切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10898阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 K*!qt(D&  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! _^%DfMP3i\  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 JP,yRb\  
    function z = zernfun(n,m,r,theta,nflag) p]eVby"  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. po!bRk[4  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N E[ttamU  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Gk']Ma2J}  
    %   unit circle.  N is a vector of positive integers (including 0), and |)65y  
    %   M is a vector with the same number of elements as N.  Each element .<zN/&MXf  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) &_$0lI DQ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, <MyT ;  
    %   and THETA is a vector of angles.  R and THETA must have the same ZOBcV,K  
    %   length.  The output Z is a matrix with one column for every (N,M) ]~:WGo=_  
    %   pair, and one row for every (R,THETA) pair. LC, 6hpmh  
    % dKQu  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike yvWM]A  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -A,UqEt  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral c6T[2Ig  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, az1#:Go  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]++,7Z\AU  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~l8w]R3A  
    % r"9hpZH  
    %   The Zernike functions are an orthogonal basis on the unit circle. [XhG7Ly  
    %   They are used in disciplines such as astronomy, optics, and Yosfk\D  
    %   optometry to describe functions on a circular domain. YU`}T<;bg  
    % u]*f^/6Q  
    %   The following table lists the first 15 Zernike functions. O2:1aG  
    % M`&78j  
    %       n    m    Zernike function           Normalization Dk Ef;P  
    %       -------------------------------------------------- 8'ut[  
    %       0    0    1                                 1 .L~ NX/V  
    %       1    1    r * cos(theta)                    2 y(wb?86#W5  
    %       1   -1    r * sin(theta)                    2 TbD $lx3>  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) QM24cm T  
    %       2    0    (2*r^2 - 1)                    sqrt(3) H]}mg='kI  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) t2Px?S?  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) kni{1Gr  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) cGyR_8:2cv  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \fsNI T/  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) PLJDRp 2o  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) u2S8D uJ  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *nK4XgD  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) UX'q64F!  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mM r$~^P:  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?kK3%uJy&  
    %       -------------------------------------------------- 8!{ }WLwb  
    % _^g4/G#13c  
    %   Example 1: "A*;V  
    % q|}O-A*wa  
    %       % Display the Zernike function Z(n=5,m=1) z(u,$vZ _  
    %       x = -1:0.01:1; qu\U^F  
    %       [X,Y] = meshgrid(x,x); D_?dy4\  
    %       [theta,r] = cart2pol(X,Y); r PTfwhs  
    %       idx = r<=1; Ng2Z7k  
    %       z = nan(size(X)); <KJ|U0/jGd  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); |l-O e  
    %       figure D~FIv  
    %       pcolor(x,x,z), shading interp e8E'X  
    %       axis square, colorbar F1S0C>N?5  
    %       title('Zernike function Z_5^1(r,\theta)') w9StW9 4p  
    % I/%L,XyRI  
    %   Example 2: /#z"c]#  
    % X f{9rZ+  
    %       % Display the first 10 Zernike functions _kc}:  
    %       x = -1:0.01:1; k8!:`jG  
    %       [X,Y] = meshgrid(x,x); 53$;ZO3  
    %       [theta,r] = cart2pol(X,Y); +s6v!({Z  
    %       idx = r<=1; uz I-1@`  
    %       z = nan(size(X)); \<hHZS  
    %       n = [0  1  1  2  2  2  3  3  3  3]; b%KcS&-6  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; oJ tmd}  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; :*/g~y(fE  
    %       y = zernfun(n,m,r(idx),theta(idx)); .mNw^>:cq  
    %       figure('Units','normalized') liqVfB%  
    %       for k = 1:10 YCVT0d  
    %           z(idx) = y(:,k); xLb=^Xjec  
    %           subplot(4,7,Nplot(k)) 3<l}gB'S[  
    %           pcolor(x,x,z), shading interp | N}*  
    %           set(gca,'XTick',[],'YTick',[]) 6b%IPbb  
    %           axis square  7|yEf  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) (J?_~(,`"  
    %       end &'`ki0Xh;  
    % g<ov` bF  
    %   See also ZERNPOL, ZERNFUN2. "bB0$>0,  
    )G;H f?M  
    %   Paul Fricker 11/13/2006 E#3tkFF0Z[  
    #k1IrqUp  
    t%O)Ti  
    % Check and prepare the inputs: b@Dt]6_ UL  
    % ----------------------------- XwfR/4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S_ nAO\h  
        error('zernfun:NMvectors','N and M must be vectors.') Nc HU)  
    end A^$xE6t  
    (sI`FW_  
    if length(n)~=length(m) S&.xgBR  
        error('zernfun:NMlength','N and M must be the same length.') ;" D~F  
    end )#GF:.B  
    :P ]D`b6p  
    n = n(:); <CJy3<$u  
    m = m(:); ji\&?%(B  
    if any(mod(n-m,2)) =HB(N|9_d  
        error('zernfun:NMmultiplesof2', ... =c$x xEDD  
              'All N and M must differ by multiples of 2 (including 0).') ]NtBP  
    end BPl% SL  
    H|7XfM  
    if any(m>n) *YX5bpR?  
        error('zernfun:MlessthanN', ... = y(*?TZH  
              'Each M must be less than or equal to its corresponding N.') l^KCsea#  
    end BJ\81 R  
    `>b,'u6F  
    if any( r>1 | r<0 ) b#"&]s-  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') V rd16s  
    end ._t1eb`m{  
    +Wgfxk'{  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) )pe17T1|  
        error('zernfun:RTHvector','R and THETA must be vectors.') m>F:dI  
    end _yX.Apv]  
    #d<|_  
    r = r(:); 4.uaWM)2  
    theta = theta(:); s&'FaqE  
    length_r = length(r); 7 , _b  
    if length_r~=length(theta) T$AVMVq  
        error('zernfun:RTHlength', ... ]T&d_~l   
              'The number of R- and THETA-values must be equal.') 49<t2^1q  
    end hSXJDT2  
    a1Q%Gn@R  
    % Check normalization: l]#=I7 6  
    % -------------------- s[dIWYs#  
    if nargin==5 && ischar(nflag) H'7s`^- >I  
        isnorm = strcmpi(nflag,'norm'); _<DOA:'v  
        if ~isnorm qJf\,7mi  
            error('zernfun:normalization','Unrecognized normalization flag.') $.:x3TsA  
        end {~j/sto-:  
    else &cJ?mSI  
        isnorm = false; ~'0ZW<X.  
    end Lz p}<B  
    )''V}Zn.X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x,cvAbwS  
    % Compute the Zernike Polynomials _%Ua8bR$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =kzp$ i  
    3:8p="$F  
    % Determine the required powers of r: S("dU`T?  
    % ----------------------------------- $+ N~Fa  
    m_abs = abs(m); { o5^nd  
    rpowers = []; nHH FHnFf  
    for j = 1:length(n)  +Mhk<A[s  
        rpowers = [rpowers m_abs(j):2:n(j)]; nT +ZSr  
    end /#&jF:h  
    rpowers = unique(rpowers); Z h9D^ I  
    olA+B  
    % Pre-compute the values of r raised to the required powers, S-ZN}N{,6  
    % and compile them in a matrix: JZ*.;}"  
    % ----------------------------- Q<g>WNb  
    if rpowers(1)==0 #$W0%7  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 1-N+qNSD`  
        rpowern = cat(2,rpowern{:}); A>e-eD xi  
        rpowern = [ones(length_r,1) rpowern]; ~:U`^wtQ  
    else CY{!BV'  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); VCiq'LOR,<  
        rpowern = cat(2,rpowern{:}); Xdl dUK[  
    end z$}9f*W}B  
    4[JF.O6}  
    % Compute the values of the polynomials: Lccy~2v>  
    % -------------------------------------- q# Q%p+  
    y = zeros(length_r,length(n)); &WL::gy_S  
    for j = 1:length(n) zJl;| E".  
        s = 0:(n(j)-m_abs(j))/2; `-{? !  
        pows = n(j):-2:m_abs(j); surNJ,)  
        for k = length(s):-1:1 bu<d>XR  
            p = (1-2*mod(s(k),2))* ... %n8CK->  
                       prod(2:(n(j)-s(k)))/              ... V=th-o3[  
                       prod(2:s(k))/                     ... ?6nB=B)/  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {^(uoB C/  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); j}s/)}n|  
            idx = (pows(k)==rpowers); <?}pCX/O  
            y(:,j) = y(:,j) + p*rpowern(:,idx); C& XPn;f  
        end ceD6q~)  
         TU2oQ1  
        if isnorm /Z!$bD  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); CDXN%~0h  
        end XksI.]tfj  
    end jF j'6LT9/  
    % END: Compute the Zernike Polynomials DO~[VK%|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @ <2y+_e  
    p8@8b "  
    % Compute the Zernike functions: WLw i  
    % ------------------------------ 2p#d  
    idx_pos = m>0; Lk@+iHf  
    idx_neg = m<0; g\8B;  
    S;gy:n!t  
    z = y; ZWGX*F#}P  
    if any(idx_pos) |4P8N{ L>O  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); $'_Q@ZBq  
    end lo'#dpt<  
    if any(idx_neg) UBM#~~sM  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )V>zXy}Y  
    end -3~S{)  
    #a~BigZ[G  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) }fkdv6mz  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 0V]MAuD($  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated &\~*%:C  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive NS`hXf  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Qjnh;uBO  
    %   and THETA is a vector of angles.  R and THETA must have the same "(p/3qFY  
    %   length.  The output Z is a matrix with one column for every P-value, mLkp*?sfC  
    %   and one row for every (R,THETA) pair. pO5j-d *  
    % *S}CiwW>/  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike y( 22m+B  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) +zk5du^gZ  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) qNHI$r'  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 T+EwC)Ll  
    %   for all p. X(Mpg[,N"  
    % tWzBQx   
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 H Q[  
    %   Zernike functions (order N<=7).  In some disciplines it is I0Allw[  
    %   traditional to label the first 36 functions using a single mode >eo[)Y  
    %   number P instead of separate numbers for the order N and azimuthal bx{njo1Mr  
    %   frequency M. I~YV&12  
    % S#oBO%!  
    %   Example: :k`Qj(7S  
    % [\<#iRcP  
    %       % Display the first 16 Zernike functions yi~]}M  
    %       x = -1:0.01:1; X[$|I9  
    %       [X,Y] = meshgrid(x,x); "fhQ{b$i  
    %       [theta,r] = cart2pol(X,Y); O`%F{&;29  
    %       idx = r<=1; [*(1~PrlO,  
    %       p = 0:15; mS;WNlm\  
    %       z = nan(size(X)); ^q/$a2<4  
    %       y = zernfun2(p,r(idx),theta(idx)); ntPj9#lf  
    %       figure('Units','normalized') +e*C`uP!  
    %       for k = 1:length(p) p< 0=. ~  
    %           z(idx) = y(:,k); B<-("P(q  
    %           subplot(4,4,k) SB('Nqih  
    %           pcolor(x,x,z), shading interp na9YlJ\  
    %           set(gca,'XTick',[],'YTick',[]) !t~tIJ>6  
    %           axis square V9Mr&8{S4  
    %           title(['Z_{' num2str(p(k)) '}']) us1$  
    %       end W-|C K&1  
    % LD NdHG6  
    %   See also ZERNPOL, ZERNFUN. g{sp<w0  
    2^Im~p~ByE  
    %   Paul Fricker 11/13/2006 4Y3@^8h&=  
    T95FoA  
    VB4V[jraCF  
    % Check and prepare the inputs: o$%KbfXO]  
    % ----------------------------- hS &H*  
    if min(size(p))~=1 $0P16ZlPC  
        error('zernfun2:Pvector','Input P must be vector.') # c1LOz  
    end Tmu2G/yi  
    '~f*O0_  
    if any(p)>35 HOH5_E>d  
        error('zernfun2:P36', ... +/[Rvh5WZ  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Evg#sPu\  
               '(P = 0 to 35).']) VyYrL]OrA  
    end TC'SDDX  
    EXH,+3fQp  
    % Get the order and frequency corresonding to the function number: |E$q S)y  
    % ---------------------------------------------------------------- RL]$"  
    p = p(:); BdU .;_K  
    n = ceil((-3+sqrt(9+8*p))/2); l*w'  O  
    m = 2*p - n.*(n+2); s m G?y~  
    5eF tcK  
    % Pass the inputs to the function ZERNFUN: lFIaC}  
    % ---------------------------------------- &YD+ s%OL  
    switch nargin \Wppl,"6c  
        case 3 4L`,G:J,;  
            z = zernfun(n,m,r,theta); - "2 t^ Q  
        case 4 FqnD"]A  
            z = zernfun(n,m,r,theta,nflag); b5jD /X4  
        otherwise 9{S$%D  
            error('zernfun2:nargin','Incorrect number of inputs.') 4, Vx3QFZ  
    end edpRx"_  
    =^*EM<WG)  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 4XJ']M(5;  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. mKV31wvK}  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of o@j!JI&  
    %   order N and frequency M, evaluated at R.  N is a vector of N~`r;E  
    %   positive integers (including 0), and M is a vector with the F/tRyq`D  
    %   same number of elements as N.  Each element k of M must be a  >}]bKq  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Zg4wd/y?  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 5RO6YxQ  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix /Hm/%os  
    %   with one column for every (N,M) pair, and one row for every P$AHw;n[R  
    %   element in R. <.BY=z=H  
    % \ E5kpm  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- egfd=z=2un  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is PV=sqLM~  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to |)O;+e\  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 k@n L(2  
    %   for all [n,m]. 3w[uc~f  
    % 3qNuv];2  
    %   The radial Zernike polynomials are the radial portion of the ff fWvf  
    %   Zernike functions, which are an orthogonal basis on the unit } MP_  
    %   circle.  The series representation of the radial Zernike $SFreyI;Uf  
    %   polynomials is SjJ$Oinc  
    % F60m]NUM)c  
    %          (n-m)/2 0CX9tr2J  
    %            __ *(/b{!~  
    %    m      \       s                                          n-2s 6*>vie  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r l#>A.-R*`  
    %    n      s=0 XIM?$p^  
    % -,mV~y  
    %   The following table shows the first 12 polynomials. mc,HliiJ  
    % ~e){2_J&n  
    %       n    m    Zernike polynomial    Normalization ^y|`\oyqwN  
    %       --------------------------------------------- 6B>*v`T:  
    %       0    0    1                        sqrt(2) Ln\Gv/)  
    %       1    1    r                           2 2AxKB+c1`  
    %       2    0    2*r^2 - 1                sqrt(6) NW21{}=4  
    %       2    2    r^2                      sqrt(6) u^VQwu6?G  
    %       3    1    3*r^3 - 2*r              sqrt(8) (0?FZ.9%  
    %       3    3    r^3                      sqrt(8) pMUUF5  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) z!k  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) V{qR/  
    %       4    4    r^4                      sqrt(10) yB;K|MXy?  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) .0X 5Vy  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) U}<zn+SI#V  
    %       5    5    r^5                      sqrt(12) 4Xn-L&0z  
    %       --------------------------------------------- ;'<SsI  
    % ,|UwZ_.  
    %   Example: D42!#  
    % [Mv'*.7  
    %       % Display three example Zernike radial polynomials N#:W#C{16w  
    %       r = 0:0.01:1; gG(9&}@(  
    %       n = [3 2 5]; y,<\d/YY@  
    %       m = [1 2 1]; \C1`F [d_  
    %       z = zernpol(n,m,r); 8D^ iQBA  
    %       figure }Q,BI*}*  
    %       plot(r,z) 9Z3Y,`R,  
    %       grid on "#%9dWy  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') A_J!VXq  
    % 8}Maj  
    %   See also ZERNFUN, ZERNFUN2. }~<9*M-P  
    U\YzE.G1]S  
    % A note on the algorithm. $f6wmI;<y  
    % ------------------------ nC9x N  
    % The radial Zernike polynomials are computed using the series jH9.N4L  
    % representation shown in the Help section above. For many special f2Tz5slE  
    % functions, direct evaluation using the series representation can yfA h=  
    % produce poor numerical results (floating point errors), because 7zXX& S  
    % the summation often involves computing small differences between ~c>]kL(,  
    % large successive terms in the series. (In such cases, the functions eI5W; Q4  
    % are often evaluated using alternative methods such as recurrence cT'<,#^/  
    % relations: see the Legendre functions, for example). For the Zernike <a D}Ko(  
    % polynomials, however, this problem does not arise, because the [;7$ 'lr%D  
    % polynomials are evaluated over the finite domain r = (0,1), and r$!  
    % because the coefficients for a given polynomial are generally all XO/JnJ^B  
    % of similar magnitude. +C=^,B!,  
    % $n<X'7@0  
    % ZERNPOL has been written using a vectorized implementation: multiple k3e?:t 9  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ~t.i;eu  
    % values can be passed as inputs) for a vector of points R.  To achieve 5jcy*G}[  
    % this vectorization most efficiently, the algorithm in ZERNPOL `g(r.`t^  
    % involves pre-determining all the powers p of R that are required to $-mwr,i  
    % compute the outputs, and then compiling the {R^p} into a single qI1J M =  
    % matrix.  This avoids any redundant computation of the R^p, and ;J?zD9  
    % minimizes the sizes of certain intermediate variables. ItQ3|-^  
    % {,o =K4CD  
    %   Paul Fricker 11/13/2006 (V8lmp-F  
    hKQg:30<  
    !O/(._YB`  
    % Check and prepare the inputs: 9J f.Ls  
    % ----------------------------- }& e#b]&:*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,N2|P:x  
        error('zernpol:NMvectors','N and M must be vectors.') 53?B.\  
    end PZCOJK  
    !}&f2!?.W  
    if length(n)~=length(m) um mkAeWb  
        error('zernpol:NMlength','N and M must be the same length.') ! d" i  
    end ,Je9]XT  
    ADlLodG  
    n = n(:); EY.Z.gMZI(  
    m = m(:); ?C|b>wM/  
    length_n = length(n); +"SYG  
    vsCy?  
    if any(mod(n-m,2)) VaFv%%w  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') An3%@;  
    end 9uA2M!~i2  
    X!/  
    if any(m<0) J~1 =?</  
        error('zernpol:Mpositive','All M must be positive.') 3Qoa ?*  
    end N:7;c}~  
    Z3nmC-NE  
    if any(m>n) 'wP\VCL2>  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ^ )[jBUT  
    end P{h$> 6c  
    $_0~Jzt,  
    if any( r>1 | r<0 ) $_&gT.>  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') R"k}wRnxY  
    end #~@Cl9[)D  
    ~;B@ {kFY)  
    if ~any(size(r)==1) }SF<. A  
        error('zernpol:Rvector','R must be a vector.') 3/?{= {  
    end jMB&(r  
    zD}2Zh]  
    r = r(:); Umt?COc  
    length_r = length(r); t"L-9kCM  
    Nh/B8:035  
    if nargin==4 wT+b|K  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); I^yInrRh5  
        if ~isnorm IA?v[xu  
            error('zernpol:normalization','Unrecognized normalization flag.') Lb%Wz*Fa%!  
        end I2<t?c:Pn<  
    else 9 54O=9PQ  
        isnorm = false; lQnqPQY  
    end r1QLSD]i6  
    2<' 1m{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dAj;g9N/h  
    % Compute the Zernike Polynomials Y)]x1I  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I w-3Z'hOX  
    ZpTT9{PT=:  
    % Determine the required powers of r: 9H4NvB{  
    % ----------------------------------- MZInS:Vj  
    rpowers = []; tHV81F1J  
    for j = 1:length(n) ?3{:[*  
        rpowers = [rpowers m(j):2:n(j)]; A ^wIsAxT  
    end MehMhHY  
    rpowers = unique(rpowers); [#Y7iN&  
    ,8MUTXd@ V  
    % Pre-compute the values of r raised to the required powers, 8KrqJN0\  
    % and compile them in a matrix: S;]][h =  
    % ----------------------------- QCvz|)  
    if rpowers(1)==0 F 7~T=X)1  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?$&iVN^UA  
        rpowern = cat(2,rpowern{:}); r.T!R6v}  
        rpowern = [ones(length_r,1) rpowern]; 8KU5x#  
    else pAd 8-a  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); bx&?EUx+b  
        rpowern = cat(2,rpowern{:}); XFU['BI  
    end _9Zwg+oO[  
    pa@@S $(  
    % Compute the values of the polynomials: chr^>%Q_  
    % -------------------------------------- ySk'#\d  
    z = zeros(length_r,length_n); W<AxctId  
    for j = 1:length_n xJ18M@" j  
        s = 0:(n(j)-m(j))/2; AvS<b3EoN  
        pows = n(j):-2:m(j); -'iV-]<  
        for k = length(s):-1:1 m$X0O_*A  
            p = (1-2*mod(s(k),2))* ... lQSKY}h  
                       prod(2:(n(j)-s(k)))/          ... k;bdzcMkQ  
                       prod(2:s(k))/                 ... {!`0i  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 3RyB 0 n  
                       prod(2:((n(j)+m(j))/2-s(k))); R!8qkG  
            idx = (pows(k)==rpowers); )Kw Gb&l&  
            z(:,j) = z(:,j) + p*rpowern(:,idx); A=S_5y  
        end ;$Q&2}L[  
         dq&N;kk |  
        if isnorm I Y='tw  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); }c$@0x;YQ  
        end bm+ #OI  
    end  @{|vW  
    dO{a!Ca  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  N W/RQ(  
    X&B2&e;  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 y+ZRh?2  
    Ft7{P.g  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)