切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11266阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 #FqFH>-*2  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Jcalf{W6  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 >]Mq)V9  
    function z = zernfun(n,m,r,theta,nflag) =cf{f]N  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. )"(V*Z  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N uY&=eQ_Cb  
    %   and angular frequency M, evaluated at positions (R,THETA) on the )u39}dpeu  
    %   unit circle.  N is a vector of positive integers (including 0), and {l0,T0  
    %   M is a vector with the same number of elements as N.  Each element m >]>$=%  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) o"'iX UJ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, PHQ{-b?4t  
    %   and THETA is a vector of angles.  R and THETA must have the same :D"@6PC]  
    %   length.  The output Z is a matrix with one column for every (N,M) _:wZmZU}  
    %   pair, and one row for every (R,THETA) pair. 3C277nx  
    % 9 '2=  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (bg}an  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), kRmj"9oA  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral xK$}QZ)  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, u$W Bc\ j  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized +?qf`p.{  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 84iJ[Fq{  
    % [X;>*-  
    %   The Zernike functions are an orthogonal basis on the unit circle. X3P&"}a  
    %   They are used in disciplines such as astronomy, optics, and R<Z^L~)  
    %   optometry to describe functions on a circular domain. sS C?io  
    % 98BYtxa  
    %   The following table lists the first 15 Zernike functions. ^4+r*YvcM  
    % T1l&B  
    %       n    m    Zernike function           Normalization >HE,'  
    %       -------------------------------------------------- `Jn,IDq  
    %       0    0    1                                 1 n4^*h4J7  
    %       1    1    r * cos(theta)                    2 N1PECLS?  
    %       1   -1    r * sin(theta)                    2 M[A-1]'  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 0r1g$mKb  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Oz :D.V 3~  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) g<f P:/  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) R"NGJu9  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Y;8 >=0ye  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) &kb\,mQ  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) smV!y8&  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) llNXQlP\B  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rqF"QU=l  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) /E)9v$!  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *yrnK3  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) u0xQ;BQ  
    %       -------------------------------------------------- 6A}eSG3  
    % xFOBF")  
    %   Example 1: 1:_=g#WH  
    % }xqXd%uz  
    %       % Display the Zernike function Z(n=5,m=1) m)r]F#@/  
    %       x = -1:0.01:1; o"RJ.w:dn  
    %       [X,Y] = meshgrid(x,x); 9J?W '8s5  
    %       [theta,r] = cart2pol(X,Y); Y=9j2 ]t  
    %       idx = r<=1; m`'=)x|  
    %       z = nan(size(X)); 9GThyY  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 5lO^;.cS,  
    %       figure [G\o+D?2  
    %       pcolor(x,x,z), shading interp r]9e^  
    %       axis square, colorbar 3)y{n%3L  
    %       title('Zernike function Z_5^1(r,\theta)') ?!H)zz6y  
    % @.k5MOn  
    %   Example 2: ovz#  
    % zHV|-R  
    %       % Display the first 10 Zernike functions BH5w@  
    %       x = -1:0.01:1; Oo kxg *!5  
    %       [X,Y] = meshgrid(x,x); sW?B7o?  
    %       [theta,r] = cart2pol(X,Y); [g+y_@9s  
    %       idx = r<=1; ~ Yl<S(/4  
    %       z = nan(size(X)); z`OkHX*+2|  
    %       n = [0  1  1  2  2  2  3  3  3  3]; H-Pq!9[DB  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;|6FdU  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; SBX|Bcyk*  
    %       y = zernfun(n,m,r(idx),theta(idx)); /tP7uVL R  
    %       figure('Units','normalized') Y xJ`-6  
    %       for k = 1:10 [.a;L">  
    %           z(idx) = y(:,k); C%]."R cMC  
    %           subplot(4,7,Nplot(k)) YwXXXh  
    %           pcolor(x,x,z), shading interp Evkt_vvf  
    %           set(gca,'XTick',[],'YTick',[]) K@6`-|I  
    %           axis square GQ<Ds{exs>  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) tn{8u7  
    %       end @89I#t6A.  
    % jXWNHIl)@  
    %   See also ZERNPOL, ZERNFUN2. D M}s0O$ 0  
    JR)/c6j  
    %   Paul Fricker 11/13/2006 7 5|pp  
    EI\v  
    XIRR Al(,  
    % Check and prepare the inputs: 2h<U  
    % ----------------------------- [fxuUmU  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;R!*I%  
        error('zernfun:NMvectors','N and M must be vectors.') gQ>2!Qc a-  
    end lbS?/f  
    6JH 56  
    if length(n)~=length(m) ]n5"Z,K  
        error('zernfun:NMlength','N and M must be the same length.') a.DX%C /5  
    end ec?V[v  
    T(V8; !  
    n = n(:); rrcwtLNbu  
    m = m(:); `L\)ahM  
    if any(mod(n-m,2)) f>z`i\1oO  
        error('zernfun:NMmultiplesof2', ... b=1%pX_  
              'All N and M must differ by multiples of 2 (including 0).') !}5*?k g  
    end xr.XU'  
    _f3 WRyN0  
    if any(m>n) 4V$fGjJ3  
        error('zernfun:MlessthanN', ... .=XD)>$  
              'Each M must be less than or equal to its corresponding N.') LN^UC$[tk  
    end @KA1"Wb_  
    > :Ze4}(  
    if any( r>1 | r<0 ) x@m<Ym-  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') wbi3lH:;  
    end Qn.[{rw  
    e:OyjG5_  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $KX[Zu%  
        error('zernfun:RTHvector','R and THETA must be vectors.') 9cfR)*Q  
    end hwVAXsF~  
    CZ3].DA|z  
    r = r(:); nJT4w|Yx  
    theta = theta(:); ` ?9T~,  
    length_r = length(r); bxwkTKr'  
    if length_r~=length(theta) HH8;J66I&  
        error('zernfun:RTHlength', ... +9[SVw8  
              'The number of R- and THETA-values must be equal.') <GF@L  
    end a4&:@`=  
    $"8d:N?I[  
    % Check normalization: 5+K;_)   
    % -------------------- >vujZw_0>  
    if nargin==5 && ischar(nflag) qS.)UaA  
        isnorm = strcmpi(nflag,'norm'); w!`Umll2  
        if ~isnorm xmr|'}Pt[  
            error('zernfun:normalization','Unrecognized normalization flag.') :wipE]~4t  
        end `f)(Y1%.  
    else ArzDI{1  
        isnorm = false; h/<=u9J  
    end os$nL'sq  
    eN/G i<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \H4U8)l  
    % Compute the Zernike Polynomials 4x,hj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hCC}d0gf`n  
    PZ,z15PG]  
    % Determine the required powers of r: GaBTj_3  
    % -----------------------------------  KG8W8&q  
    m_abs = abs(m); <9ifPSvJ  
    rpowers = []; yC !/PQ"  
    for j = 1:length(n) 7pet Hi  
        rpowers = [rpowers m_abs(j):2:n(j)]; XP?*=Z]  
    end /\E [  
    rpowers = unique(rpowers); m^I,}1H4  
    Zw$ OKU  
    % Pre-compute the values of r raised to the required powers, *)>do L  
    % and compile them in a matrix: 5v9Vk` 3'  
    % ----------------------------- `,Orf ZMb  
    if rpowers(1)==0 jN/ j\x'  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ssl&5AS  
        rpowern = cat(2,rpowern{:}); #3MKH8k&~  
        rpowern = [ones(length_r,1) rpowern]; 3t(c_:[%  
    else ^o d<JD4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 'jvpNn  
        rpowern = cat(2,rpowern{:}); 2o5;Uz1{  
    end `;F2n2@  
    FifbxL  
    % Compute the values of the polynomials: o\6iq  
    % -------------------------------------- ^8K/xo-  
    y = zeros(length_r,length(n)); c tI{^f:  
    for j = 1:length(n) -9o{vmB{  
        s = 0:(n(j)-m_abs(j))/2; C_->u4 -  
        pows = n(j):-2:m_abs(j); <KQ(c`KW7  
        for k = length(s):-1:1 MzTW8  
            p = (1-2*mod(s(k),2))* ... *YvRNHP  
                       prod(2:(n(j)-s(k)))/              ... x(~<tX~  
                       prod(2:s(k))/                     ... HI!4  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... C6QbBo  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 'M/ ([|@  
            idx = (pows(k)==rpowers); z"379b7cN  
            y(:,j) = y(:,j) + p*rpowern(:,idx); w>979g  
        end DDw''  
         $1 @,Qor  
        if isnorm  `w<J25  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Rs7 |}Dl}  
        end IOEM[zhb$  
    end Z8&' f,  
    % END: Compute the Zernike Polynomials 3?E}t*/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A';QuWdT  
    ~<r i97)  
    % Compute the Zernike functions: >Ko[Xb-8^_  
    % ------------------------------ P!<[U!<hH  
    idx_pos = m>0; d`%M g&  
    idx_neg = m<0; GAl+Zg##  
    WzlC*iv  
    z = y; ;n*J$B  
    if any(idx_pos) jv&+<j`r  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Q`6i=mB;  
    end mEDpKWBk  
    if any(idx_neg) MR;X&Up6!  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Kf.T\V4%  
    end 5 Op_*N{V  
    MCYl{uH!  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) M_1;$fWq  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. O<N#M{kc.  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated x';u CKWV  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive o`?zF+M0  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, EzT`,#b  
    %   and THETA is a vector of angles.  R and THETA must have the same ;l!`C':'  
    %   length.  The output Z is a matrix with one column for every P-value, GozPvR^/  
    %   and one row for every (R,THETA) pair. >^SEWZ_[  
    % qX6D1X1_  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike OW5t[~y]  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) V|FrN*m  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) bToq$%sCg  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 X0uJNHO  
    %   for all p. {j SmoA  
    % b?VV'{4  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36  .i/m  
    %   Zernike functions (order N<=7).  In some disciplines it is npH?4S-8G  
    %   traditional to label the first 36 functions using a single mode 2<r\/-#pU  
    %   number P instead of separate numbers for the order N and azimuthal Z4q~@|+%  
    %   frequency M. HW6.O|3  
    % j1U 5~%^  
    %   Example: T>d.#  
    % \N6\v5vh  
    %       % Display the first 16 Zernike functions +%#8k9Y  
    %       x = -1:0.01:1; Qvqqvk_tv  
    %       [X,Y] = meshgrid(x,x); 2 y8~#*O  
    %       [theta,r] = cart2pol(X,Y); M+Uyb7  
    %       idx = r<=1; #kcSQ'  
    %       p = 0:15; SbT5u3,'  
    %       z = nan(size(X)); 63&^BW  
    %       y = zernfun2(p,r(idx),theta(idx)); Lp&k3?W  
    %       figure('Units','normalized') <bUe/m  
    %       for k = 1:length(p) Xs$Ufi  
    %           z(idx) = y(:,k); <~"lie1  
    %           subplot(4,4,k) f =s&n}  
    %           pcolor(x,x,z), shading interp ^&[+H8$  
    %           set(gca,'XTick',[],'YTick',[]) =/9^, 6Q(  
    %           axis square 9 [Y-M  
    %           title(['Z_{' num2str(p(k)) '}']) N4{nG,Mo]  
    %       end P3o @gkXP  
    % (q;bg1\UK  
    %   See also ZERNPOL, ZERNFUN. Xu}U{x>  
    07_oP(;jT  
    %   Paul Fricker 11/13/2006 r o\1]`6  
    ^v ni&sJ  
    Z" v<0]rN  
    % Check and prepare the inputs: %dttE)oH?  
    % ----------------------------- pGGmA;TC1  
    if min(size(p))~=1 nzsl@1s  
        error('zernfun2:Pvector','Input P must be vector.') wWjG JvJ  
    end 3S~(:#|  
    gNj7@bX~  
    if any(p)>35 (K{5fC  
        error('zernfun2:P36', ... IOl+t,0x&  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... t~p y=\  
               '(P = 0 to 35).']) Zq"7,z7  
    end }*wLEa  
    3YL l;TP_  
    % Get the order and frequency corresonding to the function number: !{UTD+|=N  
    % ---------------------------------------------------------------- &0 \ ci9o  
    p = p(:); Af-UScD%G  
    n = ceil((-3+sqrt(9+8*p))/2); TwahR:T   
    m = 2*p - n.*(n+2); lxb zHlX  
    )e%}b -I'r  
    % Pass the inputs to the function ZERNFUN: AR&:Q4r|  
    % ---------------------------------------- DSyXr~p8  
    switch nargin cDkV;$  
        case 3 4 J^Q]-Z  
            z = zernfun(n,m,r,theta); ;sOsT?)7$  
        case 4 zr_yO`{  
            z = zernfun(n,m,r,theta,nflag); !DXNo(:r  
        otherwise ;y>a nE}n{  
            error('zernfun2:nargin','Incorrect number of inputs.') ^ 4>k%d  
    end `dkV_ O0  
    yi6N-7  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) MDa7 B +4  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. }F=^O[  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 6z,Dyy]tl  
    %   order N and frequency M, evaluated at R.  N is a vector of y-aRXF=W  
    %   positive integers (including 0), and M is a vector with the %5'6Tj  
    %   same number of elements as N.  Each element k of M must be a +Wn&,?3^  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ,[rPe\w.z  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is al^!,ykc  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix &l2TeC@;  
    %   with one column for every (N,M) pair, and one row for every i775:j~zx0  
    %   element in R. Qs 2.ef?  
    % DocbxB={I  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ~2 *9{  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is j]4,<ppWSH  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to |i %2%V#  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Sb&lhgW]c  
    %   for all [n,m]. k[|~NLB8  
    % ,XKCz ]8V  
    %   The radial Zernike polynomials are the radial portion of the !7p}C-RZp  
    %   Zernike functions, which are an orthogonal basis on the unit l&(l$@t  
    %   circle.  The series representation of the radial Zernike $K}DB N; 4  
    %   polynomials is (c\hy53dP  
    % Xz{~3ih  
    %          (n-m)/2 UmU:j@ xvg  
    %            __ 8G^<[`.@j  
    %    m      \       s                                          n-2s K`%tGVY  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Zk-~a r  
    %    n      s=0 [3/VCYje  
    % },-*  
    %   The following table shows the first 12 polynomials. A$/\1282  
    % eCbf9B  
    %       n    m    Zernike polynomial    Normalization "9y( }  
    %       --------------------------------------------- <E,%@  
    %       0    0    1                        sqrt(2) ?? qq:`s  
    %       1    1    r                           2 jQs>`P-CM  
    %       2    0    2*r^2 - 1                sqrt(6) yJx?M  
    %       2    2    r^2                      sqrt(6) @\P4/+"9  
    %       3    1    3*r^3 - 2*r              sqrt(8) F3U`ueP  
    %       3    3    r^3                      sqrt(8) Fzq41jiS  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) oDB`iiBXQ  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) `u'bRp  
    %       4    4    r^4                      sqrt(10) q1VH5'p@  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 9/o vKpY  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) m"2d$vro"  
    %       5    5    r^5                      sqrt(12) ^_+XDO  
    %       --------------------------------------------- _wDS#t;!M  
    % |Bo .4lX  
    %   Example: d3Di/Iej   
    % TbVn6V'  
    %       % Display three example Zernike radial polynomials Z?NW1m()F  
    %       r = 0:0.01:1; V\5 L?}  
    %       n = [3 2 5]; $0A~uDbs  
    %       m = [1 2 1]; G'z{b$?/[  
    %       z = zernpol(n,m,r); 3.Gj4/f  
    %       figure s0u{d qP  
    %       plot(r,z) Y'VBz{brf  
    %       grid on k0z&v <  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ]88];?KS}  
    % VaONd0Z I  
    %   See also ZERNFUN, ZERNFUN2. @p=AWi}\  
    jvy$t$az  
    % A note on the algorithm. }YhtUWz].  
    % ------------------------ Ddju~510  
    % The radial Zernike polynomials are computed using the series 6=hk=2]f  
    % representation shown in the Help section above. For many special rNOES3[~  
    % functions, direct evaluation using the series representation can VR{+f7:}  
    % produce poor numerical results (floating point errors), because h@{_duu  
    % the summation often involves computing small differences between 0u B'g+MU`  
    % large successive terms in the series. (In such cases, the functions c"tJld5F_  
    % are often evaluated using alternative methods such as recurrence $(pF;_W  
    % relations: see the Legendre functions, for example). For the Zernike Mj=$y?d ]  
    % polynomials, however, this problem does not arise, because the  )v4b  
    % polynomials are evaluated over the finite domain r = (0,1), and =3 ~/:8o  
    % because the coefficients for a given polynomial are generally all ;lX(}2tXW  
    % of similar magnitude. q% >'4_  
    % Z)9g~g94  
    % ZERNPOL has been written using a vectorized implementation: multiple nz.{P@[Qk  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] /$N~O1"0)  
    % values can be passed as inputs) for a vector of points R.  To achieve %^. %OCX:  
    % this vectorization most efficiently, the algorithm in ZERNPOL Q^Ql\  
    % involves pre-determining all the powers p of R that are required to sZgRt  
    % compute the outputs, and then compiling the {R^p} into a single IeX^4 rc(  
    % matrix.  This avoids any redundant computation of the R^p, and oEz%={f  
    % minimizes the sizes of certain intermediate variables. #V02hs1  
    % i+3fhV  
    %   Paul Fricker 11/13/2006 Joe_PS  
    SzD KByi  
    d5 Edu44  
    % Check and prepare the inputs: 4\ c,)U}  
    % ----------------------------- \VMD$zZx  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7}O.wUKw%  
        error('zernpol:NMvectors','N and M must be vectors.') Z(>'0]G  
    end #L}+H!Myh  
    b^c9po  
    if length(n)~=length(m) #zUXyT#X  
        error('zernpol:NMlength','N and M must be the same length.') qm*}U3K  
    end 2Se?J)MN  
    v60^4K>  
    n = n(:); kUx&pYv  
    m = m(:); J<gJc*Q  
    length_n = length(n); S/ywA9~3Q  
    >kZ57,  
    if any(mod(n-m,2)) lS^(&<{  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') FbnO/! $8  
    end -~" :f8  
    f;SC{2f  
    if any(m<0) ;^Sr"v6r>u  
        error('zernpol:Mpositive','All M must be positive.') VQI(Vp|  
    end {%v-(  
    x3ERCqTR  
    if any(m>n) f ).1]~  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') vP@v.6gS,  
    end e(F42;$$  
    zjL.Bhiud  
    if any( r>1 | r<0 ) wu9=N ^x  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.')  >YtdA  
    end 60=m  
    lOwS&4UT  
    if ~any(size(r)==1) S\6[EQ65  
        error('zernpol:Rvector','R must be a vector.') {+<P:jbz;  
    end Si 9Z>MR  
    Z+`{7G?4m  
    r = r(:); L%}zVCg  
    length_r = length(r); ;8S/6FI  
    39F O f  
    if nargin==4 |IoB?^_h  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Awv`)"RAR  
        if ~isnorm RC|!+ TD  
            error('zernpol:normalization','Unrecognized normalization flag.') YKbCdLQ  
        end \AUI|M;'  
    else  8@{OR"Ec  
        isnorm = false; 8mLP5s!7  
    end MF3b{|Z  
    Rd7_~.Bo  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g[>\4B9t  
    % Compute the Zernike Polynomials }0`nvAf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,h\sF#|  
    @;xMs8@  
    % Determine the required powers of r: <WXzh5D2  
    % ----------------------------------- 1 Q-bYJG  
    rpowers = []; C'=k&#<-  
    for j = 1:length(n) &0TVi  
        rpowers = [rpowers m(j):2:n(j)]; +bK.NcS  
    end oBq 49u1  
    rpowers = unique(rpowers); 'evj,zFhW  
    ]{ BE r*  
    % Pre-compute the values of r raised to the required powers, *tOG*hwdT  
    % and compile them in a matrix: R8L_J6Kpa  
    % ----------------------------- n 26Y]7N  
    if rpowers(1)==0 6J~12TU,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); CSbI85F  
        rpowern = cat(2,rpowern{:}); X.K<4N0A9J  
        rpowern = [ones(length_r,1) rpowern]; ki0V8]HP  
    else =ItkFjhBc  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); *?+V65~dW  
        rpowern = cat(2,rpowern{:}); Dlo xrdOY&  
    end FEPXuCb  
    fW`&'!  
    % Compute the values of the polynomials: &bqT /H18  
    % -------------------------------------- )5JU:jNy  
    z = zeros(length_r,length_n); .,~(%#Wl$  
    for j = 1:length_n G1t\Q-|l0  
        s = 0:(n(j)-m(j))/2; YJs|c\eq?  
        pows = n(j):-2:m(j); aw ?=hXR!  
        for k = length(s):-1:1 /:<IIqO.  
            p = (1-2*mod(s(k),2))* ... o]{uc,  
                       prod(2:(n(j)-s(k)))/          ... E| YdcS  
                       prod(2:s(k))/                 ... h=kQ$`j6  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 3ZTE<zRQ  
                       prod(2:((n(j)+m(j))/2-s(k))); Iu~\L0R427  
            idx = (pows(k)==rpowers); VKm!Ri$  
            z(:,j) = z(:,j) + p*rpowern(:,idx); /!}'t  
        end v{i7h|e  
         M fk2mIy  
        if isnorm e&MC|US=\  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); obK*rdg ,  
        end *'"T$ib  
    end k{tMzx]F__  
    SxyONp.$\  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  -P=g3Q i  
    {B$2"q/~  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 <>SdVif]  
    L/}iy}  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)