切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11000阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 F] M3/M  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! %do|>7MO@  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #G)ZhgB^  
    function z = zernfun(n,m,r,theta,nflag) 8I@= ?  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. A4%0  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ZuBVq  
    %   and angular frequency M, evaluated at positions (R,THETA) on the CFRo>G  
    %   unit circle.  N is a vector of positive integers (including 0), and O?8G  
    %   M is a vector with the same number of elements as N.  Each element |M9x&(H;Hw  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) PS(LD4mD  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, k\HRG@ /G  
    %   and THETA is a vector of angles.  R and THETA must have the same Xps MgJ/w  
    %   length.  The output Z is a matrix with one column for every (N,M) q;>'jHh  
    %   pair, and one row for every (R,THETA) pair. JK[7&C-O  
    % R:^GNra;  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;I5HMc_a"  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7/Ve=7]  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 9FJU'$FN  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, pm3?  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized TyGXDU  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7CrWsQl u  
    % Q8z>0ci3o  
    %   The Zernike functions are an orthogonal basis on the unit circle. i&"I/!3Q@  
    %   They are used in disciplines such as astronomy, optics, and 15Yy&9D  
    %   optometry to describe functions on a circular domain. 0o`0Td  
    % l ^\5Jr03  
    %   The following table lists the first 15 Zernike functions. P`V#Wj4\  
    % @kI^6(.  
    %       n    m    Zernike function           Normalization |iO2,99i  
    %       -------------------------------------------------- tao3Xr^?  
    %       0    0    1                                 1 ph^qQDA  
    %       1    1    r * cos(theta)                    2 ?z Ms;  
    %       1   -1    r * sin(theta)                    2 rpDH>Hzq  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) D/@:wY  
    %       2    0    (2*r^2 - 1)                    sqrt(3) X#+A?>Z]}<  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) o7]h;Zg5r  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) HZfcLDrO  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Z1^S;#v  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) |D`Zi>lv  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) <t]i' D(K  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) o?/N4$&5l  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N \A)P  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) b>I -4  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i"sVk8+o!  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) n# Z6d`  
    %       -------------------------------------------------- 1c?,= ;>  
    % Ha4?I$'$  
    %   Example 1: ;'2y6"\Y  
    % ]O&TU X@)  
    %       % Display the Zernike function Z(n=5,m=1) =2->1<!x6<  
    %       x = -1:0.01:1; B\Rq0N]' M  
    %       [X,Y] = meshgrid(x,x); T5W r;a  
    %       [theta,r] = cart2pol(X,Y); ;) (qRZd6  
    %       idx = r<=1; qXP)R/~OZ  
    %       z = nan(size(X)); w;r -TLf  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); stoBjDS  
    %       figure %Ljc#AVg  
    %       pcolor(x,x,z), shading interp SQa.xLU  
    %       axis square, colorbar .^P^lQT]>  
    %       title('Zernike function Z_5^1(r,\theta)') fs~n{z,ja%  
    % OuS{ve  
    %   Example 2: 6mMJ$FY+  
    % Dzc 4J66  
    %       % Display the first 10 Zernike functions %o+bO}/9  
    %       x = -1:0.01:1; X3X~`~bAD  
    %       [X,Y] = meshgrid(x,x); 9r\8  !R  
    %       [theta,r] = cart2pol(X,Y); $0iz;!w  
    %       idx = r<=1; <~X=6  
    %       z = nan(size(X)); =NyzX&H6  
    %       n = [0  1  1  2  2  2  3  3  3  3]; N-K.#5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; BjOrQAO  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; IO]Oo3  
    %       y = zernfun(n,m,r(idx),theta(idx)); QF[9Zn  
    %       figure('Units','normalized') w&:h^u  
    %       for k = 1:10 iT9cw`A^%  
    %           z(idx) = y(:,k); z9;vE7n!  
    %           subplot(4,7,Nplot(k)) p B?a5jpA  
    %           pcolor(x,x,z), shading interp k= nfo-h  
    %           set(gca,'XTick',[],'YTick',[]) >D<nfG<s Z  
    %           axis square uTB; Bva  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) }wj*^>*  
    %       end  /=[M  
    % D1#E&4   
    %   See also ZERNPOL, ZERNFUN2. POUB{ba  
    YJeZ{Wws  
    %   Paul Fricker 11/13/2006 S,Zjol%p  
    a[Txd=b  
    C'7W50b  
    % Check and prepare the inputs: vaR0`F  
    % ----------------------------- as~.XWa  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) J,m.LpY  
        error('zernfun:NMvectors','N and M must be vectors.') _ [XEL+.  
    end 7b@EvW6X}  
    |(XV '-~  
    if length(n)~=length(m) Wu.od|t0  
        error('zernfun:NMlength','N and M must be the same length.') vlzjALy  
    end [>Q{70 c[  
    },[S9I`p  
    n = n(:); % k$+t  
    m = m(:); i&.F}bEi  
    if any(mod(n-m,2)) kFD-  
        error('zernfun:NMmultiplesof2', ... >{Lfrc1  
              'All N and M must differ by multiples of 2 (including 0).') <uv{/L b  
    end 6@bGh|   
    0FTiTrTn  
    if any(m>n) HzbO#)Id-I  
        error('zernfun:MlessthanN', ... a7#Eyw^H{  
              'Each M must be less than or equal to its corresponding N.') !4.;Ftgjn  
    end :CK,(?t  
    +".&A#wU  
    if any( r>1 | r<0 ) Ie4*#N_  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') JB b}{fo~  
    end vbwEX6  
    <w{W1*R9  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) nwcT8b 87J  
        error('zernfun:RTHvector','R and THETA must be vectors.') \hNMTj#O  
    end u!L8Sv  
    9R.tkc|K  
    r = r(:); UxzwgVT  
    theta = theta(:); :p8JO:g9  
    length_r = length(r); <!DOCvd  
    if length_r~=length(theta) H~Q UN  
        error('zernfun:RTHlength', ... Dq2eX;c@  
              'The number of R- and THETA-values must be equal.') TvI}yaCu/x  
    end mjs*Z{_F^  
    2$1rS}}  
    % Check normalization: O]{H2&k@  
    % -------------------- hih`:y  
    if nargin==5 && ischar(nflag) 3t%uUkXl  
        isnorm = strcmpi(nflag,'norm'); s/ZOA[Yux  
        if ~isnorm Txoc  
            error('zernfun:normalization','Unrecognized normalization flag.') X4%*&L  
        end G ROl9xp2  
    else rM>&! ?y+  
        isnorm = false; f<kL}B+,Og  
    end 8oA6'%.e  
    -t*C-C'"|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - *yj[?6  
    % Compute the Zernike Polynomials Z|wZyt$$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \N"K^kR4  
    4S"K%2'O  
    % Determine the required powers of r: D4o?  
    % ----------------------------------- \DGm[/P  
    m_abs = abs(m); zROyG  
    rpowers = []; @ju-cv+  
    for j = 1:length(n) o_\b{<^I  
        rpowers = [rpowers m_abs(j):2:n(j)]; Y`( I};MO  
    end }T(|\ X  
    rpowers = unique(rpowers); eh)J'G]G  
    t.knYO)  
    % Pre-compute the values of r raised to the required powers, R9=,T0Y p  
    % and compile them in a matrix: Ud{-H_m+  
    % ----------------------------- 1N#TL"lMS  
    if rpowers(1)==0 +m>Kb edl  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #UXmTrZ.  
        rpowern = cat(2,rpowern{:}); %FyB\IQ  
        rpowern = [ones(length_r,1) rpowern]; @d4zSG/s5w  
    else %o{vD&7\  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~r=TVHjqi  
        rpowern = cat(2,rpowern{:}); [N7[%iQ%  
    end zlFl{t  
    OpH9sBnA  
    % Compute the values of the polynomials: lfI[r|  
    % -------------------------------------- 0s<o5`v  
    y = zeros(length_r,length(n)); AHZ6  
    for j = 1:length(n) cwpDad[Kx  
        s = 0:(n(j)-m_abs(j))/2; KrbNo$0%  
        pows = n(j):-2:m_abs(j); _=}Y lR  
        for k = length(s):-1:1 6xBP72L;%"  
            p = (1-2*mod(s(k),2))* ... Wa[~)A  
                       prod(2:(n(j)-s(k)))/              ... %8 4<@f&n]  
                       prod(2:s(k))/                     ... 1p8E!c{}j  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... j|? bva\  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); &Rn/ c}[{  
            idx = (pows(k)==rpowers); #Q$4EQB  
            y(:,j) = y(:,j) + p*rpowern(:,idx); wbr"z7}  
        end yyA/x,  
         4AF" +L  
        if isnorm h+*  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Box,N5AA  
        end =#+Z KD  
    end XriVHb  
    % END: Compute the Zernike Polynomials #lct"8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p.l]% \QI  
    ZFdQ Z=.'  
    % Compute the Zernike functions: *`l>1)B>  
    % ------------------------------ {b#c0>.8-  
    idx_pos = m>0; 01w=;Q  
    idx_neg = m<0;  j, G/[V  
    h_A}i2/{  
    z = y; }]n&"=Zk-  
    if any(idx_pos) C ]r$   
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); G: @gO2(D  
    end O-&n5  
    if any(idx_neg) slPFDBx  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); h hd n9n  
    end kYR&t}jlCg  
    @nZFw.  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) @:c 1+  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. H$[--_dI{  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated JdV!m`XpXy  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive VKs$J)6  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, /Fv1Z=:r  
    %   and THETA is a vector of angles.  R and THETA must have the same [I^SKvM  
    %   length.  The output Z is a matrix with one column for every P-value, p 3_Q  
    %   and one row for every (R,THETA) pair. $9l3 DJ  
    % <~Y4JMr"  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Y{J/Oib  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ]#*@<T*[  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Z]Qm64^I  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Az.Y-O<$\  
    %   for all p. TvQAy/Y0  
    % eFeeloH?e*  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 AX1\L |tJS  
    %   Zernike functions (order N<=7).  In some disciplines it is F-=er e  
    %   traditional to label the first 36 functions using a single mode ,3W a~\/Q  
    %   number P instead of separate numbers for the order N and azimuthal g^]Q*EBa  
    %   frequency M. RL&*.r&  
    %  !c*^:0  
    %   Example: a.Mp1W  
    % Cw+ (,1  
    %       % Display the first 16 Zernike functions o?%x!m>  
    %       x = -1:0.01:1; W"2\vo)  
    %       [X,Y] = meshgrid(x,x); nrf%/L  
    %       [theta,r] = cart2pol(X,Y); r] ]Ke_s!  
    %       idx = r<=1; opIcSm&  
    %       p = 0:15; 6}|vfw  
    %       z = nan(size(X)); _QErQ^`  
    %       y = zernfun2(p,r(idx),theta(idx)); f?{Y<M~]  
    %       figure('Units','normalized') F.\]Hqq  
    %       for k = 1:length(p) !W3Le$aL  
    %           z(idx) = y(:,k); *wSl~J|ZM%  
    %           subplot(4,4,k) 8l}|.Q#--  
    %           pcolor(x,x,z), shading interp  Et- .[  
    %           set(gca,'XTick',[],'YTick',[]) l'o}4am  
    %           axis square AOfQqGf  
    %           title(['Z_{' num2str(p(k)) '}']) "jpjBH:c$  
    %       end  Cn_Mz#Z  
    % w6cPd'  
    %   See also ZERNPOL, ZERNFUN. dIf Jr}ih  
    Q!Op^4Jz  
    %   Paul Fricker 11/13/2006 JN8k x;@  
    zcNV<tx  
    \J13rL{<  
    % Check and prepare the inputs: =9)ypI-2  
    % ----------------------------- U ^,ld`  
    if min(size(p))~=1 {#;6$dU;(  
        error('zernfun2:Pvector','Input P must be vector.') SOUA,4  
    end J*;t{M5  
    jAJkCCG  
    if any(p)>35 R]r~TJ o  
        error('zernfun2:P36', ... 2N]y)S_<V  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... =_UPZ]  
               '(P = 0 to 35).']) -~aVt~{k/  
    end #A))#sT'R  
    M9N|Ql  
    % Get the order and frequency corresonding to the function number: 2+^#<Uok  
    % ---------------------------------------------------------------- |4'E&(BU-  
    p = p(:); :4Y|%7[  
    n = ceil((-3+sqrt(9+8*p))/2); 7v?Ygtv  
    m = 2*p - n.*(n+2); LD6fi  
    Z@h]dU5%a  
    % Pass the inputs to the function ZERNFUN: 4s"HO/  
    % ---------------------------------------- 59ivL6=3  
    switch nargin &/ zs Ix+  
        case 3 'WOW m$2  
            z = zernfun(n,m,r,theta); Jrffb=+b  
        case 4 'Gc6ZSLM  
            z = zernfun(n,m,r,theta,nflag); wHY;Y-(ZT  
        otherwise j[z\p~^  
            error('zernfun2:nargin','Incorrect number of inputs.')  /!9949XV  
    end 7'o?'He-.2  
    /|\`NARI  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) &?9.Y,  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. H`".L^  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Jne)?Gt  
    %   order N and frequency M, evaluated at R.  N is a vector of ? &1?uc  
    %   positive integers (including 0), and M is a vector with the m2V4nxw]Qp  
    %   same number of elements as N.  Each element k of M must be a F6 UOo.L)I  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 9!R!H&  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is c"QI`;D_c  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix lE`ScYG  
    %   with one column for every (N,M) pair, and one row for every t,H,*2  
    %   element in R. 1'g?B`  
    % k!%HcU%J  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- N-NwGD{  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 'LX=yL]I  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to <n#JOjHV  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 YZnrGkQ  
    %   for all [n,m]. mtF&Z\ag  
    % ; lK2]  
    %   The radial Zernike polynomials are the radial portion of the aTPpE9Pa&  
    %   Zernike functions, which are an orthogonal basis on the unit ;ndg,05_  
    %   circle.  The series representation of the radial Zernike Q;Oc# u  
    %   polynomials is hQk mB|];5  
    % ))MP]j9 T  
    %          (n-m)/2 * T~sR'K+|  
    %            __ L72GF5+!!  
    %    m      \       s                                          n-2s hMDyE.X-  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r vWgh?h/ot  
    %    n      s=0 p;B +g X  
    % qNvKlwR9;k  
    %   The following table shows the first 12 polynomials. R vY`9D  
    % Dg]i};  
    %       n    m    Zernike polynomial    Normalization FTB"C[>  
    %       --------------------------------------------- GnLh qm"\  
    %       0    0    1                        sqrt(2) 7/~"\nN:/  
    %       1    1    r                           2 ,%:`Ll t]$  
    %       2    0    2*r^2 - 1                sqrt(6) 'DIE#l`  
    %       2    2    r^2                      sqrt(6) N[mOJa:  
    %       3    1    3*r^3 - 2*r              sqrt(8) qItI):9U  
    %       3    3    r^3                      sqrt(8) p;'vOb  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) %Cr- cR0  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Dp'/uCW)  
    %       4    4    r^4                      sqrt(10) wbpxJtJB  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) sS0psw1  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) HnpGPGz@F  
    %       5    5    r^5                      sqrt(12) 5jV]{ZV#  
    %       --------------------------------------------- kC#;j=K?  
    % BujWql  
    %   Example: . XY'l  
    % f8n'9HOw>  
    %       % Display three example Zernike radial polynomials ]-q:Z4rb  
    %       r = 0:0.01:1; Nd0Wt4=  
    %       n = [3 2 5]; v(0vP}[Q7E  
    %       m = [1 2 1]; aRV!0?fS  
    %       z = zernpol(n,m,r); U%#=d@?  
    %       figure .3Ap+V8?  
    %       plot(r,z) !cq4+0{O;&  
    %       grid on P_Z o}.{  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 9 V;m;sz  
    % G(4k#jB  
    %   See also ZERNFUN, ZERNFUN2. Wqqo8Y~fq  
    ?K]k(ZV_+Y  
    % A note on the algorithm. R@EFG%|`_  
    % ------------------------ ]A\n>Z!;  
    % The radial Zernike polynomials are computed using the series _l  Jj6=  
    % representation shown in the Help section above. For many special 6z(_^CY  
    % functions, direct evaluation using the series representation can |;].~7^  
    % produce poor numerical results (floating point errors), because Z BYmAD  
    % the summation often involves computing small differences between <>R7G)w F  
    % large successive terms in the series. (In such cases, the functions {wm  `  
    % are often evaluated using alternative methods such as recurrence m760K*:i\  
    % relations: see the Legendre functions, for example). For the Zernike m]%cNxS  
    % polynomials, however, this problem does not arise, because the [R~HhM  
    % polynomials are evaluated over the finite domain r = (0,1), and J) (pGS@  
    % because the coefficients for a given polynomial are generally all .!`j3W]  
    % of similar magnitude. g5?Fo%W  
    % d`xqs,0f  
    % ZERNPOL has been written using a vectorized implementation: multiple %1lLUgf3G/  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] o 1b#q/  
    % values can be passed as inputs) for a vector of points R.  To achieve  Wi|.Z/  
    % this vectorization most efficiently, the algorithm in ZERNPOL 9 (&!>z  
    % involves pre-determining all the powers p of R that are required to 4bKZ@r%  
    % compute the outputs, and then compiling the {R^p} into a single O=mJ8W@  
    % matrix.  This avoids any redundant computation of the R^p, and 7j]@3D9[:p  
    % minimizes the sizes of certain intermediate variables. ~:0h o  
    % t2E_y6  
    %   Paul Fricker 11/13/2006 N0XGW_f  
    kn<[v;+  
    D/)xe:  
    % Check and prepare the inputs: [m"X*Z F  
    % ----------------------------- "47nc1T+n  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g_q{3PW.  
        error('zernpol:NMvectors','N and M must be vectors.') ~p8!Kb6  
    end <k)rfv7  
    }{ P}P}  
    if length(n)~=length(m) i ^W\YLE  
        error('zernpol:NMlength','N and M must be the same length.') ;m\(fW*ii  
    end t EN%mK  
    2vur _`c V  
    n = n(:); Q'rG' |  
    m = m(:); rN*4Y  
    length_n = length(n); Z2ZS5a  
    `zvYuKQ.}  
    if any(mod(n-m,2)) xE}q(.]  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') e5AiIVlv  
    end $V+ze*ra  
    :jhJp m1Xq  
    if any(m<0) 5-sxTp  
        error('zernpol:Mpositive','All M must be positive.') sPhh#VCw{  
    end @U9ov >E  
    [[)HPHSQ  
    if any(m>n) Coyop#q#"{  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') K 4 >d  
    end lKa}Bcd  
    #\"5:.H Oz  
    if any( r>1 | r<0 ) 08twcY;&k  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') LsmC/+7r$1  
    end sQ_{zOUPh  
    phNv^R+  
    if ~any(size(r)==1) v3[ 2!UXq  
        error('zernpol:Rvector','R must be a vector.') 1p tPey  
    end EBn7waBS  
    S4\T (  
    r = r(:); [#.QDe  
    length_r = length(r); LsLsSV  
    ed617J  
    if nargin==4 Bkcs4 x  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); uYs+x X_  
        if ~isnorm 8L&#<Ol  
            error('zernpol:normalization','Unrecognized normalization flag.') =T+<>/[  
        end jfI|( P  
    else FkRrW^?5G  
        isnorm = false; {!<zk+h$  
    end u6D>^qF}@'  
    Q2+e`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -f'z _&KI  
    % Compute the Zernike Polynomials d-c+ KV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ? 1_*ct=g9  
    ^c/.D*J[I  
    % Determine the required powers of r: e\)PGjSI  
    % ----------------------------------- b>o38(  
    rpowers = []; K)&AR*Tc  
    for j = 1:length(n) v_b%2;<1  
        rpowers = [rpowers m(j):2:n(j)]; R@ihN?k  
    end RCsd  
    rpowers = unique(rpowers); C7nLa@  
    =WHdy;  
    % Pre-compute the values of r raised to the required powers, )WD<Q x&  
    % and compile them in a matrix: Xo'_|-N+  
    % ----------------------------- 5I@< 6S&X  
    if rpowers(1)==0 _TkiI.'  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \# #~Tq  
        rpowern = cat(2,rpowern{:}); _57i[U r  
        rpowern = [ones(length_r,1) rpowern]; {6RT&w  
    else 4D0"Y #&G  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2'N%KKmJL  
        rpowern = cat(2,rpowern{:}); aLG6yVtu  
    end l].dOso$`  
    Q xKC5`1  
    % Compute the values of the polynomials: T,5]EHea  
    % -------------------------------------- zs WYV n]  
    z = zeros(length_r,length_n); 3Ju<jXoo!  
    for j = 1:length_n ](B+ilr   
        s = 0:(n(j)-m(j))/2; ^ @sg{_.~l  
        pows = n(j):-2:m(j); =r#of|`Q  
        for k = length(s):-1:1 "*<9)vQ6|  
            p = (1-2*mod(s(k),2))* ... | tyVC=${  
                       prod(2:(n(j)-s(k)))/          ... 4s%vx]E  
                       prod(2:s(k))/                 ... ^Qq_|{vynf  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... )%gi gQZ+  
                       prod(2:((n(j)+m(j))/2-s(k))); }c$Zlb  
            idx = (pows(k)==rpowers); L_Ff*   
            z(:,j) = z(:,j) + p*rpowern(:,idx); R9^Vk*`gFU  
        end jq%Qc9y  
         M2{{B ^*$6  
        if isnorm 6gNsh  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 3+0 $=ef  
        end h# B%'9r  
    end 5v6*.e'p  
    up#W"`"  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  'GI| t  
    -=cxUDB  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。  \OJam<hZ  
    hv0bs8h  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)