切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11009阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 u |#ruFR  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! !vG._7lPp  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 c?wFEADn  
    function z = zernfun(n,m,r,theta,nflag) s;$ eq);  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. u*H2kn[DU  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N k%c ?$n"  
    %   and angular frequency M, evaluated at positions (R,THETA) on the c*LnLK/m  
    %   unit circle.  N is a vector of positive integers (including 0), and qB"y'UW8  
    %   M is a vector with the same number of elements as N.  Each element ]_#[o S  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) bx`(d@  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, >N44&W  
    %   and THETA is a vector of angles.  R and THETA must have the same M*@MkN*u&  
    %   length.  The output Z is a matrix with one column for every (N,M) X/'B*y'=U  
    %   pair, and one row for every (R,THETA) pair. #Etz}:%W  
    % r`6XF  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike QULrE+@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), W5sVQ`S-  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral E-n!3RQ(w  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, b/WVWDyob/  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized `\#Q r|GC  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9KCnitU  
    % ]+,Z()  
    %   The Zernike functions are an orthogonal basis on the unit circle. >e8 t  
    %   They are used in disciplines such as astronomy, optics, and _U'edK]R  
    %   optometry to describe functions on a circular domain. vR#A7y @ !  
    % 5wr0+Xo  
    %   The following table lists the first 15 Zernike functions. '(I"54W  
    % (9'MdH  
    %       n    m    Zernike function           Normalization lD\lFN(:  
    %       -------------------------------------------------- <XGOcekG  
    %       0    0    1                                 1 @$Z5A g!  
    %       1    1    r * cos(theta)                    2 Hk$|.TjzI  
    %       1   -1    r * sin(theta)                    2 P0UMMn\-#  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) YjLPW@  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Cl i k  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) nL@P {,J  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) oM QH- \(}  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) "RZ)pav?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) l&5| =  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Mm|HA@W^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) oa47TqFt  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >0B [  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) dzggl(  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @v@'8E Q  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) $ 'HiNP {c  
    %       -------------------------------------------------- &)<]AG.vd!  
    % S ^2'O7uj  
    %   Example 1: PDM>6U  
    % ;/ >~|@  
    %       % Display the Zernike function Z(n=5,m=1) AaKILIIQZ  
    %       x = -1:0.01:1; :cIE8<\%  
    %       [X,Y] = meshgrid(x,x); ,T"(97"  
    %       [theta,r] = cart2pol(X,Y); cb|`)"<HN  
    %       idx = r<=1; Pbd#Fu;  
    %       z = nan(size(X)); Iu%/~FgPj{  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ?Q:se  
    %       figure %|r@q  
    %       pcolor(x,x,z), shading interp (47jop0RDQ  
    %       axis square, colorbar nr-VzF7zu  
    %       title('Zernike function Z_5^1(r,\theta)') <P$b$fh/  
    % 29x "E$e  
    %   Example 2: />.&  
    % mpK|I|-   
    %       % Display the first 10 Zernike functions &> }MoB  
    %       x = -1:0.01:1; =@w};e#D  
    %       [X,Y] = meshgrid(x,x); a5]~%xdK  
    %       [theta,r] = cart2pol(X,Y); CDoZv""  
    %       idx = r<=1; ]:m*7p\uk  
    %       z = nan(size(X)); *!'00fv  
    %       n = [0  1  1  2  2  2  3  3  3  3]; +~8/7V22  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; m6+2r D  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; tJ2l_M^  
    %       y = zernfun(n,m,r(idx),theta(idx)); KDg!Y(m{  
    %       figure('Units','normalized') z8vF QO\I"  
    %       for k = 1:10 \`|,wLgH  
    %           z(idx) = y(:,k); 7o0e j#  
    %           subplot(4,7,Nplot(k)) *l_1T4]S  
    %           pcolor(x,x,z), shading interp bZ )3{  
    %           set(gca,'XTick',[],'YTick',[]) 6Q>:g"_  
    %           axis square .:l78>f  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <J[*~v%(  
    %       end t~,!a?S7  
    % Hagj^8  
    %   See also ZERNPOL, ZERNFUN2. [ivJ&'vB  
    )1lYfJ  
    %   Paul Fricker 11/13/2006 |VaXOdD`&  
    b>Vs5nY!  
    gaTI:SKzc  
    % Check and prepare the inputs: q+|Dm<Ug  
    % ----------------------------- :%!=Ej.J  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) vE6/B"b  
        error('zernfun:NMvectors','N and M must be vectors.') $o {f)'.>n  
    end Lr40rLx;u  
    C0KP,JS&  
    if length(n)~=length(m) tdZ:w  
        error('zernfun:NMlength','N and M must be the same length.') eEezd[p  
    end cg$7`/U  
    %+>I1G  
    n = n(:); X B65,l  
    m = m(:); EC?!%iO`  
    if any(mod(n-m,2)) -%%2Pz0I  
        error('zernfun:NMmultiplesof2', ... f<0-'fGJd  
              'All N and M must differ by multiples of 2 (including 0).') +!.=M8[  
    end e?RHf_d3T-  
    ?6tuo:gP  
    if any(m>n) 1fEV^5I  
        error('zernfun:MlessthanN', ... lq1pgM?Kf  
              'Each M must be less than or equal to its corresponding N.') "1h|1'S50?  
    end 3u+~!yz  
    |CStw"Fog  
    if any( r>1 | r<0 ) HO & #Lv  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') W#-M|  
    end [$-y8`~(  
      7&l  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _oe2 pL&  
        error('zernfun:RTHvector','R and THETA must be vectors.') !oM 1  
    end *gVRMSrx4  
    3 T& m  
    r = r(:); DQKhR sC  
    theta = theta(:); )CihqsA2  
    length_r = length(r); a"#5JcR3  
    if length_r~=length(theta) tw\/1wa.  
        error('zernfun:RTHlength', ... "d%":F(  
              'The number of R- and THETA-values must be equal.') o`hF1*yp  
    end %UgyGQeo  
    YadyRUE  
    % Check normalization: OW1[Y-o[  
    % -------------------- #}e)*(  
    if nargin==5 && ischar(nflag) `')3}  
        isnorm = strcmpi(nflag,'norm'); 70*Y4'u }A  
        if ~isnorm /d8PDc"  
            error('zernfun:normalization','Unrecognized normalization flag.')  A5Y z|  
        end 8Qek![3^  
    else '0/t|V<  
        isnorm = false; M2vYOg`t:c  
    end v:s~Y  
    o D:?fs]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  8(5}Jo+  
    % Compute the Zernike Polynomials sq-[<ryk  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% / u>")f  
    ndW? ?wiM  
    % Determine the required powers of r: Ol D]*=.cO  
    % ----------------------------------- u= !?<Q  
    m_abs = abs(m); vezX/xD?  
    rpowers = []; F|%[s|s  
    for j = 1:length(n) Pou`PNvH  
        rpowers = [rpowers m_abs(j):2:n(j)]; Z?CmD ;W  
    end v#nYH?+~mJ  
    rpowers = unique(rpowers); I tp7X  
    G W|~sE +  
    % Pre-compute the values of r raised to the required powers, wUW+S5"K  
    % and compile them in a matrix: N1+%[Uh9)  
    % ----------------------------- 9.D'!  
    if rpowers(1)==0  K7 U`  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); vX/~34o]\  
        rpowern = cat(2,rpowern{:}); *siS4RX2  
        rpowern = [ones(length_r,1) rpowern]; :74)nbS  
    else kImS'i{A  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N[ z7<$$  
        rpowern = cat(2,rpowern{:}); UIovv%7zZ  
    end V!a\:%#^Y  
    #3\F<AJ<VB  
    % Compute the values of the polynomials: WFsa8qv  
    % -------------------------------------- d%u|) =7  
    y = zeros(length_r,length(n)); ~t.*B& A  
    for j = 1:length(n) G>d@lt  
        s = 0:(n(j)-m_abs(j))/2; W6 f*>  
        pows = n(j):-2:m_abs(j); +8v^J8q0  
        for k = length(s):-1:1 AQQeLdTq  
            p = (1-2*mod(s(k),2))* ... +tES:3Pi  
                       prod(2:(n(j)-s(k)))/              ... jf~/x>Q  
                       prod(2:s(k))/                     ... ^ejU=0+cN  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 3a"4Fn  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 7rbl+:y2  
            idx = (pows(k)==rpowers); E[)`+:G]  
            y(:,j) = y(:,j) + p*rpowern(:,idx); q} U^H  
        end BXnSkT7  
         aS-rRL|\L  
        if isnorm gH(,>}{^K  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); t+|c)"\5h  
        end [wj&.I{^s  
    end B9&"/tT  
    % END: Compute the Zernike Polynomials #t>w)`bA-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LIT{rR#8  
    B|/=E470G  
    % Compute the Zernike functions: r**u=q %p  
    % ------------------------------ N3!x7J7A  
    idx_pos = m>0; h%8[];*DpN  
    idx_neg = m<0; OjCTTz  
    j[.R|I|  
    z = y; V{HP8f91  
    if any(idx_pos) 2$V]XSe  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); n? e&I>1W  
    end WSz#g2a  
    if any(idx_neg) Cb%?s  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); BlF>TI%2  
    end 'j 'bhG  
    GKTrf\"c  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Q(=} PF  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. %C^U?m`  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated `O4Ysk72x9  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 5v >0$Y{  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, UIPi<_Xa  
    %   and THETA is a vector of angles.  R and THETA must have the same 7D PKKvQ  
    %   length.  The output Z is a matrix with one column for every P-value, :y^0]In  
    %   and one row for every (R,THETA) pair. 9. :r;HG  
    % E&ou(Q={  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike .-2i9Bh6  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) s tvI  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) b9b384Q1O  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 `"`/_al^  
    %   for all p. /UtCJMQ  
    % cBs:7Pnp%  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 }q7rR:g  
    %   Zernike functions (order N<=7).  In some disciplines it is WsO'4~X9  
    %   traditional to label the first 36 functions using a single mode /D2 cY>  
    %   number P instead of separate numbers for the order N and azimuthal y;aZMT.YI  
    %   frequency M. &Z3g$R 9  
    % *-0tj~)>  
    %   Example: "O@L IR7  
    % U-!+Cxjs  
    %       % Display the first 16 Zernike functions 4JV/Ci5  
    %       x = -1:0.01:1; T:k-`t0":N  
    %       [X,Y] = meshgrid(x,x); iG*@(  
    %       [theta,r] = cart2pol(X,Y); WxO2  
    %       idx = r<=1; 2I DN?Mw  
    %       p = 0:15; 6?GR+;/  
    %       z = nan(size(X)); h r9rI  
    %       y = zernfun2(p,r(idx),theta(idx)); a k&G=a6^  
    %       figure('Units','normalized') 7:iTx;,v  
    %       for k = 1:length(p) [l"|x75-  
    %           z(idx) = y(:,k); ?5@!r>i=<  
    %           subplot(4,4,k) 9C9>V]  
    %           pcolor(x,x,z), shading interp ^U1@ hq*u  
    %           set(gca,'XTick',[],'YTick',[]) YhQ;>Ko  
    %           axis square G?Fqm@J{XT  
    %           title(['Z_{' num2str(p(k)) '}']) kC:GEY<N:Q  
    %       end ++{,1wY\  
    % ;;|S QX  
    %   See also ZERNPOL, ZERNFUN. OAx5 LTd  
    "`WcE/(  
    %   Paul Fricker 11/13/2006 -36pkC 6 \  
    k/'>,WE  
    9Q)9*nHe  
    % Check and prepare the inputs: ^&^~LKl~  
    % ----------------------------- i|M^QKvF  
    if min(size(p))~=1 vq(ElXTO  
        error('zernfun2:Pvector','Input P must be vector.') r5#8V zr  
    end vSyR% j  
    _p <]jt  
    if any(p)>35 MLVrL r t  
        error('zernfun2:P36', ... _4+'@u #  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 9UbD =}W  
               '(P = 0 to 35).']) @ ={Hx$zL  
    end xcf`i:\  
    xhq-$"B  
    % Get the order and frequency corresonding to the function number: 5SOl:{A +  
    % ---------------------------------------------------------------- p>9-Ga  
    p = p(:); T-.Q  
    n = ceil((-3+sqrt(9+8*p))/2); .eZsKc-@  
    m = 2*p - n.*(n+2); `?M?WaP  
    mEh([ZnY  
    % Pass the inputs to the function ZERNFUN: ! J7ExfEA  
    % ---------------------------------------- Wra$  
    switch nargin Jw -?7O  
        case 3 VDnN2)Km*  
            z = zernfun(n,m,r,theta); jPum2U_  
        case 4 3n ~n-Jo  
            z = zernfun(n,m,r,theta,nflag); 3k U4?D]  
        otherwise +c&oF,=}!P  
            error('zernfun2:nargin','Incorrect number of inputs.') a%FM)/oI|T  
    end r0xmDJ@y  
    LN!e_b  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) &N+i3l6`  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 9^4BqAWYrV  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of :U{$G( <  
    %   order N and frequency M, evaluated at R.  N is a vector of zxD~W"R:s  
    %   positive integers (including 0), and M is a vector with the d~hN`ff  
    %   same number of elements as N.  Each element k of M must be a B)v|A  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) dX^d\ wX  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is OZ SM2~  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix K5"8zF)*  
    %   with one column for every (N,M) pair, and one row for every !:^?GN#~x  
    %   element in R. rYn)E=FG/  
    % hKjG/g:#G  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 9CNeMoA$p:  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is -u nK;  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Quts~Q  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 {0Jpf[.f  
    %   for all [n,m]. Y<WA-dYoF  
    % +9fQ YJBA  
    %   The radial Zernike polynomials are the radial portion of the wRj||yay#-  
    %   Zernike functions, which are an orthogonal basis on the unit 8N,mp>~  
    %   circle.  The series representation of the radial Zernike K'@lXA:  
    %   polynomials is Acl?w }Y  
    % x)0''}E~  
    %          (n-m)/2 Q&?^eOI&#(  
    %            __ %s;=H)8  
    %    m      \       s                                          n-2s 1Z_2s2`p  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 6Qx[W>I  
    %    n      s=0 !8@8  
    % ~:xR0dqx  
    %   The following table shows the first 12 polynomials. h(4&!x  
    % AK_,$'f  
    %       n    m    Zernike polynomial    Normalization e&\+o}S  
    %       --------------------------------------------- G^W'mV$xl  
    %       0    0    1                        sqrt(2) _7bQR7s  
    %       1    1    r                           2 Sa 8T'%W  
    %       2    0    2*r^2 - 1                sqrt(6) m2x=Qv][@c  
    %       2    2    r^2                      sqrt(6) a)qlrtCl  
    %       3    1    3*r^3 - 2*r              sqrt(8) cGUsao  
    %       3    3    r^3                      sqrt(8) d>1cKmH!  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) C.(<IcSG  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) j FH wu*  
    %       4    4    r^4                      sqrt(10) VTl\'>(Cl  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) #!>QXiyR  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) *a2-Vte  
    %       5    5    r^5                      sqrt(12) JF6=0  
    %       --------------------------------------------- iQ8T3cC+  
    % xhw0YDGzf  
    %   Example: 6BY(Y(z  
    % 1>'xmp+#  
    %       % Display three example Zernike radial polynomials 3:mZ1+  
    %       r = 0:0.01:1; y py  
    %       n = [3 2 5]; XbYST%| .  
    %       m = [1 2 1]; ~LU$ no^  
    %       z = zernpol(n,m,r); ["~T)d'  
    %       figure n qC@dHP  
    %       plot(r,z) Xwz'h;Ks_  
    %       grid on "x4}FQ  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') @@=e-d  
    % iu.$P-s  
    %   See also ZERNFUN, ZERNFUN2. Rz:1(^oA  
    ~(P\'H&(h  
    % A note on the algorithm. ]uZaj?%J<  
    % ------------------------ n>L24rL  
    % The radial Zernike polynomials are computed using the series (4Ha'uqz  
    % representation shown in the Help section above. For many special l", X  
    % functions, direct evaluation using the series representation can 'X P  
    % produce poor numerical results (floating point errors), because qL2Sv(A Z!  
    % the summation often involves computing small differences between Sh;Z\nj  
    % large successive terms in the series. (In such cases, the functions <gLq?~e|A  
    % are often evaluated using alternative methods such as recurrence D&|HS!  
    % relations: see the Legendre functions, for example). For the Zernike {D`_q|  
    % polynomials, however, this problem does not arise, because the X 3(CY`HH[  
    % polynomials are evaluated over the finite domain r = (0,1), and PE&$2(  
    % because the coefficients for a given polynomial are generally all G"|c_qX  
    % of similar magnitude. rL23^}+^`  
    % V[^ +lR  
    % ZERNPOL has been written using a vectorized implementation: multiple K0^Tg+U($p  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] rvRIKc|}l  
    % values can be passed as inputs) for a vector of points R.  To achieve K [R.B!;N  
    % this vectorization most efficiently, the algorithm in ZERNPOL 0fAo&B  
    % involves pre-determining all the powers p of R that are required to 4Pkl()\c  
    % compute the outputs, and then compiling the {R^p} into a single j%ux,0Y  
    % matrix.  This avoids any redundant computation of the R^p, and H|I.h{:  
    % minimizes the sizes of certain intermediate variables. .-?Txkwb  
    % <uXQT$@?  
    %   Paul Fricker 11/13/2006 Z,:}H6Mj9  
    ot; ]?M  
    Zd~Q@+sH  
    % Check and prepare the inputs: j*L-sU  
    % ----------------------------- ur JR[$p  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) flS_rY5  
        error('zernpol:NMvectors','N and M must be vectors.') Ox^VU2K;&.  
    end  IcUE=J  
    JXqwy^f  
    if length(n)~=length(m) +x)x&;B)/  
        error('zernpol:NMlength','N and M must be the same length.') ZeE(gtM  
    end Ch7&9NW  
    G`R_kg9$  
    n = n(:); ZL+46fj  
    m = m(:); 3fq'<5 ^  
    length_n = length(n); |l673FcJ  
    <I.{meDg  
    if any(mod(n-m,2)) 4mwLlYZ  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') C sx EN4  
    end `XK#sCC  
    ;s!GpO7+  
    if any(m<0) a @i?E0Fr  
        error('zernpol:Mpositive','All M must be positive.') yq,%<%+  
    end :,pdR>q%(y  
    Je#vu`.\\  
    if any(m>n) Hr!%L*h?  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ~NZ}@J{00_  
    end |6T"T P  
    >+F +"NAN  
    if any( r>1 | r<0 ) OJ,Z  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') &O|qx~(  
    end R:Tv'I1-L  
    Oz4yUR  
    if ~any(size(r)==1) 17S<6j#H5  
        error('zernpol:Rvector','R must be a vector.') +W#["%kw  
    end g]m}@b6(h  
    Py~N.@(:1u  
    r = r(:); Mq4>Mu  
    length_r = length(r); %40+si3c  
    ]tc Cr;  
    if nargin==4 ,N@N4<C]  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); &U{"dJr  
        if ~isnorm k?`Q\  
            error('zernpol:normalization','Unrecognized normalization flag.') V u1|5  
        end C0-,<X  
    else 7YQ689"J6B  
        isnorm = false; \5R>+[n!  
    end 1SY3  
    &C.m*^`^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aT}?-CUxx  
    % Compute the Zernike Polynomials }`D-]/T8.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w02t9vz  
    BTa#}LBZ+  
    % Determine the required powers of r: -A)/CFIZ  
    % ----------------------------------- "j%L*J)  
    rpowers = []; 6d%)MEM  
    for j = 1:length(n) [A46WF>L  
        rpowers = [rpowers m(j):2:n(j)]; &WHK|bl  
    end t2#zQ[~X!  
    rpowers = unique(rpowers); GL'zNQP-  
    kd+tD!:F(  
    % Pre-compute the values of r raised to the required powers, N3o kN8d  
    % and compile them in a matrix: zZI7p[A[3  
    % ----------------------------- 7oFA5T _  
    if rpowers(1)==0 pb}4{]sI  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~ _W>ND  
        rpowern = cat(2,rpowern{:}); 66MWOrr  
        rpowern = [ones(length_r,1) rpowern]; q\T}jF\t  
    else p5 )+R/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  Sn-D|Z  
        rpowern = cat(2,rpowern{:}); iYb{qv_4  
    end T[]kun  
    Xr$hQbl5D  
    % Compute the values of the polynomials: zR_yxs'  
    % -------------------------------------- *[0)]|r  
    z = zeros(length_r,length_n); Y"'k $jS-  
    for j = 1:length_n #Q$`3rr  
        s = 0:(n(j)-m(j))/2; (*dJ   
        pows = n(j):-2:m(j); jW0aIS2O  
        for k = length(s):-1:1 Ps9YP B-  
            p = (1-2*mod(s(k),2))* ... Uiu9o]n  
                       prod(2:(n(j)-s(k)))/          ... w"?E=RS  
                       prod(2:s(k))/                 ... 8,YxCm ie  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Ll'!aar,  
                       prod(2:((n(j)+m(j))/2-s(k))); (]*!`(_b  
            idx = (pows(k)==rpowers); \X0wr%I  
            z(:,j) = z(:,j) + p*rpowern(:,idx); dxF/]>t  
        end atWB*kqI  
         ;+4X<)y*>  
        if isnorm 2mVLR;s{_  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); d&5GkD.P  
        end 0q:g Dc6z  
    end R; Gf3K  
    )0xEI  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  &tKs t,UR8  
    &j/ WjZPF  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 _y)#N<  
    aT F}  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)