非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^
7)H;$
function z = zernfun(n,m,r,theta,nflag) ]9wTAb
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Sg\+al7
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,WAJ&
'^
% and angular frequency M, evaluated at positions (R,THETA) on the `+0P0(bn
% unit circle. N is a vector of positive integers (including 0), and .5A .[ZY)
% M is a vector with the same number of elements as N. Each element uw@-.N^
% k of M must be a positive integer, with possible values M(k) = -N(k) DD[<J:6
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, &F*eo`o}6
% and THETA is a vector of angles. R and THETA must have the same gTdr
% length. The output Z is a matrix with one column for every (N,M) ~Ds3-#mMy
% pair, and one row for every (R,THETA) pair. xlc2,L;i
% ]v+yeGIK S
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 9j0o)]
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), yEkwdx5!(
% with delta(m,0) the Kronecker delta, is chosen so that the integral \J-D@b;
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, _Y)Wi[
% and theta=0 to theta=2*pi) is unity. For the non-normalized bH%d*
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. E0u&hBd3_
% I(z16wQ
% The Zernike functions are an orthogonal basis on the unit circle. #f_.
% They are used in disciplines such as astronomy, optics, and 3A.lS+P1
% optometry to describe functions on a circular domain. tNYuuC%N
% "cvhx/\1#
% The following table lists the first 15 Zernike functions. z0&Y_Up+5
% +{%)}?F
% n m Zernike function Normalization iUZV-jl2/
% -------------------------------------------------- 0aJcX)
% 0 0 1 1 O]oH}#5b
% 1 1 r * cos(theta) 2 4MCj*ok<
% 1 -1 r * sin(theta) 2 iAt&927
% 2 -2 r^2 * cos(2*theta) sqrt(6) CbOCL~ "
% 2 0 (2*r^2 - 1) sqrt(3) N).'>
% 2 2 r^2 * sin(2*theta) sqrt(6) oA;ZDO06r
% 3 -3 r^3 * cos(3*theta) sqrt(8) K.b:ae^k
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) WfYG#!}x
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) /?V-
% 3 3 r^3 * sin(3*theta) sqrt(8) Q9&H/]"v
% 4 -4 r^4 * cos(4*theta) sqrt(10) ,G[Y< ~Hy
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) FJn.V1
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) gO m8 O,
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) TK0W=&6#A
% 4 4 r^4 * sin(4*theta) sqrt(10) k[y^7,r
% -------------------------------------------------- P#[?Kfi
% bYr*rEcA
% Example 1: :BB=E'293
% hUEA)c
% % Display the Zernike function Z(n=5,m=1) dq0!.gBT2
% x = -1:0.01:1; $KP;9
% [X,Y] = meshgrid(x,x); )^
P Wr^
% [theta,r] = cart2pol(X,Y); HumL(S'm
% idx = r<=1; 1jpft3*x
% z = nan(size(X)); b,>>E^wd!
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 4zZ.v"laVM
% figure BKYyc6iE
% pcolor(x,x,z), shading interp ,vAcri
97
% axis square, colorbar pm[+xM9PB
% title('Zernike function Z_5^1(r,\theta)') \m=k~Cf:f
% vhDtjf/*
% Example 2: }]=@Y/p
% N*)O_Ki
% % Display the first 10 Zernike functions OP\L
% x = -1:0.01:1; wVX2.D'n<
% [X,Y] = meshgrid(x,x); 5=8t<v1Bn
% [theta,r] = cart2pol(X,Y); :#D~j]pP
% idx = r<=1; oVW>PEgB-
% z = nan(size(X)); [2!C^\t
% n = [0 1 1 2 2 2 3 3 3 3]; 69`*u<{PC
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Rr}m(e=
% Nplot = [4 10 12 16 18 20 22 24 26 28]; R@U4Ae{+
% y = zernfun(n,m,r(idx),theta(idx)); |/n
% figure('Units','normalized') g{f7} gTG
% for k = 1:10 uQ7lC~
% z(idx) = y(:,k); pF(6M3>IN
% subplot(4,7,Nplot(k)) B>@l(e)b
% pcolor(x,x,z), shading interp GInw7
% set(gca,'XTick',[],'YTick',[]) 1MmEP
% axis square *]nk{jo2
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) >*Ej2ex
% end Eu%E2A|`I
% UD9JE S,
% See also ZERNPOL, ZERNFUN2. v8n^~=SH
N|3#pHm@
% Paul Fricker 11/13/2006 l=x(
M+b?qw
/Z[HU{4
% Check and prepare the inputs: p7HLSB2Rp
% ----------------------------- Av4(=}M}@
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Y?L>KiM$
error('zernfun:NMvectors','N and M must be vectors.') !Uv>>MCr
end }0iHf'~DH*
$VhY"<
if length(n)~=length(m) ;lfv.-u:<
error('zernfun:NMlength','N and M must be the same length.') y|zIuI-p
end g's!\kr
6YV"H
n = n(:); O%haaL\
m = m(:); %0Qq~J@Lu
if any(mod(n-m,2)) iio-RT?!
error('zernfun:NMmultiplesof2', ... ?7J::}R
'All N and M must differ by multiples of 2 (including 0).') qw>vu7/z
end $\|Q+ 7lQ
4C;y2`C
if any(m>n) NEvNj
error('zernfun:MlessthanN', ... `5rfO6;
'Each M must be less than or equal to its corresponding N.') xLfv:Rp
end z;ku*IV
,eWLig
if any( r>1 | r<0 ) DIJmISk
error('zernfun:Rlessthan1','All R must be between 0 and 1.') X*:,|
end _O;4>
pMAP/..+2
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) sZEa8
error('zernfun:RTHvector','R and THETA must be vectors.') nF<xJs
end D wr 9}Z-]
3s67)n
r = r(:); Ob}XeN(L3
theta = theta(:); pjs4FZ`Pd;
length_r = length(r); !IA\c(c^
if length_r~=length(theta) M'F<1(
error('zernfun:RTHlength', ... &]shBvzl^
'The number of R- and THETA-values must be equal.') /7fd"U$Lh
end 3:xKq4?
F^aD#
% Check normalization: =Y5m% ,Bq
% -------------------- Y*\N{6$2
if nargin==5 && ischar(nflag) 7#NHPn
isnorm = strcmpi(nflag,'norm'); ~*9Ue@
if ~isnorm El: @l%
error('zernfun:normalization','Unrecognized normalization flag.') 1iNMgA
end 9*huO#
else |\/\FK]?]
isnorm = false; r-*6#
"
end ;r&Z?B$
C"%B>e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V|[NL4
% Compute the Zernike Polynomials p>#q* eU5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %u_dxpx
Dln1 R[
% Determine the required powers of r: d3S Me
% ----------------------------------- CC;^J-h/
m_abs = abs(m); \=]`X2Ld
rpowers = []; r4DHALu#)
for j = 1:length(n) VJFFH\!`
rpowers = [rpowers m_abs(j):2:n(j)]; xUCq%r_
end ^8J`*R8CL
rpowers = unique(rpowers); )rt%.`
xI~AZ:m
% Pre-compute the values of r raised to the required powers, nMfR<%r
% and compile them in a matrix: k_ywwkG9lU
% ----------------------------- E*wG5]at
if rpowers(1)==0 +6
=lN[b
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); T93st<F=R
rpowern = cat(2,rpowern{:}); YOj&1ymBZ
rpowern = [ones(length_r,1) rpowern]; odC"#Rb
else \7>*ULP
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^y KkWB*
rpowern = cat(2,rpowern{:}); 9V[}#(f$
end G6}&k[d5%
RA[%8Rh)
% Compute the values of the polynomials: vy{k"W&S
% -------------------------------------- wfpl]d!
y = zeros(length_r,length(n)); 5]upfC6
for j = 1:length(n) w6)Q5H53)
s = 0:(n(j)-m_abs(j))/2; >]xW{71F@
pows = n(j):-2:m_abs(j); rpDBKo
for k = length(s):-1:1 o 9/,@Ri\5
p = (1-2*mod(s(k),2))* ... ('U TjV
prod(2:(n(j)-s(k)))/ ... /<IWdy]$3
prod(2:s(k))/ ... c$^v~lQS
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... W5= j&&|!
prod(2:((n(j)+m_abs(j))/2-s(k))); ;1{=t!z=
idx = (pows(k)==rpowers); QKB+mjMH#x
y(:,j) = y(:,j) + p*rpowern(:,idx); *hJWuMfY,
end UcOP 0_/
\w>Rmf'|
if isnorm UB~-$\.
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :KA)4[#;W
end $/tj<++W
end b;5j awG
% END: Compute the Zernike Polynomials -,T!/E
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wet[f {c
qsbV)c
% Compute the Zernike functions: EU%v
|]
% ------------------------------ s-+-?$K
idx_pos = m>0; C;K+ITlJ
idx_neg = m<0; 4%w<Ekd
vmrs(k "d#
z = y; }r,xx{.u7
if any(idx_pos) OuEcoI K
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); CfP-oFHoQ
end L6fbR-&Lt
if any(idx_neg) 2,`X@N`\
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); qHdUnW
end k'H[aYMA
5N%d Les
% EOF zernfun