切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11546阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 \L`x![$~q  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! /)`]p1c1%w  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 cc:$$_'L  
    function z = zernfun(n,m,r,theta,nflag) = ^Vp \  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Q'JK *.l  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N *'-t_F';  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 8n-Xt7z  
    %   unit circle.  N is a vector of positive integers (including 0), and  K+XUC  
    %   M is a vector with the same number of elements as N.  Each element 3,X8 5`v^  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ezCJq`b  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, BW}M/  
    %   and THETA is a vector of angles.  R and THETA must have the same >(wQx05^D  
    %   length.  The output Z is a matrix with one column for every (N,M) Yyr9Kj:  
    %   pair, and one row for every (R,THETA) pair. Q\T?t  
    % DvB{N`COd  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike c b&Yf1  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 6x=w-32+ y  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  S~E@A.7  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8lGM>(:o  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 6-0sBB9=u  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ZoSyc--Bv  
    % "Dc\w@`E 0  
    %   The Zernike functions are an orthogonal basis on the unit circle. q-ko)]  
    %   They are used in disciplines such as astronomy, optics, and 'Cz*p,  
    %   optometry to describe functions on a circular domain. RyG6_ G}  
    % }.Z `   
    %   The following table lists the first 15 Zernike functions. t|h c`|  
    % 5E1`qof  
    %       n    m    Zernike function           Normalization *Uj;a.  
    %       -------------------------------------------------- :#35mBe}k  
    %       0    0    1                                 1 %KkC1.yu<  
    %       1    1    r * cos(theta)                    2 i/H;4#Bz  
    %       1   -1    r * sin(theta)                    2 vt^7:! r  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) -aS@y.z  
    %       2    0    (2*r^2 - 1)                    sqrt(3) @"1Z;.S8V  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) u' Q82l&Y  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) v9Sk\9}S  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) <\O8D0.d  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) bt_c$TN  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) eEP{?F^I[  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) .{*l,  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (GC5r#AnS  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ,(zV~-:9  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2f@Cy+W'[  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 8ih_S2Cd  
    %       -------------------------------------------------- Ui"{0%  
    % N6\rjYx+7  
    %   Example 1: h6^|f%\w*i  
    % 9H/R@i[E  
    %       % Display the Zernike function Z(n=5,m=1) |iX>hJSl  
    %       x = -1:0.01:1; dcD#!v\0  
    %       [X,Y] = meshgrid(x,x); VHMQY*lk  
    %       [theta,r] = cart2pol(X,Y); >1;jBx>Qy%  
    %       idx = r<=1; lS7L|  
    %       z = nan(size(X)); {i?G:K  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); c%^B '  
    %       figure J -Lynvqm  
    %       pcolor(x,x,z), shading interp cs*E9  
    %       axis square, colorbar 1'Q6l  
    %       title('Zernike function Z_5^1(r,\theta)') (=;'>*L(  
    % *<y9.\z Y<  
    %   Example 2: 2,`X@N`\  
    % u)I\R\N  
    %       % Display the first 10 Zernike functions vYb4&VV  
    %       x = -1:0.01:1; Sw,*#98  
    %       [X,Y] = meshgrid(x,x); *fI n<Cc  
    %       [theta,r] = cart2pol(X,Y); oYTLC@98}  
    %       idx = r<=1; ".$kOH_:  
    %       z = nan(size(X)); gh\u@#$8  
    %       n = [0  1  1  2  2  2  3  3  3  3]; TK[[6IB  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; +y8Y@e}>  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Y6H?ZOq  
    %       y = zernfun(n,m,r(idx),theta(idx)); ~jzLw@"~$^  
    %       figure('Units','normalized') l!Xj UnRF  
    %       for k = 1:10 0F%8d@Y2  
    %           z(idx) = y(:,k); ~ZSX84~@u  
    %           subplot(4,7,Nplot(k)) 1/w8'Kf'u  
    %           pcolor(x,x,z), shading interp }F!Uu KR  
    %           set(gca,'XTick',[],'YTick',[]) UhL1Y NF_  
    %           axis square T$%QK?B  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) amC)t8L?  
    %       end U&u63 56  
    % gj @9(dk%  
    %   See also ZERNPOL, ZERNFUN2. LO)!Fj4|  
    {}ADsh@7d'  
    %   Paul Fricker 11/13/2006 aK;OzB)  
    ksOsJ~3)  
    t,JX6ni  
    % Check and prepare the inputs: {.A N4  
    % ----------------------------- /KF@Un_Ow  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) I[ \7Bf  
        error('zernfun:NMvectors','N and M must be vectors.') f7\X3v2W}3  
    end g =Xy{Vm  
    9t)Hi qj  
    if length(n)~=length(m) eS@j? Y0y  
        error('zernfun:NMlength','N and M must be the same length.') 4s9@4  
    end iJ^}{-  
    Y * rujn{  
    n = n(:); i]? Eq?k  
    m = m(:); >| ,`E  
    if any(mod(n-m,2)) U\:Y*Ai  
        error('zernfun:NMmultiplesof2', ... 7:pc%Ksq  
              'All N and M must differ by multiples of 2 (including 0).') }BI6dZ~2A  
    end u%z'.#r;a  
    d/OP+yzgZ  
    if any(m>n) vVvF e~y]  
        error('zernfun:MlessthanN', ... l`N#~<.  
              'Each M must be less than or equal to its corresponding N.') DMG'8\5C  
    end S%}G 8Ty  
     S9}I  
    if any( r>1 | r<0 ) B!x#|vGXL  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') YlbX_h2S"  
    end hIV]ZYbH  
    \zg R]|  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) JfWkg`LqL  
        error('zernfun:RTHvector','R and THETA must be vectors.') $ MH;v_'a  
    end :2S?|7U4  
    n ng|m  
    r = r(:); )M+po-6$1  
    theta = theta(:); a<\n$E#q  
    length_r = length(r); _xePh  
    if length_r~=length(theta) [.xY>\e  
        error('zernfun:RTHlength', ... }RadbJ{q=  
              'The number of R- and THETA-values must be equal.') l9Ol|Cb&  
    end  2hF^U+I}  
    :FS5BT$=  
    % Check normalization: t*H2;|zn_  
    % -------------------- bH/4f93Nb  
    if nargin==5 && ischar(nflag) I]W7FZ=o  
        isnorm = strcmpi(nflag,'norm'); r1-MO`6  
        if ~isnorm 9|<Li[  
            error('zernfun:normalization','Unrecognized normalization flag.') vkhPE(f  
        end 7<e}5nA/  
    else Ya\:C]   
        isnorm = false; xJ{r9~  
    end [>a3` 0M  
    dFw+nGN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lPxhqF5pP  
    % Compute the Zernike Polynomials yXDjM2oR/2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uCB9;+ Hjw  
    |\uj(|  
    % Determine the required powers of r: >YWK"~|i~  
    % ----------------------------------- 0{ mm%@o  
    m_abs = abs(m); .W~XX  
    rpowers = []; z*jaA;#  
    for j = 1:length(n) OeASB}  
        rpowers = [rpowers m_abs(j):2:n(j)]; fiWN^sTM  
    end U&])ow):  
    rpowers = unique(rpowers); hGV_K"~I0  
    )e3w-es~4  
    % Pre-compute the values of r raised to the required powers,  hO$Gx*e$  
    % and compile them in a matrix: 5|~g2Zz{;  
    % ----------------------------- vFdI?(c-  
    if rpowers(1)==0 @H#Fzoo.  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Sdmz (R  
        rpowern = cat(2,rpowern{:}); , p}:?uR  
        rpowern = [ones(length_r,1) rpowern]; Yl&[_ l  
    else 5\h 6"/6Df  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); G) KI{D  
        rpowern = cat(2,rpowern{:}); }FS_"0  
    end n4dNGp7\`  
    @, fvWNI  
    % Compute the values of the polynomials: W|fE]RY  
    % -------------------------------------- SzB<PP2  
    y = zeros(length_r,length(n)); `mteU"{bx  
    for j = 1:length(n) t27UlFX  
        s = 0:(n(j)-m_abs(j))/2; Pd&KAu|<`  
        pows = n(j):-2:m_abs(j); hu0z 36  
        for k = length(s):-1:1 ~L<"]V+B  
            p = (1-2*mod(s(k),2))* ... tKUW  
                       prod(2:(n(j)-s(k)))/              ... zo@vuB.  
                       prod(2:s(k))/                     ... P ah@d!%A  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +8Q @R)3  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); e< @$(w  
            idx = (pows(k)==rpowers); O@@nGSc@  
            y(:,j) = y(:,j) + p*rpowern(:,idx);  N#9N ^#1  
        end 6T4DuF   
         5&p}^hS5  
        if isnorm .-HM{6J  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); azIhp{rH w  
        end $Q#n'#c  
    end 7c(j1:Ku-  
    % END: Compute the Zernike Polynomials AcnY6:3Y|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f:\)! &W  
    8Pd9&/Y  
    % Compute the Zernike functions: w=_^n]`R  
    % ------------------------------ &1T)'Bn  
    idx_pos = m>0; Ewkx4,`Ff  
    idx_neg = m<0; {,Vvm*L/  
    "ADI .  
    z = y; '6NrL;  
    if any(idx_pos) P^F3,'N  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =PA?6Bm  
    end 6BA$v-VVU  
    if any(idx_neg) g#74c'+  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 3S_H&>K  
    end ;Ngk"5  
    6;Z`9PGp  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) \Cq4r4'  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. |) ~-Wy  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated qm/>\4eLt  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive e}{#VB<  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, M {'(+a[  
    %   and THETA is a vector of angles.  R and THETA must have the same 4Dzg r,V  
    %   length.  The output Z is a matrix with one column for every P-value, V/\Y(Mxc  
    %   and one row for every (R,THETA) pair. & .1-6  
    % XgVhb<l_  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike `'iO+/;GY  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) J?#vL\8  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) I__b$  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 0OG 3#pE  
    %   for all p. <f:(nGj  
    % _(m455HZ  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 $'>iNMtK{p  
    %   Zernike functions (order N<=7).  In some disciplines it is yph@H!@  
    %   traditional to label the first 36 functions using a single mode (FGy"o%TP'  
    %   number P instead of separate numbers for the order N and azimuthal z"|jCdZGM  
    %   frequency M. 0@{bpc rc  
    % $A5O>  
    %   Example: M9fQ,<c<6  
    % ,f)+|?wz  
    %       % Display the first 16 Zernike functions a"Iu!$&N  
    %       x = -1:0.01:1; : i.5 < f  
    %       [X,Y] = meshgrid(x,x); }U>K>"AZl  
    %       [theta,r] = cart2pol(X,Y); v~AshmP  
    %       idx = r<=1; f-i5tnh  
    %       p = 0:15; WQCnkP  
    %       z = nan(size(X)); $;=^|I4E  
    %       y = zernfun2(p,r(idx),theta(idx)); D,p 2MBr  
    %       figure('Units','normalized')  s=:LS  
    %       for k = 1:length(p) 73!NoDxb  
    %           z(idx) = y(:,k); 0#Us *:[6  
    %           subplot(4,4,k) z"  z$.c  
    %           pcolor(x,x,z), shading interp -0;{  
    %           set(gca,'XTick',[],'YTick',[]) >mvE[iXRG?  
    %           axis square  \>"Zn7  
    %           title(['Z_{' num2str(p(k)) '}']) ,H?e23G  
    %       end DsxNg  
    % hEo$Jz`  
    %   See also ZERNPOL, ZERNFUN. so.}WU  
    5G2ueRVb  
    %   Paul Fricker 11/13/2006 6IK>v*<  
    f$}g'r zl  
    O+'k4  
    % Check and prepare the inputs: ;^E\zs  
    % ----------------------------- daA&!vnbH*  
    if min(size(p))~=1 L?a4>uVY  
        error('zernfun2:Pvector','Input P must be vector.') F&7Z(  
    end kda*rl~c  
    )~$ejS  
    if any(p)>35 3zfiegY@wm  
        error('zernfun2:P36', ... ]o'dr r  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... suaP'0  
               '(P = 0 to 35).']) 8(NS;?  
    end Cv>~%<   
    4\V/A+<W  
    % Get the order and frequency corresonding to the function number: d8 v9[ 4  
    % ---------------------------------------------------------------- w0yzC0yBk  
    p = p(:); Ai 8+U)  
    n = ceil((-3+sqrt(9+8*p))/2); \(^]R,~*!b  
    m = 2*p - n.*(n+2); \zA3H$Df~  
    $Sm iN'7;  
    % Pass the inputs to the function ZERNFUN: x)%"i)  
    % ---------------------------------------- GM^H )8U  
    switch nargin tycVcr \(  
        case 3 6 AY~>p  
            z = zernfun(n,m,r,theta); =b)!l9TX  
        case 4 d{WOO)j  
            z = zernfun(n,m,r,theta,nflag); Y nTx)uW  
        otherwise -c0*  
            error('zernfun2:nargin','Incorrect number of inputs.') *fyaAv  
    end E\Iz:ES^  
    p@DVy2,EY  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) #~|esr/wf  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. U+ D#  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of eXLdb-  
    %   order N and frequency M, evaluated at R.  N is a vector of Ms%C:KG  
    %   positive integers (including 0), and M is a vector with the PCBV6Y7r  
    %   same number of elements as N.  Each element k of M must be a `J{{E,y @  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) "KC3+:tm  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is h^{ aG])  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix o/RGzPR  
    %   with one column for every (N,M) pair, and one row for every {FC<vx{42  
    %   element in R. 54s90  
    % s9u7zqCF  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- -s91/|n  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is hn&NypI  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to S =sL:FC  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ph ~#{B(\  
    %   for all [n,m]. 7{rRQ~s&g9  
    % ?IO3w{fmH  
    %   The radial Zernike polynomials are the radial portion of the q.ppYXJUXi  
    %   Zernike functions, which are an orthogonal basis on the unit `RqV\ 6G+  
    %   circle.  The series representation of the radial Zernike eNFA.*p<  
    %   polynomials is ,mD$h?g  
    % JQ]MkP  
    %          (n-m)/2 BMU#pK;P]  
    %            __ f[OJ qk  
    %    m      \       s                                          n-2s 4]cr1K ^  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r gi? wf  
    %    n      s=0 .+ic6  
    % 4J[csU  
    %   The following table shows the first 12 polynomials. Tkh?F5l  
    % #D+.z)iZn  
    %       n    m    Zernike polynomial    Normalization Ao9|t;i  
    %       --------------------------------------------- gX5.u9%C\  
    %       0    0    1                        sqrt(2) K}LF ${bS  
    %       1    1    r                           2 M!PK3  
    %       2    0    2*r^2 - 1                sqrt(6) fAT M?  
    %       2    2    r^2                      sqrt(6) eoiC.$~\  
    %       3    1    3*r^3 - 2*r              sqrt(8) o|VM{5  
    %       3    3    r^3                      sqrt(8) g3(?!f  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 3KKq1][  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) #t">tL  
    %       4    4    r^4                      sqrt(10) {\k:?w4  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) (rf8"T!"  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) vrsOA@ee3H  
    %       5    5    r^5                      sqrt(12) lYrW"(2  
    %       --------------------------------------------- yMb.~A^$J  
    % ':T"nORC  
    %   Example: 7<F{a"5P  
    % YQ}IE[J}v  
    %       % Display three example Zernike radial polynomials =XUt?5  
    %       r = 0:0.01:1; QnH~' k  
    %       n = [3 2 5]; _^w^tfH]  
    %       m = [1 2 1]; tlmfDQD  
    %       z = zernpol(n,m,r); 3.04Toq!  
    %       figure ]=5D98B  
    %       plot(r,z) _M[T8"e(  
    %       grid on Biy$p6  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') s|Zv>Qt  
    % \XG\  
    %   See also ZERNFUN, ZERNFUN2. TUR2|J@n  
    `vrLFPdO  
    % A note on the algorithm. mk?F+gh  
    % ------------------------ !r_2b! dy  
    % The radial Zernike polynomials are computed using the series ey[+"6Awne  
    % representation shown in the Help section above. For many special +q~dS.  
    % functions, direct evaluation using the series representation can h4? 'd+K  
    % produce poor numerical results (floating point errors), because +dK;\wT  
    % the summation often involves computing small differences between \;Q:a /ur9  
    % large successive terms in the series. (In such cases, the functions Bf6\KI<V2  
    % are often evaluated using alternative methods such as recurrence :#spL*FIx  
    % relations: see the Legendre functions, for example). For the Zernike Yg3emn|a  
    % polynomials, however, this problem does not arise, because the C C`Y r  
    % polynomials are evaluated over the finite domain r = (0,1), and ?(j:F2dU~  
    % because the coefficients for a given polynomial are generally all 8>V)SAI'  
    % of similar magnitude. Hz3KoO &  
    % j}@n`[V1  
    % ZERNPOL has been written using a vectorized implementation: multiple |1"n\4$  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] d} ]jw4  
    % values can be passed as inputs) for a vector of points R.  To achieve t>(}LV.  
    % this vectorization most efficiently, the algorithm in ZERNPOL | D,->k  
    % involves pre-determining all the powers p of R that are required to =(>pv,  
    % compute the outputs, and then compiling the {R^p} into a single ]kyGm2Ty9  
    % matrix.  This avoids any redundant computation of the R^p, and 2z0 27P-Q  
    % minimizes the sizes of certain intermediate variables. p EbyQ[  
    % ,qO2D_  
    %   Paul Fricker 11/13/2006 6J%yo[A(w  
    '"Y(2grP  
    si3@R?WR6*  
    % Check and prepare the inputs: .uu[MzMIu  
    % ----------------------------- G![JRJxQ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4BAG GD2  
        error('zernpol:NMvectors','N and M must be vectors.') 0:4w@"Q  
    end =GSe$f?  
    InR/g@n+D1  
    if length(n)~=length(m) Mi&jl_&  
        error('zernpol:NMlength','N and M must be the same length.') f 8836<c  
    end )Fh5*UC  
    5\eM3w'd  
    n = n(:); YhNO{4D  
    m = m(:); @a}jnl(2  
    length_n = length(n); uu+)r  
    * k ^?L  
    if any(mod(n-m,2)) ?mJ&zf|B8  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') I9;,qd%<T  
    end &S+o oj  
    $:SSm $k  
    if any(m<0) P+t`Rw  
        error('zernpol:Mpositive','All M must be positive.') lcYjwA  
    end JP*VR=0k?  
    ?hS&OtW   
    if any(m>n) 'PVxc %[  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Sn!5/9Y  
    end }IGoPCV|  
    Doc_rQYku  
    if any( r>1 | r<0 ) IG=#2 /$  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') RYuR&0_{  
    end n(tx'&U"R  
    bL]NSD  
    if ~any(size(r)==1) QNe siV0MI  
        error('zernpol:Rvector','R must be a vector.') 5|0}   
    end hO] vy>i;  
     d| OEZx  
    r = r(:); ErXzKf  
    length_r = length(r); 1'"TO5  
    T1_>qnSz  
    if nargin==4 =/SBZLR(9  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 5VR=D\j  
        if ~isnorm @UCr`>  
            error('zernpol:normalization','Unrecognized normalization flag.') kx31g,cf]w  
        end EwKFT FL  
    else OT{cP3;0*o  
        isnorm = false; ztb?4f q6)  
    end %UokR"  
    JOFQyhY0>m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?0J&U4  
    % Compute the Zernike Polynomials ft><Ql3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {~cM 6W]f  
    3P2x%Gp  
    % Determine the required powers of r: AMf{E  
    % ----------------------------------- 9qvKg`YSh  
    rpowers = []; {q1u[T&r  
    for j = 1:length(n) ;G|#i? JJ  
        rpowers = [rpowers m(j):2:n(j)]; ;Qq<5I"y  
    end ]CxD m  
    rpowers = unique(rpowers); ,zVS}!jRhy  
    ^2)<H7p  
    % Pre-compute the values of r raised to the required powers, 7w51UmO  
    % and compile them in a matrix: ^LAnR>mz^r  
    % ----------------------------- Ssg1p#0J  
    if rpowers(1)==0 }NpN<C+  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^Cy=L]  
        rpowern = cat(2,rpowern{:}); B3g # )  
        rpowern = [ones(length_r,1) rpowern]; *r(Qy0(  
    else ;(r,;S_`0  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +LwwI*;b  
        rpowern = cat(2,rpowern{:}); IF'Tj`yD  
    end Fv$oXg/  
    |e{ ^Yf4  
    % Compute the values of the polynomials: 0"J0JcFX  
    % -------------------------------------- Cm%|hk>fQ  
    z = zeros(length_r,length_n); r%\%tz'`j  
    for j = 1:length_n *w$3/  
        s = 0:(n(j)-m(j))/2; x@#aOf4<U  
        pows = n(j):-2:m(j); e82xBLxR%  
        for k = length(s):-1:1 Lq2ZgKd!  
            p = (1-2*mod(s(k),2))* ... jG["#5<?  
                       prod(2:(n(j)-s(k)))/          ... R@~=z5X( Q  
                       prod(2:s(k))/                 ... g1v=a  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... IN7Cpg~9%  
                       prod(2:((n(j)+m(j))/2-s(k))); K(r@JW  
            idx = (pows(k)==rpowers); ToR@XL!%rP  
            z(:,j) = z(:,j) + p*rpowern(:,idx); sWv!ig_  
        end A9Icn>3?`(  
         \=uD)9 V  
        if isnorm OF/hD2V  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); O;+ sAt  
        end {4eI} p<  
    end fUq:`#Q  
    1+ 9!W  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  9 4^b"hU  
    "0,FB4L[U5  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 K7@|2;e  
    Ql%B=vgKL  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)