切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11822阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 #-bz$w#*  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! #b$qtp!,  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 sI6coe5n  
    function z = zernfun(n,m,r,theta,nflag) Yp EH(tq  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. {fS~G2@1  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Ar'k6NX  
    %   and angular frequency M, evaluated at positions (R,THETA) on the :r9<wbr)k0  
    %   unit circle.  N is a vector of positive integers (including 0), and *g[MGyF "  
    %   M is a vector with the same number of elements as N.  Each element zQaD&2 q  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) l;}3J3/qq]  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, hd@jm^k  
    %   and THETA is a vector of angles.  R and THETA must have the same du_~P"[  
    %   length.  The output Z is a matrix with one column for every (N,M) -mLS\TFS  
    %   pair, and one row for every (R,THETA) pair. f-Zi!AGh>  
    % Ix+eP|8F  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike vF1Fcp.@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ik-E_U2  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral -lm)xpp1  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, I %|;M%B  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized (h'Bz6K  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. pKaU [1x?%  
    % 'PWA  
    %   The Zernike functions are an orthogonal basis on the unit circle. H:cAORLB  
    %   They are used in disciplines such as astronomy, optics, and ~]SCf@pRk  
    %   optometry to describe functions on a circular domain.  Lr0:y o  
    % st)qw]Dn;Y  
    %   The following table lists the first 15 Zernike functions. !wTrWD!  
    % b*1yvkX5  
    %       n    m    Zernike function           Normalization 2WC$r8E  
    %       -------------------------------------------------- ]EdZ,`B4  
    %       0    0    1                                 1 vQ,<Ke+d  
    %       1    1    r * cos(theta)                    2 ;.=]Ar}  
    %       1   -1    r * sin(theta)                    2 ch33+~Nn  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) D!&]jkUN  
    %       2    0    (2*r^2 - 1)                    sqrt(3) I>{o]^xw-D  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) % _nmv  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) h.q9p!  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) [ps4i_  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) d|>/eb.R  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) \}W !  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) *Sps^Wl  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) WjOP2CVv|  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) pfHfw,[  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #_WkV  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) i6<uj  
    %       -------------------------------------------------- l+j !CvtI  
    % ),Hr  
    %   Example 1: 'I$kDM mwh  
    % u~PZK.Uf0  
    %       % Display the Zernike function Z(n=5,m=1) o2[$X ONTl  
    %       x = -1:0.01:1; 0#4A0[vV  
    %       [X,Y] = meshgrid(x,x); @0(%ayi2Y  
    %       [theta,r] = cart2pol(X,Y); |AS~sjWSJ  
    %       idx = r<=1; /B)2L]6p  
    %       z = nan(size(X)); Gn<0Fy2  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 'KDt%?24  
    %       figure E1SWZ&';  
    %       pcolor(x,x,z), shading interp 7M8cF>o  
    %       axis square, colorbar -[}Aka,f!  
    %       title('Zernike function Z_5^1(r,\theta)') q3C  
    % "Mz#1Laby`  
    %   Example 2: &hrMpD6z6i  
    % En)Ptz#0  
    %       % Display the first 10 Zernike functions A1r%cs  
    %       x = -1:0.01:1; T}/|nOu 5  
    %       [X,Y] = meshgrid(x,x); U ({N'y=  
    %       [theta,r] = cart2pol(X,Y); N3N~z1x0h  
    %       idx = r<=1; 5h|aX  
    %       z = nan(size(X)); s\<UDW  
    %       n = [0  1  1  2  2  2  3  3  3  3]; UA4c4~$S  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3];  W =;,ls  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; "U+c`V=w  
    %       y = zernfun(n,m,r(idx),theta(idx)); 8!YQ9T[  
    %       figure('Units','normalized') ug.|ag'R  
    %       for k = 1:10 ~!=Am:-wr  
    %           z(idx) = y(:,k); #RbdQH !  
    %           subplot(4,7,Nplot(k)) ^4NRmlb  
    %           pcolor(x,x,z), shading interp {]dG 9  
    %           set(gca,'XTick',[],'YTick',[]) <B>hvuCoH  
    %           axis square rIb~@cR)  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @,7r<6E  
    %       end $2+s3)  
    % &*Xrh7K2e  
    %   See also ZERNPOL, ZERNFUN2. hnH<m7  
    P j,H]  
    %   Paul Fricker 11/13/2006 JdLPIfI^  
    'IFA>}e7W  
    H\H7a.@nkF  
    % Check and prepare the inputs: TspX7<6r  
    % ----------------------------- crOSr/I$  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }V*?~.R  
        error('zernfun:NMvectors','N and M must be vectors.') J9OL>!J  
    end -agB ]j  
    d2V\T+=  
    if length(n)~=length(m) egBk7@Ko  
        error('zernfun:NMlength','N and M must be the same length.') j}d):3!  
    end FPkk\[EU  
    pJs`/   
    n = n(:); 8EMBqhl  
    m = m(:); IZm6.F  
    if any(mod(n-m,2)) $_;rqTk]g  
        error('zernfun:NMmultiplesof2', ... U;IGV~oT  
              'All N and M must differ by multiples of 2 (including 0).') ~cyKPg6  
    end B8?9L8M}  
    ju3@F8AI  
    if any(m>n) 4`mf^K f  
        error('zernfun:MlessthanN', ... H }]Zp  
              'Each M must be less than or equal to its corresponding N.') S7WHOr9XMV  
    end }st~$JsV1  
    bCr W'}:de  
    if any( r>1 | r<0 ) mdyl;e{0  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]kx<aQ^  
    end <bo^uw  
    tu"-]^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) J%|;  
        error('zernfun:RTHvector','R and THETA must be vectors.') Er|&4-9  
    end  B9y5NX  
    XR9kxTuk  
    r = r(:); Y:\]d1C  
    theta = theta(:); }No#_{  
    length_r = length(r); ^|6#Vx  
    if length_r~=length(theta) -^yc<%U  
        error('zernfun:RTHlength', ... ULu@"  
              'The number of R- and THETA-values must be equal.') 5Za<]qxr  
    end SmD#hE[  
    TTl9xs,nO  
    % Check normalization: `7y3C\zyQ  
    % -------------------- @%2crJnkS  
    if nargin==5 && ischar(nflag) Sz<:WY/(x  
        isnorm = strcmpi(nflag,'norm'); #<B?+gzFM{  
        if ~isnorm \p( 0H6  
            error('zernfun:normalization','Unrecognized normalization flag.') ,r~^<m  
        end {d'B._#i  
    else "%+||IyW  
        isnorm = false; xzA!,75@U  
    end :Zkjtr.\  
    tDah@_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !`7evV:  
    % Compute the Zernike Polynomials -6uLww=w4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y7CXE6Y  
    l{.PyU5)  
    % Determine the required powers of r: [tSv{  
    % ----------------------------------- .#Z'CZO|  
    m_abs = abs(m); RA!m,"RM  
    rpowers = []; bv(+$YR  
    for j = 1:length(n) "N_@q2zF  
        rpowers = [rpowers m_abs(j):2:n(j)]; UtJfO`m9P  
    end BR?DW~7J j  
    rpowers = unique(rpowers); )'g4Ty  
    +h/OQ]`/m  
    % Pre-compute the values of r raised to the required powers, p=eSJ*  
    % and compile them in a matrix: RrrlfFms  
    % ----------------------------- SeS ZMv  
    if rpowers(1)==0 % q!i  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )BI%cD  
        rpowern = cat(2,rpowern{:}); IcQpb F0  
        rpowern = [ones(length_r,1) rpowern]; *P7n YjG  
    else n} !')r  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Y>FLc* h  
        rpowern = cat(2,rpowern{:}); !,Gavt7f  
    end 2Hx*kh2  
    QD^=;!  
    % Compute the values of the polynomials: 5>CeFy  
    % -------------------------------------- RT'5i$q[  
    y = zeros(length_r,length(n)); v,N!cp1  
    for j = 1:length(n) kO^  
        s = 0:(n(j)-m_abs(j))/2; i@WO>+iB  
        pows = n(j):-2:m_abs(j); ! @Vj&>mH$  
        for k = length(s):-1:1 ak3WER|f#  
            p = (1-2*mod(s(k),2))* ... qkc,93B3  
                       prod(2:(n(j)-s(k)))/              ... S\sy^Kt~4:  
                       prod(2:s(k))/                     ... &1=,?s]&  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Bqa_l|  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); K)`R?CZ:s  
            idx = (pows(k)==rpowers); ~e,K  
            y(:,j) = y(:,j) + p*rpowern(:,idx); :mCGY9d4L  
        end \!uf*=d  
         n]5Pfg|a  
        if isnorm I 6<LKI/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); #3?"#),q  
        end L:lnm9<  
    end L7(.dO0C  
    % END: Compute the Zernike Polynomials =8p[ (<F=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o!y<:CGL  
    Ly, ];  
    % Compute the Zernike functions: r[kHVT8  
    % ------------------------------ .g}Y! l  
    idx_pos = m>0; [tt_>O  
    idx_neg = m<0; DX3jE p2  
    MfLus40;n  
    z = y; R~TG5^(  
    if any(idx_pos) rvnm*e,  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M5`m5qc3  
    end T_)+l)  
    if any(idx_neg) :t+Lu H g  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )0;O<G] d  
    end flBJO.2  
    !g>mjD  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Pc~)4>X<  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. !$o9:[B  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 0b,{4DOD  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Z>@\!$Mc  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 1BzU-Ma  
    %   and THETA is a vector of angles.  R and THETA must have the same DshRH>7s8  
    %   length.  The output Z is a matrix with one column for every P-value, @(tuE  
    %   and one row for every (R,THETA) pair. Y3hudjhLl  
    % 9 &Od7Cn  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike mA3yM#  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) !-gOqo  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) (G"/C7q  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 hJ V*  
    %   for all p. mP)im]H  
    % "r{ ^Y??  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 UZc{ Av  
    %   Zernike functions (order N<=7).  In some disciplines it is iF+50d  
    %   traditional to label the first 36 functions using a single mode @|~D?&<\  
    %   number P instead of separate numbers for the order N and azimuthal a4!6K  
    %   frequency M. jBd9  $`  
    % YjG:ECj}  
    %   Example: _Q\u-VN*hv  
    % nZS*"O#L  
    %       % Display the first 16 Zernike functions &\r_g!Mh  
    %       x = -1:0.01:1; QV%eTA  
    %       [X,Y] = meshgrid(x,x); 2 BwpxV8  
    %       [theta,r] = cart2pol(X,Y); @L^30>?l  
    %       idx = r<=1; Zxv{qbF  
    %       p = 0:15; /lvH p  
    %       z = nan(size(X)); ;\+A6(GX{  
    %       y = zernfun2(p,r(idx),theta(idx)); Bk1gE((  
    %       figure('Units','normalized') C? b_E  
    %       for k = 1:length(p) Tq >?.bq9  
    %           z(idx) = y(:,k); m=I A/HOR^  
    %           subplot(4,4,k) x"PMi[4  
    %           pcolor(x,x,z), shading interp AyZBH &}RZ  
    %           set(gca,'XTick',[],'YTick',[]) ch}(v'xv(  
    %           axis square .aR$ou,7  
    %           title(['Z_{' num2str(p(k)) '}']) D#&N?< }  
    %       end s^AZ)k~J(  
    % gMZ?MG  
    %   See also ZERNPOL, ZERNFUN. q|ZQsFZ  
    DcLx [C  
    %   Paul Fricker 11/13/2006 j2{ '!  
    b*qC  
    ,t>/_pI+=  
    % Check and prepare the inputs: FY]z*=  
    % ----------------------------- 9Fxz9_ i  
    if min(size(p))~=1 ;;- I<TL  
        error('zernfun2:Pvector','Input P must be vector.') L~(`zO3f  
    end T\Q)"GB  
    Eq/%k $6#1  
    if any(p)>35 3&JsYQu  
        error('zernfun2:P36', ... Ib8xvzR6I&  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... PfVjfrI[  
               '(P = 0 to 35).']) zc-.W2"Hu  
    end <:BhV82l  
    [&FWR  
    % Get the order and frequency corresonding to the function number: Kth^WHL  
    % ---------------------------------------------------------------- eJ!a8   
    p = p(:); ~A=Z/46*Z  
    n = ceil((-3+sqrt(9+8*p))/2); P/FO,S-V  
    m = 2*p - n.*(n+2); jW+L0RkX  
    s?*MZC  
    % Pass the inputs to the function ZERNFUN: cB7=4:U  
    % ---------------------------------------- Iih~rWJ  
    switch nargin &wZ:$lK#o  
        case 3  0$l D  
            z = zernfun(n,m,r,theta); E8Wgm 8  
        case 4 TNV#   
            z = zernfun(n,m,r,theta,nflag); Mzxy'U V  
        otherwise 5fBW#6N/  
            error('zernfun2:nargin','Incorrect number of inputs.') -pR1xsG  
    end x3my8'h@  
    +x0-hRD  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) p9 |r y+t  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. /cDla5eej  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of DP*[t8  
    %   order N and frequency M, evaluated at R.  N is a vector of W$P)fPU'  
    %   positive integers (including 0), and M is a vector with the |k> _ jO  
    %   same number of elements as N.  Each element k of M must be a P$D1kcCw  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) C=AX{sn  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is y)!K@  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix K$\]\qG6  
    %   with one column for every (N,M) pair, and one row for every r>`65o  
    %   element in R. qMz0R\4  
    % V5RfxWtm:  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 6P!M+PO  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is (Y!@,rKd   
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to #G^?4Z a  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Ssr P  
    %   for all [n,m]. Ohnd:8E  
    % (6 fh[eK86  
    %   The radial Zernike polynomials are the radial portion of the R b6` k^  
    %   Zernike functions, which are an orthogonal basis on the unit >t O(S  
    %   circle.  The series representation of the radial Zernike ~FM5]<X)  
    %   polynomials is qV.*sdS>  
    % A3bE3Fk$  
    %          (n-m)/2 cyG3le& +G  
    %            __ ,`MUd0 n  
    %    m      \       s                                          n-2s TgVvp0F;  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r \ M8;CN  
    %    n      s=0 RpR;1ktF>  
    % L*1C2EL/q  
    %   The following table shows the first 12 polynomials. +^!&-g@(  
    % 7 rOziKZ"  
    %       n    m    Zernike polynomial    Normalization Y:/z)"u,C  
    %       --------------------------------------------- &aaXw?/zr  
    %       0    0    1                        sqrt(2) J(VJMS;_  
    %       1    1    r                           2 *K'(t  
    %       2    0    2*r^2 - 1                sqrt(6) ;2-,Xzz8  
    %       2    2    r^2                      sqrt(6) 0S;H`w_S  
    %       3    1    3*r^3 - 2*r              sqrt(8) ; 7[5%xM  
    %       3    3    r^3                      sqrt(8) CbA!  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) {d(@o!;Fi  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) <MI>>$seiJ  
    %       4    4    r^4                      sqrt(10) kc\^xq~  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ;zIAh[z  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) me#VCkr#  
    %       5    5    r^5                      sqrt(12) :e`;["(,  
    %       --------------------------------------------- P|_>M SO1'  
    % Y'`w.+9  
    %   Example: )}1 J.>5  
    % M;,Q8z%  
    %       % Display three example Zernike radial polynomials iZB?5|*  
    %       r = 0:0.01:1; lzN\~5a}  
    %       n = [3 2 5]; Oj6-  
    %       m = [1 2 1]; @S yGj#  
    %       z = zernpol(n,m,r); {Tl5,CAz  
    %       figure %vDN{%h8  
    %       plot(r,z) WrQe'ny  
    %       grid on 8TZNvN4u  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') D|@*HX@_Xp  
    % c=K . |g,  
    %   See also ZERNFUN, ZERNFUN2. +ZEj(fd9  
    r1yz ?Y_P  
    % A note on the algorithm. J1T_wA_  
    % ------------------------ L]3 V)`}  
    % The radial Zernike polynomials are computed using the series #HpF\{{v  
    % representation shown in the Help section above. For many special O{uc  h  
    % functions, direct evaluation using the series representation can H[UV]qO,  
    % produce poor numerical results (floating point errors), because 7,ysixY  
    % the summation often involves computing small differences between 'kf]l=i[n  
    % large successive terms in the series. (In such cases, the functions BMkN68q  
    % are often evaluated using alternative methods such as recurrence bf|s=,D  
    % relations: see the Legendre functions, for example). For the Zernike A'HFpsa  
    % polynomials, however, this problem does not arise, because the h5e(Avk  
    % polynomials are evaluated over the finite domain r = (0,1), and OZ3iH%  
    % because the coefficients for a given polynomial are generally all 85+'9#~!  
    % of similar magnitude. \C $LjSS-  
    % OOn{Wp  
    % ZERNPOL has been written using a vectorized implementation: multiple V}o`9R@tx}  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] lk]q\yO_%  
    % values can be passed as inputs) for a vector of points R.  To achieve W+d=BnOa8  
    % this vectorization most efficiently, the algorithm in ZERNPOL ]KdSwIbi  
    % involves pre-determining all the powers p of R that are required to VAX@'iZr  
    % compute the outputs, and then compiling the {R^p} into a single :sAb'6u1EU  
    % matrix.  This avoids any redundant computation of the R^p, and awkPFA*c'  
    % minimizes the sizes of certain intermediate variables. v% 6uU  
    % SEa'>UG  
    %   Paul Fricker 11/13/2006 Ybo:2e  
    7yM=$"'d  
    oJb${k<3  
    % Check and prepare the inputs: )voJq\Y)%  
    % ----------------------------- Is1P,`*!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <ZO"0oz%  
        error('zernpol:NMvectors','N and M must be vectors.') /j46`F  
    end *;cvG?V  
    Z" j #kaXA  
    if length(n)~=length(m) f?vbIc`  
        error('zernpol:NMlength','N and M must be the same length.') R8LJC]6Bh  
    end SO @d\H  
    *?bOH5$@Nw  
    n = n(:); x7\b-EC  
    m = m(:); qF'lh  
    length_n = length(n); 3/_rbPr  
    Q*4{2oQ  
    if any(mod(n-m,2))  +~xY}  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') gySCK-(y  
    end .n$c+{  
    |H-%F?<{  
    if any(m<0) |i_+b@Lul  
        error('zernpol:Mpositive','All M must be positive.') <@:RS$" i  
    end o%3i(H  
    uCkXzb9_z  
    if any(m>n) ?APzb4f^W  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') c8z6-6`i0  
    end ^UU@7cSi|G  
    kU :ge  
    if any( r>1 | r<0 ) tb$I8T  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Sc b'  
    end u@&e{w~0  
    ;wGoEN  
    if ~any(size(r)==1) 0'wchy>  
        error('zernpol:Rvector','R must be a vector.') mIW8K ):  
    end |"]#jx*8KC  
    F8xz^UQO  
    r = r(:); Hk&op P9)  
    length_r = length(r); n_~u!Ky_P  
    -gn!8G1  
    if nargin==4 74_':,u;]~  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); qa-%j+  
        if ~isnorm jk (tw-B  
            error('zernpol:normalization','Unrecognized normalization flag.') |P_voht  
        end 8'WoG]E_  
    else ql/K$#u  
        isnorm = false; {CH5`&  
    end edai2O  
    i.Rxx, *?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K<wg-JgA  
    % Compute the Zernike Polynomials hMCf| e.UY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P5Bva  
    #~}4< 18  
    % Determine the required powers of r: `d c&B  
    % ----------------------------------- E!A+J63zsw  
    rpowers = []; C6"{-{H  
    for j = 1:length(n) inHlL  
        rpowers = [rpowers m(j):2:n(j)]; (usFT_  
    end g3|k-  
    rpowers = unique(rpowers); !w1 acmo<_  
    FPb4VJ|xm  
    % Pre-compute the values of r raised to the required powers, =W*Ro+wWb  
    % and compile them in a matrix: _xsHU`(J#  
    % ----------------------------- &?@gCVNO,  
    if rpowers(1)==0 /+wCx#!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \h>6k  
        rpowern = cat(2,rpowern{:}); Sq ]VtQ(  
        rpowern = [ones(length_r,1) rpowern]; a#D \8;  
    else fQU5'wGp  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); t5CJG'!ql  
        rpowern = cat(2,rpowern{:}); =Q,D3F -+f  
    end j'x@P+A  
    %)ri:Qq  
    % Compute the values of the polynomials: %MCJ%Ph  
    % -------------------------------------- ? KDg|d  
    z = zeros(length_r,length_n); `#*`hH8  
    for j = 1:length_n h e=A%s  
        s = 0:(n(j)-m(j))/2; \zh`z/=92  
        pows = n(j):-2:m(j); [_`<<!u>-  
        for k = length(s):-1:1 P^aNAa  
            p = (1-2*mod(s(k),2))* ... EG8%X"p  
                       prod(2:(n(j)-s(k)))/          ... (]Q0L{~K  
                       prod(2:s(k))/                 ... xsIfR3Ze9  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 5d;(D i5z  
                       prod(2:((n(j)+m(j))/2-s(k))); %H[~V f?d  
            idx = (pows(k)==rpowers); j/8q  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ?7#{#sj  
        end Xz?7x0)Z  
         @.,Mn#  
        if isnorm s"`Oj5  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); _'|C-j`u$  
        end x"7PnN|~  
    end a51}~V1  
    5g`J}@"k  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  'L6+B1Op  
    &&n-$WEl  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 -PH qD  
    .Tc?9X~4  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)