非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 CXI%8eFXe$
function z = zernfun(n,m,r,theta,nflag) |\#~
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. \LN!k-c
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _l{`lQ}
% and angular frequency M, evaluated at positions (R,THETA) on the &U.U<
% unit circle. N is a vector of positive integers (including 0), and ?RP&XrD
% M is a vector with the same number of elements as N. Each element -Lo3@:2i
% k of M must be a positive integer, with possible values M(k) = -N(k) !_yWe
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, |~+i=y
% and THETA is a vector of angles. R and THETA must have the same R[qfG!
"
% length. The output Z is a matrix with one column for every (N,M) uK6'TJ
% pair, and one row for every (R,THETA) pair. 43'!<[?x
% 3Fu5,H EJ
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fTq/9=Rq4
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )z".lw
% with delta(m,0) the Kronecker delta, is chosen so that the integral V_x8
Q+~?
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, SsY:gp_
% and theta=0 to theta=2*pi) is unity. For the non-normalized h /iL/Q=
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. <n;9IU
% pO_$ 8=G+
% The Zernike functions are an orthogonal basis on the unit circle. J,W<vrKOcN
% They are used in disciplines such as astronomy, optics, and z^FJ
% optometry to describe functions on a circular domain. )/p=ZH0[
% iaV%*
% The following table lists the first 15 Zernike functions. OsrHA
% ^b;3Jj
% n m Zernike function Normalization u3G.xlHH[
% -------------------------------------------------- +jPJv[W
% 0 0 1 1 X-_ $jKfM
% 1 1 r * cos(theta) 2 _+aMP=H
% 1 -1 r * sin(theta) 2 -$A
>b8
% 2 -2 r^2 * cos(2*theta) sqrt(6) +I<^w)
% 2 0 (2*r^2 - 1) sqrt(3) ]4X08Cm^
% 2 2 r^2 * sin(2*theta) sqrt(6) @'>Ul!.]
% 3 -3 r^3 * cos(3*theta) sqrt(8) u]766<Z
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Hz>_tA"^T
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) !q8"Q t
% 3 3 r^3 * sin(3*theta) sqrt(8) <K:L.c!
% 4 -4 r^4 * cos(4*theta) sqrt(10) !>8/Xz~-
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gj@>9
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 1_B;r9x
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f;`7}7C
% 4 4 r^4 * sin(4*theta) sqrt(10) Fy#7<Hp
% -------------------------------------------------- k^{}p8;3
% uBUT84i
% Example 1: @UK%l
:L
% W[G5+*i
% % Display the Zernike function Z(n=5,m=1) nw
% x = -1:0.01:1; ]}Jb'(gMO4
% [X,Y] = meshgrid(x,x); \gW6E^
% [theta,r] = cart2pol(X,Y); O4g2s8k
% idx = r<=1; :5#iVa#<
% z = nan(size(X)); BGrV,h^
% z(idx) = zernfun(5,1,r(idx),theta(idx)); p6&6^v\
% figure CxV$_J
% pcolor(x,x,z), shading interp Maw$^Tz,
% axis square, colorbar +UX~TT:
% title('Zernike function Z_5^1(r,\theta)') +=Y$v2BZA3
% -%_v b6u
% Example 2: 3n)\D<f]#
% #PGpB5vnaA
% % Display the first 10 Zernike functions ?~9o2[
% x = -1:0.01:1; AT-
% [X,Y] = meshgrid(x,x); Fp(-&,L0fc
% [theta,r] = cart2pol(X,Y); l|S_10x5
% idx = r<=1; Ru~;awV?
% z = nan(size(X)); vWZ?*0^
% n = [0 1 1 2 2 2 3 3 3 3]; nhLw&V3y
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; @M)"
% Nplot = [4 10 12 16 18 20 22 24 26 28]; QR\2%}9b
% y = zernfun(n,m,r(idx),theta(idx)); 8=,?Bh".
% figure('Units','normalized') ~(-df>
% for k = 1:10 +ZJ1> n
% z(idx) = y(:,k); [l*;+N+
% subplot(4,7,Nplot(k)) iTVepYv4m
% pcolor(x,x,z), shading interp y(yBRR
% set(gca,'XTick',[],'YTick',[]) _X~xfmU
% axis square c{{RP6o/j=
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Y?4N%c_;
% end fU>4Ip1?y/
% -1%AM40j
% See also ZERNPOL, ZERNFUN2. wqF_hs(O
P0l.sVqL
% Paul Fricker 11/13/2006 GDwijZw
CPLsSv5
3Lm7{s?=Z-
% Check and prepare the inputs: |o#pd\
% ----------------------------- @0D
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) a\xf\$Ym
error('zernfun:NMvectors','N and M must be vectors.') yaK4% k
end {S"! c.
t $u.
if length(n)~=length(m) `##^@N<P
error('zernfun:NMlength','N and M must be the same length.') I^?hVH
end )E}eK-Yu
,h},jkY4
n = n(:); roNs~]6
m = m(:); rds0EZ4 W
if any(mod(n-m,2)) 4Ep6vm X
error('zernfun:NMmultiplesof2', ... dG%{&W9
'All N and M must differ by multiples of 2 (including 0).') ?Vc/mO2X
end t|v_[Za}Z
{KqERS&
g
if any(m>n) Jzj>=jWX@
error('zernfun:MlessthanN', ... +|.6xC7U
'Each M must be less than or equal to its corresponding N.') g]PC6xr38
end 6G;t:[H G
:Y[?@/m4
if any( r>1 | r<0 ) <*+Y]=
error('zernfun:Rlessthan1','All R must be between 0 and 1.') VcORRUp
end %!V =noo
?dQ#%06mn
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) PHg(O:3WG
error('zernfun:RTHvector','R and THETA must be vectors.') gacE?bW'
end 7DB!s@"
X~rHNRIU
r = r(:); PaBqv]
theta = theta(:); F=V_ACU
length_r = length(r); m8z414o
if length_r~=length(theta) FfibR\dhY
error('zernfun:RTHlength', ... T#=&oy7
'The number of R- and THETA-values must be equal.') `YK%I8
end V w5@)l*f
.!Q?TSQ+{!
% Check normalization: `E5vO1Pl
% -------------------- FSyeDC^@
if nargin==5 && ischar(nflag) e%v0EJ},
isnorm = strcmpi(nflag,'norm'); lKLb\F%
if ~isnorm V6tUijz
error('zernfun:normalization','Unrecognized normalization flag.') #yR@.&P
end )Zit6I
else 8@BN6
isnorm = false; S3Sn_zqG
end F!&_
9 p`|~^X
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d<>jhp5el
% Compute the Zernike Polynomials $6yr:2Xvt
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hG>3y\!#
RiCzH
% Determine the required powers of r: XFcIBWS
% ----------------------------------- E@S5|CM
m_abs = abs(m); :~B'6b
rpowers = []; b`X"yg+
for j = 1:length(n) \I~9%QJ>
rpowers = [rpowers m_abs(j):2:n(j)]; mx")cGGQ
end KI8Q
=*
rpowers = unique(rpowers); m|cT)-
.="[In'
% Pre-compute the values of r raised to the required powers, D3kx&AR
% and compile them in a matrix: 6)Dp2
% ----------------------------- q)KLf\
if rpowers(1)==0 I
DtGtkF
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); x\!Uk!fM
rpowern = cat(2,rpowern{:}); .5YIf~!59
rpowern = [ones(length_r,1) rpowern]; t 4tXLI;'
else G~|Z(}H
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #e(P~'A0
rpowern = cat(2,rpowern{:}); X~5kgq0"
end h?2 :'Vu]
T0Zv.
% Compute the values of the polynomials: A]CO
Ysc
% -------------------------------------- ]Qb85;0)
y = zeros(length_r,length(n)); -~
5|_G2Y"
for j = 1:length(n) F!qt#Sw!\
s = 0:(n(j)-m_abs(j))/2; aBx8wl*Vm
pows = n(j):-2:m_abs(j); YF(TG]?6
for k = length(s):-1:1 ]aVFWzey
p = (1-2*mod(s(k),2))* ... )a'c_ 2[
prod(2:(n(j)-s(k)))/ ... UkV{4*E
prod(2:s(k))/ ... D_4UM#Tw
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~LuR)T=%es
prod(2:((n(j)+m_abs(j))/2-s(k))); pCm |t!,
idx = (pows(k)==rpowers); =lqBRut
y(:,j) = y(:,j) + p*rpowern(:,idx); =/]d\JSp
end 3~Vo]wv
SUQk0 (M
if isnorm *1fZcw'C.
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); qX?k]m
end v3{[rK}
end Z )f\^
% END: Compute the Zernike Polynomials fb||q-E
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !O~5<tA[#1
V=|X=:fuih
% Compute the Zernike functions: @(_M\>!%M
% ------------------------------ :6Oh ?y@
idx_pos = m>0; =2yg:D
idx_neg = m<0; drZ1D s
".R5K ?
z = y; d9n{jv|
if any(idx_pos) EO[UezuU
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); p|b&hgA
end M&5;Qeoiv
if any(idx_neg) ZT;:Hxv0N
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 7iJ=~po:o
end NFQR
\x_fP;ma=_
% EOF zernfun