非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 g
wk\[I`;
function z = zernfun(n,m,r,theta,nflag) V[%r5!83H
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. %j'lWwi
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N L\"$R":3{d
% and angular frequency M, evaluated at positions (R,THETA) on the ~{ HA!C#
% unit circle. N is a vector of positive integers (including 0), and 6rk/74gI,a
% M is a vector with the same number of elements as N. Each element \]^|IViIQ
% k of M must be a positive integer, with possible values M(k) = -N(k) W1#3+
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 4VK5TWg
% and THETA is a vector of angles. R and THETA must have the same Q)v8hNyUmA
% length. The output Z is a matrix with one column for every (N,M) /(Y\ <
% pair, and one row for every (R,THETA) pair. C~
>'pS6%5
% Re=bJ|wo
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike a].Bn#AH!C
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !0cfz5t
% with delta(m,0) the Kronecker delta, is chosen so that the integral WvR}c
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, L&eO?I=,
% and theta=0 to theta=2*pi) is unity. For the non-normalized SN+&'?$WD
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0DN:{dJz
% 4}gwMjU-B
% The Zernike functions are an orthogonal basis on the unit circle. \HR QSfGt
% They are used in disciplines such as astronomy, optics, and p_qH7W
% optometry to describe functions on a circular domain. "5{\0CfS
% "<=^Sm
% The following table lists the first 15 Zernike functions. }(gXlF
% ;DGp7f#9
% n m Zernike function Normalization (|Xf=q,Le
% -------------------------------------------------- rGoB&% pc
% 0 0 1 1 |ek*wo
% 1 1 r * cos(theta) 2 { `-EX
% 1 -1 r * sin(theta) 2 f3nib8B'
% 2 -2 r^2 * cos(2*theta) sqrt(6) sH6srwI
% 2 0 (2*r^2 - 1) sqrt(3) Y5K!DMKY
% 2 2 r^2 * sin(2*theta) sqrt(6) h$lY,7
% 3 -3 r^3 * cos(3*theta) sqrt(8) g-6!+>w*>e
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) CvlAn7r,@
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) )U8F6GIC&}
% 3 3 r^3 * sin(3*theta) sqrt(8) MECR0S9
% 4 -4 r^4 * cos(4*theta) sqrt(10) fz<Y9h=
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m"u 9AOH k
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) /bg8oB4
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |
YvO$4=s
% 4 4 r^4 * sin(4*theta) sqrt(10) GJ!usv u
% -------------------------------------------------- H.'_NCF&;L
% DT_012z
% Example 1: 8amtTM
% T_pE 'U%[
% % Display the Zernike function Z(n=5,m=1) G$ip Wi
% x = -1:0.01:1; ci,o'`Q
% [X,Y] = meshgrid(x,x); N+h|Ffnp
% [theta,r] = cart2pol(X,Y); p_tMl%K
% idx = r<=1; }Dk_gom_
% z = nan(size(X)); NH4EsV]
% z(idx) = zernfun(5,1,r(idx),theta(idx)); b@nbXm]Z
% figure ?jy^WF`
% pcolor(x,x,z), shading interp A9F Z`
% axis square, colorbar BC&Et62*
% title('Zernike function Z_5^1(r,\theta)') )\p@E3Uxf
% }k'8*v}8
% Example 2: \\)3:1X
% &AA u:
% % Display the first 10 Zernike functions _Tev503
% x = -1:0.01:1; 8>
Gp #T
% [X,Y] = meshgrid(x,x); 3vDV
% [theta,r] = cart2pol(X,Y); NeUpl./b
% idx = r<=1; f'*HP%+Y
% z = nan(size(X)); >pz/wTOi
% n = [0 1 1 2 2 2 3 3 3 3]; ;sb0,2YyP
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; lkBab$S)
% Nplot = [4 10 12 16 18 20 22 24 26 28]; IC7n;n9
% y = zernfun(n,m,r(idx),theta(idx)); 6]na#<
% figure('Units','normalized') hnL(~
% for k = 1:10 yU&A[DZQ
% z(idx) = y(:,k); E/Y.f
% subplot(4,7,Nplot(k)) /TS>I8V!
% pcolor(x,x,z), shading interp M`AbH19
% set(gca,'XTick',[],'YTick',[]) WF_G GF{
% axis square H`m|R
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Q-BciBh$
% end foaNB=,
% $
5
% See also ZERNPOL, ZERNFUN2. o"K{^ L~u
Kq{9:G
% Paul Fricker 11/13/2006 cYW F)WAog
[K%Jt
o{m$b2BW
% Check and prepare the inputs: X2Y-TET
% ----------------------------- N(/DC)DJg
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) SC"=M^E
error('zernfun:NMvectors','N and M must be vectors.') \Ui8Sgeei
end liPUK #
]'MLy#9
if length(n)~=length(m) z$H
|8L
error('zernfun:NMlength','N and M must be the same length.') dLG5yx\js
end J1&G1\G|s=
B3e{'14
n = n(:); r!#NFek}
m = m(:); bQEQHqY5
if any(mod(n-m,2)) 7_n@iUG2n
error('zernfun:NMmultiplesof2', ... xs+MvXTC
'All N and M must differ by multiples of 2 (including 0).') cD]{ Nn
end n+j'FfSz
rEz=\yY^j'
if any(m>n) o=4d2V%m
error('zernfun:MlessthanN', ... i$ "B
'Each M must be less than or equal to its corresponding N.') !Vv$
end !&ac}uD^g
EivZI<<a
if any( r>1 | r<0 ) {>>f5o3
error('zernfun:Rlessthan1','All R must be between 0 and 1.') A1>R8Zuhy
end Mryi6X T
qtD3<iWV
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) { ~FYiX
error('zernfun:RTHvector','R and THETA must be vectors.') 8xZN4ck_@
end K%$%9y
UvxJ _
r = r(:); kT!FC0E{
theta = theta(:); 2U)H2%
length_r = length(r); 'C!b($Y
if length_r~=length(theta) ?RA^Y N*9
error('zernfun:RTHlength', ... \P+lb-~\"
'The number of R- and THETA-values must be equal.') )!e-5O49r
end d* 7 Tjs{\
I(
G8cK
% Check normalization: rG}o!I`z
% -------------------- ^1Y0JQ
if nargin==5 && ischar(nflag) ^+Ec}+ Q
isnorm = strcmpi(nflag,'norm'); gNo.&G [
if ~isnorm gBf%9F
error('zernfun:normalization','Unrecognized normalization flag.') 5<Xq7|Jt
end ie=tM'fb
else WdnCRFO?l
isnorm = false; #=q)>+\
end A#f@0W:
Pv+[N{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 39BGwKXb
% Compute the Zernike Polynomials 0".pw; .}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8 U B?X
4-lEo{IIM
% Determine the required powers of r: <