切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11260阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 BsJClKp/  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! %EuSP0  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .^eajb`:  
    function z = zernfun(n,m,r,theta,nflag) w~Aw?75 t  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle.  tmKHT  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N eot%T h?[  
    %   and angular frequency M, evaluated at positions (R,THETA) on the + JsMYv  
    %   unit circle.  N is a vector of positive integers (including 0), and +xp)la.  
    %   M is a vector with the same number of elements as N.  Each element 4S5U|n  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 3VaL%+T$,  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, wt]onve}%  
    %   and THETA is a vector of angles.  R and THETA must have the same Zcjh  
    %   length.  The output Z is a matrix with one column for every (N,M) $i1$nc8  
    %   pair, and one row for every (R,THETA) pair. T,r?% G{XE  
    % f}=>c|Do  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .~u[rc|<  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), xa8;"Y~"bg  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral |0OY> 5  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, nvbzCtC  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ||D PIn]  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \(_(pcl  
    % 5:|9pe)  
    %   The Zernike functions are an orthogonal basis on the unit circle. ^p)#;$6b  
    %   They are used in disciplines such as astronomy, optics, and 0RgE~x!hI  
    %   optometry to describe functions on a circular domain. (1 (~r"4I  
    % z^vfha  
    %   The following table lists the first 15 Zernike functions. .exBU1Yk@  
    % 8yk7d76Y  
    %       n    m    Zernike function           Normalization SSxp!E'  
    %       -------------------------------------------------- P?p]sLrP  
    %       0    0    1                                 1 oR7[[H.4  
    %       1    1    r * cos(theta)                    2 4M#i_.`z  
    %       1   -1    r * sin(theta)                    2 ^hXm=r4ozR  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) {]2^b)  
    %       2    0    (2*r^2 - 1)                    sqrt(3) auga`*  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) fV@ [S  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) @R%* ;)*F  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) "AU.Eh"-1  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) .fbY2b([  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) LaO8)lqR  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) .W^B(y(tA  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yX4 Vv{g  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ^3[_4av  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) GF6o  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) e8rZP(g&g  
    %       -------------------------------------------------- 2TU V9Z  
    % C7ug\_,s  
    %   Example 1: hs[x\:})/  
    % =WjHf8v;  
    %       % Display the Zernike function Z(n=5,m=1) tPl 4'tW_  
    %       x = -1:0.01:1; 1^LdYO?g'  
    %       [X,Y] = meshgrid(x,x); jB8Q% {%  
    %       [theta,r] = cart2pol(X,Y); 4XNheP;b  
    %       idx = r<=1; `Jk0jj6Z  
    %       z = nan(size(X)); /i3 JP}  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); kL%ot<rt)w  
    %       figure N]w_9p~=1  
    %       pcolor(x,x,z), shading interp u Jqv@GFv  
    %       axis square, colorbar +9w[/n^,G  
    %       title('Zernike function Z_5^1(r,\theta)') [EDX@Kdq)  
    % r5DR F4,7  
    %   Example 2: l3sF/zkH  
    % 4d`YZNvZW/  
    %       % Display the first 10 Zernike functions ID43s9  
    %       x = -1:0.01:1; ~.aR=m\#  
    %       [X,Y] = meshgrid(x,x); r|EN5  
    %       [theta,r] = cart2pol(X,Y); C< 9x\JY%  
    %       idx = r<=1; G9f6'5 O  
    %       z = nan(size(X)); HohCb4do  
    %       n = [0  1  1  2  2  2  3  3  3  3]; @khFk.LBD  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; $AZYY\1  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; /?eVWCR  
    %       y = zernfun(n,m,r(idx),theta(idx)); au{) 5W4~  
    %       figure('Units','normalized') 053bM)qW  
    %       for k = 1:10 LH5Z@*0#  
    %           z(idx) = y(:,k); (-gomn  
    %           subplot(4,7,Nplot(k)) @|\9<S  
    %           pcolor(x,x,z), shading interp ,X.[37  
    %           set(gca,'XTick',[],'YTick',[]) 17 Ugz?  
    %           axis square GGp.u@\r  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ; ~pgF_  
    %       end C|V7ZL>W  
    % G&ck98  
    %   See also ZERNPOL, ZERNFUN2. !;eE7xn&  
    ib=)N)l  
    %   Paul Fricker 11/13/2006 Sc7 Ftb%  
    'z ?Hv  
    B*T n@t W  
    % Check and prepare the inputs: KqK]R6>  
    % ----------------------------- PVIOe}N  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <tD,Uu{P  
        error('zernfun:NMvectors','N and M must be vectors.') <Ht"t]u*Bn  
    end A NhqS  
    i#'K7XM2  
    if length(n)~=length(m) KN}#8.'>3  
        error('zernfun:NMlength','N and M must be the same length.') .KrLvic  
    end ?()*"+N(ck  
    ~/L:$  
    n = n(:); T#ls2UL*xh  
    m = m(:); CD&a_-'z$K  
    if any(mod(n-m,2)) )ros-d p`  
        error('zernfun:NMmultiplesof2', ... wW%b~JX  
              'All N and M must differ by multiples of 2 (including 0).') \D@j`o  
    end G"/;Cq=t  
    Z>g72I%X  
    if any(m>n) dla_uXtM6  
        error('zernfun:MlessthanN', ... //&3{B  
              'Each M must be less than or equal to its corresponding N.') s~Eo]e  
    end pr<u 5  
    B ~v6_x  
    if any( r>1 | r<0 ) b 7sfr!t_d  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') %r^tZ;; l  
    end hi(b\ ABx  
    9C7Npf?~M  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) =F \Xt "  
        error('zernfun:RTHvector','R and THETA must be vectors.') >g$iO`2  
    end RvR.t"8  
    I bD u+~)  
    r = r(:); <-1:o*8:}  
    theta = theta(:); -53c0g@X  
    length_r = length(r); 0Z2XVq~T$  
    if length_r~=length(theta) ]WMzWt:L  
        error('zernfun:RTHlength', ... }XUL\6U  
              'The number of R- and THETA-values must be equal.') #x.v)S  
    end X!|eRA~o  
    &<><4MQ  
    % Check normalization: >a975R*g  
    % -------------------- )xVf3l pQ  
    if nargin==5 && ischar(nflag) ! VT$U6  
        isnorm = strcmpi(nflag,'norm'); 4rDV CXE  
        if ~isnorm u.A}&'H  
            error('zernfun:normalization','Unrecognized normalization flag.') 1L`V{\_0s  
        end (c0L@ 8L  
    else 29=ob("  
        isnorm = false; B*:I-5  
    end /S J><  
    jwjLxt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )&E]   
    % Compute the Zernike Polynomials m=n79]b:N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% </'n={+q  
    O)W+rmToI  
    % Determine the required powers of r: vw>(JCR  
    % ----------------------------------- ~0+<-T  
    m_abs = abs(m); .(/HUQn  
    rpowers = []; rV\G/)xL  
    for j = 1:length(n) i%!<9D~n  
        rpowers = [rpowers m_abs(j):2:n(j)]; T}{zh  
    end 'C}ku>B_r  
    rpowers = unique(rpowers); [*u\S  
    l1kHFeq  
    % Pre-compute the values of r raised to the required powers, 8VG}-   
    % and compile them in a matrix: 1?w=v|b:P)  
    % ----------------------------- 6Br^Ugy  
    if rpowers(1)==0 <V)z{uK  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3f$n8>mq  
        rpowern = cat(2,rpowern{:}); @H$8;CRM  
        rpowern = [ones(length_r,1) rpowern]; /pkN=OBR  
    else CT_tJ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); F3vywN1$,  
        rpowern = cat(2,rpowern{:}); J|hVD  
    end OYxYlUq  
    oQpGa>6U&  
    % Compute the values of the polynomials: @r[SqGa:  
    % -------------------------------------- @"h4S*U  
    y = zeros(length_r,length(n)); `%~}p7Zu  
    for j = 1:length(n) t$,G%micj  
        s = 0:(n(j)-m_abs(j))/2; }|/A &c  
        pows = n(j):-2:m_abs(j); 2%fzRXhu%  
        for k = length(s):-1:1 F5+F O^3E  
            p = (1-2*mod(s(k),2))* ... \IC^z  
                       prod(2:(n(j)-s(k)))/              ... g]JJ!$*1  
                       prod(2:s(k))/                     ... &?Erkc~#  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 9i 9 ,X^=  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ud(0}[  
            idx = (pows(k)==rpowers); jP/Vqe%%8  
            y(:,j) = y(:,j) + p*rpowern(:,idx); [?:MIl#!  
        end 8a@k6OZ  
         Jlb{1B$7  
        if isnorm 'bLP#TAzf  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >`&2]Wc)  
        end e(0 cz6  
    end M`q|GY  
    % END: Compute the Zernike Polynomials fsK=]~<g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'MX|=K!C  
    ^S;{;c+'  
    % Compute the Zernike functions: OAiW8B Ae  
    % ------------------------------ Q5dqn"?  
    idx_pos = m>0; A{-S )Z3}  
    idx_neg = m<0; Iv3yDL;  
    7neJV  
    z = y; &R.5t/x_  
    if any(idx_pos) ( sl{Rgxe*  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); urkuG4cY  
    end (||qFu9a  
    if any(idx_neg) - |DWPU!"  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); FsO-xG"@"  
    end vOCaru?~h  
    SX'NFdY  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) _8K8Ai-~.>  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. H'k~;  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ,%x2SyA  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 2P'Vp7f6 Y  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, paN=I=:*M  
    %   and THETA is a vector of angles.  R and THETA must have the same WhH60/`  
    %   length.  The output Z is a matrix with one column for every P-value, [bo"!Qk%  
    %   and one row for every (R,THETA) pair. hmLI9TUe6  
    % ,-EN{ed  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike $,r%@'=&  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 8'3&z-  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 5z3WRg  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 H*0g*(  
    %   for all p. =&"pG` x  
    % \,p?pL<'  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 bL0]Yuh  
    %   Zernike functions (order N<=7).  In some disciplines it is G] tT=X[  
    %   traditional to label the first 36 functions using a single mode $$4flfx  
    %   number P instead of separate numbers for the order N and azimuthal pcscNUp  
    %   frequency M. +N,Fq/x  
    % kn3GgdU  
    %   Example: ]!P6Z?  
    % oui0:Vy<  
    %       % Display the first 16 Zernike functions !7#*Wdt+P  
    %       x = -1:0.01:1; d@JavcR  
    %       [X,Y] = meshgrid(x,x); OH n~DL2  
    %       [theta,r] = cart2pol(X,Y); }/NjZ*u  
    %       idx = r<=1; j/T@-7^0  
    %       p = 0:15; g_tEUaiK  
    %       z = nan(size(X)); O7Jp ;  
    %       y = zernfun2(p,r(idx),theta(idx)); q(s0dkrj  
    %       figure('Units','normalized') Oa@SyroF=  
    %       for k = 1:length(p) xK1w->[  
    %           z(idx) = y(:,k); 7{S;~VH3  
    %           subplot(4,4,k) Bgsi$2hI  
    %           pcolor(x,x,z), shading interp @wAYhnxq  
    %           set(gca,'XTick',[],'YTick',[]) 7I(QTc)*  
    %           axis square `N}'5{I  
    %           title(['Z_{' num2str(p(k)) '}']) [["eK9 }0  
    %       end ) AGE"M3X  
    % )&)tX.  
    %   See also ZERNPOL, ZERNFUN. rO1N@kd/  
    JGzEm>_ m  
    %   Paul Fricker 11/13/2006 r:U<cL T[9  
    @2$Uk!  
    11A;z[Zk  
    % Check and prepare the inputs: daQJ{Cd,w  
    % ----------------------------- K7qR  
    if min(size(p))~=1 yzNDXA.  
        error('zernfun2:Pvector','Input P must be vector.') 6TQ[2%X'  
    end vBY?3p,0p  
    FA%BzU5^  
    if any(p)>35 9I1i(0q  
        error('zernfun2:P36', ... RtaMrG=D  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... j3 @Q  
               '(P = 0 to 35).']) ,;h}<("q  
    end e:QH3|'y  
    ~Bt >Y  
    % Get the order and frequency corresonding to the function number: RS{E|  
    % ---------------------------------------------------------------- -BrJ5]T>*  
    p = p(:); P$/Y9o  
    n = ceil((-3+sqrt(9+8*p))/2); sg<c1  
    m = 2*p - n.*(n+2); ]6WP;.[  
    ~\O,#j`_  
    % Pass the inputs to the function ZERNFUN: 8(-N;<Ef2  
    % ---------------------------------------- A(JgAV1{  
    switch nargin k,/2]{#53d  
        case 3 m]VOw)mBF  
            z = zernfun(n,m,r,theta); (%]M a  
        case 4 o~'UWU'#  
            z = zernfun(n,m,r,theta,nflag); _E^ !, Wz  
        otherwise ZP4y35&%y  
            error('zernfun2:nargin','Incorrect number of inputs.') zgSv -h+f  
    end 6?l|MU"Q.  
    @.v{hkM`  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 2P VQSwW:  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. I !g+K  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of PA${<wyBR_  
    %   order N and frequency M, evaluated at R.  N is a vector of )9V8&,  
    %   positive integers (including 0), and M is a vector with the /8s>JPXKH[  
    %   same number of elements as N.  Each element k of M must be a _n!W4zwi  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) T|h'"3'  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is SQI =D8  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix h[j(@P  
    %   with one column for every (N,M) pair, and one row for every rPoq~p[Y  
    %   element in R. 690;\O '  
    % [!>DQE  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 5^GrG|~  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is }FT8 [m<  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 8H2A<&3i  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 1<&nHFJ;[  
    %   for all [n,m]. :P2 0g](  
    % aX(Y `g)|  
    %   The radial Zernike polynomials are the radial portion of the vS+E`[  
    %   Zernike functions, which are an orthogonal basis on the unit 'jd fUB  
    %   circle.  The series representation of the radial Zernike v L!?4k  
    %   polynomials is OE_A$8L  
    % s<fzk1LZ  
    %          (n-m)/2 K6@9=_A  
    %            __ |s*tRag  
    %    m      \       s                                          n-2s >r5s>A[YC  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ~<Sb:I zld  
    %    n      s=0 "gGv>]3  
    % Y8%*S%yO  
    %   The following table shows the first 12 polynomials. i[a1ij=  
    % tAH0o\1;  
    %       n    m    Zernike polynomial    Normalization 8+OcM ;0  
    %       --------------------------------------------- a<mM )[U  
    %       0    0    1                        sqrt(2) 29AWg(9?aS  
    %       1    1    r                           2 ^%~ux0%^T  
    %       2    0    2*r^2 - 1                sqrt(6) (b>B6W\&  
    %       2    2    r^2                      sqrt(6) -|nHwSrCZ/  
    %       3    1    3*r^3 - 2*r              sqrt(8) 0dKi25J  
    %       3    3    r^3                      sqrt(8) v\b@;H`  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) K1*]6x,  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) qJf=f3  
    %       4    4    r^4                      sqrt(10) OVgx2_F  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) W2G@-`,  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 0) T`&u3!  
    %       5    5    r^5                      sqrt(12) S, %BhQ[  
    %       --------------------------------------------- Xj("  
    % dyMj=e  
    %   Example: !%s&GD8&l  
    % nFY6K%[  
    %       % Display three example Zernike radial polynomials 1pT-PO 3=  
    %       r = 0:0.01:1; 3ZEV*=+T5  
    %       n = [3 2 5]; @ATJ|5.gr  
    %       m = [1 2 1]; p!]$!qHO (  
    %       z = zernpol(n,m,r); h8me.=S&  
    %       figure ^~Dmb2h  
    %       plot(r,z) +{F2hEYP  
    %       grid on pk,]yi,ZF  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ;)nV  
    % \uT y\KA  
    %   See also ZERNFUN, ZERNFUN2. q V +gQ  
    d}`Z| ex  
    % A note on the algorithm. .3 JLa8y  
    % ------------------------ 4$^\s5K  
    % The radial Zernike polynomials are computed using the series eVy>  
    % representation shown in the Help section above. For many special B"rfR_B2M#  
    % functions, direct evaluation using the series representation can a\BV%'Zqg  
    % produce poor numerical results (floating point errors), because wxx3']:  
    % the summation often involves computing small differences between WFTXSHcG  
    % large successive terms in the series. (In such cases, the functions 3r]:k) J  
    % are often evaluated using alternative methods such as recurrence |{a`,%mw  
    % relations: see the Legendre functions, for example). For the Zernike BlrZ<\-/  
    % polynomials, however, this problem does not arise, because the -~'{WSJ  
    % polynomials are evaluated over the finite domain r = (0,1), and %Ct^{k~1  
    % because the coefficients for a given polynomial are generally all D; bHX  
    % of similar magnitude. +%%Ef]  
    % BS_ 3|  
    % ZERNPOL has been written using a vectorized implementation: multiple 3?+CP-T-j  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 4|#@41\ B  
    % values can be passed as inputs) for a vector of points R.  To achieve dpPu&m+  
    % this vectorization most efficiently, the algorithm in ZERNPOL Zr%,F[j?  
    % involves pre-determining all the powers p of R that are required to @g{FNXY$m  
    % compute the outputs, and then compiling the {R^p} into a single 7l~d_<h  
    % matrix.  This avoids any redundant computation of the R^p, and ,3As Ng  
    % minimizes the sizes of certain intermediate variables. &P@dx=6d  
    % N-9Vx#i  
    %   Paul Fricker 11/13/2006 , Y\`n7Ww  
    \@}G'7{  
    @|jLw($Ly  
    % Check and prepare the inputs: 1[g -f ,  
    % ----------------------------- qq,#bRe  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) X^td`}F/=V  
        error('zernpol:NMvectors','N and M must be vectors.') LrGLIt`  
    end 3!H&bOF  
    Hrk]6*  
    if length(n)~=length(m) BWWO=N  
        error('zernpol:NMlength','N and M must be the same length.') cUH. ^_a  
    end  l:i&l?>_  
    x%!Ea{ s  
    n = n(:); zFba("E Z  
    m = m(:); ~\oF}7l$  
    length_n = length(n); %tvP\(]h  
    yZ:AJNb  
    if any(mod(n-m,2)) V`WSZ  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') hb.^ &  
    end 'nMj<:0wlD  
    +v.<Fw2k#  
    if any(m<0) CQANex4&\  
        error('zernpol:Mpositive','All M must be positive.') =] +owl2  
    end Im g$D*BM  
    0Xw$l3@N^  
    if any(m>n) (B^rW,V[R  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') bl3?C  
    end chE}TK  
    0#S#v2r5  
    if any( r>1 | r<0 ) cFZcBiw  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') *yZ `aKfH  
    end T! ww3d  
    8-PHW,1@a3  
    if ~any(size(r)==1) :OFs" bC  
        error('zernpol:Rvector','R must be a vector.') S?[@/35)  
    end vk4Q2P  
    srQGqE~  
    r = r(:); ~JS BZ@  
    length_r = length(r); N XCvS0/h  
    6E#znRi6IE  
    if nargin==4 ;O7Vl5R  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 4q"4N2  
        if ~isnorm 2}n7f7[/b  
            error('zernpol:normalization','Unrecognized normalization flag.') 4Ql9VM%y  
        end ka_(8  
    else Y$5uoq%p3A  
        isnorm = false; i IM\_<?  
    end neQ~h4U"  
    +Qf<*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `W:z#uNG]  
    % Compute the Zernike Polynomials 9:P\)'y?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% );zLgNx,  
    ob;O,&e0>  
    % Determine the required powers of r: a4[t3U  
    % ----------------------------------- q B IekQT  
    rpowers = []; !QpOrg  
    for j = 1:length(n) pm=m~  
        rpowers = [rpowers m(j):2:n(j)]; JOz4O  
    end u M\5GK  
    rpowers = unique(rpowers); Eq%f`Qg+1E  
    d%UzQ*s  
    % Pre-compute the values of r raised to the required powers, snWe&-  
    % and compile them in a matrix:  !TivQB  
    % -----------------------------  o*Xfgc  
    if rpowers(1)==0 >C19Kie72  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =Oq *9=v|  
        rpowern = cat(2,rpowern{:}); P2@Z7DhQ  
        rpowern = [ones(length_r,1) rpowern]; ;{aGEOP'U  
    else z)(W x">  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); v2I? 5?j  
        rpowern = cat(2,rpowern{:}); M!kSt1  
    end h!ogH >S~  
    }h=PW'M{  
    % Compute the values of the polynomials: ="5D}%  
    % -------------------------------------- aU~?&]  
    z = zeros(length_r,length_n); 9|lLce$  
    for j = 1:length_n l^d'8n  
        s = 0:(n(j)-m(j))/2; B;?)X&n|X  
        pows = n(j):-2:m(j); ``P9fd  
        for k = length(s):-1:1 Av?R6  
            p = (1-2*mod(s(k),2))* ... 6Iqy"MQuq  
                       prod(2:(n(j)-s(k)))/          ... e MHz/;I  
                       prod(2:s(k))/                 ... xnt)1Q  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Q3(ulgl]  
                       prod(2:((n(j)+m(j))/2-s(k))); 4qz+cB_  
            idx = (pows(k)==rpowers); Z[OX {_2]K  
            z(:,j) = z(:,j) + p*rpowern(:,idx); YR*gO TD  
        end '.1P\>x!]  
         '9Z`y_~)G  
        if isnorm 5E-;4o;RI(  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); CNefk$/cR  
        end Gk{ 'U  
    end 0M"n  
    -R]0cefC<f  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  aC,adNub  
    _LaG%* R6  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 nm5DNpHk  
    K%J?'-  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)