非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 &Gc9VF]o
function z = zernfun(n,m,r,theta,nflag) 4V"E8rUL(
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. {Ea
b
j
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Q8$}@iA[
% and angular frequency M, evaluated at positions (R,THETA) on the Ky`qskvu
% unit circle. N is a vector of positive integers (including 0), and ;_XFo&@
% M is a vector with the same number of elements as N. Each element ,Y@Gyx!4
% k of M must be a positive integer, with possible values M(k) = -N(k) (Nq=H)cm8
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, av(6wht8
% and THETA is a vector of angles. R and THETA must have the same j\ZXG=j
% length. The output Z is a matrix with one column for every (N,M) f'F?MINJP
% pair, and one row for every (R,THETA) pair. mwO6g~@`
% #QZe,"C9`
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike b;L\EB
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), mupT<_Y
% with delta(m,0) the Kronecker delta, is chosen so that the integral :S]\0;8]
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, s `e{}\
% and theta=0 to theta=2*pi) is unity. For the non-normalized }czrj%6
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~\r*
% ,S\CC{!
% The Zernike functions are an orthogonal basis on the unit circle. &L3M]
% They are used in disciplines such as astronomy, optics, and O4 w(T
% optometry to describe functions on a circular domain. 1l9G[o
*
% &Hrj3E
% The following table lists the first 15 Zernike functions. g/4[N{Xf
% l#&8x
% n m Zernike function Normalization ^ G]J ,+
% -------------------------------------------------- pG_;$8Hc
% 0 0 1 1 ]iVcog"T
% 1 1 r * cos(theta) 2 aI'&O^w+
% 1 -1 r * sin(theta) 2 ^"E^zHM(
% 2 -2 r^2 * cos(2*theta) sqrt(6) Q;Ak4[
% 2 0 (2*r^2 - 1) sqrt(3) +tB=OwU%0
% 2 2 r^2 * sin(2*theta) sqrt(6) rDtY[
% 3 -3 r^3 * cos(3*theta) sqrt(8) }f%} v
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) C-xr"]#]
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) *9
{PEx
% 3 3 r^3 * sin(3*theta) sqrt(8) O}gV`q;
% 4 -4 r^4 * cos(4*theta) sqrt(10) &{5,:%PXw
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5#6|j?_a
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) WH%g(6w1j
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Fk7?xc
% 4 4 r^4 * sin(4*theta) sqrt(10) H;is/
% -------------------------------------------------- *YI98
% VD AaYDi
% Example 1: TT%M'5&
% oE@a'*.\
% % Display the Zernike function Z(n=5,m=1) @ 6\I~s(
% x = -1:0.01:1; D'>_I.
% [X,Y] = meshgrid(x,x); x%=si[P
% [theta,r] = cart2pol(X,Y); 5"VTK
% idx = r<=1; #&+{mCjs
% z = nan(size(X)); je\Ph5 "
% z(idx) = zernfun(5,1,r(idx),theta(idx)); W<{h,j8
% figure ]Ee?6]bN
% pcolor(x,x,z), shading interp _>?\DgjH
% axis square, colorbar 8qoMo7-f
% title('Zernike function Z_5^1(r,\theta)') Mc
lkEfn
% 'd0~!w
% Example 2: BkAm/R
% -
nm"of\o
% % Display the first 10 Zernike functions uo:J\ E
% x = -1:0.01:1; cdH>n)
% [X,Y] = meshgrid(x,x); Vsr.=Nd=
% [theta,r] = cart2pol(X,Y); >dXGee>'M
% idx = r<=1;
Q>qUk@
% z = nan(size(X)); (M|Dx\_
% n = [0 1 1 2 2 2 3 3 3 3]; d7^}tM
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; y8y5*e~A-)
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 3m[vXr?
% y = zernfun(n,m,r(idx),theta(idx)); krxo"WgD
% figure('Units','normalized') sfH_5
#w
% for k = 1:10 UBKu/@[f@
% z(idx) = y(:,k); @)+AaC#-
% subplot(4,7,Nplot(k)) W-f=]eWg
% pcolor(x,x,z), shading interp f^ZRT@`O
% set(gca,'XTick',[],'YTick',[]) ,]C;sN%~}
% axis square C.:<-xo
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) t^-d/yKt0w
% end ;<Sd~M4f
% !.$I["/=
% See also ZERNPOL, ZERNFUN2. )CYGQMK
o#)C^xlQ
% Paul Fricker 11/13/2006 jwe *(k]z
qx(xvU9
~Gp[_ %K
% Check and prepare the inputs: B4/>H|
% ----------------------------- @n/\L<