非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 BOR$R}q
function z = zernfun(n,m,r,theta,nflag) [s\8@5?E
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 63_#*6Pv28
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %Y0BPTt$
% and angular frequency M, evaluated at positions (R,THETA) on the =cb!2%?}
% unit circle. N is a vector of positive integers (including 0), and dtTfV.y4w
% M is a vector with the same number of elements as N. Each element LAM{
,?~
% k of M must be a positive integer, with possible values M(k) = -N(k) @o*~\E<T
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, N 3O!8A_
% and THETA is a vector of angles. R and THETA must have the same It/hXND`
% length. The output Z is a matrix with one column for every (N,M) TQ:e!
32
% pair, and one row for every (R,THETA) pair. {T,}]oX
% ZXkrFA |
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =R 4]Kf
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {O).!
% with delta(m,0) the Kronecker delta, is chosen so that the integral kP/<S<h,g
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, GVu[X?q@|
% and theta=0 to theta=2*pi) is unity. For the non-normalized c`hENPhW
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^c/3!"wK
% v _:KqdmO]
% The Zernike functions are an orthogonal basis on the unit circle. #G?#ot2o
% They are used in disciplines such as astronomy, optics, and 2TQZu3$c
% optometry to describe functions on a circular domain. (3Xs
% KHx;r@{<
% The following table lists the first 15 Zernike functions. v@ qDR|?^
% {QmK4(k?|c
% n m Zernike function Normalization nUVk;0at
% -------------------------------------------------- n%RaEL
% 0 0 1 1 &OE-+z
% 1 1 r * cos(theta) 2 m\CU,9;;(
% 1 -1 r * sin(theta) 2 ,quUGS
% 2 -2 r^2 * cos(2*theta) sqrt(6) ^c9_ F9N
% 2 0 (2*r^2 - 1) sqrt(3) fx4#R(N
% 2 2 r^2 * sin(2*theta) sqrt(6) RJd*(!y
% 3 -3 r^3 * cos(3*theta) sqrt(8) R.l!KIq
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) kka{u[ruA
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) {q+gm1iC
% 3 3 r^3 * sin(3*theta) sqrt(8) 4+nZ4a>LH?
% 4 -4 r^4 * cos(4*theta) sqrt(10) 1:-
M<=J?f
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N?#L{Yt
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 92R,o'#
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C+ Y;D:
% 4 4 r^4 * sin(4*theta) sqrt(10) 4 #KC\C
% -------------------------------------------------- 7J`v#
% -|s%5p|
% Example 1: d(d3@b4Ta
% uHbbPtk
% % Display the Zernike function Z(n=5,m=1) J#4pA{01w
% x = -1:0.01:1; \fSruhD
% [X,Y] = meshgrid(x,x); /X0<2&v
% [theta,r] = cart2pol(X,Y); !>!jLZ0
% idx = r<=1; ;14Q@yrZ0
% z = nan(size(X)); -:Fr($^
% z(idx) = zernfun(5,1,r(idx),theta(idx)); s!yD%zO
% figure 59:kL<;S-
% pcolor(x,x,z), shading interp 7@y}J5,
% axis square, colorbar Xt:j~cVA
% title('Zernike function Z_5^1(r,\theta)') C~K/yLCAi
% )ezkp%I5D
% Example 2: OEzSItAI/[
% '43U v
% % Display the first 10 Zernike functions pNuU{:9 B0
% x = -1:0.01:1; Wnp[8IEU
% [X,Y] = meshgrid(x,x); S:xs[b.ZZ
% [theta,r] = cart2pol(X,Y); J8@+)hn
% idx = r<=1; Dp#27Yzc
% z = nan(size(X)); %iYro8g!,
% n = [0 1 1 2 2 2 3 3 3 3]; *Sbc
8Y
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; p14$XV
% Nplot = [4 10 12 16 18 20 22 24 26 28]; :
4lR`%
% y = zernfun(n,m,r(idx),theta(idx)); A,4}
$-7
% figure('Units','normalized') [AD%8H
% for k = 1:10 'Cz]p~oF
% z(idx) = y(:,k); e$Y7V
% subplot(4,7,Nplot(k)) ?vF8 y;Jh
% pcolor(x,x,z), shading interp x2l}$(7
% set(gca,'XTick',[],'YTick',[]) |pU>^
% axis square FOPmvlA\-<
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 2JeEmG9
% end ~"wnlG-:
% 9WQ'"wyAQ
% See also ZERNPOL, ZERNFUN2. FcOrA3tt
h]|2b0
% Paul Fricker 11/13/2006 (tzAUrC
7<2?NLE8*
,g|ht%"
% Check and prepare the inputs: aK,\e/Oo
% ----------------------------- 1.
Q"<[ M
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h4ghMBo%
error('zernfun:NMvectors','N and M must be vectors.') >%_i#|dE>
end 4zBcq<R7
$m+Pl[s
if length(n)~=length(m) Hb^ovc0
error('zernfun:NMlength','N and M must be the same length.') NX]6RZr-
end eR3MU]zF
cyL|.2,
n = n(:); 9~iDL|0'~
m = m(:); C8:y+pH_U;
if any(mod(n-m,2)) k9\n='OI
error('zernfun:NMmultiplesof2', ... z^%`sUgP
'All N and M must differ by multiples of 2 (including 0).') 1ahb:Mjv
end w%6 L"
y>g`R^^
if any(m>n) 5hAs/i9_
error('zernfun:MlessthanN', ... )hK;27m4
'Each M must be less than or equal to its corresponding N.') n.P $E
end wG22ffaki
%.{xo.`a[
if any( r>1 | r<0 ) aprgThoD
error('zernfun:Rlessthan1','All R must be between 0 and 1.') [ID#PUle
end 8Y;>3zth7
o 7 &q
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) oT}Sh4Wt.
error('zernfun:RTHvector','R and THETA must be vectors.') zfGr1;
end ~@D!E/hZx
O0mQHpi:
r = r(:); zn\$6'"
theta = theta(:); ZQ#AE VI,
length_r = length(r); "fd'~e$S#
if length_r~=length(theta) $[(FCS
error('zernfun:RTHlength', ... @Z9>E+udQ
'The number of R- and THETA-values must be equal.') twPD'X!r
end 42DB0+_wz
(G{2ec:?
% Check normalization: NX<Q}3cC
% -------------------- Vvl8P|x.<
if nargin==5 && ischar(nflag) Vjr}"K$Y
isnorm = strcmpi(nflag,'norm'); o7:"Sl2AD
if ~isnorm .OF2O}
error('zernfun:normalization','Unrecognized normalization flag.') #w)D ml
end
:DBJ2n
else DEpn>
isnorm = false; B]cV|S|
end e= _7Q.cn
ew8Manx
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +r__>V,
% Compute the Zernike Polynomials RsP^T:M}$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q .cL1uHc
)/?s^D$,
% Determine the required powers of r: ebB8.(k9G3
% ----------------------------------- 3#c0p790
m_abs = abs(m); :}fIu?hCA
rpowers = []; ot,e?lF
for j = 1:length(n) A)o%\j
rpowers = [rpowers m_abs(j):2:n(j)]; bRc~e@
end p/&s-GF
rpowers = unique(rpowers); K>`*JJ,
s!K9-qZl<
% Pre-compute the values of r raised to the required powers, ~^"s.Lsb
% and compile them in a matrix: TZ@S?r>^
% ----------------------------- ^9*Jz{e
if rpowers(1)==0 .?-]+-J?`
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); u]QG^1.qYe
rpowern = cat(2,rpowern{:}); mF]8
rpowern = [ones(length_r,1) rpowern]; 5!^?H"#c
else e{IwFX
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ezw<
rpowern = cat(2,rpowern{:}); Q!}LtR$
end ^Jn=a9Q6Z
YU%U
% Compute the values of the polynomials: >W@3_{0
% -------------------------------------- L@LT *M
y = zeros(length_r,length(n)); r*4@S~;
for j = 1:length(n) Je;HAhL
s = 0:(n(j)-m_abs(j))/2; &<S]=\
pows = n(j):-2:m_abs(j); {(qH8A
for k = length(s):-1:1 6ALUd^
p = (1-2*mod(s(k),2))* ... 4>I;^LHn
prod(2:(n(j)-s(k)))/ ... PsoW:t
prod(2:s(k))/ ... |th"ET
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .ID9Xd$fky
prod(2:((n(j)+m_abs(j))/2-s(k))); /c-%+Xd
idx = (pows(k)==rpowers); 8AVG pL
y(:,j) = y(:,j) + p*rpowern(:,idx); 7e`h,e=
end _f~m&="T!
Cr$8\{2OA7
if isnorm BvV!?DY4
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !3Me
6&$O
end TP&&' 4?D1
end F6 c1YI[
% END: Compute the Zernike Polynomials =OF]xpI'&a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @c#M^:9Dc
[i)G:8U
% Compute the Zernike functions: /2e,,)4g
% ------------------------------ ?;)F_aHp
idx_pos = m>0; 92S,W?(
idx_neg = m<0; 14;lB.$p
nfzKUJY
z = y;
66s h r
if any(idx_pos) hO}nc$S
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5Dlx]_
end Qp]-4%^Vz
if any(idx_neg) '2.11cM3
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 2
VGGSLr
end (qXl=e8
`SSUQ#@
% EOF zernfun