非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 9E (VU.
function z = zernfun(n,m,r,theta,nflag) h^P>,dy0
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. web=AQ5I4
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :<OInKE>Cx
% and angular frequency M, evaluated at positions (R,THETA) on the }mjJglK!N
% unit circle. N is a vector of positive integers (including 0), and "+REv_:
% M is a vector with the same number of elements as N. Each element SWjOJjn
% k of M must be a positive integer, with possible values M(k) = -N(k) !A"`jc~x:
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, :\@WY
% and THETA is a vector of angles. R and THETA must have the same lD!o4ZAo
% length. The output Z is a matrix with one column for every (N,M) }2.^n{Y
% pair, and one row for every (R,THETA) pair. 27-<q5q
%
H}NW?
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike rsP3?.E
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), "hU'o&
% with delta(m,0) the Kronecker delta, is chosen so that the integral eH2.,wY1
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )*@Oz
% and theta=0 to theta=2*pi) is unity. For the non-normalized EO'[AU% ~
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. f[n#Eu}
% '#SacJ\L7
% The Zernike functions are an orthogonal basis on the unit circle. pa&*n=&cL
% They are used in disciplines such as astronomy, optics, and 9$,?Grw~
% optometry to describe functions on a circular domain. Eb`U^*A
% "t+VF4r
% The following table lists the first 15 Zernike functions. 5=g{%X
% . `lcxC
% n m Zernike function Normalization I"E5XVC);
% -------------------------------------------------- im^G{3z
% 0 0 1 1 tr2@{xb
% 1 1 r * cos(theta) 2 #F5O>9hA
% 1 -1 r * sin(theta) 2 jxL5L[
% 2 -2 r^2 * cos(2*theta) sqrt(6) &oevgG
% 2 0 (2*r^2 - 1) sqrt(3) $4`RJ{ZJw]
% 2 2 r^2 * sin(2*theta) sqrt(6) WlVC0&
% 3 -3 r^3 * cos(3*theta) sqrt(8) `j088<?j
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) rMqWXGl`(
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) WKZ9i2hcdf
% 3 3 r^3 * sin(3*theta) sqrt(8) 3OV#H%
% 4 -4 r^4 * cos(4*theta) sqrt(10) ^3QHB1I
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rr2'bf<]
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) :8U=L'4
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lhAwTOn`Q
% 4 4 r^4 * sin(4*theta) sqrt(10) 3ug{1M3
% -------------------------------------------------- $kJvPwRO
% E.?|L-fy
% Example 1: g% :Q86u
% E7+y
W
% % Display the Zernike function Z(n=5,m=1) Z>Nr"7k
% x = -1:0.01:1; 4E:HO\
% [X,Y] = meshgrid(x,x); h2+vl@X
% [theta,r] = cart2pol(X,Y); =^4 vz=2
% idx = r<=1; K z !-w
% z = nan(size(X)); GVZ/`^ndM
% z(idx) = zernfun(5,1,r(idx),theta(idx)); in -/
% figure G*e/Ft.wf8
% pcolor(x,x,z), shading interp ]j0v.[SX
% axis square, colorbar NA[yT
% title('Zernike function Z_5^1(r,\theta)') _ Onsfv
% uk_?2?>-5
% Example 2: qt+vmi+~
% r4jW=?|
% % Display the first 10 Zernike functions l%lkDh!$"
% x = -1:0.01:1;
yowvq4e
% [X,Y] = meshgrid(x,x); M cE$=Vv
% [theta,r] = cart2pol(X,Y); UNq!|
% idx = r<=1; `!5ZF@Q>e
% z = nan(size(X)); L #p-AK
% n = [0 1 1 2 2 2 3 3 3 3]; nCEt*~t9VE
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; :{%6<j
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ofl3G
{u
% y = zernfun(n,m,r(idx),theta(idx)); -O3^q.
% figure('Units','normalized') |)i-c`x
% for k = 1:10 T30!'F(*,
% z(idx) = y(:,k); WA~|:S+
% subplot(4,7,Nplot(k)) qX`?4"4
% pcolor(x,x,z), shading interp 0U ?1Yh7
m
% set(gca,'XTick',[],'YTick',[]) (L8H.|.
% axis square u&".kk
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])
=w0Rq~
% end aDR<5_Yb
% ^]^Y~$u
% See also ZERNPOL, ZERNFUN2. !)ey~Suh
nK1XJp
% Paul Fricker 11/13/2006 <WtX>
\]l(
):jKsP
,
-ZH]i}$
% Check and prepare the inputs: 8$-Wz:X&
% ----------------------------- ho
?.\Jq
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) VR2BdfKU,
error('zernfun:NMvectors','N and M must be vectors.') WZdA<<,:o
end %FLz}QW*
Q<P],}?:
if length(n)~=length(m) OF,<K%A
error('zernfun:NMlength','N and M must be the same length.') =:v\}/
end Fe%Q8RIh_
*-T3'beg
n = n(:); BgJ;\NV
m = m(:); N \[Cuh8Fe
if any(mod(n-m,2)) $}2m%$vJO
error('zernfun:NMmultiplesof2', ... AF ZHS\
'All N and M must differ by multiples of 2 (including 0).') ]pl g@
end -4Zf0r1u
]IXKoJUf
if any(m>n) b\"JXfw
error('zernfun:MlessthanN', ... GKH7Xx(
'Each M must be less than or equal to its corresponding N.') D$;mur'
end h|m h_T{+
Duj9PV`2
if any( r>1 | r<0 ) z<ptrH
error('zernfun:Rlessthan1','All R must be between 0 and 1.') [zn`vT
end G<9MbMG
20d[\P(.
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) k4'rDJfB
error('zernfun:RTHvector','R and THETA must be vectors.') }7+G'=XI/
end 0vQ@n7
;n00kel$
r = r(:); ?o$6w(]''
theta = theta(:); 'h%)@q)J)
length_r = length(r); !FZb3U@
if length_r~=length(theta) -uqJ~g D
error('zernfun:RTHlength', ... F'*y2FC
'The number of R- and THETA-values must be equal.') Ti#2D3
end *5hg}[n2
zPWG^
% Check normalization: 7ml,
% -------------------- s[nXr
if nargin==5 && ischar(nflag) #,Fk
isnorm = strcmpi(nflag,'norm'); U
PGS
if ~isnorm .AH#D}m
error('zernfun:normalization','Unrecognized normalization flag.') "639oB
end zIf/j k
else H5S>|"`e`e
isnorm = false; h35x'`g7+r
end (ST/>")L
`22F@JYN
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1&ZG6#16q
% Compute the Zernike Polynomials +IK~a9t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `XB(d@%
HtgVD~[]
% Determine the required powers of r: *^ \xH ,.
% ----------------------------------- 5 .0BaVwi
m_abs = abs(m); $L)9'X
rpowers = []; OvX z+C,
for j = 1:length(n) 79n,bb5
rpowers = [rpowers m_abs(j):2:n(j)]; ,jQkR^]j-
end F]N9ZWn/
rpowers = unique(rpowers); 25XD fi75
[~`;
.7~
% Pre-compute the values of r raised to the required powers, _]E"hr6a
% and compile them in a matrix: #yFDC@gH1
% ----------------------------- '=G 4R{
if rpowers(1)==0 iS&fp[Th
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <@.f#
rpowern = cat(2,rpowern{:}); \vT0\1:|i
rpowern = [ones(length_r,1) rpowern]; Vx;f/CH3!
else z|=l^u6uS
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); r4@!QR<h
rpowern = cat(2,rpowern{:}); ?9mFI (r~
end %E3|b6k\
8|.(Y
% Compute the values of the polynomials: usZmf=p-r
% -------------------------------------- 6 KP
y = zeros(length_r,length(n)); B#&U5fSw+0
for j = 1:length(n) 'vgw>\X(
s = 0:(n(j)-m_abs(j))/2; _:x/\8P
pows = n(j):-2:m_abs(j); Mc>]ZAz r
for k = length(s):-1:1 *^bqpW2$q
p = (1-2*mod(s(k),2))* ... 9IIQon
prod(2:(n(j)-s(k)))/ ... R44JK
prod(2:s(k))/ ... @OZW1p
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #[vmS
prod(2:((n(j)+m_abs(j))/2-s(k))); 4xk'R[v
idx = (pows(k)==rpowers); 36,qh.LKn
y(:,j) = y(:,j) + p*rpowern(:,idx); Qf6]qJa|
end nmn$$=~)
Q1 mz~r
if isnorm tQ< ou,
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); K
4j'e6
end kG[u$[B
end 9w[7X"#n
% END: Compute the Zernike Polynomials AFGWlC#`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t/yGMR=
A-aukJg9
% Compute the Zernike functions: ;hA>?o_i(
% ------------------------------ H2 5Mx>|d
idx_pos = m>0; %L.,:m tq)
idx_neg = m<0; NC)I u
j+\I4oFN
z = y; PaP47>(
if any(idx_pos) Tm-Nz7U^^
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {'l^{"GO"
end tu#VZAPW@
if any(idx_neg) Qv(}*iq]
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); GM%%7 ^uE
end &, hhH_W
F-k3'eyY
% EOF zernfun