非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 $Q56~AP
function z = zernfun(n,m,r,theta,nflag) UAtdRVi]M
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. G8OnNI
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8"J6(KS
% and angular frequency M, evaluated at positions (R,THETA) on the Uy{ZK*c8i
% unit circle. N is a vector of positive integers (including 0), and (l:LG"sy\
% M is a vector with the same number of elements as N. Each element R nk&:c
% k of M must be a positive integer, with possible values M(k) = -N(k) wRQMuFGY
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, wL"
2Cm
% and THETA is a vector of angles. R and THETA must have the same QZ_8r#2x
% length. The output Z is a matrix with one column for every (N,M) |=s jGf
% pair, and one row for every (R,THETA) pair. + :k"{I
% -!:h]
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )F%zT[Auph
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m7,;Hr(
% with delta(m,0) the Kronecker delta, is chosen so that the integral -y)g}D%
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +ZPn[|
% and theta=0 to theta=2*pi) is unity. For the non-normalized }wV/)Oy[
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. @i@f@.t
% Y
j*Y*LB~
% The Zernike functions are an orthogonal basis on the unit circle. xU$15|ny
% They are used in disciplines such as astronomy, optics, and j79$/ Ol
% optometry to describe functions on a circular domain. =-n7/
% EL1*@
% The following table lists the first 15 Zernike functions. hrTl:\
% p (x<h
% n m Zernike function Normalization fZrB!\Q
% -------------------------------------------------- Z}$1~uyw
% 0 0 1 1 NPE7AdB8
% 1 1 r * cos(theta) 2 -n`2>L1
% 1 -1 r * sin(theta) 2 #i[V{J8.p
% 2 -2 r^2 * cos(2*theta) sqrt(6) ,HfdiGs}j
% 2 0 (2*r^2 - 1) sqrt(3) %1%@L7wP>
% 2 2 r^2 * sin(2*theta) sqrt(6) OJPi*i 5*
% 3 -3 r^3 * cos(3*theta) sqrt(8) .oxeo0@~
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) }y#aO
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) >I;J!{
% 3 3 r^3 * sin(3*theta) sqrt(8) gYvT'72
% 4 -4 r^4 * cos(4*theta) sqrt(10) ]d50J@W
c
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xs$-^FnD
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 3Vb/Mn!k
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6ragRS/'x
% 4 4 r^4 * sin(4*theta) sqrt(10) eLN[`hJ
% -------------------------------------------------- vU,;asgy
% 6B`,^8Lp
% Example 1: xX2/uxi8
% oD~q/04!
% % Display the Zernike function Z(n=5,m=1) rd4mAX6@
% x = -1:0.01:1; ;q%V)4
% [X,Y] = meshgrid(x,x); mA0|W#NB
% [theta,r] = cart2pol(X,Y); x_.}C%
% idx = r<=1; y_N h5
% z = nan(size(X)); lyQNE3
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Z6_E/S
% figure V?o%0V
% pcolor(x,x,z), shading interp 7?"-NrW~
% axis square, colorbar r>x>aJ
% title('Zernike function Z_5^1(r,\theta)') ~X%W2N2
% =1Tn~)^O
% Example 2: F`JW&r\
% {xJ<)^fD8
% % Display the first 10 Zernike functions n3JSEu;J
% x = -1:0.01:1; yU< "tg E
% [X,Y] = meshgrid(x,x); {
^
@c96&
% [theta,r] = cart2pol(X,Y); m0+'BC{$u
% idx = r<=1; @1iH4RE*
% z = nan(size(X)); `& }C*i"
% n = [0 1 1 2 2 2 3 3 3 3]; rZ^VKO`~I1
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; _$BH.I
% Nplot = [4 10 12 16 18 20 22 24 26 28]; U~YjTjbd
% y = zernfun(n,m,r(idx),theta(idx)); lehuJgz'OO
% figure('Units','normalized') Ts
1
% for k = 1:10 53)*i\9&
% z(idx) = y(:,k); PBp+(o-
% subplot(4,7,Nplot(k)) C9"yu&l
% pcolor(x,x,z), shading interp K{[N.dX(
% set(gca,'XTick',[],'YTick',[]) EGJrnz8
% axis square xzOM\Nq?O
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) TrmrA$5f
% end DYaOlT(rE
% /H<tv5mXJ
% See also ZERNPOL, ZERNFUN2. [eO6H2@=z
RL~]mI!U
% Paul Fricker 11/13/2006 anxwK47
V( SRw
gaxxB]8
% Check and prepare the inputs: _Q6` Wp6m
% ----------------------------- "| W``&pM
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) xmbFJUMH
error('zernfun:NMvectors','N and M must be vectors.') PHQ99&F1
end i@hW" [A
fD ?w!7f-1
if length(n)~=length(m) tboc7Hor4
error('zernfun:NMlength','N and M must be the same length.') bx=9XZ9g
end v.Zr,Z=eV
TC^fyxq
n = n(:); f,QBj{M,
m = m(:); j<C p&}X
if any(mod(n-m,2)) [pYjH+<
error('zernfun:NMmultiplesof2', ... Swnom?t
'All N and M must differ by multiples of 2 (including 0).') 7)37AK w
end ZRLS3*`
O t1:z:Pl
if any(m>n) h^=9R6im
error('zernfun:MlessthanN', ... &VfMv'%x
'Each M must be less than or equal to its corresponding N.') lko
k2
end 4&+lc*
T@\%h8@~]
if any( r>1 | r<0 ) gWpG-RL0
error('zernfun:Rlessthan1','All R must be between 0 and 1.') UZb!tO2
end ".Sa[A;~
UJhUb)}^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) D!nx %%q
error('zernfun:RTHvector','R and THETA must be vectors.') i.G"21M
end ~sbn"OS+
Y[Kpd[)[v
r = r(:); @bO/5"X,
theta = theta(:); l~*D
jr~
length_r = length(r); NB?y/v
if length_r~=length(theta) &24$*Oe
error('zernfun:RTHlength', ... ewORb
'The number of R- and THETA-values must be equal.') ,ou&WI yC
end "E}38
/w2jlu}yt
% Check normalization: zaMKwv}BR
% -------------------- hz*H,E!>
if nargin==5 && ischar(nflag) $61j_;WF`
isnorm = strcmpi(nflag,'norm'); R"V^%z;8o
if ~isnorm w~l%xiC
error('zernfun:normalization','Unrecognized normalization flag.') B7ty*)i?
end Yo;Mexo!
else MZK%IC>
isnorm = false; FvT;8ik:3
end &JHqUVs^
5;_&C=[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HlC[Nu^6U
% Compute the Zernike Polynomials (4oO8aBB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lz88//@gZ
j=5hW.fI
% Determine the required powers of r: aYd`E4S+
% ----------------------------------- *e}1KcJ
m_abs = abs(m); `d6,]'
rpowers = []; GG$&=.$
for j = 1:length(n) 3}ATt".
rpowers = [rpowers m_abs(j):2:n(j)]; %"g; K
end fNaboNj[
rpowers = unique(rpowers); >nOzz0,
T f;:C]
% Pre-compute the values of r raised to the required powers, /Ym!%11`
% and compile them in a matrix: .Mu]uQUF
% ----------------------------- yi@mf$A|
if rpowers(1)==0 AAPfU_:
^
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); mj_V6`m4
rpowern = cat(2,rpowern{:}); >a$b4
pvh
rpowern = [ones(length_r,1) rpowern]; WSV[)-=:
else !y syb
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <9yB& ^
rpowern = cat(2,rpowern{:}); c?XqSK`',Z
end :Co+haW
t o2y#4'.
% Compute the values of the polynomials: ?Y|*EH
% -------------------------------------- |VE*_ G
y = zeros(length_r,length(n)); xA {1XS}
for j = 1:length(n) G;Thz
s = 0:(n(j)-m_abs(j))/2; AB")aX2%E
pows = n(j):-2:m_abs(j); [>wvVv
for k = length(s):-1:1 V07? sc<
p = (1-2*mod(s(k),2))* ... R'1L%srTM+
prod(2:(n(j)-s(k)))/ ... 19#A7
prod(2:s(k))/ ... /woC{J)4p
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ti}G/*4
prod(2:((n(j)+m_abs(j))/2-s(k))); nk^-+olm
idx = (pows(k)==rpowers); $mZpX:7/u8
y(:,j) = y(:,j) + p*rpowern(:,idx); QB|D_?]
end -e(,>9Q
8j<+ '
R
if isnorm k:k!4
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6kM'f}t[C
end !|`vW{v
end FST}:*dOe5
% END: Compute the Zernike Polynomials !-Br?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9&p;2/H
bhg
OLh#
% Compute the Zernike functions: l<YCX[%E
% ------------------------------ Z5%T pAu[
idx_pos = m>0; J0a#QvX!
idx_neg = m<0; r]'Q5l4j6"
aq<QKnU
z = y; o YNp0Hc
if any(idx_pos) <;.->73E
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5|Or,8r(C
end 6h_OxO&!U
if any(idx_neg) UZ}>@0
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4bZ
+nQgLu
end jXALN
qtLXdSc
% EOF zernfun