非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 RJ1@a
function z = zernfun(n,m,r,theta,nflag) 4$+1&+@ ]
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. I%:\"g"c
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N XR_Gsb%l
% and angular frequency M, evaluated at positions (R,THETA) on the jS ?#c+9
% unit circle. N is a vector of positive integers (including 0), and %<0'xJ%%Q
% M is a vector with the same number of elements as N. Each element N 9W,p2
% k of M must be a positive integer, with possible values M(k) = -N(k) i__f%j`!W
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, t0_4jVt
% and THETA is a vector of angles. R and THETA must have the same YeS5%?Fk
% length. The output Z is a matrix with one column for every (N,M) 7!dj&?
% pair, and one row for every (R,THETA) pair. R} X"di
% G=/^]E
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )G),iy
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0^vz /y1c
% with delta(m,0) the Kronecker delta, is chosen so that the integral $5:I~-mx
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :s*t\09V7
% and theta=0 to theta=2*pi) is unity. For the non-normalized !bs5w_@
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `ZU]eAV
% ik#ti=.
% The Zernike functions are an orthogonal basis on the unit circle. Z!-V&H.
% They are used in disciplines such as astronomy, optics, and "5204I
% optometry to describe functions on a circular domain. K0~=9/
% 3rBID
% The following table lists the first 15 Zernike functions. 2HO2
% 6 2#@Y-5
% n m Zernike function Normalization OS-k_l L
% -------------------------------------------------- ,BFw-A
% 0 0 1 1 fV2w &:^3
% 1 1 r * cos(theta) 2 RzU9]e
% 1 -1 r * sin(theta) 2 Z((e-T#,
% 2 -2 r^2 * cos(2*theta) sqrt(6) tA]u=-_h
% 2 0 (2*r^2 - 1) sqrt(3) .'>d7
% 2 2 r^2 * sin(2*theta) sqrt(6) Dn)B19b
% 3 -3 r^3 * cos(3*theta) sqrt(8) Id1de>:;
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) @?>5~
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) eX1_=?$1P
% 3 3 r^3 * sin(3*theta) sqrt(8) !mmSF1f
% 4 -4 r^4 * cos(4*theta) sqrt(10)
//0Y#"
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) CaV@<T
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) `=S%!akj
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -<L5;
% 4 4 r^4 * sin(4*theta) sqrt(10) eLLOE)x
% -------------------------------------------------- ,Wtgj=1!.
% E
6+ ooB[
% Example 1: 4
|bu= T
% >{l
b|Vx
% % Display the Zernike function Z(n=5,m=1) EeHghq
% x = -1:0.01:1; |qVM`,%L
% [X,Y] = meshgrid(x,x); B2Rpd &[
% [theta,r] = cart2pol(X,Y); bI^F(
% idx = r<=1; cc3/XBo
% z = nan(size(X)); n0G@BE1Y=
% z(idx) = zernfun(5,1,r(idx),theta(idx)); $&!|G-0'
% figure #l h'
!
% pcolor(x,x,z), shading interp 3,EtyJ3[Bh
% axis square, colorbar -BSO$'{7
% title('Zernike function Z_5^1(r,\theta)') Khl0 ~
% ]TJ258P}
% Example 2: v_WF.sb~
% f|ERZN`uB
% % Display the first 10 Zernike functions nBLb1T
% x = -1:0.01:1; =dwy 4
% [X,Y] = meshgrid(x,x); 4T$DQK@e
% [theta,r] = cart2pol(X,Y); n1aOpz6`
% idx = r<=1; 2a;[2':
% z = nan(size(X)); :wEy""*N0
% n = [0 1 1 2 2 2 3 3 3 3]; f$5\ b[O
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; VoQhzp6&
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ]q"y P0
% y = zernfun(n,m,r(idx),theta(idx)); Yg}b%u,Q
% figure('Units','normalized') Z
+O<IF%
% for k = 1:10 f]mVM(XZN
% z(idx) = y(:,k); 9-vQn/O^D
% subplot(4,7,Nplot(k)) *K&
$9fah
% pcolor(x,x,z), shading interp Bz|/TV?X(
% set(gca,'XTick',[],'YTick',[]) ]omBq<ox'Y
% axis square 6$kh5$[
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) |j{]6Nu
% end fQwLx
% $Yp.BE<}
% See also ZERNPOL, ZERNFUN2. lIZ&'
z
k2.k}?w!JO
% Paul Fricker 11/13/2006 ~]`U)Aw
-PU.Uw]
OOXP1L
% Check and prepare the inputs: (Q&O'ng1
% ----------------------------- lauq(aD_C
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4)>S3Yr
error('zernfun:NMvectors','N and M must be vectors.') $~j9{*]5
end 4#.Q|vyl]"
]vPdj"7
if length(n)~=length(m) g_!xD;0
error('zernfun:NMlength','N and M must be the same length.') mxu !$wx
end ic4hO>p&
zD<8.AIGC
n = n(:); :6u.\u
m = m(:);
|
+uc;[`
if any(mod(n-m,2)) y&eU\>M
error('zernfun:NMmultiplesof2', ... 6.$z!~8
'All N and M must differ by multiples of 2 (including 0).') 0P{8s
end c4r9k-w0E
9]lyV
if any(m>n) m8G/;V[x
error('zernfun:MlessthanN', ... 7Ka4?@bQ
'Each M must be less than or equal to its corresponding N.') "zz b`T[8
end 'm"Ez'sS
P}>>$$b\Yi
if any( r>1 | r<0 ) ]=]MJ3_7
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Z6Z/Y()4Tl
end 9qB4\ONXZ
?GtI.flV
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) }f% Qk0^
error('zernfun:RTHvector','R and THETA must be vectors.') -N6ek`
end \qlz<
)O$S3ojZ
r = r(:); PfB9 .f{
theta = theta(:); 94]i|2qj*
length_r = length(r); fZLAZMrM
if length_r~=length(theta) ;Bw3@c
error('zernfun:RTHlength', ... }n#$p{e$i
'The number of R- and THETA-values must be equal.') YfMs~}h,
end qn,fx6v4
g6S-vSX,
% Check normalization: \hb$v
% -------------------- PnB2a'(^@?
if nargin==5 && ischar(nflag) uq7/G|
isnorm = strcmpi(nflag,'norm'); N3a ]!4Y\
if ~isnorm \3%3=:
error('zernfun:normalization','Unrecognized normalization flag.') }_mMQg2>=
end 6+"gk(
else sIl&\g<b
isnorm = false; 6D`.v@
end JsMN_%y?
}W[=O:p
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tp }Bz&V
% Compute the Zernike Polynomials #`l&HV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t]iKU@3
{sj{3I u
% Determine the required powers of r: ~r'ApeI9
% ----------------------------------- }w2Et
m_abs = abs(m); ^gNbcWc7CU
rpowers = []; 0]$-}AYM
for j = 1:length(n) $2blF)uYE
rpowers = [rpowers m_abs(j):2:n(j)]; yS[HYq
end gQ%mVJB{(
rpowers = unique(rpowers); '?fGI3b~/
|}/KueZ
% Pre-compute the values of r raised to the required powers, b^()[4M;
% and compile them in a matrix: L `=*Pwcj
% ----------------------------- z(2G"}
if rpowers(1)==0 l|vT[X/g
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); L'"c;FF02i
rpowern = cat(2,rpowern{:}); ">S1,rhgS
rpowern = [ones(length_r,1) rpowern]; [a}Idi`
K
else !YlEXaS
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?P#\CW
rpowern = cat(2,rpowern{:}); (Kg)cc[B`
end 7 n^1H[q
n!lE|if
% Compute the values of the polynomials: |
>yc|W
% -------------------------------------- cf*~Gx_l
y = zeros(length_r,length(n)); ]@}hyM[D;
for j = 1:length(n) h uR ^l
s = 0:(n(j)-m_abs(j))/2; :O?3lj)
pows = n(j):-2:m_abs(j); #SjCKQ~
for k = length(s):-1:1 BJLeE}=H
p = (1-2*mod(s(k),2))* ... 8,VEuBZ
prod(2:(n(j)-s(k)))/ ... ~XvMiWuo
prod(2:s(k))/ ... FP0GE
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... EaH/Gg3
prod(2:((n(j)+m_abs(j))/2-s(k))); 6x/o j`_[
idx = (pows(k)==rpowers); z8)&ekG
y(:,j) = y(:,j) + p*rpowern(:,idx); CP$,fj
end LcNI$g;}Yf
EQM[!g^a
if isnorm rg
0u#-
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); YfseX;VX
end 1:./f|m
end n* .<L
% END: Compute the Zernike Polynomials fi&>;0?7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0Jd>V
z U*Mk
% Compute the Zernike functions: 4<5*HpW
% ------------------------------ 9+.3GRt7
idx_pos = m>0; *TCV}=V G
idx_neg = m<0; hQNUA|Q=%
Wg8*;dvtM
z = y; c]qh)F$s8
if any(idx_pos) ^%Ln@!P
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); C8}=fa3u
end /7Q9(}
if any(idx_neg) oJ#;X R
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); rg]z
end Eq8:[o
/;u=#qu(E-
% EOF zernfun