切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10437阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 'v6Rd )E\z  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! -7=pb#y  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 NugJjd56x  
    function z = zernfun(n,m,r,theta,nflag) ]0`[L<_r  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @]2cL  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N kkzXv`+  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 8|J%IE  
    %   unit circle.  N is a vector of positive integers (including 0), and 9k$uo_i'  
    %   M is a vector with the same number of elements as N.  Each element +A:}5{  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) i uN8gHx  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 2V~Yb1P  
    %   and THETA is a vector of angles.  R and THETA must have the same xX|-5cM;  
    %   length.  The output Z is a matrix with one column for every (N,M) c*ytUI *  
    %   pair, and one row for every (R,THETA) pair. {ifYr(|p`  
    % i$%V)pH~F  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3}N:oJI$z  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _oLK" * [#  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral M4DRG%21  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, W6\s@)b;  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized B*?v`6  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 3J:!8Gmk  
    % kM9E)uT>(<  
    %   The Zernike functions are an orthogonal basis on the unit circle. 7J')o^MG  
    %   They are used in disciplines such as astronomy, optics, and v$,9l+p/  
    %   optometry to describe functions on a circular domain. ^l iyWl  
    % S B'.   
    %   The following table lists the first 15 Zernike functions. Ad`; O+/;  
    % w>m/c1  
    %       n    m    Zernike function           Normalization H"n"Q:Yp  
    %       -------------------------------------------------- A4SM@ry  
    %       0    0    1                                 1 Yoaz|7LS  
    %       1    1    r * cos(theta)                    2 hd^?svID  
    %       1   -1    r * sin(theta)                    2 Sc*p7o: A  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) IS8ppu&E  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ea B-u  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ]54V9l:  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) mNuv>GAb  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Ct.Q)p-wn  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) SM@1<OCc  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) -5E%f|U  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) YZmD:P  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5[;p<GqGN  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) rL_AqSGAK1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]Oe#S"-Oo  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Z!hDTT  
    %       -------------------------------------------------- kOkgsQQ  
    % Uu3[Cf=C  
    %   Example 1: ZT|E1[Q  
    % !O$EVl  
    %       % Display the Zernike function Z(n=5,m=1) X,gXgxP\  
    %       x = -1:0.01:1; *S<>_R 8  
    %       [X,Y] = meshgrid(x,x); [kn`~hI  
    %       [theta,r] = cart2pol(X,Y); C96|T>bk  
    %       idx = r<=1; -6DfM,  
    %       z = nan(size(X)); Z*kg= hs^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); w3B*%x)  
    %       figure iD{;!dUZ  
    %       pcolor(x,x,z), shading interp UT>\u  
    %       axis square, colorbar PUucYc  
    %       title('Zernike function Z_5^1(r,\theta)') 69CH W&  
    % 2MJ0[9  
    %   Example 2: 8$@gAlI^  
    % BQ".$(c q  
    %       % Display the first 10 Zernike functions ))Aj X  
    %       x = -1:0.01:1; whRc YnJ  
    %       [X,Y] = meshgrid(x,x); y"P$:l  
    %       [theta,r] = cart2pol(X,Y); tl0_as  
    %       idx = r<=1; 6g7 X1C  
    %       z = nan(size(X)); ( R Ttz  
    %       n = [0  1  1  2  2  2  3  3  3  3];  ;m7$U  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; x'n J_0  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; @(oz`|*  
    %       y = zernfun(n,m,r(idx),theta(idx)); "-N%`UA  
    %       figure('Units','normalized') Tb~(?nY5  
    %       for k = 1:10 !U*i13  
    %           z(idx) = y(:,k); VNA VdP  
    %           subplot(4,7,Nplot(k)) nh,N (t 9  
    %           pcolor(x,x,z), shading interp aS62S9nwX  
    %           set(gca,'XTick',[],'YTick',[]) &]uhPx/  
    %           axis square [@.%6aD  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) whxE[Xnv  
    %       end &OWiA;e?f  
    % \e( h6,@  
    %   See also ZERNPOL, ZERNFUN2. |W{z,e01x  
    iB[%5i-  
    %   Paul Fricker 11/13/2006 Wh 8fC(BE  
    /sC$;l  
    F) < f8F  
    % Check and prepare the inputs: [4sbOl5yZ  
    % ----------------------------- 2h u;N  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @cSz!E}  
        error('zernfun:NMvectors','N and M must be vectors.') V,{ydxfB  
    end d;)Im "  
    [o\O^d  
    if length(n)~=length(m) ]\*g/QV  
        error('zernfun:NMlength','N and M must be the same length.') _s<eqCBV  
    end m {wMzsQ  
    Bd)Qz(>rw  
    n = n(:); Q4q3M=0  
    m = m(:); #OH# &{H  
    if any(mod(n-m,2)) jjEkz 5  
        error('zernfun:NMmultiplesof2', ... \jZvP`.2  
              'All N and M must differ by multiples of 2 (including 0).') (g4.bbEm  
    end 9C3q4.$D  
    >8oRO  
    if any(m>n) 9LzQp`In  
        error('zernfun:MlessthanN', ... R:Z{,R+  
              'Each M must be less than or equal to its corresponding N.') wD}[XE?S  
    end VO[s:e9L  
    uu]<R@!J  
    if any( r>1 | r<0 ) !<@k\~9^D  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ="<+^$7:k  
    end gmy_ZVU'  
    V+cHL  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~h  tV*R  
        error('zernfun:RTHvector','R and THETA must be vectors.') Yb 6(KT  
    end pH'#v]"  
    Y7]N.G3,]  
    r = r(:); Bk~WHg>@G  
    theta = theta(:); Ah) _mxK  
    length_r = length(r); )m \}ITf  
    if length_r~=length(theta) X=mzo\Aos  
        error('zernfun:RTHlength', ... x gnt)&7T  
              'The number of R- and THETA-values must be equal.') Xn9TQ"[4  
    end 8%>  Ls  
    rh?!f(_@  
    % Check normalization: &*/8Ojv)9  
    % -------------------- dX,2cK[aG  
    if nargin==5 && ischar(nflag) 7bCTR2e\@w  
        isnorm = strcmpi(nflag,'norm'); ``$At,m  
        if ~isnorm ko $bCG%  
            error('zernfun:normalization','Unrecognized normalization flag.') a~DR$^m  
        end N:\I]M  
    else ! E#XmYhX=  
        isnorm = false; j*rra  
    end Tg)Fr)  
    )9{?C4NQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <Y9((QSM4  
    % Compute the Zernike Polynomials f[!N]*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %}x/ fq  
    WDW b 7  
    % Determine the required powers of r: ?_(0cVi  
    % ----------------------------------- z?Hvh  
    m_abs = abs(m); Vq -!1.v3  
    rpowers = []; p4bQCI  
    for j = 1:length(n) wVP{R3  
        rpowers = [rpowers m_abs(j):2:n(j)]; Fpzps!(;=  
    end _t 'Kj \  
    rpowers = unique(rpowers); n!~{4 uUW  
    yf2U-s  
    % Pre-compute the values of r raised to the required powers, M)!8 `]  
    % and compile them in a matrix: =YE"6iU  
    % ----------------------------- cRDjpc]  
    if rpowers(1)==0 p&_Kb\} U  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); S%R:GZEf_  
        rpowern = cat(2,rpowern{:}); VSc;}LH  
        rpowern = [ones(length_r,1) rpowern]; "=MRzSke3  
    else .3Jggp  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Z; r}G m  
        rpowern = cat(2,rpowern{:}); xoA\^AA  
    end yOxJx7uD  
    #Kyb9Qg  
    % Compute the values of the polynomials: w*eO9k  
    % -------------------------------------- k?o(j/  
    y = zeros(length_r,length(n)); g0 \c  
    for j = 1:length(n) ZUVk~X3  
        s = 0:(n(j)-m_abs(j))/2; APsd^J  
        pows = n(j):-2:m_abs(j); w(]Q `  
        for k = length(s):-1:1 9\0  
            p = (1-2*mod(s(k),2))* ... % TyR8 %  
                       prod(2:(n(j)-s(k)))/              ... iL\<G} I  
                       prod(2:s(k))/                     ... 9(dbou  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... w[qWr@  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); gxycw4kz  
            idx = (pows(k)==rpowers); ^!3Sz1  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ~raRIh=  
        end fpwge/w  
         l Ztq_* Fl  
        if isnorm uZ&,tH/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); =mxmJFA  
        end C%85Aq*4  
    end ~ T|?!zML  
    % END: Compute the Zernike Polynomials sF :3|Yy0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | y\B*P  
    l 'fUa  
    % Compute the Zernike functions: vZ\~+qV,A  
    % ------------------------------ Ratg!l|'-  
    idx_pos = m>0; %u-l6<w# R  
    idx_neg = m<0; *6cP-Vzd  
    40<ifz[7  
    z = y; {n2mh%I  
    if any(idx_pos) M;ac U~J  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); we9R4 *j  
    end 2_6x2Ia4  
    if any(idx_neg) '=EaZ>=  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');  )f>s\T  
    end f*04=R?w7>  
    V/j+Z1ZW  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) LGGC=;{}  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. t5G@M&d4Eo  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated .-T^ S"`d|  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive yf(VwU, x  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ZP61T*n  
    %   and THETA is a vector of angles.  R and THETA must have the same T52A}vf4  
    %   length.  The output Z is a matrix with one column for every P-value, QXqBb$AXi,  
    %   and one row for every (R,THETA) pair. _[zO?Div[  
    % ' \Z54$  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike hJ 4]GA'  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) B v /]>Z  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 23 BzD^2a  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 V4ml& D  
    %   for all p. wyeiz7  
    % 02q]^3  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 xG@zy4  
    %   Zernike functions (order N<=7).  In some disciplines it is \^or l9  
    %   traditional to label the first 36 functions using a single mode Rm`_0}5  
    %   number P instead of separate numbers for the order N and azimuthal WDNuR #J?  
    %   frequency M. 5rK7nLb  
    % ZgVYC4=Q-\  
    %   Example: `j{ 5$X  
    % hdJW#,xq  
    %       % Display the first 16 Zernike functions V6)\;c  
    %       x = -1:0.01:1; }D j W  
    %       [X,Y] = meshgrid(x,x); @U08v_,  
    %       [theta,r] = cart2pol(X,Y); f l*]ua  
    %       idx = r<=1; xhLVLXZ9  
    %       p = 0:15; ,rx?Ig}k z  
    %       z = nan(size(X)); JK34pm[s  
    %       y = zernfun2(p,r(idx),theta(idx)); $e1==@ R  
    %       figure('Units','normalized') w K0vKdi  
    %       for k = 1:length(p) gBGUGjVj  
    %           z(idx) = y(:,k); Elw fqfO  
    %           subplot(4,4,k) Rqu_[M  
    %           pcolor(x,x,z), shading interp ya8MjGo  
    %           set(gca,'XTick',[],'YTick',[]) T!u&r  
    %           axis square ")T;3/c  
    %           title(['Z_{' num2str(p(k)) '}']) Y4 q;  
    %       end aE BQx  
    % H`|8x4  
    %   See also ZERNPOL, ZERNFUN. RGvfy/T  
    MgkeD  
    %   Paul Fricker 11/13/2006 N K.]yw'  
    IIcG+zwx  
    :23w[vt=  
    % Check and prepare the inputs: -,+zA.{+W  
    % ----------------------------- hF|N81T  
    if min(size(p))~=1 da<B6!  
        error('zernfun2:Pvector','Input P must be vector.') _{0'3tI7  
    end 7 06-QE^  
    mDZ/Kp{  
    if any(p)>35 >qkZn7C   
        error('zernfun2:P36', ... +QpgG4h  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 0<Q['l4Ar  
               '(P = 0 to 35).']) BnJpC<xm  
    end 1h_TG.YL9>  
    (U bz@s^  
    % Get the order and frequency corresonding to the function number: yh~*Kt]9Ya  
    % ---------------------------------------------------------------- L|O[u^  
    p = p(:); VrDSN  
    n = ceil((-3+sqrt(9+8*p))/2); m X2i^.zH  
    m = 2*p - n.*(n+2); s?r:McF`  
    K@yLcgr{O2  
    % Pass the inputs to the function ZERNFUN: h$ ]=z\=  
    % ---------------------------------------- 8[@aX;I  
    switch nargin 3[`/rg,  
        case 3 W6STjtT3P  
            z = zernfun(n,m,r,theta); >G `Uc&=  
        case 4 IqEE.XhaK  
            z = zernfun(n,m,r,theta,nflag); x -CTMKX  
        otherwise tgk] sQY  
            error('zernfun2:nargin','Incorrect number of inputs.') W%Jw\ z=  
    end iF0x>pvJ@  
    ~^Ceru"<  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) wg-qq4Q\  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. QlxzWd3=q  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of o;w 5;TkY  
    %   order N and frequency M, evaluated at R.  N is a vector of 6b!F7ky g  
    %   positive integers (including 0), and M is a vector with the 8s+9PE  
    %   same number of elements as N.  Each element k of M must be a ,hO*W-a% 1  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) (}!xO?NA(  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 5B:% ##Ug5  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix b({K6#?'[  
    %   with one column for every (N,M) pair, and one row for every ohLM9mc9  
    %   element in R. ?LxBH -o(  
    % $G UCVxs  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 2lb HUK  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is &7-ENg9 [  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to nr*nX  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 v,}Mn7:  
    %   for all [n,m]. x`3F?[#l  
    % O%H c%EfG  
    %   The radial Zernike polynomials are the radial portion of the #3 ~#`&  
    %   Zernike functions, which are an orthogonal basis on the unit r$Gz  
    %   circle.  The series representation of the radial Zernike P0 4Q_A  
    %   polynomials is p+.xye U(  
    % ?R!?}7  
    %          (n-m)/2 ;#)vw;XR  
    %            __ vz~`M9^  
    %    m      \       s                                          n-2s "z8iuF  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r D*_Z"q_B  
    %    n      s=0 " J4?Sb<  
    % fK 4,k:YC  
    %   The following table shows the first 12 polynomials. 1#w'<}h#U  
    % XI5TVxo(q  
    %       n    m    Zernike polynomial    Normalization Jc=~BT_G  
    %       --------------------------------------------- j tH>&O  
    %       0    0    1                        sqrt(2) .EfGL _  
    %       1    1    r                           2  S!Bnz(z  
    %       2    0    2*r^2 - 1                sqrt(6) ~[Fh+t(Y  
    %       2    2    r^2                      sqrt(6) y$,j'B:;4m  
    %       3    1    3*r^3 - 2*r              sqrt(8) xo GX&^=  
    %       3    3    r^3                      sqrt(8) S%6V(L|  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 4 (>8tP\Y  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) #TG7WF 5  
    %       4    4    r^4                      sqrt(10) B]nu \!  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) [QZ8M@Gty#  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) FgnS+c3W(  
    %       5    5    r^5                      sqrt(12) s$3WJ'yr  
    %       --------------------------------------------- K%@#a}kRb  
    % IM(=j  
    %   Example: 4#Rq}/h  
    %  qDK\MQ!  
    %       % Display three example Zernike radial polynomials K&IHt?vh!  
    %       r = 0:0.01:1; JY0}#FtgV  
    %       n = [3 2 5];  QUb#84  
    %       m = [1 2 1]; Aq*,cOF+  
    %       z = zernpol(n,m,r); E]&tgZO  
    %       figure (GJX[$@  
    %       plot(r,z) _|C T|q  
    %       grid on TjWMdoU$J  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 08W^  
    % Yw6d-5=:  
    %   See also ZERNFUN, ZERNFUN2. s$?u'}G3  
    aUyJi  
    % A note on the algorithm. Fu*Qci1Z  
    % ------------------------ 3;er.SFu{  
    % The radial Zernike polynomials are computed using the series VD0U]~CWR  
    % representation shown in the Help section above. For many special !4"<:tSO  
    % functions, direct evaluation using the series representation can {SJnPr3R  
    % produce poor numerical results (floating point errors), because 0 >:RFCo  
    % the summation often involves computing small differences between BnPL>11Y  
    % large successive terms in the series. (In such cases, the functions f eA(Rj  
    % are often evaluated using alternative methods such as recurrence @sG5Do  
    % relations: see the Legendre functions, for example). For the Zernike IWNIk9T,u  
    % polynomials, however, this problem does not arise, because the pcO{%]?p  
    % polynomials are evaluated over the finite domain r = (0,1), and mKZ^FgG  
    % because the coefficients for a given polynomial are generally all )#0Llx!  
    % of similar magnitude. :}+m[g  
    % F m$;p6&j  
    % ZERNPOL has been written using a vectorized implementation: multiple ,&aD U  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 2`cVi"U  
    % values can be passed as inputs) for a vector of points R.  To achieve Y6ORI  
    % this vectorization most efficiently, the algorithm in ZERNPOL pWN5>HV  
    % involves pre-determining all the powers p of R that are required to &Tn7  
    % compute the outputs, and then compiling the {R^p} into a single MtXd}/  
    % matrix.  This avoids any redundant computation of the R^p, and Mb\[` 4z  
    % minimizes the sizes of certain intermediate variables. uTIl} N  
    % {3kI~s  
    %   Paul Fricker 11/13/2006 kOLS<>.  
    Yvxp(  
    1+NmiGKg  
    % Check and prepare the inputs: fudLm  
    % ----------------------------- gt:Ot0\7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Xb5 $ijH  
        error('zernpol:NMvectors','N and M must be vectors.') S X6P>:`  
    end d A' h7D  
    OJ4-p&1  
    if length(n)~=length(m) ~glFB`?[  
        error('zernpol:NMlength','N and M must be the same length.') BGZvgMxLJ  
    end Nk/Ms:57y  
    2apQ4)6#[H  
    n = n(:); oQ_n:<3X  
    m = m(:); hP]zC1s  
    length_n = length(n); 'P,F)*kh  
    V[BlT|t  
    if any(mod(n-m,2)) }hX"A!0  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 9KLhAYaq  
    end (??|\ &DTi  
    aShZdeC*f  
    if any(m<0) m[!AOln)  
        error('zernpol:Mpositive','All M must be positive.') `@r#o&  
    end lITZ|u  
    MB] Y|Vee  
    if any(m>n) *3We5  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 4,g3 c  
    end d8T,33>T  
    /DQcM.3  
    if any( r>1 | r<0 ) uyDYS  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') )gq(  
    end )QiHe}  
    u:7=Yy :  
    if ~any(size(r)==1) `O/RNMaC  
        error('zernpol:Rvector','R must be a vector.') 7f`x-iH!]7  
    end G$HLta  
    JI}p{ yI  
    r = r(:); Y)X58_En  
    length_r = length(r); #O .-/&Z  
    &Jw4^ob  
    if nargin==4 M B,P#7|  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); AFcA5: ja  
        if ~isnorm ,w/f :-y  
            error('zernpol:normalization','Unrecognized normalization flag.') 6uH1dsD  
        end 4$+9k;m'  
    else WsCzC_'j.  
        isnorm = false; y|+ltAK  
    end @9rmm)TZ  
    N#`aVW'{v2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'D4KaM.d  
    % Compute the Zernike Polynomials m'%Z53&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'k9hzk(*  
    r,4V SyZF\  
    % Determine the required powers of r: ?JD\pYg[/  
    % ----------------------------------- ;,h*s, i  
    rpowers = []; (u >:G6K  
    for j = 1:length(n) 6)eU &5z1?  
        rpowers = [rpowers m(j):2:n(j)]; Pk; 9\0k7  
    end "lf_`4  
    rpowers = unique(rpowers); (A*r&Ak[  
    rS 4'@a  
    % Pre-compute the values of r raised to the required powers,  N>Pufr  
    % and compile them in a matrix: C"IP1N  
    % ----------------------------- n~d`PGs?f  
    if rpowers(1)==0 CFh&z^]PR  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); q t}[M|Q^r  
        rpowern = cat(2,rpowern{:}); ^IGTGY]s  
        rpowern = [ones(length_r,1) rpowern]; m`c(J1Et  
    else lC1X9Op  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); NwG&uc+Q  
        rpowern = cat(2,rpowern{:}); ^~5tntb.  
    end LE Y Y{G?  
    w I@ lO\  
    % Compute the values of the polynomials: ++13m*fA  
    % -------------------------------------- EVj48  
    z = zeros(length_r,length_n); b['TRYc=:  
    for j = 1:length_n 00G[ `a5  
        s = 0:(n(j)-m(j))/2; r`cCHZo/V  
        pows = n(j):-2:m(j); ^U_B>0`ch  
        for k = length(s):-1:1 5hpb=2  
            p = (1-2*mod(s(k),2))* ... U<r<$K  
                       prod(2:(n(j)-s(k)))/          ... ryx<^q  
                       prod(2:s(k))/                 ... F ,{nG[PL  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... _}!Q4K  
                       prod(2:((n(j)+m(j))/2-s(k))); zoOm[X=?3  
            idx = (pows(k)==rpowers); vfegIoZ  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 7Hpsmfm  
        end xsFWF*HPs  
         'EREut,>'  
        if isnorm #IBBaxOk  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); fINM$ 6  
        end ~9oS~fP?I  
    end ~|J6M  
    cp?`\P  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    8426
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  m\>x_:sE  
    ?gtkf[0B|  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 (NQ[AypMI  
    ,*4"d._Y  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)