非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 (
#*"c
function z = zernfun(n,m,r,theta,nflag) cFK @3a
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. GcT;e5D
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N H$!+A
% and angular frequency M, evaluated at positions (R,THETA) on the GF8 -_X
% unit circle. N is a vector of positive integers (including 0), and ;B~P>n}}_]
% M is a vector with the same number of elements as N. Each element (&jW}1D
% k of M must be a positive integer, with possible values M(k) = -N(k) zJ+3g!
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, s=Df `
% and THETA is a vector of angles. R and THETA must have the same u:@U
$:sZ
% length. The output Z is a matrix with one column for every (N,M) i31<].|kA*
% pair, and one row for every (R,THETA) pair. e+. \pe\
% DECB*9O^
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike q/NY72tj0
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), q*,Q5
% with delta(m,0) the Kronecker delta, is chosen so that the integral |~WYEh
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, t6+YXjXK
% and theta=0 to theta=2*pi) is unity. For the non-normalized !^e =P%S
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Ytao"R/
% t V03+&jF
% The Zernike functions are an orthogonal basis on the unit circle. SR ZL\m}
% They are used in disciplines such as astronomy, optics, and V|'1tB=;*1
% optometry to describe functions on a circular domain. rAb&I"\ZY
% XM/vDdR
% The following table lists the first 15 Zernike functions. "X04mQn15
% WNs}sNSf
% n m Zernike function Normalization i^)WPP>4Aw
% -------------------------------------------------- K B!5u 9
% 0 0 1 1 YuQ~AE'i
% 1 1 r * cos(theta) 2 6.5wZN9<|
% 1 -1 r * sin(theta) 2 Iy';x
% 2 -2 r^2 * cos(2*theta) sqrt(6) ?P/AC$:|I
% 2 0 (2*r^2 - 1) sqrt(3) + H_MV=A^
% 2 2 r^2 * sin(2*theta) sqrt(6) `S3>3
% 3 -3 r^3 * cos(3*theta) sqrt(8) im]g(#GnKh
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) JN4fPGbV
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ~=En+J}*
% 3 3 r^3 * sin(3*theta) sqrt(8) 9Ma0^_
% 4 -4 r^4 * cos(4*theta) sqrt(10) O/Rhf[7v*
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ujr(K=E
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) tnz+bX26
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =WG=C1Z
% 4 4 r^4 * sin(4*theta) sqrt(10) c>HK9z{
% -------------------------------------------------- fY,|o3#
% x[(?#
% Example 1: geM6G$V&
%
fvEAIs
% % Display the Zernike function Z(n=5,m=1) ;apzAF
% x = -1:0.01:1; 8z2Rry
w
% [X,Y] = meshgrid(x,x); ?+0GfIV
% [theta,r] = cart2pol(X,Y); e5?PkFV^a1
% idx = r<=1; n6MM5h/#r
% z = nan(size(X)); C[uOReo
% z(idx) = zernfun(5,1,r(idx),theta(idx)); g&Vcg`
% figure uH@FU60
% pcolor(x,x,z), shading interp y
"w|g~x]c
% axis square, colorbar +GF#?X0^
% title('Zernike function Z_5^1(r,\theta)') Sv'y e
% I.'b'-^
% Example 2: -%CoWcGP
% ]Mi.f3QlO6
% % Display the first 10 Zernike functions yxt[=
C
% x = -1:0.01:1; @U{<a#
% [X,Y] = meshgrid(x,x); EW<kI+0D
% [theta,r] = cart2pol(X,Y); 2xwlKmI N
% idx = r<=1; F {+`uG
% z = nan(size(X)); FLZWZ;
% n = [0 1 1 2 2 2 3 3 3 3]; $ ((6=39s
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Oakb'
% Nplot = [4 10 12 16 18 20 22 24 26 28]; O#a6+W"U
% y = zernfun(n,m,r(idx),theta(idx)); D${={x
% figure('Units','normalized') o|BP$P8V
% for k = 1:10 3+Qxg+<
% z(idx) = y(:,k); -r7]S
% subplot(4,7,Nplot(k)) dXHB #
% pcolor(x,x,z), shading interp 9BEFr/.
% set(gca,'XTick',[],'YTick',[]) 5kypMHJm
% axis square FQz?3w&ia
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +pm[f["C.
% end 8.J(r(;>
% cO2& VC
% See also ZERNPOL, ZERNFUN2. AK!hK>u`
oR1^/e
% Paul Fricker 11/13/2006 Y-mK+12
&MZ$j46
l v&mp0V+
% Check and prepare the inputs: O,2~"~kF
% ----------------------------- G!N{NCq
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) B/JO~;{
error('zernfun:NMvectors','N and M must be vectors.') {6 6sB{P
end tR0pH8?e"
H5CR'Rp
if length(n)~=length(m) mW2,1}Jv
error('zernfun:NMlength','N and M must be the same length.') '_\;jFAM
end "\W-f
Uxfl_@lJ
n = n(:); 7uorQfR?
m = m(:); kd`0E-QU
if any(mod(n-m,2)) :<Y}l-x
error('zernfun:NMmultiplesof2', ... j$UV/tp5T
'All N and M must differ by multiples of 2 (including 0).') Q5{Pv}Jx
end aI(7nJ=R
%3q0(Xl
if any(m>n) X,aYK;q%z
error('zernfun:MlessthanN', ... 4/ kv3rv
'Each M must be less than or equal to its corresponding N.') ?bZovRx
end p(;U@3G
{rfF'@[
if any( r>1 | r<0 ) 2kAx>R
error('zernfun:Rlessthan1','All R must be between 0 and 1.') YJg,B\z}
end GZS1zTwBL
H1GRMDNXOA
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Pg9hW
error('zernfun:RTHvector','R and THETA must be vectors.') Oa;X+
end NjPDX>R\K
a,F&`Wg
r = r(:); ;*ix~taL%
theta = theta(:); ^,l_{
length_r = length(r); |Fm6#1A@
if length_r~=length(theta) \^( 0B8|w
error('zernfun:RTHlength', ... NNhL*C[_7
'The number of R- and THETA-values must be equal.') >3 yk#U|7}
end 09A
X-JP
ETp%s{8
% Check normalization: iwz
% -------------------- /525w^'pd
if nargin==5 && ischar(nflag) gBT2)2]
isnorm = strcmpi(nflag,'norm'); !US d9
if ~isnorm du$|lxC
error('zernfun:normalization','Unrecognized normalization flag.') g %K>
end Om{l>24i.\
else {3})=>u:S
isnorm = false; L9pvG(R%
end l4n)#?Q?
qq)0yyL r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m)V/L]4
% Compute the Zernike Polynomials AL$&|=C-$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N#lDW~e'
XwV'Ha
% Determine the required powers of r: `V)Z)uN{0
% ----------------------------------- 0 a]/%y3V
m_abs = abs(m); z
<mK>$
rpowers = []; yc|VJ2R*
for j = 1:length(n) %WqNiF0-
rpowers = [rpowers m_abs(j):2:n(j)]; vR0];{
end 8Ll[ fJZA
rpowers = unique(rpowers); pg]BsJN
^pM+A6
XY
% Pre-compute the values of r raised to the required powers, 988]}{w
% and compile them in a matrix: Oj<S.fi
% ----------------------------- 2[0JO.K
4
if rpowers(1)==0 PoEqurH0
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); I`z@2Z+pJ
rpowern = cat(2,rpowern{:}); u77E! z4Uz
rpowern = [ones(length_r,1) rpowern]; 7~#:>OjW
else ?"?6,;F(4
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); s@MYc@k
rpowern = cat(2,rpowern{:}); VqL.iZ-
end {3N'D2N
%OgS^_tu
% Compute the values of the polynomials: @HZKc\1
% -------------------------------------- E}%hz*Q)(
y = zeros(length_r,length(n)); uEc<}pV
for j = 1:length(n) $gBd <N9|c
s = 0:(n(j)-m_abs(j))/2; Y(.OF
Q
pows = n(j):-2:m_abs(j); .z13 =yv
for k = length(s):-1:1 :eo
p = (1-2*mod(s(k),2))* ... ~=R SKyzt
prod(2:(n(j)-s(k)))/ ... eNiaM6(J
prod(2:s(k))/ ... &rkEK4
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... (C]o,7cYS
prod(2:((n(j)+m_abs(j))/2-s(k))); i#%aTRKHd6
idx = (pows(k)==rpowers); A(]H{>PMy
y(:,j) = y(:,j) + p*rpowern(:,idx); r\nx=
end m Sk5u 7
5k|9gICyd*
if isnorm /b|0PMX
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <0S=,!
end iAa;6mH
end eAPXWWAZJ1
% END: Compute the Zernike Polynomials )Ud-}* g
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W2uOR{
'?
HHqwq.zIy
% Compute the Zernike functions: !|c|o*t{
% ------------------------------ Ts~L:3oaQ
idx_pos = m>0; l }XU59
idx_neg = m<0; ja=F 7Usb
xq"Jy=4Q*
z = y; xC
C:BO`pw
if any(idx_pos) |d6T/Uxo
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |p$spQ
end 43V}#DA@
if any(idx_neg) mDZ*E !B
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,^icPQSwc
end DNP13wp@
?`J[[",
% EOF zernfun