切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11040阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 6( TG/J  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! <EKDP>,~  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 V"=(I'X  
    function z = zernfun(n,m,r,theta,nflag) mEsOYIu{  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. +$R4'{9q  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 6rlafISvO  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ?h)Z ;,}  
    %   unit circle.  N is a vector of positive integers (including 0), and I_66q7U"0  
    %   M is a vector with the same number of elements as N.  Each element Zhb) n  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) W.b?MPy]  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, "bZ {W(h  
    %   and THETA is a vector of angles.  R and THETA must have the same J WaI[n}  
    %   length.  The output Z is a matrix with one column for every (N,M) ,YzrqVY  
    %   pair, and one row for every (R,THETA) pair. ]#>;C:L  
    % 8,Iil:w  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike w_o|k&~,  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), `BA wef  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral &wc% mQV  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Xk=bb267  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized JD1IL` ta;  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ;w,+x 7  
    % ,{=pFs2  
    %   The Zernike functions are an orthogonal basis on the unit circle. B;f\H,/59  
    %   They are used in disciplines such as astronomy, optics, and P9(]9np,,  
    %   optometry to describe functions on a circular domain. e@[9WnxYe  
    % +RLHe]9&  
    %   The following table lists the first 15 Zernike functions. $*EK v'g[n  
    % xW92 ZuzSH  
    %       n    m    Zernike function           Normalization ox9$aBjJ  
    %       -------------------------------------------------- 'r_{T=  
    %       0    0    1                                 1 [7d>c  
    %       1    1    r * cos(theta)                    2 ,m<t/@^]  
    %       1   -1    r * sin(theta)                    2 a(>oQG8F  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 20glz(  
    %       2    0    (2*r^2 - 1)                    sqrt(3) V 2-fJ!  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) !Yuu~|  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) E#'JYz@  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Y"J' 'K  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) daamP$h9  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) \va'>?#o1  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ux-puG  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C4vmgl&  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ]ADj 9  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) d&mSoPf  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) dUAZDoLi  
    %       -------------------------------------------------- #NU;$ &  
    % o/ Z  
    %   Example 1: K/)*P4C-  
    % t+C9QXY  
    %       % Display the Zernike function Z(n=5,m=1) |l5ol @2*  
    %       x = -1:0.01:1; vFuf{ @P  
    %       [X,Y] = meshgrid(x,x); lP$bxUNt  
    %       [theta,r] = cart2pol(X,Y); 1CS[%)-c  
    %       idx = r<=1; ?LE\pk R  
    %       z = nan(size(X)); 1eiV[z$?  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); XN+~g.0  
    %       figure FdrH,  
    %       pcolor(x,x,z), shading interp _^{!`*S  
    %       axis square, colorbar Nr24Rv  
    %       title('Zernike function Z_5^1(r,\theta)') C*O648yz[  
    % ;IklS*p]  
    %   Example 2: & w%%{lM  
    % px`o.%`'  
    %       % Display the first 10 Zernike functions t^N 92$|  
    %       x = -1:0.01:1; VK/@jrL+  
    %       [X,Y] = meshgrid(x,x); $nX4!X  
    %       [theta,r] = cart2pol(X,Y); !nX}\lw  
    %       idx = r<=1; \1k(4MWd  
    %       z = nan(size(X)); ;%u'w;sgq  
    %       n = [0  1  1  2  2  2  3  3  3  3]; fb8"hO]s  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; N!O.=>8<  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; NI(fJ%U  
    %       y = zernfun(n,m,r(idx),theta(idx)); cRt[{ HE  
    %       figure('Units','normalized') ,:RHhg  
    %       for k = 1:10 JY$B%R4;]  
    %           z(idx) = y(:,k); /{|<3CEe  
    %           subplot(4,7,Nplot(k)) Ps<6kQ(  
    %           pcolor(x,x,z), shading interp L`$m<9w'  
    %           set(gca,'XTick',[],'YTick',[]) ] T `6Hz!  
    %           axis square _oOE MQb  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) s06tCwPp  
    %       end GtYtB2U  
    % Dm=d   
    %   See also ZERNPOL, ZERNFUN2. }o>6 y>=  
    T(< [k:`  
    %   Paul Fricker 11/13/2006 #. mc+n:I  
    {Pi+VuLE  
    ] qT\z<}  
    % Check and prepare the inputs: jlhyn0  
    % ----------------------------- CYIp 3D'k  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) irqNnnMGEa  
        error('zernfun:NMvectors','N and M must be vectors.') j/I^\Ms  
    end ;QMRm<CLV  
    hqEn D  
    if length(n)~=length(m) l)JNNcej  
        error('zernfun:NMlength','N and M must be the same length.') &`` dI,NC  
    end f-Yp`lnn.d  
    ["5Z =4  
    n = n(:); v };r  
    m = m(:); )s @ }|`  
    if any(mod(n-m,2)) 6 [q<%wA  
        error('zernfun:NMmultiplesof2', ... >]6 inS9  
              'All N and M must differ by multiples of 2 (including 0).') aSu6SU  
    end BQ&G7V  
    `5VEGSP]  
    if any(m>n) wi{qN___  
        error('zernfun:MlessthanN', ... A6?+$ Hr  
              'Each M must be less than or equal to its corresponding N.') B/P E{ /  
    end J;?#Zt]`L  
    KY1(yni&8[  
    if any( r>1 | r<0 ) 5C03)Go3Z  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') H;#3S<  
    end %RlG~a  
    wHGiN9A+  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) F*&A=@/3  
        error('zernfun:RTHvector','R and THETA must be vectors.') ]p,sve vo  
    end l4 @  
    /}%$fB  
    r = r(:); eB]cPo4gW  
    theta = theta(:); L|O'X4"&_  
    length_r = length(r); (A\X+S(  
    if length_r~=length(theta) ;0)|c}n+.5  
        error('zernfun:RTHlength', ... }|MPQy  
              'The number of R- and THETA-values must be equal.') x1g0_&F  
    end )qg cz<p?W  
    '\v mm>  
    % Check normalization: 'X()|{  
    % -------------------- \KBE+yj  
    if nargin==5 && ischar(nflag) --(e(tvf  
        isnorm = strcmpi(nflag,'norm'); ck=x_HB1  
        if ~isnorm 4#pn ]  
            error('zernfun:normalization','Unrecognized normalization flag.') z#$>f*b  
        end i)vbmV  
    else B%~hVpm,eM  
        isnorm = false; x.=Np\#\G-  
    end =}bDT2Nb  
    9Ai e$=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TFIP>$*_C  
    % Compute the Zernike Polynomials ~ULD{Ov'F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (\CT "u-  
    |4=Du-e  
    % Determine the required powers of r: sj"zgE)  
    % ----------------------------------- `k^d)9  
    m_abs = abs(m); )# ^5$5  
    rpowers = []; qDMVZb-(#  
    for j = 1:length(n) )<fa1Gz#^  
        rpowers = [rpowers m_abs(j):2:n(j)]; f!3$xu5  
    end S;!l"1[;  
    rpowers = unique(rpowers); \!+sL JP  
    .3yoDab  
    % Pre-compute the values of r raised to the required powers, /QA:`_</oh  
    % and compile them in a matrix: /< OoZf+[  
    % ----------------------------- ;y"=3-=vM"  
    if rpowers(1)==0 **oa R  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8'niew 5d  
        rpowern = cat(2,rpowern{:}); mes/gqrJ1I  
        rpowern = [ones(length_r,1) rpowern]; ]c67zyX=%  
    else .u+ZrA#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x#_\b-  
        rpowern = cat(2,rpowern{:}); }bU1wIW9I  
    end rA=iBb3`  
    oS2L"#  
    % Compute the values of the polynomials: Ne 2tfiI`  
    % -------------------------------------- =vd9mb-  
    y = zeros(length_r,length(n)); 1E1oy( \V  
    for j = 1:length(n) ws^ 7J/8  
        s = 0:(n(j)-m_abs(j))/2; X&s@S5=r]  
        pows = n(j):-2:m_abs(j); *OX;ZQg0  
        for k = length(s):-1:1 JO|%Vpco  
            p = (1-2*mod(s(k),2))* ... /h.hFM/  
                       prod(2:(n(j)-s(k)))/              ... E41ay:duAl  
                       prod(2:s(k))/                     ... iSiez'  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... l\Q--  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); nIckI!U#D  
            idx = (pows(k)==rpowers); K!L0|W H%!  
            y(:,j) = y(:,j) + p*rpowern(:,idx); | Ns-l (l  
        end ,aA%,C.0U  
         :1O49g3R  
        if isnorm `$fKS24u  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); PP]Z~ne0X  
        end [EdX6  
    end j'2:z#  
    % END: Compute the Zernike Polynomials ,V>7eQt?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1@$n )r`  
    +NM`y=@@  
    % Compute the Zernike functions: %^zGM^PD  
    % ------------------------------ B&bQvdp  
    idx_pos = m>0; j\/Rjn+:[  
    idx_neg = m<0; v` G[6Z  
    i_[nW  
    z = y; dTATJ)NH  
    if any(idx_pos) y)Y0SY1\j  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); l-~ o&n  
    end a7Xa3 vlpO  
    if any(idx_neg) Ub"6OT1tl  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); x/)o'#d$|l  
    end <kc9KE  
    kuQ+MQHs  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) A4|L;z/A[h  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. +{7/+Zz  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated T\"eqa  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive  mRYM,   
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, a6/$}lCq  
    %   and THETA is a vector of angles.  R and THETA must have the same &% infPI'  
    %   length.  The output Z is a matrix with one column for every P-value, 7hq$vI%0  
    %   and one row for every (R,THETA) pair. V\=QAN^  
    % V`,tu `6  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ?Z{:[.  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) :#pfv)W6t  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) aR@s. ll  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ]?/7iM  
    %   for all p. UbDRE[^P  
    % 9Z_!}eY2mc  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 j 56Dt_  
    %   Zernike functions (order N<=7).  In some disciplines it is @qaK5  
    %   traditional to label the first 36 functions using a single mode ^5,B6  
    %   number P instead of separate numbers for the order N and azimuthal q'zV9  
    %   frequency M. y(2FaTjM  
    % N Dg*8i  
    %   Example: ^5-8'9w  
    % 7G 3*@cl  
    %       % Display the first 16 Zernike functions aplOo[  
    %       x = -1:0.01:1; )=EJFQ*v  
    %       [X,Y] = meshgrid(x,x); Lfj]Y~*z  
    %       [theta,r] = cart2pol(X,Y); ,!{/Y7PmJ  
    %       idx = r<=1; [$+N"4  
    %       p = 0:15; |."thTO  
    %       z = nan(size(X)); Obl,Qa:5  
    %       y = zernfun2(p,r(idx),theta(idx)); 0.4Q-?J  
    %       figure('Units','normalized') ta)'z@V@g  
    %       for k = 1:length(p) |OVD*A  
    %           z(idx) = y(:,k); UwQyAD]Ht  
    %           subplot(4,4,k) N:]Ud(VRM  
    %           pcolor(x,x,z), shading interp 0B4&!J  
    %           set(gca,'XTick',[],'YTick',[]) L 1fK  
    %           axis square T%Vg0Y)P;  
    %           title(['Z_{' num2str(p(k)) '}']) Xgy)Z:R  
    %       end V<#E!MG  
    % T@GR Tg  
    %   See also ZERNPOL, ZERNFUN. ql Uw;{;p  
    R/yOy ^<  
    %   Paul Fricker 11/13/2006 )< 6zbG  
    owA0I'|V-A  
    ~vCfMV[F  
    % Check and prepare the inputs: .45XS>=z#  
    % -----------------------------  l*+"0  
    if min(size(p))~=1 K{ s=k/h  
        error('zernfun2:Pvector','Input P must be vector.') Se o3a6o  
    end Kp|#04]  
    I) $of9   
    if any(p)>35 NMSpi[dr  
        error('zernfun2:P36', ... -V'`;zE6  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... A/ eZ!"Y  
               '(P = 0 to 35).']) i w,F)O  
    end I82?sQ7  
    ~dIb>[7wy  
    % Get the order and frequency corresonding to the function number: S;o U'KOY  
    % ---------------------------------------------------------------- %^L :K5V  
    p = p(:); 8Ee bWs*1  
    n = ceil((-3+sqrt(9+8*p))/2); 0I.9m[<Fc  
    m = 2*p - n.*(n+2); a{lDHk`Wf  
    bb6 ~H  
    % Pass the inputs to the function ZERNFUN: /S]W< 8d  
    % ---------------------------------------- ^J8sR4p#  
    switch nargin u@`)u#  
        case 3 }OeEv@^  
            z = zernfun(n,m,r,theta); [;c'o5M&  
        case 4 XFeeNcqF  
            z = zernfun(n,m,r,theta,nflag); )P^5L<q>|  
        otherwise /!o(Y8e>x  
            error('zernfun2:nargin','Incorrect number of inputs.') w"CcWng1  
    end 6 ~b~[gA  
    9<An^lLK*  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 9.| +KIRb  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. }>JFO:v&  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of D4yJ:ATO&  
    %   order N and frequency M, evaluated at R.  N is a vector of TB] %?L:  
    %   positive integers (including 0), and M is a vector with the  6h N~<  
    %   same number of elements as N.  Each element k of M must be a PsDks3cG  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 8T'=lTJ  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is N2_j[Pe  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix W[o~AbU  
    %   with one column for every (N,M) pair, and one row for every BRP9j y  
    %   element in R. 9&}`.Py  
    % e{/(NtKf  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ?;.j)  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is g$~3@zD  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to sXI_!)H  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 - Z"w  
    %   for all [n,m]. &0Zn21q  
    % ~V?O%1)k?\  
    %   The radial Zernike polynomials are the radial portion of the Q3#- q> ;7  
    %   Zernike functions, which are an orthogonal basis on the unit W|@EKE.k  
    %   circle.  The series representation of the radial Zernike aG?ko*A;  
    %   polynomials is ;$@7iL  
    % QP|Ou*Qm)  
    %          (n-m)/2 chsjY]b  
    %            __ OiX>^_iDt  
    %    m      \       s                                          n-2s RqW ZhHI1M  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Qi|jL*mj&  
    %    n      s=0 BQv+9(:fQB  
    % S\GC^ FK  
    %   The following table shows the first 12 polynomials. !v|j C  
    % #d%'BUde  
    %       n    m    Zernike polynomial    Normalization 2%N$Y]  
    %       --------------------------------------------- ahkSEE{  
    %       0    0    1                        sqrt(2) .ag4i;hS8  
    %       1    1    r                           2 693J?Yah[  
    %       2    0    2*r^2 - 1                sqrt(6) V\@h<%{^%7  
    %       2    2    r^2                      sqrt(6) l?~SH[V  
    %       3    1    3*r^3 - 2*r              sqrt(8) 6\)61o_1|  
    %       3    3    r^3                      sqrt(8) $j^Jj  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) &R/)#NAp  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) /hf}f=7kH  
    %       4    4    r^4                      sqrt(10) vpx8GiV  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 7]Y Le+Ds  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) m8H|cQ@Uu  
    %       5    5    r^5                      sqrt(12) p~I+ZYWF'  
    %       --------------------------------------------- PJN TIa  
    % bp2l%A;  
    %   Example: km'3[}8o&  
    % tfj6#{M5  
    %       % Display three example Zernike radial polynomials 8qn1? Lb  
    %       r = 0:0.01:1; 0\%/:2   
    %       n = [3 2 5]; r_T\%  
    %       m = [1 2 1]; xh[Mmq/R  
    %       z = zernpol(n,m,r); elb|=J`M0  
    %       figure ,"  
    %       plot(r,z) O^hWG ~o  
    %       grid on n'0^l?V  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 5+b[-Daz  
    % i;c0X+[  
    %   See also ZERNFUN, ZERNFUN2. WV!qG6\W  
    OwV>`BIwns  
    % A note on the algorithm. =C 8 t5BZ"  
    % ------------------------ *PE 1)bF  
    % The radial Zernike polynomials are computed using the series 33|>u+  
    % representation shown in the Help section above. For many special /K2VSj3\  
    % functions, direct evaluation using the series representation can cu(2BDfiL  
    % produce poor numerical results (floating point errors), because 31 4PcSc  
    % the summation often involves computing small differences between ,xB&{ J  
    % large successive terms in the series. (In such cases, the functions >>=lh  
    % are often evaluated using alternative methods such as recurrence ,rc5r3  
    % relations: see the Legendre functions, for example). For the Zernike uQWJ7Xm  
    % polynomials, however, this problem does not arise, because the oEU %"  
    % polynomials are evaluated over the finite domain r = (0,1), and :U)q(.53  
    % because the coefficients for a given polynomial are generally all v9INZ1# v  
    % of similar magnitude. |Y"q. n77  
    % {&8-OoH ~  
    % ZERNPOL has been written using a vectorized implementation: multiple _ 0%sYkUc  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Jf@M>BT^A  
    % values can be passed as inputs) for a vector of points R.  To achieve IBb3A  
    % this vectorization most efficiently, the algorithm in ZERNPOL LU~U>  
    % involves pre-determining all the powers p of R that are required to [jve |-v=  
    % compute the outputs, and then compiling the {R^p} into a single *:bNK5I.t  
    % matrix.  This avoids any redundant computation of the R^p, and -}1S6dzr  
    % minimizes the sizes of certain intermediate variables. : m$cnq~h  
    % a \B<(R.  
    %   Paul Fricker 11/13/2006 AZt~ \qf  
    ?JDZDPVJ)  
    1w'iD X  
    % Check and prepare the inputs: |/C>xunzz  
    % ----------------------------- mb~w .~%  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) R K#e7  
        error('zernpol:NMvectors','N and M must be vectors.') Sx+.<]t2A  
    end :.f =>s]  
    :XcU@m  
    if length(n)~=length(m) 5:E7nqsNhq  
        error('zernpol:NMlength','N and M must be the same length.') p>h B&h  
    end ug0[*#|Y  
    LF* 7;a  
    n = n(:); e4u$+  
    m = m(:); cW;to Q!P  
    length_n = length(n); Lw\ANku  
    j':Ybr>BR  
    if any(mod(n-m,2)) .5|AX6p+^  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') kc^ Q ?-?  
    end lidzs<W-fW  
    o Q I3Yz  
    if any(m<0) 7g}4gX's  
        error('zernpol:Mpositive','All M must be positive.') ,Y=r] fk  
    end OJ\IdUZ   
    a{^[<  
    if any(m>n) 55MsF}p  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') x+l.04a@  
    end KL,=Z&.<=  
    >|WNsjkU%  
    if any( r>1 | r<0 ) RoSh|$JF  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') v>YdPQky  
    end zM"OateA  
    n( l!T 7  
    if ~any(size(r)==1) BusD}9QqB  
        error('zernpol:Rvector','R must be a vector.') VlRN  
    end zg+78  
    csz/[*  
    r = r(:); /cF 6{0XS9  
    length_r = length(r); zm) ]cq  
    ]?S\So+  
    if nargin==4 J?Brnf.  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); uS<7X7|!0  
        if ~isnorm m619bzFlB  
            error('zernpol:normalization','Unrecognized normalization flag.') @B %m,Mx  
        end ]N_(M   
    else ~Wjm"|c  
        isnorm = false; @'j=oTT  
    end DZ5%-  
    3Ba>a(E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kLQPa[u4  
    % Compute the Zernike Polynomials o0^..f  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =`[08  
    8o#*0d|  
    % Determine the required powers of r: asb-syqU  
    % ----------------------------------- _*h,,Q  
    rpowers = []; 34k<7X`I  
    for j = 1:length(n) "_]n_[t2C  
        rpowers = [rpowers m(j):2:n(j)]; r/'9@oM  
    end )$Xd#bzD|  
    rpowers = unique(rpowers); jnsV'@v8Nj  
    ce th)Xm  
    % Pre-compute the values of r raised to the required powers, ]\w0u7}  
    % and compile them in a matrix: _" W<>  
    % ----------------------------- "-Gjw B  
    if rpowers(1)==0 9YRoWb{y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); r,X5@/  
        rpowern = cat(2,rpowern{:}); tp<uN~rTgh  
        rpowern = [ones(length_r,1) rpowern]; ,IoPK!5xy  
    else eBX#^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); md:$O C3  
        rpowern = cat(2,rpowern{:}); ac"Pn? q  
    end Og[NRd+  
    { 2G9>'  
    % Compute the values of the polynomials: Jaz|b`KDj  
    % -------------------------------------- B?9K!c  
    z = zeros(length_r,length_n); x*& OvI/o  
    for j = 1:length_n =8O057y  
        s = 0:(n(j)-m(j))/2; &S}%)g%Iv9  
        pows = n(j):-2:m(j); gQ4Q h;  
        for k = length(s):-1:1 5!u.w  
            p = (1-2*mod(s(k),2))* ... 5_Yl!=  
                       prod(2:(n(j)-s(k)))/          ... |@? B%sY  
                       prod(2:s(k))/                 ... Q3> 3!FAO  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... jjbBv~vs  
                       prod(2:((n(j)+m(j))/2-s(k))); LWE[]1=  
            idx = (pows(k)==rpowers); yPrp:%PS  
            z(:,j) = z(:,j) + p*rpowern(:,idx); u H[d%y/  
        end /3->TS  
         E;$)Oz  
        if isnorm =xcA4"k  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); P.Pw .[:3  
        end *5Upb,* *  
    end Ry>c]\a]  
    \U;4 \  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  9WN 4eC$  
    Q}ebw  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 <>3}<i<[&  
    @0}Q"15,I  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)