切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11111阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ]XAJ|[]sj*  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! OSsxO(;g  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 X:*Ut3"  
    function z = zernfun(n,m,r,theta,nflag) 1!x-_h}  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. M. Fu>Xi  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +M+ht  
    %   and angular frequency M, evaluated at positions (R,THETA) on the H-Uy~Ry*T  
    %   unit circle.  N is a vector of positive integers (including 0), and .Q pqbp 8  
    %   M is a vector with the same number of elements as N.  Each element {-sy,EYcw  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) f3 lKdXnP  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, D3LW 49  
    %   and THETA is a vector of angles.  R and THETA must have the same SnF3I  
    %   length.  The output Z is a matrix with one column for every (N,M) *3hqz<p4:  
    %   pair, and one row for every (R,THETA) pair. {YCquoF  
    % =H_|007C  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike U!"+~d)  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $IL7c]Gw  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral *g^U=t  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, lE+v@Kb:  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Rx$5#K!%M  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. mAk@Q|u  
    % ;r[@;2p*(  
    %   The Zernike functions are an orthogonal basis on the unit circle. vj I>TIy  
    %   They are used in disciplines such as astronomy, optics, and V4GcW|P4y  
    %   optometry to describe functions on a circular domain. %3ecV$  
    % =GpO }t">  
    %   The following table lists the first 15 Zernike functions. ~n#rATbxf  
    % +_gPZFpbx  
    %       n    m    Zernike function           Normalization r'/7kF- 5  
    %       -------------------------------------------------- @|xcrEnP}B  
    %       0    0    1                                 1 +I0?D  
    %       1    1    r * cos(theta)                    2 sgDlT=c'  
    %       1   -1    r * sin(theta)                    2 !GcH )  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 8$3G c"=  
    %       2    0    (2*r^2 - 1)                    sqrt(3) c+/SvRx^>  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) q<rB(j-(  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) y; Up@.IG  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) d-g&TSGd  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) tWYKW3~]  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 5V\\w~&/  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) >ZKE  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  Hq h  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) D}l^ow  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f5+a6s9  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) hf rF7{yj  
    %       -------------------------------------------------- ^1M:wX r  
    % D^To:N 7U  
    %   Example 1: 0t<]Uf  
    % m98j`t  
    %       % Display the Zernike function Z(n=5,m=1) WR=e$ ;  
    %       x = -1:0.01:1; A,rgN;5fb  
    %       [X,Y] = meshgrid(x,x); zJS,f5L6)  
    %       [theta,r] = cart2pol(X,Y); Q*mzfsgr  
    %       idx = r<=1; KFBo1^9N  
    %       z = nan(size(X)); zlIXia5  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 't \:@-tQ  
    %       figure IC>OxYg*  
    %       pcolor(x,x,z), shading interp `6`NuZ*6g  
    %       axis square, colorbar dhpEB J  
    %       title('Zernike function Z_5^1(r,\theta)') dIe-z7x  
    % <#JJS}TLk  
    %   Example 2: PhF3' ">  
    % .?9+1.`  
    %       % Display the first 10 Zernike functions "0Uh(9Fv  
    %       x = -1:0.01:1; P9v N5|"M  
    %       [X,Y] = meshgrid(x,x); 8SK}#44Xz  
    %       [theta,r] = cart2pol(X,Y); .|$6Pi%!  
    %       idx = r<=1; &mDKpYrB  
    %       z = nan(size(X)); 4;W eB   
    %       n = [0  1  1  2  2  2  3  3  3  3]; di}YHMTx  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; LJDX6]4n  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; T1c2J,+}R  
    %       y = zernfun(n,m,r(idx),theta(idx)); 8;/`uB:zV  
    %       figure('Units','normalized') 7$'%*|C.  
    %       for k = 1:10 "*|plB  
    %           z(idx) = y(:,k); \ Xow#@[  
    %           subplot(4,7,Nplot(k)) %m1k^  
    %           pcolor(x,x,z), shading interp *IUw$|Z6z)  
    %           set(gca,'XTick',[],'YTick',[]) ivsp):W  
    %           axis square #z 3tSnmp  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) LS@[O])$'  
    %       end ~>zml1aJ6  
    % 2f ]CnD0$  
    %   See also ZERNPOL, ZERNFUN2. $>1 'pV  
    %Uybp  
    %   Paul Fricker 11/13/2006 oomB/"Z  
    Y ::\;s  
    Vd^_4uqnV  
    % Check and prepare the inputs: XH&Fn+  
    % ----------------------------- b;K>Q!(|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /*s:ehj  
        error('zernfun:NMvectors','N and M must be vectors.') 4&;.>{ :;  
    end vAi NOpz#  
    yaV=e1W  
    if length(n)~=length(m) [?$ZB),L8  
        error('zernfun:NMlength','N and M must be the same length.') |j53' >N[  
    end [q]"_4L0;d  
    fI(u-z~,  
    n = n(:); z)"7qqA  
    m = m(:); ^~}|X%q3  
    if any(mod(n-m,2)) z!27#gbL  
        error('zernfun:NMmultiplesof2', ... c\~H_ ~F  
              'All N and M must differ by multiples of 2 (including 0).') Q >[*Y/`I  
    end (yQ]n91Q,  
    #+Z3!VS  
    if any(m>n) $+P9@Q$  
        error('zernfun:MlessthanN', ... 3`_jNPV1  
              'Each M must be less than or equal to its corresponding N.') F_;oZ   
    end *u.6,jw  
    iA*Z4FKkT  
    if any( r>1 | r<0 ) Rro|P_  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') p%e! &:!  
    end (;YO]U4  
    I$0JAy  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /9dV!u!;  
        error('zernfun:RTHvector','R and THETA must be vectors.') '8>h4s4  
    end GXB4&Q!C  
    l!e8=QlJ  
    r = r(:); NhQIpzL)  
    theta = theta(:); ;AKtb S;H  
    length_r = length(r); <b"ynoM.A  
    if length_r~=length(theta) )l*H$8  
        error('zernfun:RTHlength', ... )%%RI_J T  
              'The number of R- and THETA-values must be equal.') awuUaE  
    end 5} |O  
    Us.yKAHPV  
    % Check normalization: %lNWaA  
    % -------------------- !3Fj`Oh  
    if nargin==5 && ischar(nflag) B#o(21s  
        isnorm = strcmpi(nflag,'norm'); ~jAOGo/&6  
        if ~isnorm =:`1!W0I  
            error('zernfun:normalization','Unrecognized normalization flag.') R[ S*ON  
        end _=B(jJZ   
    else nS[0g^}  
        isnorm = false; >JS\H6  
    end l)D18  
    jo=XxA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g. f!Uc{  
    % Compute the Zernike Polynomials lJoMJS;S]}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (xK=/()}q  
    qhVDC  
    % Determine the required powers of r: k#`.!yI,  
    % ----------------------------------- ^te9f%>$l  
    m_abs = abs(m); Nt67Ye3;  
    rpowers = []; ZA>hN3fE'  
    for j = 1:length(n) TJ7on.;  
        rpowers = [rpowers m_abs(j):2:n(j)]; J/w?Fa<  
    end ^R1 nOo/  
    rpowers = unique(rpowers); VJD$nh #M5  
    >!E:$;i@  
    % Pre-compute the values of r raised to the required powers, m\U@L+L  
    % and compile them in a matrix: gd.P%KC!g  
    % ----------------------------- N<Rb<p%  
    if rpowers(1)==0 Kr=DoQ."d8  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -x3QgDno  
        rpowern = cat(2,rpowern{:}); vuuID24:  
        rpowern = [ones(length_r,1) rpowern]; w|>:mQnU  
    else T{]Tb=  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  ]N-K`c]  
        rpowern = cat(2,rpowern{:}); z|}Anc[\  
    end ;W?e@ Lgxk  
    6 )0$UW  
    % Compute the values of the polynomials: HCb7 `(@  
    % -------------------------------------- U?>P6p  
    y = zeros(length_r,length(n)); \`{ YqOT  
    for j = 1:length(n) E~2}rK+#)  
        s = 0:(n(j)-m_abs(j))/2; 9g"a`a?c  
        pows = n(j):-2:m_abs(j); [rU8%  
        for k = length(s):-1:1 p4<&NMG  
            p = (1-2*mod(s(k),2))* ... fbNVmjb$)  
                       prod(2:(n(j)-s(k)))/              ... !s\-i6S>  
                       prod(2:s(k))/                     ... n1DD+@  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... n0O- Bxhl  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); W: cOzJ  
            idx = (pows(k)==rpowers); }UHuFff,  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 65=i`!f  
        end l *yml  
         "1&C\}.7  
        if isnorm P et0yH  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 50l=B]M  
        end x V~`sqf  
    end 7tUl$H;I/R  
    % END: Compute the Zernike Polynomials KxGK`'E'r  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4punJg~1  
    Xko[Z;4v8'  
    % Compute the Zernike functions: (3%NudkwT  
    % ------------------------------ FX+Ra@I!  
    idx_pos = m>0; E{_p&FF  
    idx_neg = m<0; -1:yqF.x  
    n_v|fxF1  
    z = y; kJlRdt2  
    if any(idx_pos) BB|w-W=Kd  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); +[V?3Gdb  
    end xx#; )]WT  
    if any(idx_neg) 31  QT  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); g.s~Ph-G  
    end 0{@E=}}h  
    BQ)zm  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) %S. _3`A  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. -L NJ*?b  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated G yvEc3|@  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive VA&_dU]*  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, %u, H2 *  
    %   and THETA is a vector of angles.  R and THETA must have the same Z]@my,+Z;  
    %   length.  The output Z is a matrix with one column for every P-value, 9G[!"eZ}  
    %   and one row for every (R,THETA) pair. 2TXrVaM  
    % pi*cO  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike .D(H@3qA@  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) l:-$ulAx  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Bk_23ygO_  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 IE+{W~y\  
    %   for all p. &GGJ=c\  
    % `aD~\O  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 b}HL uX  
    %   Zernike functions (order N<=7).  In some disciplines it is F0qpJM,  
    %   traditional to label the first 36 functions using a single mode 0Dv r:]R  
    %   number P instead of separate numbers for the order N and azimuthal r7+"i9  
    %   frequency M. oCg|* c|+  
    % 4W5[1GE.  
    %   Example: 3q:U0&F  
    % [3lAKI  
    %       % Display the first 16 Zernike functions 9AF%Y:y  
    %       x = -1:0.01:1; {e~#6.$:  
    %       [X,Y] = meshgrid(x,x); $9YAq/#Q  
    %       [theta,r] = cart2pol(X,Y); o-a\T  
    %       idx = r<=1; td JA?  
    %       p = 0:15; #J~   
    %       z = nan(size(X)); O$z XDxn  
    %       y = zernfun2(p,r(idx),theta(idx)); 2T 3tKX  
    %       figure('Units','normalized') (SGX|,5X7  
    %       for k = 1:length(p) %])U(  
    %           z(idx) = y(:,k); Jx@_OE_vp  
    %           subplot(4,4,k) `& ufdn\j  
    %           pcolor(x,x,z), shading interp " b3-'/ &  
    %           set(gca,'XTick',[],'YTick',[]) {6Y|Z>  
    %           axis square ?, B4  
    %           title(['Z_{' num2str(p(k)) '}']) lldNIL6B%  
    %       end ,/2&HZd  
    % pLj[b4p9  
    %   See also ZERNPOL, ZERNFUN. &~=FX e0S  
    ['m7Wry  
    %   Paul Fricker 11/13/2006 &A}hx\_T  
    %9vl  
    ?}g^/g !  
    % Check and prepare the inputs: UahsX  
    % ----------------------------- aAKwC01?  
    if min(size(p))~=1 U}T{r%9  
        error('zernfun2:Pvector','Input P must be vector.') w.VjGPp  
    end "w&IO}j;=  
    9$k0  
    if any(p)>35 MB7`'W  
        error('zernfun2:P36', ... ylm # Xa  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... CS'LW;#[  
               '(P = 0 to 35).']) .Ht;xq  
    end &&% oazR=  
    }ChScY  
    % Get the order and frequency corresonding to the function number: t"JE+G  
    % ---------------------------------------------------------------- P{,A%t  
    p = p(:); .8wf {y  
    n = ceil((-3+sqrt(9+8*p))/2); `=V p 0tPI  
    m = 2*p - n.*(n+2); S=}1k,I  
    :6MV@{;PJ  
    % Pass the inputs to the function ZERNFUN: H-rxn  
    % ---------------------------------------- ?;VsA>PV  
    switch nargin f$76p!pDa  
        case 3 w_h{6Kc<  
            z = zernfun(n,m,r,theta); e%s1D  
        case 4 dGglt Y  
            z = zernfun(n,m,r,theta,nflag); 7KesfH?  
        otherwise ~R&rQJJeJ  
            error('zernfun2:nargin','Incorrect number of inputs.') :w q][0)  
    end  5@DCo  
    k%3)J"|/  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 118lb]  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. `*cqT  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of LofpBO6^  
    %   order N and frequency M, evaluated at R.  N is a vector of  LtH j  
    %   positive integers (including 0), and M is a vector with the JNY?] |=  
    %   same number of elements as N.  Each element k of M must be a V@]SKbK}wN  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) k,$/l1D  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 0r_~LN^|[  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix g4=C]\1  
    %   with one column for every (N,M) pair, and one row for every A1F$//a  
    %   element in R. '%4fQ%ID}  
    % i3mw.`7  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 7TEpjSuF  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is !yT=*Cj4  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to U# [T!E  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 w&f>VB~,1  
    %   for all [n,m]. |JR`" nF`  
    % R(pQu! K4  
    %   The radial Zernike polynomials are the radial portion of the 6eUGE4NF(  
    %   Zernike functions, which are an orthogonal basis on the unit V dvj*I  
    %   circle.  The series representation of the radial Zernike T[^&ZS]s  
    %   polynomials is <{8x-zbR+  
    % -~aG_Bp!($  
    %          (n-m)/2 #'O9Hn({  
    %            __ 7FkiT  
    %    m      \       s                                          n-2s 5x|$q kI  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r &>+5 8  
    %    n      s=0 *1!'ZfT;  
    % Du +_dr^4  
    %   The following table shows the first 12 polynomials. JL!^R_b&c  
    % Gh.?6kuh  
    %       n    m    Zernike polynomial    Normalization ^!C  
    %       --------------------------------------------- #tpz74O  
    %       0    0    1                        sqrt(2) {>vgtkJ  
    %       1    1    r                           2 cAGM|%  
    %       2    0    2*r^2 - 1                sqrt(6) ;7EeRM*  
    %       2    2    r^2                      sqrt(6) [O'aka Q  
    %       3    1    3*r^3 - 2*r              sqrt(8) Z ztp %2c  
    %       3    3    r^3                      sqrt(8) j~S=kYrGM  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ?D7zty+}^  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) g$mMH  
    %       4    4    r^4                      sqrt(10) zt9A-% \R  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 4,W,E4 7  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) {S-M]LE  
    %       5    5    r^5                      sqrt(12) _a9oHg  
    %       --------------------------------------------- ^8bc<c:P  
    % h+!R)q8M  
    %   Example: I(kEvfxc"  
    % Av yer/{  
    %       % Display three example Zernike radial polynomials /qwY/^  
    %       r = 0:0.01:1; 9bRUN<  
    %       n = [3 2 5]; TG8U=9qt  
    %       m = [1 2 1]; _,v?rFLE  
    %       z = zernpol(n,m,r); *' es(]W  
    %       figure  q^6#.}  
    %       plot(r,z) 3G 5xIr6   
    %       grid on K0o${%'@7  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ts_|7Ev  
    % SYQP7oG9oQ  
    %   See also ZERNFUN, ZERNFUN2. M&q~e@P  
    x[)]u8^A  
    % A note on the algorithm. ;gu4~LQw  
    % ------------------------ EBk-qd a}  
    % The radial Zernike polynomials are computed using the series kef% 5B  
    % representation shown in the Help section above. For many special }M"])B I  
    % functions, direct evaluation using the series representation can s S3RK  
    % produce poor numerical results (floating point errors), because 9C Ki$L  
    % the summation often involves computing small differences between snu?+*6  
    % large successive terms in the series. (In such cases, the functions  huyfo1(  
    % are often evaluated using alternative methods such as recurrence [h&s<<# D  
    % relations: see the Legendre functions, for example). For the Zernike |%#NA!e4wA  
    % polynomials, however, this problem does not arise, because the P|lDW|}D@  
    % polynomials are evaluated over the finite domain r = (0,1), and *}Gys/\!S  
    % because the coefficients for a given polynomial are generally all aR@+Qf  
    % of similar magnitude. r58<A'#  
    % -`z%<)!Y  
    % ZERNPOL has been written using a vectorized implementation: multiple L *|P'  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 5.oY$tb(  
    % values can be passed as inputs) for a vector of points R.  To achieve *V+,X  
    % this vectorization most efficiently, the algorithm in ZERNPOL 8:*ZuR|~  
    % involves pre-determining all the powers p of R that are required to *> Be w  
    % compute the outputs, and then compiling the {R^p} into a single :P%?!'M  
    % matrix.  This avoids any redundant computation of the R^p, and P\{s C6E  
    % minimizes the sizes of certain intermediate variables. cH|J  
    % L*4= b (3  
    %   Paul Fricker 11/13/2006 KyP@ hhj  
    (Nd)$Oq[4  
    %gSmOW2.c^  
    % Check and prepare the inputs: (G$Q\>  
    % ----------------------------- 3A~<|<}t  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [TqX"@4NS  
        error('zernpol:NMvectors','N and M must be vectors.') "WXUz  
    end RF -c`C  
    {,T=Siy  
    if length(n)~=length(m) x5;D'Y t"|  
        error('zernpol:NMlength','N and M must be the same length.') Ky8,HdAq  
    end Hv:~)h$  
    9U3}_  
    n = n(:); =eDC{/K  
    m = m(:); *r9D+}Y(4  
    length_n = length(n); k{lXK\zN  
    jJ2{g> P0P  
    if any(mod(n-m,2)) loBW#>  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') =1)9>=}  
    end 9q&~!>lt  
    :8N by$#V  
    if any(m<0) _pvt,pW  
        error('zernpol:Mpositive','All M must be positive.') P-yVc2YH  
    end B7[#z{8'#  
    6-5{7E}/b  
    if any(m>n) U!BZs Vx  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') #BH]`A J  
    end H xc>?  
    t)O]0) s  
    if any( r>1 | r<0 ) <@4V G  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') am| 81)|a  
    end p-!/p#  
    Pe11a zJ  
    if ~any(size(r)==1) 'cK{FiIT  
        error('zernpol:Rvector','R must be a vector.') &&"+\^3  
    end ~0Zy$L/D  
    rV-Xsf7Z  
    r = r(:); o##!S6:A  
    length_r = length(r); *N6sxFs  
    R-4#y%k<  
    if nargin==4 Qdc)S>gp  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); G%}k_vi&q  
        if ~isnorm &*Kk> 4  
            error('zernpol:normalization','Unrecognized normalization flag.') i"4;{C{s  
        end (~"#=fs.L  
    else %hz5)  
        isnorm = false; #B_H/9f(  
    end ,kFp%qNj  
    .^ba*qb`{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dtV7YPz4+  
    % Compute the Zernike Polynomials ClPE_Cfw~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :j32 :/u  
    \r3SvBwhFv  
    % Determine the required powers of r: /f=31<+MtF  
    % ----------------------------------- <?Z]h]C^o  
    rpowers = []; od&wfwk(  
    for j = 1:length(n) lxR]Bh+  
        rpowers = [rpowers m(j):2:n(j)]; $L'[_J  
    end sWVapu p?  
    rpowers = unique(rpowers); ?ihRt+eR~  
    fM(~>(q&  
    % Pre-compute the values of r raised to the required powers, A5s;<d0  
    % and compile them in a matrix: >YcaFnY  
    % ----------------------------- OgzKX>N`A  
    if rpowers(1)==0 *(Z\ "o!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); /3;]e3x  
        rpowern = cat(2,rpowern{:}); JL7;l0#  
        rpowern = [ones(length_r,1) rpowern]; EO/41O  
    else Ia[<;":U  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); e0]%ko"  
        rpowern = cat(2,rpowern{:}); xg'xuz$U  
    end A(n3<(O/{Z  
    \ #la8,+9  
    % Compute the values of the polynomials: _C,9c7K4  
    % -------------------------------------- zNg[%{mz  
    z = zeros(length_r,length_n); KppYe9?  
    for j = 1:length_n EZZE(dq@gf  
        s = 0:(n(j)-m(j))/2; tF.N  
        pows = n(j):-2:m(j); {"|la;*I  
        for k = length(s):-1:1 y-~_W 6\  
            p = (1-2*mod(s(k),2))* ... bicbCC6kC  
                       prod(2:(n(j)-s(k)))/          ... #6C<P!]V  
                       prod(2:s(k))/                 ... "1 UpoF'w  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... tY#Zl 54~{  
                       prod(2:((n(j)+m(j))/2-s(k))); *Xh#W7,<  
            idx = (pows(k)==rpowers); .dwbJT  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Z=]ujlD  
        end lWBewnLKE  
         (&X/n=UI  
        if isnorm ~6+>2|wIS  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); |+qsO ;  
        end  6NSSuK3  
    end J'yCVb)V  
    _v++NyZXx  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  dp:5iuS  
    a#3,qp!  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 BagV\\#v4  
    ` h1>rP  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)