切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11557阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 eEri v@v  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! !qw=I(  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ocuVDC  
    function z = zernfun(n,m,r,theta,nflag) v4>"p!_C  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. c'#J{3d  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N X@AkA9'fq  
    %   and angular frequency M, evaluated at positions (R,THETA) on the eW*ae;-  
    %   unit circle.  N is a vector of positive integers (including 0), and ;{q) |GRF  
    %   M is a vector with the same number of elements as N.  Each element )(!Z90@  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) /e?ux~f|  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, .yfqS|(  
    %   and THETA is a vector of angles.  R and THETA must have the same V =aoB Z  
    %   length.  The output Z is a matrix with one column for every (N,M) S}[:;p?F`  
    %   pair, and one row for every (R,THETA) pair. +ZA\ M:^b  
    % Fx99"3`3  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &aAo:pj  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), O-lh\9{'R  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ;6 qdOD6  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >\.[}th}  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized fQ.>G+0 I>  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `L*;58MA  
    % e, 0I~:  
    %   The Zernike functions are an orthogonal basis on the unit circle. F4<2.V)#-  
    %   They are used in disciplines such as astronomy, optics, and s&`XK$p  
    %   optometry to describe functions on a circular domain. YB3=ij!K  
    % M@X#[w:  
    %   The following table lists the first 15 Zernike functions. g7z9i[  
    % ^t ldm7{_  
    %       n    m    Zernike function           Normalization ftH%, /,  
    %       -------------------------------------------------- "sx&8H"  
    %       0    0    1                                 1 ,Y8X"~{A  
    %       1    1    r * cos(theta)                    2 5YH mp7c-z  
    %       1   -1    r * sin(theta)                    2 LLY;IUK!R  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) *#^1rKGWK  
    %       2    0    (2*r^2 - 1)                    sqrt(3) OHnjI> /  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) $(L7/M  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) w:zC/5x`  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) /P"\ +Qp  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) <m:wuNEM  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ^QQ NJ  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) >@Vr'kg+V  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~tuFjj^  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) "EhO )lR  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v ]U;5Uo  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) `srZ#F5  
    %       -------------------------------------------------- |B$\3,  
    % \` ^Tbn:  
    %   Example 1: G5f57F  
    % P2JRsZ.  
    %       % Display the Zernike function Z(n=5,m=1) X@q1;J  
    %       x = -1:0.01:1; >b?)WNk  
    %       [X,Y] = meshgrid(x,x); I8]NY !'cW  
    %       [theta,r] = cart2pol(X,Y); .%Q Ea_\  
    %       idx = r<=1; %ys}Q!gR  
    %       z = nan(size(X)); ",V5*1w  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); HYmUxheN2  
    %       figure 32P]0&_O  
    %       pcolor(x,x,z), shading interp ^tcBxDC"]  
    %       axis square, colorbar 1+}Ud.v3VW  
    %       title('Zernike function Z_5^1(r,\theta)') 2I 7`  
    % Bic { H  
    %   Example 2: J\D3fh97-  
    % 2B dr#qr  
    %       % Display the first 10 Zernike functions l*H"]6cXRL  
    %       x = -1:0.01:1; \U>Kn_7m  
    %       [X,Y] = meshgrid(x,x); N4jLbnA  
    %       [theta,r] = cart2pol(X,Y); 'k Z1&_{  
    %       idx = r<=1; _N';`wjDY  
    %       z = nan(size(X)); XqH<)B ]  
    %       n = [0  1  1  2  2  2  3  3  3  3]; aW$nNUVD  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; lB~'7r`  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; l8Qi^<i/  
    %       y = zernfun(n,m,r(idx),theta(idx)); q#3X*!)  
    %       figure('Units','normalized') 1^^D :tt  
    %       for k = 1:10 S]=Vr%irX  
    %           z(idx) = y(:,k); }?kO<)d  
    %           subplot(4,7,Nplot(k)) f.^w/ GJO/  
    %           pcolor(x,x,z), shading interp E}&jtMRUt  
    %           set(gca,'XTick',[],'YTick',[]) Nb/%>3O@  
    %           axis square S9oGf  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) D~&e.y/gHN  
    %       end V <pjR@  
    % kk+8NwM1  
    %   See also ZERNPOL, ZERNFUN2. ZhaOH5{9  
    (k&aD2PH  
    %   Paul Fricker 11/13/2006 !OgoV22  
    Lo9?,^S  
    {U-EBXV  
    % Check and prepare the inputs: BmX Gk  
    % ----------------------------- L(8dK  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) F &}V65  
        error('zernfun:NMvectors','N and M must be vectors.') {hR2NUm  
    end @{lnfOESl  
    N&`ay{&`:  
    if length(n)~=length(m) 6E]rxps}"  
        error('zernfun:NMlength','N and M must be the same length.') R,1,4XT  
    end pk1M.+  
    F| Q#KwN  
    n = n(:); _I4sy=tYXK  
    m = m(:); B{ "<\g  
    if any(mod(n-m,2)) y8z%s/gRh  
        error('zernfun:NMmultiplesof2', ... JvaaBXkS\  
              'All N and M must differ by multiples of 2 (including 0).') NLY5L7  
    end epyfgg MT  
    q /?_djv  
    if any(m>n) B4aZ3.&W  
        error('zernfun:MlessthanN', ... !F)oX7"  
              'Each M must be less than or equal to its corresponding N.') <=M}[  
    end #KW:OFT  
    T<)z2Bi  
    if any( r>1 | r<0 ) */E{s?  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') CV"Y40  
    end 55p=veq \  
    `0:@`)&g1  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) e,8-P-h~T  
        error('zernfun:RTHvector','R and THETA must be vectors.') Q,`kfxA`O  
    end _@2G]JD  
    .SN]hLV5  
    r = r(:); aa/9o ]  
    theta = theta(:); uL F55:`<  
    length_r = length(r); gBu4`M  
    if length_r~=length(theta) jq{Ix  
        error('zernfun:RTHlength', ... >B7OTGw  
              'The number of R- and THETA-values must be equal.') 9MxGyGz$  
    end 2-84  
    G2D<LRWt4  
    % Check normalization: =C|^C  
    % -------------------- JB<4 m4-  
    if nargin==5 && ischar(nflag) G\%hT5^  
        isnorm = strcmpi(nflag,'norm'); N=9lA0y+  
        if ~isnorm PAkW[;GSDh  
            error('zernfun:normalization','Unrecognized normalization flag.') C.<4D1}P  
        end 's<}@-]  
    else <lR8MqjM_  
        isnorm = false; ;rgsPVbVf  
    end YP l{5 =  
    Gj3/&'k6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x]Ef}g  
    % Compute the Zernike Polynomials t ,$)PV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1CbC|q  
    k W,|>  
    % Determine the required powers of r: qv6]YPP  
    % ----------------------------------- 2+PIZ6=hN  
    m_abs = abs(m); ikQ2x]Sp  
    rpowers = []; > R=YF*t  
    for j = 1:length(n) X6RM2  
        rpowers = [rpowers m_abs(j):2:n(j)]; zlE kP @)  
    end 7(H/|2;-d8  
    rpowers = unique(rpowers); t At+5H  
    bxs@_fH  
    % Pre-compute the values of r raised to the required powers, yFG&Ir  
    % and compile them in a matrix: X*KT=q^?n  
    % ----------------------------- ^-ZqS  
    if rpowers(1)==0 /hQ!dU.+  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <vs.Ucxx  
        rpowern = cat(2,rpowern{:}); I/g]9 y  
        rpowern = [ones(length_r,1) rpowern]; [z\*Zg  
    else 1a<~Rmcil  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \B)<<[ $  
        rpowern = cat(2,rpowern{:});  UWI5 /R  
    end b11C3TyQT  
    \GWC5R7Q0j  
    % Compute the values of the polynomials: \XC1/LZQ  
    % -------------------------------------- ("Zi,3"+  
    y = zeros(length_r,length(n)); h(BN6ZrzKd  
    for j = 1:length(n) zx27aZ[  
        s = 0:(n(j)-m_abs(j))/2; 4y 'REC  
        pows = n(j):-2:m_abs(j); SPBXI[[-  
        for k = length(s):-1:1 Z_%>yqDC  
            p = (1-2*mod(s(k),2))* ... /-T%yuU  
                       prod(2:(n(j)-s(k)))/              ... P+[R0QS  
                       prod(2:s(k))/                     ... U/>5C:  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 7DD ot_qb  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 945psG@|  
            idx = (pows(k)==rpowers); JmkJ^-A 6  
            y(:,j) = y(:,j) + p*rpowern(:,idx); [{YV<kN  
        end 9E5B.qlw$l  
         2bqwnRT}  
        if isnorm 3XIxuQwf  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,~v1NK*  
        end %uKD cj  
    end @:}z\qBM  
    % END: Compute the Zernike Polynomials V;$lgTs|'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !T}`h'  
    m9/a!|fBE  
    % Compute the Zernike functions: q_!3<.sf  
    % ------------------------------ 4_$f "6  
    idx_pos = m>0;  m{~r6@  
    idx_neg = m<0; gN*8 zui  
    *N7\d9y  
    z = y; : M Md@  
    if any(idx_pos) =Oy,SX  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \-^3Pe,  
    end ^pn:SV  
    if any(idx_neg) _QQO&0Z  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 7\.5G4dr%  
    end epQ7@9,Q  
    K.z@Vx.  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) E5B:79BGO  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 'E9\V\bi  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ]1X];x&e  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive kc}e},k  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 1&U U6|X  
    %   and THETA is a vector of angles.  R and THETA must have the same @hk~8y]rz  
    %   length.  The output Z is a matrix with one column for every P-value, )F:hv[iv  
    %   and one row for every (R,THETA) pair. s+aeP  
    % ALhu\x>AY  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike )AnX[:y  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 3iDRt&y=.  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) }nkX-PG9  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 < d?O#(  
    %   for all p. vuHqOAFNs  
    % hW(Mf  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36  0N md*r  
    %   Zernike functions (order N<=7).  In some disciplines it is zI&oZH^vn  
    %   traditional to label the first 36 functions using a single mode Z O&5C6qa  
    %   number P instead of separate numbers for the order N and azimuthal 8xLvpgcZ  
    %   frequency M. r.[9/'>  
    % XJ.vj+XXb  
    %   Example: 4jvgyi 9  
    % }.x?$C+\"  
    %       % Display the first 16 Zernike functions W@ #Y/L:${  
    %       x = -1:0.01:1; h&&ufF]D  
    %       [X,Y] = meshgrid(x,x); gz8<&*2  
    %       [theta,r] = cart2pol(X,Y); /mmC qP  
    %       idx = r<=1; G>"w$Us  
    %       p = 0:15; :dK/}S0  
    %       z = nan(size(X)); LEG y1L  
    %       y = zernfun2(p,r(idx),theta(idx)); 'RXh E  
    %       figure('Units','normalized') N\rbnr  
    %       for k = 1:length(p) +Ibcc8Qud  
    %           z(idx) = y(:,k); s~,Ypo?  
    %           subplot(4,4,k) >A#]60w.  
    %           pcolor(x,x,z), shading interp Yz4Q!tL  
    %           set(gca,'XTick',[],'YTick',[]) @a+1Ri`)  
    %           axis square "d9"Md0k  
    %           title(['Z_{' num2str(p(k)) '}']) aH*)W'N?  
    %       end }!x\qpA  
    % A?=g!(wB  
    %   See also ZERNPOL, ZERNFUN. Ovh[qm?Z  
    3 cu`U`  
    %   Paul Fricker 11/13/2006 (i1 ]+.  
    YRqIC -_  
    ckS.j)@.c  
    % Check and prepare the inputs: [?^,,.Dd  
    % ----------------------------- `$7. (.#s  
    if min(size(p))~=1 m\RU |Z  
        error('zernfun2:Pvector','Input P must be vector.') \}Z5}~S  
    end /{6PwlP5  
    xx_]e4  
    if any(p)>35 |\Nu+w   
        error('zernfun2:P36', ... ^fa+3`>  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... !K'j[cA^  
               '(P = 0 to 35).']) S{&,I2aO  
    end (]>= y  
    )l~:P uvh  
    % Get the order and frequency corresonding to the function number: &]iiBp#2  
    % ---------------------------------------------------------------- +iY.YV  
    p = p(:); 8c3Qd  
    n = ceil((-3+sqrt(9+8*p))/2); j#rjYiYKy  
    m = 2*p - n.*(n+2); 07`hQn)Gc  
    LB1LQ 0M  
    % Pass the inputs to the function ZERNFUN: Q/xT>cUd  
    % ---------------------------------------- >{C=\F#*L  
    switch nargin n=qN@u;Fi#  
        case 3 u_shC"X:  
            z = zernfun(n,m,r,theta); jvv3;lWDL.  
        case 4 @z[,w`  
            z = zernfun(n,m,r,theta,nflag); qj/ pd 7\  
        otherwise <b !nI N  
            error('zernfun2:nargin','Incorrect number of inputs.') ~PAF2  
    end (e.?). e  
    c6VfFt6p  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) $=3&qg"!  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. >ka*-8?  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 4IfOvAN%  
    %   order N and frequency M, evaluated at R.  N is a vector of A@M%}h  
    %   positive integers (including 0), and M is a vector with the J'{69<`Dl  
    %   same number of elements as N.  Each element k of M must be a :4JqT|nS  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) [&y="6No  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is z B/#[~  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix "u^%~2  
    %   with one column for every (N,M) pair, and one row for every nwSujD  
    %   element in R.  KT'Ebb]  
    % WRIOjQ:  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- dAg<BK/  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is }Rl^7h<!  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to GY% ^!r  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 S=NP}4w,_)  
    %   for all [n,m]. FVY$A =G  
    % n/]w!  
    %   The radial Zernike polynomials are the radial portion of the Fs+ CY  
    %   Zernike functions, which are an orthogonal basis on the unit 5@c/,6l  
    %   circle.  The series representation of the radial Zernike }7Lo}}  
    %   polynomials is 3X|7 R  
    % 4sJM!9eb[  
    %          (n-m)/2 %*:X FB  
    %            __ +ftOJFkI  
    %    m      \       s                                          n-2s }enS'Fpf`  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r $+'bRUo  
    %    n      s=0 m 0jm$> :Z  
    % Jr2x`^aNO  
    %   The following table shows the first 12 polynomials. b{+7sl  
    % R k'5L  
    %       n    m    Zernike polynomial    Normalization "p Rr>Fa  
    %       --------------------------------------------- "Sx}7?8AB  
    %       0    0    1                        sqrt(2) (g(.gN]  
    %       1    1    r                           2 EuH[G_5e0  
    %       2    0    2*r^2 - 1                sqrt(6) g<b(q|  
    %       2    2    r^2                      sqrt(6) SK][UxoHm  
    %       3    1    3*r^3 - 2*r              sqrt(8) [B0]%!hFw  
    %       3    3    r^3                      sqrt(8) yLFZo"r  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) mHj3ItXUu  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 0;J#".(KQ  
    %       4    4    r^4                      sqrt(10) :6h$1 +6  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) (v/mKGyg  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) l(Y U9dp  
    %       5    5    r^5                      sqrt(12) 1&7~.S;km  
    %       --------------------------------------------- O4c[,Uq8~  
    % 44r@8HO1  
    %   Example: KCDbE6  
    % ng0tNifZ;  
    %       % Display three example Zernike radial polynomials WSi`KNX  
    %       r = 0:0.01:1; U-]Rm}X\M  
    %       n = [3 2 5]; (B/od#nU  
    %       m = [1 2 1]; YZ0y_it)  
    %       z = zernpol(n,m,r); DA9-F  
    %       figure T> < Vw  
    %       plot(r,z) \N|ma P  
    %       grid on = n>aJ(=Pd  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') BdMmeM2h  
    % 'gD,H X  
    %   See also ZERNFUN, ZERNFUN2. MJyz0.9c  
    M94zlW<  
    % A note on the algorithm. NP+*L|-;  
    % ------------------------ __mnz``/Y  
    % The radial Zernike polynomials are computed using the series \gU=B|W  
    % representation shown in the Help section above. For many special &x mYpQ  
    % functions, direct evaluation using the series representation can :6T 8\W  
    % produce poor numerical results (floating point errors), because U@'F9UB`  
    % the summation often involves computing small differences between )NjxKSiU@  
    % large successive terms in the series. (In such cases, the functions Y-ZTv(<  
    % are often evaluated using alternative methods such as recurrence +t8{aaV  
    % relations: see the Legendre functions, for example). For the Zernike n1E^8[~'  
    % polynomials, however, this problem does not arise, because the ~#]$YoQ&O  
    % polynomials are evaluated over the finite domain r = (0,1), and VX'cFqrK3  
    % because the coefficients for a given polynomial are generally all B* hW  
    % of similar magnitude. ,ve$bSp  
    % Ho^rYz  
    % ZERNPOL has been written using a vectorized implementation: multiple ZC!GKW P2  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] @lO(QpdG  
    % values can be passed as inputs) for a vector of points R.  To achieve QBD\2VR  
    % this vectorization most efficiently, the algorithm in ZERNPOL }#bX{?f  
    % involves pre-determining all the powers p of R that are required to \9Yc2$dY  
    % compute the outputs, and then compiling the {R^p} into a single e/J|wM9Ak  
    % matrix.  This avoids any redundant computation of the R^p, and Vi:<W0:  
    % minimizes the sizes of certain intermediate variables. w(6(Fze  
    % WGC'k s ^  
    %   Paul Fricker 11/13/2006 CS\ E]f  
    0*4h}t9j  
    uG:xd0X+W  
    % Check and prepare the inputs: bMjE@S&  
    % ----------------------------- 13f@Ox$  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) G&DL)ePu]m  
        error('zernpol:NMvectors','N and M must be vectors.') 7O \sQ]i6  
    end No(p:Snbo  
    Xlp$ xp"  
    if length(n)~=length(m) YT@D*\  
        error('zernpol:NMlength','N and M must be the same length.') [W*xPXr*  
    end jWE?$r"  
    .$s>b#mO  
    n = n(:); wU $j/~L  
    m = m(:); i| /EA7  
    length_n = length(n); ?*K{1Ghf  
    ^ALR.N+<  
    if any(mod(n-m,2)) F?jFFw im  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') z{uRq A G  
    end jjTb:Z=.'  
    F-&=N {+  
    if any(m<0) MEled:i  
        error('zernpol:Mpositive','All M must be positive.') 0^G5 zQlj  
    end O)EA2`)E  
    8~6H\.0Q  
    if any(m>n) VKtZyhK"h  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') MzP q(`W  
    end O&vE 5%x  
    yr"BeTrS.  
    if any( r>1 | r<0 ) &40# _>W7  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') r,FPTf  
    end iQ7S*s+l5O  
    mDB?;a>  
    if ~any(size(r)==1) a%igc^GS2  
        error('zernpol:Rvector','R must be a vector.') rq]zt2  
    end R32A2Ml  
    $T-Pl57  
    r = r(:); fvH4<c5x  
    length_r = length(r); BK/~2u  
    Yfa`}hQ  
    if nargin==4 f*HEw  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); wx]r{  
        if ~isnorm grWmF3c#  
            error('zernpol:normalization','Unrecognized normalization flag.') Q}qw` L1  
        end 67]kT%0  
    else >dU.ic?19  
        isnorm = false; ROWrkJI>i  
    end xoQ;fVNp  
    n5e1k y*9w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'Io2",~ M  
    % Compute the Zernike Polynomials }r _d{nhi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *41 2)zEy  
    EH2a  
    % Determine the required powers of r: [)S7`K;  
    % ----------------------------------- gfU@`A_N"  
    rpowers = []; 5+yT{,(5  
    for j = 1:length(n) /'<Qk'   
        rpowers = [rpowers m(j):2:n(j)]; 6U!zc]>  
    end qy$1+>f1  
    rpowers = unique(rpowers); <^v-y)%N:A  
    }]K^b1Fs5  
    % Pre-compute the values of r raised to the required powers, Ku3/xcu:My  
    % and compile them in a matrix: V#-\ 4`c  
    % ----------------------------- 3l?-H|T  
    if rpowers(1)==0 +@5@`"Jry  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h F4gz*Q  
        rpowern = cat(2,rpowern{:}); ?K9zTas@  
        rpowern = [ones(length_r,1) rpowern]; \]$TBN dJ4  
    else &E+2  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); S)L(~ N1  
        rpowern = cat(2,rpowern{:}); |tua*zEsS  
    end >^|( AzS  
    RX6s[uQ  
    % Compute the values of the polynomials: _ giZ'&l!  
    % -------------------------------------- >/eV4ma"  
    z = zeros(length_r,length_n); )Co&(;zf  
    for j = 1:length_n YI!@ ,t  
        s = 0:(n(j)-m(j))/2; 66jL2XU<  
        pows = n(j):-2:m(j); PYPDK*Ie  
        for k = length(s):-1:1 H7&bUt/  
            p = (1-2*mod(s(k),2))* ... z($h7TZ$  
                       prod(2:(n(j)-s(k)))/          ... zmdu\:_X9  
                       prod(2:s(k))/                 ... ,lUr[xzV  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ?loP18S b  
                       prod(2:((n(j)+m(j))/2-s(k))); ){S/h<4m  
            idx = (pows(k)==rpowers); Q/u1$&1  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Z.x9SEe1t  
        end j$Unw  
         %*Aq%,.={  
        if isnorm tLc 9-  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); x}(p\Efx  
        end ~P5;k_&  
    end P S [ifC  
    KDUa0$"  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  mxxuD"5  
    nm3/-Q},  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 =Y;w O8  
    /`)>W :  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)