切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10172阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 X v`2hf  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! hwEZj`9  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 tEpIyC  
    function z = zernfun(n,m,r,theta,nflag) N(:EK  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. >o0&:h|>$'  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 97:t29N  
    %   and angular frequency M, evaluated at positions (R,THETA) on the X~IRpzC  
    %   unit circle.  N is a vector of positive integers (including 0), and w~cq% %  
    %   M is a vector with the same number of elements as N.  Each element b@{%qh ,C  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) -z>Z0viA  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ^rxfNcU7  
    %   and THETA is a vector of angles.  R and THETA must have the same }"g21-T^  
    %   length.  The output Z is a matrix with one column for every (N,M) 1)P<cNj  
    %   pair, and one row for every (R,THETA) pair. []6ShcqJ[v  
    % FcA)RsMI*  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike s/W!6JX4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !%Z)eO~Z  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral =:CGl   
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, rA1zyZlz  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Q%X:5G?  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. eCPKpVhP  
    % \ pe[V~F  
    %   The Zernike functions are an orthogonal basis on the unit circle. o1p$9PL\:  
    %   They are used in disciplines such as astronomy, optics, and :$GL.n-?  
    %   optometry to describe functions on a circular domain. ~_f |".T  
    % ecSdU>  
    %   The following table lists the first 15 Zernike functions. Hz!U_?  
    % @Le ^-v4  
    %       n    m    Zernike function           Normalization #um1?V  
    %       -------------------------------------------------- -Z/6;2Q  
    %       0    0    1                                 1 Y7b,td1  
    %       1    1    r * cos(theta)                    2 s$DT.cvO  
    %       1   -1    r * sin(theta)                    2 Gct&}]3pm  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) \U<F\i  
    %       2    0    (2*r^2 - 1)                    sqrt(3) @2%VU#!m  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 8IT_mjj  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) C,VqT6E<  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ~q#[5l(r8  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 6>LQGO  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 6/V{>MTZg  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ~' Qpf 8)  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kERaY9L\  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ZhJ|ZvJ  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "$,}|T?Y`  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) om*tdG  
    %       -------------------------------------------------- KOAz-h@6   
    % "PDSqYA  
    %   Example 1: )z4kP09  
    % KH@) +Rj  
    %       % Display the Zernike function Z(n=5,m=1) yoA*\V  
    %       x = -1:0.01:1; qhn&;{{  
    %       [X,Y] = meshgrid(x,x); !w;A=  
    %       [theta,r] = cart2pol(X,Y); 1TD&&EC  
    %       idx = r<=1; 9bzYADLI  
    %       z = nan(size(X)); KoQ_: `  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 5Ky9Pz  
    %       figure L2/<+ Zw  
    %       pcolor(x,x,z), shading interp $.3CiM }~  
    %       axis square, colorbar v^lm8/}NO  
    %       title('Zernike function Z_5^1(r,\theta)') %;B(_ht<-w  
    % WKYA9BaR  
    %   Example 2: fXXm@tMx>  
    % JG+g88  
    %       % Display the first 10 Zernike functions <+i`W7  
    %       x = -1:0.01:1; ^&G O4u  
    %       [X,Y] = meshgrid(x,x); zx]M/=7,V#  
    %       [theta,r] = cart2pol(X,Y); b#\ k Z/W  
    %       idx = r<=1; ETH#IM8J  
    %       z = nan(size(X)); B"E(Y M  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Jk6/i;4|  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; >`,#%MH#  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; HNHhMi`w  
    %       y = zernfun(n,m,r(idx),theta(idx)); 1rm$@L  
    %       figure('Units','normalized') enD C#  
    %       for k = 1:10 UgP=k){  
    %           z(idx) = y(:,k); BS<>gA R;/  
    %           subplot(4,7,Nplot(k)) aY1#K6(y  
    %           pcolor(x,x,z), shading interp -"JE-n  
    %           set(gca,'XTick',[],'YTick',[]) Vo9)KxR  
    %           axis square jtVPv]  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 0wE8Gm G  
    %       end C7*Yg$`{  
    % j"$b%|  
    %   See also ZERNPOL, ZERNFUN2. I}Gl*@K&O  
    Nno={i1jk  
    %   Paul Fricker 11/13/2006 *}WqYqOow  
    1 FIiX  
    NYV0<z@M2M  
    % Check and prepare the inputs: G}hkr  
    % ----------------------------- |sZ9 /G7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ])ZJ1QL1  
        error('zernfun:NMvectors','N and M must be vectors.') ^MWW,`  
    end {Z~VO  
    QX~72X=(  
    if length(n)~=length(m) O6/=/-?N=c  
        error('zernfun:NMlength','N and M must be the same length.') P@T $6%~  
    end qP.VK?jF|  
    H&K)q5~  
    n = n(:); &WWO13\qd  
    m = m(:); 6`$z*C2{  
    if any(mod(n-m,2)) M+&eh*:z:  
        error('zernfun:NMmultiplesof2', ... FU v)<rK  
              'All N and M must differ by multiples of 2 (including 0).') w7ABnX  
    end P*^UU\x'4I  
    GH)+yD[o  
    if any(m>n) oIR%{`3"I  
        error('zernfun:MlessthanN', ... !Q/O[6  
              'Each M must be less than or equal to its corresponding N.') |c+N)F B  
    end $HnD|_*  
    5<ya;iK  
    if any( r>1 | r<0 ) W;x LuKIG  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,4I6RwB.  
    end xx2:5  
    vH:+  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) C&K(({5O  
        error('zernfun:RTHvector','R and THETA must be vectors.') L$07u{Q  
    end 7^}Z%c  
    I Y-5/  
    r = r(:); O#Ax P}  
    theta = theta(:); HE .Dl7 {  
    length_r = length(r); gYIYA"xN`  
    if length_r~=length(theta) C4d1*IQk  
        error('zernfun:RTHlength', ... ON=ley  
              'The number of R- and THETA-values must be equal.') sU3V)7"  
    end kR|DzB7  
    *xNjhR]7v  
    % Check normalization: )$.9Wl Q  
    % -------------------- 8{^GC(W{]  
    if nargin==5 && ischar(nflag) {y%O_-C'r  
        isnorm = strcmpi(nflag,'norm'); 20xGj?M  
        if ~isnorm Xpz-@fqKdf  
            error('zernfun:normalization','Unrecognized normalization flag.') 8k}CR)3@C  
        end 5N}|VGN  
    else #z5?Y2t7~^  
        isnorm = false; .:Xe*Q  
    end ^O9m11  
    yq^$H^_O p  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {.'g!{SHp  
    % Compute the Zernike Polynomials QLLV OJi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xg!\C@$  
    ?4dd|n  
    % Determine the required powers of r: Z?[J_[ZtR3  
    % ----------------------------------- 6h"? 3w  
    m_abs = abs(m); os+wTUR^  
    rpowers = []; e"09b<69  
    for j = 1:length(n) e/l?|+m 6  
        rpowers = [rpowers m_abs(j):2:n(j)]; iFT3fP'> 5  
    end 5%$kAJZC-  
    rpowers = unique(rpowers); c=mFYsSv  
    C /VXyl@o  
    % Pre-compute the values of r raised to the required powers, z@LP9+?dE  
    % and compile them in a matrix: 1Ee>pbd  
    % ----------------------------- _e^V\O>  
    if rpowers(1)==0 667tL(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _$x *CP0(  
        rpowern = cat(2,rpowern{:}); Yhdt8[ 2  
        rpowern = [ones(length_r,1) rpowern]; XX;%:?n  
    else l)eaIOyk  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :zZM&r>  
        rpowern = cat(2,rpowern{:}); ?["ZEa  
    end jF0BWPL  
    4}b:..Ku  
    % Compute the values of the polynomials: 1%{(?uz9  
    % -------------------------------------- 2^j9m}`  
    y = zeros(length_r,length(n)); U4/$4.'NQ  
    for j = 1:length(n) p_N=V. w  
        s = 0:(n(j)-m_abs(j))/2; 0 N^V&k   
        pows = n(j):-2:m_abs(j); }e6:&`a xD  
        for k = length(s):-1:1 Lf<9GYNy>`  
            p = (1-2*mod(s(k),2))* ... @J)vuGS  
                       prod(2:(n(j)-s(k)))/              ... ]5L3[A4Vu  
                       prod(2:s(k))/                     ... [C#pMLp,~  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... |8rJqtf +&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 2^+"GCo  
            idx = (pows(k)==rpowers); Q?q m~wD  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ;W"[,#2TM  
        end (/BkwbJyE  
         {hR23eE)#  
        if isnorm UJ&,9}L8  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); n(MEG'9}  
        end 8t"DQ Y-R  
    end h Nwb.[  
    % END: Compute the Zernike Polynomials &ICO{#v5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yLX\pkAt4  
    XsCbA8Qv  
    % Compute the Zernike functions: EtG)2)  
    % ------------------------------  -"H9W:  
    idx_pos = m>0; kDQXP p  
    idx_neg = m<0; cke[SUH,  
    i vk|-C'\  
    z = y; S] a$w5ZP  
    if any(idx_pos) bL%)k61G_v  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); pq`MO .R  
    end +cN2 KP  
    if any(idx_neg) bf+2c6_BN0  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); $P~a   
    end '` "&RuB  
    ~>|U%3}]  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) .#}R$}e+  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 4{=Em5`HbO  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated *np|PyLP:  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ZhU2z*qN#  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, WqO* vK!t  
    %   and THETA is a vector of angles.  R and THETA must have the same 4!wfh)Z  
    %   length.  The output Z is a matrix with one column for every P-value, 4{ &   
    %   and one row for every (R,THETA) pair. Bdi~ B")  
    % +$C5V,H ~  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Y`v&YcX;  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 3ly|y{M",  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) BN0))p  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 _'Z@ < ,L  
    %   for all p. \uH;ng|m  
    % FrS>.!OFn  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 BH^q.p_#>X  
    %   Zernike functions (order N<=7).  In some disciplines it is 1?;s!6=  
    %   traditional to label the first 36 functions using a single mode e BPMT  
    %   number P instead of separate numbers for the order N and azimuthal Om*Dy}  
    %   frequency M. tQ"PCm  
    % }j x{Cw  
    %   Example: FK>r c3 q  
    % vnE,}(M  
    %       % Display the first 16 Zernike functions dJk.J9Z  
    %       x = -1:0.01:1; b1+Nm  
    %       [X,Y] = meshgrid(x,x); LF8B5<[O  
    %       [theta,r] = cart2pol(X,Y); Y (Q8P{@(  
    %       idx = r<=1; gyIPG2d  
    %       p = 0:15; #*fB~Os:  
    %       z = nan(size(X)); ufmFeeg  
    %       y = zernfun2(p,r(idx),theta(idx)); 6xwC1V?:0t  
    %       figure('Units','normalized') v?}/WKe+0  
    %       for k = 1:length(p) TAP/gN'  
    %           z(idx) = y(:,k); U<t Qj`  
    %           subplot(4,4,k)  -H{{  
    %           pcolor(x,x,z), shading interp `y4+OXZ^  
    %           set(gca,'XTick',[],'YTick',[]) {az8*MR=X  
    %           axis square GCrMrZ6  
    %           title(['Z_{' num2str(p(k)) '}']) {"s8X(#_sC  
    %       end .d;/6HD[y  
    % `eA0Z:`g!  
    %   See also ZERNPOL, ZERNFUN. T ^uBMDYe  
    3=z'Ih`  
    %   Paul Fricker 11/13/2006 vg<_U&N=-r  
    Bi]%bl>%  
    &" =inkh  
    % Check and prepare the inputs: +IMP<  
    % ----------------------------- 7kO 1d{u6b  
    if min(size(p))~=1 H&I 0\upd  
        error('zernfun2:Pvector','Input P must be vector.') |@ia(U~  
    end sD M!Uv2n  
    L_/.b%0)  
    if any(p)>35 tUzuel*  
        error('zernfun2:P36', ... l-5-Tf&j  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... = fm/l-P@  
               '(P = 0 to 35).']) fZg Z  
    end O *CKyW_$t  
    !5pp A  
    % Get the order and frequency corresonding to the function number: ]itvu:pl%  
    % ---------------------------------------------------------------- v6]lH9c{,  
    p = p(:); dz?:)5>I  
    n = ceil((-3+sqrt(9+8*p))/2); 7p|Pv;wp|  
    m = 2*p - n.*(n+2); nfd^'}$]  
    o4d>c{p  
    % Pass the inputs to the function ZERNFUN: 4!D!.t~r  
    % ---------------------------------------- iidK}<o  
    switch nargin ?=aQG0  
        case 3 M^H357r%  
            z = zernfun(n,m,r,theta); *T 6<'a  
        case 4 U4%P0}q/  
            z = zernfun(n,m,r,theta,nflag); 7z`)1^ M  
        otherwise R6!t2gdKe@  
            error('zernfun2:nargin','Incorrect number of inputs.') LFtnSB8  
    end (Ys 0|I3  
    +YXyfTa  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 7h0LR7  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. [WuN?H  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of g\GuH?|   
    %   order N and frequency M, evaluated at R.  N is a vector of Z+JPxe#7  
    %   positive integers (including 0), and M is a vector with the 5Q =o.wf  
    %   same number of elements as N.  Each element k of M must be a 624l5}@:  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) IOomBy:  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is iU5M_M$G  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix /a Nlr>^  
    %   with one column for every (N,M) pair, and one row for every >E6w,Ab  
    %   element in R. ??)IPRv?yF  
    % VM88#^  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- [Q6PFdQ_JT  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is v:|_!+g:  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 22(7rUkI  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 6;Wns'  
    %   for all [n,m]. 7 wH9w  
    % "`s{fy~mV  
    %   The radial Zernike polynomials are the radial portion of the w`x4i fZ0q  
    %   Zernike functions, which are an orthogonal basis on the unit !UDTNF?1  
    %   circle.  The series representation of the radial Zernike 8k vG<&D  
    %   polynomials is <>%2HRn<u  
    % oP!oU2eqK  
    %          (n-m)/2 !E#FzY!}Pl  
    %            __ @vs+)aRa  
    %    m      \       s                                          n-2s }Ox5,S}ra  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 5LMAy"  
    %    n      s=0 ?)X 0l  
    % {S,L %  
    %   The following table shows the first 12 polynomials. a'r8J~:jy  
    % #? u#=]  
    %       n    m    Zernike polynomial    Normalization Xw)W6H|  
    %       --------------------------------------------- Tmjcc(  
    %       0    0    1                        sqrt(2) K+|G9  
    %       1    1    r                           2 OiI29  
    %       2    0    2*r^2 - 1                sqrt(6) ';'gKX!9V  
    %       2    2    r^2                      sqrt(6) Qa>t$`o`  
    %       3    1    3*r^3 - 2*r              sqrt(8) | $  
    %       3    3    r^3                      sqrt(8) >sGIpER7  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Klrd|;C  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) (J} tCqP  
    %       4    4    r^4                      sqrt(10) 3:qn\"Hj  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) =e*S h0dK  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) #:[^T,YD0  
    %       5    5    r^5                      sqrt(12) m9Xauk$(  
    %       --------------------------------------------- t[}&*2"$/  
    % jJbS{1z  
    %   Example: &65I 6  
    % JP{Y Q:NF  
    %       % Display three example Zernike radial polynomials #7v=#Jco  
    %       r = 0:0.01:1; h\-3Y U  
    %       n = [3 2 5]; pd^"MG  
    %       m = [1 2 1]; r|av|7R  
    %       z = zernpol(n,m,r); 'nJ,mZx  
    %       figure Yc^;?n`x  
    %       plot(r,z) 6 H{G$[2  
    %       grid on 0H!J  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 0(qtn9;=2  
    % o*_arzhA  
    %   See also ZERNFUN, ZERNFUN2.  \uG^w(*)  
    wNvq['P  
    % A note on the algorithm. Q{= DLm`  
    % ------------------------ _D"V^4^yqu  
    % The radial Zernike polynomials are computed using the series 9w!PA-) L  
    % representation shown in the Help section above. For many special )kIZm Q|f1  
    % functions, direct evaluation using the series representation can Fzmc#?  
    % produce poor numerical results (floating point errors), because ,76Q*p  
    % the summation often involves computing small differences between s+0n0C  
    % large successive terms in the series. (In such cases, the functions yByxy-~  
    % are often evaluated using alternative methods such as recurrence #u"$\[G  
    % relations: see the Legendre functions, for example). For the Zernike &[b(Lx|i  
    % polynomials, however, this problem does not arise, because the JCjV,  
    % polynomials are evaluated over the finite domain r = (0,1), and |Ml~_m  
    % because the coefficients for a given polynomial are generally all 6qR5A+|;  
    % of similar magnitude. 'IQ;; [Q  
    % _J&IL!S2  
    % ZERNPOL has been written using a vectorized implementation: multiple yRy^'E~  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 0JE*|CtK  
    % values can be passed as inputs) for a vector of points R.  To achieve ^Ycn&`s  
    % this vectorization most efficiently, the algorithm in ZERNPOL ?G>E[!8ev  
    % involves pre-determining all the powers p of R that are required to \ lW*.<  
    % compute the outputs, and then compiling the {R^p} into a single ak_n  
    % matrix.  This avoids any redundant computation of the R^p, and sW]>#e  
    % minimizes the sizes of certain intermediate variables. M#}k@ ;L3  
    % ]?sw<D{  
    %   Paul Fricker 11/13/2006 tS3!cO\  
    3w&Z:<  
    n #PXMD*  
    % Check and prepare the inputs: \=c@  
    % ----------------------------- >)t-Zh:n  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9}T(m(WQVu  
        error('zernpol:NMvectors','N and M must be vectors.') bQ`2ll*(  
    end  Il]p >B  
    /"@k_[O  
    if length(n)~=length(m) Lvb'qZ6n  
        error('zernpol:NMlength','N and M must be the same length.') %Y=  
    end .R^q$U~v3  
    U!b~vrr^  
    n = n(:); ' -td/w  
    m = m(:); t vp kc;  
    length_n = length(n); af_b G;  
    F;ELsg  
    if any(mod(n-m,2)) x-T7 tr&(  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 5Z>+NKQ  
    end \7WZFh%:  
    N)EJP ~0  
    if any(m<0) Ssd7]G+n:  
        error('zernpol:Mpositive','All M must be positive.') _^h?JTU^  
    end ^Sc48iDc  
    x75 3o\u!  
    if any(m>n) v*&WqVg  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') xJ^pqb  
    end V^kl_!@  
    YK V"bI  
    if any( r>1 | r<0 ) MZt&HbD-  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') NKYHJf2?x  
    end ;F:Qz^=.a  
    :+<GJj_d+  
    if ~any(size(r)==1) rsD? ;XzH  
        error('zernpol:Rvector','R must be a vector.') /Z2 g >  
    end F~l:W QAj  
    6'|NALW  
    r = r(:); 3J[ 5^  
    length_r = length(r); TUi<  
    =c#;c+a  
    if nargin==4 l8 XY  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); \eCQL(_  
        if ~isnorm g7r0U6Y  
            error('zernpol:normalization','Unrecognized normalization flag.') )QB9zl:  
        end -^,wQW:o)  
    else  WYW@%t  
        isnorm = false; X?S LYm@v  
    end J';XAB }  
    $uUJV% EX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }4_c~)9Q  
    % Compute the Zernike Polynomials (!koz'f  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +~?K@n  
    78O5$?b;#  
    % Determine the required powers of r: eB5<N?;s  
    % ----------------------------------- { \5-b:#_  
    rpowers = []; nE"0?VNW$  
    for j = 1:length(n) W C3b_ia  
        rpowers = [rpowers m(j):2:n(j)]; |dqvv  
    end +zzS  
    rpowers = unique(rpowers); eQsoZQA1  
    z1LY|8$G  
    % Pre-compute the values of r raised to the required powers, ]*\<k  
    % and compile them in a matrix: sX#7;,Ft7  
    % ----------------------------- qD> D  
    if rpowers(1)==0 k6??+b:rE  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); B:tGD@  
        rpowern = cat(2,rpowern{:}); MJ~)CiKgN  
        rpowern = [ones(length_r,1) rpowern]; B=hJ*;:p  
    else eo'C)j# U  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  DZ&AwF  
        rpowern = cat(2,rpowern{:}); ) q'~<QxI\  
    end (N$$N:ac[t  
    UdX aC= Q  
    % Compute the values of the polynomials: J!*Pg<  
    % -------------------------------------- 4W+%`x_U]  
    z = zeros(length_r,length_n); m NApFwZ  
    for j = 1:length_n o/p'eY:)  
        s = 0:(n(j)-m(j))/2; et :v4^*f  
        pows = n(j):-2:m(j); c$]NXKcA  
        for k = length(s):-1:1 ot.R Gpg%  
            p = (1-2*mod(s(k),2))* ... l|K`'YS!<{  
                       prod(2:(n(j)-s(k)))/          ... O:(%m  
                       prod(2:s(k))/                 ... z,/y2H2  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... nwAx47>{  
                       prod(2:((n(j)+m(j))/2-s(k))); !Mk:rO-L  
            idx = (pows(k)==rpowers); `-)Fx<e  
            z(:,j) = z(:,j) + p*rpowern(:,idx); |cq%eN  
        end von~-51;  
         4!tHJCq"  
        if isnorm cRC)99HP  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); -}r(75C  
        end ti9 cfv>  
    end }lt]]094,  
    . G ~,h  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    8425
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Ip4NkUI3T  
    g@Ni!U"_c  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 p!aeL}g`  
    BQS9q'u_  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)