切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11047阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 !fV+z%:  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! m4[;(1  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 &Gc9VF]o  
    function z = zernfun(n,m,r,theta,nflag) 4V"E8rUL(  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. {Ea b j  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Q8$}@iA[  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Ky`qskvu  
    %   unit circle.  N is a vector of positive integers (including 0), and ;_XFo&@  
    %   M is a vector with the same number of elements as N.  Each element ,Y@Gyx!4  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) (Nq=H)cm8  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, av(6wht8  
    %   and THETA is a vector of angles.  R and THETA must have the same j\ZXG=j  
    %   length.  The output Z is a matrix with one column for every (N,M) f'F?MINJP  
    %   pair, and one row for every (R,THETA) pair. mwO6g~@ `  
    % #QZe,"C9`  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike b;L\EB  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), mupT<_Y  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral :S]\0;8]  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, s `e{}\  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized }czrj%6  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~ \r*  
    % ,S\CC{!  
    %   The Zernike functions are an orthogonal basis on the unit circle. &L3M]  
    %   They are used in disciplines such as astronomy, optics, and O4 w(T  
    %   optometry to describe functions on a circular domain. 1l9 G[o *  
    % &Hrj3E  
    %   The following table lists the first 15 Zernike functions. g/4[N{Xf  
    % l#&8x  
    %       n    m    Zernike function           Normalization ^ G]J,+  
    %       -------------------------------------------------- pG_;$8Hc  
    %       0    0    1                                 1 ]iVcog"T  
    %       1    1    r * cos(theta)                    2 aI'&O^w+  
    %       1   -1    r * sin(theta)                    2 ^ "E^zHM(  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Q;Ak4 [  
    %       2    0    (2*r^2 - 1)                    sqrt(3) +tB=OwU%0  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) rD tY[  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) }f%}v  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) C-xr"]#]  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) *9 {PEx  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) O}gV`q;  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) &{5,:%PXw  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5#6|j?_a  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) WH%g(6w1j  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F k7?xc  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) H;is/  
    %       -------------------------------------------------- *YI98  
    % VD AaYDi  
    %   Example 1: TT%M' 5&  
    % oE @a'*.\  
    %       % Display the Zernike function Z(n=5,m=1) @ 6\I~s(  
    %       x = -1:0.01:1; D'>_I.  
    %       [X,Y] = meshgrid(x,x); x%=si[P  
    %       [theta,r] = cart2pol(X,Y); 5"VTK  
    %       idx = r<=1; #&+{mCjs  
    %       z = nan(size(X)); je\Ph5"  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); W<{h,j8  
    %       figure ]Ee?6]bN  
    %       pcolor(x,x,z), shading interp _ >?\DgjH  
    %       axis square, colorbar 8qoMo7-f  
    %       title('Zernike function Z_5^1(r,\theta)') Mc lkEfn  
    % 'd0~!w  
    %   Example 2: BkAm/R  
    % - nm"of\o  
    %       % Display the first 10 Zernike functions uo:J\E  
    %       x = -1:0.01:1; cdH>n)  
    %       [X,Y] = meshgrid(x,x); Vsr.=Nd=  
    %       [theta,r] = cart2pol(X,Y); >dXGee>'M  
    %       idx = r<=1; Q>qUk@  
    %       z = nan(size(X)); (M|Dx\_  
    %       n = [0  1  1  2  2  2  3  3  3  3]; d7^}tM  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; y8y5*e~A-)  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 3m[vXr?  
    %       y = zernfun(n,m,r(idx),theta(idx)); krxo"WgD  
    %       figure('Units','normalized') sfH_5 #w  
    %       for k = 1:10 UBKu /@[f@  
    %           z(idx) = y(:,k); @)+AaC#-  
    %           subplot(4,7,Nplot(k)) W-f=]eWg  
    %           pcolor(x,x,z), shading interp f^ZRT@`O  
    %           set(gca,'XTick',[],'YTick',[]) ,]C;sN%~}  
    %           axis square C.:<-xo  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) t^-d/yKt0w  
    %       end ;<Sd~M4f  
    % !.$I["/=  
    %   See also ZERNPOL, ZERNFUN2. )CYGQMK  
    o#)C^xlQ  
    %   Paul Fricker 11/13/2006 jwe*(k]z  
    qx(xvU9  
    ~G p [_ %K  
    % Check and prepare the inputs: B4/>H|  
    % ----------------------------- @n/\L<]t  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;a!S!% .h  
        error('zernfun:NMvectors','N and M must be vectors.') udH7}K v  
    end v~+(GqR=+  
    A|[?#S((]  
    if length(n)~=length(m) ;>hO+Wo  
        error('zernfun:NMlength','N and M must be the same length.') ldcqe$7,  
    end YDsb3X<0'  
    ]#<4vl\  
    n = n(:); PQt")[  
    m = m(:); f5"k55}  
    if any(mod(n-m,2)) ?,Xw[pR  
        error('zernfun:NMmultiplesof2', ... o|^3J{3G  
              'All N and M must differ by multiples of 2 (including 0).') BZ#(   
    end +480 l}  
    f`(UQJ  
    if any(m>n) "^[ 'y7i  
        error('zernfun:MlessthanN', ... P:S.~Jq  
              'Each M must be less than or equal to its corresponding N.') Po;W'7"Po`  
    end 7"D", 1h  
    BVQqY$>  
    if any( r>1 | r<0 ) I|!OY`ko  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') XX!%RE`M8  
    end G Vr1`l  
    \7eUw,~Q>  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /<k/7TF`  
        error('zernfun:RTHvector','R and THETA must be vectors.') N% B>M7-=  
    end Es`Px_k  
    &B;~  
    r = r(:); wm@@$  
    theta = theta(:); MY)O^I X$  
    length_r = length(r); octL"t8w  
    if length_r~=length(theta)  dFc':|  
        error('zernfun:RTHlength', ... n6>#/eUH  
              'The number of R- and THETA-values must be equal.') @{e}4s?7od  
    end tjS@meT  
    aK~8B_5k8  
    % Check normalization: uZYF(Yu  
    % -------------------- t3ZOco@~P  
    if nargin==5 && ischar(nflag) 2.y-48Nz  
        isnorm = strcmpi(nflag,'norm'); {WS;dX4  
        if ~isnorm ]0OR_'?,  
            error('zernfun:normalization','Unrecognized normalization flag.') :4w ?#  
        end ?R 'r4P,  
    else ~P qM]^  
        isnorm = false; M0"_^?  
    end nW:C/{n2tG  
    =%O6:YM   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MJ)RvNF  
    % Compute the Zernike Polynomials aO[w/cGQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DfD&)tsMQ  
    B-Hrex]  
    % Determine the required powers of r: hfB%`x#akQ  
    % ----------------------------------- ty!`T+3  
    m_abs = abs(m); (,2S XV  
    rpowers = []; LOYk9m  
    for j = 1:length(n) BOX2O.Pm  
        rpowers = [rpowers m_abs(j):2:n(j)]; |-ALklXr  
    end e%M;?0j  
    rpowers = unique(rpowers); d1T!+I  
    ,qwuLBW  
    % Pre-compute the values of r raised to the required powers, R\f+SvE  
    % and compile them in a matrix: ]/6z; ~3U  
    % ----------------------------- G*MUO#_iuh  
    if rpowers(1)==0 !BF; >f`  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 1I6px$^E\  
        rpowern = cat(2,rpowern{:}); q i;1L Kc  
        rpowern = [ones(length_r,1) rpowern]; ,p a {qne  
    else /nsX]V6i  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); djZqc5t  
        rpowern = cat(2,rpowern{:}); fOrH$?  
    end ^\% (,KNo  
    qR{=pR  
    % Compute the values of the polynomials: |Ez>J+uye(  
    % -------------------------------------- @HCVmg:  
    y = zeros(length_r,length(n)); gQuw1  
    for j = 1:length(n) ]EAO+x9  
        s = 0:(n(j)-m_abs(j))/2; >U>(`r*  
        pows = n(j):-2:m_abs(j); }<r)~{UV  
        for k = length(s):-1:1 Ml5w01O  
            p = (1-2*mod(s(k),2))* ... u=sp`%?  
                       prod(2:(n(j)-s(k)))/              ... b|DdG/O  
                       prod(2:s(k))/                     ... JbbzV>  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... |df Pki{  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 33q}CzK  
            idx = (pows(k)==rpowers); e *C(q~PQ  
            y(:,j) = y(:,j) + p*rpowern(:,idx); #!# l45p6  
        end J8(lIk:e  
         '<<t]kK[N  
        if isnorm ]m<$}  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); SfyQ$$Z  
        end G` A4|+W"  
    end ?l )[7LR4  
    % END: Compute the Zernike Polynomials 0OE:[pR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _{KG 4+5\X  
    SH$PwJU  
    % Compute the Zernike functions: t:Q*gW Rh  
    % ------------------------------ Fxz"DZY6  
    idx_pos = m>0; LRA8p<Rs  
    idx_neg = m<0; +6\Zj)  
    * u>\57W  
    z = y; Gd=RyoJl  
    if any(idx_pos) AkV#J, 3LC  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ~0$&3a<n1  
    end HV|,}Wks6s  
    if any(idx_neg) 4HlQ&2O%#  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); t~XN}gMxw  
    end NLqzi%s  
    PZ9I`P! C  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) "to;\9lP  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. k(HUUH_z  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated WsB?C&>x  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ZECfR>`x  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Z T%5T}i  
    %   and THETA is a vector of angles.  R and THETA must have the same M= (u]%\  
    %   length.  The output Z is a matrix with one column for every P-value, 9'B `]/L  
    %   and one row for every (R,THETA) pair. @VEb{ w[H  
    % 9.#<b |g  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike h376Be{P  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) zb3t IRH  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 75lA%| *X  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 %N._w!N<5n  
    %   for all p. $& c*'3  
    % ^2rN>k,?  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 J&_n9$  
    %   Zernike functions (order N<=7).  In some disciplines it is PJ#,2=n~  
    %   traditional to label the first 36 functions using a single mode F== p<lrs  
    %   number P instead of separate numbers for the order N and azimuthal wCBplaojJ  
    %   frequency M. TWTb?HP  
    % [a(#1  
    %   Example: ~} ~4  
    % * ;FdD{+  
    %       % Display the first 16 Zernike functions @6.vKCSE  
    %       x = -1:0.01:1; tH4B:Bgj!  
    %       [X,Y] = meshgrid(x,x); LghfM"g  
    %       [theta,r] = cart2pol(X,Y); QT}tvm@PMq  
    %       idx = r<=1; 2=}FBA,2  
    %       p = 0:15; Q>z8IlJ}  
    %       z = nan(size(X)); V7/Rby Q  
    %       y = zernfun2(p,r(idx),theta(idx)); *un^u-;  
    %       figure('Units','normalized') ?Bmb' 3  
    %       for k = 1:length(p) * T1_;4i  
    %           z(idx) = y(:,k); h68 xet;  
    %           subplot(4,4,k) er\|i. Y  
    %           pcolor(x,x,z), shading interp %C]>9."  
    %           set(gca,'XTick',[],'YTick',[]) $~)SCbL^5  
    %           axis square ['D]>Ot68  
    %           title(['Z_{' num2str(p(k)) '}']) '"s@enD0y  
    %       end j~MI<I+l[  
    % 7_t'( /yu  
    %   See also ZERNPOL, ZERNFUN. DmcZta8n]  
    8P`"M#fI  
    %   Paul Fricker 11/13/2006 a+QpM*n7Lq  
    I/N *gy?*  
    XWw804ir  
    % Check and prepare the inputs: n6 v6K1  
    % -----------------------------  \=o-  
    if min(size(p))~=1 b.938#3,  
        error('zernfun2:Pvector','Input P must be vector.') k?}Zg*  
    end wL[ M:  
    O6Y0XL  
    if any(p)>35 b,@/!ia  
        error('zernfun2:P36', ... jEwIn1  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... h+,@G,|D  
               '(P = 0 to 35).']) /L 3:  
    end v:#tWEbo-  
    qQa}wcU'9p  
    % Get the order and frequency corresonding to the function number: uAk.@nfiEv  
    % ---------------------------------------------------------------- FI.\%x  
    p = p(:); < %Y}R\s?  
    n = ceil((-3+sqrt(9+8*p))/2); =~gvZV-<  
    m = 2*p - n.*(n+2); 6u%&<")4HP  
    pCG}Z Ka  
    % Pass the inputs to the function ZERNFUN: /wv0i3_e  
    % ---------------------------------------- '"Nr,vQo  
    switch nargin A}!J$V:w]  
        case 3 jiGTA:v  
            z = zernfun(n,m,r,theta); y7<|_:00  
        case 4 E-FUlOG&  
            z = zernfun(n,m,r,theta,nflag); Gm`8q}<I  
        otherwise (k P9hcV  
            error('zernfun2:nargin','Incorrect number of inputs.') HZOMlOZ  
    end + T+#q@  
    _0I@xQj-  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) m[2gdJK  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. =|9!vzG4  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of l"]V6!-U  
    %   order N and frequency M, evaluated at R.  N is a vector of F[MFx^sT{  
    %   positive integers (including 0), and M is a vector with the YZ7.1`8  
    %   same number of elements as N.  Each element k of M must be a d=^z`nt !R  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) p}P-6&k,U  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ABkl%m6xf  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ipz5H*  
    %   with one column for every (N,M) pair, and one row for every zeRyL3fnmb  
    %   element in R. [B3RfCV{  
    % ^sZ,2,^  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- hGrdtsH?  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is )}v l\7=  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to /Kbl%u  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 !m$jk2<  
    %   for all [n,m]. 8k79&|  
    % Z:gyz$9w  
    %   The radial Zernike polynomials are the radial portion of the ]'S^]  
    %   Zernike functions, which are an orthogonal basis on the unit !9x}  
    %   circle.  The series representation of the radial Zernike xD$\,{  
    %   polynomials is 5-M-X#(  
    % =c7;r]Ol  
    %          (n-m)/2 L(\cHb9`  
    %            __ \NC3'G:Ii  
    %    m      \       s                                          n-2s }WV:erg`  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r #"an9<  
    %    n      s=0 E"0>yl)  
    % $xQL]FmS  
    %   The following table shows the first 12 polynomials. Pz^544\~ou  
    % I:.s_8mH}  
    %       n    m    Zernike polynomial    Normalization EK'!}OGCG  
    %       --------------------------------------------- Ss`LLq0LO  
    %       0    0    1                        sqrt(2) I@3MO0V^  
    %       1    1    r                           2 /tLVX} &  
    %       2    0    2*r^2 - 1                sqrt(6) 28nFRr  
    %       2    2    r^2                      sqrt(6)  _4f;<FL  
    %       3    1    3*r^3 - 2*r              sqrt(8) 9FX-1,Jx  
    %       3    3    r^3                      sqrt(8) W>LR\]Ti@  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) =lC7gS!U  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) bZ6+,J  
    %       4    4    r^4                      sqrt(10) +h$ 9\  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) T;#FEzBz  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) uw7zWJ n  
    %       5    5    r^5                      sqrt(12) ;Xw~D_uv  
    %       --------------------------------------------- 54/=G(F   
    % =Sv/IXX\di  
    %   Example: YS ][n_  
    % ctUp=po  
    %       % Display three example Zernike radial polynomials Uz7<PLxd  
    %       r = 0:0.01:1; pXUSLs  
    %       n = [3 2 5]; A=4OWV?  
    %       m = [1 2 1]; 9B4&m|g  
    %       z = zernpol(n,m,r); #1[u (<AS  
    %       figure Je{ykL?N  
    %       plot(r,z) H#&00Q[  
    %       grid on 4m)n+ll  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') W4N{S.#!  
    % _Y!IEAU/#  
    %   See also ZERNFUN, ZERNFUN2. *] (iS  
    he4(hX^  
    % A note on the algorithm. f5r0\7y0  
    % ------------------------ D]}G.v1  
    % The radial Zernike polynomials are computed using the series "]dI1 g_  
    % representation shown in the Help section above. For many special ]{iQ21`a-  
    % functions, direct evaluation using the series representation can $^ P0F9~0  
    % produce poor numerical results (floating point errors), because VE24ToI?W"  
    % the summation often involves computing small differences between MJvp6n  
    % large successive terms in the series. (In such cases, the functions #F#%`Rv1  
    % are often evaluated using alternative methods such as recurrence RpF&\x>  
    % relations: see the Legendre functions, for example). For the Zernike PM+[,H  
    % polynomials, however, this problem does not arise, because the XRH!]!  
    % polynomials are evaluated over the finite domain r = (0,1), and 7Wno':w8  
    % because the coefficients for a given polynomial are generally all ]oxZ77ciL  
    % of similar magnitude. +0~YP*I`/  
    % :>*7=q=  
    % ZERNPOL has been written using a vectorized implementation: multiple JO;Uus{?  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 9my^ Y9B  
    % values can be passed as inputs) for a vector of points R.  To achieve uc=B,3  
    % this vectorization most efficiently, the algorithm in ZERNPOL P'2Qen*  
    % involves pre-determining all the powers p of R that are required to 99S ^f:t  
    % compute the outputs, and then compiling the {R^p} into a single :0ep( <|;  
    % matrix.  This avoids any redundant computation of the R^p, and  eIlva?  
    % minimizes the sizes of certain intermediate variables. ;I*o@x_  
    % {FG j]*  
    %   Paul Fricker 11/13/2006 M{\I8oOg  
    s>en  
    d@^ZSy>L2  
    % Check and prepare the inputs: g*Phv|kI  
    % ----------------------------- O}P`P'Y|'  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) w@ pPcZ>z/  
        error('zernpol:NMvectors','N and M must be vectors.') gSgr6TH0  
    end ;,TFr}p`  
    7"##]m.  
    if length(n)~=length(m) nEfK53i_  
        error('zernpol:NMlength','N and M must be the same length.') GmG 5[?)  
    end %*U'@r(A  
    ]yu:i-SfP  
    n = n(:); y2v^-q3  
    m = m(:); _&x%^&{  
    length_n = length(n); ;*N5Y}?j'  
    XuTD\g3)  
    if any(mod(n-m,2)) 5bIw?%dk(  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') u y+pP!<  
    end ~?dI*BZ)]  
    lk!@?  
    if any(m<0) j+!v}*I![  
        error('zernpol:Mpositive','All M must be positive.') Zc yc*{DS  
    end B1gR5p0  
    [RL9>n8f  
    if any(m>n) ,I9bNO,%JK  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 5tnlrqC  
    end fOHxtHM  
     bLL2  
    if any( r>1 | r<0 ) 3 {V>S,O3]  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') KXrjqqXs  
    end "|NI]Kv  
    >ef6{URy<  
    if ~any(size(r)==1) Fcx&hj1gQ  
        error('zernpol:Rvector','R must be a vector.') [KQi.u  
    end C^){.UGmJ  
    I'Hf{Erw  
    r = r(:); ~~.}ah/_d  
    length_r = length(r); gIfh3D=yX  
    IgzQr >  
    if nargin==4 YR70BOxK  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); xLE)/}y_7H  
        if ~isnorm rjP/l6 ~'  
            error('zernpol:normalization','Unrecognized normalization flag.') NlqImM=r,  
        end sT.ss$HY9,  
    else iCoX& "lb  
        isnorm = false; [Pp'Ye~K@c  
    end =D(j)<9$A  
    ?M2J wAK5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LD?sh"?b  
    % Compute the Zernike Polynomials "4Nt\WQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q59suL   
    W)/#0*7  
    % Determine the required powers of r: YUb_y^B^  
    % ----------------------------------- CITc2v3a  
    rpowers = []; <b.D&  
    for j = 1:length(n) TC('H[ ]  
        rpowers = [rpowers m(j):2:n(j)]; ]GS bjHsO  
    end Ef\ -VKh  
    rpowers = unique(rpowers); $qiya[&G4  
    _`V'r#Qn  
    % Pre-compute the values of r raised to the required powers, U:`Kss`  
    % and compile them in a matrix: ~u{uZ(~  
    % ----------------------------- &m3lXl  
    if rpowers(1)==0 wkq 66?  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); NbobliC=  
        rpowern = cat(2,rpowern{:}); =]t|];c%  
        rpowern = [ones(length_r,1) rpowern]; 4*L_)z&4;  
    else D9df=lv mD  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); H\ %7%  
        rpowern = cat(2,rpowern{:}); J,hCvm  
    end EnR}IY&sI  
    R-:2HRaA  
    % Compute the values of the polynomials: {ax:RUQxy  
    % -------------------------------------- b}f~il  
    z = zeros(length_r,length_n); Dv"9qk  
    for j = 1:length_n ]d]]'Hk  
        s = 0:(n(j)-m(j))/2; > I?IPQB  
        pows = n(j):-2:m(j); sB</DS  
        for k = length(s):-1:1 bOB \--:]  
            p = (1-2*mod(s(k),2))* ... .>S!ji  
                       prod(2:(n(j)-s(k)))/          ... r$1Qf}J3=  
                       prod(2:s(k))/                 ... !VJoM,b8  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... *|0 -~u%q  
                       prod(2:((n(j)+m(j))/2-s(k))); yfSmDPh  
            idx = (pows(k)==rpowers); D- c4EV  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 2T35{Q!=F  
        end M{@(G5  
         YVU7wW,1  
        if isnorm Ulyue  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ^c<Ve'-  
        end ^ y::jK  
    end 'V{W-W<  
    A<{{iBEI`  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Rq-ZL{LR7  
    E .h*g8bXe  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 F,kZU$  
    ).O)p9  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)