切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10983阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 PCPf*G>  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! kt{C7qpD  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 wKk 3)@il  
    function z = zernfun(n,m,r,theta,nflag) >wKu6- ]a  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 7k[pvd|L  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N hG3m7ht  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ]D LZ&5pv  
    %   unit circle.  N is a vector of positive integers (including 0), and PNbcy!\U  
    %   M is a vector with the same number of elements as N.  Each element %9T~8L @.  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) j9URl$T:  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, LAv:+o(m/  
    %   and THETA is a vector of angles.  R and THETA must have the same LBmM{Gu  
    %   length.  The output Z is a matrix with one column for every (N,M) 4jX@m  
    %   pair, and one row for every (R,THETA) pair. |Bx||=z`  
    % C}mYt/  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike V(;55ycr  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;Y'8:ncDn  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral GS ;HtUQ  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 7~wFU*P1  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized =Kc|C~g  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. |*^8~u3J"  
    % L#`2.nU  
    %   The Zernike functions are an orthogonal basis on the unit circle. }_{y|NW  
    %   They are used in disciplines such as astronomy, optics, and Nfv="t9e  
    %   optometry to describe functions on a circular domain. {ExII<=6  
    % 0A#*4ap  
    %   The following table lists the first 15 Zernike functions. 7_9+=. +X5  
    % {I0w`xe  
    %       n    m    Zernike function           Normalization _urG_~q  
    %       -------------------------------------------------- *8$>Whr  
    %       0    0    1                                 1 3ty4D2y  
    %       1    1    r * cos(theta)                    2 (U|)xA]y!  
    %       1   -1    r * sin(theta)                    2 (M ]XNn  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Mv.Ciyc  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 6xH;: B)d  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) j4;Du>obQ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 2E^"r jLm  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) fL!V$]HNt  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) EjWgaV  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) :KEq<fEI  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 5;W\2yj  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vO\:vp4fH  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) a9[mZVMgUK  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y!SE;N&  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) }>2t&+v+  
    %       -------------------------------------------------- XZ.7c{B<  
    % ;\N79)Gk  
    %   Example 1: b -PSm=`  
    % oZgHSRRL  
    %       % Display the Zernike function Z(n=5,m=1) 9khjwt  
    %       x = -1:0.01:1; L e*`r2  
    %       [X,Y] = meshgrid(x,x); gs?8Wzh90*  
    %       [theta,r] = cart2pol(X,Y); /@VsqD  
    %       idx = r<=1; 8tU>DJ}0  
    %       z = nan(size(X)); d] U`?A,  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); v@VLVf)>9^  
    %       figure i8K_vo2Z)  
    %       pcolor(x,x,z), shading interp (Aorx #z  
    %       axis square, colorbar 6DB0ni  
    %       title('Zernike function Z_5^1(r,\theta)') o&~dGG4J  
    % Y?<)Dg.[  
    %   Example 2: _ w/_(k  
    % wHf&R3fg  
    %       % Display the first 10 Zernike functions * -0>3  
    %       x = -1:0.01:1; T/ik/lFI  
    %       [X,Y] = meshgrid(x,x); IXnb]q.  
    %       [theta,r] = cart2pol(X,Y); U_]=E<el  
    %       idx = r<=1; >?z:2@Q)B  
    %       z = nan(size(X)); wh%xkXa[ur  
    %       n = [0  1  1  2  2  2  3  3  3  3]; rWA6X DM7  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; h\(B#SN  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; C,fY.CeI  
    %       y = zernfun(n,m,r(idx),theta(idx)); J,??x0GDx,  
    %       figure('Units','normalized') I!P4(3skAB  
    %       for k = 1:10 E>E*ZZuhj  
    %           z(idx) = y(:,k); }MP>]8Aq  
    %           subplot(4,7,Nplot(k)) Xx_tpC?  
    %           pcolor(x,x,z), shading interp ?ty>}.c t  
    %           set(gca,'XTick',[],'YTick',[]) P$_&  
    %           axis square ~(P&g7u  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 30s; }  
    %       end 6ZcXS  
    % U9 #w  
    %   See also ZERNPOL, ZERNFUN2. V@[rf<,  
    [ 7g><  
    %   Paul Fricker 11/13/2006 eTT) P  
    S`0NPGn;@[  
    5Q W}nRCZ  
    % Check and prepare the inputs: |#k@U6`SG  
    % ----------------------------- M 7rIi\4K4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :|rPT)yT]  
        error('zernfun:NMvectors','N and M must be vectors.') nq1 'F  
    end /& r|ec5  
    M*w'1fT  
    if length(n)~=length(m) sef]>q  
        error('zernfun:NMlength','N and M must be the same length.') nBkh:5E5%  
    end &kzj?xK=(j  
    (!3;X"l  
    n = n(:); A|L'ih/  
    m = m(:); #Y2i*:<  
    if any(mod(n-m,2)) 3@_Elu  
        error('zernfun:NMmultiplesof2', ... {]^O:i"  
              'All N and M must differ by multiples of 2 (including 0).') 22&;jpL'?  
    end YHB9mZi  
    1Ipfw  
    if any(m>n) [*Uu#9  
        error('zernfun:MlessthanN', ... i7w(S3a  
              'Each M must be less than or equal to its corresponding N.') 2 o4^  
    end p $Hi[upy  
    MLr-, "gs  
    if any( r>1 | r<0 ) t0Mx!p'T  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') \vRd}   
    end WF[bO7:  
    j/KO|iNL2  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) T]9m:z X9s  
        error('zernfun:RTHvector','R and THETA must be vectors.') v7,$7@$:\  
    end iX"C/L|JN  
    9AQxNbs  
    r = r(:); 3TS_-l  
    theta = theta(:); g9~]s 9  
    length_r = length(r); cj$d=k~  
    if length_r~=length(theta) /<{:I \<  
        error('zernfun:RTHlength', ... TB!(('  
              'The number of R- and THETA-values must be equal.') r@kP*  
    end > ' i  
    ) #+^ sAO  
    % Check normalization: V 1/p_)A  
    % -------------------- ?6"{!s{v  
    if nargin==5 && ischar(nflag) ~b)74M/  
        isnorm = strcmpi(nflag,'norm'); [9o4hw  
        if ~isnorm !5Sd2<N  
            error('zernfun:normalization','Unrecognized normalization flag.') G8J*Wnwu[K  
        end ^5; `-Ky  
    else gE])!GMM3  
        isnorm = false; @7 <uMasfp  
    end ypdT&5Mqb!  
    t9cl"F=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'xE _Cj  
    % Compute the Zernike Polynomials )Xtn k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% = 1.9/hW  
    ] )}]/Qw  
    % Determine the required powers of r: 8gy_Yj&{P  
    % ----------------------------------- !EIjN  
    m_abs = abs(m); x@KZ ]  
    rpowers = []; qfoD  
    for j = 1:length(n) t#i,1aHA  
        rpowers = [rpowers m_abs(j):2:n(j)]; j)C:$  
    end .(CP. d  
    rpowers = unique(rpowers); = ieag7!  
    D5,P)[  
    % Pre-compute the values of r raised to the required powers, `bjizS'^  
    % and compile them in a matrix: ZJ*g)) k7  
    % ----------------------------- ]#2Y e7+  
    if rpowers(1)==0 qIMA6u/  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ch \&GzQ  
        rpowern = cat(2,rpowern{:}); |r%D\EB  
        rpowern = [ones(length_r,1) rpowern]; 36.N>G,  
    else 6CbxuzYer  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); tptN6Isuh  
        rpowern = cat(2,rpowern{:}); D BE4&  
    end [`RX*OH2  
    H<EQu|f&x  
    % Compute the values of the polynomials: 67SV~L#%O  
    % -------------------------------------- `n5"0QRd  
    y = zeros(length_r,length(n));  rl2&^N  
    for j = 1:length(n) ,#?uJTLH  
        s = 0:(n(j)-m_abs(j))/2; j hbonuV_  
        pows = n(j):-2:m_abs(j); kn"(mJe$  
        for k = length(s):-1:1 a ^d8I  
            p = (1-2*mod(s(k),2))* ... sZGj"_-Hzu  
                       prod(2:(n(j)-s(k)))/              ... PjA6Ji;Hu  
                       prod(2:s(k))/                     ... uvP2Wgt  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... jh2t9SI~  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9}a_:hAy/  
            idx = (pows(k)==rpowers); G6@M&u5RT  
            y(:,j) = y(:,j) + p*rpowern(:,idx); l>*"mh  
        end OyV<u@[i  
         0sca4G0{  
        if isnorm :0 & X^]\  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); OCZaQ33  
        end LJk%#yV|_  
    end K*UgX(xu4P  
    % END: Compute the Zernike Polynomials ,1OyN]f3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w }Uhd ,  
    b306&ZVEk  
    % Compute the Zernike functions: HK|ynBAo  
    % ------------------------------ WOuEWw=  
    idx_pos = m>0; ib{-A&  
    idx_neg = m<0; Q'_z<V  
    Vq;dJ%sY  
    z = y; iY"l}.7)  
    if any(idx_pos) H"ZZ.^"5FV  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M9zfT !-  
    end #Zrlp.M4  
    if any(idx_neg) E dZ\1'&/9  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); g~(E>6Y  
    end oy<WsbnS  
    E4 m`  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) e=O,B8)_  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. L:@7tc.  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated $56,$K`H  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 3}e%[AKh  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Q-1vw6d  
    %   and THETA is a vector of angles.  R and THETA must have the same V+O"j^Z_J  
    %   length.  The output Z is a matrix with one column for every P-value, lRXK\xIP ,  
    %   and one row for every (R,THETA) pair. itC-4^  
    % rtc9wu  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike _%QhOY5tv"  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) JQ"U4GVp  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) i':C)7  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 qgfi\/$6  
    %   for all p. eUg~)m5G  
    % |P%Jw,}]9  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 wiiCd  
    %   Zernike functions (order N<=7).  In some disciplines it is D*lKn62  
    %   traditional to label the first 36 functions using a single mode K.0:C`C  
    %   number P instead of separate numbers for the order N and azimuthal c"[cNZo  
    %   frequency M. 1')%`~  
    % &Y }N|q-  
    %   Example: <_7*67{  
    % )rC6*eR  
    %       % Display the first 16 Zernike functions '*3h!lW1.  
    %       x = -1:0.01:1; ?"g!  
    %       [X,Y] = meshgrid(x,x);  P Y  
    %       [theta,r] = cart2pol(X,Y); *6VF $/rP  
    %       idx = r<=1; 8SGo9[U2  
    %       p = 0:15; O&Y*pOg  
    %       z = nan(size(X)); /HaHH.e  
    %       y = zernfun2(p,r(idx),theta(idx)); xoN3  
    %       figure('Units','normalized') ml+; Rmvb  
    %       for k = 1:length(p) "yS _s  
    %           z(idx) = y(:,k); B8}Nvz /  
    %           subplot(4,4,k) u?}(P_9  
    %           pcolor(x,x,z), shading interp adR)Uq9  
    %           set(gca,'XTick',[],'YTick',[]) ?U2<  
    %           axis square B\XKw'   
    %           title(['Z_{' num2str(p(k)) '}']) w9bbMx  
    %       end sr{a(4*\  
    %  bJX)$G  
    %   See also ZERNPOL, ZERNFUN. Ck) * &  
    ye,>A.  
    %   Paul Fricker 11/13/2006 N'GeHByIT  
    }n>p4W"OM  
    >7QvK3S4%  
    % Check and prepare the inputs: c_4[e5z  
    % ----------------------------- uo@n(>}EL  
    if min(size(p))~=1 7Mg=b%IYs  
        error('zernfun2:Pvector','Input P must be vector.') N$U$5;r~`  
    end )% ~OH  
    : qd`zG3  
    if any(p)>35 bAx-"Lu  
        error('zernfun2:P36', ... oY933i@l)P  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... _I:/ZF5  
               '(P = 0 to 35).']) FG.em  
    end Q$zO83  
    ]7Tkkw$  
    % Get the order and frequency corresonding to the function number: Hl{S]]z  
    % ---------------------------------------------------------------- ;)D];u|_  
    p = p(:); 0.8  2kl  
    n = ceil((-3+sqrt(9+8*p))/2); NTYg[VTr  
    m = 2*p - n.*(n+2); JzQ)jdvp  
    tFp Ygff<  
    % Pass the inputs to the function ZERNFUN: pHLB= r  
    % ---------------------------------------- w5Y04J  
    switch nargin iO|se:LY<  
        case 3 UG+d-&~Ll  
            z = zernfun(n,m,r,theta); &m-PC(W+  
        case 4 RO 4Z?tz  
            z = zernfun(n,m,r,theta,nflag); ^")Q YE  
        otherwise < t,zaIi  
            error('zernfun2:nargin','Incorrect number of inputs.') A#EDk U,  
    end Cv6'`",Yzm  
    TFlet"ge=  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) E8$20Ue  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. [q?<Qe  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of zzTfYf)  
    %   order N and frequency M, evaluated at R.  N is a vector of K1 EynU I  
    %   positive integers (including 0), and M is a vector with the B-ngn{Yc   
    %   same number of elements as N.  Each element k of M must be a X' H[7 ^W  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) #`CA8!j!!  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is <D<4BnZ(  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Pg,b-W?n*  
    %   with one column for every (N,M) pair, and one row for every oHd FMD@  
    %   element in R. I&}L*Z?`  
    % V58wU:li  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Mm.<r-b  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is *W,]>v0%T  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to %b&". mN  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 LlX{#R  
    %   for all [n,m]. ! h"Kq>9 T  
    % Rdvk ml@@  
    %   The radial Zernike polynomials are the radial portion of the q rJ`1  
    %   Zernike functions, which are an orthogonal basis on the unit DS+}UO  
    %   circle.  The series representation of the radial Zernike y"bByd|6  
    %   polynomials is t<#mP@Mz=N  
    % #hfXZVD  
    %          (n-m)/2 *X'Y$x>f  
    %            __ F U_jGwD  
    %    m      \       s                                          n-2s }zkHJxZgE  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r $$|rrG  
    %    n      s=0 7Ri46Tkt  
    % '&x#rjo#  
    %   The following table shows the first 12 polynomials. ]zj9A]i:a  
    % SQBa;hvgM  
    %       n    m    Zernike polynomial    Normalization }Lc-7[/  
    %       --------------------------------------------- Y-kt.X/Z-  
    %       0    0    1                        sqrt(2) %HGD;_bhI  
    %       1    1    r                           2 UK595n;P  
    %       2    0    2*r^2 - 1                sqrt(6) 6t>.[Y"v  
    %       2    2    r^2                      sqrt(6) ii[F]sR\  
    %       3    1    3*r^3 - 2*r              sqrt(8) .AR#&mL9  
    %       3    3    r^3                      sqrt(8) K&POyOvT  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) .a O,8M  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Rp.Sj{<2  
    %       4    4    r^4                      sqrt(10) mg^I=kpk  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) sD{Wxv  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) B:5Rr}eY+  
    %       5    5    r^5                      sqrt(12) K&vF0*gN3  
    %       --------------------------------------------- ah+~y,Gl  
    % >zw.GwN|  
    %   Example: U{7w#>V .  
    % ]$ L|  
    %       % Display three example Zernike radial polynomials f!\lg  
    %       r = 0:0.01:1; }YB*]<]  
    %       n = [3 2 5]; {@eJtF+2  
    %       m = [1 2 1]; {IxA)v-`  
    %       z = zernpol(n,m,r); Z,sv9{4r  
    %       figure 7E!IF>`  
    %       plot(r,z) k.5u  
    %       grid on OVm\  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Li!Vx1p;u.  
    % p`b"-[93  
    %   See also ZERNFUN, ZERNFUN2. wT;0w3.Z  
    hBS.a6u1'd  
    % A note on the algorithm. Ja,wfRq  
    % ------------------------ x.7]/)  
    % The radial Zernike polynomials are computed using the series _wTOmz%|R  
    % representation shown in the Help section above. For many special v=0(~<7B  
    % functions, direct evaluation using the series representation can 6N!Q:x^4(T  
    % produce poor numerical results (floating point errors), because \]</w5 Pi,  
    % the summation often involves computing small differences between GGNvu )"  
    % large successive terms in the series. (In such cases, the functions ^A!Qc=#z}  
    % are often evaluated using alternative methods such as recurrence I9/W;# *~  
    % relations: see the Legendre functions, for example). For the Zernike r"C  
    % polynomials, however, this problem does not arise, because the 6VS4y-N  
    % polynomials are evaluated over the finite domain r = (0,1), and d:#yEC  
    % because the coefficients for a given polynomial are generally all F20E_2;@@  
    % of similar magnitude. K~AR*1??[  
    % 8B /\U'  
    % ZERNPOL has been written using a vectorized implementation: multiple [BWNRC1  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] O[I\A[*  
    % values can be passed as inputs) for a vector of points R.  To achieve Yk)."r&?  
    % this vectorization most efficiently, the algorithm in ZERNPOL f-bVKHt  
    % involves pre-determining all the powers p of R that are required to KV]X@7`@  
    % compute the outputs, and then compiling the {R^p} into a single MLoYnR^  
    % matrix.  This avoids any redundant computation of the R^p, and Y'1S`.  
    % minimizes the sizes of certain intermediate variables. kw#;w=\>R{  
    % WlB  
    %   Paul Fricker 11/13/2006 695V3R 7  
    G'oG< /A  
    ~ DBcIy?  
    % Check and prepare the inputs: Ir {OheJ  
    % ----------------------------- ]Y%Vio  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) w\(.3W7  
        error('zernpol:NMvectors','N and M must be vectors.') 9{(.Il J>  
    end ySx>L uY#3  
    /q<__N  
    if length(n)~=length(m) eFaO7mz5V%  
        error('zernpol:NMlength','N and M must be the same length.') F<L EQ7T  
    end (a[y1{DLy  
    G f,`  
    n = n(:); IAw{P08+  
    m = m(:); T;L>;E>B  
    length_n = length(n); x,rlrxI  
    '_GrD>P)-  
    if any(mod(n-m,2)) wj,:"ESb4  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') >d,jKlh^.%  
    end T+*%?2>q"  
    v:!Z=I}>  
    if any(m<0) byLft 1  
        error('zernpol:Mpositive','All M must be positive.') H=g`hF]`  
    end M!/Cknm  
    <}E!w_yi  
    if any(m>n) d/ARm-D  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ]b\yg2  
    end 5 MN8D COF  
    JTr vnA  
    if any( r>1 | r<0 ) zb k q   
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') V#XppYU  
    end K%a%a6k`  
    y`F3Hr c  
    if ~any(size(r)==1) ht2\y&si  
        error('zernpol:Rvector','R must be a vector.') PK{acen  
    end ?)kGA$m#  
    -*$HddD  
    r = r(:); \MbB#  
    length_r = length(r); <~6h|F8  
    fDT%!  
    if nargin==4 %/|9@er  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); AyNI$Q6Z  
        if ~isnorm E7.2T^o;M  
            error('zernpol:normalization','Unrecognized normalization flag.') Y&S24aql  
        end q=%RDG+  
    else 4x  
        isnorm = false; g]4(g<:O  
    end }% `.h"  
    *:Vq:IU[D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cki81bOT  
    % Compute the Zernike Polynomials 7* yzEM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^Pbk#|$rU  
    `8AR_7i  
    % Determine the required powers of r: X $ s:>[H  
    % ----------------------------------- }s(N6a&(  
    rpowers = []; 0w)^)  
    for j = 1:length(n) 'eLqlu|T  
        rpowers = [rpowers m(j):2:n(j)]; Pb1*\+  
    end hWD;jR  
    rpowers = unique(rpowers); swM*k;$q{  
    w8MG(Lq1"  
    % Pre-compute the values of r raised to the required powers, I aGq]z  
    % and compile them in a matrix: jN[`L%Qm   
    % ----------------------------- \.-}adKg  
    if rpowers(1)==0 x4E7X_  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 7]blrN]  
        rpowern = cat(2,rpowern{:}); fA+ ,TEB~d  
        rpowern = [ones(length_r,1) rpowern]; gDQ1?N'8{t  
    else RxI(:i?  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); CIb2J)qev  
        rpowern = cat(2,rpowern{:}); Dp)=0<$y  
    end KwPOO{4]g  
    /atW8 `&  
    % Compute the values of the polynomials: .^h#_[dp  
    % -------------------------------------- f33l$pOp  
    z = zeros(length_r,length_n); }+C2I  
    for j = 1:length_n ,.OERw  
        s = 0:(n(j)-m(j))/2; IIn"=g=9  
        pows = n(j):-2:m(j); AaWs}M  
        for k = length(s):-1:1 vUohtS*  
            p = (1-2*mod(s(k),2))* ... `< xn8h9p  
                       prod(2:(n(j)-s(k)))/          ... +RyjF~  
                       prod(2:s(k))/                 ... J|~MC7#@q  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 7Rd'm'l)  
                       prod(2:((n(j)+m(j))/2-s(k))); (O.d>  
            idx = (pows(k)==rpowers); FB{KH .  
            z(:,j) = z(:,j) + p*rpowern(:,idx); mF,Y?ax  
        end 6]W=nAD  
         i*/Yz*<  
        if isnorm FaDjLo2'o  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Rm255z p  
        end ^(f"v e#7v  
    end (Iaf?J5{  
    vgfcCcZ_iZ  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  2BQ j  
    g;pcZ9o  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Q-_N2W ?  
    RIlwdt  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)