   The following table lists the first 15 Zernike functions. rW0-XLbL5H  
    % &qae+p?  
    %       n    m    Zernike function           Normalization 7,Q>>%/0P  
    %       -------------------------------------------------- xEqr3(  
    %       0    0    1                                 1 05o 1  
    %       1    1    r * cos(theta)                    2 lH 1gWe  
    %       1   -1    r * sin(theta)                    2 W v!%'IB  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) j.7BoV  
    %       2    0    (2*r^2 - 1)                    sqrt(3) D1 f}g  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) QNgfvy  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 5TS&NefM  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) L+2<J,   
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 7 y'2  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ?=0BU}  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) NuC+iC$_/  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [$%O-_x  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) QlK]2r9  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2"!s8x1$  
    %       4    4    r^4 * sin(4*theta)             sqrt(10)  <]h?_)  
    %       -------------------------------------------------- O p,_d^  
    % <e@+w6Kp'7  
    %   Example 1: (od9adSehV  
    % aLt2fB1)  
    %       % Display the Zernike function Z(n=5,m=1) XMw*4j2E  
    %       x = -1:0.01:1; {E$smX  
    %       [X,Y] = meshgrid(x,x); R*r;`x  
    %       [theta,r] = cart2pol(X,Y); &-hXk!A  
    %       idx = r<=1; fu $<*Sa2  
    %       z = nan(size(X)); U/9_:  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Q?]-/v  
    %       figure J>p6')Y6~  
    %       pcolor(x,x,z), shading interp S<UWv@`U"  
    %       axis square, colorbar YzVhNJWpw  
    %       title('Zernike function Z_5^1(r,\theta)') E]dmXH8A  
    % M.?[Xpa  
    %   Example 2: VQwF9Iq]`  
    % VH7nyqEM  
    %       % Display the first 10 Zernike functions ,IDCbJ  
    %       x = -1:0.01:1; 5V@c~1\  
    %       [X,Y] = meshgrid(x,x); b ]u01T-  
    %       [theta,r] = cart2pol(X,Y); fuF!3Q  
    %       idx = r<=1; kBg8:bo~  
    %       z = nan(size(X)); ,v$Q:n|  
    %       n = [0  1  1  2  2  2  3  3  3  3]; VHqHG`}:  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Gqs)E"h  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; dh S7}n  
    %       y = zernfun(n,m,r(idx),theta(idx)); ^c|_%/  
    %       figure('Units','normalized') qPF`=#  
    %       for k = 1:10 5)iOG#8qJ  
    %           z(idx) = y(:,k); z1S p'h$  
    %           subplot(4,7,Nplot(k)) 2rPmu  
    %           pcolor(x,x,z), shading interp ce:p*  
    %           set(gca,'XTick',[],'YTick',[])  HvzXAd  
    %           axis square  x>$e*  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]I'dnd3e  
    %       end Cd2A&RB  
    % +o-jMvK9  
    %   See also ZERNPOL, ZERNFUN2. i8->3uB  
    dTZ$92<  
    %   Paul Fricker 11/13/2006 6W[~@~D=  
    2mEvoWnJ  
    G4](!f!Kv  
    % Check and prepare the inputs: B-UsMO  
    % ----------------------------- y ~n1S~5cI  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .bY R  
        error('zernfun:NMvectors','N and M must be vectors.') Ake@krh>$  
    end YpI|=mv  
    5XoM)  
    if length(n)~=length(m) 2"6bz^>}  
        error('zernfun:NMlength','N and M must be the same length.') `br$kB  
    end yQ0:M/r;0  
    $Da?)Hz'F  
    n = n(:); * }) W>  
    m = m(:); <.".,Na(J0  
    if any(mod(n-m,2)) C?j:+  
        error('zernfun:NMmultiplesof2', ... qWM+!f  
              'All N and M must differ by multiples of 2 (including 0).') f0&%  
    end F.),|t$\  
    rXP~k]tC  
    if any(m>n) }Xvm( ;  
        error('zernfun:MlessthanN', ... {B-*w%}HU  
              'Each M must be less than or equal to its corresponding N.') i&YWutG  
    end Swr4De_5  
    -}_1f[b  
    if any( r>1 | r<0 ) JED\"(d(  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') }i{A4f `  
    end k(he<-GF\  
    3$wK*xK  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) RdBIbm  
        error('zernfun:RTHvector','R and THETA must be vectors.') J6Vx7  
    end }OY/0p-Z  
    pX+4B=*  
    r = r(:); UmR4zGM}  
    theta = theta(:); 0SDnMij&bf  
    length_r = length(r); 5] LfJh+"n  
    if length_r~=length(theta) 5th?m>  
        error('zernfun:RTHlength', ... ``%yVVg}  
              'The number of R- and THETA-values must be equal.') !2h ZtX  
    end k.z(.uc=  
    ,u>[cRqw  
    % Check normalization: eR0$CTSw  
    % -------------------- u*/+cT  
    if nargin==5 && ischar(nflag) V';l H2  
        isnorm = strcmpi(nflag,'norm'); "([/G?QAG  
        if ~isnorm |nE4tN#J<  
            error('zernfun:normalization','Unrecognized normalization flag.') stUUez>  
        end @{W"mc+  
    else [Q+k2J_h  
        isnorm = false; oKb"Ky@s  
    end cPv(VjS1;  
    tva=DS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f7y.##WG  
    % Compute the Zernike Polynomials qV6WT&)T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% . P+Qu   
    ,J8n}7aI  
    % Determine the required powers of r: C!|LGzs0  
    % ----------------------------------- "Kdn`zN{  
    m_abs = abs(m); K8R>O *~  
    rpowers = []; &gPP# D6A  
    for j = 1:length(n) BlQ X$s]  
        rpowers = [rpowers m_abs(j):2:n(j)]; kRc+OsY9  
    end r! HXhl  
    rpowers = unique(rpowers); aL%E#  
    fbU3-L?  
    % Pre-compute the values of r raised to the required powers, N#2ldY *  
    % and compile them in a matrix: 1[T7;i$  
    % ----------------------------- *= ?|n   
    if rpowers(1)==0 vENf3;o0  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); r0 )ne|&Hp  
        rpowern = cat(2,rpowern{:}); P:t .Nr"  
        rpowern = [ones(length_r,1) rpowern]; l<BV{Gl  
    else -5 8q 6yA  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4e Y?#8  
        rpowern = cat(2,rpowern{:}); |?s sHW  
    end ?*%_:fB  
    bi^?SH\  
    % Compute the values of the polynomials: w7o`B R  
    % -------------------------------------- ,T`,OZm  
    y = zeros(length_r,length(n)); #K6cBfqI  
    for j = 1:length(n) P/dnH  
        s = 0:(n(j)-m_abs(j))/2; 8'HS$J;C  
        pows = n(j):-2:m_abs(j); F,{mF2U*$  
        for k = length(s):-1:1 [IQ|c?DxpL  
            p = (1-2*mod(s(k),2))* ... 0'fswa)  
                       prod(2:(n(j)-s(k)))/              ... bD{k=jum  
                       prod(2:s(k))/                     ... ~y2zl  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... -X~mW  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); YT Zi[/  
            idx = (pows(k)==rpowers); )muNfs m  
            y(:,j) = y(:,j) + p*rpowern(:,idx); !~Uj 'w  
        end M{Z ;7n'  
         _BmObXOp.  
        if isnorm NOuG#P  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); pX ^^0  
        end S k~"-HL|  
    end `om+p?j  
    % END: Compute the Zernike Polynomials C=/B\G/.9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XS[L-NHG  
    . \"k49M`  
    % Compute the Zernike functions: Zn'tNt/  
    % ------------------------------ sfj+-se(K.  
    idx_pos = m>0; 67YC;J]n=z  
    idx_neg = m<0; )&Oc7\J,  
    r8Mx +r  
    z = y; IB/3=4n^|  
    if any(idx_pos) t82'K@sq  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); o)/Pr7Qn  
    end NEIkG>\7q  
    if any(idx_neg) &(rWl`eTY`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); La;G S  
    end BVNW1<_:  
    rtRbr_  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) '4[=*!hs!  
    %ZERNFUN2 Single-index Zernike functions on the unit circle.  uZS:  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ^dHQ<L3.*  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive mll :rWC)  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, *?rWS"B  
    %   and THETA is a vector of angles.  R and THETA must have the same (+> 2&@@<  
    %   length.  The output Z is a matrix with one column for every P-value, ~2w&+@dV%  
    %   and one row for every (R,THETA) pair. 8Xot ly  
    % G%<}TI1}  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike qTd[Da G#  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) dAh.I3  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Gt9$hB7  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 HTJ2D@h  
    %   for all p. E-bswUVaEE  
    % }02`ve*   
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 _M&TT]a  
    %   Zernike functions (order N<=7).  In some disciplines it is 7A)\:k  
    %   traditional to label the first 36 functions using a single mode ,c p2Fac  
    %   number P instead of separate numbers for the order N and azimuthal nT6y6F _e  
    %   frequency M. 2bp@m;g$  
    % M&Ka ^h;N  
    %   Example: b(H{i}{]  
    % *@2Bh4  
    %       % Display the first 16 Zernike functions MtLWpi u@[  
    %       x = -1:0.01:1; J D\tt-  
    %       [X,Y] = meshgrid(x,x); RP4/:sO  
    %       [theta,r] = cart2pol(X,Y); yn4T!r "  
    %       idx = r<=1; H U|.5tP  
    %       p = 0:15; ,XD" p1(|G  
    %       z = nan(size(X)); {3~VLdy  
    %       y = zernfun2(p,r(idx),theta(idx)); 8\n3 i"  
    %       figure('Units','normalized')  0#,a#P  
    %       for k = 1:length(p) hi7_jl6  
    %           z(idx) = y(:,k); -+#%]P8l  
    %           subplot(4,4,k) b_0THy.Z  
    %           pcolor(x,x,z), shading interp I{Zb/}k-  
    %           set(gca,'XTick',[],'YTick',[]) <n2@;` D  
    %           axis square u6qK4*eAD  
    %           title(['Z_{' num2str(p(k)) '}']) "TV'}HH  
    %       end V]=22Cxi'~  
    % P6:9o}K6  
    %   See also ZERNPOL, ZERNFUN. D'"  T'@  
    $ V^gFes  
    %   Paul Fricker 11/13/2006 sVLvnX,  
    @T'^V0!-q:  
    Hq3|>OqC2Q  
    % Check and prepare the inputs: (o^tmH*  
    % ----------------------------- 7aG.?Ca%  
    if min(size(p))~=1 DD| 0?i  
        error('zernfun2:Pvector','Input P must be vector.') L$ZjMJ  
    end Pf*6/7S:  
    D tsZP (  
    if any(p)>35 8:ubtB  
        error('zernfun2:P36', ... hnnB4]c  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... mxa~JAlN_  
               '(P = 0 to 35).']) ?YhDjQs  
    end )`u17 {  
    (`x_MTLL  
    % Get the order and frequency corresonding to the function number: ZoW1Cc&p  
    % ---------------------------------------------------------------- $%<{zWQm  
    p = p(:); L kt4F  
    n = ceil((-3+sqrt(9+8*p))/2); t*{L[c9.Uq  
    m = 2*p - n.*(n+2); %pC<T*f  
    !FEc:qH  
    % Pass the inputs to the function ZERNFUN: 6x+ujUBkK  
    % ---------------------------------------- i'>6Qo  
    switch nargin 48^-]};  
        case 3 0YH5B5b  
            z = zernfun(n,m,r,theta); -t`kb*O3`  
        case 4 =u.@W98, K  
            z = zernfun(n,m,r,theta,nflag); u?osX;'w  
        otherwise k(gbUlCc  
            error('zernfun2:nargin','Incorrect number of inputs.') 5ut| eD`3  
    end !8{ VLg  
    5{ c;I<0  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) eYOY   
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. E^F"$Z" N  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of x|H`%Z  
    %   order N and frequency M, evaluated at R.  N is a vector of <Ap_#  
    %   positive integers (including 0), and M is a vector with the 3I)~;>meo  
    %   same number of elements as N.  Each element k of M must be a bI):-2&s}  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) {u'szO}k  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is [xS7ae  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix qu=~\t1[6  
    %   with one column for every (N,M) pair, and one row for every ?N#I2jxaD  
    %   element in R. ]so/AdT9hA  
    % 3CCs_AO  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- M2$/x`\-~  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ,d"T2Hy  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to XlppA3JON|  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 m\:^9A4HCg  
    %   for all [n,m]. ^e:z ul{;]  
    % Cbbdq%ySI  
    %   The radial Zernike polynomials are the radial portion of the Mz@{_*2   
    %   Zernike functions, which are an orthogonal basis on the unit ,Py\Cp=Dw  
    %   circle.  The series representation of the radial Zernike x:SjdT  
    %   polynomials is \GFq RRn  
    % `<XS5h h=  
    %          (n-m)/2 26V6Y2X  
    %            __ SN6 QX!3  
    %    m      \       s                                          n-2s E=NjWO  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r rH}|~  
    %    n      s=0 vNO&0~  
    % TWP@\ BQ  
    %   The following table shows the first 12 polynomials. RdCGK?s  
    % (,At5 T  
    %       n    m    Zernike polynomial    Normalization ; 476t  
    %       --------------------------------------------- di\.*7l?  
    %       0    0    1                        sqrt(2) 35h|?eN_m!  
    %       1    1    r                           2 -l[H]BAMXy  
    %       2    0    2*r^2 - 1                sqrt(6) .k#PrT1C  
    %       2    2    r^2                      sqrt(6) O4rjGTRF  
    %       3    1    3*r^3 - 2*r              sqrt(8) I4Do$&9<D  
    %       3    3    r^3                      sqrt(8) kZ9Gl!g  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 7qC /a c  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) <spG]Xa<  
    %       4    4    r^4                      sqrt(10) 6IqPZ{g9K'  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ZflB<cI  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) y-pdAkDh  
    %       5    5    r^5                      sqrt(12) Th_@'UDa  
    %       --------------------------------------------- )nd^@G^  
    % 7F`\Gz_2  
    %   Example: Laj/~Ru6  
    % g[cnaS|?  
    %       % Display three example Zernike radial polynomials Z%~}*F}7X  
    %       r = 0:0.01:1; |W@ ~mrO  
    %       n = [3 2 5]; Zpd-ob  
    %       m = [1 2 1]; ; _%zf5;'  
    %       z = zernpol(n,m,r); 8\J$\Edv  
    %       figure P@y)K!{Nk  
    %       plot(r,z) | BaEv\$K  
    %       grid on {$S"S j  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ]& D dy&V  
    % CvIuH=,  
    %   See also ZERNFUN, ZERNFUN2. B:>:$LIL  
    >s<Bu'r  
    % A note on the algorithm. /qdvzv%T  
    % ------------------------ R0t!y3r&N  
    % The radial Zernike polynomials are computed using the series D#nHg  
    % representation shown in the Help section above. For many special fR1L VLU  
    % functions, direct evaluation using the series representation can 9>{fsy  
    % produce poor numerical results (floating point errors), because 'IU3Xu[-.  
    % the summation often involves computing small differences between 4KH'S'eR  
    % large successive terms in the series. (In such cases, the functions 7-3  
    % are often evaluated using alternative methods such as recurrence S @[]znH  
    % relations: see the Legendre functions, for example). For the Zernike gj|5"'g%  
    % polynomials, however, this problem does not arise, because the $YJ 1P  
    % polynomials are evaluated over the finite domain r = (0,1), and ?0)K[Kd'Y  
    % because the coefficients for a given polynomial are generally all GwO`@-}E  
    % of similar magnitude. >p&"X 2 @  
    % Sr+hB>{  
    % ZERNPOL has been written using a vectorized implementation: multiple HOi~eX1d  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] x@ X2r  
    % values can be passed as inputs) for a vector of points R.  To achieve 5,xPB5pK  
    % this vectorization most efficiently, the algorithm in ZERNPOL "Lvk?k )hx  
    % involves pre-determining all the powers p of R that are required to z/#,L!Z3  
    % compute the outputs, and then compiling the {R^p} into a single Aa-5k3:x]=  
    % matrix.  This avoids any redundant computation of the R^p, and !S~)U{SSK  
    % minimizes the sizes of certain intermediate variables. 7,)E1dx -V  
    % A":=-$)  
    %   Paul Fricker 11/13/2006 cO:lpsKYQ  
    rzdQLan  
    "= 2\kZ  
    % Check and prepare the inputs: ,wf_o%'eW  
    % ----------------------------- &wQ<sVQ0$  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "d}']M?-h  
        error('zernpol:NMvectors','N and M must be vectors.') yR5XcPoKI  
    end FOD'&Yb&  
    ^/%o I;O{  
    if length(n)~=length(m) ;nlJ D#  
        error('zernpol:NMlength','N and M must be the same length.') ?121 as}z  
    end !"FEp  
    v1u~[c=|^  
    n = n(:); C;ab-gh  
    m = m(:); O0y0'P-rJq  
    length_n = length(n); ;{8 X+H  
    RrLj5Jq  
    if any(mod(n-m,2)) Dj= {%  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 3 85qQppz  
    end [#wt3<d`)  
    .|"E:qTD  
    if any(m<0) W +Piqf*  
        error('zernpol:Mpositive','All M must be positive.') C!_=L?QT^  
    end c}v8j2{  
    [-`s`g-  
    if any(m>n) ^?|4<Rm  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') #++:`Z  
    end wo62R&ac  
    IUAe6  
    if any( r>1 | r<0 )  Jj%xLv%  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') l`75BR  
    end &n]v  
    K}q5,P(  
    if ~any(size(r)==1) <=!t!_  
        error('zernpol:Rvector','R must be a vector.') DmWa!5  
    end {Mo[C%  
    `4ga~Ch  
    r = r(:); 5~>j98K  
    length_r = length(r); GQ85ykky  
    b4$g$()  
    if nargin==4 9k4z__Ke  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); fLRx{Nu  
        if ~isnorm EWl9rF@I  
            error('zernpol:normalization','Unrecognized normalization flag.') ;B< rw ^h5  
        end m[l&&(+J,  
    else gdAd7 T  
        isnorm = false; I 8 ?  
    end WCaMPz  
    \k$cg~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q-1vtbn  
    % Compute the Zernike Polynomials gjiS+N[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% , iEGf-!k  
    +pUYFDwFx  
    % Determine the required powers of r: od@!WjcM[8  
    % ----------------------------------- 7u1o>a %9  
    rpowers = []; 'e>'J ZR  
    for j = 1:length(n) 8u*Q^-fpo0  
        rpowers = [rpowers m(j):2:n(j)]; sj+ )   
    end 7lOAu]Zx  
    rpowers = unique(rpowers); SXXO#  
    ~urk Uz  
    % Pre-compute the values of r raised to the required powers, "<L9-vb  
    % and compile them in a matrix: Y3V2}  
    % ----------------------------- rIyIZWkI  
    if rpowers(1)==0 1JS5 LS  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); EE9eG31|r  
        rpowern = cat(2,rpowern{:}); p-oEoA  
        rpowern = [ones(length_r,1) rpowern]; YYe<StyH  
    else # b3 14  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); svC m }`  
        rpowern = cat(2,rpowern{:}); \*fXPJ4  
    end %Zeb#//Jz  
    BL0xSNE**  
    % Compute the values of the polynomials: 5:~ zlg  
    % -------------------------------------- bHDZ=Ik  
    z = zeros(length_r,length_n); Kk\,q?  
    for j = 1:length_n |o_ N$70  
        s = 0:(n(j)-m(j))/2; )Zvn{  
        pows = n(j):-2:m(j); *TL3-S?   
        for k = length(s):-1:1 %~<F7qB  
            p = (1-2*mod(s(k),2))* ... UHI<8o9  
                       prod(2:(n(j)-s(k)))/          ... E0A[{UA   
                       prod(2:s(k))/                 ... Sfi1bsK  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... $-]9/Ct  
                       prod(2:((n(j)+m(j))/2-s(k))); gE23C*!'&:  
            idx = (pows(k)==rpowers); <P5 7s+JK  
            z(:,j) = z(:,j) + p*rpowern(:,idx); k c L +  
        end (>\4%(pnD  
         o3'Za'N.  
        if isnorm j3o?B  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ?R@u'4yK  
        end B I>r'  
    end p13y`sU=  
    }o=s"0a  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  U9:I"f,  
    pJ3Yjm[l  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 @hj5j;NHK  
    i>=!6Hu2  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)