切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11590阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 UG_ PrZd  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! `(gQw~|z  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 BOR$R}q  
    function z = zernfun(n,m,r,theta,nflag) [s\8@5?E  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 63_#*6Pv28  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %Y0BPTt$  
    %   and angular frequency M, evaluated at positions (R,THETA) on the =cb!2%?}  
    %   unit circle.  N is a vector of positive integers (including 0), and dtTfV.y4w  
    %   M is a vector with the same number of elements as N.  Each element  LAM{ ,?~  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) @o*~\E<T  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, N 3O!8A_  
    %   and THETA is a vector of angles.  R and THETA must have the same It/hXND `  
    %   length.  The output Z is a matrix with one column for every (N,M) TQ :e! 32  
    %   pair, and one row for every (R,THETA) pair. {T,}]oX  
    % ZXkrFA |  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =R 4]Kf  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {O).!  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral kP/<S<h,g  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, GVu[X?q@|  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized c`hENPhW  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^c/3 !"wK  
    % v _:KqdmO]  
    %   The Zernike functions are an orthogonal basis on the unit circle. #G?#ot2o  
    %   They are used in disciplines such as astronomy, optics, and 2TQZu3$c  
    %   optometry to describe functions on a circular domain. (3Xs  
    % KHx;r@{<  
    %   The following table lists the first 15 Zernike functions. v@ qDR|?^  
    % {QmK4(k?|c  
    %       n    m    Zernike function           Normalization nUVk;0at  
    %       -------------------------------------------------- n%RaEL  
    %       0    0    1                                 1 &OE-+z  
    %       1    1    r * cos(theta)                    2 m\CU,9;;(  
    %       1   -1    r * sin(theta)                    2 ,quUGS  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ^c9_F9N  
    %       2    0    (2*r^2 - 1)                    sqrt(3) f x4#R(N  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) RJd*(!y  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) R.l!KIq  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) kka{u[ruA  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) {q+gm1iC  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 4+nZ4a>LH?  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 1:- M<=J?f  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N?#L{Yt  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 92R,o'#  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C+ Y;D:  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 4 #KC\C  
    %       -------------------------------------------------- 7J`v#  
    % -|s% 5p|  
    %   Example 1: d(d3@b4Ta  
    % uHbbPtk  
    %       % Display the Zernike function Z(n=5,m=1) J#4pA{01w  
    %       x = -1:0.01:1; \fSruhD  
    %       [X,Y] = meshgrid(x,x); /X0<2&v  
    %       [theta,r] = cart2pol(X,Y); !>!jLZ0  
    %       idx = r<=1; ;14Q@yrZ0  
    %       z = nan(size(X)); -:Fr($^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); s!yD%zO  
    %       figure 59:kL<;S-  
    %       pcolor(x,x,z), shading interp 7@ y}J5,  
    %       axis square, colorbar Xt:j~cVA  
    %       title('Zernike function Z_5^1(r,\theta)') C~K/yLCAi  
    % )ezkp%I5D  
    %   Example 2: OEzSItAI/[  
    % '4 3U v  
    %       % Display the first 10 Zernike functions pNuU{:9 B0  
    %       x = -1:0.01:1; W np[8IEU  
    %       [X,Y] = meshgrid(x,x); S:xs[b.ZZ  
    %       [theta,r] = cart2pol(X,Y); J8@+)hn  
    %       idx = r<=1; Dp#27Yzc  
    %       z = nan(size(X)); %iYro8g!,  
    %       n = [0  1  1  2  2  2  3  3  3  3]; *Sbc 8Y  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; p14$XV  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; : 4lR`%  
    %       y = zernfun(n,m,r(idx),theta(idx)); A,4} $-7  
    %       figure('Units','normalized') [AD%8 H  
    %       for k = 1:10 'Cz]p~oF  
    %           z(idx) = y(:,k); e$Y7V  
    %           subplot(4,7,Nplot(k)) ?v F8 y;Jh  
    %           pcolor(x,x,z), shading interp x 2l}$(7  
    %           set(gca,'XTick',[],'YTick',[]) |pU>^  
    %           axis square FOPmvlA\-<  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 2JeEmG9  
    %       end ~"wnlG-:  
    % 9WQ'"wyAQ  
    %   See also ZERNPOL, ZERNFUN2. FcOrA3tt  
    h]|2b0  
    %   Paul Fricker 11/13/2006 (tzAUrC  
    7<2?NLE8*  
    ,g|ht%"  
    % Check and prepare the inputs: aK,\e/Oo  
    % ----------------------------- 1. Q"<[M  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h4ghMBo%  
        error('zernfun:NMvectors','N and M must be vectors.') >%_i#|dE>  
    end 4zBcq<R7  
    $m+Pl[s  
    if length(n)~=length(m) Hb^ovc0   
        error('zernfun:NMlength','N and M must be the same length.') NX]6RZr-  
    end eR3MU]zF  
    cyL|.2,  
    n = n(:); 9~iDL|0'~  
    m = m(:); C8:y+pH_U;  
    if any(mod(n-m,2)) k9\n='OI  
        error('zernfun:NMmultiplesof2', ... z^%`sUgP  
              'All N and M must differ by multiples of 2 (including 0).') 1ahb:Mjv  
    end w %6 L"  
    y>g`R^^  
    if any(m>n) 5hAs/i9_  
        error('zernfun:MlessthanN', ... )hK;27m4  
              'Each M must be less than or equal to its corresponding N.') n.P $E  
    end wG22ffaki  
    %.{xo.`a[  
    if any( r>1 | r<0 ) aprgThoD  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') [ID#P Ule  
    end 8Y;>3z th7  
    o 7&q  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) oT}Sh4Wt.  
        error('zernfun:RTHvector','R and THETA must be vectors.') zfGr1;  
    end ~@D!E/hZx  
    O0mQHpi:  
    r = r(:); zn\$6'"  
    theta = theta(:); ZQ#AEVI,  
    length_r = length(r); "fd'~e$S#  
    if length_r~=length(theta) $[(FCS  
        error('zernfun:RTHlength', ... @Z9>E+udQ  
              'The number of R- and THETA-values must be equal.') twPD'X!r  
    end 42DB0+_wz  
    (G{2ec:?  
    % Check normalization: NX<Q}3cC  
    % -------------------- Vvl8P|x.<  
    if nargin==5 && ischar(nflag) Vjr}"K$Y  
        isnorm = strcmpi(nflag,'norm'); o7:"Sl2AD  
        if ~isnorm .OF2O}  
            error('zernfun:normalization','Unrecognized normalization flag.') #w)D ml  
        end : DBJ2n  
    else DEpn>   
        isnorm = false; B]cV|S|  
    end e= _7Q.cn  
    ew8Manx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +r__>V,  
    % Compute the Zernike Polynomials RsP^T:M}$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q .cL1uHc  
    )/?s^D$,  
    % Determine the required powers of r: ebB8.(k9G3  
    % ----------------------------------- 3#c0p790  
    m_abs = abs(m); :}fIu?hCA  
    rpowers = []; ot,e?lF  
    for j = 1:length(n) A)o%\j  
        rpowers = [rpowers m_abs(j):2:n(j)]; bRc~e@  
    end p/&s-G F  
    rpowers = unique(rpowers); K>`*JJ,  
    s!K9-qZl<  
    % Pre-compute the values of r raised to the required powers, ~^"s.Lsb  
    % and compile them in a matrix: T Z@S?r>^  
    % ----------------------------- ^9*Jz{e  
    if rpowers(1)==0 .?-]+ -J?`  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); u]QG^1.qYe  
        rpowern = cat(2,rpowern{:}); mF] 8  
        rpowern = [ones(length_r,1) rpowern]; 5!^?H"#c  
    else e{IwFX  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ezw<  
        rpowern = cat(2,rpowern{:}); Q!}LtR$  
    end ^Jn=a9Q6Z  
    YU%U  
    % Compute the values of the polynomials: >W@3_{0  
    % -------------------------------------- L@LT*M  
    y = zeros(length_r,length(n)); r*4@S~;  
    for j = 1:length(n) Je;HAhL  
        s = 0:(n(j)-m_abs(j))/2; &<S]=\  
        pows = n(j):-2:m_abs(j); {(qH8A  
        for k = length(s):-1:1 6ALUd^  
            p = (1-2*mod(s(k),2))* ... 4>I;^LHn  
                       prod(2:(n(j)-s(k)))/              ... PsoW:t  
                       prod(2:s(k))/                     ... |t h"ET  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .ID9Xd$fky  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); /c-%+Xd  
            idx = (pows(k)==rpowers); 8AVG pL  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 7e`h,e=  
        end _f~m&="T!  
         Cr$8\{2OA7  
        if isnorm BvV!?DY4  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !3Me 6&$O  
        end TP&&' 4?D1  
    end F6 c1YI[  
    % END: Compute the Zernike Polynomials =OF]xpI'&a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @c#M^:9Dc  
    [i)G:8U  
    % Compute the Zernike functions: /2e,,)4g  
    % ------------------------------ ? ;)F_aHp  
    idx_pos = m>0; 92S,W?(  
    idx_neg = m<0; 14;lB.$p  
    nfzKUJY  
    z = y; 66shr  
    if any(idx_pos) h O}nc$S  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5Dlx]_  
    end Qp]-4%^Vz  
    if any(idx_neg) '2.11cM3  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 2 VGGSLr  
    end (qXl=e8  
    `SSUQ#@  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) LQrm/)4bF5  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. nzK"eNDN.  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated gELb(Y\ak  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 'uOzC"_yF  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, r@m2foaO  
    %   and THETA is a vector of angles.  R and THETA must have the same znl_~:.4]X  
    %   length.  The output Z is a matrix with one column for every P-value, Rr>h8Ni <  
    %   and one row for every (R,THETA) pair. .}l&lj@#  
    % ^  M4-O~  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike B 8ycr~  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) fCxF3m(O  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) {b6g!sE  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 j,/t<@S>  
    %   for all p. |6.1uRFE2  
    % 3qc o2{nz  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 .wfN.Z  
    %   Zernike functions (order N<=7).  In some disciplines it is a:3f>0_t  
    %   traditional to label the first 36 functions using a single mode I^z$0  
    %   number P instead of separate numbers for the order N and azimuthal .4NQ2k1io  
    %   frequency M. h8MkfHH7{  
    % [d_sd  
    %   Example: GI:$(<  
    % cOr@dUSL  
    %       % Display the first 16 Zernike functions Z|kMoB  
    %       x = -1:0.01:1; 8?7gyp!k_f  
    %       [X,Y] = meshgrid(x,x); =':,oz^|  
    %       [theta,r] = cart2pol(X,Y); q;V1fogqI)  
    %       idx = r<=1; S3k>34_%9  
    %       p = 0:15; 'Na/AcRdg  
    %       z = nan(size(X)); !B3lsXLSY  
    %       y = zernfun2(p,r(idx),theta(idx)); >xt*(j&}  
    %       figure('Units','normalized') p3NTI/-  
    %       for k = 1:length(p) -^JGa{9*  
    %           z(idx) = y(:,k); : a4FO  
    %           subplot(4,4,k) 6v9{ $:  
    %           pcolor(x,x,z), shading interp Uieg4Iro  
    %           set(gca,'XTick',[],'YTick',[]) } bs2Rxkh  
    %           axis square 6GD Uo}.  
    %           title(['Z_{' num2str(p(k)) '}']) 7BX%z$_)A  
    %       end 2F[;Z*&  
    % ",ic" ~  
    %   See also ZERNPOL, ZERNFUN. PUN.nt  
    ] PnE%  
    %   Paul Fricker 11/13/2006 a'v%bL;H~  
    nAp7X-t  
    diLjUC`69  
    % Check and prepare the inputs: A_t<SG5  
    % ----------------------------- S %"7`xl  
    if min(size(p))~=1 A/U tf0{3"  
        error('zernfun2:Pvector','Input P must be vector.') Z6cG<,DQ  
    end T_}\  
    L?^C\g6u]  
    if any(p)>35 Q#bFW?>y,  
        error('zernfun2:P36', ... Z v=p0xH  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... tc{23Rf%  
               '(P = 0 to 35).']) g"3h#SMb  
    end r[$Qtj Q  
    "gCSbMq(Vq  
    % Get the order and frequency corresonding to the function number: omV.Qb'NS  
    % ---------------------------------------------------------------- Oz9k.[j(  
    p = p(:); F|V co]"S1  
    n = ceil((-3+sqrt(9+8*p))/2); YV 9*B  
    m = 2*p - n.*(n+2); K@{jY\AZNx  
    qi7wr\XNW  
    % Pass the inputs to the function ZERNFUN: !qH=l-7A  
    % ---------------------------------------- rr4yJ;qpeP  
    switch nargin U[S;5xeF.j  
        case 3 ftq~AF  
            z = zernfun(n,m,r,theta); ,Z%!38gGsu  
        case 4 ji( S ?^  
            z = zernfun(n,m,r,theta,nflag); "VWxHRVg4M  
        otherwise e7L;{+XI  
            error('zernfun2:nargin','Incorrect number of inputs.') q9Y0Lk  
    end @fpxGMy&  
    "0L@cOyG  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) .yWdlq##  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. l:@.D|(o3  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of +[2lS54"W4  
    %   order N and frequency M, evaluated at R.  N is a vector of NHc+QMbou(  
    %   positive integers (including 0), and M is a vector with the dy`~%lX?  
    %   same number of elements as N.  Each element k of M must be a EoY#D'[  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) T  |j^  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is "Ln\ZYB]  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix tOko %vY8  
    %   with one column for every (N,M) pair, and one row for every DTIy/  
    %   element in R. _X.M,id  
    % \+Cp<Hv+  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 56':U29.]  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is @pko zE-  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to d'-^ VxO0  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 98O z  
    %   for all [n,m]. hG;u8|uT^i  
    % ac&tpvij  
    %   The radial Zernike polynomials are the radial portion of the HRw,D=  
    %   Zernike functions, which are an orthogonal basis on the unit 3]VTQl{P  
    %   circle.  The series representation of the radial Zernike &FanD   
    %   polynomials is g*]<]%Py"  
    % 2C8M1^0:Z  
    %          (n-m)/2 i([A8C_A  
    %            __  03#_ (  
    %    m      \       s                                          n-2s pI^n("|  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 7I.[1V`  
    %    n      s=0 /n_HUY  
    % ):[[Ch_  
    %   The following table shows the first 12 polynomials. n+i}>3'A  
    % Q%>,5(_V]  
    %       n    m    Zernike polynomial    Normalization yi%B5KF~Al  
    %       --------------------------------------------- @LmUCP~  
    %       0    0    1                        sqrt(2) ^Ta"Uk'  
    %       1    1    r                           2 FVpe*]  
    %       2    0    2*r^2 - 1                sqrt(6) BW*zj=N%  
    %       2    2    r^2                      sqrt(6) >%[W2L\'  
    %       3    1    3*r^3 - 2*r              sqrt(8) IWQ8e$N  
    %       3    3    r^3                      sqrt(8) _6[NYv$"  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ><DE1tG  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Gce_gZH7{  
    %       4    4    r^4                      sqrt(10) @F1pu3E  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) EagI)W!s[  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) U--ER r8  
    %       5    5    r^5                      sqrt(12) FPMW"~v  
    %       --------------------------------------------- C/$IF M<  
    % 1GNA x\(  
    %   Example: }l2JXf55  
    % &S{F"z  
    %       % Display three example Zernike radial polynomials /[-hJ=< Yb  
    %       r = 0:0.01:1; r#j*vO '  
    %       n = [3 2 5]; >9klh-f  
    %       m = [1 2 1]; a|>MueJ  
    %       z = zernpol(n,m,r); _1Eyqh`oh  
    %       figure =wQ=`  
    %       plot(r,z) R's xa*VB  
    %       grid on $pKS['J0  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') !`WuLhB`  
    % f0uiNy(r$  
    %   See also ZERNFUN, ZERNFUN2. (+@.L7>m+t  
    &d2/F i+  
    % A note on the algorithm. Psv!`K  
    % ------------------------ "&ks8 3  
    % The radial Zernike polynomials are computed using the series nk{1z\D{  
    % representation shown in the Help section above. For many special l%IOdco#  
    % functions, direct evaluation using the series representation can (/Mc$V  
    % produce poor numerical results (floating point errors), because Ob6vg^#  
    % the summation often involves computing small differences between t Z%?vY~!  
    % large successive terms in the series. (In such cases, the functions AjS5  
    % are often evaluated using alternative methods such as recurrence w*}9;l  
    % relations: see the Legendre functions, for example). For the Zernike f0F$*"#G  
    % polynomials, however, this problem does not arise, because the N 4:'X6u;  
    % polynomials are evaluated over the finite domain r = (0,1), and (!b: gG  
    % because the coefficients for a given polynomial are generally all F~Li.qF  
    % of similar magnitude. uu:)jxi  
    % PX'LN  
    % ZERNPOL has been written using a vectorized implementation: multiple U!5@$Fu  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 76m[o  
    % values can be passed as inputs) for a vector of points R.  To achieve 40<&0nn  
    % this vectorization most efficiently, the algorithm in ZERNPOL 2*|]#W  
    % involves pre-determining all the powers p of R that are required to jBC9Vt;B  
    % compute the outputs, and then compiling the {R^p} into a single =~h54/#[I  
    % matrix.  This avoids any redundant computation of the R^p, and Hj!)S&y,$  
    % minimizes the sizes of certain intermediate variables. A0XFu}  
    % a:fHTU=\p  
    %   Paul Fricker 11/13/2006 Rc4EFHL  
    %Z7!9+<  
    ~g{,W  
    % Check and prepare the inputs: 1bBK1Uw  
    % ----------------------------- T)uw2  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [a3 0iE  
        error('zernpol:NMvectors','N and M must be vectors.') I?>#neHc6  
    end "|.(yN  
    (yP55PC O$  
    if length(n)~=length(m) @I&"P:E0F;  
        error('zernpol:NMlength','N and M must be the same length.') 2]+.8G7D%  
    end tX251S  
    x}{VHp`|ld  
    n = n(:); Pio^5jhB6  
    m = m(:); IfcFlXmt2  
    length_n = length(n); gNwXOd u  
    !A!\S/x4  
    if any(mod(n-m,2)) RVfe}4Stm#  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Bu1z$#AC  
    end K\b O[J  
    gnXjd}  
    if any(m<0) mV,R0olF  
        error('zernpol:Mpositive','All M must be positive.') o(P:f)B  
    end 9^u?v`!  
    aJ8pJ{,P  
    if any(m>n) D@^ZpN8r  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ' l|_$3  
    end A-5 +#  
    Aq!['G  
    if any( r>1 | r<0 ) WM"^#=+$  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 5F"?]'*/  
    end O@iW?9C+  
    tWn m{mF  
    if ~any(size(r)==1) W[Bu&?h$  
        error('zernpol:Rvector','R must be a vector.') oui!fTy  
    end u7?juI#Cl  
    !9, pX  
    r = r(:); >|)0Amt  
    length_r = length(r); KIo}Gd&  
    &._!)al  
    if nargin==4 _m],(J=,z  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); =[JN'|Q+  
        if ~isnorm /BM1AV{s6  
            error('zernpol:normalization','Unrecognized normalization flag.') ?Z>.G{Wm@  
        end au|^V^m  
    else \'Ta8  
        isnorm = false; 4_+Pv6  
    end N;'HR)  
    #OWs3$9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@83PJFid  
    % Compute the Zernike Polynomials ,dx)rZ*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fm%RNAPvc  
    N@6OQ:,[F  
    % Determine the required powers of r: P/Kit?kngS  
    % ----------------------------------- `mjx4Lb  
    rpowers = []; toqzS!&.v  
    for j = 1:length(n) WuFwt\U  
        rpowers = [rpowers m(j):2:n(j)]; 9T2A)a]0  
    end xn@0pL3B~  
    rpowers = unique(rpowers); z,FTsR$x  
    v Q"s  
    % Pre-compute the values of r raised to the required powers, .vS6_  
    % and compile them in a matrix: ]TgP!M&q  
    % ----------------------------- O[)]dD&'  
    if rpowers(1)==0 ttaQlEa=Z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); kLt9; <L  
        rpowern = cat(2,rpowern{:}); (YHvGGr  
        rpowern = [ones(length_r,1) rpowern];  }m%?&c  
    else =5~F6to  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,6;xr'[o*  
        rpowern = cat(2,rpowern{:}); ceZ8} Sh  
    end mO)PJd2ZD  
    RR!!hY3 K  
    % Compute the values of the polynomials: HDVl5X`j'  
    % -------------------------------------- ZuvPDW%  
    z = zeros(length_r,length_n); !?o$-+a|  
    for j = 1:length_n kt{C7qpD  
        s = 0:(n(j)-m(j))/2; & 8' (  
        pows = n(j):-2:m(j); !I5~))E  
        for k = length(s):-1:1 ^2^|AXNES  
            p = (1-2*mod(s(k),2))* ... RO{@RhnV  
                       prod(2:(n(j)-s(k)))/          ... ; ,=h59`  
                       prod(2:s(k))/                 ... F|l`YtZZd  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... q^1aPz  
                       prod(2:((n(j)+m(j))/2-s(k))); <*"pra{3  
            idx = (pows(k)==rpowers); nS+FX& _  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ~r^5-\[hZ  
        end $54=gRo^  
          (X(1kj3  
        if isnorm 5m^Hi} S _  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); U2V^T'Y[  
        end %gu$_S  
    end sQ}%7BMK  
    B9e.-Xaf  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  yq?]V7~  
    !x>,N%~  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 xA92 C  
    42&v % ;R  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)