非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 NugJjd56x
function z = zernfun(n,m,r,theta,nflag) ]0`[L<_r
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. @]2cL
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N kkzXv`+
% and angular frequency M, evaluated at positions (R,THETA) on the 8|J%IE
% unit circle. N is a vector of positive integers (including 0), and 9k$uo_i'
% M is a vector with the same number of elements as N. Each element +A:}5{
% k of M must be a positive integer, with possible values M(k) = -N(k) i uN8gHx
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 2V~Yb1P
% and THETA is a vector of angles. R and THETA must have the same xX|-5cM;
% length. The output Z is a matrix with one column for every (N,M) c*ytUI*
% pair, and one row for every (R,THETA) pair. {ifYr(|p`
% i$%V)pH~F
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3}N:oJI$z
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _oLK"*
[#
% with delta(m,0) the Kronecker delta, is chosen so that the integral M4DRG%21
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, W6\s@)b;
% and theta=0 to theta=2*pi) is unity. For the non-normalized B*?v`6
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 3J:!8Gmk
% kM9E)uT>(<
% The Zernike functions are an orthogonal basis on the unit circle. 7J')o^MG
% They are used in disciplines such as astronomy, optics, and v$,9l+p/
% optometry to describe functions on a circular domain. ^l iyWl
% S B'.
% The following table lists the first 15 Zernike functions. Ad`;O+/;
% w>m/c1
% n m Zernike function Normalization H"n"Q:Yp
% -------------------------------------------------- A4SM@ry
% 0 0 1 1 Yoaz|7LS
% 1 1 r * cos(theta) 2 hd^?svID
% 1 -1 r * sin(theta) 2 Sc*p7o: A
% 2 -2 r^2 * cos(2*theta) sqrt(6) IS8ppu&E
% 2 0 (2*r^2 - 1) sqrt(3) ea B-u
% 2 2 r^2 * sin(2*theta) sqrt(6) ]54V9l:
% 3 -3 r^3 * cos(3*theta) sqrt(8) mNuv>GAb
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Ct.Q)p-wn
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) SM@1<OCc
% 3 3 r^3 * sin(3*theta) sqrt(8) -5E%f|U
% 4 -4 r^4 * cos(4*theta) sqrt(10) YZmD:P
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5[;p<GqGN
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) rL_AqSGAK1
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]Oe#S"-Oo
% 4 4 r^4 * sin(4*theta) sqrt(10) Z !hDTT
% -------------------------------------------------- kOkgsQQ
% Uu3[Cf=C
% Example 1: ZT|E1[Q
% !O $EVl
% % Display the Zernike function Z(n=5,m=1) X,gXgx P\
% x = -1:0.01:1; *S<>_R 8
% [X,Y] = meshgrid(x,x); [kn`~hI
% [theta,r] = cart2pol(X,Y); C96|T>bk
% idx = r<=1; -6 DfM,
% z = nan(size(X)); Z*kg= hs^
% z(idx) = zernfun(5,1,r(idx),theta(idx)); w3B*%x)
% figure iD{;!dUZ
% pcolor(x,x,z), shading interp UT>\u
% axis square, colorbar PUucYc
% title('Zernike function Z_5^1(r,\theta)')
69CH W &
% 2MJ0[9
% Example 2: 8$@gAlI^
% B Q".$(c
q
% % Display the first 10 Zernike functions ))AjX
% x = -1:0.01:1; whRc YnJ
% [X,Y] = meshgrid(x,x); y" P$:l
% [theta,r] = cart2pol(X,Y); tl0_as
% idx = r<=1; 6g7 X1C
% z = nan(size(X)); (R Ttz
% n = [0 1 1 2 2 2 3 3 3 3]; ;m7$U
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; x'n J_0
% Nplot = [4 10 12 16 18 20 22 24 26 28];
@(oz`|*
% y = zernfun(n,m,r(idx),theta(idx)); "-N%`UA
% figure('Units','normalized') Tb~(?nY5
% for k = 1:10 !U*i13
% z(idx) = y(:,k); VNA VdP
% subplot(4,7,Nplot(k)) nh,N(t9
% pcolor(x,x,z), shading interp aS62S9nwX
% set(gca,'XTick',[],'YTick',[]) &]uhPx/
% axis square [@.%6aD
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) whxE[Xnv
% end &OWiA;e?f
% \e ( h6,@
% See also ZERNPOL, ZERNFUN2. |W{z,e01x
iB[%5i-
% Paul Fricker 11/13/2006 Wh 8fC(BE
/sC$;l
F)
< f8F
% Check and prepare the inputs: [4sbOl5yZ
% ----------------------------- 2hu;N
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @cSz!E}
error('zernfun:NMvectors','N and M must be vectors.') V,{ydxfB
end d;)Im
"
[o\O^d
if length(n)~=length(m) ]\*g/QV
error('zernfun:NMlength','N and M must be the same length.') _s<eqCBV
end m
{wMzsQ
Bd)Qz(>rw
n = n(:); Q4q3M=0
m = m(:); #OH# &{H
if any(mod(n-m,2)) jjEkz 5
error('zernfun:NMmultiplesof2', ... \jZvP`.2
'All N and M must differ by multiples of 2 (including 0).') (g4.bbEm
end 9C3q4.$D
>8o RO
if any(m>n) 9LzQp`In
error('zernfun:MlessthanN', ... R:Z{,R+
'Each M must be less than or equal to its corresponding N.') wD}[XE?S
end VO[s:e9L
uu]<R@!J
if any( r>1 | r<0 ) !<@k\~9^D
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ="<+^$7:k
end gmy_ZVU'
V+cHL
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~h tV*R
error('zernfun:RTHvector','R and THETA must be vectors.') Yb6(KT
end pH'#v]"
Y7]N.G3,]
r = r(:); Bk~WHg>@G
theta = theta(:); Ah)_mxK
length_r = length(r); )m
\}ITf
if length_r~=length(theta) X=mzo\Aos
error('zernfun:RTHlength', ... xgnt)&7T
'The number of R- and THETA-values must be equal.') Xn9TQ"[4
end 8%>
Ls
rh?!f(_@
% Check normalization: &*/8Ojv)9
% -------------------- dX,2cK[aG
if nargin==5 && ischar(nflag) 7bCTR2e\@w
isnorm = strcmpi(nflag,'norm'); ``$At ,m
if ~isnorm ko$bCG%
error('zernfun:normalization','Unrecognized normalization flag.') a~DR$^m
end N:\I]M
else ! E#XmYhX=
isnorm = false; j*rra
end Tg)Fr)
)9{?C4NQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <Y9((QSM4
% Compute the Zernike Polynomials f[!N]*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %}x/fq
WDWb7
% Determine the required powers of r: ?_(0cVi
% ----------------------------------- z?Hvh
m_abs = abs(m); Vq -!1.v3
rpowers = []; p4bQCI
for j = 1:length(n) wVP{R3
rpowers = [rpowers m_abs(j):2:n(j)]; Fpzps!(;=
end _t'Kj\
rpowers = unique(rpowers); n!~{4
uUW
yf2U-s
% Pre-compute the values of r raised to the required powers, M)!8`]
% and compile them in a matrix: =YE"6iU
% ----------------------------- cRDjpc]
if rpowers(1)==0 p&_Kb\}U
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); S%R:GZEf_
rpowern = cat(2,rpowern{:}); VSc;}LH
rpowern = [ones(length_r,1) rpowern]; "=MRzSke3
else .3Jggp
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Z; r}Gm
rpowern = cat(2,rpowern{:}); xoA\^AA
end yOxJx7uD
#K yb9Qg
% Compute the values of the polynomials: w*e O9k
% -------------------------------------- k?o(j/
y = zeros(length_r,length(n)); g0 \c
for j = 1:length(n) ZUVk~X3
s = 0:(n(j)-m_abs(j))/2; APsd^J
pows = n(j):-2:m_abs(j); w(]Q`
for k = length(s):-1:1 9\0
p = (1-2*mod(s(k),2))* ... %TyR8
%
prod(2:(n(j)-s(k)))/ ... iL\<G}
I
prod(2:s(k))/ ... 9(dbou
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... w[qWr@
prod(2:((n(j)+m_abs(j))/2-s(k))); gxycw4kz
idx = (pows(k)==rpowers); ^!3Sz1
y(:,j) = y(:,j) + p*rpowern(:,idx); ~raRIh=
end fpwge/w
l
Ztq_* Fl
if isnorm uZ&,tH/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); =mxmJFA
end C%85Aq* 4
end ~T|?!zML
% END: Compute the Zernike Polynomials sF:3|Yy0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
y\B*P
l'fUa
% Compute the Zernike functions: vZ\~+qV,A
% ------------------------------ Ratg!l|'-
idx_pos = m>0; %u-l6<w#R
idx_neg = m<0; *6cP-Vzd
40<ifz[7
z = y; {n2mh%I
if any(idx_pos) M;ac U~J
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); we9R4*j
end 2_6x2Ia4
if any(idx_neg) '=EaZ>=
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )f>s\T
end f*04=R?w7>
V/j+Z1ZW
% EOF zernfun