非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 P!+'1KR
function z = zernfun(n,m,r,theta,nflag) J6L K
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. *=+td)S/1
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <8d^^0
% and angular frequency M, evaluated at positions (R,THETA) on the gx\&_)w N
% unit circle. N is a vector of positive integers (including 0), and N4L|;?
% M is a vector with the same number of elements as N. Each element E
,|xJjh
% k of M must be a positive integer, with possible values M(k) = -N(k) dIRm q+d^
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 1:f9J
% and THETA is a vector of angles. R and THETA must have the same 1n:8s'\
% length. The output Z is a matrix with one column for every (N,M) S$Q8>u6Wk
% pair, and one row for every (R,THETA) pair. }Ub6eXf(2
% c@/(B:@
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3b+d"`Y^S
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Hhari!RXC
% with delta(m,0) the Kronecker delta, is chosen so that the integral dt`{!lts'
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^(|vsFzn
% and theta=0 to theta=2*pi) is unity. For the non-normalized m0c P (
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. W!?7D0q
% ^xij{W`|
% The Zernike functions are an orthogonal basis on the unit circle. ;S57w1PbVA
% They are used in disciplines such as astronomy, optics, and mo[Zb0>
% optometry to describe functions on a circular domain. .)<(Oj|4
% 8;Yx<woR
% The following table lists the first 15 Zernike functions. ds?v'|
% o[cV1G
% n m Zernike function Normalization N1|$$9G+
% -------------------------------------------------- X!m9lV<
% 0 0 1 1 S%yd5<%_
% 1 1 r * cos(theta) 2 u"d~!j1
% 1 -1 r * sin(theta) 2 ? P(
ZA
% 2 -2 r^2 * cos(2*theta) sqrt(6) ,)iKH]lY=
% 2 0 (2*r^2 - 1) sqrt(3) L7VG`h;
% 2 2 r^2 * sin(2*theta) sqrt(6) Mi/&f
% 3 -3 r^3 * cos(3*theta) sqrt(8) )tl.s)"N
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ,:Lb7bFv>
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ad:&$
% 3 3 r^3 * sin(3*theta) sqrt(8) k[HAkB \{
% 4 -4 r^4 * cos(4*theta) sqrt(10) .8P.)%
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Er+nk`UR_
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Kwg4sr5"D
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s;64N'HH
% 4 4 r^4 * sin(4*theta) sqrt(10) Z| V`B `
% -------------------------------------------------- QoG cWJ
% `kU/NKq
% Example 1: 'rr^2d]`ST
% ^d~1E Er
% % Display the Zernike function Z(n=5,m=1) mL_j4=ER@
% x = -1:0.01:1; 6Qx#%,U^ J
% [X,Y] = meshgrid(x,x); `~ * @q!
% [theta,r] = cart2pol(X,Y); /6h(6 *JI
% idx = r<=1; DBT&DS
% z = nan(size(X)); pGK;1gVj
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 9Iz%ht
% figure t| 'N+-T3
% pcolor(x,x,z), shading interp $`-4Ax4%
% axis square, colorbar U
)l,'y2
% title('Zernike function Z_5^1(r,\theta)') yRiP{$E
% A _XhuQB;d
% Example 2: T9u <p=p
% hYM@?/(q
% % Display the first 10 Zernike functions Q~j`YmR|
% x = -1:0.01:1; :P@rkT3Q t
% [X,Y] = meshgrid(x,x); k}0^&Quc4
% [theta,r] = cart2pol(X,Y); \@1=stK:F
% idx = r<=1; !}r%
u."
% z = nan(size(X)); CJXg@\\/
% n = [0 1 1 2 2 2 3 3 3 3]; ]f_6 '|5A
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; `zE}1M%y
% Nplot = [4 10 12 16 18 20 22 24 26 28]; >$,y5 AJ&
% y = zernfun(n,m,r(idx),theta(idx)); ]sGHG^I6
% figure('Units','normalized') 9 `w)
% for k = 1:10 hQDTS>U
% z(idx) = y(:,k); +C(/Lyo}
% subplot(4,7,Nplot(k)) S -'fS2
% pcolor(x,x,z), shading interp y(=#WlK}
% set(gca,'XTick',[],'YTick',[]) y:h}z).
% axis square C,pJ`:P
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -atGlu2
% end &2=dNREJ}1
% ,ML[Wr'2
% See also ZERNPOL, ZERNFUN2. A6pjRxg
GKFq+]W
% Paul Fricker 11/13/2006 Kbb78S30
S.d^T](
*s>BG1$<
% Check and prepare the inputs: k!KDWb
% ----------------------------- =pznu+,
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `/MvQ/
error('zernfun:NMvectors','N and M must be vectors.') NSFs\a@1
end nYt/U\n!
QEu=-7@>
if length(n)~=length(m) f~_th @K
error('zernfun:NMlength','N and M must be the same length.') n]u<!.X
end !E-Pa5s
]+m/;&0
n = n(:); `St.+6^J
m = m(:); Ii^5\v|C
if any(mod(n-m,2)) F1Hh7
F
error('zernfun:NMmultiplesof2', ... >N?2""
'All N and M must differ by multiples of 2 (including 0).') jh.@-
end !Y:0c#MPH
wprX!)w<i
if any(m>n) TcGoSj<Z
error('zernfun:MlessthanN', ... xGG,2W+z
'Each M must be less than or equal to its corresponding N.') C^z\([k0er
end i]#+1Hf
`WOYoec
if any( r>1 | r<0 ) 1<<kA:d
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 1<h>B:
end BkZV!Eg
)|I5j];L
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .<K
iMh
error('zernfun:RTHvector','R and THETA must be vectors.') ]D!k&