非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 (
?/0$DB
function z = zernfun(n,m,r,theta,nflag) LG<lZ9+y
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. YSa:"A
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N E0O{5YF^T
% and angular frequency M, evaluated at positions (R,THETA) on the TJ;v}HSo
% unit circle. N is a vector of positive integers (including 0), and 5\4>H6
% M is a vector with the same number of elements as N. Each element 2OT6*+D
% k of M must be a positive integer, with possible values M(k) = -N(k) e#nTp b
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, +:'Po.{"
% and THETA is a vector of angles. R and THETA must have the same oC7#6W:@w
% length. The output Z is a matrix with one column for every (N,M) b%PVF&C9W
% pair, and one row for every (R,THETA) pair. A+F-r_]}db
% ~ml\|
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike
gA[M
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ]#:xl}'LS
% with delta(m,0) the Kronecker delta, is chosen so that the integral _-!6@^+
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,
E,6E-9
% and theta=0 to theta=2*pi) is unity. For the non-normalized l&|{uk
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2~`dV_
% <=7)t.
% The Zernike functions are an orthogonal basis on the unit circle. @H_LPn
% They are used in disciplines such as astronomy, optics, and ;XtDz
% optometry to describe functions on a circular domain. rSJ}qRXwU
% P)\f\yb
% The following table lists the first 15 Zernike functions. @B^'W'&C
% S}<
<jI-z
% n m Zernike function Normalization H~~(v52wD
% -------------------------------------------------- [KE4wz+s{
% 0 0 1 1 jU#%@d6!#
% 1 1 r * cos(theta) 2
;<][upn
% 1 -1 r * sin(theta) 2 \) #3S $L~
% 2 -2 r^2 * cos(2*theta) sqrt(6) fZ376Z:S$
% 2 0 (2*r^2 - 1) sqrt(3) <QkfvK]Q
% 2 2 r^2 * sin(2*theta) sqrt(6) [`b{eLCFX]
% 3 -3 r^3 * cos(3*theta) sqrt(8) C=b5[, UCB
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Qdn:4yk
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ?#[K&$}
% 3 3 r^3 * sin(3*theta) sqrt(8) f7W=x6Z4
% 4 -4 r^4 * cos(4*theta) sqrt(10) *7v PU:Q[
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ueg X
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) \bsm#vY,
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0iB1_)~
% 4 4 r^4 * sin(4*theta) sqrt(10) |kd^]!_
% -------------------------------------------------- <5#e.w
% *&PgDAQ
% Example 1: @t^2/H
?O
% s6]f#s5o
% % Display the Zernike function Z(n=5,m=1) G`P+J
% x = -1:0.01:1; Uy_=#&jg
% [X,Y] = meshgrid(x,x); {Eb6.
% [theta,r] = cart2pol(X,Y); ie,{C
% idx = r<=1; <?g{Rn
% z = nan(size(X)); S- H3UND"
% z(idx) = zernfun(5,1,r(idx),theta(idx)); eo8 0L
% figure #.='dSj
% pcolor(x,x,z), shading interp MDq @:t
% axis square, colorbar \*N1i`99
% title('Zernike function Z_5^1(r,\theta)') o MAK[$k;
% fI|1@e1
% Example 2: p(8\w-6
% i*tj@5MY-
% % Display the first 10 Zernike functions KJ~pY<a?
% x = -1:0.01:1; ,rdM{ r
% [X,Y] = meshgrid(x,x); OG+ $F
% [theta,r] = cart2pol(X,Y); H:_`]X"
% idx = r<=1; 5 9vGLN!L
% z = nan(size(X)); UGMdWq
% n = [0 1 1 2 2 2 3 3 3 3]; *Tlv'E.M
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; vKt_z@{{L
% Nplot = [4 10 12 16 18 20 22 24 26 28]; %Fv)$ :b
% y = zernfun(n,m,r(idx),theta(idx)); E*l"uV
% figure('Units','normalized') 6p@ts`#
% for k = 1:10 88K*d8m
% z(idx) = y(:,k); g;h&Xkp
% subplot(4,7,Nplot(k)) J\*d4I<(Rt
% pcolor(x,x,z), shading interp uprQy<I@
% set(gca,'XTick',[],'YTick',[]) z|2liQrf+
% axis square x,%&[6(
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) fjFy$NX&>
% end 5-*]PAC
% &)l:m.
% See also ZERNPOL, ZERNFUN2. rUO{-R
cPbz7
% Paul Fricker 11/13/2006 W#[!8d35$
2~<0<^j/]
C0%%@
2+
% Check and prepare the inputs: UPYM~c+}
% ----------------------------- }0(
Na
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) kWd'gftQ
error('zernfun:NMvectors','N and M must be vectors.') S(6ZX>wv:
end -,dQ&Qf?
1|VJN D
if length(n)~=length(m) 66*o2D\Q*G
error('zernfun:NMlength','N and M must be the same length.') -eMRxa>
end $#r(1 Ev
]`prDw'
n = n(:); vF&b|V+,
m = m(:); q*OKA5
if any(mod(n-m,2)) CkU=0mcY
error('zernfun:NMmultiplesof2', ... YSgF'qq\
'All N and M must differ by multiples of 2 (including 0).') 4_<Uk
end 8##jd[o&p~
hgK=fHJk
if any(m>n) Q6K)EwN
error('zernfun:MlessthanN', ... o1Ln7r.
'Each M must be less than or equal to its corresponding N.') ZAZCvN@5
end 2XHk}M|
R5"p7>
if any( r>1 | r<0 ) G$ FBx
error('zernfun:Rlessthan1','All R must be between 0 and 1.') o3=kF
end 0, /x#
.a*$WGb
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,X^_w
g
error('zernfun:RTHvector','R and THETA must be vectors.') Pc'?p
end ydQS"]\g
p0K;m%
r = r(:); iC]lO
theta = theta(:); cAS_?"V
a
length_r = length(r); 3;NRW+
if length_r~=length(theta) B! V{.p
error('zernfun:RTHlength', ... cqx1NWlY
'The number of R- and THETA-values must be equal.') fP58$pwu
end !\1 W*6U8;
"44?n <1
% Check normalization: Tm52=+u f$
% -------------------- I0K!Kcu5Iu
if nargin==5 && ischar(nflag) K*$#D1hG
isnorm = strcmpi(nflag,'norm'); Wg^cj:&`u
if ~isnorm de9l;zF
error('zernfun:normalization','Unrecognized normalization flag.') Z@!W?Ed
end tY=%@v'6?
else #~;8#!X
isnorm = false; *K'ej4"u
end Jr)`shJ"
^z^e*<{WEl
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OPW"ABJ
% Compute the Zernike Polynomials `Xdxg\|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A@(h!Cq
e"#D){k#
% Determine the required powers of r: 1m;*fs
% ----------------------------------- Z4ioXl
m_abs = abs(m); !"%sp6Wc
rpowers = []; l-}5@D[
for j = 1:length(n) SzX~;pFM0
rpowers = [rpowers m_abs(j):2:n(j)]; #G` ,
end JyC&L6[]Z
rpowers = unique(rpowers); p"IS"k%
x}'4^Cv
% Pre-compute the values of r raised to the required powers, g ypq`F
% and compile them in a matrix: m,C,<I|'d
% ----------------------------- S.|kg2
if rpowers(1)==0 8zDH<Gb
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); BK9x`Oo 2
rpowern = cat(2,rpowern{:}); s}9tK(4v
rpowern = [ones(length_r,1) rpowern]; v9m;vWp
else jUvA<r
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,, %:vK+V
rpowern = cat(2,rpowern{:}); V9u\;5oL
end f&|A[i>g
/I'u/{KB
% Compute the values of the polynomials: cvE.r330|
% -------------------------------------- > '
0 ][~
y = zeros(length_r,length(n)); X|E+K
for j = 1:length(n) cO+Xzd;838
s = 0:(n(j)-m_abs(j))/2; _iJXp0g
pows = n(j):-2:m_abs(j); &4&33D
for k = length(s):-1:1 ^7bf8 ^`
p = (1-2*mod(s(k),2))* ... exO#>th1
prod(2:(n(j)-s(k)))/ ... 7[v@*/W@
prod(2:s(k))/ ... t-*|Hfp*^
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 3*$9G)Ey
prod(2:((n(j)+m_abs(j))/2-s(k))); rjHIQC C
idx = (pows(k)==rpowers); a,*p_:~i
y(:,j) = y(:,j) + p*rpowern(:,idx); %M#?cmt
end Fra>|;do
<o!&Kk 9
if isnorm UlNfI}#X
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); M'zS7=F!:
end ^M"z1B]
end =lC;^&D-0/
% END: Compute the Zernike Polynomials M*|VLOo=v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1i /::4=
TT2cOw
% Compute the Zernike functions: J4v0O="
% ------------------------------
$.Q>M]xH
idx_pos = m>0; WAB0e~e:|Q
idx_neg = m<0; M?xpwqu\
XQ3*
z = y; @>fO;*
if any(idx_pos) X') Zm+
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); %7 v@n+Q
end o9Txo
(tYU
if any(idx_neg) /pN'K5@
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');
t'Eb#Nup3
end n(1wdl Ep
twtkH~`"Q
% EOF zernfun