切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11438阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 @|I:A  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! }E o\=>l7  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Y 6NoNc]h  
    function z = zernfun(n,m,r,theta,nflag) "-y 2En  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !b !C+ \v  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N NZu\ Ae  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ;-aF\}D@n  
    %   unit circle.  N is a vector of positive integers (including 0), and L9lNAiOH  
    %   M is a vector with the same number of elements as N.  Each element rL kUIG  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) S_Tv Ix/7&  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 0XkLWl|k  
    %   and THETA is a vector of angles.  R and THETA must have the same TO(2n8'fdO  
    %   length.  The output Z is a matrix with one column for every (N,M) Lc&LF*  
    %   pair, and one row for every (R,THETA) pair. 4$5d*7  
    % ?&ow:OH+  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike i8h(b2odQ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), c `[,>  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 7o+JQ&fF;  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @ij8AGE:  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized yN'< iTh  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. S!LLC{  
    % Sckt gp8  
    %   The Zernike functions are an orthogonal basis on the unit circle. ;)6LX-  
    %   They are used in disciplines such as astronomy, optics, and # NoY}*  
    %   optometry to describe functions on a circular domain. 3SI~?&HU!/  
    % "mbjS(-eg  
    %   The following table lists the first 15 Zernike functions. 5l(8{,NDt  
    % )2nx5 "  
    %       n    m    Zernike function           Normalization $uPM.mPFE  
    %       -------------------------------------------------- P#8+GN+bF  
    %       0    0    1                                 1 2qA"emUM  
    %       1    1    r * cos(theta)                    2 ?{)sdJe  
    %       1   -1    r * sin(theta)                    2 ;^[VqFpeS  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) #5Q?Q~E@  
    %       2    0    (2*r^2 - 1)                    sqrt(3) P"Scs$NOU?  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) &Zzd6[G+  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) &J]|pf3m  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) a/ 4!zT   
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) vU4Gw4  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) \zdY$3z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ~o <+tL  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~BUzyc%  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) @Sik~Mm_h  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mY)Y47iL  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) =6sA49~M  
    %       -------------------------------------------------- M1Frn n  
    % n#US4&uT4A  
    %   Example 1: b0PQ;?R#V  
    % l[,RA?i {  
    %       % Display the Zernike function Z(n=5,m=1) j O-H 1@;  
    %       x = -1:0.01:1; N!W# N$  
    %       [X,Y] = meshgrid(x,x); L~Hl?bK  
    %       [theta,r] = cart2pol(X,Y); x)]_]_vX  
    %       idx = r<=1; tx+KxOt9Y  
    %       z = nan(size(X)); M%3P@GRg  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); MV(Sb:RZ  
    %       figure FX->_}kL=  
    %       pcolor(x,x,z), shading interp Ej[:!L  
    %       axis square, colorbar  9Kpzj43  
    %       title('Zernike function Z_5^1(r,\theta)') 1"hd5a  
    % 7])cu>/  
    %   Example 2: fQ[& ^S$  
    % Vgj&h dbd  
    %       % Display the first 10 Zernike functions b|rMmx8vA  
    %       x = -1:0.01:1; MF41q%9p  
    %       [X,Y] = meshgrid(x,x); 'XbrO|%  
    %       [theta,r] = cart2pol(X,Y); !{WIN%O  
    %       idx = r<=1; QE#Ar8tU  
    %       z = nan(size(X)); I7S#vIMXR.  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 34Fc oud);  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; *EB`~s  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; yF _@^V  
    %       y = zernfun(n,m,r(idx),theta(idx)); %k"qpu  
    %       figure('Units','normalized') pA%Sybw+  
    %       for k = 1:10 &az :YTq  
    %           z(idx) = y(:,k); 5PRS|R7  
    %           subplot(4,7,Nplot(k)) *l-f">?|  
    %           pcolor(x,x,z), shading interp -|FSdzvg  
    %           set(gca,'XTick',[],'YTick',[]) hoDE*>i  
    %           axis square 4Y>J,c  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )-u0n] ,  
    %       end yu~o9  
    % NI%&Xhn!*>  
    %   See also ZERNPOL, ZERNFUN2. H}p5qW.tH:  
    &Q>tV+*  
    %   Paul Fricker 11/13/2006 $vR#<a,7>  
    zxo" +j4Ym  
    FG6bKvEQm^  
    % Check and prepare the inputs: K<g<xW*X  
    % ----------------------------- P<OSm*;U:  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) c*@#0B  
        error('zernfun:NMvectors','N and M must be vectors.') r](%9Y  
    end P@xb  
    e  -yL  
    if length(n)~=length(m) $*k9e^{S  
        error('zernfun:NMlength','N and M must be the same length.') l$\OSG  
    end  45qSt2  
    sN_c4"\q  
    n = n(:); Hd8 O3_5  
    m = m(:); 89kxRH\IhG  
    if any(mod(n-m,2)) J?1U'/Wx2  
        error('zernfun:NMmultiplesof2', ... 2d:5~fEJp  
              'All N and M must differ by multiples of 2 (including 0).') 5j{jbo =!  
    end x Ilo@W6  
    H?a1XEY/  
    if any(m>n) h;lg^zlTb  
        error('zernfun:MlessthanN', ... d$?sS9"8(  
              'Each M must be less than or equal to its corresponding N.') &| guPZ  
    end Z+%w|Sx  
    !4 =]@eFk  
    if any( r>1 | r<0 ) K8?]&.!  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') |u@/,x/t  
    end AY B~{  
    fK?/o]vq  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) c(j|xQ\pE  
        error('zernfun:RTHvector','R and THETA must be vectors.') Af`qe+0E  
    end +5k^-  
    P2t{il   
    r = r(:); >%?kp[  
    theta = theta(:); h@H8oZ[  
    length_r = length(r); j]X $7  
    if length_r~=length(theta) zcrM3`Zh  
        error('zernfun:RTHlength', ... 6oA2"!u^w  
              'The number of R- and THETA-values must be equal.') ,'%wadOo  
    end 2Vwv#NAV k  
    (=eJceE!  
    % Check normalization: v{44`tR   
    % -------------------- ~B704i  
    if nargin==5 && ischar(nflag) mFa%d8Y  
        isnorm = strcmpi(nflag,'norm'); N0POyd/rL  
        if ~isnorm dR|*VT\  
            error('zernfun:normalization','Unrecognized normalization flag.') +WTO_J7  
        end TilCP"(6D  
    else , |lDR@  
        isnorm = false; tSf$`4  
    end z,+LPr  
    /qwl;_Jcf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rQLl[a  
    % Compute the Zernike Polynomials O+w82!<:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KM:k<pvi  
    +f"q^RIU  
    % Determine the required powers of r: rFLm!J]  
    % ----------------------------------- z^z,_?q;  
    m_abs = abs(m); pcC/$5FQ  
    rpowers = []; I8%Uyap{  
    for j = 1:length(n) O}Mu_edM  
        rpowers = [rpowers m_abs(j):2:n(j)]; A(84cmq!q  
    end Py^fWQ5I~%  
    rpowers = unique(rpowers); Ss$/Bh>hN  
    ON-zhT?v  
    % Pre-compute the values of r raised to the required powers, b sM ]5^  
    % and compile them in a matrix: 'jA>P\@8  
    % ----------------------------- *$ kpSph  
    if rpowers(1)==0 3k_bhK zI  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <nk7vo?Ks  
        rpowern = cat(2,rpowern{:}); /3KPK4!m  
        rpowern = [ones(length_r,1) rpowern]; S(ky:  
    else YW7Pimks  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 6+LBs.vl}  
        rpowern = cat(2,rpowern{:}); 8:gUo8  
    end kD\7wz,ui  
    AV]7l}-  
    % Compute the values of the polynomials: H[o >"@4  
    % -------------------------------------- U.A:'9K,  
    y = zeros(length_r,length(n)); es!>u{8)  
    for j = 1:length(n) pybE0]   
        s = 0:(n(j)-m_abs(j))/2; Z!foD^&R  
        pows = n(j):-2:m_abs(j); 8$~^-_>n/  
        for k = length(s):-1:1 !lxq,Whr{  
            p = (1-2*mod(s(k),2))* ... p6AF16*f0  
                       prod(2:(n(j)-s(k)))/              ... WvN{f*  
                       prod(2:s(k))/                     ... zXZXp~7)  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... }l<:^lX  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ]WvV*FL9D3  
            idx = (pows(k)==rpowers); (,I9|  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 8Xx4W^*_  
        end `_+%  
         E@/* eJ  
        if isnorm E2i'lO\P  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ! z6T_;s  
        end F&u)wI'  
    end k{C03=xk  
    % END: Compute the Zernike Polynomials n%K^G4k^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L]Dq1q8`  
    e5$S2o~JF  
    % Compute the Zernike functions: ]Ei*I}  
    % ------------------------------ m"f3hd4D_q  
    idx_pos = m>0; ,!vI@>nhG  
    idx_neg = m<0; .r~M7 I  
    Px?zih!6  
    z = y; $nqVE{ksV  
    if any(idx_pos) :x3"Cj  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,lDOo+eE%:  
    end gaWJzK Yc_  
    if any(idx_neg) _V,bvHWlM  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _^@>I8ix  
    end 3W3)%[ 5  
    @ MKf$O4K  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) opgNt o6$  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 0]xp"xOwW  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 3QDz9KwCAw  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Ya;y@44  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Z '~Ie~  
    %   and THETA is a vector of angles.  R and THETA must have the same p&2oe\j$,  
    %   length.  The output Z is a matrix with one column for every P-value, ~EM(*k._  
    %   and one row for every (R,THETA) pair. 5;X r0f  
    % a FL; E  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike .'bhRQY  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 0M!GoqaA  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 6z2%/P-'  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 yJW/yt.l  
    %   for all p. d' l|oeS  
    % dy]ZS<Hz8G  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 |4rqj 1*U  
    %   Zernike functions (order N<=7).  In some disciplines it is ,</Kn~b  
    %   traditional to label the first 36 functions using a single mode 5Z`f .}^w  
    %   number P instead of separate numbers for the order N and azimuthal LZDJ\"a-  
    %   frequency M. O=}d:yZb!  
    % [ d`m)MW-  
    %   Example: r7FpR!  
    % S]Ye`  
    %       % Display the first 16 Zernike functions Z8`Y}#Za[  
    %       x = -1:0.01:1; `L%<3/hF  
    %       [X,Y] = meshgrid(x,x); D2I|Z  
    %       [theta,r] = cart2pol(X,Y); ?2,{+d |  
    %       idx = r<=1; M9Xq0BBu  
    %       p = 0:15; ajW2HH*9}A  
    %       z = nan(size(X)); x/0loW?q^  
    %       y = zernfun2(p,r(idx),theta(idx)); sGx3O i   
    %       figure('Units','normalized') .Nk5W%7]=  
    %       for k = 1:length(p) |nBs(>b  
    %           z(idx) = y(:,k); o,RiAtdk  
    %           subplot(4,4,k) P=.~LZZ]89  
    %           pcolor(x,x,z), shading interp FuC \qF  
    %           set(gca,'XTick',[],'YTick',[]) 7^<6|>j4  
    %           axis square e~geBlLar  
    %           title(['Z_{' num2str(p(k)) '}']) 9Dp0Pi?29  
    %       end }#S1!TU  
    % Dt\rrN:v  
    %   See also ZERNPOL, ZERNFUN. EiVVVmm!  
    intl?&wC  
    %   Paul Fricker 11/13/2006 *U- :2uf  
    VfwH:  
    D!z'Y,.  
    % Check and prepare the inputs: 0 \V)DV.i  
    % ----------------------------- DFvGc`O4  
    if min(size(p))~=1 dDa&:L  
        error('zernfun2:Pvector','Input P must be vector.') t N4-<6  
    end 5_1\{lP  
    >[;L.  
    if any(p)>35 7CH.BY  
        error('zernfun2:P36', ... 13pu{Xak  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 2R W~jn"  
               '(P = 0 to 35).']) 0rvBjlFT  
    end \VWgF)_  
    F\^\,hy  
    % Get the order and frequency corresonding to the function number: L1f=90  
    % ---------------------------------------------------------------- BkP4.XRI  
    p = p(:); lOM8%{.'_x  
    n = ceil((-3+sqrt(9+8*p))/2); R{ udV  
    m = 2*p - n.*(n+2); 8Ltl32JSB[  
    _-rC]iQJ55  
    % Pass the inputs to the function ZERNFUN: tu(^D23  
    % ---------------------------------------- q]Kv.x]$R  
    switch nargin C DoD9Hq,  
        case 3 'Va<GHr>+  
            z = zernfun(n,m,r,theta); 5~ZzQG  
        case 4 o2cc3`*8d  
            z = zernfun(n,m,r,theta,nflag); ,U)&ny  
        otherwise Kv)}  
            error('zernfun2:nargin','Incorrect number of inputs.') Uf MQ?(,  
    end *Ms&WYN-  
    !c dY`f6x  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) h-RhmQA=Iz  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. BO7XN;  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of }!?RB v'W  
    %   order N and frequency M, evaluated at R.  N is a vector of tCm]1ZgRW  
    %   positive integers (including 0), and M is a vector with the ,p /{!BX  
    %   same number of elements as N.  Each element k of M must be a ,LP^v'[V7  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) _!!Fg%a5"R  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is O&&_)  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix OhMJt&s9P=  
    %   with one column for every (N,M) pair, and one row for every bwcr/J( Nb  
    %   element in R. t\ a|Gp W  
    % 2i;ox*SfpU  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- FD&^nJ_{  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is @rA V;D%  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to aC%Q.+-t  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 aEh9 za  
    %   for all [n,m]. KU*aJl_n,  
    % .gzfaxi  
    %   The radial Zernike polynomials are the radial portion of the G "!v)o  
    %   Zernike functions, which are an orthogonal basis on the unit SH#*Lc   
    %   circle.  The series representation of the radial Zernike O1)\!=& .  
    %   polynomials is /HS"{@Z"h  
    % L &hw- .Q  
    %          (n-m)/2 KV$4}{  
    %            __ D6|-nl  
    %    m      \       s                                          n-2s hvQXYo>TZx  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r XogCq?_m  
    %    n      s=0 jwBJG7\  
    % E/*&'Osq  
    %   The following table shows the first 12 polynomials. &xhwOgI#,  
    % eG8 l^[  
    %       n    m    Zernike polynomial    Normalization )7[#Ti  
    %       --------------------------------------------- 1_A_)l11  
    %       0    0    1                        sqrt(2) R&&&RI3{  
    %       1    1    r                           2 =6O*AJ  
    %       2    0    2*r^2 - 1                sqrt(6) GBWL0'COV  
    %       2    2    r^2                      sqrt(6) <<E 9MIn_  
    %       3    1    3*r^3 - 2*r              sqrt(8) %[s%H)e)  
    %       3    3    r^3                      sqrt(8) )p1~Jx(\  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) #p55/54ZI  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) h3&|yS|  
    %       4    4    r^4                      sqrt(10) Mp>(cs  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) kd\Hj~*  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) CaO-aL  
    %       5    5    r^5                      sqrt(12) 02trjp.f  
    %       --------------------------------------------- QIlZZ  
    % 4OQ,|Wm4G  
    %   Example: T_=WX_h $  
    % k.K#i /t  
    %       % Display three example Zernike radial polynomials j7Ts&;`[*  
    %       r = 0:0.01:1; ^3S&LC 1;|  
    %       n = [3 2 5]; QIevps*  
    %       m = [1 2 1]; .|5$yGEF_+  
    %       z = zernpol(n,m,r); ed}#S~4q  
    %       figure *B}O  
    %       plot(r,z) .RJMtmp  
    %       grid on 6]d]0TW_  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 3Jlap=]68S  
    % Rz|@BxB>n  
    %   See also ZERNFUN, ZERNFUN2. X!/Sk1  
    zxCx2.7  
    % A note on the algorithm. !khEep}  
    % ------------------------ u4w!SD  
    % The radial Zernike polynomials are computed using the series Ez0zk9  
    % representation shown in the Help section above. For many special {srxc4R`  
    % functions, direct evaluation using the series representation can n=C"pH#  
    % produce poor numerical results (floating point errors), because {?IbbT  
    % the summation often involves computing small differences between f$:SacF  
    % large successive terms in the series. (In such cases, the functions G$MEVfd"  
    % are often evaluated using alternative methods such as recurrence H~nZ=`P9&  
    % relations: see the Legendre functions, for example). For the Zernike P/|1,S k  
    % polynomials, however, this problem does not arise, because the \3^ue0  
    % polynomials are evaluated over the finite domain r = (0,1), and e@anX^M;  
    % because the coefficients for a given polynomial are generally all ) y;7\-K0  
    % of similar magnitude. ;l0 dx$w  
    % 0 }od Q#  
    % ZERNPOL has been written using a vectorized implementation: multiple ],S {?!'1  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M]  =g M@[2  
    % values can be passed as inputs) for a vector of points R.  To achieve ?_^{9q%9  
    % this vectorization most efficiently, the algorithm in ZERNPOL "O<ETHd0  
    % involves pre-determining all the powers p of R that are required to iW>^'W#  
    % compute the outputs, and then compiling the {R^p} into a single ""a$[[ %WC  
    % matrix.  This avoids any redundant computation of the R^p, and  ;tZQ9#S  
    % minimizes the sizes of certain intermediate variables. U4 \v~n\  
    % 4}v|^_x-i  
    %   Paul Fricker 11/13/2006 ]lBCK  
    !Kg ']4  
    6`@J=Q?  
    % Check and prepare the inputs: PBCGC^0{  
    % ----------------------------- 6{HCF-cQd  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _3yG<'f[Y  
        error('zernpol:NMvectors','N and M must be vectors.') /G'3!S  
    end w,FPL&{  
    -|uoxj>  
    if length(n)~=length(m) ~vt9?(h  
        error('zernpol:NMlength','N and M must be the same length.') *Z_4bR4Q  
    end -HQbvXAS  
    FZj>N(  
    n = n(:); ~~h#2SX  
    m = m(:); 3S7"P$q  
    length_n = length(n); UWvVYdy7  
    ,_RNZ sa;&  
    if any(mod(n-m,2)) #Ir?v  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') poxF`a6e+  
    end 9"]#.A^Q*  
    n@p@ @  
    if any(m<0) +lqGf  
        error('zernpol:Mpositive','All M must be positive.') 0zB[seyE  
    end </`\3t  
    SI+Uq(k  
    if any(m>n) ")STB8kQ  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') W H/.h$  
    end (;},~( 2B  
    A,cXN1V  
    if any( r>1 | r<0 ) Y -a   
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') h7UNmwj  
    end HT.*r6Y>g  
    `IUn{I  
    if ~any(size(r)==1) Jq'8"  
        error('zernpol:Rvector','R must be a vector.') 1d<Uwb>  
    end 4>>=TJ!M  
    d/&> `[i  
    r = r(:); '6 F-%  
    length_r = length(r); }Ze*/ p-  
    8'8`xu$  
    if nargin==4 0yI1r7yNB+  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); @I`^\oJ  
        if ~isnorm VE|l;aXi  
            error('zernpol:normalization','Unrecognized normalization flag.') =\WF +r]V  
        end f|~{j(.v  
    else 7PX`kI  
        isnorm = false; 3uqhYT;  
    end d}h{#va*  
    =Nxkr0])!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q S&B"7;g  
    % Compute the Zernike Polynomials *{DTxEy  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0+*NHiH  
    >Q\Kc=Q|  
    % Determine the required powers of r: TQF+aP8[L  
    % ----------------------------------- EJ9hgE  
    rpowers = []; zXn-E  
    for j = 1:length(n) R}M ;, G  
        rpowers = [rpowers m(j):2:n(j)]; o[Jzx2A<  
    end ,KW Q 6  
    rpowers = unique(rpowers); |h\7Q1,1~2  
    AAevN3a#nI  
    % Pre-compute the values of r raised to the required powers, ;/j2(O^  
    % and compile them in a matrix: \g39>;iR  
    % ----------------------------- <h7cQ  
    if rpowers(1)==0 9Rnypzds  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {_O!mI*  
        rpowern = cat(2,rpowern{:}); -)`_w^Ox  
        rpowern = [ones(length_r,1) rpowern]; kt/,& oKI  
    else >1Z"5F7=  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); esqmj#G  
        rpowern = cat(2,rpowern{:}); :}lqu24K  
    end N]A# ecm  
    "<!U  
    % Compute the values of the polynomials: MEiP&=gX!  
    % -------------------------------------- li r=0oq<  
    z = zeros(length_r,length_n); ::|~tLFu  
    for j = 1:length_n z~ cW,  
        s = 0:(n(j)-m(j))/2; dI{DiPho  
        pows = n(j):-2:m(j); <-umeY"n>  
        for k = length(s):-1:1 mLX/xM/T?/  
            p = (1-2*mod(s(k),2))* ... !*N9PUM  
                       prod(2:(n(j)-s(k)))/          ... #X}HF$t{=  
                       prod(2:s(k))/                 ... 6l]X{A.  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 1UP=(8j/  
                       prod(2:((n(j)+m(j))/2-s(k))); ~zqb{o^pT  
            idx = (pows(k)==rpowers); +WH\,E  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ]ordqulq1  
        end @Jzk2,rI  
         ]:|B).  
        if isnorm P0m3IH)  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); e5|lz.o;  
        end Jj"{C]  
    end 4ba*Nc*Yc  
    2%W;#oi?  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Kz HYh  
    CPz<iU  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 gx&es\  
    G m~ ./-  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)