非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Mi|13[p{
function z = zernfun(n,m,r,theta,nflag) yXDjM2oR/2
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. eo4z!@pRN
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %?].(
Lc
% and angular frequency M, evaluated at positions (R,THETA) on the W7uX
% unit circle. N is a vector of positive integers (including 0), and 'pIrwA^6N
% M is a vector with the same number of elements as N. Each element pu/5#[MC)^
% k of M must be a positive integer, with possible values M(k) = -N(k) +&VY6(Zj+*
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 6Y]P7j
% and THETA is a vector of angles. R and THETA must have the same o[_,r]%+D
% length. The output Z is a matrix with one column for every (N,M) J?m/u6
% pair, and one row for every (R,THETA) pair. vi^YtA
% GIEQD$vy
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ds"%=
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), K1J |\!o
% with delta(m,0) the Kronecker delta, is chosen so that the integral p
P@q
`
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, bLG7{qp
% and theta=0 to theta=2*pi) is unity. For the non-normalized k-n`R)p:
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >v@3]a
i
% kEC^_sO"
% The Zernike functions are an orthogonal basis on the unit circle. pp(09y`]
% They are used in disciplines such as astronomy, optics, and p1d%&e
% optometry to describe functions on a circular domain. Cscu
% E~WbV+,3
% The following table lists the first 15 Zernike functions. #6|ve?`I
% 8Snv, Lb`^
% n m Zernike function Normalization td%J.&K_*'
% -------------------------------------------------- k;cX,*DIn
% 0 0 1 1 TPBQfp%HU
% 1 1 r * cos(theta) 2 WZ6{9/%:
% 1 -1 r * sin(theta) 2 na
$MR3@e
% 2 -2 r^2 * cos(2*theta) sqrt(6) 02[m{a-
% 2 0 (2*r^2 - 1) sqrt(3) "1Hn?4nz5
% 2 2 r^2 * sin(2*theta) sqrt(6) H*k\C
% 3 -3 r^3 * cos(3*theta) sqrt(8) "t^RZ45
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) B/a`5&G]
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) wg0_J<y]
% 3 3 r^3 * sin(3*theta) sqrt(8) pJ8F+`*
% 4 -4 r^4 * cos(4*theta) sqrt(10) "Y:>^F;
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !c)F;
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) )tJaw#Mih
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C)i8XX
% 4 4 r^4 * sin(4*theta) sqrt(10) >e/>@ J*
% -------------------------------------------------- aE)1LP
% SPlt=*C#_
% Example 1: v=G*K11@
% `` g
% % Display the Zernike function Z(n=5,m=1) .yfp-n4H
% x = -1:0.01:1; Brs6RkRf
% [X,Y] = meshgrid(x,x); rWJ5C\R
% [theta,r] = cart2pol(X,Y); =\2gnk~
% idx = r<=1; 9O&gR46.
% z = nan(size(X)); 0/DO"pnL@
% z(idx) = zernfun(5,1,r(idx),theta(idx)); w?u3e+
% figure s'N <
% pcolor(x,x,z), shading interp REU&8J@k&?
% axis square, colorbar ;\A_-a_(#
% title('Zernike function Z_5^1(r,\theta)') OHAU@*[lM
% C;:=r:bth
% Example 2: e?;c9]XO,o
% }xr0m+/
% % Display the first 10 Zernike functions +p>h` fc
% x = -1:0.01:1; L9e<hRZ$
% [X,Y] = meshgrid(x,x); /PSXuVtu5
% [theta,r] = cart2pol(X,Y); -?#iPvk6
% idx = r<=1; |)>+&
xk
% z = nan(size(X)); 36co'a4,
% n = [0 1 1 2 2 2 3 3 3 3]; qZ>_{b0f
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; EZiLXQd_
% Nplot = [4 10 12 16 18 20 22 24 26 28]; \Cq4r4'
% y = zernfun(n,m,r(idx),theta(idx)); T&/n.-@nk
% figure('Units','normalized') aTm R~k
% for k = 1:10 0sw;h.VY
% z(idx) = y(:,k); khR[8j..
% subplot(4,7,Nplot(k)) b4^O=
% pcolor(x,x,z), shading interp 4Dzg r,V
% set(gca,'XTick',[],'YTick',[]) bnL!PsG$K,
% axis square cZYvP
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]pB5cq7o
% end w3
vZ}1|
% e%ro7~
% See also ZERNPOL, ZERNFUN2. AfO.D?4x
Jjj;v2uSK
% Paul Fricker 11/13/2006 |95K
p9G+la~;VM
a.UYBRP/l
% Check and prepare the inputs: -a|b.p
% ----------------------------- F(/<ADx
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) tR9iFv_
error('zernfun:NMvectors','N and M must be vectors.') ;TDvk]:
end R*cef
E83$(6z
if length(n)~=length(m) O\cc=7
error('zernfun:NMlength','N and M must be the same length.') uAnL`
end JP"#9f
F> Ika=z,
n = n(:); /#{~aCOi)
m = m(:); Q~f]?a`
if any(mod(n-m,2)) )O*h79t^Q
error('zernfun:NMmultiplesof2', ... ,if~%'9j
'All N and M must differ by multiples of 2 (including 0).') _&gO>G,uy
end @kDY c8 t9
.EWj eVq
if any(m>n) #+Bz$CO
error('zernfun:MlessthanN', ... DU,B
'Each M must be less than or equal to its corresponding N.') c^H#[<6p
end 7Cz=;
xa_ IdkV
if any( r>1 | r<0 ) XD6Kp[s
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Z3wdk6%:}
end :0%[u(
2 7dS.6
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) IY!.j5q8
error('zernfun:RTHvector','R and THETA must be vectors.') {%('|(57
end
>_]Ov:5
)D+eWo
r = r(:); %kkDitmI{
theta = theta(:); Sa)L=5Nr
length_r = length(r); hB>FJZQ_
if length_r~=length(theta) sng6U;Z
error('zernfun:RTHlength', ... _(=g[=Mer
'The number of R- and THETA-values must be equal.') O['[_1n_u]
end gL|
9hvHr[
B&KIM{j\
% Check normalization: )Mflt0fp
% -------------------- d5
]-{+V+
if nargin==5 && ischar(nflag) n]w%bKc-9
isnorm = strcmpi(nflag,'norm'); 32j#kJ W
if ~isnorm AGwdM-$iT
error('zernfun:normalization','Unrecognized normalization flag.') DN*M-o9
end ebL0cK?
else wD6QN
isnorm = false; 0RCp
end i 28TH
Jh
4Rp[>}L
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d"3x11|
% Compute the Zernike Polynomials =b )!l9TX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :SMf
(E 5
%F-yFN"
% Determine the required powers of r: ?a,`{1m0\
% ----------------------------------- J1M9),
m_abs = abs(m); P()&?C
rpowers = []; \q!TI x
for j = 1:length(n) "f3mi[
rpowers = [rpowers m_abs(j):2:n(j)]; /a}N6KUi
end D&N3LH
rpowers = unique(rpowers); 2=7[r-*E
z+0#H39 &
% Pre-compute the values of r raised to the required powers, &R<K>i
% and compile them in a matrix: "K|':3n|
% ----------------------------- HmsXV_B8[Y
if rpowers(1)==0 N /2WUp
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .[:WMCc\
rpowern = cat(2,rpowern{:}); Qe9}%k6@E
rpowern = [ones(length_r,1) rpowern]; WwKpZ67$R
else u1z!OofN>
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .",BLuce
rpowern = cat(2,rpowern{:}); BT -Y9j
end xo-}t5w6t
%f&Bt,xEo
% Compute the values of the polynomials: m60hTJ?N)
% -------------------------------------- h,fahbH-
y = zeros(length_r,length(n)); B.b sU
for j = 1:length(n) 3c`
s = 0:(n(j)-m_abs(j))/2; op&j4R
pows = n(j):-2:m_abs(j); I.2>d_^<
for k = length(s):-1:1 \D%n8O
p = (1-2*mod(s(k),2))* ... >k}Kf1I
prod(2:(n(j)-s(k)))/ ... ^d9o \
prod(2:s(k))/ ... 5!6iAS+I
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... dleLX%P
prod(2:((n(j)+m_abs(j))/2-s(k))); d(Yuz#Qcrh
idx = (pows(k)==rpowers); sv\=/F@n
y(:,j) = y(:,j) + p*rpowern(:,idx); QNcl
end `+ Mva
0V2~
if isnorm 85FzIX-F%
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); PDh!B_+
end [#:yOZt
end KWw?W1H
% END: Compute the Zernike Polynomials FT gt$I
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D_w<igu!3
]7|qhAh<L
% Compute the Zernike functions: eQ#"-i
% ------------------------------ PXDJ[Oj7(0
idx_pos = m>0; 3/su 1M[
idx_neg = m<0; XlwyD
T(kG"dz
z = y; Ojp|/yd^YL
if any(idx_pos) 1Zp^X:(
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Ao *{#z
end URyY^+s
if any(idx_neg) *^\u%Ir"
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); }OgZZ8-_M
end B@vup {Kg
&e4EZ
% EOF zernfun