非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ]^yV`Z8
function z = zernfun(n,m,r,theta,nflag) y+
6`|
h_
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. q:`77
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N T@K7DkP@
% and angular frequency M, evaluated at positions (R,THETA) on the z9k*1:
% unit circle. N is a vector of positive integers (including 0), and tsTR2+GZS
% M is a vector with the same number of elements as N. Each element pY{; Yn&t
% k of M must be a positive integer, with possible values M(k) = -N(k) PtVo7zOye
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, N5q}::Odc
% and THETA is a vector of angles. R and THETA must have the same ou<S)_|Iu
% length. The output Z is a matrix with one column for every (N,M)
RL7C
YB
% pair, and one row for every (R,THETA) pair. o9KyAP$2
% %|: ;Ti
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike IZ4W_NN
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), f
pv= P
% with delta(m,0) the Kronecker delta, is chosen so that the integral @!z$Sp=
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, k%EWkM)?
% and theta=0 to theta=2*pi) is unity. For the non-normalized ntrY =Y
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7.wR"1p#
% #d}0}7ue
% The Zernike functions are an orthogonal basis on the unit circle. CTh1+&Pa
% They are used in disciplines such as astronomy, optics, and c&E*KfOG
% optometry to describe functions on a circular domain. l 8O"w&
% *A~($ZtL
% The following table lists the first 15 Zernike functions. i&A{L}eCr:
% 2x-'>i_|g
% n m Zernike function Normalization l?3vNa FeR
% -------------------------------------------------- :[y]p7;{f
% 0 0 1 1 a(PjcQ4dY
% 1 1 r * cos(theta) 2 HBt|}uZ?6i
% 1 -1 r * sin(theta) 2 ?ada>"~GR_
% 2 -2 r^2 * cos(2*theta) sqrt(6) ,bB( 24LD
% 2 0 (2*r^2 - 1) sqrt(3) lTa1pp
Zw
% 2 2 r^2 * sin(2*theta) sqrt(6) R(M}0JRm
% 3 -3 r^3 * cos(3*theta) sqrt(8) Hnfvo*6d.e
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Ivz+Jjw
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) GwgFi@itN
% 3 3 r^3 * sin(3*theta) sqrt(8) _oQtk^fp
% 4 -4 r^4 * cos(4*theta) sqrt(10) [Xxw]C6\>(
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #^5a\XJb
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Cr'
!"F
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T&o,I
% 4 4 r^4 * sin(4*theta) sqrt(10) pBlRd{#fL
% -------------------------------------------------- %)zk..K{l
% 17e=GL
% Example 1: xCR;
K]!
% \\Y,?x_0T
% % Display the Zernike function Z(n=5,m=1) zt7_r`#z
% x = -1:0.01:1; Bj;\mUsk
% [X,Y] = meshgrid(x,x); Vh 2Bz
% [theta,r] = cart2pol(X,Y); /yLzDCKn
% idx = r<=1; 3CA|5A.Pa
% z = nan(size(X)); f&6w;T=
% z(idx) = zernfun(5,1,r(idx),theta(idx)); J$1j-\KS
% figure " <<A
% pcolor(x,x,z), shading interp mG0L !5
% axis square, colorbar =hJfL}&O3
% title('Zernike function Z_5^1(r,\theta)') `-~`<#E[
% Bx+d3
% Example 2: Z+Kv+GmqH
% Q}WL/X5
% % Display the first 10 Zernike functions 5i^ `vmK
% x = -1:0.01:1; [m~b[ZwES
% [X,Y] = meshgrid(x,x); ^Y$QR]
% [theta,r] = cart2pol(X,Y); V@B7P{gH
% idx = r<=1; f_oq1 W)9
% z = nan(size(X)); S
<2}8D
% n = [0 1 1 2 2 2 3 3 3 3]; uK"^*NEC';
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 66/Z\H^d
% Nplot = [4 10 12 16 18 20 22 24 26 28]; I|H,)!Z
% y = zernfun(n,m,r(idx),theta(idx)); D0f*eSXE{
% figure('Units','normalized') ,oBlJvm
% for k = 1:10 OWqrD@
% z(idx) = y(:,k); B,4q>KQA
% subplot(4,7,Nplot(k)) 5(423"(y
% pcolor(x,x,z), shading interp k69kv9v@J
% set(gca,'XTick',[],'YTick',[]) :lNg:r$4
% axis square cvhlRI%6
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) g8KY`MBnC&
% end }6<)yW}U
% >J.Qm0TY(
% See also ZERNPOL, ZERNFUN2. n;%y
w2k<)3 g~
% Paul Fricker 11/13/2006 Dzo{PstM%
Y=9qJ`q
hiAxh
Y
% Check and prepare the inputs: hXNH"0VCV
% ----------------------------- vuXS/ d
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3u*82s\8T
error('zernfun:NMvectors','N and M must be vectors.') aQga3;S!
end 4ffU;6~l'
-H`\?
R
if length(n)~=length(m) `n6/ A)
error('zernfun:NMlength','N and M must be the same length.') 9WOu8Ia
end Np$z%ewK.
&&&9
n = n(:); l"kxr96
m = m(:); c&
3#-DNI
if any(mod(n-m,2)) UkZ\cc}aC/
error('zernfun:NMmultiplesof2', ... R'L?Xn}3
'All N and M must differ by multiples of 2 (including 0).') '5AvT:
^u
end ZBF1rx?
k5wi'
if any(m>n) GYd]5`ri
error('zernfun:MlessthanN', ... ~> PgJ^G
'Each M must be less than or equal to its corresponding N.') R+d<
fe
end 8-ZUS|7B
jM]d'E?ZLA
if any( r>1 | r<0 ) RE 9nU%!
error('zernfun:Rlessthan1','All R must be between 0 and 1.') &-=K:;x
end *o!l/>4g
$6#
lTYN~
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Vg{Zv4+t
error('zernfun:RTHvector','R and THETA must be vectors.') ;@9e\!%
end +>4^mE" \
D;jK/2
r = r(:); sXiv,
theta = theta(:); l0Y?v 4
length_r = length(r); f|#8qiUS
if length_r~=length(theta) tfA}`*$s
error('zernfun:RTHlength', ... 1Fs-0)s8
'The number of R- and THETA-values must be equal.') Ssf+b!e]
end z{|LQt6q
9KyZEH;pY
% Check normalization: 'l|R5
% -------------------- -6`;},Yr
if nargin==5 && ischar(nflag) W^k,Pmopy
isnorm = strcmpi(nflag,'norm'); L7}i
q0
if ~isnorm ]-:1se
error('zernfun:normalization','Unrecognized normalization flag.') N
xFUO0O3
end 1[s0Lz
else g_vm&~U/'
isnorm = false; O#:&*Mv
end \_9rr6^"
f`?0WJ(M
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !R6ApB4ZI
% Compute the Zernike Polynomials G mA!Mo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w12}Rn8
;Xu22fKh
% Determine the required powers of r: t8/%Dgu
% ----------------------------------- krjN7&
m_abs = abs(m); Xu#:Fe}:
rpowers = []; /zT`Y=1
for j = 1:length(n) @1bH}QS
rpowers = [rpowers m_abs(j):2:n(j)]; 8_a3'o%5
end JDA]t&D!v
rpowers = unique(rpowers); 2m" _z
{cR=N~_EO
% Pre-compute the values of r raised to the required powers, B |&F%P0:
% and compile them in a matrix: \[ M_\&GC
% ----------------------------- 5un^yRMB-
if rpowers(1)==0 c`jDW S
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :u/mTZDi
rpowern = cat(2,rpowern{:}); b#a@rh
rpowern = [ones(length_r,1) rpowern]; 1
i3k
else q@ZlJ3%l,
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); DP*@dFU"
rpowern = cat(2,rpowern{:}); vq>l>as9O
end .S7:;%qL6
8+&JQ"UaB
% Compute the values of the polynomials: opD-vDa h
% -------------------------------------- 5)M2r!\
y = zeros(length_r,length(n)); >1ZJ{se
for j = 1:length(n) g5Td("&n
s = 0:(n(j)-m_abs(j))/2; 3sbK7,4
pows = n(j):-2:m_abs(j); n8u*JeN
for k = length(s):-1:1 3?`"
p = (1-2*mod(s(k),2))* ...
;:OsSq&
prod(2:(n(j)-s(k)))/ ... O('Nn]wo~9
prod(2:s(k))/ ... pbLGe'
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... "U8S81'
prod(2:((n(j)+m_abs(j))/2-s(k))); ; )llt
G
idx = (pows(k)==rpowers); &{z<kmc$6
y(:,j) = y(:,j) + p*rpowern(:,idx);
zF: j
end H;S%Y`V
*7RvHHf
if isnorm l r~gG3
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); @;Y~frT
end o`6|ba
end cj
g.lzYH
% END: Compute the Zernike Polynomials Vz"u>BP3~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /;oqf4MF
8\Hr5FqB(
% Compute the Zernike functions: /!T> b:0
% ------------------------------ Z<"K_bj
idx_pos = m>0; Qf@iU%G
idx_neg = m<0; c\.P/~
M_|> kp
z = y; Ns=AjhLc z
if any(idx_pos) ,}J_:\j
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); gQouOjfP
end ; Lql_1
if any(idx_neg) \ZH&LPAY
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); b$-e\XB!
end Tlodn7%",
~uj;qq
% EOF zernfun