切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11532阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Jf{ M[ z  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Qo;#}%}^^  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 l?/.uNw  
    function z = zernfun(n,m,r,theta,nflag) G{cTQH|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. CY4_=  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N D-8>?`n\  
    %   and angular frequency M, evaluated at positions (R,THETA) on the %YaUc{.%  
    %   unit circle.  N is a vector of positive integers (including 0), and @M V%&y*z.  
    %   M is a vector with the same number of elements as N.  Each element DJ9;{,gm  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) VhAZncw  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 2 8j=q-9Z  
    %   and THETA is a vector of angles.  R and THETA must have the same Bn"r;pqWiT  
    %   length.  The output Z is a matrix with one column for every (N,M) WLAJqmC]  
    %   pair, and one row for every (R,THETA) pair. 9 o7d3ir)  
    % Rro{A+[,X  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike J\%<.S>  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !7g E  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 1@ j>2>i  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |-zwl8E  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized :);]E-ch  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !k&~|_$0@  
    % 8dw]i1t<  
    %   The Zernike functions are an orthogonal basis on the unit circle. FNDLqf!j  
    %   They are used in disciplines such as astronomy, optics, and MGO.dRy_  
    %   optometry to describe functions on a circular domain. _e.b #{=9  
    % ~EU[?  
    %   The following table lists the first 15 Zernike functions. tH:K6^oR  
    % xX'Uq_ Jv  
    %       n    m    Zernike function           Normalization n/"T7Y\2  
    %       -------------------------------------------------- vII8>x%*  
    %       0    0    1                                 1 f=}Mr8W'  
    %       1    1    r * cos(theta)                    2 e^@/ Bm+B  
    %       1   -1    r * sin(theta)                    2 6,xoxNoPP3  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) >:]fN61#  
    %       2    0    (2*r^2 - 1)                    sqrt(3) x~GV#c  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 6QRfju'  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ~MY (6P  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) mm=Y(G[_%y  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Xl6)&   
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Z"gllpDr$  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) -aNTFt~|[  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $ Yz &x%Lb  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) =tcPYYD  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) EGwY|+3  
    %       4    4    r^4 * sin(4*theta)             sqrt(10)  FZ>*<&  
    %       -------------------------------------------------- ZZC= 7FB  
    % u,F d[[t  
    %   Example 1: P:k(=CzZ@J  
    % e #^|NQ<'A  
    %       % Display the Zernike function Z(n=5,m=1) 6\,^MI  
    %       x = -1:0.01:1; J'O`3!Oy/  
    %       [X,Y] = meshgrid(x,x); 0iX qAa  
    %       [theta,r] = cart2pol(X,Y); MatC2-aV1  
    %       idx = r<=1; Y%:p(f<  
    %       z = nan(size(X)); tL+8nTL  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); l7{hq}@;cC  
    %       figure ?<frU ,{  
    %       pcolor(x,x,z), shading interp z K8#gif@  
    %       axis square, colorbar @\l> <R9V  
    %       title('Zernike function Z_5^1(r,\theta)') 5 J|;RtcR  
    % dr6 dK  
    %   Example 2: F'CUkVC0~P  
    % zF i+6I$  
    %       % Display the first 10 Zernike functions wH Z!t,g  
    %       x = -1:0.01:1; `A <yDy  
    %       [X,Y] = meshgrid(x,x); lO $M6l  
    %       [theta,r] = cart2pol(X,Y); SA>;]6)`(  
    %       idx = r<=1; !P Gow  
    %       z = nan(size(X)); G^mk<pH  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ,.`^Wx6F  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; =w A< F  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; o m_&|9B)  
    %       y = zernfun(n,m,r(idx),theta(idx)); 8)POEY4  
    %       figure('Units','normalized') N~>?w#?J  
    %       for k = 1:10 9jPb-I-   
    %           z(idx) = y(:,k); >!)VkDAG  
    %           subplot(4,7,Nplot(k)) f!$J_dz  
    %           pcolor(x,x,z), shading interp vWkKNB  
    %           set(gca,'XTick',[],'YTick',[]) T4!]^_t^  
    %           axis square ` `;$Kr  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Ok`U*j  
    %       end A[ iP s9  
    % j [U0,]  
    %   See also ZERNPOL, ZERNFUN2. d7^XP  
    f,L  
    %   Paul Fricker 11/13/2006 Y|VzeJC  
    |16 :Zoq  
    :s'%IGy>:  
    % Check and prepare the inputs: #8z\i2I  
    % ----------------------------- wO!hVm,T a  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5 N/ ]/  
        error('zernfun:NMvectors','N and M must be vectors.') *>'R R<  
    end 2mlE;.}8  
    #P9VX5Tg  
    if length(n)~=length(m) fBLd5  
        error('zernfun:NMlength','N and M must be the same length.') 8&UuwZ6i-  
    end =!CuCV7$1O  
    I@S<D"af  
    n = n(:); F>b6fUtR  
    m = m(:); -KNJCcBJ  
    if any(mod(n-m,2)) E7h}0DX  
        error('zernfun:NMmultiplesof2', ... Qx,G3m[}  
              'All N and M must differ by multiples of 2 (including 0).') ,?d%&3z<a  
    end | fI%L9  
    Ksp;bfe  
    if any(m>n) Y>#c2@^i<  
        error('zernfun:MlessthanN', ... VDPN1+1*  
              'Each M must be less than or equal to its corresponding N.') UKJY.W!w4  
    end r#Fu<so,  
    a2 rv4d=  
    if any( r>1 | r<0 ) ZkIQ-;wx  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') >ATW/9r  
    end "/'= gE  
    YQ)m?=+J  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) K?tk&0  
        error('zernfun:RTHvector','R and THETA must be vectors.') $"FdS,*qKl  
    end jFXU xf  
    UJH{vjIv  
    r = r(:); Ji!-G4.n"  
    theta = theta(:); -0X> y  
    length_r = length(r); 0@Ijk(|  
    if length_r~=length(theta) g7P1]CZ}  
        error('zernfun:RTHlength', ... IID(mmy6 L  
              'The number of R- and THETA-values must be equal.') 2$o[  
    end f lB,_  
    9vbh5xX   
    % Check normalization: 6-=_i)kzq  
    % -------------------- :}JZKj!}M  
    if nargin==5 && ischar(nflag) u7=[~l&L  
        isnorm = strcmpi(nflag,'norm'); ~/U0S.C  
        if ~isnorm ?},ItJ#>)q  
            error('zernfun:normalization','Unrecognized normalization flag.') 1;P\mff3Y  
        end Ax0,7,8y  
    else (6BCFl:/Q<  
        isnorm = false; /( V=Um^0  
    end 4PWr;&  
    S2R[vB4).  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CP#79=1  
    % Compute the Zernike Polynomials 2jW>uk4/i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K*Jtyy}r  
    K8J2eV\  
    % Determine the required powers of r: 88>Uu!M=f  
    % ----------------------------------- gHx-m2N  
    m_abs = abs(m); _o.Z`]  
    rpowers = []; ^PQV3\N  
    for j = 1:length(n) #FB>}:L{h*  
        rpowers = [rpowers m_abs(j):2:n(j)]; W\,lII0  
    end \Wc/kY3&  
    rpowers = unique(rpowers); Y*k<NeDyn  
    17cW8\  
    % Pre-compute the values of r raised to the required powers, q&E5[/VK:  
    % and compile them in a matrix: >t2b?(h/x  
    % ----------------------------- v)yimIHzo  
    if rpowers(1)==0 k Ml<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); S7a6ntei  
        rpowern = cat(2,rpowern{:}); 2]9<%-=S  
        rpowern = [ones(length_r,1) rpowern]; h`]/3Ma*:  
    else @S7=6RKa[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); $/TA5h  
        rpowern = cat(2,rpowern{:});  ^qqHq  
    end F?} *ovy  
    ~It+|X=Kx  
    % Compute the values of the polynomials: 5{q/z^]  
    % -------------------------------------- j#,M@CE  
    y = zeros(length_r,length(n)); d;SRK @  
    for j = 1:length(n) ~{YgM/c|dt  
        s = 0:(n(j)-m_abs(j))/2; 4p8jV*:@{  
        pows = n(j):-2:m_abs(j);  #U52\3G  
        for k = length(s):-1:1 &t/<yq}{  
            p = (1-2*mod(s(k),2))* ... |u"R(7N*  
                       prod(2:(n(j)-s(k)))/              ...  sGls^J)  
                       prod(2:s(k))/                     ... e H  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /Q8A"'Nk  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); [7 `Dgnmq  
            idx = (pows(k)==rpowers); :5M}Iz7  
            y(:,j) = y(:,j) + p*rpowern(:,idx); H}V*<mg w  
        end % `T5a<  
         +Nbk\%  
        if isnorm GFdJFQio  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6r=)V$K <  
        end j' KobyX<  
    end k^5R f  
    % END: Compute the Zernike Polynomials "tB"j9Jb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4VJzs$  
    !VX_'GyK  
    % Compute the Zernike functions: 'Y{ux>  
    % ------------------------------ UUf1T@-  
    idx_pos = m>0; 0nz@O^*g(  
    idx_neg = m<0; WFB|lNf&  
    J5p!-N`NS  
    z = y; Ym{%"EB  
    if any(idx_pos) @b*T4hwA.  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3ZL7N$N}7  
    end &9dr+o-(~  
    if any(idx_neg) P9i9<pR  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); uU(G_E ?  
    end p:<gFZb  
    Gx_`|I{P  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) w4fJ`,  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ?Y6la.bc{  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated />^`*e_  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive JIbzh?$aD  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 95?5=T F  
    %   and THETA is a vector of angles.  R and THETA must have the same Z>Kcz^a#  
    %   length.  The output Z is a matrix with one column for every P-value, gvc' $9%  
    %   and one row for every (R,THETA) pair. o(X90X  
    % :Bv&)RK  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ]i,Mq  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) me[J\MJ;w^  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) :^-HVT)qF  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 snTJe[^d  
    %   for all p. K!- &Zv  
    % dy6F+V\DG  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 W:{PBb"x8  
    %   Zernike functions (order N<=7).  In some disciplines it is )>/j&>%  
    %   traditional to label the first 36 functions using a single mode g?A5'o&Yu  
    %   number P instead of separate numbers for the order N and azimuthal x)#<.DX  
    %   frequency M. J!A/r<  
    % qSC~^N`  
    %   Example: \p3nd!OIG  
    % ^E<~zO=Z  
    %       % Display the first 16 Zernike functions U8WHE=Kk\h  
    %       x = -1:0.01:1; =JbdsYI(  
    %       [X,Y] = meshgrid(x,x); (ju aDn)  
    %       [theta,r] = cart2pol(X,Y); {*<O"|v  
    %       idx = r<=1; c5iormb"#  
    %       p = 0:15; im4e!gRE  
    %       z = nan(size(X)); 59Tg"3xB<  
    %       y = zernfun2(p,r(idx),theta(idx)); zy5s$f1IA  
    %       figure('Units','normalized') 0XR;5kd%  
    %       for k = 1:length(p) &w;^m/zP3  
    %           z(idx) = y(:,k); }/7.+yD  
    %           subplot(4,4,k) !4 4mT'Y  
    %           pcolor(x,x,z), shading interp K.V!@bPlw9  
    %           set(gca,'XTick',[],'YTick',[]) %7C%`)T]  
    %           axis square DX&lBV  
    %           title(['Z_{' num2str(p(k)) '}']) +YQ~t,/  
    %       end 6_9:Eb=^v!  
    % 8t T&BmT  
    %   See also ZERNPOL, ZERNFUN. y?Hj %,  
    >p]WCb'PH  
    %   Paul Fricker 11/13/2006 C>JekPeM  
    OXIu>jF  
    I!F}`d  
    % Check and prepare the inputs: 5I)~4.U|,m  
    % ----------------------------- RFZU}.*K$  
    if min(size(p))~=1 KD%xo/Z.  
        error('zernfun2:Pvector','Input P must be vector.') j'#jnP*P  
    end >Bh)7>`3c  
    @Hspg^  
    if any(p)>35 ) 8x:x7?  
        error('zernfun2:P36', ... as\<nPT{Fj  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... J+3\2D?  
               '(P = 0 to 35).']) kwDh|K  
    end LY\ddI*s  
    WIEx '{  
    % Get the order and frequency corresonding to the function number: ( E"&UC[  
    % ---------------------------------------------------------------- (<]\,pP0_  
    p = p(:); Lo|NE[b:G  
    n = ceil((-3+sqrt(9+8*p))/2); <K DH  
    m = 2*p - n.*(n+2); S.Wh4kMUe  
    }J+ ce  
    % Pass the inputs to the function ZERNFUN: b!4N)t>gl  
    % ---------------------------------------- t-*VsPy  
    switch nargin pIID= 8RJ.  
        case 3 bk\dy7  
            z = zernfun(n,m,r,theta); "t (1tWO1o  
        case 4 3:]{(@J  
            z = zernfun(n,m,r,theta,nflag); *} *!+C3  
        otherwise eD*?q7  
            error('zernfun2:nargin','Incorrect number of inputs.') klK-,J  
    end MO));M)  
     D rF  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ^?$D.^g  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. @wd!&%yzO  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of `FZ(#GDF  
    %   order N and frequency M, evaluated at R.  N is a vector of i&A{L}eCr:  
    %   positive integers (including 0), and M is a vector with the 2x-'>i_|g  
    %   same number of elements as N.  Each element k of M must be a l?3vNa FeR  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) TqENaC#&  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is <u6c2!I{  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix HBt|}uZ?6i  
    %   with one column for every (N,M) pair, and one row for every ?ada>"~GR_  
    %   element in R. ,bB( 24LD  
    % lTa1pp Zw  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- R(M}0JRm  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Hnfvo*6d.e  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Ivz+Jj w  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 GwgFi@itN  
    %   for all [n,m]. _ oQtk^fp  
    % =}~NRmmF  
    %   The radial Zernike polynomials are the radial portion of the Oq #o1>  
    %   Zernike functions, which are an orthogonal basis on the unit 7ZS>1  
    %   circle.  The series representation of the radial Zernike T&o,I  
    %   polynomials is pBlRd{#fL  
    % L_tjcfVo  
    %          (n-m)/2 ?wGiog<Q{  
    %            __ fm3(70F\  
    %    m      \       s                                          n-2s e{v,x1Y_z(  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r X}3P1.n:  
    %    n      s=0 s9uL<$,'  
    % Z 6 tE{/  
    %   The following table shows the first 12 polynomials. M%7`8KQ  
    % "nVK< Vd  
    %       n    m    Zernike polynomial    Normalization \9046An  
    %       --------------------------------------------- }BA9Ka#%  
    %       0    0    1                        sqrt(2) Z1VC5* K  
    %       1    1    r                           2 IO}+[%ptc*  
    %       2    0    2*r^2 - 1                sqrt(6) gsnP!2cR  
    %       2    2    r^2                      sqrt(6) ~RcNZ\2y  
    %       3    1    3*r^3 - 2*r              sqrt(8) MB1sQReOO  
    %       3    3    r^3                      sqrt(8) C>AcK#-x,{  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) A|2 <A !  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) WLE%d]'%M  
    %       4    4    r^4                      sqrt(10) 6a7vlo  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) #]?tY }~  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) \|v`l{  
    %       5    5    r^5                      sqrt(12) MKomq  
    %       --------------------------------------------- YkSuwx@5_q  
    % [:Be[pLC  
    %   Example: V{43HA10b  
    % KA`0g=  
    %       % Display three example Zernike radial polynomials [6O04"6K  
    %       r = 0:0.01:1; tJff+n>  
    %       n = [3 2 5]; iwvt%7  
    %       m = [1 2 1]; E3y6c)<  
    %       z = zernpol(n,m,r); l+t #"3  
    %       figure P=c?QYF  
    %       plot(r,z) $+7ci~gs  
    %       grid on pfR"s:#  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') _Q> "\_,  
    % FX7M4t#<  
    %   See also ZERNFUN, ZERNFUN2. v5B" A"N  
    M|ms$1x  
    % A note on the algorithm. {z=j_;<]  
    % ------------------------ -RGPt D@  
    % The radial Zernike polynomials are computed using the series 'c#IMlv  
    % representation shown in the Help section above. For many special pG(Fz0b{  
    % functions, direct evaluation using the series representation can mU50pM~/i  
    % produce poor numerical results (floating point errors), because )^&,Dj   
    % the summation often involves computing small differences between DTPay1]6  
    % large successive terms in the series. (In such cases, the functions 4e}{$s$Xx  
    % are often evaluated using alternative methods such as recurrence juH wHt  
    % relations: see the Legendre functions, for example). For the Zernike X R4)z  
    % polynomials, however, this problem does not arise, because the 5!t b$p#z  
    % polynomials are evaluated over the finite domain r = (0,1), and D@#0dDT  
    % because the coefficients for a given polynomial are generally all 6nc0=~='$  
    % of similar magnitude.  '6O|H  
    % CldDr<k3  
    % ZERNPOL has been written using a vectorized implementation: multiple }~rcrm.   
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Z{} n8 b*  
    % values can be passed as inputs) for a vector of points R.  To achieve #Gd7M3  
    % this vectorization most efficiently, the algorithm in ZERNPOL 0D<TF>M;pn  
    % involves pre-determining all the powers p of R that are required to vm|!{5l:=y  
    % compute the outputs, and then compiling the {R^p} into a single Vd21,~^>g  
    % matrix.  This avoids any redundant computation of the R^p, and cs t&0  
    % minimizes the sizes of certain intermediate variables. pL! a  
    % mGO>""<:  
    %   Paul Fricker 11/13/2006 \2j|=S6  
    %Z7%jma  
    `os8;`G  
    % Check and prepare the inputs: BY$[g13  
    % ----------------------------- 5Q|sta!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _PV*lK=  
        error('zernpol:NMvectors','N and M must be vectors.') N};t<Xev  
    end zi }(^~Fe  
    ^Z#@3 =  
    if length(n)~=length(m) '#A:.P  
        error('zernpol:NMlength','N and M must be the same length.') IfMpY;ow=  
    end 1+a@k  
    Ew]<jF|.#  
    n = n(:); 1Fs-0)s8  
    m = m(:); Ssf+b!e]  
    length_n = length(n); z{|LQt6q  
    F?cq'd  
    if any(mod(n-m,2)) Ib6(Bp9.L  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') /=T H08  
    end 'y.JcS!|  
    a8zZgIV  
    if any(m<0) iV!@bC,  
        error('zernpol:Mpositive','All M must be positive.') 3b@VY'P  
    end 781]THY=  
    ) "[HZ/  
    if any(m>n) iX%n0i  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') E M Q4yK  
    end v,jhE9_O0  
     &{ZSE^  
    if any( r>1 | r<0 ) pv&^D,H,  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') &\^rQi/tf  
    end w12}Rn8  
    ;Xu22f Kh  
    if ~any(size(r)==1) t8/%D gu  
        error('zernpol:Rvector','R must be a vector.') krjN7&  
    end Xu#:Fe}:  
    /zT`Y=1  
    r = r(:); @1bH}QS  
    length_r = length(r); !y. $J<  
    Y\( ;!o0a  
    if nargin==4 NAJVr}4f  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); h/K@IA d  
        if ~isnorm }Eh*xOta  
            error('zernpol:normalization','Unrecognized normalization flag.') -zKxf@"  
        end =EpJZt  
    else '$[Di'*;  
        isnorm = false; jct./arK  
    end 1 i3k  
    :gf;}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2h q>T&8  
    % Compute the Zernike Polynomials k>5O`Y:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uPLErO9Es[  
    mU@xc N  
    % Determine the required powers of r: bX2"89{  
    % ----------------------------------- Fw"$A0  
    rpowers = []; 6P*O&1hv  
    for j = 1:length(n) 9i%9   
        rpowers = [rpowers m(j):2:n(j)]; 6I>^Pf'ND  
    end /oL8;:m  
    rpowers = unique(rpowers); #epy%>  
    5I' d PNf  
    % Pre-compute the values of r raised to the required powers, p3yU:q#A  
    % and compile them in a matrix: S GM!#K  
    % ----------------------------- }C,O   
    if rpowers(1)==0 CVQB"L  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); E\$C/}T  
        rpowern = cat(2,rpowern{:}); $Q/Ya@o  
        rpowern = [ones(length_r,1) rpowern]; 0+`Pg  
    else h}&b+ 1{X  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;LMWNy4  
        rpowern = cat(2,rpowern{:}); t&}6;z 3  
    end Yb:pAzw6  
    _Y!sVJ){,c  
    % Compute the values of the polynomials: E FY@Y[  
    % -------------------------------------- kg>>D  
    z = zeros(length_r,length_n); /!T> b:0  
    for j = 1:length_n Z<"K_bj   
        s = 0:(n(j)-m(j))/2; Qf@iU%G  
        pows = n(j):-2:m(j); c\.P/~  
        for k = length(s):-1:1 M_|> kp  
            p = (1-2*mod(s(k),2))* ... Ns=AjhLc z  
                       prod(2:(n(j)-s(k)))/          ... A-uB\ L  
                       prod(2:s(k))/                 ... n7l%gA*  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... aE/D*.0NI  
                       prod(2:((n(j)+m(j))/2-s(k))); =k{`oO~:9+  
            idx = (pows(k)==rpowers); `.v(fC  
            z(:,j) = z(:,j) + p*rpowern(:,idx); AGq>=avv  
        end GoE 'L  
         ir[jCea,  
        if isnorm RU&_j* U  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); T ):SGW  
        end `ifiL   
    end |d}MxS`^  
    \40 YGFO  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  K`KLC.j  
    %b!-~ Y.  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 m~l F`?  
    'ktHPn ,K  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)