非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 %XTcP2pRJ
function z = zernfun(n,m,r,theta,nflag) b;GD/UI
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. j'0r'
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 17.x0gW,
% and angular frequency M, evaluated at positions (R,THETA) on the BZv+H=b
% unit circle. N is a vector of positive integers (including 0), and :_kAl? eJ
% M is a vector with the same number of elements as N. Each element N#C1-*[C
% k of M must be a positive integer, with possible values M(k) = -N(k) %\$;(#h
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, *&Lq!rFS
% and THETA is a vector of angles. R and THETA must have the same BV`- =wRC
% length. The output Z is a matrix with one column for every (N,M) x]|+\1
% pair, and one row for every (R,THETA) pair. ]aryV?!6
% sZ<9A Xk-E
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike M$Zo.Bl$(
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), fV:4#j
% with delta(m,0) the Kronecker delta, is chosen so that the integral *i{Y 9f8
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \C^;k%{LV
% and theta=0 to theta=2*pi) is unity. For the non-normalized Wu6<\^A
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. b6(p
% dq1:s1
% The Zernike functions are an orthogonal basis on the unit circle. {<>K]P~wD
% They are used in disciplines such as astronomy, optics, and
qFQ8
% optometry to describe functions on a circular domain. W5L iXM
% &sXRN&Fp
% The following table lists the first 15 Zernike functions. h].~# *
% KInk^`C/H
% n m Zernike function Normalization D}C,![
% -------------------------------------------------- -u!FOD/
% 0 0 1 1 C[!MS5
% 1 1 r * cos(theta) 2 W1B)]IHc
% 1 -1 r * sin(theta) 2 ORXm&z)
% 2 -2 r^2 * cos(2*theta) sqrt(6) ig LMv+{
% 2 0 (2*r^2 - 1) sqrt(3) so$(_W3E,
% 2 2 r^2 * sin(2*theta) sqrt(6) _p-t<ytnh
% 3 -3 r^3 * cos(3*theta) sqrt(8) K$K^=>I"o
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) *=V7@o
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) W|:lVAP.|}
% 3 3 r^3 * sin(3*theta) sqrt(8) me6OPc;:!
% 4 -4 r^4 * cos(4*theta) sqrt(10) C;QAT
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +
b$=[nfG
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) \#-W
<
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 65h @}9,U
% 4 4 r^4 * sin(4*theta) sqrt(10) 5]I| DHmu
% -------------------------------------------------- RB* J=
% U7uKRv9
% Example 1: C98]9
% 'bld,Do6
% % Display the Zernike function Z(n=5,m=1) I+>%uShm
% x = -1:0.01:1; W>VP'vn}
% [X,Y] = meshgrid(x,x); "<_0A f]
% [theta,r] = cart2pol(X,Y); l\M_-:I+4
% idx = r<=1; @_:]J1jw7
% z = nan(size(X)); ?m$a6'2-,J
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 53-v|'9'
% figure ac kqH+'
% pcolor(x,x,z), shading interp "H-"
% axis square, colorbar wn_b[tdxq
% title('Zernike function Z_5^1(r,\theta)') #P]#9Ty:
% >9RD_QG7
% Example 2: c|F[.;cR
% p ~noM/*2r
% % Display the first 10 Zernike functions 6 3`{.yZ*z
% x = -1:0.01:1; o?1;<gs
% [X,Y] = meshgrid(x,x); .s+aZwTMT
% [theta,r] = cart2pol(X,Y); ~%?`P/.o
% idx = r<=1; .q&'&~!_
% z = nan(size(X));
(x^BKnZ
% n = [0 1 1 2 2 2 3 3 3 3]; O+}qQNe<
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; R4ht6Vm3g)
% Nplot = [4 10 12 16 18 20 22 24 26 28]; yaq'Lt`
% y = zernfun(n,m,r(idx),theta(idx)); iyj+:t/
% figure('Units','normalized') $zB[B;-!$
% for k = 1:10 fDG0BNLY
% z(idx) = y(:,k); 1]orUF&_
% subplot(4,7,Nplot(k)) A,r*%&4~
% pcolor(x,x,z), shading interp l;y7]DO
% set(gca,'XTick',[],'YTick',[]) k}
]T;|h]
% axis square hx/N1x
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) K\XH4kic
% end P/EM :
% |t; ~:A
% See also ZERNPOL, ZERNFUN2.
/'31w9
6#IU*
% Paul Fricker 11/13/2006 gX0R)spg
cZ)}LX
DjSbyXvrg
% Check and prepare the inputs: P!"&%d
% ----------------------------- \:'%9 x
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) yHxosxd<*
error('zernfun:NMvectors','N and M must be vectors.') ]4;PR("aU
end @+ atBmt
fN'HE#W1Xa
if length(n)~=length(m) nLV9<M
Zm
error('zernfun:NMlength','N and M must be the same length.') ooUk O
end WVY\&|)$
R(n^)^?
n = n(:); V+I|1{@i0
m = m(:); `7/Y@}n
if any(mod(n-m,2)) H\XP\4#u
error('zernfun:NMmultiplesof2', ... 4)1s M=u
'All N and M must differ by multiples of 2 (including 0).') &QhX1dT+
end i hh/sPi
sZW^!z
if any(m>n) $H+VA@_
error('zernfun:MlessthanN', ... u|4$+QiD
'Each M must be less than or equal to its corresponding N.') %/9
EORdeH
end `'V4PUe
XS$OyW_Q
if any( r>1 | r<0 ) 7O,U?p
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;|UF)QGa2
end 7"8hC
` AY_2>7
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )
ss5m/i7
error('zernfun:RTHvector','R and THETA must be vectors.') i+gQE!
end J/}:x;Y
,_"AT!r
r = r(:); {dmj/6Lc
theta = theta(:); ?s:d[To6
length_r = length(r); PssMTEf
if length_r~=length(theta) c+2FC@q{l
error('zernfun:RTHlength', ... H@ t'~ZO
'The number of R- and THETA-values must be equal.') W"Gkq!3u{
end `X3^fg
H"qOSf{
% Check normalization: yz0zFfiX
% -------------------- Yot?=T};3{
if nargin==5 && ischar(nflag) Uh][@35 p
isnorm = strcmpi(nflag,'norm'); e^O(e
if ~isnorm tO0!5#-VR
error('zernfun:normalization','Unrecognized normalization flag.')
=|9H
end S{Er?0wm.R
else (&!NC[n,
isnorm = false; rD*sl}
end qbv#I;
[ :zO}r:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lGVEpCS}
% Compute the Zernike Polynomials 4fe7U=# ;Y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U*3uq7
bR V+>;L0@
% Determine the required powers of r: !%c'$f/
% ----------------------------------- Ox@sI:CT
m_abs = abs(m); 3\Xbmq8}
rpowers = []; vBog0KD);s
for j = 1:length(n) 7^g&)P
rpowers = [rpowers m_abs(j):2:n(j)]; &B|D;|7H
end {c
(!;U
rpowers = unique(rpowers); CP6LHkM9
v'BZs
% Pre-compute the values of r raised to the required powers, ,u/aT5\_
% and compile them in a matrix: @WI2hHD
% ----------------------------- hiUD]5Kp
if rpowers(1)==0 +=:#wzK@
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;g~TWy^o
rpowern = cat(2,rpowern{:}); 6,9o>zT%H
rpowern = [ones(length_r,1) rpowern]; /IsS;0K%L
else I}t#%/'YA
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `(3/$%
rpowern = cat(2,rpowern{:}); . Z%{'CC
end lIProF0
0lv%`,
% Compute the values of the polynomials: W16,Alf:
% -------------------------------------- LU9A#
y = zeros(length_r,length(n)); 'z$Q rFW
for j = 1:length(n) HvVts\f
s = 0:(n(j)-m_abs(j))/2; CjiVnWSz<
pows = n(j):-2:m_abs(j); u{*SX k
for k = length(s):-1:1 YJo["Q
p = (1-2*mod(s(k),2))* ... phgm0D7
prod(2:(n(j)-s(k)))/ ... VP6ZiQ|
prod(2:s(k))/ ... ,%)6jYHR w
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... yfm^?G|sW
prod(2:((n(j)+m_abs(j))/2-s(k))); ObiT-D?)g
idx = (pows(k)==rpowers); a|?4)
y(:,j) = y(:,j) + p*rpowern(:,idx); h}xeChw]
end m o:D9
lgb?)=
if isnorm d.P\fPSD
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Rb{U+/gq
end O/<K!;(@?
end *q1% IJ
% END: Compute the Zernike Polynomials V#`fs|e;y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _-#'j2
#cCL.p"]
% Compute the Zernike functions: Q_Gi]M9
% ------------------------------ dX)GPC-D7
idx_pos = m>0; X0n~-m"m
idx_neg = m<0; `3hSLR
W]5USFan
z = y; $t6e2=7
if any(idx_pos) R>(@ZM&
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); GO^_=EMR[
end /, ! B2
if any(idx_neg) G^`1]?
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Iwc{R8BV
end r}jGUe}d
n;:rf 7hGY
% EOF zernfun