非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 NK|U:p2H
function z = zernfun(n,m,r,theta,nflag) y)K Iz
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 2|7:`e~h
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0WzoI2Q
% and angular frequency M, evaluated at positions (R,THETA) on the f\5w@nX
% unit circle. N is a vector of positive integers (including 0), and Mq~E'g4#
% M is a vector with the same number of elements as N. Each element MR|A_e^x
% k of M must be a positive integer, with possible values M(k) = -N(k) i'<hT
q4
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, @~vg=(ic(
% and THETA is a vector of angles. R and THETA must have the same vRtERFL
% length. The output Z is a matrix with one column for every (N,M) gZ&4b'XS,
% pair, and one row for every (R,THETA) pair. )xf(4
% ^+-QY\N
j
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike hqeknTGsIn
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 1D[V{)#
% with delta(m,0) the Kronecker delta, is chosen so that the integral !Gnm<|.
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N5)H(<}
% and theta=0 to theta=2*pi) is unity. For the non-normalized l\0PwD
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .@x.
% @F 8NN\
% The Zernike functions are an orthogonal basis on the unit circle. #}fvjJ{
% They are used in disciplines such as astronomy, optics, and )'jGf;du
% optometry to describe functions on a circular domain. 0Gj/yra9MO
% Z:^<NdKe
% The following table lists the first 15 Zernike functions. T$mT;k
% \4qF3#
% n m Zernike function Normalization Zz (qc5o,F
% -------------------------------------------------- <VU-ja*(J
% 0 0 1 1 q=e;P;u
% 1 1 r * cos(theta) 2 ?#c "wA&
% 1 -1 r * sin(theta) 2 AHr^G'
% 2 -2 r^2 * cos(2*theta) sqrt(6) +Y*4/w[
% 2 0 (2*r^2 - 1) sqrt(3) lq-F*r\/~+
% 2 2 r^2 * sin(2*theta) sqrt(6) OqsuuE
% 3 -3 r^3 * cos(3*theta) sqrt(8) xN$V(ZX4
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Q65M(x+oy
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) l9/}fMi
% 3 3 r^3 * sin(3*theta) sqrt(8) K8KN<Q s]
% 4 -4 r^4 * cos(4*theta) sqrt(10) xK0;saG#
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iLQO
.'{U
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ZuWhgnp
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mx1Bk9h%Xe
% 4 4 r^4 * sin(4*theta) sqrt(10) uFmpc7
% -------------------------------------------------- /(||9\;
% C%z9Q
% Example 1: z1tD2jL _
% ~BTm6*'h
% % Display the Zernike function Z(n=5,m=1) p\I3 fI0i
% x = -1:0.01:1; %1cxZxGT
% [X,Y] = meshgrid(x,x); 3\{acm
% [theta,r] = cart2pol(X,Y); g<~ODMCO?W
% idx = r<=1;
})!-
% z = nan(size(X)); &Odrq#o?R
% z(idx) = zernfun(5,1,r(idx),theta(idx)); S&=@Hj-
% figure y+wy<[u
% pcolor(x,x,z), shading interp rv)Eg53Q
% axis square, colorbar .FYRi_Zd
% title('Zernike function Z_5^1(r,\theta)') ve a$G~[%6
% [GM!@6U
% Example 2: _eQ-'")
% 6t<[-
% % Display the first 10 Zernike functions qc'KQ5w7!
% x = -1:0.01:1; {a>JQW5=
% [X,Y] = meshgrid(x,x); 4`5W] J]6
% [theta,r] = cart2pol(X,Y); =.J>'9 Q
% idx = r<=1; *XDe:A
% z = nan(size(X)); mGwJ>'+d
% n = [0 1 1 2 2 2 3 3 3 3]; +|oLS_
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; [vBP,_Tjx
% Nplot = [4 10 12 16 18 20 22 24 26 28]; V/\`:
% y = zernfun(n,m,r(idx),theta(idx)); ho#<?rh_
% figure('Units','normalized') bA6^RIf?
% for k = 1:10 taVK&ohWx
% z(idx) = y(:,k); |J-tU)|1vl
% subplot(4,7,Nplot(k)) Ss{5'SF)$c
% pcolor(x,x,z), shading interp &H,UWtU+
% set(gca,'XTick',[],'YTick',[]) @d5t%V\
% axis square nJgN2Z
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) va(6?"9
% end \/wk!mWV@
% M_?B*QZJI
% See also ZERNPOL, ZERNFUN2. ~y 2joStx
1)xj 'n
% Paul Fricker 11/13/2006 b
V_<5PHP
ok-q9dM
_=[pW2p
% Check and prepare the inputs: 0ly6 |:
% ----------------------------- }
?+0s=Z
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RT%{M1tkS
error('zernfun:NMvectors','N and M must be vectors.') /lHs]) ,
end {)Zz4
8BY`~TZO$q
if length(n)~=length(m) VK%ExMSqEh
error('zernfun:NMlength','N and M must be the same length.') -G1R><8[
end RLw/~
;]BNc"
n = n(:); 5P('SFq'=
m = m(:); O" [#g
if any(mod(n-m,2)) W"~"R
error('zernfun:NMmultiplesof2', ... 4&L,QSJ V
'All N and M must differ by multiples of 2 (including 0).') tnXW7ej ^
end hR>`I0|p&
aO:A pOAO
if any(m>n) tQMz1$
error('zernfun:MlessthanN', ... *MWI`=c
'Each M must be less than or equal to its corresponding N.') 6il+hz2&lH
end v49i.c9
Me+)2S 9
if any( r>1 | r<0 ) .D=#HEshk
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ~ayU\4B
end *z'Rl'j9[
pL.~z
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7pH[_]1"
error('zernfun:RTHvector','R and THETA must be vectors.') q~\[P4m
end =lh&oPc1
5B{Eg?
r = r(:); Nc(A5*
theta = theta(:); .KYDYdoS'
length_r = length(r); gF M~M(
if length_r~=length(theta) O4W2X@
error('zernfun:RTHlength', ... ;[,#VtD
'The number of R- and THETA-values must be equal.') eYg0NEq{
end gi/W3q3c6
0NSCeq%;6q
% Check normalization: ~VF?T~Kr_
% -------------------- ^X*l&R_=R
if nargin==5 && ischar(nflag) ]`@<I'?,X
isnorm = strcmpi(nflag,'norm'); 2$ \#BG
if ~isnorm wD<W'K
error('zernfun:normalization','Unrecognized normalization flag.') ;p(Doy)i
end i+Xb3+R
else aXD|XE%
isnorm = false; g+k
yvI7o
end HxShNU
Js,.$t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ][T>052v
% Compute the Zernike Polynomials ; JHf0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pmDFmES
04E#d.o'
% Determine the required powers of r: ,5|@vW2@u
% ----------------------------------- -fx$)d~
m_abs = abs(m); 'p,54<e
rpowers = []; T
"t%>g
for j = 1:length(n) Znh<r[p<
rpowers = [rpowers m_abs(j):2:n(j)]; g^2H(}frc
end F)tcQO"G
rpowers = unique(rpowers); k?Iq 6
OWHHN<
% Pre-compute the values of r raised to the required powers, >uz3 O?z P
% and compile them in a matrix: Z1+1>|-iW
% ----------------------------- #$-`+P
if rpowers(1)==0 -sk!XWW+
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); j{NcDepLn
rpowern = cat(2,rpowern{:}); yKOC1( ~
rpowern = [ones(length_r,1) rpowern]; NFb<fD[C
else I6 Q{ Axy
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1&YkRCn0
rpowern = cat(2,rpowern{:}); ca$K)=cDW
end )>^!X$`3
!JwR[X\f
% Compute the values of the polynomials: * @'N/W/8
% -------------------------------------- jL#`CD
y = zeros(length_r,length(n)); y gTc
Y
for j = 1:length(n) b,RQ" {
s = 0:(n(j)-m_abs(j))/2; MvlqxJ$
pows = n(j):-2:m_abs(j); mp>Ne6\Tu
for k = length(s):-1:1 E$E#c8I:
p = (1-2*mod(s(k),2))* ... 5+iXOs<
prod(2:(n(j)-s(k)))/ ... |VML.u:N
prod(2:s(k))/ ... 'WJ3q|o/
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... H<wkD9v}H5
prod(2:((n(j)+m_abs(j))/2-s(k))); e[L%M:e9U
idx = (pows(k)==rpowers); 10e~Yc
y(:,j) = y(:,j) + p*rpowern(:,idx); Z[zRZ2'i5
end ,CQg6-[
kG3m1: :
if isnorm =E-V-?N\
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); r1[Jo|4vo
end .0'FW!;FV
end :^992]EBEj
% END: Compute the Zernike Polynomials R"qxT.P(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /gq
VXDY+`
J0x)NnWJ
% Compute the Zernike functions: 3g5
n>8-
% ------------------------------ O3["5
idx_pos = m>0; GC^>oF
idx_neg = m<0; jB%aHUF;
}:hN}*H
z = y; '@,M
'H{
if any(idx_pos) 8iUj9r_
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); P
jh3=Dr
end v_e3ZA:%
if any(idx_neg) OS$^>1f"
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); BBlYy5x
end FWDAG$K@0
jk fc=O6^
% EOF zernfun