非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 QC9eUYe
function z = zernfun(n,m,r,theta,nflag) LL3#5AA"k|
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. "\3B^ e,
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N
K~| 4[\
% and angular frequency M, evaluated at positions (R,THETA) on the \Z+z?K O
% unit circle. N is a vector of positive integers (including 0), and i*@<y/&'
% M is a vector with the same number of elements as N. Each element p{j.KI s7
% k of M must be a positive integer, with possible values M(k) = -N(k) Ro9tZ'N!S
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Yj6*NZ*
% and THETA is a vector of angles. R and THETA must have the same &FF"nE*
% length. The output Z is a matrix with one column for every (N,M) xo7Kn+ Kl
% pair, and one row for every (R,THETA) pair. "$2y-|
% "-+\R}q$
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 'LO^<
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2(#7[mgPI
% with delta(m,0) the Kronecker delta, is chosen so that the integral
~Hr}]
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -i%e!DgH
% and theta=0 to theta=2*pi) is unity. For the non-normalized v%iof1 T'
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. i:OK8Q{VI
% <gQIq{B?
% The Zernike functions are an orthogonal basis on the unit circle. i? K|TC`
% They are used in disciplines such as astronomy, optics, and RT.D"WvT
% optometry to describe functions on a circular domain. pQtJc*[!
% \cUC9/
b
% The following table lists the first 15 Zernike functions. `s8{C
b=}1
% -T[lx\}
% n m Zernike function Normalization p IU&^yX>
% -------------------------------------------------- }wHW7SJ
% 0 0 1 1 *fn*h[pV&
% 1 1 r * cos(theta) 2 k{Me[B
% 1 -1 r * sin(theta) 2 <cqbUL
% 2 -2 r^2 * cos(2*theta) sqrt(6) Cc%LztP>
% 2 0 (2*r^2 - 1) sqrt(3) f;x kT
% 2 2 r^2 * sin(2*theta) sqrt(6) NqDHCI
% 3 -3 r^3 * cos(3*theta) sqrt(8) h3z{(-~y
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) \ytJ=0r
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) enSXP~9w
% 3 3 r^3 * sin(3*theta) sqrt(8) `O[};3O&
% 4 -4 r^4 * cos(4*theta) sqrt(10) eFL=G%
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o'f?YZ$.
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) e= .njMqW5
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) p%*%n3bw
% 4 4 r^4 * sin(4*theta) sqrt(10) qT`k*i?
% -------------------------------------------------- 5
({t4dm
% |>tKq;/
% Example 1: :qIXY/
% t 0|!(3
% % Display the Zernike function Z(n=5,m=1) TTt#a6eJ
% x = -1:0.01:1; b#hDHSdZ,
% [X,Y] = meshgrid(x,x); @]-jl}:]
% [theta,r] = cart2pol(X,Y); Ct=-4
% idx = r<=1; )Cc q4i
% z = nan(size(X)); L&%s[
% z(idx) = zernfun(5,1,r(idx),theta(idx)); <oX7P69
% figure 6T#+V37
% pcolor(x,x,z), shading interp X .5aMm
% axis square, colorbar HLZ;8/|48m
% title('Zernike function Z_5^1(r,\theta)') <\pfIJr$
% oWC@w
% Example 2: j&Wl0
% T3pmVl
% % Display the first 10 Zernike functions ,H19`;Q
% x = -1:0.01:1; ?`#/ 8PN
% [X,Y] = meshgrid(x,x); s8#X3Rp
% [theta,r] = cart2pol(X,Y); }t%!9hr5D
% idx = r<=1; HAJ 7m!P
% z = nan(size(X)); 2g>SHS@1>
% n = [0 1 1 2 2 2 3 3 3 3]; dOoK Lry
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; x`dHJq`_g
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Ts ^"xlK
% y = zernfun(n,m,r(idx),theta(idx)); PX
n;C/
% figure('Units','normalized') g;8jK8Kh
% for k = 1:10 j"|=C$Kn/
% z(idx) = y(:,k); QiLEL
% subplot(4,7,Nplot(k)) c(n&A~*AJ%
% pcolor(x,x,z), shading interp |<.lW
% set(gca,'XTick',[],'YTick',[]) (Xq)p y9
% axis square yLdVd
P
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) I9mvte
% end q&/Yg,p\
% C~N/A73gF
% See also ZERNPOL, ZERNFUN2. k=B]&F
ghX|3lI\q
% Paul Fricker 11/13/2006 we;G]`@?
!2'jrJGc
;ml)l~~YU
% Check and prepare the inputs: gUpb4uN
% ----------------------------- "9^j.
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?F6pEt4
error('zernfun:NMvectors','N and M must be vectors.') w -
Pk7I
end j|/]#@Yr
;M_o)OS3
if length(n)~=length(m) @1 U&UH
error('zernfun:NMlength','N and M must be the same length.') ywb4LKD
end \yd
s5g!:
YE= q:Bv
n = n(:); eXKo.JL
m = m(:); fVt9X*xKS
if any(mod(n-m,2)) niqN{
error('zernfun:NMmultiplesof2', ... 8&Oa_{1+Q
'All N and M must differ by multiples of 2 (including 0).') #ceaZn|@m
end awOd_![c'
Yb/i{@AJ
if any(m>n) qnoNT%xazo
error('zernfun:MlessthanN', ... 05spovO/'
'Each M must be less than or equal to its corresponding N.') B';6r4I-
end F@* +{1R
1XnZy5fEo
if any( r>1 | r<0 ) ^ mS
o1?<
error('zernfun:Rlessthan1','All R must be between 0 and 1.') RgGyoZ
end Ojt`^r !V
Oer^Rk
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5e}A@GyC
error('zernfun:RTHvector','R and THETA must be vectors.') S=nP[s
end u&9 r2R959
OI?K/rn
r = r(:); hBFP1u/E'
theta = theta(:); G
<uyin>
length_r = length(r); UH"#2< |b
if length_r~=length(theta) 8?i7U<CB
error('zernfun:RTHlength', ... ]a!xUg!S
'The number of R- and THETA-values must be equal.') PNA\ TXT
end d5>H3D{49
,i0b)=!o
% Check normalization: g(Io/hyj
% -------------------- !TP@-
X;
if nargin==5 && ischar(nflag) qBQ`~4s
isnorm = strcmpi(nflag,'norm'); H> '>3]G
if ~isnorm fsEzpUY:{W
error('zernfun:normalization','Unrecognized normalization flag.') Fk6x<^Q<w
end 1tJg#/?
else shH~4<15
isnorm = false; s
(0*
end gxT4PQDy
Hi
yc#-4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Qf|U0
% Compute the Zernike Polynomials Maqf[
Vky
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0}:2Q#
x%<
% Determine the required powers of r: -3&G"hfK
% ----------------------------------- +@Ad1fJi
m_abs = abs(m); bC^(U`y 32
rpowers = []; `Rdm-[&
for j = 1:length(n) a|BcnYN
rpowers = [rpowers m_abs(j):2:n(j)]; e*
end ur\qOX|{
rpowers = unique(rpowers); tj*y)28-
LrCk*@
% Pre-compute the values of r raised to the required powers, ;c-3g]
% and compile them in a matrix: }6-ZE9H-v
% ----------------------------- \@~UDP]7
if rpowers(1)==0 ,WQ^tI=O
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 1mSaS4!"B
rpowern = cat(2,rpowern{:}); Y=*P
8pg
rpowern = [ones(length_r,1) rpowern]; O%f8I'u$
else Y
e+Ay
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )B!d,HKt;
rpowern = cat(2,rpowern{:}); -#29xRPk
end zTD@
nd{R
9B
% Compute the values of the polynomials: 3_`szl-
% -------------------------------------- Y& ] 8 {
y = zeros(length_r,length(n)); tJ=di5&
for j = 1:length(n) O}#yijU3e
s = 0:(n(j)-m_abs(j))/2; \Xt)E[
pows = n(j):-2:m_abs(j); 8@M'[jT
for k = length(s):-1:1 (D{Ys'{q
p = (1-2*mod(s(k),2))* ... fMeZ]rb
prod(2:(n(j)-s(k)))/ ... *mBJ?{ !
prod(2:s(k))/ ... }~o
ikN:
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... z]Acs
prod(2:((n(j)+m_abs(j))/2-s(k))); OK`Z@X_,bW
idx = (pows(k)==rpowers); rwpgBl
y(:,j) = y(:,j) + p*rpowern(:,idx); ., :uZyG
end 1]\TI7/n
?z"KnR+?Q
if isnorm ~F#A
Pt
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); zfjTQMaxh
end FBsn;,3<W
end A1*4*
% END: Compute the Zernike Polynomials el'j&I
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x.EgTvA&d
MB*u-N0v
% Compute the Zernike functions: 8mgQu]>
% ------------------------------ jNy?[
)
idx_pos = m>0; *=vlqpG
idx_neg = m<0;
q{X T
`)[dVfxA
z = y; M^ 5e~y
if any(idx_pos) V:\]cGA{
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 0yHjrxc$
end KzkgWMM
if any(idx_neg) 55hyV{L%
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); p`GWhI?
end 6;JP76PD
8D2yR#3
% EOF zernfun