切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11467阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ~7$4w# of0  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! jrl'?`O  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ]VCVV!G_=n  
    function z = zernfun(n,m,r,theta,nflag) 5Qh$>R4!"  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. :]rb}1nLB  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N c;13V(Djy  
    %   and angular frequency M, evaluated at positions (R,THETA) on the wqnHaWd*  
    %   unit circle.  N is a vector of positive integers (including 0), and xk:=.Qqh  
    %   M is a vector with the same number of elements as N.  Each element ;J>upI   
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 0ap_tCY  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 3 i;sB  
    %   and THETA is a vector of angles.  R and THETA must have the same $1E'0M`  
    %   length.  The output Z is a matrix with one column for every (N,M) @,:6wKMc  
    %   pair, and one row for every (R,THETA) pair. s;ivoGe}  
    % JqmxS*_P  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike '-l.2IUyT  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 1o8C4?T&  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral #lY_XV.  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3T= ?!|e  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized f'oO/0lx  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Ct<]('Hm(  
    % B4Fuvi  
    %   The Zernike functions are an orthogonal basis on the unit circle. (6crWw{3  
    %   They are used in disciplines such as astronomy, optics, and WR<?_X_  
    %   optometry to describe functions on a circular domain. cSD$I^$oq  
    %  3cA '9  
    %   The following table lists the first 15 Zernike functions. .}c&" L;W  
    % $ o }  
    %       n    m    Zernike function           Normalization chE}TK  
    %       -------------------------------------------------- P U2^4h/[`  
    %       0    0    1                                 1 KbSE=3  
    %       1    1    r * cos(theta)                    2 ) w1`<7L  
    %       1   -1    r * sin(theta)                    2 q21l{R{Y  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) qN"Q3mU^h*  
    %       2    0    (2*r^2 - 1)                    sqrt(3) WqJrDj~  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Z_h-5VU-  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) (UB?UJc  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 8-PHW,1@a3  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) fpa ~~E-  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) h.*v0cq:  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ]<*-pRN  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !kS/Ei  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) _M) G  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |kGQ~:k+P  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) dLfB){>S  
    %       -------------------------------------------------- Fy$f`w_H@  
    % |E9'ii&?B  
    %   Example 1: oMNSQMlI  
    % {ldt/dl~  
    %       % Display the Zernike function Z(n=5,m=1) DS1{~_>nFu  
    %       x = -1:0.01:1; 8Drz i!}  
    %       [X,Y] = meshgrid(x,x); agkGUK/  
    %       [theta,r] = cart2pol(X,Y); cSTF$62E  
    %       idx = r<=1; #M)+sK$H%f  
    %       z = nan(size(X)); <Ej`zGhWz  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 2}n7f7[/b  
    %       figure P?ms^   
    %       pcolor(x,x,z), shading interp Rc vp@  
    %       axis square, colorbar RKPX*(i~  
    %       title('Zernike function Z_5^1(r,\theta)') 5HaI$>h6  
    % 4nrn Npf`b  
    %   Example 2: _CMNmmp`e  
    % bE;c&g  
    %       % Display the first 10 Zernike functions q5G`q&O5  
    %       x = -1:0.01:1; DF>3)oTF  
    %       [X,Y] = meshgrid(x,x); w>o/)TTJL  
    %       [theta,r] = cart2pol(X,Y); mxE<  
    %       idx = r<=1; YsMM$rjP +  
    %       z = nan(size(X)); brX[-  
    %       n = [0  1  1  2  2  2  3  3  3  3]; [w90gp1O[  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Ew JNpecX  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; dmWCNeja.  
    %       y = zernfun(n,m,r(idx),theta(idx)); );zLgNx,  
    %       figure('Units','normalized') j5wfqi  
    %       for k = 1:10 LS$zA>:  
    %           z(idx) = y(:,k); oOHY+'V  
    %           subplot(4,7,Nplot(k)) )Dp0swJ  
    %           pcolor(x,x,z), shading interp M1icj~Jr  
    %           set(gca,'XTick',[],'YTick',[]) =4$ErwI_dm  
    %           axis square iB|htH'T  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 4f&"1:  
    %       end ,{;*b v  
    % #aQQd8   
    %   See also ZERNPOL, ZERNFUN2. s"XwO8yhM  
    S=gb y  
    %   Paul Fricker 11/13/2006 &1Cs'  
    UwxszEHC  
    wn;)La  
    % Check and prepare the inputs: (:I]v_qEYS  
    % ----------------------------- !S%0#d2  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) {a__/I>)  
        error('zernfun:NMvectors','N and M must be vectors.') <F8e?xy  
    end PXyv);#Q`  
    fwvwmZW  
    if length(n)~=length(m) :..WL;gC  
        error('zernfun:NMlength','N and M must be the same length.') {-lpYD^k3  
    end ap8q`a{j^  
    T(qTipq0  
    n = n(:); P2@Z7DhQ  
    m = m(:); Wb>;L@jB7  
    if any(mod(n-m,2))  Q6RTH  
        error('zernfun:NMmultiplesof2', ... L9<\vJ  
              'All N and M must differ by multiples of 2 (including 0).')  \_  
    end *NG\3%}%|@  
    : 0 ,yq?M  
    if any(m>n) Vef!5]t5  
        error('zernfun:MlessthanN', ... 4i PVpro  
              'Each M must be less than or equal to its corresponding N.') E#\Oe_eq~N  
    end b8_F2  
    yVgC1-8i*  
    if any( r>1 | r<0 ) fZj,Q#}D  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ="5D}%  
    end <:Mz2Rg  
    y%X! l(gQ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) d]Y;rqjue  
        error('zernfun:RTHvector','R and THETA must be vectors.') 5.*,IedY  
    end *FktI\tS  
    -|Zzs4bx  
    r = r(:); lm 96:S  
    theta = theta(:); _-lE$ O  
    length_r = length(r); b*.aaOb  
    if length_r~=length(theta) n0!2-Q5U)h  
        error('zernfun:RTHlength', ... 3C<G8*4);/  
              'The number of R- and THETA-values must be equal.') ,~=]3qmbR  
    end 6Iqy"MQuq  
    .1q}mw   
    % Check normalization: vc&v+5Y  
    % -------------------- EG`6T  
    if nargin==5 && ischar(nflag) Q#G xo  
        isnorm = strcmpi(nflag,'norm'); uDP:kM  
        if ~isnorm aopZ-^  
            error('zernfun:normalization','Unrecognized normalization flag.') D;NL*4zt  
        end e b} P/  
    else Y X^c}t}U  
        isnorm = false; 6^WNwe\  
    end yKoZj   
    (jA5`4>u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x};~8lGT>t  
    % Compute the Zernike Polynomials .whi0~i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GTM0Qvf?  
    DtFHh/X  
    % Determine the required powers of r:  =aZ d>{Y  
    % ----------------------------------- =T,Q7Dh  
    m_abs = abs(m); AU3Rz&~  
    rpowers = []; 5XUm}D$  
    for j = 1:length(n) !9WGZfK+0Y  
        rpowers = [rpowers m_abs(j):2:n(j)]; OemY'M? ZQ  
    end 7;o:r$08&}  
    rpowers = unique(rpowers); NX,m6u  
    Q{|%kU"  
    % Pre-compute the values of r raised to the required powers, Yu\$Y0 {]  
    % and compile them in a matrix: X2@Ef2EkM  
    % ----------------------------- C[<}eD4bV  
    if rpowers(1)==0 h/t;ZLUAZP  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9gcW;  
        rpowern = cat(2,rpowern{:}); &U7v=a  
        rpowern = [ones(length_r,1) rpowern]; I09 W=  
    else Tj#S')s8  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~c35Y9-5  
        rpowern = cat(2,rpowern{:}); ?!P0UTe~  
    end ea"X$<s>-  
    n2bhCd]j<b  
    % Compute the values of the polynomials: L@{'J  
    % -------------------------------------- &liON1GLM  
    y = zeros(length_r,length(n)); "D _r</b  
    for j = 1:length(n) X|T|iB,vT  
        s = 0:(n(j)-m_abs(j))/2; 5[Vr {^)  
        pows = n(j):-2:m_abs(j); (s,&,I=@  
        for k = length(s):-1:1 Jg;[k  
            p = (1-2*mod(s(k),2))* ... x<gmDy*  
                       prod(2:(n(j)-s(k)))/              ... %-blx)Pc  
                       prod(2:s(k))/                     ... |${4sUR  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~^1y(-cw  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 1`K-f m)  
            idx = (pows(k)==rpowers); S-S%IdL  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Wp>t\S~N  
        end |+q_kx@?l  
         pPBXUu'  
        if isnorm {&n- @$?  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); D<6$@ZJ  
        end E+lR&~mK=  
    end x(TF4W=j  
    % END: Compute the Zernike Polynomials IQPu%n{0v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,Q-,#C"  
    iAk:CJ{  
    % Compute the Zernike functions: hn8xs5vN  
    % ------------------------------ ;DuVb2~+  
    idx_pos = m>0; o'#& =h$_  
    idx_neg = m<0; MW 7~=T  
    |reA`&<q  
    z = y; ; BN81;  
    if any(idx_pos) 5v)^4( )  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); fEZuv?@  
    end e,xL~P{|  
    if any(idx_neg) <a"(B*bBd  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); /aI@2]|~  
    end \#HW.5  
    {$z54nvw$  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) L+8ar9es  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. EB[T 5{  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated u}iuf_  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ..} P$  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 9r?Z'~,Za  
    %   and THETA is a vector of angles.  R and THETA must have the same <l<O2l  
    %   length.  The output Z is a matrix with one column for every P-value, |8k1Bap`z  
    %   and one row for every (R,THETA) pair. l(Rn=?  
    % |{N{VK  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike e34>q:#5l  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) qq5X3K2&  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Pf[E..HF*d  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 sUG!dwqqd  
    %   for all p. 3ay},3MCV%  
    % cqG6di7#  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 [[$C tqLg  
    %   Zernike functions (order N<=7).  In some disciplines it is 9hA`I tS  
    %   traditional to label the first 36 functions using a single mode 1"H;Tr|  
    %   number P instead of separate numbers for the order N and azimuthal 0nb%+],pX  
    %   frequency M. nQiZ6[L  
    % <o%T]  
    %   Example: WQ9e~D"  
    % `dZ|Ko%k  
    %       % Display the first 16 Zernike functions [|Qzx w9  
    %       x = -1:0.01:1; <8:h%%$?  
    %       [X,Y] = meshgrid(x,x); LCB-ewy#E  
    %       [theta,r] = cart2pol(X,Y); RCWmdR#}V  
    %       idx = r<=1; q^aDZzx,z  
    %       p = 0:15; : "85w#r  
    %       z = nan(size(X)); C8-7XQ=B:b  
    %       y = zernfun2(p,r(idx),theta(idx)); 3k1e  
    %       figure('Units','normalized') JIySe:p3  
    %       for k = 1:length(p) 36=aahXd\  
    %           z(idx) = y(:,k); +x2JC' -H  
    %           subplot(4,4,k) m{Q #f\<  
    %           pcolor(x,x,z), shading interp \qG ?'Iy  
    %           set(gca,'XTick',[],'YTick',[]) 8&2 +=<Q~  
    %           axis square 2o SM|  
    %           title(['Z_{' num2str(p(k)) '}']) lb_N"90p  
    %       end , #)d  
    % "8f4s|@ 3  
    %   See also ZERNPOL, ZERNFUN. I\mF dE  
    ~[%CUc"  
    %   Paul Fricker 11/13/2006 }Fjbj5w0  
    %66="1z0@  
    *z~,|DQ(A  
    % Check and prepare the inputs: hN3FH# YO  
    % ----------------------------- al2lC#Sy  
    if min(size(p))~=1 <X)\P}"L4  
        error('zernfun2:Pvector','Input P must be vector.') l)NkTZ<]  
    end p\&O;48=  
    hE&6;3">  
    if any(p)>35 ~IhM(Q*mO!  
        error('zernfun2:P36', ... tj13!Cc}e`  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Xz^nm\  
               '(P = 0 to 35).']) MfL7|b)  
    end J0!V(  
    KsKE#])&l  
    % Get the order and frequency corresonding to the function number: $*0-+h  
    % ---------------------------------------------------------------- -#ZLu.  
    p = p(:); H,(vTthd  
    n = ceil((-3+sqrt(9+8*p))/2); ^-"Iw y  
    m = 2*p - n.*(n+2); z.8/[)  
    X)3(.L  
    % Pass the inputs to the function ZERNFUN: @62,.\F  
    % ---------------------------------------- >Z!!`0{  
    switch nargin #^T`vTD-  
        case 3 wMVUTm  
            z = zernfun(n,m,r,theta); a}y b~:TC  
        case 4 `>sOOA  
            z = zernfun(n,m,r,theta,nflag); =dGp&9K,fw  
        otherwise K%J?'-  
            error('zernfun2:nargin','Incorrect number of inputs.') UePkSz9EU  
    end 5Y *4a%"  
    .y s_'F-]0  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ia5%  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. $)#orZtzr  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of RhowhQ)G  
    %   order N and frequency M, evaluated at R.  N is a vector of :M"+  
    %   positive integers (including 0), and M is a vector with the 8$}<4 `39  
    %   same number of elements as N.  Each element k of M must be a g7zl5^o3j  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k)  nYx /q  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is pbx*Y`v  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix +@rFbsyJ.  
    %   with one column for every (N,M) pair, and one row for every E*YmHJ:k  
    %   element in R. ,?8a3%  
    % MN<LZC% $  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- dEk#"cvg  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is jF?0,g  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 3= =["hO  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 b=EI?XwJ  
    %   for all [n,m]. 1?.CXq K  
    % S(PV*e8  
    %   The radial Zernike polynomials are the radial portion of the Wr[LC&  
    %   Zernike functions, which are an orthogonal basis on the unit q1VKoKb6\:  
    %   circle.  The series representation of the radial Zernike 3 `_/h' ~  
    %   polynomials is 8w:ay,=  
    % wH|%3 @eJ  
    %          (n-m)/2 {"'M2w:|D1  
    %            __ @(#vg\UH  
    %    m      \       s                                          n-2s }uIQ@f`  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r /l7 %x.  
    %    n      s=0 XCI  
    % Iy_5k8 ]  
    %   The following table shows the first 12 polynomials. Ic&~iqQ  
    % I7U/={[J  
    %       n    m    Zernike polynomial    Normalization nFlN{_/  
    %       --------------------------------------------- *)Pm   
    %       0    0    1                        sqrt(2) WHC/'kvF  
    %       1    1    r                           2 EGD{nE  
    %       2    0    2*r^2 - 1                sqrt(6) 8[@,i|kgg0  
    %       2    2    r^2                      sqrt(6) $s _k/dM~&  
    %       3    1    3*r^3 - 2*r              sqrt(8) vl/!w2  
    %       3    3    r^3                      sqrt(8) &0T.o,&y  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) NV./p`k  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ]+e zg(C}  
    %       4    4    r^4                      sqrt(10) 9fX0?POG  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) {gzQ/|}#z-  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) XuP%/\  
    %       5    5    r^5                      sqrt(12) 4S42h_9  
    %       --------------------------------------------- M %,\2!$  
    % jsAx;Z:QT  
    %   Example: e;vI XJE  
    % diXWm-ZKL  
    %       % Display three example Zernike radial polynomials B*G]Dr)e  
    %       r = 0:0.01:1; b,Eq-Z;  
    %       n = [3 2 5]; Qy9_tvq X  
    %       m = [1 2 1]; _gVihu  
    %       z = zernpol(n,m,r); w~6/p  
    %       figure 76T7<.S  
    %       plot(r,z) o135Xh$_>'  
    %       grid on #btz94/~O  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') _7N?R0j^9N  
    % E#P#{_BR^  
    %   See also ZERNFUN, ZERNFUN2. x6K_!L*Fx]  
    +\+j/sa  
    % A note on the algorithm. !Mw/j`*  
    % ------------------------ 6KGT?d  
    % The radial Zernike polynomials are computed using the series D<v< :  
    % representation shown in the Help section above. For many special 3sV$#l P  
    % functions, direct evaluation using the series representation can ox SSEs  
    % produce poor numerical results (floating point errors), because ;*rGZ?%*  
    % the summation often involves computing small differences between 7s%D(;W_Mo  
    % large successive terms in the series. (In such cases, the functions P:g!~&Q  
    % are often evaluated using alternative methods such as recurrence q2#Ebw %]  
    % relations: see the Legendre functions, for example). For the Zernike npeL1zO-$  
    % polynomials, however, this problem does not arise, because the Y1lUO[F j  
    % polynomials are evaluated over the finite domain r = (0,1), and pOK=o$1V8  
    % because the coefficients for a given polynomial are generally all GQg 2!s(  
    % of similar magnitude. ;r2DQg"#@  
    % G739Ne[gL  
    % ZERNPOL has been written using a vectorized implementation: multiple &DGqY5=  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] <]?71{7X  
    % values can be passed as inputs) for a vector of points R.  To achieve vgc~%k62c  
    % this vectorization most efficiently, the algorithm in ZERNPOL t _ CMsp  
    % involves pre-determining all the powers p of R that are required to Eet/l]e#a  
    % compute the outputs, and then compiling the {R^p} into a single u"5/QB{  
    % matrix.  This avoids any redundant computation of the R^p, and #U0| j?!D  
    % minimizes the sizes of certain intermediate variables. e| C2/U-  
    % )T '?"guh`  
    %   Paul Fricker 11/13/2006 X%-"b`  
    TS#1+f]9J<  
    +;!^aNJ,  
    % Check and prepare the inputs: ~~Cd9Hzi  
    % ----------------------------- fV9+FOZn  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7/&taw%i  
        error('zernpol:NMvectors','N and M must be vectors.') &pl)E$Y  
    end ]l }v  
    L]=mQo  
    if length(n)~=length(m) ?p6@uM\Q7  
        error('zernpol:NMlength','N and M must be the same length.') bHq.3;  
    end Qv,ORm h5  
    1V5N)ty  
    n = n(:); ^Zpz@T>m  
    m = m(:); a%y*e+oM  
    length_n = length(n); FM3.z)>  
    /slCK4vFc  
    if any(mod(n-m,2)) k'.cl^6Z8  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') (| O(BxS  
    end !]"M]tyv\  
    DFfh!KKR$  
    if any(m<0) aIT0t0.  
        error('zernpol:Mpositive','All M must be positive.') ci%$So 2#  
    end v7j/_;JE;  
    z__{6"^  
    if any(m>n) uj}%S_9  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ixy:S1 pI  
    end rU>l(O'b  
    K\}qY dPF  
    if any( r>1 | r<0 ) 0I)eYksh  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') REc90v2"  
    end fZs}u<3Q)  
    Q&$2F:4f&  
    if ~any(size(r)==1) 0<-A2O),  
        error('zernpol:Rvector','R must be a vector.') >]Mhkf/=)  
    end |I]G=.*E  
    {o'(_.{  
    r = r(:); ).Z U0fV  
    length_r = length(r); 6X2w)cO  
    *ax&}AHK[/  
    if nargin==4 abe5 As r  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm');  ^~B#r#  
        if ~isnorm q.hpnE~#lh  
            error('zernpol:normalization','Unrecognized normalization flag.') c8l\1ce?7  
        end nKwOSGPQt  
    else }P!:0w3  
        isnorm = false; .$&vSOgd(  
    end Ux);~P`/o  
    OS~Z@'Eg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t:'^pYN:g  
    % Compute the Zernike Polynomials M&(0n?R"R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 41C6ey  
    9-Qu5L~  
    % Determine the required powers of r: [2!?pVI  
    % ----------------------------------- >.gT9  
    rpowers = []; 93)1  
    for j = 1:length(n) 9j5k=IXg#a  
        rpowers = [rpowers m(j):2:n(j)]; /jc; 2  
    end WD8F]+2O\  
    rpowers = unique(rpowers); -<\hcV`&  
    Zh:@A Fz:R  
    % Pre-compute the values of r raised to the required powers, /KgP<2p  
    % and compile them in a matrix: Y4Jaw2b  
    % ----------------------------- CTB qX  
    if rpowers(1)==0 CrGDo9JdvT  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); GKXd"8z]  
        rpowern = cat(2,rpowern{:}); DS< E:'N  
        rpowern = [ones(length_r,1) rpowern]; n7#}i2:  
    else }1Hy[4B(k\  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9Kc;]2m  
        rpowern = cat(2,rpowern{:}); Xj6?,J  
    end AbMf8$$3SH  
    ti ic>j\D  
    % Compute the values of the polynomials: !5zj+N  
    % -------------------------------------- &K"qnng/y  
    z = zeros(length_r,length_n); (ap,3$ hS  
    for j = 1:length_n M;X}v#l|XI  
        s = 0:(n(j)-m(j))/2; " V4ru&a  
        pows = n(j):-2:m(j); h],l`lT1\  
        for k = length(s):-1:1 2,6|l.WFpE  
            p = (1-2*mod(s(k),2))* ... DvBRK}'  
                       prod(2:(n(j)-s(k)))/          ... vcp[$-$QGJ  
                       prod(2:s(k))/                 ... IDt7KJ@hc  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... /kFw(l_.  
                       prod(2:((n(j)+m(j))/2-s(k))); {@67'jL  
            idx = (pows(k)==rpowers); DUs0L\  
            z(:,j) = z(:,j) + p*rpowern(:,idx); YLNJ4nE  
        end 3AC/;WB9  
         <`=(Ui$fD  
        if isnorm u85Uy yN  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); J+nUxF;EE  
        end !X{>?.@~  
    end )WF*fcx{  
    V53iWWaFe  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  &D*22R4{CX  
    ;;? Zd  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Hm*?<o9mxC  
    1<TB{}b Z  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)