非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Dk8@x8
function z = zernfun(n,m,r,theta,nflag) 4mpcI
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. dxtG3
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N XV`8Vb
% and angular frequency M, evaluated at positions (R,THETA) on the "}H2dn2n
% unit circle. N is a vector of positive integers (including 0), and >B*zzj
% M is a vector with the same number of elements as N. Each element 02T'B&&~
% k of M must be a positive integer, with possible values M(k) = -N(k) 5P 5Tgk
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 6E^9>
% and THETA is a vector of angles. R and THETA must have the same V)ag ss w?
% length. The output Z is a matrix with one column for every (N,M) FP*kA_z$
% pair, and one row for every (R,THETA) pair. &F Yv4J
% b^P\Q s*m
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3a=\$x@
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #YK3Ogb,
% with delta(m,0) the Kronecker delta, is chosen so that the integral bqx2lQf,_
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, BlcsDB =ka
% and theta=0 to theta=2*pi) is unity. For the non-normalized 8LXK3D}?3
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. yUO%@;
% b@K1;A! S
% The Zernike functions are an orthogonal basis on the unit circle. R|wS*xd ,
% They are used in disciplines such as astronomy, optics, and l0g+OMt
% optometry to describe functions on a circular domain. t -fmA?\
% >RpMw!NT
% The following table lists the first 15 Zernike functions. 2+g'ul`
% \$F#bIjC
% n m Zernike function Normalization 'Z#>K*
% -------------------------------------------------- Fzy#!^9Nu
% 0 0 1 1 P4|A\|t
% 1 1 r * cos(theta) 2 =ReSlt
% 1 -1 r * sin(theta) 2 40dwp*/!
% 2 -2 r^2 * cos(2*theta) sqrt(6) 2pP"dX
% 2 0 (2*r^2 - 1) sqrt(3) qG g2 9
% 2 2 r^2 * sin(2*theta) sqrt(6) %mzDmrzq
% 3 -3 r^3 * cos(3*theta) sqrt(8) >}JEX]V
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) *m`x/_y+
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) %P(2uesd
% 3 3 r^3 * sin(3*theta) sqrt(8) HYY+Fv5
% 4 -4 r^4 * cos(4*theta) sqrt(10) q]SH'Wd
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i<=2 L?[.I
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) :()K2<E
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) LZE9]Gd
% 4 4 r^4 * sin(4*theta) sqrt(10) kV!1k<f
% -------------------------------------------------- 0(&RmR
% s%6L94\t
% Example 1: 2t>>08T
% 78?cCj{e
% % Display the Zernike function Z(n=5,m=1) Wc;N;K52
% x = -1:0.01:1; :lmimAMt
% [X,Y] = meshgrid(x,x); =5YbK1Q^
% [theta,r] = cart2pol(X,Y); c+8 Y|GB
% idx = r<=1; HsT6 #K
% z = nan(size(X)); w"O;: `|n
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Rz6kwh=q
% figure ApplWa3
% pcolor(x,x,z), shading interp M8y|Lm}o
% axis square, colorbar 9F~5Ht
% title('Zernike function Z_5^1(r,\theta)') wjT#D|soI
% \]\ h,Y8
% Example 2: WHfl|e
% Y/pK
% % Display the first 10 Zernike functions $~?)E;S
% x = -1:0.01:1; Fx)><+-
% [X,Y] = meshgrid(x,x); yC4%z)t&R
% [theta,r] = cart2pol(X,Y); C+mPl +}w
% idx = r<=1; {BJH}vV1)
% z = nan(size(X)); t~!ag#3['.
% n = [0 1 1 2 2 2 3 3 3 3]; q^<;B Y
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; V!e*J,g
% Nplot = [4 10 12 16 18 20 22 24 26 28]; WE-+WC!!:
% y = zernfun(n,m,r(idx),theta(idx)); ,jD-fL/:
% figure('Units','normalized') Qp2~ `hD
% for k = 1:10 k
,r*xt
% z(idx) = y(:,k); fWF!% |L
% subplot(4,7,Nplot(k)) 'RNj5r
% pcolor(x,x,z), shading interp ~L>&p
% set(gca,'XTick',[],'YTick',[]) h96<9L
% axis square ^W^Y"0y9`
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) t_(S e
% end >N}+O<Fc
% 0TiDQ4}i[
% See also ZERNPOL, ZERNFUN2. ?,[$8V
JxM32?Rm*w
% Paul Fricker 11/13/2006 'gsO}xj
A-$C6q
-Q ];o~
% Check and prepare the inputs: RL/5o"
% ----------------------------- [DTe
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 1 7iw`@
error('zernfun:NMvectors','N and M must be vectors.') y\dx \
end HPo><u
2&AX_#P
if length(n)~=length(m) ~i>'3j0@k
error('zernfun:NMlength','N and M must be the same length.') ,I,Zl.5
end gxC`Ml
vH E:TQo4
n = n(:); V_|HzYJJ5
m = m(:); "ZmxHMf
if any(mod(n-m,2)) &iy7It
error('zernfun:NMmultiplesof2', ... +]hc!s8
'All N and M must differ by multiples of 2 (including 0).') ^lK!tOeO
end 2t=&h|6EW
I Qmlmu
if any(m>n) X6?Gxf,
error('zernfun:MlessthanN', ... (?.h<v1}
'Each M must be less than or equal to its corresponding N.') $ylxl"Y
end I6S>*V
?~]mOv>
if any( r>1 | r<0 ) n~i^+pD@
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Ku3NE-)
end i/C0
(!
DnF|wS
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^{E_fQJX
error('zernfun:RTHvector','R and THETA must be vectors.') V@1,((,l
end ?b]f$
2
;BHIss7
r = r(:); ZMK1V)ohn
theta = theta(:); S@4bpnhK
length_r = length(r); bF +d_t
if length_r~=length(theta) W)Yo-%
error('zernfun:RTHlength', ... s>TC~d82
'The number of R- and THETA-values must be equal.') 4!?4Tc!X
end 5?E;YyA
o+S?j*mv@
% Check normalization: \PmM856=ms
% -------------------- dcE(uf
if nargin==5 && ischar(nflag) 9HlM0qE5b
isnorm = strcmpi(nflag,'norm'); eN m
Wul
if ~isnorm MA7&fNjB
error('zernfun:normalization','Unrecognized normalization flag.') %XXjQ5p
end q+lCA#Sx
else Ti#x62X{
isnorm = false; !VvM
end dmMrZ1u2
s-l3_210
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F@ZB6~T~.
% Compute the Zernike Polynomials @,pn/[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >vuR:4B
W9A F}
% Determine the required powers of r: }<