非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 UNKr
FYl
function z = zernfun(n,m,r,theta,nflag) H6%%n
X
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. V.kRV{43
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N LHgEb9\Q
% and angular frequency M, evaluated at positions (R,THETA) on the ~"#[<d
% unit circle. N is a vector of positive integers (including 0), and ^Y+P(o$HM
% M is a vector with the same number of elements as N. Each element Kv>P+I'|r
% k of M must be a positive integer, with possible values M(k) = -N(k) C.q4rr
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, HD{2nZT
% and THETA is a vector of angles. R and THETA must have the same Ld:U~M-
% length. The output Z is a matrix with one column for every (N,M) H.]rH,8
% pair, and one row for every (R,THETA) pair. ~jn~M_}K
% ).9m6.%Uk
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike gKWsmx!["
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2<8JY4]!]
% with delta(m,0) the Kronecker delta, is chosen so that the integral u40<>A
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, B@v"giJg r
% and theta=0 to theta=2*pi) is unity. For the non-normalized A&/YnJ"
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. UU"'
% `oGL==
% The Zernike functions are an orthogonal basis on the unit circle. c*HWH$kB
% They are used in disciplines such as astronomy, optics, and 1|/]bffg!c
% optometry to describe functions on a circular domain. KO5! (vi@
% ;ax%H @o
% The following table lists the first 15 Zernike functions. S{F'k;x/5
% [BzwQ 4
% n m Zernike function Normalization byetbt(IF
% -------------------------------------------------- )r.4`5Rc
% 0 0 1 1 Ht=h9}x"g
% 1 1 r * cos(theta) 2 E\dJb}"x %
% 1 -1 r * sin(theta) 2 A/w7(
% 2 -2 r^2 * cos(2*theta) sqrt(6) ,"EgYd8-'
% 2 0 (2*r^2 - 1) sqrt(3) 1/%g
VB8
% 2 2 r^2 * sin(2*theta) sqrt(6) lzup! `g
% 3 -3 r^3 * cos(3*theta) sqrt(8) =E10j.r
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 9L9+zs3k
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) T+U,?2nF:
% 3 3 r^3 * sin(3*theta) sqrt(8) @fO[{V
% 4 -4 r^4 * cos(4*theta) sqrt(10) EQ>] ~
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U>=&
2Z2?
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) F>/"If#
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lD\vq 2
% 4 4 r^4 * sin(4*theta) sqrt(10) ud,=O Xq
% -------------------------------------------------- , UiA?7k
% 3}9c0%}F
% Example 1: [/IN820t
% ?A`8c R=)I
% % Display the Zernike function Z(n=5,m=1) l0-zu6iw
% x = -1:0.01:1; 5svM3 #
% [X,Y] = meshgrid(x,x); `37$YdX
% [theta,r] = cart2pol(X,Y); iX\]-_D
% idx = r<=1; :#&Y
% z = nan(size(X)); 0$A7"^]
% z(idx) = zernfun(5,1,r(idx),theta(idx)); A4`3yy{0-
% figure .1#G*A|
% pcolor(x,x,z), shading interp .*W_;F o
% axis square, colorbar *N!>c&8
% title('Zernike function Z_5^1(r,\theta)') 7r,h[9~e
% Qq*Ks
5
% Example 2: )CM3vL {
% (Ceq@eAlT
% % Display the first 10 Zernike functions $:D-dUr1
% x = -1:0.01:1; (Y>|P
% [X,Y] = meshgrid(x,x); $>=?'wr
% [theta,r] = cart2pol(X,Y); B A(PWX`H
% idx = r<=1; O{w'i|
% z = nan(size(X)); "Q<
% n = [0 1 1 2 2 2 3 3 3 3]; k2Y *
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; w:+wx/\
% Nplot = [4 10 12 16 18 20 22 24 26 28]; # )]L3H<
% y = zernfun(n,m,r(idx),theta(idx)); 7;x}W-`iF
% figure('Units','normalized') M:QM*?+)
% for k = 1:10 8^>qzaf
8
% z(idx) = y(:,k); mX&!/U
% subplot(4,7,Nplot(k)) NUp,In_
% pcolor(x,x,z), shading interp oW\kJ>!
% set(gca,'XTick',[],'YTick',[]) Ia!B8$$'RP
% axis square ^DH*\ee
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?&rt)/DV,
% end ;2%8tV$V
% 9w:9XziT
% See also ZERNPOL, ZERNFUN2. ;r.0=Uo9]
NGq@x%T
% Paul Fricker 11/13/2006 (HD8Mm
Tw+V$:$$
$$f89, h
% Check and prepare the inputs: 2SV}mK U
% ----------------------------- b^q8s4(
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %Z]c[V.
error('zernfun:NMvectors','N and M must be vectors.') |O4LR,{G.w
end 3]cW08"c
P'Diie
if length(n)~=length(m) ILyI%DA &
error('zernfun:NMlength','N and M must be the same length.') {Ne5*HFV
end i4s_:%+
Gw1Rp
n = n(:); $3c9iVK~_
m = m(:); q\]"}M8
if any(mod(n-m,2)) S<nf"oy_K
error('zernfun:NMmultiplesof2', ... xN
CU5
'All N and M must differ by multiples of 2 (including 0).') f<;w1sM\
end Y6w7sr_R
=
iXHu
*g
if any(m>n) xixdv{M<FF
error('zernfun:MlessthanN', ... 'Tbdo >y
'Each M must be less than or equal to its corresponding N.') XS oHh-
end N3$%!\~O
V N<omi+4
if any( r>1 | r<0 ) ^<OcbOn;O
error('zernfun:Rlessthan1','All R must be between 0 and 1.') %`)lCK)2
end `% ulorS
U6x$R O!
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) KbTd`AIL
error('zernfun:RTHvector','R and THETA must be vectors.') ,:=g}i
end 7GG:1:2+>
Q@0Zh,l
r = r(:); PL|zm5923
theta = theta(:); Sk7sxy<F'
length_r = length(r); gUWW}*\ U
if length_r~=length(theta) "OWW -m
error('zernfun:RTHlength', ... %yPjPUHy
'The number of R- and THETA-values must be equal.') G5,g$yNs
end qac8zt#2
C
M7gb3gw6
% Check normalization: K'\Jnn
% -------------------- 'dvi@Jx
if nargin==5 && ischar(nflag) Kv~'*A)d
isnorm = strcmpi(nflag,'norm'); Z66h
if ~isnorm 1G<S'd+N
error('zernfun:normalization','Unrecognized normalization flag.') U~I
y),5
end .NSV%I
else FaQz03N\
isnorm = false; aE
2=
end M.3ULt8
{!>'#
F^e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^@HWw@GA
% Compute the Zernike Polynomials 51gSbkVX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UZRN4tru6
Hj97&C{Q^
% Determine the required powers of r: {M
^5w
% ----------------------------------- '_B;e=v`
m_abs = abs(m); >qS2ha
rpowers = []; >UnLq:G
for j = 1:length(n) :j&- Lc
rpowers = [rpowers m_abs(j):2:n(j)]; nq
qqP
end !uW;Ea?
rpowers = unique(rpowers); 8DkZ@}
p\22_m_wd
% Pre-compute the values of r raised to the required powers, *?rO@sQy]
% and compile them in a matrix: "h7Np/ m3
% ----------------------------- {HbSty
if rpowers(1)==0 IC:>60A,]
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ok1-`c P
rpowern = cat(2,rpowern{:}); K1CgM1 v
rpowern = [ones(length_r,1) rpowern]; 45Lzq6
else BG_6$9y
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4w#:?Y
_\[
rpowern = cat(2,rpowern{:}); )(+q~KA}
end U8OVn(qV
95mwDHbA
% Compute the values of the polynomials: {[~dI ~
% -------------------------------------- 6
\}.l
y = zeros(length_r,length(n)); $6]1T>
for j = 1:length(n) :u`gjj$:s
s = 0:(n(j)-m_abs(j))/2; dlH&8
pows = n(j):-2:m_abs(j); :%<'('S|
for k = length(s):-1:1 "#P#;]\ `
p = (1-2*mod(s(k),2))* ... 0-:dzf
prod(2:(n(j)-s(k)))/ ... ?tkl
cYB
prod(2:s(k))/ ... [&sabM`Ul
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... H"c2kno9
prod(2:((n(j)+m_abs(j))/2-s(k))); L KLLBrm:
idx = (pows(k)==rpowers); 49=L9:
y(:,j) = y(:,j) + p*rpowern(:,idx); rN'8,CV
end C9 j{:&
g>QN9v})
if isnorm tuJ{IF
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); L),r\#Y(v
end D< 0))r
end =klfCFwP
% END: Compute the Zernike Polynomials xoQ(GrBY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LKgo(&mY
{7Hc00FM
% Compute the Zernike functions: nd"$gi
% ------------------------------ " ~q~)T1Z
idx_pos = m>0;
@<koL
idx_neg = m<0; |3BxNFe`%
0:$pJtx"
z = y; e4FR)d0x
if any(idx_pos) <B!DwMk;.
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); X/h|;C*9
end ;Irn{O
if any(idx_neg) U+[h^M$U
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); <vt}+uMzXv
end Ro=dgQ0:t
'4}8WYKQ
% EOF zernfun