非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 >]Mq)V9
function z = zernfun(n,m,r,theta,nflag) =cf{f]N
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. )"(V*Z
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N uY&=eQ_Cb
% and angular frequency M, evaluated at positions (R,THETA) on the )u39}dpeu
% unit circle. N is a vector of positive integers (including 0), and {l0,T0
% M is a vector with the same number of elements as N. Each element m>]>$=%
% k of M must be a positive integer, with possible values M(k) = -N(k) o"'iXUJ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, PHQ{-b?4t
% and THETA is a vector of angles. R and THETA must have the same :D"@6PC]
% length. The output Z is a matrix with one column for every (N,M) _:wZmZU}
% pair, and one row for every (R,THETA) pair. 3C277nx
% 9 '2=
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (bg}an
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), kRmj"9oA
% with delta(m,0) the Kronecker delta, is chosen so that the integral xK$}QZ)
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, u$WBc\j
% and theta=0 to theta=2*pi) is unity. For the non-normalized +?qf`p.{
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 84iJ[Fq{
% [X;>*-
% The Zernike functions are an orthogonal basis on the unit circle. X3P&"}a
% They are used in disciplines such as astronomy, optics, and R<Z^L~)
% optometry to describe functions on a circular domain. sS
C?io
% 98BYtxa
% The following table lists the first 15 Zernike functions. ^4+r*YvcM
% T1l&B
% n m Zernike function Normalization >HE,'
% -------------------------------------------------- `Jn,IDq
% 0 0 1 1 n4^*h4J7
% 1 1 r * cos(theta) 2 N1PECLS?
% 1 -1 r * sin(theta) 2 M[A-1]'
% 2 -2 r^2 * cos(2*theta) sqrt(6) 0r1g$mKb
% 2 0 (2*r^2 - 1) sqrt(3) Oz:D.V
3~
% 2 2 r^2 * sin(2*theta) sqrt(6) g<fP:/
% 3 -3 r^3 * cos(3*theta) sqrt(8) R"NGJu9
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Y;8
>=0ye
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) &kb\,mQ
% 3 3 r^3 * sin(3*theta) sqrt(8) smV!y8&
% 4 -4 r^4 * cos(4*theta) sqrt(10) llNXQlP\B
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rqF"QU= l
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) /E)9v$!
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *yrnK3
% 4 4 r^4 * sin(4*theta) sqrt(10) u0xQ;BQ
% -------------------------------------------------- 6A}eSG3
% xFOBF")
% Example 1: 1:_=g #WH
% }xqXd%uz
% % Display the Zernike function Z(n=5,m=1) m)r]F#@/
% x = -1:0.01:1; o"RJ.w:dn
% [X,Y] = meshgrid(x,x); 9J?W '8s5
% [theta,r] = cart2pol(X,Y); Y =9j2 ]t
% idx = r<=1; m`'=)x|
% z = nan(size(X)); 9GThyY
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 5lO^;.cS,
% figure [G\o+D?2
% pcolor(x,x,z), shading interp r]9 e^
% axis square, colorbar 3)y{n%3L
% title('Zernike function Z_5^1(r,\theta)') ?!H)zz6y
% @.k5MOn
% Example 2: ovz#
% zHV|-R
% % Display the first 10 Zernike functions BH5w@
% x = -1:0.01:1; Oo
kxg *!5
% [X,Y] = meshgrid(x,x); sW?B7o?
% [theta,r] = cart2pol(X,Y); [g +y_@9s
% idx = r<=1; ~Yl<S(/4
% z = nan(size(X)); z`OkHX*+2|
% n = [0 1 1 2 2 2 3 3 3 3]; H-Pq!9[DB
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ;|6FdU
% Nplot = [4 10 12 16 18 20 22 24 26 28]; SBX|Bcyk*
% y = zernfun(n,m,r(idx),theta(idx)); /tP7uVL
R
% figure('Units','normalized') YxJ`-6
% for k = 1:10 [.a;L">
% z(idx) = y(:,k); C%]."R cMC
% subplot(4,7,Nplot(k)) YwXXXh
% pcolor(x,x,z), shading interp Evkt_vvf
% set(gca,'XTick',[],'YTick',[]) K@6`-|I
% axis square GQ<Ds{exs>
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) tn{8u7
% end @89I#t6A.
% jXWNHIl)@
% See also ZERNPOL, ZERNFUN2. D
M}s0O$0
JR)/c6j
% Paul Fricker 11/13/2006 7
5|pp
EI\v
XIRR Al(,
% Check and prepare the inputs: 2 h<U
% ----------------------------- [fxuUmU
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;R!*I%
error('zernfun:NMvectors','N and M must be vectors.') gQ>2!Qc a-
end lbS?/f
6JH56
if length(n)~=length(m) ]n5"Z,K
error('zernfun:NMlength','N and M must be the same length.') a.DX%C/5
end ec?V[v
T(V8;!
n = n(:); rrcwtLNbu
m = m(:); `L\)ahM
if any(mod(n-m,2)) f>z`i\1oO
error('zernfun:NMmultiplesof2', ... b=1%pX_
'All N and M must differ by multiples of 2 (including 0).') !}5*?k
g
end xr.XU'
_f3
WRyN0
if any(m>n) 4V$fGjJ3
error('zernfun:MlessthanN', ... .=XD)>$
'Each M must be less than or equal to its corresponding N.') LN^UC$[tk
end @KA1"Wb_
> :Ze4}(
if any( r>1 | r<0 ) x@m<Ym-
error('zernfun:Rlessthan1','All R must be between 0 and 1.') wbi3lH:;
end Qn.[{rw
e:OyjG5_
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $KX[Zu%
error('zernfun:RTHvector','R and THETA must be vectors.') 9cfR)*Q
end hwVAXsF~
CZ3].DA|z
r = r(:); nJT4w|Yx
theta = theta(:); `?9T~,
length_r = length(r); bxwkTKr'
if length_r~=length(theta) HH8;J66I&
error('zernfun:RTHlength', ... +9[SVw8
'The number of R- and THETA-values must be equal.') <GF @L
end a4&:@`=
$"8d:N?I[
% Check normalization: 5+K;_)
% -------------------- >vujZw_0>
if nargin==5 && ischar(nflag) qS.)UaA
isnorm = strcmpi(nflag,'norm'); w!`Umll2
if ~isnorm xmr|'}Pt[
error('zernfun:normalization','Unrecognized normalization flag.') :wipE]~4t
end `f)(Y1%.
else ArzDI{1
isnorm = false; h/<=u9J
end os$nL'sq
eN/G i<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \H4U8)l
% Compute the Zernike Polynomials 4 x,hj
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hCC}d0gf`n
PZ,z15PG]
% Determine the required powers of r: GaBTj_3
% ----------------------------------- KG8W8&q
m_abs = abs(m); <9ifPSvJ
rpowers = []; yC
!/PQ"
for j = 1:length(n) 7petHi
rpowers = [rpowers m_abs(j):2:n(j)]; XP?*=Z]
end /\E [
rpowers = unique(rpowers); m^I,}1H4
Zw$
OKU
% Pre-compute the values of r raised to the required powers, *)> do
L
% and compile them in a matrix: 5v9Vk`3'
% ----------------------------- `,Orf ZMb
if rpowers(1)==0 jN/ j\x'
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ssl&5AS
rpowern = cat(2,rpowern{:}); #3MKH8k&~
rpowern = [ones(length_r,1) rpowern]; 3t(c_:[%
else ^od<JD4
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 'jvpNn
rpowern = cat(2,rpowern{:}); 2o5;Uz1{
end `;F2n2@
FifbxL
% Compute the values of the polynomials: o\6iq
% -------------------------------------- ^8K/xo-
y = zeros(length_r,length(n)); ctI{^f:
for j = 1:length(n) -9o{vmB{
s = 0:(n(j)-m_abs(j))/2; C_->u4-
pows = n(j):-2:m_abs(j); <KQ(c`KW7
for k = length(s):-1:1 MzTW8
p = (1-2*mod(s(k),2))* ... *YvRNHP
prod(2:(n(j)-s(k)))/ ... x(~<