切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10922阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 J vtbGPz  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! V:1_k"zQ  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 $Q56~AP  
    function z = zernfun(n,m,r,theta,nflag) UAtdRVi]M  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. G8OnNI  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8"J6(KS  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Uy{ZK*c8i  
    %   unit circle.  N is a vector of positive integers (including 0), and (l:LG"sy\  
    %   M is a vector with the same number of elements as N.  Each element Rnk&:c  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) wRQMuFGY  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, wL" 2Cm  
    %   and THETA is a vector of angles.  R and THETA must have the same QZ_8r#2x  
    %   length.  The output Z is a matrix with one column for every (N,M) |=sjG f  
    %   pair, and one row for every (R,THETA) pair. + :k"{I   
    % -! :h]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )F%zT[Auph  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m7,;Hr(  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral -y)g}D%  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +ZPn[|  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized }wV/)Oy[  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. @i@f@.t  
    % Y j*Y*LB~  
    %   The Zernike functions are an orthogonal basis on the unit circle. xU$15|ny  
    %   They are used in disciplines such as astronomy, optics, and j79$/ Ol  
    %   optometry to describe functions on a circular domain. =-n7/  
    % EL1*@  
    %   The following table lists the first 15 Zernike functions. hrTl:\  
    % p(x<h  
    %       n    m    Zernike function           Normalization fZrB!\Q  
    %       -------------------------------------------------- Z}$1~uyw  
    %       0    0    1                                 1 N PE7AdB8  
    %       1    1    r * cos(theta)                    2 -n`2>L1  
    %       1   -1    r * sin(theta)                    2 #i[V {J8.p  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ,HfdiGs}j  
    %       2    0    (2*r^2 - 1)                    sqrt(3) %1%@L7wP>  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) OJPi*i5*  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) .oxeo 0@~  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) }y#aO  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) >I;J!{  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) gYvT'72  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ]d50J@W c  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xs$ -^FnD  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 3Vb/Mn!k  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6ragRS/'x  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) eLN[`hJ  
    %       -------------------------------------------------- vU,;asgy  
    % 6B`,^8Lp  
    %   Example 1: xX2/uxi8  
    % oD~q/04!  
    %       % Display the Zernike function Z(n=5,m=1) rd4mAX6@  
    %       x = -1:0.01:1; ;q%V)4  
    %       [X,Y] = meshgrid(x,x); mA0|W#NB  
    %       [theta,r] = cart2pol(X,Y); x_.}C%  
    %       idx = r<=1; y_N h5  
    %       z = nan(size(X)); lyQNE3   
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Z6_E/S  
    %       figure V?o%0V  
    %       pcolor(x,x,z), shading interp 7 ?"-NrW~  
    %       axis square, colorbar r>x>aJ  
    %       title('Zernike function Z_5^1(r,\theta)') ~X%W2N2  
    % =1Tn~)^O  
    %   Example 2: F`JW&r\  
    % {xJ<)^fD8  
    %       % Display the first 10 Zernike functions n3JSEu;J  
    %       x = -1:0.01:1; yU< "tgE  
    %       [X,Y] = meshgrid(x,x); { ^ @c96&  
    %       [theta,r] = cart2pol(X,Y); m0+'BC{$u  
    %       idx = r<=1; @1iH4RE*  
    %       z = nan(size(X)); `& }C *i"  
    %       n = [0  1  1  2  2  2  3  3  3  3]; rZ^VKO`~I1  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; _$BH.I  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; U~YjTjbd  
    %       y = zernfun(n,m,r(idx),theta(idx)); lehuJgz'OO  
    %       figure('Units','normalized')  Ts 1  
    %       for k = 1:10 53)*i\9&  
    %           z(idx) = y(:,k); PBp+(o-  
    %           subplot(4,7,Nplot(k)) C9"yu&l  
    %           pcolor(x,x,z), shading interp K{[N.dX(  
    %           set(gca,'XTick',[],'YTick',[]) EGJrnz8  
    %           axis square xzOM\Nq?O  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) TrmrA$5f  
    %       end DYaOlT(rE  
    % /H<tv5mX J  
    %   See also ZERNPOL, ZERNFUN2. [eO6 H2@=z  
    RL~]mI!U  
    %   Paul Fricker 11/13/2006 anxwK47  
    V( SRw  
    gaxxB]8  
    % Check and prepare the inputs: _Q6` Wp6m  
    % ----------------------------- "|W``&pM  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) xm bFJUMH  
        error('zernfun:NMvectors','N and M must be vectors.') PHQ99&F1  
    end i@hW" [A  
    fD ?w!7f-1  
    if length(n)~=length(m) tboc7Hor4  
        error('zernfun:NMlength','N and M must be the same length.') bx=9XZ9g  
    end v.Zr,Z=eV  
    TC^fyxq  
    n = n(:); f,QBj{M,  
    m = m(:); j<C p&}X  
    if any(mod(n-m,2)) [pYjH+<  
        error('zernfun:NMmultiplesof2', ... Swnom?t  
              'All N and M must differ by multiples of 2 (including 0).') 7) 37AKw  
    end ZRLS3*`  
    O t1:z:Pl  
    if any(m>n) h^ =9R6im  
        error('zernfun:MlessthanN', ... &VfMv'%x  
              'Each M must be less than or equal to its corresponding N.') lko k2  
    end 4&+lc*  
    T@\%h8@~]  
    if any( r>1 | r<0 ) gWpG-RL0  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') UZb!tO2  
    end ".Sa[A;~  
    UJhUb)}^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) D!nx%%q  
        error('zernfun:RTHvector','R and THETA must be vectors.') i.G"21M  
    end ~sbn"OS +  
    Y[Kpd[)[v  
    r = r(:);  @bO/5"X,  
    theta = theta(:); l~*D jr~  
    length_r = length(r); NB?y/v  
    if length_r~=length(theta) & 24$*Oe  
        error('zernfun:RTHlength', ... ewORb  
              'The number of R- and THETA-values must be equal.') ,ou&WI yC  
    end "E}38  
    /w2jlu}yt  
    % Check normalization: zaMKwv}BR  
    % -------------------- hz*H,E!>  
    if nargin==5 && ischar(nflag) $61j_;WF`  
        isnorm = strcmpi(nflag,'norm'); R"V^%z;8o  
        if ~isnorm w~l%xiC  
            error('zernfun:normalization','Unrecognized normalization flag.') B7ty*)i?  
        end Yo;Mexo!  
    else MZK%IC>  
        isnorm = false; Fv T;8ik:3  
    end &JHqUVs^  
    5;_&C=[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HlC[Nu^6U  
    % Compute the Zernike Polynomials (4oO8 aBB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lz88//@gZ  
    j=5hW.fI  
    % Determine the required powers of r: aYd`E4S+  
    % ----------------------------------- *e}1KcJ  
    m_abs = abs(m); `d6,]'  
    rpowers = []; GG$&=.$  
    for j = 1:length(n) 3}ATt".  
        rpowers = [rpowers m_abs(j):2:n(j)]; %"g; K  
    end fNaboNj[  
    rpowers = unique(rpowers); >nOzz0,  
    T f;:C]  
    % Pre-compute the values of r raised to the required powers, /Ym!%11`  
    % and compile them in a matrix: .Mu]uQUF  
    % ----------------------------- yi@mf$A|  
    if rpowers(1)==0 AAPfU_: ^  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); mj _ V6`m4  
        rpowern = cat(2,rpowern{:}); >a$b4 pvh  
        rpowern = [ones(length_r,1) rpowern]; WSV[)-=:  
    else !y syb  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <9yB& ^  
        rpowern = cat(2,rpowern{:}); c?XqSK`',Z  
    end :Co+haW  
    t o2y#4'.  
    % Compute the values of the polynomials: ?Y | *EH  
    % -------------------------------------- |VE *_ G  
    y = zeros(length_r,length(n)); xA {1XS}  
    for j = 1:length(n) G;Thz  
        s = 0:(n(j)-m_abs(j))/2; AB")aX2% E  
        pows = n(j):-2:m_abs(j); [>wvVv  
        for k = length(s):-1:1 V07? sc<  
            p = (1-2*mod(s(k),2))* ... R'1L%srTM+  
                       prod(2:(n(j)-s(k)))/              ... 19# A7  
                       prod(2:s(k))/                     ... /woC{J)4p  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ti}G/*4  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); nk^-+olm  
            idx = (pows(k)==rpowers); $mZpX:7/u8  
            y(:,j) = y(:,j) + p*rpowern(:,idx); QB|D_?]  
        end -e(,>9Q  
         8j<+ ' R  
        if isnorm k:k!4   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6kM'f}t[C  
        end !|`vW{v  
    end FST}:*dOe5  
    % END: Compute the Zernike Polynomials !-Br?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9 &p;2/H  
    bhg OLh#  
    % Compute the Zernike functions: l<YCX[%E  
    % ------------------------------ Z5%TpAu[  
    idx_pos = m>0; J0a#QvX!  
    idx_neg = m<0; r]'Q5l4j6"  
    aq<QKn U  
    z = y; oYNp0Hc  
    if any(idx_pos) <;.->73E  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5|Or,8r(C  
    end 6h_OxO&!U  
    if any(idx_neg) UZ}>@0  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4bZ +nQgLu  
    end jXALN  
    qtLXdSc  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ZFsJeF'"  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. WCPl}7>  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated bu|ecv  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive N2_9V~!  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 999E0A$dkv  
    %   and THETA is a vector of angles.  R and THETA must have the same 5{uK;Vxse  
    %   length.  The output Z is a matrix with one column for every P-value, l-mf~{   
    %   and one row for every (R,THETA) pair. !j|93*  
    % d3|oKP6  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike wRi` L7  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) .0zNt  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) J}vxK H#=  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 kW=GFj)L  
    %   for all p. YN@ 4.&RP  
    % &QL!Y{=Y6  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ]{<`W5 b/  
    %   Zernike functions (order N<=7).  In some disciplines it is Sn lKPd  
    %   traditional to label the first 36 functions using a single mode "RF<i3{S  
    %   number P instead of separate numbers for the order N and azimuthal 3_]<H<w  
    %   frequency M. $SmmrM  
    % P95A _(T=[  
    %   Example: l[EjtN  
    % $MT'ZM  
    %       % Display the first 16 Zernike functions Aj;F$(su  
    %       x = -1:0.01:1; !7O!)WJ  
    %       [X,Y] = meshgrid(x,x); iS"(  
    %       [theta,r] = cart2pol(X,Y); & M wvj  
    %       idx = r<=1; 1L=6Z2*fB4  
    %       p = 0:15; u0(PWCi2  
    %       z = nan(size(X)); Z$? Ql@M  
    %       y = zernfun2(p,r(idx),theta(idx)); %EooGHGF?  
    %       figure('Units','normalized') @ !:~gQ  
    %       for k = 1:length(p) 7.o:(P1??g  
    %           z(idx) = y(:,k); V~uH)IMkh7  
    %           subplot(4,4,k) i: ZL0nH-  
    %           pcolor(x,x,z), shading interp lc71Pp>  
    %           set(gca,'XTick',[],'YTick',[]) =k1 ,jn+  
    %           axis square #iOoi9(  
    %           title(['Z_{' num2str(p(k)) '}']) s2{d<0x?v  
    %       end O,kzU,zOs  
    % (,gpR4O[  
    %   See also ZERNPOL, ZERNFUN. %Hk9.1hn5  
    HCI|6{k  
    %   Paul Fricker 11/13/2006 &O'6va  
    lKd+,<  
    X&[S.$_U  
    % Check and prepare the inputs: E2s lpo  
    % ----------------------------- DUk&`BSJ  
    if min(size(p))~=1 PSO9{!  
        error('zernfun2:Pvector','Input P must be vector.') +%'S>g0W=  
    end Y?(kE` R  
    &;%z1b> F  
    if any(p)>35 1N_Gk&  
        error('zernfun2:P36', ... swBgV,;   
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Nd.+Rs  
               '(P = 0 to 35).']) .X;zEyd  
    end 3Ms ` ajJ  
    kgX"LQh;[G  
    % Get the order and frequency corresonding to the function number: +P?!yH,n  
    % ---------------------------------------------------------------- v>FsP$p4yE  
    p = p(:); TX96 ^EoH  
    n = ceil((-3+sqrt(9+8*p))/2); Gk9Y{  
    m = 2*p - n.*(n+2); ^T[8j/9o^  
    FYI*44E  
    % Pass the inputs to the function ZERNFUN: E|t. 3  
    % ---------------------------------------- ,&$+ {3  
    switch nargin 2g elmQnc  
        case 3 kCXQHX  
            z = zernfun(n,m,r,theta); )Jx+R ;Z  
        case 4 OSk+l  
            z = zernfun(n,m,r,theta,nflag); O\h*?, )  
        otherwise J6eF7 fa  
            error('zernfun2:nargin','Incorrect number of inputs.') o~#cpU4{o  
    end _;G. QwHr  
    DD3.el}6a  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) G_GV  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. >wz& {9ni  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of tC0:w,C)  
    %   order N and frequency M, evaluated at R.  N is a vector of "P) f,n  
    %   positive integers (including 0), and M is a vector with the LUGyc( h  
    %   same number of elements as N.  Each element k of M must be a Zl5cHejM  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) I}djDtJ  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is O)y|G%O  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Zd~'%(q  
    %   with one column for every (N,M) pair, and one row for every 8$k`bZ  
    %   element in R. woCmpCN*I  
    % <L4.*  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- X]^FHYjhS  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is D=hy[sDBw  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to y0!-].5UH  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 pCXceNFo  
    %   for all [n,m]. td*1  
    % J!O{.v  
    %   The radial Zernike polynomials are the radial portion of the C|#GODA  
    %   Zernike functions, which are an orthogonal basis on the unit Y>Oh]?  
    %   circle.  The series representation of the radial Zernike k9>2d'Q  
    %   polynomials is N03)G2  
    % b@GL*Z  
    %          (n-m)/2 Rra3)i`*  
    %            __ 5*M3sN  
    %    m      \       s                                          n-2s LA!2!60R  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r !GB\-(  
    %    n      s=0 `w&Y[8+E  
    % v|IPus|>  
    %   The following table shows the first 12 polynomials. =<,>dBs}\  
    % nitKX.t8  
    %       n    m    Zernike polynomial    Normalization ) qD Ch  
    %       --------------------------------------------- O*;$))<wX  
    %       0    0    1                        sqrt(2) F8u;C:^d  
    %       1    1    r                           2 ['<Q402:.  
    %       2    0    2*r^2 - 1                sqrt(6) up(6/-/.7  
    %       2    2    r^2                      sqrt(6) PxuE(n V[  
    %       3    1    3*r^3 - 2*r              sqrt(8) h(M_ K  
    %       3    3    r^3                      sqrt(8) \<cs:C\h7  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 'CF?pxNQ l  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) R,]J~TfPK  
    %       4    4    r^4                      sqrt(10) Y[_{tS#u  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Gi=sJV  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) T;7=05k<_  
    %       5    5    r^5                      sqrt(12) DC9\Sp?  
    %       --------------------------------------------- |p4D!M+$7  
    % vy:-a G  
    %   Example: ]2:w?+T  
    % XH^X4W  
    %       % Display three example Zernike radial polynomials ,iUWLcOM  
    %       r = 0:0.01:1; '?j[hhfB-  
    %       n = [3 2 5]; gu~JB  
    %       m = [1 2 1]; Ge'[AhA  
    %       z = zernpol(n,m,r); i5PZ)&  
    %       figure 0m3:!#\  
    %       plot(r,z) wSy|h*a,  
    %       grid on p(B^](?  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') xqZZ(jZ  
    % }u3Q*oAGl  
    %   See also ZERNFUN, ZERNFUN2. 35q4](o9"  
    6]%SSq&  
    % A note on the algorithm. S*aVcyDEP  
    % ------------------------ bcM65pt_C  
    % The radial Zernike polynomials are computed using the series v&7yqEm}B  
    % representation shown in the Help section above. For many special "3&bh>#qY  
    % functions, direct evaluation using the series representation can L=7Y~aL=  
    % produce poor numerical results (floating point errors), because hSl6 X3W  
    % the summation often involves computing small differences between `_MRf[Z}  
    % large successive terms in the series. (In such cases, the functions 3^jkd)xw  
    % are often evaluated using alternative methods such as recurrence UFE# J  
    % relations: see the Legendre functions, for example). For the Zernike 5`_UIYcI  
    % polynomials, however, this problem does not arise, because the oouhP1py,  
    % polynomials are evaluated over the finite domain r = (0,1), and be<7Vy]j  
    % because the coefficients for a given polynomial are generally all 1<9=J`(H  
    % of similar magnitude. Quq X4  
    % M]5)u=}S-  
    % ZERNPOL has been written using a vectorized implementation: multiple =&_Y=>rA]0  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] sYfiC`9SO  
    % values can be passed as inputs) for a vector of points R.  To achieve 0uZL*4A+C  
    % this vectorization most efficiently, the algorithm in ZERNPOL GbXa=* <-<  
    % involves pre-determining all the powers p of R that are required to o4.?m6d  
    % compute the outputs, and then compiling the {R^p} into a single U%:K11Kr  
    % matrix.  This avoids any redundant computation of the R^p, and u5'jIqlU  
    % minimizes the sizes of certain intermediate variables. 6E^h#Ozl 9  
    % /h]#}y j  
    %   Paul Fricker 11/13/2006 Wr j<}L|  
    yQ [n7du  
     T)Uhp  
    % Check and prepare the inputs: _c z$w5`  
    % ----------------------------- Hf$pwfGcY]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?hFG+`"W  
        error('zernpol:NMvectors','N and M must be vectors.') S5+W<Qs  
    end uo TTHj7cq  
    P&sn IJ  
    if length(n)~=length(m) v1R  t$[  
        error('zernpol:NMlength','N and M must be the same length.') E"'4=_  
    end X/8TRiTFv  
    EGL7z`nt  
    n = n(:); ^~7/hm:  
    m = m(:); rOo |.4w  
    length_n = length(n); lZ*V.-D^]  
    2lu AF2  
    if any(mod(n-m,2)) DtFzT>$^F  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') pba`FC4R  
    end BO%aCK&  
     Z,"f2UJ  
    if any(m<0) kSfNu{YS  
        error('zernpol:Mpositive','All M must be positive.') .4cV X|T  
    end N51e.;  
    fG,)`[eD!_  
    if any(m>n) }2]m]D@%7  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') FoW|BGA~  
    end KsDovy<  
    4/N{~  
    if any( r>1 | r<0 ) +H  SKFp  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') bH Nf>  
    end ]r(&hqdR  
    \c\z 6;j  
    if ~any(size(r)==1) (7 O?NS  
        error('zernpol:Rvector','R must be a vector.') 0F-%C>&g  
    end >4G~01  
    3%(BZ23  
    r = r(:); -}CMNh   
    length_r = length(r); oXgi#(y  
    _@D"XL#L  
    if nargin==4 V6!1(|  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); hQ80R B  
        if ~isnorm C~X"ZW:d[  
            error('zernpol:normalization','Unrecognized normalization flag.') ^|lw~F  
        end 0..]c-V(G  
    else x>Gx yVE  
        isnorm = false; :soR7oHZ  
    end z5 g4+y,  
    yt {?+|tXU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >|rU*+I`  
    % Compute the Zernike Polynomials 9#:B_?e=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r!&}4lHYi  
    oC~+K@S  
    % Determine the required powers of r: 43s8a  
    % ----------------------------------- K# kMz#B+i  
    rpowers = []; mO0}Go8  
    for j = 1:length(n) Oq[YbQ'GE  
        rpowers = [rpowers m(j):2:n(j)]; ZkmY pi[  
    end ') K'Ea  
    rpowers = unique(rpowers); y1bo28  
    l\_81oZ  
    % Pre-compute the values of r raised to the required powers, B'hN3.  
    % and compile them in a matrix: t8f:?  
    % ----------------------------- hH~GH'dnaE  
    if rpowers(1)==0 D zdKBJT+  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ` 1v Dp.  
        rpowern = cat(2,rpowern{:}); 7{Zs"d{s  
        rpowern = [ones(length_r,1) rpowern]; hiw>Q7W  
    else ;$g?W"  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4G'-"u^g  
        rpowern = cat(2,rpowern{:}); S#b)RpY  
    end XaH;  
    a49t/  
    % Compute the values of the polynomials: Vtv1{/@+c  
    % -------------------------------------- t[p/65L>8  
    z = zeros(length_r,length_n); ?D+H2[n\a  
    for j = 1:length_n 8<=]4-X@  
        s = 0:(n(j)-m(j))/2; (g3DI*Z  
        pows = n(j):-2:m(j); 30b dcDm,  
        for k = length(s):-1:1 W=I~GhM  
            p = (1-2*mod(s(k),2))* ... /kV5~i<1S  
                       prod(2:(n(j)-s(k)))/          ... z,g\7F[  
                       prod(2:s(k))/                 ... OU[ FiW-E  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... xm0(U0 >  
                       prod(2:((n(j)+m(j))/2-s(k))); w3FEX$`_  
            idx = (pows(k)==rpowers); d 0 mfqP=  
            z(:,j) = z(:,j) + p*rpowern(:,idx); c!a1@G  
        end w"q^8"j!  
         KT0Pmpp5  
        if isnorm C1x(4&h  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ~_|CXPiQ8  
        end T\ [CQO  
    end br')%f}m  
    a)' P/P  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  U;LX"'}  
    FA1h!Vit  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 .yQ<  
    @Wa,  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)