切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11572阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 I2j;9Qcz  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 'QT(TF>  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ( ?/0$DB  
    function z = zernfun(n,m,r,theta,nflag) LG<lZ9+y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. YSa:"A  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N E0O{5YF^T  
    %   and angular frequency M, evaluated at positions (R,THETA) on the TJ; v}HSo  
    %   unit circle.  N is a vector of positive integers (including 0), and 5\4>H6  
    %   M is a vector with the same number of elements as N.  Each element 2OT6*+D  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) e#nTp b  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, +:'Po.{"  
    %   and THETA is a vector of angles.  R and THETA must have the same oC7#6W:@w  
    %   length.  The output Z is a matrix with one column for every (N,M) b%PVF&C9W  
    %   pair, and one row for every (R,THETA) pair. A+F-r_]}db  
    % ~ml\|  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike  gA[M  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ]#:xl}'LS  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral _-!6@^+  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, E,6E-9  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized l&|{uk  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2~`dV_  
    % <=7)t.  
    %   The Zernike functions are an orthogonal basis on the unit circle. @H_LPn  
    %   They are used in disciplines such as astronomy, optics, and ;XtDz  
    %   optometry to describe functions on a circular domain. rSJ}qRXwU  
    % P)\f\yb  
    %   The following table lists the first 15 Zernike functions. @B^'W'&C  
    % S}< <jI-z  
    %       n    m    Zernike function           Normalization H~~(v52wD  
    %       -------------------------------------------------- [KE4wz+s{  
    %       0    0    1                                 1 jU#%@d6!#  
    %       1    1    r * cos(theta)                    2 ;< ][upn  
    %       1   -1    r * sin(theta)                    2 \)#3S $L~  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) fZ376Z:S$  
    %       2    0    (2*r^2 - 1)                    sqrt(3) <Q kfvK]Q  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) [`b{eLCFX]  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) C=b5[, UCB  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Qdn:4yk  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ?#[K&$}  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) f7W=x6Z4  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) *7vPU:Q[  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ueg X  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) \bsm#vY,  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0iB 1_)~  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) |kd^]! _  
    %       -------------------------------------------------- <5#e.w  
    % *&PgDAQ  
    %   Example 1: @t^ 2/H ?O  
    % s6]f#s5o  
    %       % Display the Zernike function Z(n=5,m=1) G`P+J  
    %       x = -1:0.01:1; Uy_= #&jg  
    %       [X,Y] = meshgrid(x,x);  {Eb6.  
    %       [theta,r] = cart2pol(X,Y); ie ,{C  
    %       idx = r<=1; <?g{Rn  
    %       z = nan(size(X)); S-H3UND"  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); eo80L  
    %       figure #.='dSj  
    %       pcolor(x,x,z), shading interp MDq@:t  
    %       axis square, colorbar \*N1i`99  
    %       title('Zernike function Z_5^1(r,\theta)') o MAK[$k;  
    % fI|1@e1  
    %   Example 2: p(8\w-6  
    % i*tj@5MY-  
    %       % Display the first 10 Zernike functions KJ~pY<a?  
    %       x = -1:0.01:1; ,rdM{ r  
    %       [X,Y] = meshgrid(x,x); OG+$F  
    %       [theta,r] = cart2pol(X,Y); H:_`]X"  
    %       idx = r<=1; 5 9vGLN!L  
    %       z = nan(size(X)); UGMdWq  
    %       n = [0  1  1  2  2  2  3  3  3  3]; *Tlv'E.M  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; vKt_z@{{L  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; %Fv)$ :b  
    %       y = zernfun(n,m,r(idx),theta(idx)); E*l"uV  
    %       figure('Units','normalized') 6p@ts`#  
    %       for k = 1:10 88K*d8m  
    %           z(idx) = y(:,k); g;h&Xkp  
    %           subplot(4,7,Nplot(k)) J\*d4I<(Rt  
    %           pcolor(x,x,z), shading interp uprQy<I@  
    %           set(gca,'XTick',[],'YTick',[]) z|2liQrf+  
    %           axis square x,%&[ 6(  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) fjFy$NX&>  
    %       end 5-*]PAC  
    % &)l:m.  
    %   See also ZERNPOL, ZERNFUN2. rU O{-R  
    cPbz7  
    %   Paul Fricker 11/13/2006 W#[!8d35$  
    2~<0<^j/]  
    C0%%@ 2+  
    % Check and prepare the inputs: UPYM~c+}  
    % ----------------------------- }0( Na  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) kWd'gftQ  
        error('zernfun:NMvectors','N and M must be vectors.') S(6ZX>wv:  
    end -,dQ&Qf?  
    1|VJND  
    if length(n)~=length(m) 66*o2D\Q*G  
        error('zernfun:NMlength','N and M must be the same length.') -eMRxa>  
    end $#r(1 Ev  
    ]`prDw'  
    n = n(:); vF&b|V+,  
    m = m(:); q*O KA5  
    if any(mod(n-m,2)) CkU=0mcY  
        error('zernfun:NMmultiplesof2', ... YSgF'qq\  
              'All N and M must differ by multiples of 2 (including 0).') 4_<Uk  
    end 8##jd[o&p~  
    hgK=fHJ k  
    if any(m>n) Q6K)EwN  
        error('zernfun:MlessthanN', ... o1Ln7r.  
              'Each M must be less than or equal to its corresponding N.') ZAZCvN@5  
    end 2XHk}M|  
    R5"p7>  
    if any( r>1 | r<0 ) G$ FBx  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') o3=kF  
    end 0,/x#  
    .a*$WGb  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,X^_w g  
        error('zernfun:RTHvector','R and THETA must be vectors.') Pc'?p  
    end ydQS"]\g  
    p0K;m%  
    r = r(:);  iC]lO  
    theta = theta(:); cAS_?"V a  
    length_r = length(r); 3;NRW+  
    if length_r~=length(theta) B! V{.p  
        error('zernfun:RTHlength', ... cqx1NWlY  
              'The number of R- and THETA-values must be equal.') fP58$pwu  
    end !\1W*6U8;  
    " 44?n <1  
    % Check normalization: Tm52=+uf$  
    % -------------------- I0K!Kcu5Iu  
    if nargin==5 && ischar(nflag) K*$#D1hG  
        isnorm = strcmpi(nflag,'norm'); Wg^cj:&`u  
        if ~isnorm de9l;zF  
            error('zernfun:normalization','Unrecognized normalization flag.') Z@!W? Ed  
        end tY=%@v'6?  
    else #~;8#!X  
        isnorm = false; *K'ej4"u  
    end Jr)`shJ"  
    ^z^e*<{WEl  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OPW"AB J  
    % Compute the Zernike Polynomials `Xdxg\|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A@(h!Cq  
    e"#D){k#  
    % Determine the required powers of r: 1m;*fs  
    % ----------------------------------- Z4ioXl  
    m_abs = abs(m); !" %sp6Wc  
    rpowers = []; l-}5@D[  
    for j = 1:length(n) SzX~;pFM0  
        rpowers = [rpowers m_abs(j):2:n(j)]; #G` ,  
    end JyC&L6[]Z  
    rpowers = unique(rpowers); p"IS"k%  
    x }'4^Cv  
    % Pre-compute the values of r raised to the required powers, g ypq`F  
    % and compile them in a matrix: m,C,<I|'d  
    % ----------------------------- S.|kg2  
    if rpowers(1)==0 8zDH<Gb  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); BK9x`Oo2  
        rpowern = cat(2,rpowern{:}); s}9tK(4v  
        rpowern = [ones(length_r,1) rpowern]; v9m;vWp  
    else jUvA<r  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,,%:vK+V  
        rpowern = cat(2,rpowern{:}); V9u\;5oL  
    end f&|A[i>g  
    /I'u/{KB  
    % Compute the values of the polynomials: cvE.r330|  
    % -------------------------------------- > ' 0 ][~  
    y = zeros(length_r,length(n)); X|E+K  
    for j = 1:length(n) cO+Xzd;838  
        s = 0:(n(j)-m_abs(j))/2; _iJXp0g  
        pows = n(j):-2:m_abs(j); &4&33D  
        for k = length(s):-1:1 ^7 bf8 ^`  
            p = (1-2*mod(s(k),2))* ... exO#>th1  
                       prod(2:(n(j)-s(k)))/              ... 7[v@*/W@  
                       prod(2:s(k))/                     ... t-*|Hfp*^  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 3*$9G)Ey  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); rjHIQC C  
            idx = (pows(k)==rpowers); a,*p_:~i  
            y(:,j) = y(:,j) + p*rpowern(:,idx); %M#?cmt  
        end Fra>|;do  
         <o!&Kk9  
        if isnorm UlNfI}#X  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); M'zS7=F!:  
        end ^M"z1B]  
    end =lC;^&D-0/  
    % END: Compute the Zernike Polynomials M*|VLOo=v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1i/::4=  
    TT2cOw  
    % Compute the Zernike functions: J4v0O="  
    % ------------------------------ $.Q>M]xH  
    idx_pos = m>0; WAB0e~e:|Q  
    idx_neg = m<0; M ?xpwqu\  
    XQ 3*  
    z = y; @>fO;*  
    if any(idx_pos) X')Zm+  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); %7v@n+Q  
    end o9Txo (tYU  
    if any(idx_neg) /pN'K5@  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); t'Eb#Nup3  
    end n(1wdlEp  
    twtkH~`"Q  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 5:%..e`T  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. }F{C= l2  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated au~]  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 9^PRX  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, B:?#l=FL  
    %   and THETA is a vector of angles.  R and THETA must have the same ?""\  
    %   length.  The output Z is a matrix with one column for every P-value, lI4J=8O0  
    %   and one row for every (R,THETA) pair. -@SOo"P  
    % uNe}"hs  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike =t3vbV  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) +ze}0lrEL  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) =a)iVXSB]  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 j|[(*i%7|  
    %   for all p. _Z+jQFKJ\8  
    % `6Ureui2?  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 jby~AJf %  
    %   Zernike functions (order N<=7).  In some disciplines it is S5~`T7Ra  
    %   traditional to label the first 36 functions using a single mode L\b]k,Ksf  
    %   number P instead of separate numbers for the order N and azimuthal X`yNR;>  
    %   frequency M. ~$4]HDg  
    % ! Ea&]G  
    %   Example: Vk-W8[W 7  
    % I9}+(6  
    %       % Display the first 16 Zernike functions T-9k<,>?  
    %       x = -1:0.01:1; ^:4L6  
    %       [X,Y] = meshgrid(x,x); 'e.q 7Jpd  
    %       [theta,r] = cart2pol(X,Y); Nush`?]J"_  
    %       idx = r<=1; )=jT_?9b   
    %       p = 0:15; \6 \hnP  
    %       z = nan(size(X)); `'p`PyMt`  
    %       y = zernfun2(p,r(idx),theta(idx)); Fn:.Y8%-  
    %       figure('Units','normalized') 3sZ,|,ueD  
    %       for k = 1:length(p) ]3L@$`ys  
    %           z(idx) = y(:,k); ]alh_U  
    %           subplot(4,4,k) 5<89Af&&K8  
    %           pcolor(x,x,z), shading interp ;>9OgO  
    %           set(gca,'XTick',[],'YTick',[]) s$DGd T)  
    %           axis square !0Idp%  
    %           title(['Z_{' num2str(p(k)) '}']) > P<z |8  
    %       end [ULwzjss#L  
    % /Q?~Q0{)es  
    %   See also ZERNPOL, ZERNFUN. I"ca+4]  
    9>N\sOh  
    %   Paul Fricker 11/13/2006 [ njx7d  
    [{`)j  
    J?C k4dQ  
    % Check and prepare the inputs: $^}[g9]1  
    % ----------------------------- >b>M Km>q  
    if min(size(p))~=1 xC-BqVJ%_T  
        error('zernfun2:Pvector','Input P must be vector.') {Q)dU-\  
    end 3brb*gI_b  
    G%a] j  
    if any(p)>35 6m9 7_NRO  
        error('zernfun2:P36', ... '!!e+\h#  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... :.#z  
               '(P = 0 to 35).']) tXt:HVN  
    end u7HvdLql  
    /D0RC  
    % Get the order and frequency corresonding to the function number: <EtUnj:qK8  
    % ---------------------------------------------------------------- <B!'3C(P  
    p = p(:); *4t-e0]j@w  
    n = ceil((-3+sqrt(9+8*p))/2); &vCeLh:s  
    m = 2*p - n.*(n+2); );nz4/V  
    AHwG<k  
    % Pass the inputs to the function ZERNFUN: h40'@u^W  
    % ---------------------------------------- QU.0Elw  
    switch nargin 4otl_l(`yv  
        case 3 MY!q%  
            z = zernfun(n,m,r,theta); =_[2n?9y  
        case 4 BRb\V42i;  
            z = zernfun(n,m,r,theta,nflag); Y+g,pX  
        otherwise Y]N~vD  
            error('zernfun2:nargin','Incorrect number of inputs.') +'|{1gB  
    end B/mYoK  
    .U9 R> #  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) (YwalfG {C  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. (s s3A9tG  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of }B0sC%cm  
    %   order N and frequency M, evaluated at R.  N is a vector of O|I+],  
    %   positive integers (including 0), and M is a vector with the Sh&iQ_vq  
    %   same number of elements as N.  Each element k of M must be a y7z(&M@  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) rVH6QQF=\  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Q".g.k  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix '.(~  
    %   with one column for every (N,M) pair, and one row for every T~Ly^|Ihz  
    %   element in R. }_}KVI  
    % i@5 )` <?  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ! Z;T-3^.  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is hv>KX  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to X&a:g  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 o@W_ai_  
    %   for all [n,m]. q8>t!rh<R  
    % 5qbq,#Pf  
    %   The radial Zernike polynomials are the radial portion of the ;~+]! U  
    %   Zernike functions, which are an orthogonal basis on the unit ?[)yGRzO2  
    %   circle.  The series representation of the radial Zernike zrRFn `B  
    %   polynomials is H(|AH;?ou  
    % F2;:vTA>  
    %          (n-m)/2 E  T:T7  
    %            __ -\#lF?fzb  
    %    m      \       s                                          n-2s f+x ;:  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r mnjs(x<m  
    %    n      s=0 sN~\+_  
    % PcC/_+2  
    %   The following table shows the first 12 polynomials. Vr=OYI'A  
    % + P7o4]:/  
    %       n    m    Zernike polynomial    Normalization JoZ(_Jh%m  
    %       --------------------------------------------- w^q7n  
    %       0    0    1                        sqrt(2) ObG=>WPJa  
    %       1    1    r                           2 T\9~<"P^  
    %       2    0    2*r^2 - 1                sqrt(6) 5\ hd4  
    %       2    2    r^2                      sqrt(6) y$b]7O  
    %       3    1    3*r^3 - 2*r              sqrt(8) T95t"g?p  
    %       3    3    r^3                      sqrt(8) lpgd#vr  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) G.\l qYrXU  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) bgF^(T35  
    %       4    4    r^4                      sqrt(10) 3mO;JXd  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ]~0}=,H$N  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) XNehPZYS  
    %       5    5    r^5                      sqrt(12) w1 `QIv  
    %       --------------------------------------------- v^N`IJq  
    % 6N~q`;p0  
    %   Example: f>polxB%N  
    % ;65D  
    %       % Display three example Zernike radial polynomials 9Uf j  
    %       r = 0:0.01:1; uw AwWgl  
    %       n = [3 2 5]; =*Z5!W'd  
    %       m = [1 2 1]; >Cr\y  
    %       z = zernpol(n,m,r); 0 1V^L}  
    %       figure ["3\eFg  
    %       plot(r,z) 2;2}wM[  
    %       grid on Kibr ]w  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') d0'HDVd  
    % #_i`#d)  
    %   See also ZERNFUN, ZERNFUN2. !do?~$Og  
    9'[ N1Un.=  
    % A note on the algorithm. x,n,Qlb  
    % ------------------------ o0bM=njok  
    % The radial Zernike polynomials are computed using the series U{@5*4  
    % representation shown in the Help section above. For many special lpB3&H8&  
    % functions, direct evaluation using the series representation can aUU7{o_Z  
    % produce poor numerical results (floating point errors), because BlA[T%  
    % the summation often involves computing small differences between O+vS|  
    % large successive terms in the series. (In such cases, the functions . pzC5Ah  
    % are often evaluated using alternative methods such as recurrence MGJ.,tK1  
    % relations: see the Legendre functions, for example). For the Zernike a<~77~"4wn  
    % polynomials, however, this problem does not arise, because the he(A3{'  
    % polynomials are evaluated over the finite domain r = (0,1), and P"/G  
    % because the coefficients for a given polynomial are generally all ~;]W T  
    % of similar magnitude. oU*45B`"  
    % QXgE dsw  
    % ZERNPOL has been written using a vectorized implementation: multiple b^0}}12  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] iBTYY{-wF  
    % values can be passed as inputs) for a vector of points R.  To achieve A/7{oB:a  
    % this vectorization most efficiently, the algorithm in ZERNPOL G<|8?6bq#  
    % involves pre-determining all the powers p of R that are required to 9iUrnG*  
    % compute the outputs, and then compiling the {R^p} into a single !%)F J:p  
    % matrix.  This avoids any redundant computation of the R^p, and [* ?Awf`   
    % minimizes the sizes of certain intermediate variables. Uu 8,@W+  
    % `-h8vj5uG  
    %   Paul Fricker 11/13/2006 hrGM|_BE  
    -i yyn ^|  
    anMF-x4/*q  
    % Check and prepare the inputs: Eow_&#WW;P  
    % ----------------------------- *37uy_EpV  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :L44]K5FL  
        error('zernpol:NMvectors','N and M must be vectors.') T&4qw(\G  
    end VXIP0p@  
    ?=m?jNa;nC  
    if length(n)~=length(m) ~cTN~<{dq  
        error('zernpol:NMlength','N and M must be the same length.') u/cg|]x&T  
    end P9g en6  
    $hivlI-7Ko  
    n = n(:); QUU;g2k  
    m = m(:); 35E_W>n  
    length_n = length(n); h 3]wL.V  
     A) ;  
    if any(mod(n-m,2)) MrZh09y  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') A C>`'Gx  
    end Ag{iq(X  
    S S2FTb-m  
    if any(m<0) ~HOy:1QhE=  
        error('zernpol:Mpositive','All M must be positive.') Zt.'K(]2h  
    end DxUKUE  
    _%5R o6  
    if any(m>n) sZx/Ee   
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') B!vmQR*1  
    end 'nXl>  
    Z ?wU  
    if any( r>1 | r<0 ) H&:jcgV*P  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') UrqRx?#  
    end >}+/{(K"E|  
    tmQH|'>>  
    if ~any(size(r)==1) N5a*7EJv+  
        error('zernpol:Rvector','R must be a vector.') :2 *g~6  
    end $GlWf  
    .zi_[  
    r = r(:); ^J$2?!~  
    length_r = length(r); DRcNdO/1E  
    N<~t3/Nm  
    if nargin==4  -i0~]*  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); q@[Qj Gj@  
        if ~isnorm z^'gx@YD*v  
            error('zernpol:normalization','Unrecognized normalization flag.') 9WyAb3d'  
        end :]\([Q+a  
    else |Y?H A&  
        isnorm = false; BO;6 u^[  
    end +j< p \Kn>  
    wK?vPS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7S}_F^  
    % Compute the Zernike Polynomials  #"@|f  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~_/(t'9  
    P-?0zF/T$  
    % Determine the required powers of r: o,_? ^'@  
    % -----------------------------------  C uB`CI  
    rpowers = []; `aciXlqIF  
    for j = 1:length(n) MF5[lK9e  
        rpowers = [rpowers m(j):2:n(j)]; kM,C3x{A  
    end f&Gt|  
    rpowers = unique(rpowers); be.*#[  
    W"k"I vTW}  
    % Pre-compute the values of r raised to the required powers, jYk&/@`Ly  
    % and compile them in a matrix: ;U-jO &  
    % ----------------------------- <0Xf9a8>  
    if rpowers(1)==0 5>[u `  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ff)8Q.m  
        rpowern = cat(2,rpowern{:}); [ CQ+p!QZ  
        rpowern = [ones(length_r,1) rpowern]; 'Gj3:-xqL  
    else PvPOU"  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4K\G16'$v  
        rpowern = cat(2,rpowern{:}); ~E17L]ete  
    end -XB/lnG  
    \NPmym_ 6J  
    % Compute the values of the polynomials: VK m&iidU  
    % -------------------------------------- fD[*_^;h)  
    z = zeros(length_r,length_n); +S o4rA*9  
    for j = 1:length_n Q'=x|K#xj  
        s = 0:(n(j)-m(j))/2; T&6l$1J  
        pows = n(j):-2:m(j); H?yK~bGQ  
        for k = length(s):-1:1 ofm#'7P 0  
            p = (1-2*mod(s(k),2))* ... h9}+l  
                       prod(2:(n(j)-s(k)))/          ... 8\+uec]k  
                       prod(2:s(k))/                 ... C5o#i*|  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 'jWr<]3  
                       prod(2:((n(j)+m(j))/2-s(k))); | )K8N<n  
            idx = (pows(k)==rpowers); xF!,IKlBBp  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Z^3rLCa  
        end (C\]-E>  
         ]_f_w 9]  
        if isnorm j()7_  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); &."iFe  
        end P3x8UR=fS  
    end Tp?7_}tRi  
    b RFLcM  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  juJklSD  
    cTifC1Pf  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 8|gIhpO?^  
    :@Pl pF K  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)