切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11336阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 onu G  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! z</C)ObL  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 NK|U:p2H  
    function z = zernfun(n,m,r,theta,nflag) y)KIz  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 2|7:`e~h  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0WzoI2Q  
    %   and angular frequency M, evaluated at positions (R,THETA) on the f\5w@nX  
    %   unit circle.  N is a vector of positive integers (including 0), and Mq~E'g4#  
    %   M is a vector with the same number of elements as N.  Each element MR|A_e^x  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) i'<hT q4  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, @~vg=(ic(  
    %   and THETA is a vector of angles.  R and THETA must have the same v RtERFL  
    %   length.  The output Z is a matrix with one column for every (N,M) gZ&4b'XS,  
    %   pair, and one row for every (R,THETA) pair. )xf(4  
    % ^+-QY\N j  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike hqeknTGsIn  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 1D[V{)#  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral !Gnm<|.  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N5)H(<}  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized l\0PwD  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .@x.    
    % @F8NN\  
    %   The Zernike functions are an orthogonal basis on the unit circle. #}fvjJ{  
    %   They are used in disciplines such as astronomy, optics, and )'jGf;du  
    %   optometry to describe functions on a circular domain. 0Gj/yra9MO  
    % Z:^<NdKe  
    %   The following table lists the first 15 Zernike functions. T$mT;k  
    % \4qF3#  
    %       n    m    Zernike function           Normalization Zz (qc5o,F  
    %       -------------------------------------------------- <V U-ja*(J  
    %       0    0    1                                 1 q=e;P;u  
    %       1    1    r * cos(theta)                    2 ?#c "wA&  
    %       1   -1    r * sin(theta)                    2 AHr^G'  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) +Y*4/w[   
    %       2    0    (2*r^2 - 1)                    sqrt(3) lq-F*r\/~+  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) OqsuuE  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) xN$V(ZX4  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Q65M(x+oy  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) l9/}fMi  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) K8KN<Q s]  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) xK0;saG#  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iLQO .'{U  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ZuWh gnp  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mx1Bk9h%Xe  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) uFmpc7  
    %       -------------------------------------------------- /(||9\;  
    % C% z9Q  
    %   Example 1: z1tD2jL_  
    % ~BTm6*'h  
    %       % Display the Zernike function Z(n=5,m=1) p\I3fI0i  
    %       x = -1:0.01:1; %1cxZxGT  
    %       [X,Y] = meshgrid(x,x); 3\{acm  
    %       [theta,r] = cart2pol(X,Y); g<~ODMCO?W  
    %       idx = r<=1;  })!-  
    %       z = nan(size(X)); &Odrq#o?R  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); S&=@Hj-  
    %       figure y+wy<[u  
    %       pcolor(x,x,z), shading interp rv)Eg53Q  
    %       axis square, colorbar .FYRi_Zd  
    %       title('Zernike function Z_5^1(r,\theta)') ve a$G~[%6  
    % [GM!@6U  
    %   Example 2: _eQ-'")  
    % 6t <[-  
    %       % Display the first 10 Zernike functions qc'KQ5w7!  
    %       x = -1:0.01:1; {a>JQW5=  
    %       [X,Y] = meshgrid(x,x); 4`5W] J]6  
    %       [theta,r] = cart2pol(X,Y); =.J>'9Q  
    %       idx = r<=1; * XDe:A  
    %       z = nan(size(X)); mGwJ>'+d  
    %       n = [0  1  1  2  2  2  3  3  3  3]; +|oLS_  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; [vBP,_Tjx  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; V/\`:  
    %       y = zernfun(n,m,r(idx),theta(idx)); ho#<?rh_  
    %       figure('Units','normalized') bA6^R If?  
    %       for k = 1:10 taVK&ohWx  
    %           z(idx) = y(:,k); |J-tU)|1vl  
    %           subplot(4,7,Nplot(k)) Ss{5'SF)$c  
    %           pcolor(x,x,z), shading interp &H,UWtU+  
    %           set(gca,'XTick',[],'YTick',[]) @d5t%V\  
    %           axis square nJgN2Z  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) va(6?"9  
    %       end \/wk!mWV@  
    % M_?B*QZJI  
    %   See also ZERNPOL, ZERNFUN2. ~y 2joStx  
    1)xj 'n  
    %   Paul Fricker 11/13/2006 b V_<5PHP  
    ok-q9dM  
    _=[pW2p  
    % Check and prepare the inputs: 0ly6  |:  
    % ----------------------------- } ?+0s=Z  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RT%{M1tkS  
        error('zernfun:NMvectors','N and M must be vectors.') /lHs]) ,  
    end {)Zz4  
    8BY`~TZO$q  
    if length(n)~=length(m) VK%ExMSqEh  
        error('zernfun:NMlength','N and M must be the same length.') -G1R><8[  
    end RLw/~  
    ;]BNc"  
    n = n(:); 5P('SFq'=  
    m = m(:); O"[#g  
    if any(mod(n-m,2))  W"~"R  
        error('zernfun:NMmultiplesof2', ... 4&L,QSJ V  
              'All N and M must differ by multiples of 2 (including 0).') tnX W7ej^  
    end hR>`I0|p&  
    aO:A pOAO  
    if any(m>n) tQMz1$  
        error('zernfun:MlessthanN', ... *MWI`=c  
              'Each M must be less than or equal to its corresponding N.') 6il+hz2&lH  
    end v49 i.c9  
    Me+)2S 9  
    if any( r>1 | r<0 ) .D=#HEshk  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ~ayU\4B  
    end *z'Rl'j9[  
    pL.~z  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7pH[_]1"  
        error('zernfun:RTHvector','R and THETA must be vectors.') q~\[P4m  
    end =lh&oPc1  
    5B{Eg?  
    r = r(:); Nc(A5*  
    theta = theta(:); .KYDYdoS'  
    length_r = length(r); gFM~M(  
    if length_r~=length(theta) O4W 2X@  
        error('zernfun:RTHlength', ... ;[,#VtD  
              'The number of R- and THETA-values must be equal.') eYg0 NEq{  
    end gi/W3q3c6  
    0NSCeq%;6q  
    % Check normalization: ~VF?T~Kr_  
    % -------------------- ^X*l&R_=R  
    if nargin==5 && ischar(nflag) ]`@< I'?,X  
        isnorm = strcmpi(nflag,'norm'); 2$ \#BG  
        if ~isnorm wD<W'K   
            error('zernfun:normalization','Unrecognized normalization flag.') ;p( Doy)i  
        end i+Xb3+R  
    else aXD|XE%  
        isnorm = false; g+k yvI7o  
    end HxShNU  
    J s,.$t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ][T>052v  
    % Compute the Zernike Polynomials ; JHf0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pmDFmES  
    04E#d.o '  
    % Determine the required powers of r: ,5|@vW2@u  
    % ----------------------------------- -fx$)d~  
    m_abs = abs(m); 'p,54<e  
    rpowers = []; T "t%>g  
    for j = 1:length(n) Znh<r[p<  
        rpowers = [rpowers m_abs(j):2:n(j)]; g^2H(}frc  
    end F)tcQO"G  
    rpowers = unique(rpowers); k?Iq 6  
    OWHHN<  
    % Pre-compute the values of r raised to the required powers, >uz3 O?z P  
    % and compile them in a matrix: Z1+1>|-iW  
    % ----------------------------- #$-`+P  
    if rpowers(1)==0 -sk!XWW+  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); j{NcDe pLn  
        rpowern = cat(2,rpowern{:}); yKOC1( ~  
        rpowern = [ones(length_r,1) rpowern]; NFb<fD[C  
    else I6 Q{ Axy  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1&YkRCn0  
        rpowern = cat(2,rpowern{:}); ca$K)=cDW  
    end )>^!X$`3  
    !JwR[X\f  
    % Compute the values of the polynomials: * @'N/W/8  
    % -------------------------------------- jL#`CD  
    y = zeros(length_r,length(n)); ygTc Y  
    for j = 1:length(n) b,RQ" {  
        s = 0:(n(j)-m_abs(j))/2; Mvlqx J$  
        pows = n(j):-2:m_abs(j); mp>Ne6\Tu  
        for k = length(s):-1:1 E$E #c8I:  
            p = (1-2*mod(s(k),2))* ... 5+iXOs<   
                       prod(2:(n(j)-s(k)))/              ... |VML.u:N  
                       prod(2:s(k))/                     ... 'W J3q|o/  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... H<wkD9v}H5  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); e[L%M:e9U  
            idx = (pows(k)==rpowers); 10e~Yc  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Z[zRZ2'i5  
        end ,CQg6- [  
         kG3m1: :  
        if isnorm =E-V-?N\  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); r1 [Jo|4vo  
        end .0'FW!;FV  
    end :^992]EBEj  
    % END: Compute the Zernike Polynomials R"qxT.P(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /gq VXDY+`  
    J0 x)NnWJ  
    % Compute the Zernike functions: 3g5 n>8-  
    % ------------------------------ O3["5  
    idx_pos = m>0; GC^>oF  
    idx_neg = m<0; jB%aHUF;  
    }:hN}*H  
    z = y; '@,M 'H{  
    if any(idx_pos) 8iUj9r_  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); P jh3=Dr  
    end v_e3ZA:%  
    if any(idx_neg) OS$^>1f"  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); BBlYy5x  
    end FWDAG$K@0  
    jkfc=O6^  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) E8] kd  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. :pvJpu$]  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated fKOC-%w  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive }GL@?kAGR5  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, M.?[Xpa  
    %   and THETA is a vector of angles.  R and THETA must have the same VQwF9Iq]`  
    %   length.  The output Z is a matrix with one column for every P-value, VH7nyqEM  
    %   and one row for every (R,THETA) pair. I::|d,bR!  
    % ~X!Z+Vg  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike r: M>/Z/  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) S>V+IKW;(  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) b .|k j  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Ws*UhJY<GS  
    %   for all p. 2$s2u;  
    % Bw25+l Px  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Tqj:C8K{  
    %   Zernike functions (order N<=7).  In some disciplines it is 6tF_u D  
    %   traditional to label the first 36 functions using a single mode X_aC$_b  
    %   number P instead of separate numbers for the order N and azimuthal U;#9^<^  
    %   frequency M. S^T ><C  
    % sFV&e->AN\  
    %   Example: Zi= /w  
    % )J{ .z   
    %       % Display the first 16 Zernike functions M)1Y7?r]  
    %       x = -1:0.01:1; F_F02:t  
    %       [X,Y] = meshgrid(x,x); v8f1o$R  
    %       [theta,r] = cart2pol(X,Y); 7-#   
    %       idx = r<=1; Ra/Pk G-7  
    %       p = 0:15; w?:tce   
    %       z = nan(size(X)); fs\A(]`$  
    %       y = zernfun2(p,r(idx),theta(idx)); 1s/548wu  
    %       figure('Units','normalized') _9:r4|S  
    %       for k = 1:length(p) H5>?{(m  
    %           z(idx) = y(:,k); RG_.0'5=hc  
    %           subplot(4,4,k) qV7 9bK  
    %           pcolor(x,x,z), shading interp /odDJxJ k  
    %           set(gca,'XTick',[],'YTick',[]) vb`R+y@  
    %           axis square J"~!jrzBh(  
    %           title(['Z_{' num2str(p(k)) '}']) 5yk#(i 7C  
    %       end AF\Jh+ynT!  
    % z"P/Geb:O  
    %   See also ZERNPOL, ZERNFUN. `3:Q.A_?  
    dVe,;?+A  
    %   Paul Fricker 11/13/2006 $Da?)Hz'F  
    * }) W>  
    <.".,Na(J0  
    % Check and prepare the inputs: C?j:+  
    % ----------------------------- w)C5XX30;  
    if min(size(p))~=1 r4mz   
        error('zernfun2:Pvector','Input P must be vector.') _Wqy,L;J  
    end v =d16  
    )M><09  
    if any(p)>35 8PR\a!"  
        error('zernfun2:P36', ... nvQTJ4,,  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... # /Bg5:  
               '(P = 0 to 35).']) EKus0"|  
    end  :g~_  
    @;\0cE n>  
    % Get the order and frequency corresonding to the function number: LU/;` In  
    % ---------------------------------------------------------------- |'-%d^ Z  
    p = p(:); CEW1T_1U<\  
    n = ceil((-3+sqrt(9+8*p))/2); u4j"U6"]M  
    m = 2*p - n.*(n+2); s'|t2`K("  
    XY#.?<"Q8  
    % Pass the inputs to the function ZERNFUN: S$ffTdRz  
    % ---------------------------------------- 2Qt!JXC  
    switch nargin yd=b!\}WJ  
        case 3 ocu,qL)W  
            z = zernfun(n,m,r,theta); b~qH/A}h  
        case 4 [5!dO\-[  
            z = zernfun(n,m,r,theta,nflag); kH8/8  
        otherwise w2db=9  
            error('zernfun2:nargin','Incorrect number of inputs.') >, [@SF%  
    end Ol~M BQs  
    $<yhEvv  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 1 +[sM  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. H8B$# .  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of "Kdn`zN{  
    %   order N and frequency M, evaluated at R.  N is a vector of :AS`1\ C  
    %   positive integers (including 0), and M is a vector with the em'ADRxG+  
    %   same number of elements as N.  Each element k of M must be a `XpQR=IOMb  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) S*$?~4{R  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is SnR2o3r-Of  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 4Y$\QZO  
    %   with one column for every (N,M) pair, and one row for every a ydNSgu  
    %   element in R. G:p85k `  
    % &7oL2 Wf  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- +FAj30  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is lPI~5N8  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to vENf3;o0  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 r0 )ne|&Hp  
    %   for all [n,m]. xEk8oc  
    % FF~r&h8H  
    %   The radial Zernike polynomials are the radial portion of the VX&PkGi?o  
    %   Zernike functions, which are an orthogonal basis on the unit x-e6[_F  
    %   circle.  The series representation of the radial Zernike Q2D!Agq=D  
    %   polynomials is HC/z3b;  
    % |/vJ+aKq  
    %          (n-m)/2 E^zfI9R  
    %            __ 2 U]d 1  
    %    m      \       s                                          n-2s y?3.W  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r //_H _ue$  
    %    n      s=0 z V\+za,  
    % U!`iKy-  
    %   The following table shows the first 12 polynomials. Pal=I)  
    % Be=rBrI>  
    %       n    m    Zernike polynomial    Normalization |PlNVd2  
    %       --------------------------------------------- kJp~'\b  
    %       0    0    1                        sqrt(2) O|~C qb  
    %       1    1    r                           2 ]Ob|!L(  
    %       2    0    2*r^2 - 1                sqrt(6) `r-jWK\  
    %       2    2    r^2                      sqrt(6) d.^g#&h  
    %       3    1    3*r^3 - 2*r              sqrt(8) [104;g <  
    %       3    3    r^3                      sqrt(8) Vh;zV Y  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) weSq |f  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) b.@a,:"  
    %       4    4    r^4                      sqrt(10) 6eB;  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) `X}:(O^GO  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 1XMR7liE  
    %       5    5    r^5                      sqrt(12) m&Mupl  
    %       --------------------------------------------- P}Kgh7)3  
    % Zn'tNt/  
    %   Example: sfj+-se(K.  
    % iU;e!\A  
    %       % Display three example Zernike radial polynomials +t+<?M B  
    %       r = 0:0.01:1; 0(D^NtB7  
    %       n = [3 2 5]; u] };QR  
    %       m = [1 2 1]; .mt%8GM  
    %       z = zernpol(n,m,r); Y~-y\l;Tr  
    %       figure OegeZV  
    %       plot(r,z) !qj[$x-ns  
    %       grid on B6Vlc{c5SO  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') M  9t7y  
    % Jpj=d@Of70  
    %   See also ZERNFUN, ZERNFUN2. `t&{^ a&Y"  
    fI613ww]  
    % A note on the algorithm. pn gto  
    % ------------------------ /Hyz]46  
    % The radial Zernike polynomials are computed using the series Sw\*$g]  
    % representation shown in the Help section above. For many special ViPC Yt`of  
    % functions, direct evaluation using the series representation can DH-M|~.sf^  
    % produce poor numerical results (floating point errors), because 8AuBs;i  
    % the summation often involves computing small differences between _1p8(n  
    % large successive terms in the series. (In such cases, the functions ?)xIn)#l s  
    % are often evaluated using alternative methods such as recurrence ej`%}e%2  
    % relations: see the Legendre functions, for example). For the Zernike QO/0VB42  
    % polynomials, however, this problem does not arise, because the 4VWk/HK-!  
    % polynomials are evaluated over the finite domain r = (0,1), and _\}'5nmw\  
    % because the coefficients for a given polynomial are generally all `hi=y BO  
    % of similar magnitude. Xv8-<Ks  
    % I6W`yh`I)  
    % ZERNPOL has been written using a vectorized implementation: multiple _\ToA9m  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] &X$T "Dp  
    % values can be passed as inputs) for a vector of points R.  To achieve 3/kT'r  
    % this vectorization most efficiently, the algorithm in ZERNPOL QPJ \Iu@D$  
    % involves pre-determining all the powers p of R that are required to /SD}`GxH  
    % compute the outputs, and then compiling the {R^p} into a single 9=%zdz2_S  
    % matrix.  This avoids any redundant computation of the R^p, and G<;~nAo?f0  
    % minimizes the sizes of certain intermediate variables. J:L+q} A  
    % $;qi -K3j  
    %   Paul Fricker 11/13/2006 tnRf!A;m  
    Je1d|1!3  
     `Y#At3{  
    % Check and prepare the inputs: )/H;5 cn  
    % ----------------------------- r ]DiB:.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `@~e<s`j  
        error('zernpol:NMvectors','N and M must be vectors.') sgX!4wG&Z  
    end .Pc>1#z&[  
    +I3jI <  
    if length(n)~=length(m) LVj 1NP  
        error('zernpol:NMlength','N and M must be the same length.') b(H{i}{]  
    end cO~<iy  
    ;c(a)_1  
    n = n(:); n~N>;m P  
    m = m(:); 9DxHdpOk  
    length_n = length(n); y_Y(Xx3  
    m&UP@hUV-  
    if any(mod(n-m,2)) uJ !&T  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') " O&93#8  
    end HN5m%R&`  
    Kg[OUBv  
    if any(m<0) { "y/;x/  
        error('zernpol:Mpositive','All M must be positive.') )h{&O ,s  
    end Mt[yY|Ec|  
    3Vb4zZsl  
    if any(m>n) "yn~axk7  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') -Zt!H%U  
    end u6qK4*eAD  
    !#tVQ2O  
    if any( r>1 | r<0 ) Q]:O#;"<  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') jEc_!Q  
    end DXFu9RE\{  
    2"Os9 KD  
    if ~any(size(r)==1) D BT4 W/  
        error('zernpol:Rvector','R must be a vector.') 3[YG BM(  
    end vl"w,@V7  
    >rSjP1-F  
    r = r(:); lSj gN~:z  
    length_r = length(r); F^i3e31*t  
    +HK4sA2;  
    if nargin==4 ( ;FxKm<P@  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Z*,e<zNQ  
        if ~isnorm $*Ucfw1T  
            error('zernpol:normalization','Unrecognized normalization flag.') ]P4WfV d  
        end `c`VIq?  
    else mxa~JAlN_  
        isnorm = false; ?YhDjQs  
    end @CMI$}!{V  
    +>ju,;4WK  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #lYyL`B+~  
    % Compute the Zernike Polynomials k s40 5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !ifU}qFzK  
    &qv~)ZM$  
    % Determine the required powers of r: ZlT }cA/n  
    % ----------------------------------- ,/;Ae w;  
    rpowers = []; wq)*bIv  
    for j = 1:length(n) i_Kwxn$  
        rpowers = [rpowers m(j):2:n(j)]; zp:dArh0  
    end >p_W(u@ z$  
    rpowers = unique(rpowers); H;Wrcf2  
    !`69.v  
    % Pre-compute the values of r raised to the required powers, E$ d#4x  
    % and compile them in a matrix: L\:|95Yq  
    % ----------------------------- /<LZt<K  
    if rpowers(1)==0  ~?ab_CY  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); /x VHd  
        rpowern = cat(2,rpowern{:}); UhxM85M;x  
        rpowern = [ones(length_r,1) rpowern]; _y@ 28t  
    else c4JV~VS+  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^Hd[+vAvR  
        rpowern = cat(2,rpowern{:}); LGP"S5V  
    end ;kFD769DLw  
    %I1@{>OxG  
    % Compute the values of the polynomials: { 3G  
    % -------------------------------------- L9GLj Rp-  
    z = zeros(length_r,length_n); .<x6U*)\O  
    for j = 1:length_n p{f R$-d  
        s = 0:(n(j)-m(j))/2; z7K{ ,y  
        pows = n(j):-2:m(j); L2}\Ah"[  
        for k = length(s):-1:1 -Q WvB  
            p = (1-2*mod(s(k),2))* ... z.vQ1~s  
                       prod(2:(n(j)-s(k)))/          ... ["-rD y P  
                       prod(2:s(k))/                 ... tOwn M1 :(  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 6'qkD<  
                       prod(2:((n(j)+m(j))/2-s(k))); 7! O"k#  
            idx = (pows(k)==rpowers); \PrJy6&  
            z(:,j) = z(:,j) + p*rpowern(:,idx); u]^ s2v  
        end 5ggyk0  
         yD\q4G  
        if isnorm u mYsO.8  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); p`tz*ewC  
        end 1d^~KBfv  
    end W .a>K$  
    ^y<^hKjV  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Av.`'.b  
    'qVlq5.  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 >QDyG8*  
    IlF_g`  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)