非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Q_0+N3
function z = zernfun(n,m,r,theta,nflag) b;UBvwY_
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;+E]F8G9r
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N AAlc %d/9
% and angular frequency M, evaluated at positions (R,THETA) on the 7,+eG">0
% unit circle. N is a vector of positive integers (including 0), and S3ooG1 4Ls
% M is a vector with the same number of elements as N. Each element @)6b
% k of M must be a positive integer, with possible values M(k) = -N(k) >] 'oN
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, r6Yd"~ n
% and THETA is a vector of angles. R and THETA must have the same 1"ZtE\{
"
% length. The output Z is a matrix with one column for every (N,M) 6+IhI?lI=
% pair, and one row for every (R,THETA) pair. !Ud'(iGa
% i *.Y
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @F<{/|P
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <J&S[`U!
% with delta(m,0) the Kronecker delta, is chosen so that the integral s Z[[ymu8
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~{/M_
=
% and theta=0 to theta=2*pi) is unity. For the non-normalized wS*r<zj
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~~OFymQ%?q
% q5SPyfE[
% The Zernike functions are an orthogonal basis on the unit circle. Kq3c Kp4
% They are used in disciplines such as astronomy, optics, and &L+uu',M0c
% optometry to describe functions on a circular domain. u]IbTJ'
% %;k Hnl
% The following table lists the first 15 Zernike functions. 9E2iZt]
% 1 P!)4W
% n m Zernike function Normalization z3+@[I$
% -------------------------------------------------- >9&31wA_
% 0 0 1 1 DO*U7V02
% 1 1 r * cos(theta) 2 lA5Dag'
% 1 -1 r * sin(theta) 2 smf"F\Ws
% 2 -2 r^2 * cos(2*theta) sqrt(6) V%oZT>T3
% 2 0 (2*r^2 - 1) sqrt(3) \"a{\E,{;
% 2 2 r^2 * sin(2*theta) sqrt(6) P }sr
% 3 -3 r^3 * cos(3*theta) sqrt(8) )R JEOl1
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) gm-[x5O"
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) '[{<aEo
% 3 3 r^3 * sin(3*theta) sqrt(8) N; g@lyo
% 4 -4 r^4 * cos(4*theta) sqrt(10) F}nwTras
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W "'6M=*
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) @Dh2@2`>
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !{lH*
% 4 4 r^4 * sin(4*theta) sqrt(10) vV}w>Ap[
% -------------------------------------------------- 8F}drK9>F
% T$%|=gq
% Example 1: faQmkO
% xs{pGQ6Q
% % Display the Zernike function Z(n=5,m=1) jzbq{#
% x = -1:0.01:1; I%3[aBz4
% [X,Y] = meshgrid(x,x); Y$=jAN
% [theta,r] = cart2pol(X,Y); ~lw9sm*2v2
% idx = r<=1; ;o9h|LRs
% z = nan(size(X)); w>%@Ug["
% z(idx) = zernfun(5,1,r(idx),theta(idx)); _ox+5?>
% figure FJ;I1~??
% pcolor(x,x,z), shading interp h:?^0b!@
% axis square, colorbar oACAC+CP
% title('Zernike function Z_5^1(r,\theta)') w 9dkJo
% .Kb3VNgwvm
% Example 2: }UhYwJf89
% u:l-qD9=(
% % Display the first 10 Zernike functions ~bLx2=-"
% x = -1:0.01:1; k;l3^kTy
% [X,Y] = meshgrid(x,x); 3Qy@^"
% [theta,r] = cart2pol(X,Y); <Y]LY_(
% idx = r<=1; }| DspO
% z = nan(size(X)); U)J5K
% n = [0 1 1 2 2 2 3 3 3 3]; 4ijtx)SA
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; JusU5 e|
% Nplot = [4 10 12 16 18 20 22 24 26 28]; YZol4q|ic
% y = zernfun(n,m,r(idx),theta(idx)); /{^k8
Q
% figure('Units','normalized') ORExI.<`W
% for k = 1:10 n Nt28n@
% z(idx) = y(:,k); 80=0S^gEZ
% subplot(4,7,Nplot(k)) &9yZfp
% pcolor(x,x,z), shading interp
jxog8E
% set(gca,'XTick',[],'YTick',[]) 1MN!
% axis square 3^sbbm.8
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ){;XI2
% end $YSXE
:
% y\?ey'o
% See also ZERNPOL, ZERNFUN2. g>lZs
@-$8)?`q
% Paul Fricker 11/13/2006 U$OZkHA[
GKBoSSnV&
FdU]!GO-X
% Check and prepare the inputs: ZVjB$-do
% ----------------------------- `/8@Fj
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,d#*i
error('zernfun:NMvectors','N and M must be vectors.') 5J5?cs-!
end 7L!JP:v
idI w7hi4
if length(n)~=length(m) cQU/z"?+
error('zernfun:NMlength','N and M must be the same length.') 5hrI#fpOR
end Vb0T)C
Gl~l
n = n(:); )Qbd/zd\U
m = m(:); gmGK3am
if any(mod(n-m,2)) N^L@MR-
error('zernfun:NMmultiplesof2', ... Y}?8
'All N and M must differ by multiples of 2 (including 0).') ">H*InF
end rAenxZ,tF
~7]V^tG
if any(m>n) &2tfj(ms
error('zernfun:MlessthanN', ... a|ufm^F
'Each M must be less than or equal to its corresponding N.') zx.qN
end B8@mL-Z-;
&LLU@ |
if any( r>1 | r<0 ) uFkl^2
error('zernfun:Rlessthan1','All R must be between 0 and 1.') +:MSY p
end ":!$Jnj,
RZa/la*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 1Viz`y)^
error('zernfun:RTHvector','R and THETA must be vectors.') ~ ld.I4
end qmrT dG
SDnl^a
r = r(:); 3c<aI=$^
theta = theta(:); F y+NJSG
length_r = length(r); 0Hnj<| HL
if length_r~=length(theta) \]X.f&u
error('zernfun:RTHlength', ... &jqaW2
'The number of R- and THETA-values must be equal.') 6h:QSVfx
end E]V,
@
oRV}Nz7hr
% Check normalization: u$nzpw0=H
% -------------------- y=3 dGOFB
if nargin==5 && ischar(nflag) _7c3=f83
isnorm = strcmpi(nflag,'norm'); p Cz6[*kC
if ~isnorm ^z?b6kTC
error('zernfun:normalization','Unrecognized normalization flag.') e(c\ U}&
end i5e10@Q{
else 4Gu'WbJ
isnorm = false; `+H=3`}X
end xR+vu>f
*$Q>Om]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QPlU+5Cx
% Compute the Zernike Polynomials &^=Lr:I
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;_}pIO
]S2rqKB
% Determine the required powers of r: c{q+h V=
% ----------------------------------- E_,/)U8
m_abs = abs(m); MO`Y&<g~A
rpowers = []; E|O&bUMh
for j = 1:length(n) N ,~O+
rpowers = [rpowers m_abs(j):2:n(j)]; [,=?e
end sI>w#1.m/&
rpowers = unique(rpowers); #xIg(nG
|#Gxqq'
% Pre-compute the values of r raised to the required powers, u~uzKG
% and compile them in a matrix: <A3%182
% ----------------------------- 4I4m4^
if rpowers(1)==0 =EJ&=t
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); w-|Rb~XT
h
rpowern = cat(2,rpowern{:}); 15:9JVH3D
rpowern = [ones(length_r,1) rpowern]; {lI}a8DP
else ZrN(Mp
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >"W^|2R
rpowern = cat(2,rpowern{:}); -E-#@s
end H%_^Gy8f
j=sfE qN).
% Compute the values of the polynomials: EP>u% ]#
% -------------------------------------- k+QGvgP[4@
y = zeros(length_r,length(n)); `z!AjAT-G
for j = 1:length(n) FXCBX:LnvU
s = 0:(n(j)-m_abs(j))/2; u8f\)m
pows = n(j):-2:m_abs(j); *>m[ZJd %=
for k = length(s):-1:1 J;4x$BI
p = (1-2*mod(s(k),2))* ... XYcZ;Z 9:
prod(2:(n(j)-s(k)))/ ... |<W$rzM
prod(2:s(k))/ ... $QJ3~mG2
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @-@Coy 4Tt
prod(2:((n(j)+m_abs(j))/2-s(k))); z{XB_j6\=
idx = (pows(k)==rpowers); Mc,79Ix"
y(:,j) = y(:,j) + p*rpowern(:,idx); ?9 huuJs7
end Ww<Y]H$xZ<
;*%rFt9FK
if isnorm [S6u:;7
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {gD ED
end M9"Bx/
end ]E9iaq6Z
% END: Compute the Zernike Polynomials cU;Bm}U
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I;4quFBlMu
C:Ef6ZW
% Compute the Zernike functions: M;A_'h?Z
% ------------------------------ V^7.@BeT
idx_pos = m>0; [@i:qB>B
idx_neg = m<0; ,TBOEu."4
f+e"`80$*C
z = y; oW~W(h!
if any(idx_pos) A
mZXUb
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); f2gtz{r
end `KQx#c>'
if any(idx_neg) ()lgd7|+
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 7L~*%j
end [6VB&
y|LHnNQ
% EOF zernfun