非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 AcwLs%'sx
function z = zernfun(n,m,r,theta,nflag) _Q t
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. VA&_dU]*
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ==RYf*d
% and angular frequency M, evaluated at positions (R,THETA) on the ;/XWX$G@
% unit circle. N is a vector of positive integers (including 0), and ||;V5iR:
% M is a vector with the same number of elements as N. Each element D. fPHq
% k of M must be a positive integer, with possible values M(k) = -N(k) _s[ohMlh
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, t3}>5cAxy
% and THETA is a vector of angles. R and THETA must have the same E].hoq7WiB
% length. The output Z is a matrix with one column for every (N,M) _K<H*R
% pair, and one row for every (R,THETA) pair. ,6=j'j1#a
% ve49m%NQ
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike W4%I%&j
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), C< 3`]l
% with delta(m,0) the Kronecker delta, is chosen so that the integral <U%4$83$
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, M+j V`J!
% and theta=0 to theta=2*pi) is unity. For the non-normalized !nQ_<
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. fd!bs*\X
% ++w7jVi9
% The Zernike functions are an orthogonal basis on the unit circle. 97l<9^$
% They are used in disciplines such as astronomy, optics, and :[xFp}w{
% optometry to describe functions on a circular domain. ^SM>bJ1Z_
% NOM6},rp
% The following table lists the first 15 Zernike functions. a> qB
k})
% `yJ3"{uO
% n m Zernike function Normalization O$zXDxn
% -------------------------------------------------- >!sxX = <
% 0 0 1 1 Nk?eVJ)
% 1 1 r * cos(theta) 2 dDYD6
% 1 -1 r * sin(theta) 2 V1di#i:
% 2 -2 r^2 * cos(2*theta) sqrt(6) q> |&u
% 2 0 (2*r^2 - 1) sqrt(3) 3MX&%_wUhB
% 2 2 r^2 * sin(2*theta) sqrt(6) eFKF9m
% 3 -3 r^3 * cos(3*theta) sqrt(8)
[GQn1ZLc
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) RK)1@Tz7!
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) !aQb
Kp
% 3 3 r^3 * sin(3*theta) sqrt(8) {z#!3a
% 4 -4 r^4 * cos(4*theta) sqrt(10) tVQq,_9C
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y%9$!
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) EDAtC
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W {A4*{
% 4 4 r^4 * sin(4*theta) sqrt(10) )OHGg
% -------------------------------------------------- H46N!{<;@
% s!<RWy+
% Example 1: B/O0 ~y!n
% or,:5Z
% % Display the Zernike function Z(n=5,m=1) [[$dPa9
% x = -1:0.01:1; JAx0(MZO
% [X,Y] = meshgrid(x,x); w)N~u%
% [theta,r] = cart2pol(X,Y); "?%2`*\
% idx = r<=1; ^XX_ qC'1
% z = nan(size(X)); :W^\ }UX4
% z(idx) = zernfun(5,1,r(idx),theta(idx)); +Tt.5>N
% figure %@9c'6
% pcolor(x,x,z), shading interp ?wP/l
% axis square, colorbar EDT9O
% title('Zernike function Z_5^1(r,\theta)') _?>x{![
% .0YcB
% Example 2: fUMjLA|*I<
% WEYZ(a|
% % Display the first 10 Zernike functions 4#qZ`H,Ur)
% x = -1:0.01:1; 3xk_ZK82
% [X,Y] = meshgrid(x,x); 8WE@ X)e
% [theta,r] = cart2pol(X,Y); > ^=n|%
% idx = r<=1; 7Kf
% z = nan(size(X)); b(oe^jeGz
% n = [0 1 1 2 2 2 3 3 3 3];
5@DCo
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; $K.DLqDt
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 9a[1s|>w-
% y = zernfun(n,m,r(idx),theta(idx)); )DmydyQ'
% figure('Units','normalized') #+QJ5VI:
% for k = 1:10 -AD@wn!wCJ
% z(idx) = y(:,k); IsmZEVuC
% subplot(4,7,Nplot(k)) :zX^H9'E<(
% pcolor(x,x,z), shading interp eL>wKu:r
% set(gca,'XTick',[],'YTick',[]) A_l\ij$Y
% axis square Ni8%K6]z
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^KdT,^6T
% end _CPj]m{
% B`.aQ
% See also ZERNPOL, ZERNFUN2. +m]-)
aGBd~y@e
% Paul Fricker 11/13/2006 A@Q6}ESD
>|, <9z`D
e/cHH34
% Check and prepare the inputs: >;XtJJS
% ----------------------------- CuK>1_Dq
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) L@z[b^
error('zernfun:NMvectors','N and M must be vectors.') J90:c@O"w
end yH=<KYk
A
+=#
if length(n)~=length(m) L*dGo,oN
error('zernfun:NMlength','N and M must be the same length.')
T*mR9 8i
end ,}\LC;31,
DLP@?]BBOA
n = n(:); ?A;RTM
m = m(:); A9N8Hav
if any(mod(n-m,2)) 6\u. [2lE^
error('zernfun:NMmultiplesof2', ... P5h*RV>oS
'All N and M must differ by multiples of 2 (including 0).') O'B3s y
end :-#7j}
R&
EZ{{p+e^
if any(m>n) ovOV&Zt
error('zernfun:MlessthanN', ... Xp|4 WM
'Each M must be less than or equal to its corresponding N.') WY QVe_<z:
end n|? sNM<J3
AA)pV-
if any( r>1 | r<0 ) ;hODzfNkS
error('zernfun:Rlessthan1','All R must be between 0 and 1.') @{{L1[~:0
end Du
+_dr^4
K|\0jd)N
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 0[fBP\H"Wr
error('zernfun:RTHvector','R and THETA must be vectors.') !~RK2d
end O-ENFA~E;v
KPDJ$,:
r = r(:); d&L
theta = theta(:); AX&Emz-
length_r = length(r); !]}C!dXd
if length_r~=length(theta) '5*&
error('zernfun:RTHlength', ... 0}`.Z03fy
'The number of R- and THETA-values must be equal.') sr[[xzL
end A@?-"=h}
-K$ugDi
% Check normalization: 9=6BQ`u
% -------------------- J!RRG~
if nargin==5 && ischar(nflag) J E5qR2VA
isnorm = strcmpi(nflag,'norm'); %-$
:/N
if ~isnorm jj;TS%
error('zernfun:normalization','Unrecognized normalization flag.') etX(~"gG_
end P.Cn[64a+@
else ~ArRD-_t
isnorm = false; !mWm@}Ujg
end 4_CL1g
5+Tx01)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {|OXiRm'
% Compute the Zernike Polynomials pRxVsOb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% htrtiJ1
@`nG&U
% Determine the required powers of r: !B#lZjW#
% ----------------------------------- SYQP7oG9oQ
m_abs = abs(m); \+/ciPzA-
rpowers = []; ^?\|2H
for j = 1:length(n) Uc,..
rpowers = [rpowers m_abs(j):2:n(j)]; )M Tf
end [ g:cG
rpowers = unique(rpowers); 7I]?:%8h
b KIL@AI
% Pre-compute the values of r raised to the required powers, W?!rqo2SP
% and compile them in a matrix: ,JbP~2M~%
% ----------------------------- 2?:OsA}
if rpowers(1)==0 Q3$DX,8?
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); c05-1
rpowern = cat(2,rpowern{:}); Pk(%=P,
rpowern = [ones(length_r,1) rpowern]; Z-_Xt^N
else XhWo~zh"
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )a'`
rpowern = cat(2,rpowern{:}); car|&b
end +eKLwM
x;} 25A|
% Compute the values of the polynomials: =b1
y*?
% -------------------------------------- ci:|x =
y = zeros(length_r,length(n)); <}c7E3Uc
for j = 1:length(n) 9`VY)"rJ
s = 0:(n(j)-m_abs(j))/2; ;.=0""-IF
pows = n(j):-2:m_abs(j); FjiIB1
T
for k = length(s):-1:1 3fZoF`<a
p = (1-2*mod(s(k),2))* ... )"{}L.gC6
prod(2:(n(j)-s(k)))/ ... xb9^WvV
prod(2:s(k))/ ... +!nf?5;
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Vj8-[ww!
prod(2:((n(j)+m_abs(j))/2-s(k))); )$a6l8
idx = (pows(k)==rpowers); ]-a/)8
y(:,j) = y(:,j) + p*rpowern(:,idx); gVJh@]8)
end %Q.M& U
'IVC!uL,%
if isnorm {9j0k`A
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); X>o*eN
end /!6 VP |
end (6[/7e)
% END: Compute the Zernike Polynomials |DVFi2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% --c)!Vxzx
k{lX K\zN
% Compute the Zernike functions: jJ2{g> P0P
% ------------------------------ b`DPlQHj
idx_pos = m>0; 8-kR {9r
idx_neg = m<0; }&s |~
JP
;SO
z = y; E6T=lwOZ
if any(idx_pos) V}Q`dEk2r
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); W4(
end JL u$UR4
if any(idx_neg) E\9HZ;}G
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +~
Y.m8
end MA%g-}
XGYsTquSe
% EOF zernfun