切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11166阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦  ,7h0y  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! j/p1/sJ[y  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 RJ1 @ a  
    function z = zernfun(n,m,r,theta,nflag) 4$+1&+@ ]  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. I%:\"g"c  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N XR_Gsb%l  
    %   and angular frequency M, evaluated at positions (R,THETA) on the jS ?#c+9  
    %   unit circle.  N is a vector of positive integers (including 0), and %<0'xJ%%Q  
    %   M is a vector with the same number of elements as N.  Each element N 9W,p 2  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) i__f%j`!W  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, t0_4jV t  
    %   and THETA is a vector of angles.  R and THETA must have the same Ye S5%?Fk  
    %   length.  The output Z is a matrix with one column for every (N,M) 7 !dj&?  
    %   pair, and one row for every (R,THETA) pair. R} X"di  
    % G=/^]E  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )G),iy  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0^vz /y1c  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral $5:I~ -mx  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :s*t\09V7  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized !bs5w_@  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `ZU]eAV  
    % ik#ti=.  
    %   The Zernike functions are an orthogonal basis on the unit circle. Z!-V&H.  
    %   They are used in disciplines such as astronomy, optics, and "5204I  
    %   optometry to describe functions on a circular domain. K0~=9/  
    % 3rBID  
    %   The following table lists the first 15 Zernike functions. 2HO2  
    % 6 2#@Y-5  
    %       n    m    Zernike function           Normalization OS-k_l L  
    %       -------------------------------------------------- ,BFw-A  
    %       0    0    1                                 1 fV2w &:^3  
    %       1    1    r * cos(theta)                    2 RzU9]e  
    %       1   -1    r * sin(theta)                    2 Z((e-T#,  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) tA]u=-_h  
    %       2    0    (2*r^2 - 1)                    sqrt(3) . '>d7  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Dn)B19b  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Id1de>:;  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) @?>5~  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) eX1_=?$1P  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) !mmSF1f  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10)  //0Y#"  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) CaV@<T  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) `=S%!akj  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -<L5;  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) eLLOE)x  
    %       -------------------------------------------------- ,Wtgj=1!.  
    % E 6+ ooB[  
    %   Example 1: 4 |bu= T  
    % >{l b|Vx  
    %       % Display the Zernike function Z(n=5,m=1) EeH ghq  
    %       x = -1:0.01:1; |qVM`,%L  
    %       [X,Y] = meshgrid(x,x); B2Rpd &[  
    %       [theta,r] = cart2pol(X,Y); bI^F (  
    %       idx = r<=1; cc3/XBo  
    %       z = nan(size(X)); n0G@BE1Y=  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); $&!|G-0'  
    %       figure #l h' !  
    %       pcolor(x,x,z), shading interp 3,EtyJ3[Bh  
    %       axis square, colorbar -BSO$'{7  
    %       title('Zernike function Z_5^1(r,\theta)') Khl0~  
    % ]TJ258P}  
    %   Example 2: v_WF.sb~  
    % f|ERZN`uB  
    %       % Display the first 10 Zernike functions nBLb1T  
    %       x = -1:0.01:1; =dwy 4  
    %       [X,Y] = meshgrid(x,x); 4T$DQK@e  
    %       [theta,r] = cart2pol(X,Y); n1aOpz6`  
    %       idx = r<=1; 2a;[2':  
    %       z = nan(size(X)); :wEy""*N0  
    %       n = [0  1  1  2  2  2  3  3  3  3]; f$5\ b[O  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; VoQhzp6&  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ]q"y P 0  
    %       y = zernfun(n,m,r(idx),theta(idx)); Yg}b%u,Q  
    %       figure('Units','normalized') Z +O< IF%  
    %       for k = 1:10 f]mVM(XZN  
    %           z(idx) = y(:,k); 9-vQn/O^D  
    %           subplot(4,7,Nplot(k)) *K& $9fah  
    %           pcolor(x,x,z), shading interp Bz|/TV?X(  
    %           set(gca,'XTick',[],'YTick',[]) ]omBq<ox'Y  
    %           axis square 6$kh5$[  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) |j{]6Nu  
    %       end fQwLx  
    % $Yp.BE<}  
    %   See also ZERNPOL, ZERNFUN2. lIZ&' z  
    k2.k}?w!JO  
    %   Paul Fricker 11/13/2006 ~]`U)Aw  
     -PU.Uw]  
    O OXP1L  
    % Check and prepare the inputs: (Q&O'ng1  
    % ----------------------------- lauq(aD_C  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4)>S3Yr  
        error('zernfun:NMvectors','N and M must be vectors.') $~j9{*]5  
    end 4#.Q|vyl]"  
    ]vPdj"7  
    if length(n)~=length(m) g_! xD;0  
        error('zernfun:NMlength','N and M must be the same length.') mxu!$wx  
    end ic4hO>p&  
    zD<8.AIGC  
    n = n(:); :6&#u.\u  
    m = m(:); | +uc;[`  
    if any(mod(n-m,2)) y&eU\>M  
        error('zernfun:NMmultiplesof2', ... 6.$z!~8  
              'All N and M must differ by multiples of 2 (including 0).') 0P{8s  
    end c4r9k-w0E  
    9]lyV  
    if any(m>n) m8G/;V[x  
        error('zernfun:MlessthanN', ... 7Ka4?@bQ  
              'Each M must be less than or equal to its corresponding N.') "zzb`T[8  
    end 'm"Ez'sS  
    P}>>$$b\Yi  
    if any( r>1 | r<0 ) ]=]MJ3_7  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Z6Z/Y()4Tl  
    end 9qB4\ONXZ  
    ?GtI.flV  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) }f% Qk0^  
        error('zernfun:RTHvector','R and THETA must be vectors.') -N6ek`  
    end \qlz<   
    )O$S3ojZ  
    r = r(:); PfB9 .f{  
    theta = theta(:); 94]i|2qj*  
    length_r = length(r); fZLAZMrM  
    if length_r~=length(theta) ;Bw3@c  
        error('zernfun:RTHlength', ... }n#$p{e$i  
              'The number of R- and THETA-values must be equal.') YfMs~}h,  
    end qn,fx6v4  
    g6S-vSX,  
    % Check normalization: \hb$v  
    % -------------------- PnB2a'(^@?  
    if nargin==5 && ischar(nflag) uq7/G|  
        isnorm = strcmpi(nflag,'norm'); N3a ]!4Y\  
        if ~isnorm \3%3=:  
            error('zernfun:normalization','Unrecognized normalization flag.') }_mMQg2>=  
        end 6+"gk(  
    else sIl&\g<b  
        isnorm = false; 6D`.v@  
    end JsMN_%y?  
    }W[=O:p  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tp }Bz&V  
    % Compute the Zernike Polynomials #`l&HV   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t]iKU@3  
    {sj{3Iu  
    % Determine the required powers of r: ~r'ApeI9  
    % ----------------------------------- }w2Et  
    m_abs = abs(m); ^gNbcWc7CU  
    rpowers = []; 0]$-}AYM  
    for j = 1:length(n) $2blF)uYE  
        rpowers = [rpowers m_abs(j):2:n(j)]; yS[HYq  
    end gQ%mVJB{(  
    rpowers = unique(rpowers); '?fGI3b~/  
    |}/KueZ  
    % Pre-compute the values of r raised to the required powers, b^()[4M;  
    % and compile them in a matrix: L `=*Pwcj  
    % ----------------------------- z(2G"}  
    if rpowers(1)==0 l|vT[X/g  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); L'"c;FF02i  
        rpowern = cat(2,rpowern{:}); ">S1,rhgS  
        rpowern = [ones(length_r,1) rpowern]; [a}Idi` K  
    else !YlEXaS  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?P#\ CW  
        rpowern = cat(2,rpowern{:}); (Kg)cc[B`  
    end 7 n^1H[q  
    n!lE|if  
    % Compute the values of the polynomials: |  >yc|W  
    % -------------------------------------- cf*~G x_l  
    y = zeros(length_r,length(n)); ]@}hyM[D;  
    for j = 1:length(n) huR ^l  
        s = 0:(n(j)-m_abs(j))/2; :O?3lj)  
        pows = n(j):-2:m_abs(j); #SjCKQ~  
        for k = length(s):-1:1 BJLeE}=H  
            p = (1-2*mod(s(k),2))* ... 8,VEuBZ  
                       prod(2:(n(j)-s(k)))/              ... ~XvMiWuo  
                       prod(2:s(k))/                     ... FP0GE  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... EaH/Gg3  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 6x/o j`_[  
            idx = (pows(k)==rpowers); z8)&ekG  
            y(:,j) = y(:,j) + p*rpowern(:,idx); CP$,fj  
        end LcNI$g;}Yf  
         EQM[!g^a  
        if isnorm rg 0u#-  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Yfs eX;VX  
        end 1:./f|m  
    end n* .<L  
    % END: Compute the Zernike Polynomials fi&>;0?7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0Jd>V  
    z U *Mk  
    % Compute the Zernike functions: 4<5*HpW  
    % ------------------------------ 9+.3GRt7  
    idx_pos = m>0; *TCV}=V G  
    idx_neg = m<0; hQNUA|Q=%  
    Wg8*;dvtM  
    z = y; c]qh)F$s8  
    if any(idx_pos) ^% Ln@!P  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); C8 }=fa3u  
    end  /7Q9(}  
    if any(idx_neg) oJ#;XR  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); rg]z  
    end Eq8:[o  
    /;u=#qu(E-  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) KmqgP`Cu  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. `nc=@" 1  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated CE| *&G  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive f Avh!g  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 'I>geW?{QK  
    %   and THETA is a vector of angles.  R and THETA must have the same V,?])=Ax  
    %   length.  The output Z is a matrix with one column for every P-value, c s:E^  
    %   and one row for every (R,THETA) pair. 5F]2.<i  
    % "=$uv  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike bJ eF1LjS  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) eF4f7>5Cv  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) N,F[x0&?  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 lt\Bm<"z!1  
    %   for all p. SR<W3a\  
    % i|S/g.r  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 [3x*47o"z  
    %   Zernike functions (order N<=7).  In some disciplines it is N~?(<DyZR  
    %   traditional to label the first 36 functions using a single mode bJynUZ  
    %   number P instead of separate numbers for the order N and azimuthal }"/>,  
    %   frequency M. ~ET XXu${I  
    % w(*},  
    %   Example: `84,R!  
    % ITz+O=I4R]  
    %       % Display the first 16 Zernike functions sy6[%8D$  
    %       x = -1:0.01:1; \#C]|\  
    %       [X,Y] = meshgrid(x,x); 1>umf~%Wa  
    %       [theta,r] = cart2pol(X,Y); L;6{0b58 $  
    %       idx = r<=1; X2YBZA  
    %       p = 0:15; m;U_oxb  
    %       z = nan(size(X)); ZJ/K MW  
    %       y = zernfun2(p,r(idx),theta(idx)); `<hMrhfh  
    %       figure('Units','normalized') hdH3Jb_hl(  
    %       for k = 1:length(p) tK 6=F63e  
    %           z(idx) = y(:,k); AMK(-=  
    %           subplot(4,4,k) vVjk9_Ul  
    %           pcolor(x,x,z), shading interp aeEio;G1  
    %           set(gca,'XTick',[],'YTick',[]) ^#4<~zU  
    %           axis square =yPV9#(I/  
    %           title(['Z_{' num2str(p(k)) '}']) E7I$GD  
    %       end D&DbxTi  
    % L}K8cB  
    %   See also ZERNPOL, ZERNFUN. >^ E*7Bfp  
    Z ?F_({im  
    %   Paul Fricker 11/13/2006 #K/95!)  
    | _nBiHjNn  
    N7^sn!JB  
    % Check and prepare the inputs: EQ>@K-R  
    % ----------------------------- g#G ]}8C  
    if min(size(p))~=1 &@w0c>Y  
        error('zernfun2:Pvector','Input P must be vector.') yIWgC[  
    end 3MDs?qx>s  
    lnK#q .]  
    if any(p)>35 !bCaDTz  
        error('zernfun2:P36', ... C>QWV[F  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ...  k =O  
               '(P = 0 to 35).']) v z&88jt  
    end 4v9d& m!<  
    O0eM*~zI  
    % Get the order and frequency corresonding to the function number: c IPOI'3d  
    % ---------------------------------------------------------------- \Qf2:[-V0  
    p = p(:); xrv0%  
    n = ceil((-3+sqrt(9+8*p))/2); fT YlIT9  
    m = 2*p - n.*(n+2); bKEiS8x  
    gSe3S-Lt  
    % Pass the inputs to the function ZERNFUN: WYIv&h<h"  
    % ---------------------------------------- !1Ht{cA0  
    switch nargin \p^'[B(O77  
        case 3 ZzxWKIE'c  
            z = zernfun(n,m,r,theta); FbXur-et^  
        case 4 TYCjVxfu$  
            z = zernfun(n,m,r,theta,nflag); ~y,m7%L  
        otherwise S F da?>  
            error('zernfun2:nargin','Incorrect number of inputs.') >Sb3]$$  
    end D&qJ@PR  
    `]a0z|2'!  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) .hnq>R\  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 7y_<BCx h  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of nYe:$t3F=  
    %   order N and frequency M, evaluated at R.  N is a vector of "]OROJGa  
    %   positive integers (including 0), and M is a vector with the -aV( 6i*n  
    %   same number of elements as N.  Each element k of M must be a #w:nj1{_  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) "=V!-+*@G@  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 9!.S9[[N  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ,H1K sN  
    %   with one column for every (N,M) pair, and one row for every eHR]qy 0_X  
    %   element in R. dN7.W   
    % Wfy+9"-;s  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- rinTB|5  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Ejnk\8:  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to |*Oi:)qt  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 X,{[R |  
    %   for all [n,m]. A 6 `a  
    % :6/$/`I0W  
    %   The radial Zernike polynomials are the radial portion of the qh6rMqq  
    %   Zernike functions, which are an orthogonal basis on the unit nzbAQ3v  
    %   circle.  The series representation of the radial Zernike JoZS p"R  
    %   polynomials is /_YTOSZjm  
    % \xcf<y3_  
    %          (n-m)/2 Vhr6bu]  
    %            __ uBxoMxWm  
    %    m      \       s                                          n-2s ?% A 2  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r  +cKOIMu9  
    %    n      s=0 7 p1B"%  
    % ^Ai QNL}  
    %   The following table shows the first 12 polynomials. *z.rOY= 8  
    % \jmZ t*c  
    %       n    m    Zernike polynomial    Normalization ` U-vXP  
    %       --------------------------------------------- @;N(3| n7  
    %       0    0    1                        sqrt(2) ;cZp$ xb3  
    %       1    1    r                           2 ZOpKi:\  
    %       2    0    2*r^2 - 1                sqrt(6) #=;vg  
    %       2    2    r^2                      sqrt(6) /)kx`G_  
    %       3    1    3*r^3 - 2*r              sqrt(8) EVC]B}  
    %       3    3    r^3                      sqrt(8) B< HN$/  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) [rL 8L6,!  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) B^/k`h6J  
    %       4    4    r^4                      sqrt(10) lJdYR'/Wd  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) U3` ?Z`i(  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) `uZMln @  
    %       5    5    r^5                      sqrt(12) $15H_X*!  
    %       --------------------------------------------- R[)bGl6#  
    % ?%Ww3cU+J  
    %   Example: UEhFId  
    % X$6QQnyR  
    %       % Display three example Zernike radial polynomials Y=g]\%-PB  
    %       r = 0:0.01:1; 6 jm@`pYbE  
    %       n = [3 2 5]; !l Egta[Ql  
    %       m = [1 2 1]; |I29m`  
    %       z = zernpol(n,m,r); +r9neS.l  
    %       figure E.+%b;Eqe  
    %       plot(r,z) T7Y}v,+-  
    %       grid on w=a$]`  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') WuFBt=%  
    % #TC}paIpj  
    %   See also ZERNFUN, ZERNFUN2. Yl:[b{Py  
    &%;n 9K  
    % A note on the algorithm. FSAX , Y  
    % ------------------------ WiZTE(NM`  
    % The radial Zernike polynomials are computed using the series u6Wan*I?  
    % representation shown in the Help section above. For many special >,h{`  
    % functions, direct evaluation using the series representation can >d *`K  
    % produce poor numerical results (floating point errors), because %5DM ew  
    % the summation often involves computing small differences between 3,X8 5`v^  
    % large successive terms in the series. (In such cases, the functions ezCJq`b  
    % are often evaluated using alternative methods such as recurrence BW}M/  
    % relations: see the Legendre functions, for example). For the Zernike >(wQx05^D  
    % polynomials, however, this problem does not arise, because the Yyr9Kj:  
    % polynomials are evaluated over the finite domain r = (0,1), and Q\T?t  
    % because the coefficients for a given polynomial are generally all DvB{N`COd  
    % of similar magnitude. c b&Yf1  
    % 6x=w-32+ y  
    % ZERNPOL has been written using a vectorized implementation: multiple  S~E@A.7  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] E^br-{|{  
    % values can be passed as inputs) for a vector of points R.  To achieve I%GQ3D"=  
    % this vectorization most efficiently, the algorithm in ZERNPOL G--(Ef%v'  
    % involves pre-determining all the powers p of R that are required to ! K_<hNG&  
    % compute the outputs, and then compiling the {R^p} into a single K"&^/[vMB  
    % matrix.  This avoids any redundant computation of the R^p, and /f Q}Ls\  
    % minimizes the sizes of certain intermediate variables. >cg)Nq D  
    % }f14# y;  
    %   Paul Fricker 11/13/2006 dUt4] ar  
    x[&<e<6  
    URg;e M#  
    % Check and prepare the inputs: Uzc p  
    % ----------------------------- 1q3"qY H  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) zy nX9t  
        error('zernpol:NMvectors','N and M must be vectors.') hayJgkZ '  
    end VB#&`]r do  
    4Orq;8!BW  
    if length(n)~=length(m) \AH5 zdK  
        error('zernpol:NMlength','N and M must be the same length.') peT91b  
    end #D|%r-:"  
    o3GkTn O  
    n = n(:); 19c_=$mV  
    m = m(:); _aF8Us  
    length_n = length(n); ir>h3Zk   
    N3aqNRwlk  
    if any(mod(n-m,2)) x<Gjr}  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') >u(^v@Ejf  
    end HKI\i)c  
    Ry"4v_e9  
    if any(m<0) S50}]5K  
        error('zernpol:Mpositive','All M must be positive.') 9+PAyI#w  
    end T *PEUq  
    saQs<1  
    if any(m>n) PREGQ0  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') cz /cY:o)  
    end C.ji]P#  
    7pQ 5`;P  
    if any( r>1 | r<0 ) bv'>4a  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') {*TB }Xsr,  
    end |N"K83_pr  
    ]@<VLP?  
    if ~any(size(r)==1) 3S]Q IZ1  
        error('zernpol:Rvector','R must be a vector.') 1iLo$  
    end =b>TFB=*N  
    /|P{t{^WM  
    r = r(:); 3nc\6v%  
    length_r = length(r); <!XunXh  
    *AQ3RA8  
    if nargin==4 zow8 Q6f  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); adIrrK  
        if ~isnorm T 4p}5ew'  
            error('zernpol:normalization','Unrecognized normalization flag.') @KU;' th  
        end *pSnEWwE  
    else 4K~=l%l  
        isnorm = false; :r hB=  
    end o5DT1>h  
    `iM%R3&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jX8)Ov5Mv  
    % Compute the Zernike Polynomials 2|& S2uq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w43b=7  
    f<VK\%M  
    % Determine the required powers of r: : slO0  
    % ----------------------------------- Xb>SA|6[|  
    rpowers = []; gN:F50   
    for j = 1:length(n) .R"VLE|  
        rpowers = [rpowers m(j):2:n(j)]; 5R~M@   
    end :??W3ROn  
    rpowers = unique(rpowers); .BBJhXtrdu  
    `x#S. b  
    % Pre-compute the values of r raised to the required powers, 7<MEMNYX  
    % and compile them in a matrix: u*P@Nuy6  
    % ----------------------------- I[ \7Bf  
    if rpowers(1)==0 f7\X3v2W}3  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g =Xy{Vm  
        rpowern = cat(2,rpowern{:}); H@G$K@L  
        rpowern = [ones(length_r,1) rpowern]; RH<2f5-sC!  
    else Uoe;=P@  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); LOcZadr  
        rpowern = cat(2,rpowern{:}); Gg ~0>XS  
    end Gt*K:KT=L  
    K;sC#9m  
    % Compute the values of the polynomials: ?2~fvMWu  
    % -------------------------------------- 2XeyNX  
    z = zeros(length_r,length_n); OzrIiahz/  
    for j = 1:length_n a`%`9GD  
        s = 0:(n(j)-m(j))/2; 3lZl  
        pows = n(j):-2:m(j); BQ Vro;#Jc  
        for k = length(s):-1:1 6P717[  
            p = (1-2*mod(s(k),2))* ... 2p](`Y`  
                       prod(2:(n(j)-s(k)))/          ... cpP}NJb0;%  
                       prod(2:s(k))/                 ... |6bvUFr  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... >zX^*T#  
                       prod(2:((n(j)+m(j))/2-s(k))); z=U+FHdh/-  
            idx = (pows(k)==rpowers); ?rQ .nN  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ^U5N!"6R  
        end -_5Dk'R#`  
         ~&T U  
        if isnorm G6a 2]  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ZJZSt% r  
        end T[1iZ  
    end [niFJI sc  
    &(Fm@ksh\  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  VOr: G85*s  
    3s%DF,  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 _Cz98VqRk  
    FY Flh^}  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)