非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 \N7
E!82
function z = zernfun(n,m,r,theta,nflag) h-#Glse<
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ^oPf>\),C
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 2j(w*k
q~
% and angular frequency M, evaluated at positions (R,THETA) on the jcevpKkRG
% unit circle. N is a vector of positive integers (including 0), and >#xpg&2x
% M is a vector with the same number of elements as N. Each element W;u~}k<
% k of M must be a positive integer, with possible values M(k) = -N(k) ]<{BDXIGIE
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, lE%0ifu
% and THETA is a vector of angles. R and THETA must have the same hOw7"'# !
% length. The output Z is a matrix with one column for every (N,M) pdmeB
% pair, and one row for every (R,THETA) pair. ud!iy
% V.:imj
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike <.RgMPi
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), V#5BZU-
% with delta(m,0) the Kronecker delta, is chosen so that the integral ^d4#
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, a o\+%s
% and theta=0 to theta=2*pi) is unity. For the non-normalized _
@ \
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. z\Qg 3BS
% HR)joD*q;[
% The Zernike functions are an orthogonal basis on the unit circle. #*?5
% They are used in disciplines such as astronomy, optics, and `2Ff2D^ ?
% optometry to describe functions on a circular domain. aBol9`6
% %mh
K1,
% The following table lists the first 15 Zernike functions. 6g( 2O[n.
% Q%q_
% n m Zernike function Normalization yO$]9
% -------------------------------------------------- ~#@sZ0/<
% 0 0 1 1 1R1J/Z*V/
% 1 1 r * cos(theta) 2 kS3wa3bT
% 1 -1 r * sin(theta) 2 t$R|lv5<
% 2 -2 r^2 * cos(2*theta) sqrt(6) W=]QTx,J
% 2 0 (2*r^2 - 1) sqrt(3) Oh-HfJyi
% 2 2 r^2 * sin(2*theta) sqrt(6) b pExYyt
% 3 -3 r^3 * cos(3*theta) sqrt(8) ;o"}7'4*R%
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ^!N _Nx/M
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) D.U)R7(
% 3 3 r^3 * sin(3*theta) sqrt(8) +7d%)t
% 4 -4 r^4 * cos(4*theta) sqrt(10) LlX 7g_!
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lhJT&
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 9cX
~
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >wz-p
nD
% 4 4 r^4 * sin(4*theta) sqrt(10) |cUlXg=
% -------------------------------------------------- H?UmHwwE
% LW0't}
z
% Example 1: !x|OgvJ
% )O2giVq7[0
% % Display the Zernike function Z(n=5,m=1) j<wWPv
% x = -1:0.01:1; H2|&
% [X,Y] = meshgrid(x,x); fg+Q7'*Vq
% [theta,r] = cart2pol(X,Y);
8X[G)J;
% idx = r<=1; 1}BW
% z = nan(size(X)); Ah)_mxK
% z(idx) = zernfun(5,1,r(idx),theta(idx)); )m
\}ITf
% figure X=mzo\Aos
% pcolor(x,x,z), shading interp xgnt)&7T
% axis square, colorbar Xn9TQ"[4
% title('Zernike function Z_5^1(r,\theta)')
O0';j!?X
% rh?!f(_@
% Example 2: &*/8Ojv)9
% dX,2cK[aG
% % Display the first 10 Zernike functions 7bCTR2e\@w
% x = -1:0.01:1; ``$At ,m
% [X,Y] = meshgrid(x,x); ko$bCG%
% [theta,r] = cart2pol(X,Y); a~DR$^m
% idx = r<=1; N:\I]M
% z = nan(size(X)); K zKHC
% n = [0 1 1 2 2 2 3 3 3 3]; ID E3>D
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; _(TavL>l
=
% Nplot = [4 10 12 16 18 20 22 24 26 28]; P%g[!9
'
% y = zernfun(n,m,r(idx),theta(idx)); fp|b@
% figure('Units','normalized') 8'@pX<
% for k = 1:10 +#A>[,U
% z(idx) = y(:,k); -Q<3Q_
% subplot(4,7,Nplot(k)) k2_ "
% pcolor(x,x,z), shading interp Vq -!1.v3
% set(gca,'XTick',[],'YTick',[]) p4bQCI
% axis square Q!zg=_z-
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) uhbo/7d'7
% end +_3>T''_
% :p%nQF,*f
% See also ZERNPOL, ZERNFUN2. U[u9RB
>-c ;
% Paul Fricker 11/13/2006 IM7k\
w%GEOIj}
FzXVNUMP
% Check and prepare the inputs: =YR/X@&
% ----------------------------- 2_
<
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) b6'%nR*f
error('zernfun:NMvectors','N and M must be vectors.') A d=NJhzl
end 4?jXbC k~x
(|Y[5O)
if length(n)~=length(m) (S&X??jfB5
error('zernfun:NMlength','N and M must be the same length.') ~^UQw?;
end ?r"m*fY%
6,ylkf3
n = n(:); %1 9TJn%J$
m = m(:); #(?EL@5
if any(mod(n-m,2)) j$4Tot
error('zernfun:NMmultiplesof2', ... +D&W!m
'All N and M must differ by multiples of 2 (including 0).') Z6
E-FuO
end #E3Y;
b%v
<2HI. @^
if any(m>n) G sm5L<rx
error('zernfun:MlessthanN', ... DO'$J9;*
'Each M must be less than or equal to its corresponding N.') -^Baxkq(YM
end LZqx6~]O
>t.2!Z_RQ
if any( r>1 | r<0 ) ]/XNfb
error('zernfun:Rlessthan1','All R must be between 0 and 1.') vClD)Ar
end =q.2S;?
& ;ie+/B
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .36z
error('zernfun:RTHvector','R and THETA must be vectors.') g|a2z_R
end .ZJt
~3dBt@%0
r = r(:); ff**) Xdh
theta = theta(:); QHUoAa`6v
length_r = length(r); \h~;n)FI
if length_r~=length(theta) N1jj\.nB
error('zernfun:RTHlength', ... 3+;]dqZ
'The number of R- and THETA-values must be equal.') 79AOvh
end LNmsv U
'Q Ff 7A
% Check normalization: S^HuQe!#
% -------------------- oC#@9>+@+"
if nargin==5 && ischar(nflag) '-p<E"#4Z
isnorm = strcmpi(nflag,'norm'); L5Rj;qhi
if ~isnorm (y7U}Sb'
error('zernfun:normalization','Unrecognized normalization flag.') CaX&T2(
end S\JV96
else #(FG+Bk
isnorm = false; n a])bBn
end yHT8I
&]iX>m.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /m%i"kki
% Compute the Zernike Polynomials J 6U3}SO=y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,~w)~fMb8
*`YR-+0
% Determine the required powers of r: '9>z4G*Td
% ----------------------------------- f7mP4[+dS
m_abs = abs(m); sNZ{OD+
rpowers = []; v?F~fRH
for j = 1:length(n) K]yCt~A$
rpowers = [rpowers m_abs(j):2:n(j)]; V)V\M6
end 0&E{[~Pv
rpowers = unique(rpowers); ]e@'9`G-'
sc\4.Ux%Q
% Pre-compute the values of r raised to the required powers, R@-rc|FunJ
% and compile them in a matrix: OWT5Bjl
% ----------------------------- zpx
if rpowers(1)==0 -&oJ@Aa
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :jKDM
rpowern = cat(2,rpowern{:}); Z.Z+cFi
rpowern = [ones(length_r,1) rpowern]; h1} x2
else m!L&_Z|j
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); T},Nqt<
rpowern = cat(2,rpowern{:}); {.v-
end 73OFFKbsk
C
vfm ,BL
% Compute the values of the polynomials: z@iu$DZ
% -------------------------------------- y[BUWas(
y = zeros(length_r,length(n)); @2cGx/1#
for j = 1:length(n) D6@c&
s = 0:(n(j)-m_abs(j))/2; (Vnv"= (
pows = n(j):-2:m_abs(j); N
'2Nv
for k = length(s):-1:1 V\r!H>
p = (1-2*mod(s(k),2))* ... @U08v_,
prod(2:(n(j)-s(k)))/ ... CKeT%3
prod(2:s(k))/ ... #9uNJla
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {>'GE16x
prod(2:((n(j)+m_abs(j))/2-s(k))); wK0vKdi
idx = (pows(k)==rpowers); me"}1REa
y(:,j) = y(:,j) + p*rpowern(:,idx); 2'UWPZgE
end |{]W (/
-\xNuU
if isnorm %H Pwu &
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); -}Vnr\f
end bim}{wMb
end U[1Rw6
% END: Compute the Zernike Polynomials tJ`tXO
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9}LcJ
;5QdT{$H
% Compute the Zernike functions: Y3^UJe7E
% ------------------------------ 1S
.~Vh0Q,
idx_pos = m>0; 1{{z[w#
idx_neg = m<0; y5gTd_-
tGv5pe*r
z = y; CR3<9=Lv>
if any(idx_pos) n?'I&0>M
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;zk& 7P0
end ?Co)7}N
if any(idx_neg) IJ >qs8
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ^ z!g3
end 1$nlRQi
W
u?A} fH
% EOF zernfun