切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11145阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 =wQ=`  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Ea !j-Lbo  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有  g{%';  
    function z = zernfun(n,m,r,theta,nflag) 'GFzI:Xr  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. r>Ln*R,9D  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Zx_m?C_2_  
    %   and angular frequency M, evaluated at positions (R,THETA) on the pR"qPSv'  
    %   unit circle.  N is a vector of positive integers (including 0), and Y[!a82MTzn  
    %   M is a vector with the same number of elements as N.  Each element >=V+X"\Z  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) gy{a+Wbc*  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ~K9U0ypH  
    %   and THETA is a vector of angles.  R and THETA must have the same zgqw*)C~  
    %   length.  The output Z is a matrix with one column for every (N,M) QP#Wfk(C  
    %   pair, and one row for every (R,THETA) pair. j1ZFsTFMWp  
    % }$-VI\96  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike BGX@n#:  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), US4Um>j  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral AJT0)FCpR  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, z7q2+;L  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 9zJ`;1  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Iqsk\2W]a3  
    % K +~v<F  
    %   The Zernike functions are an orthogonal basis on the unit circle. K\b O[J  
    %   They are used in disciplines such as astronomy, optics, and \ax%I)3  
    %   optometry to describe functions on a circular domain. HhvG#Sam!  
    % GcnY= %L?  
    %   The following table lists the first 15 Zernike functions. @m V C  
    % h 6*`V  
    %       n    m    Zernike function           Normalization j;)6uia*A  
    %       -------------------------------------------------- >|?T|  
    %       0    0    1                                 1 A-5 +#  
    %       1    1    r * cos(theta)                    2 Aq!['G  
    %       1   -1    r * sin(theta)                    2 spJ(1F{|V  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ??Zmj:8E'  
    %       2    0    (2*r^2 - 1)                    sqrt(3) lQBM0|n  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Rs`a@ Fn  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) &r%*_pX  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) PoJ$%_a}  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) F-^HN%  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) +,Az\aT/%  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) (GG"'bYk  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ug21d42Z4  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) h '[vB^  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #-T.@a1X  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) "ILWIzf.]  
    %       -------------------------------------------------- `fZD%o3l  
    % "Vq]|j,B/c  
    %   Example 1: 'c&@~O;^d  
    % L]d@D0.Z  
    %       % Display the Zernike function Z(n=5,m=1) GYC&P]  
    %       x = -1:0.01:1; 5vf t}f  
    %       [X,Y] = meshgrid(x,x); hX m} d\  
    %       [theta,r] = cart2pol(X,Y); y.p6%E_`  
    %       idx = r<=1; Da [C'm=  
    %       z = nan(size(X)); P]"d eB|  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); N?;o_^C  
    %       figure :(>9u.>l?5  
    %       pcolor(x,x,z), shading interp B#"|5  
    %       axis square, colorbar iIaT1i4t.  
    %       title('Zernike function Z_5^1(r,\theta)') {X<4wxeTo  
    % ( 'n8=J  
    %   Example 2: o^Ysp&#p  
    % @b\ S.  
    %       % Display the first 10 Zernike functions 5 xDN&su  
    %       x = -1:0.01:1; i ,pN1_-  
    %       [X,Y] = meshgrid(x,x); TE%#$q  
    %       [theta,r] = cart2pol(X,Y); RX5.bVp eE  
    %       idx = r<=1; i1I>RK  
    %       z = nan(size(X)); `uh@iD'KI  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Wi[m`#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; qQOD  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; K;p<f{PE  
    %       y = zernfun(n,m,r(idx),theta(idx)); #we>75l{+R  
    %       figure('Units','normalized') T_?nd T2  
    %       for k = 1:10 K\+}q{  
    %           z(idx) = y(:,k); Jh4&Qh|t  
    %           subplot(4,7,Nplot(k)) M+;P?|a  
    %           pcolor(x,x,z), shading interp sD8 m<   
    %           set(gca,'XTick',[],'YTick',[]) tIb21c q  
    %           axis square dAr)%RZ  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =HY1l}\  
    %       end [W$Z60?RR  
    % 1@^Ek8C  
    %   See also ZERNPOL, ZERNFUN2. /%YiZ#  
    H [Lt%:r  
    %   Paul Fricker 11/13/2006 ZBmXaP[9  
    a4( ?]ND~6  
    [z%?MIT  
    % Check and prepare the inputs: pp]_/46nN  
    % ----------------------------- wD ],{y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) f{Fe+iPc  
        error('zernfun:NMvectors','N and M must be vectors.') D!}K)T1~R  
    end 7~"(+f  
     (X(1kj3  
    if length(n)~=length(m) 6I>5~?#  
        error('zernfun:NMlength','N and M must be the same length.') P:(EU s}0  
    end 6 W;?8Z_1  
    l>D-Aan  
    n = n(:); -nk#d%a\  
    m = m(:); p x|>v8  
    if any(mod(n-m,2)) !ml_S)  
        error('zernfun:NMmultiplesof2', ... 'Z.OF5|eGT  
              'All N and M must differ by multiples of 2 (including 0).') N pXgyD  
    end b>QM~mq3^I  
    dGsS<@G  
    if any(m>n) e" Eqi-  
        error('zernfun:MlessthanN', ... 8nIMZV  
              'Each M must be less than or equal to its corresponding N.') K2xH'v O(  
    end wI! +L&Q  
    C NfJ:e2  
    if any( r>1 | r<0 ) (@ fa~?v>@  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') lC=N:=Mu  
    end ^p 2.UW  
    jQ_dw\ {0  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) =!(*5\IM  
        error('zernfun:RTHvector','R and THETA must be vectors.') f4'El2>-86  
    end CYtjY~  
    xN`r4  
    r = r(:); Dc.n-ipv$  
    theta = theta(:); d $fvg8^  
    length_r = length(r); }UKgF.  
    if length_r~=length(theta) V)0[`zJ  
        error('zernfun:RTHlength', ... wfBuU>  
              'The number of R- and THETA-values must be equal.') [J)/Et  
    end 5=Kq@[(4  
    s>jr1~~3O_  
    % Check normalization: q Vm"f,ruo  
    % -------------------- *$i;o3  
    if nargin==5 && ischar(nflag) %/l-A pu  
        isnorm = strcmpi(nflag,'norm'); VY/|WD~"CW  
        if ~isnorm s~=KhP~  
            error('zernfun:normalization','Unrecognized normalization flag.') )o#6-K+b  
        end EkJVFHfh  
    else URYZV8=B~  
        isnorm = false; W/ g|{t[  
    end tYs8)\{  
    \G$QNUU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WI1T?.Gc   
    % Compute the Zernike Polynomials U~uwm/h  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fav5e'[$  
    l`@0zw+  
    % Determine the required powers of r: 6exI_3A4jh  
    % ----------------------------------- +I|Rk&  
    m_abs = abs(m); #^|| ]g/N  
    rpowers = []; WD15pq l  
    for j = 1:length(n) "^;#f+0  
        rpowers = [rpowers m_abs(j):2:n(j)]; CO-Iar  
    end t< sp%zXZ  
    rpowers = unique(rpowers); tm(v~L%$>]  
    ?gLR<d_  
    % Pre-compute the values of r raised to the required powers, }@Xh xZu  
    % and compile them in a matrix: SQ}S4r  
    % ----------------------------- A LXUaE.  
    if rpowers(1)==0 !|:RcH[  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); GI4?|@%vD!  
        rpowern = cat(2,rpowern{:}); gU l1CH&  
        rpowern = [ones(length_r,1) rpowern]; Iq{o-nq  
    else w6vLNX  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); C<_ Urnmn  
        rpowern = cat(2,rpowern{:}); (O$}(Tn  
    end 1p8:.1)q  
    9khjwt  
    % Compute the values of the polynomials: L e*`r2  
    % -------------------------------------- gs?8Wzh90*  
    y = zeros(length_r,length(n)); /@VsqD  
    for j = 1:length(n) 8tU>DJ}0  
        s = 0:(n(j)-m_abs(j))/2; d] U`?A,  
        pows = n(j):-2:m_abs(j); ]k[x9,IU\y  
        for k = length(s):-1:1 Hi^35  
            p = (1-2*mod(s(k),2))* ... K[kds`  
                       prod(2:(n(j)-s(k)))/              ... +A@m9  
                       prod(2:s(k))/                     ... Nepi|{  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ^f9>l;Lb  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 5J  ySFG3  
            idx = (pows(k)==rpowers); ton1oq  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 4S tjj!ew  
        end ^w.]Hd 2  
         W!t{rI72  
        if isnorm 6 jmrD  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); z<!O!wX_aI  
        end le.anJAr  
    end a0PE^U  
    % END: Compute the Zernike Polynomials ymYBm: "  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GQb i$kl  
    FH.f- ZU  
    % Compute the Zernike functions: I_ONbJ9]  
    % ------------------------------ c&E]E(  
    idx_pos = m>0; /jM_mrpz  
    idx_neg = m<0; _BbvhWN&+  
    9TC) w|  
    z = y; q]CeD   
    if any(idx_pos) +~N!9eMc  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); uQnT[\k?  
    end C0QM#"[  
    if any(idx_neg) HmMO*k<6@  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Or7 mD  
    end O5zE {#  
    u"`*DFjo*  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) vy [C'a  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ##cnFQCB  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated (,B#t7ka  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive b5<okICD  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 3#c3IZ-;  
    %   and THETA is a vector of angles.  R and THETA must have the same <.bRf  
    %   length.  The output Z is a matrix with one column for every P-value, l(!/Q|Q|  
    %   and one row for every (R,THETA) pair. I`T1Pll  
    % Ab2Q \+,  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ^`XCT  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) uR$i48}  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 1y(UgEg   
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 '1Y\[T*  
    %   for all p. "j^MB)YD  
    % yz8jU*H  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 eM2|c3/  
    %   Zernike functions (order N<=7).  In some disciplines it is BhkoSkr  
    %   traditional to label the first 36 functions using a single mode G69GoT  
    %   number P instead of separate numbers for the order N and azimuthal +.kfU)6@  
    %   frequency M. UG](go't  
    % y t5H oy  
    %   Example: .UQE{.?  
    % 0^3+P%(o@  
    %       % Display the first 16 Zernike functions v-Qmx-N  
    %       x = -1:0.01:1; e2cP *J  
    %       [X,Y] = meshgrid(x,x); T^:fn-S}=  
    %       [theta,r] = cart2pol(X,Y); |ZiC`Nt  
    %       idx = r<=1; e#S0Fk)z  
    %       p = 0:15; l63hLz  
    %       z = nan(size(X)); jQ+sn/ROp  
    %       y = zernfun2(p,r(idx),theta(idx)); %\Wf^6Y^  
    %       figure('Units','normalized') /?*]lH.  
    %       for k = 1:length(p) k XrlSaIc  
    %           z(idx) = y(:,k); +?dl`!rE  
    %           subplot(4,4,k) %JyXbv3m,  
    %           pcolor(x,x,z), shading interp 2VoKr)  
    %           set(gca,'XTick',[],'YTick',[]) %IY``r)j  
    %           axis square f0>!qt  
    %           title(['Z_{' num2str(p(k)) '}']) m@Rtlb  
    %       end =0    
    % Fmr}o(q1  
    %   See also ZERNPOL, ZERNFUN. 3\:y8|  
    bt$)Xu<R  
    %   Paul Fricker 11/13/2006 t0)<$At6J  
    IzLQhDJ1  
    U;q];e:,=}  
    % Check and prepare the inputs: 4 %W:  
    % ----------------------------- Qk1xUE  
    if min(size(p))~=1 !?!C'-ps  
        error('zernfun2:Pvector','Input P must be vector.') sN6N >{  
    end ,|kDsR !  
    Zd:Taieh@  
    if any(p)>35 EYX$pz(x;  
        error('zernfun2:P36', ... 0#cy=*E  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... N<(.%<!  
               '(P = 0 to 35).']) 9DQa PA6  
    end %9oYw9 H!  
    F4L;BjnJ  
    % Get the order and frequency corresonding to the function number: p< "3&HA  
    % ---------------------------------------------------------------- JW.=T)  
    p = p(:); $~;D9  
    n = ceil((-3+sqrt(9+8*p))/2); *%/~mSx  
    m = 2*p - n.*(n+2); Yz$3;  
    s?R2B)a  
    % Pass the inputs to the function ZERNFUN: ^ BQrbY  
    % ---------------------------------------- n\z,/'d"  
    switch nargin Uyx!E4pl(  
        case 3 7R!5,Js+  
            z = zernfun(n,m,r,theta); 6/V3.UP-  
        case 4 qqrq11W  
            z = zernfun(n,m,r,theta,nflag); ]n."<qxeT  
        otherwise qMt++*Ls  
            error('zernfun2:nargin','Incorrect number of inputs.') B=8Iu5m  
    end 4k-+?L!/G  
    D,qu-k[jMI  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) s*U1  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 26T"XW'_  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 9$`lIy@B  
    %   order N and frequency M, evaluated at R.  N is a vector of +)o}c"P!  
    %   positive integers (including 0), and M is a vector with the {:@tQdM:i8  
    %   same number of elements as N.  Each element k of M must be a iY"l}.7)  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) H"ZZ.^"5FV  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is M9zfT !-  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix #Zrlp.M4  
    %   with one column for every (N,M) pair, and one row for every E dZ\1'&/9  
    %   element in R. g~(E>6Y  
    % oy<WsbnS  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ^&y$Wd]6  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 34\(7JO  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to }!IL]0 q  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ,^#yo6-  
    %   for all [n,m]. ,U(1NK8o  
    % "Ph^BU Ab  
    %   The radial Zernike polynomials are the radial portion of the 3Zi@A4Wu  
    %   Zernike functions, which are an orthogonal basis on the unit 23 ~ Sjr  
    %   circle.  The series representation of the radial Zernike [JF150zr  
    %   polynomials is V5*OA??k<  
    % Kq i4hK  
    %          (n-m)/2 o=0]el^A  
    %            __ `ZC<W]WYX/  
    %    m      \       s                                          n-2s Yw#2uh  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r pb~pN  
    %    n      s=0 7jdb)l\p=  
    % &x3VCsC\|  
    %   The following table shows the first 12 polynomials. rRFhGQq1m  
    % ;G%R<Z  
    %       n    m    Zernike polynomial    Normalization eq U ME  
    %       --------------------------------------------- D 9M:^  
    %       0    0    1                        sqrt(2) =UV`.d2[  
    %       1    1    r                           2 `r?7oxN  
    %       2    0    2*r^2 - 1                sqrt(6) 8<Hf" M  
    %       2    2    r^2                      sqrt(6) :0h_K  
    %       3    1    3*r^3 - 2*r              sqrt(8) o"*AtGR+"  
    %       3    3    r^3                      sqrt(8) e=.]F*:J  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) }sxYxn~  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ti#7(^j  
    %       4    4    r^4                      sqrt(10) K5lmVF\$P  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) cFJY^A  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Qjb:WC7he  
    %       5    5    r^5                      sqrt(12) >p"c>V& 8  
    %       --------------------------------------------- 55z]&5N  
    % [UH||qW  
    %   Example: *c2YRbU(  
    % [sW3l:^  
    %       % Display three example Zernike radial polynomials @ta7"6p-i@  
    %       r = 0:0.01:1; t2)rUWg  
    %       n = [3 2 5]; k?,1x~  
    %       m = [1 2 1]; ga`3 (  
    %       z = zernpol(n,m,r); sIy^m}02  
    %       figure :2ED jW  
    %       plot(r,z) *6 >.!&  
    %       grid on mGK|ihYu  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') K57&yVX  
    % 3U0`,c\ao*  
    %   See also ZERNFUN, ZERNFUN2. (=om,g}  
    p9x(D/YP0  
    % A note on the algorithm. \pVXimam  
    % ------------------------ <_-hRbS  
    % The radial Zernike polynomials are computed using the series "/wyZ  
    % representation shown in the Help section above. For many special  bJX)$G  
    % functions, direct evaluation using the series representation can Ys\Wj%6A  
    % produce poor numerical results (floating point errors), because qHrc9fB  
    % the summation often involves computing small differences between tIuCct-  
    % large successive terms in the series. (In such cases, the functions ):[7E(F=  
    % are often evaluated using alternative methods such as recurrence 32`{7a3!=  
    % relations: see the Legendre functions, for example). For the Zernike ]jo1{IcI  
    % polynomials, however, this problem does not arise, because the IhVO@KJI  
    % polynomials are evaluated over the finite domain r = (0,1), and 7Mg=b%IYs  
    % because the coefficients for a given polynomial are generally all N$U$5;r~`  
    % of similar magnitude. )% ~OH  
    % : qd`zG3  
    % ZERNPOL has been written using a vectorized implementation: multiple bAx-"Lu  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] oY933i@l)P  
    % values can be passed as inputs) for a vector of points R.  To achieve _I:/ZF5  
    % this vectorization most efficiently, the algorithm in ZERNPOL zN^n]N_?  
    % involves pre-determining all the powers p of R that are required to d^{RQ   
    % compute the outputs, and then compiling the {R^p} into a single ]7Tkkw$  
    % matrix.  This avoids any redundant computation of the R^p, and 4b98Ks Yg  
    % minimizes the sizes of certain intermediate variables. 6">+ ~ G  
    % xHD=\,{ig  
    %   Paul Fricker 11/13/2006 )-a'{W/t  
    [PNT\ElT  
    uM_wjP  
    % Check and prepare the inputs: \1^^\G>H5  
    % ----------------------------- I|^;B 8[  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Z{]0jhUyNh  
        error('zernpol:NMvectors','N and M must be vectors.') 3h$6t7=C  
    end .y!<t}  
    v|dBSX9k0  
    if length(n)~=length(m) tMf}   
        error('zernpol:NMlength','N and M must be the same length.') RBs-_o+%  
    end Vex{.Vh,"  
    t gI{`jS%  
    n = n(:); xMTKf+7  
    m = m(:); `4=^cyt+  
    length_n = length(n); 0jy2H2  
    O$_)G\\\m  
    if any(mod(n-m,2)) fF7bBE)L/|  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') I ?gSG*m  
    end l]Ax:Z  
    (k5We!4[1  
    if any(m<0) L^@'q6*}  
        error('zernpol:Mpositive','All M must be positive.') ~A'!2  
    end \Q0[?k  
    &"&Z #llb  
    if any(m>n) c;Pe/d  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') M2OIBH4!  
    end a_f~N1kq  
    2 ^h27A  
    if any( r>1 | r<0 ) -GhP9; d  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') K|zZS%?$  
    end :XZU&Sr"  
    1OCeN%4]Qk  
    if ~any(size(r)==1) 9g'LkP  
        error('zernpol:Rvector','R must be a vector.') g{OwuAC_  
    end l;R%= P?'F  
    <D<4BnZ(  
    r = r(:); I*{4rDt  
    length_r = length(r); CZud& <  
    I&}L*Z?`  
    if nargin==4 ]zE;Tw.S  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); de.&`lPRf  
        if ~isnorm WA)yfo0A  
            error('zernpol:normalization','Unrecognized normalization flag.') m0ER@BXRn  
        end ($au:'kU  
    else JEXy%hl  
        isnorm = false; 1+szG1U=  
    end \?[v{WP)  
    O#:$^#j&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q sZx) bO  
    % Compute the Zernike Polynomials ` Q|*1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UQ)W%Y;[0  
    <*16(!k0  
    % Determine the required powers of r: ^t` k0<  
    % ----------------------------------- -+(jq>t  
    rpowers = []; _<k\FU r  
    for j = 1:length(n) F, W~,y  
        rpowers = [rpowers m(j):2:n(j)]; v- T$:cL  
    end z>58dA@f  
    rpowers = unique(rpowers); nKPYOY8^  
    4r>6G/b8*  
    % Pre-compute the values of r raised to the required powers, R.jIl@p   
    % and compile them in a matrix: Zn&, t &z  
    % ----------------------------- i6dHrx]:,  
    if rpowers(1)==0 GPkmf%FJ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |^:cG4e  
        rpowern = cat(2,rpowern{:}); c`J.Tm[_u  
        rpowern = [ones(length_r,1) rpowern]; QLXN*c  
    else t2/#&J]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7S '% E  
        rpowern = cat(2,rpowern{:}); Wvbf"hq  
    end *w^C"^*  
    =5J7Hw&K  
    % Compute the values of the polynomials: P\yDa*m  
    % -------------------------------------- *W.C7=  
    z = zeros(length_r,length_n); RN$1bxY  
    for j = 1:length_n E@@5BEB ~  
        s = 0:(n(j)-m(j))/2; $Z.7zH  
        pows = n(j):-2:m(j); xf<at->  
        for k = length(s):-1:1 +c(zo4nZ  
            p = (1-2*mod(s(k),2))* ... ![`Ay4AZ@a  
                       prod(2:(n(j)-s(k)))/          ... L^E[J`  
                       prod(2:s(k))/                 ... l1T m`7}  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Q\^O64geD  
                       prod(2:((n(j)+m(j))/2-s(k))); M2 ,YsHt  
            idx = (pows(k)==rpowers); o)Iff)m$  
            z(:,j) = z(:,j) + p*rpowern(:,idx); )U~=Pf"  
        end 1n=lqn/  
         gp5_Z-me  
        if isnorm Sh/T,  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 8J:}%DaxL  
        end =d".|k  
    end &M46&^Jho  
    M9!HQ   
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  J%x\=Sv  
    yzerOL  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 'eLqlu|T  
    ^>i63Yc  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)