切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11610阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 zQH]s?v  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! S='syq>Aok  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 1. SkIu%  
    function z = zernfun(n,m,r,theta,nflag) wq4nMY:#  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. B#tdLv"I  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 67J*&5? |  
    %   and angular frequency M, evaluated at positions (R,THETA) on the HR3_@^<7  
    %   unit circle.  N is a vector of positive integers (including 0), and n=`w9qajd  
    %   M is a vector with the same number of elements as N.  Each element jNy?[ )  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) lug} Uj  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, !*P&Eat  
    %   and THETA is a vector of angles.  R and THETA must have the same |5 xzl  
    %   length.  The output Z is a matrix with one column for every (N,M) kUHie   
    %   pair, and one row for every (R,THETA) pair. _ K/swT{f  
    % %yaG,;>U  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike PZ34*q  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 6.Bh3p  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral vF>gU_gz.  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, yL"i  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized j??tmo  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. m.V,I}J.q  
    % g2'x#%ET  
    %   The Zernike functions are an orthogonal basis on the unit circle. b|ZLX:  
    %   They are used in disciplines such as astronomy, optics, and !"! i i$@  
    %   optometry to describe functions on a circular domain. ek[kq[U9  
    % 6;JP76PD  
    %   The following table lists the first 15 Zernike functions. y`b\;kd  
    % >38 Lt\  
    %       n    m    Zernike function           Normalization C|6{fd4?  
    %       -------------------------------------------------- pGGV\zD^  
    %       0    0    1                                 1 Dq`~XS*  
    %       1    1    r * cos(theta)                    2 '\L0xw4  
    %       1   -1    r * sin(theta)                    2 ny`(f,)u*  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ZT9IMihV  
    %       2    0    (2*r^2 - 1)                    sqrt(3) #` +]{4hR  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) aFG3tuaKrQ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) _j 5N=I{U  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) NV#')+Ba  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) rB evVc![  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) aQmfrx  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) WW3  B  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C*O ,rm}  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Y*\6o7  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6z1\a  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) C|$L6n>DR6  
    %       -------------------------------------------------- \[T{M!s  
    % f N0bIE Y  
    %   Example 1: \ 522,n`  
    % -,/3"}<^78  
    %       % Display the Zernike function Z(n=5,m=1) qsvpW%?aE  
    %       x = -1:0.01:1; e;;):\p4  
    %       [X,Y] = meshgrid(x,x); \c68n  
    %       [theta,r] = cart2pol(X,Y); !a4cjc(  
    %       idx = r<=1; bqjr0A7{  
    %       z = nan(size(X)); 8{@`kyy|  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); bx7\QU+  
    %       figure }Eb]9c\  
    %       pcolor(x,x,z), shading interp V{FE[v_  
    %       axis square, colorbar bpnv&EG  
    %       title('Zernike function Z_5^1(r,\theta)') :Q=z=`*2w  
    % SJOmeN}4)  
    %   Example 2: fwH`}<o  
    % tO4):i1  
    %       % Display the first 10 Zernike functions JE9>8+  
    %       x = -1:0.01:1; Ym:{Mm=ud  
    %       [X,Y] = meshgrid(x,x); Nor`c+,4  
    %       [theta,r] = cart2pol(X,Y); H1C%o0CPY  
    %       idx = r<=1; Dh?vU~v(6  
    %       z = nan(size(X)); enPLaiJ'|q  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ,,}sK  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; K{N%kk%F  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Tr$i= M  
    %       y = zernfun(n,m,r(idx),theta(idx)); `1$y(w]  
    %       figure('Units','normalized') +h|K[=l\  
    %       for k = 1:10 + lP5XY{  
    %           z(idx) = y(:,k); EFwL.'Fh  
    %           subplot(4,7,Nplot(k)) bk0Y  
    %           pcolor(x,x,z), shading interp T|!D>l'  
    %           set(gca,'XTick',[],'YTick',[]) [='p!7 z  
    %           axis square 9,w}Xe=C  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) r/^tzH's  
    %       end *i%.{ YH  
    % mw ?{LT  
    %   See also ZERNPOL, ZERNFUN2. p; F2z;#  
    e"PMvQ  
    %   Paul Fricker 11/13/2006 -}<d(c  
    '1]+8E `Z  
    fMyE&#}z  
    % Check and prepare the inputs: }U(\~ =D  
    % ----------------------------- \ U Ax(;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jjX'_E  
        error('zernfun:NMvectors','N and M must be vectors.') 90?,-6  
    end erXy>H[;  
    % <^[j^j}o  
    if length(n)~=length(m) z^gi[ mi  
        error('zernfun:NMlength','N and M must be the same length.') ~~ U<  
    end L)1C'8 ).  
    U%h7h`=F?  
    n = n(:); A"0wvk)UcY  
    m = m(:); jzMhJ  
    if any(mod(n-m,2)) \Oz,Qzr|  
        error('zernfun:NMmultiplesof2', ... v;Swo("  
              'All N and M must differ by multiples of 2 (including 0).') Lr wINVa  
    end XynU/Go,  
    ~Vwk:+):  
    if any(m>n) NoJUx['6  
        error('zernfun:MlessthanN', ... m**0rpA  
              'Each M must be less than or equal to its corresponding N.') y-%nJD$  
    end ]c5DOv&  
    (rAiDRQ[  
    if any( r>1 | r<0 ) ss/h[4h4h  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') l_bL,-|E8  
    end N?\bBt@  
    (%6(5,   
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #"hJpyW 4V  
        error('zernfun:RTHvector','R and THETA must be vectors.') -QN1oK@\mE  
    end t3pZjdLJd  
    {ms,q_Zr  
    r = r(:); ,Y$F7&  
    theta = theta(:); C:rRK*  
    length_r = length(r); s Ke,  
    if length_r~=length(theta) +{5JDyh0  
        error('zernfun:RTHlength', ... '`9%'f)  
              'The number of R- and THETA-values must be equal.') gW'P`Oxw  
    end ~g*Y, Y  
    <9ePi9D(  
    % Check normalization: Y||yzJdC  
    % -------------------- wTB)v!  
    if nargin==5 && ischar(nflag) 3w t:5 Im  
        isnorm = strcmpi(nflag,'norm');  AQB1gzE  
        if ~isnorm |sA4:Aq  
            error('zernfun:normalization','Unrecognized normalization flag.') Tld1P69(  
        end &7$,<9.  
    else XyvZ&d6(d  
        isnorm = false; m5X3{[a :  
    end y T[Lzv#  
    aUKh}) B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ov?.:M  
    % Compute the Zernike Polynomials '.]e._T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dNOX&$/=  
    I~d#p ]>  
    % Determine the required powers of r: "L9C  
    % -----------------------------------  KYnW7|*  
    m_abs = abs(m); #=`FM:WH  
    rpowers = []; nu#aa#ex>  
    for j = 1:length(n) eFt\D\XOW  
        rpowers = [rpowers m_abs(j):2:n(j)]; @*CAn(@#N  
    end =@Q#dDnFu%  
    rpowers = unique(rpowers); >(IITt  
    z0T`5N G@  
    % Pre-compute the values of r raised to the required powers, -@YVe:$%b  
    % and compile them in a matrix: 4C l, Iw/;  
    % ----------------------------- =#OHxM  
    if rpowers(1)==0 \Ku9"x  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +L^A:}L(  
        rpowern = cat(2,rpowern{:}); pi^^L@@ d  
        rpowern = [ones(length_r,1) rpowern]; R2Twm!1  
    else g,00'z_D  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }s`jl` `PM  
        rpowern = cat(2,rpowern{:}); C_;HaQiu  
    end Am>_4  
    Zk~nB}Xw  
    % Compute the values of the polynomials: 80{#bb  
    % -------------------------------------- P]!LN\[  
    y = zeros(length_r,length(n)); k)N2 +/  
    for j = 1:length(n) y3&Tv  
        s = 0:(n(j)-m_abs(j))/2; a"`g"ZRx  
        pows = n(j):-2:m_abs(j); =giM@MV  
        for k = length(s):-1:1 [ea6dv4p  
            p = (1-2*mod(s(k),2))* ... S% JNxT7'  
                       prod(2:(n(j)-s(k)))/              ... 03X<x|  
                       prod(2:s(k))/                     ... s(1_:  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... SRA|7g}7W  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); c*y$bf<  
            idx = (pows(k)==rpowers); 2x)0?N[$O  
            y(:,j) = y(:,j) + p*rpowern(:,idx); NWo7wVwc/c  
        end *23m-  
         xT_fr,P  
        if isnorm O, bfdc[g4  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1$='`@8I  
        end r[.zLXgK  
    end _Vdb?  
    % END: Compute the Zernike Polynomials .jU|gf:x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B(4:_ j\2  
    Fpj6Atk  
    % Compute the Zernike functions: OoAr%  
    % ------------------------------ o9U0kI=W  
    idx_pos = m>0; <.PPs:{8#  
    idx_neg = m<0; 8w{#R{w  
    eh({K;>  
    z = y; Z$OF|ZZQ  
    if any(idx_pos) K#9(|2 J%  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); `-72>F;T  
    end &=s|  
    if any(idx_neg) E1Ru)k{B  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); &%f]-=~  
    end s${T*)S@G  
    ,xtK PA  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) W%cj39$  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. c-s`>m  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Kc JP^  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive :Fi%Cef|  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, c:h.J4mv  
    %   and THETA is a vector of angles.  R and THETA must have the same 6mI_Q2  
    %   length.  The output Z is a matrix with one column for every P-value, Y2=Brtc[@  
    %   and one row for every (R,THETA) pair. m' Ekp  
    % !OuTXa,I H  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike lJ2|jFY9  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) O, ``\(P  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) s{"`=dKT  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 fcE/  
    %   for all p. ctc`^#q  
    % E1l\~%A  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 DK@w^ZW6JA  
    %   Zernike functions (order N<=7).  In some disciplines it is m]-v IUpb  
    %   traditional to label the first 36 functions using a single mode &m%Pr  
    %   number P instead of separate numbers for the order N and azimuthal FfD ,cDs  
    %   frequency M. =& Tu`m  
    % #U!(I#^3  
    %   Example: U<g UX07  
    % ~*' 8=D?)  
    %       % Display the first 16 Zernike functions 9U}MXY0  
    %       x = -1:0.01:1; Cdt,//xrz  
    %       [X,Y] = meshgrid(x,x); T4HoSei  
    %       [theta,r] = cart2pol(X,Y); PBAz` y2  
    %       idx = r<=1; NDIc?kj~  
    %       p = 0:15; ,rH)}C<Q+  
    %       z = nan(size(X)); ^EuyvftZ  
    %       y = zernfun2(p,r(idx),theta(idx)); /8$1[[[  
    %       figure('Units','normalized') 3I>S:|=K  
    %       for k = 1:length(p) JR a*;_  
    %           z(idx) = y(:,k); 8JtI&aH-L  
    %           subplot(4,4,k) k@t,[  
    %           pcolor(x,x,z), shading interp 7>#L  
    %           set(gca,'XTick',[],'YTick',[]) U7*VIRibv+  
    %           axis square '.h/Y/oz  
    %           title(['Z_{' num2str(p(k)) '}']) 5QL9 w3L  
    %       end MOqA$b  
    % M|Dwk3#  
    %   See also ZERNPOL, ZERNFUN. $^NWzc  
    AG$-U2ap  
    %   Paul Fricker 11/13/2006 \6`%NhkM_  
    F;MT4*4  
    }lNuf u  
    % Check and prepare the inputs: H%NLL4&wu  
    % ----------------------------- ZB^4(F')H  
    if min(size(p))~=1 wWOT*R_  
        error('zernfun2:Pvector','Input P must be vector.') ]:E! i^C`Z  
    end #hE3~+ i  
    QzFv;  
    if any(p)>35 g]iy-,e  
        error('zernfun2:P36', ... :WfB!4%!  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... UwL"%0u  
               '(P = 0 to 35).']) LHHDt<+B  
    end E? m#S  
    3ciVjH>i  
    % Get the order and frequency corresonding to the function number: dnX`F5zd  
    % ---------------------------------------------------------------- q| =q:4_L  
    p = p(:); #Rm=Em}d  
    n = ceil((-3+sqrt(9+8*p))/2); '9p5UC  
    m = 2*p - n.*(n+2); h[`Op#^x3  
    l>5]Wd{/  
    % Pass the inputs to the function ZERNFUN: { Sliy'  
    % ---------------------------------------- eZ.0,A*1B1  
    switch nargin 2`FsG/o\T~  
        case 3 ANpY qV  
            z = zernfun(n,m,r,theta); 3Ibt'$dK  
        case 4 xwH|ryfs,Z  
            z = zernfun(n,m,r,theta,nflag); B> " r-O  
        otherwise E-U;8cOMv  
            error('zernfun2:nargin','Incorrect number of inputs.') dW^_tzfF7  
    end !DX/^b  
    c7nk~K[6  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) vzrD"  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. RAuAIiQ  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Z Lio8  
    %   order N and frequency M, evaluated at R.  N is a vector of `E0.PV  
    %   positive integers (including 0), and M is a vector with the D)~nAkVq  
    %   same number of elements as N.  Each element k of M must be a GwpBDM k  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) HxqV[|}0u  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is WWs[]zr  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix eGypXf%  
    %   with one column for every (N,M) pair, and one row for every X3=Jp'p$h  
    %   element in R. d t0E0i  
    % }`/n2  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- nIqY}??  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is H"RF[bX(  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to xEZVsz  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 b;;Kxi:7$}  
    %   for all [n,m]. k -DB~-L  
    % {6y.%ysU  
    %   The radial Zernike polynomials are the radial portion of the yJ`1},^  
    %   Zernike functions, which are an orthogonal basis on the unit RdVis|7o  
    %   circle.  The series representation of the radial Zernike dj&m  
    %   polynomials is :8|3V~%m  
    % }}bi#G:R+  
    %          (n-m)/2 6M vR R  
    %            __ ?O>JtEz~lQ  
    %    m      \       s                                          n-2s .L{+O6*c  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r yY-t4WeXP  
    %    n      s=0 @NwM+^  
    % 2l/5i]Tq  
    %   The following table shows the first 12 polynomials. Yl~?MOk  
    % -[7,ph  
    %       n    m    Zernike polynomial    Normalization VJtTbt;>  
    %       --------------------------------------------- d8 Nh0!  
    %       0    0    1                        sqrt(2) iXS-EB/  
    %       1    1    r                           2 CU^3L|f2N  
    %       2    0    2*r^2 - 1                sqrt(6) EC!Cv;'  
    %       2    2    r^2                      sqrt(6) T2_#[bk*d  
    %       3    1    3*r^3 - 2*r              sqrt(8) {,C8}8 a W  
    %       3    3    r^3                      sqrt(8) yr 9)ga%  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) KY34 'Di  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ;OCI.S8  
    %       4    4    r^4                      sqrt(10) n zrCOMld  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Y+`-~ 88  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ggsi`Z{j?  
    %       5    5    r^5                      sqrt(12) xI\s9_"Qy  
    %       --------------------------------------------- TvG:T{jwy  
    % '\E{qlI  
    %   Example: svRaU7<UDN  
    % ,u^0V"hJ  
    %       % Display three example Zernike radial polynomials a`X&;jH0ef  
    %       r = 0:0.01:1; YeVc,B'  
    %       n = [3 2 5]; ^PR,TR.  
    %       m = [1 2 1]; BW-P%:B1!R  
    %       z = zernpol(n,m,r); ot<o&  
    %       figure Qbpl$L  
    %       plot(r,z) 4lf36K ,  
    %       grid on HV7(6VSJ+  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ^JVP2L>o*  
    % ;Hp'x_xQ  
    %   See also ZERNFUN, ZERNFUN2. &j@J<*k  
    K2 K6  
    % A note on the algorithm. GaqG 8% .  
    % ------------------------ v]SE?xF{U  
    % The radial Zernike polynomials are computed using the series Z=[a 8CU  
    % representation shown in the Help section above. For many special +Q]'kJ<s  
    % functions, direct evaluation using the series representation can =i>F^7)U1  
    % produce poor numerical results (floating point errors), because q>4i0p8^  
    % the summation often involves computing small differences between VEKITBs  
    % large successive terms in the series. (In such cases, the functions q/-j`'A_pb  
    % are often evaluated using alternative methods such as recurrence Hz3X*G\5b  
    % relations: see the Legendre functions, for example). For the Zernike  `e=n( D  
    % polynomials, however, this problem does not arise, because the et}Y4,:  
    % polynomials are evaluated over the finite domain r = (0,1), and 2.2a2.I1  
    % because the coefficients for a given polynomial are generally all Ngc+<  
    % of similar magnitude. rw0lXs#K<E  
    % ZboJszNb;  
    % ZERNPOL has been written using a vectorized implementation: multiple !Lug5U}  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] z n8ig/C  
    % values can be passed as inputs) for a vector of points R.  To achieve .FRF<_`^  
    % this vectorization most efficiently, the algorithm in ZERNPOL Zw\V}uXI?  
    % involves pre-determining all the powers p of R that are required to W@C tFU9  
    % compute the outputs, and then compiling the {R^p} into a single "UnSZ[;t  
    % matrix.  This avoids any redundant computation of the R^p, and +p<R'/  
    % minimizes the sizes of certain intermediate variables. HMd)64(  
    % <7] Y\{+  
    %   Paul Fricker 11/13/2006 $uB(@Ft.  
    @W- f{V  
    #R4KBXN  
    % Check and prepare the inputs: Jxw:Jk ~  
    % ----------------------------- Xb]?/7 X  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |Z|xM  
        error('zernpol:NMvectors','N and M must be vectors.') U)]natB  
    end pv SFp-:_  
    lA 0_I"b2Y  
    if length(n)~=length(m) B4&pBiG&f6  
        error('zernpol:NMlength','N and M must be the same length.') ''Ec-b6Q-  
    end V46[whL%r  
    nqJV1h  
    n = n(:); =U`c }dhS  
    m = m(:); i3j jPN!  
    length_n = length(n); R3`W#`  
    ,)G+h#Y[*  
    if any(mod(n-m,2)) K# < Wt5  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') m48Y1'4  
    end OVf|4J/Yx  
    7Q}@L1A9F,  
    if any(m<0) I;:_25WGC  
        error('zernpol:Mpositive','All M must be positive.') L%Q *\d  
    end JjML!;  
    Nj8)HR  
    if any(m>n) X&X')hzIt  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') %$ ?Q%  
    end YKd?)$J  
    :]hfmWC   
    if any( r>1 | r<0 ) XhV"<&v  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') $Ws2g*i  
    end (OJ9@_fgG[  
    )E2Lf ]  
    if ~any(size(r)==1) .e#j#tQp  
        error('zernpol:Rvector','R must be a vector.') ^- Ji]5~  
    end L$Z_j()2  
    M4\Io]}-M  
    r = r(:); OXV@LYP@  
    length_r = length(r); XX6)(  
    f+AIxSw  
    if nargin==4 h(sKGCG  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); tRCd(Z,WY  
        if ~isnorm _lqAxWH  
            error('zernpol:normalization','Unrecognized normalization flag.') J<@]7)|U  
        end -;z\BW5 y  
    else _nq n|  
        isnorm = false; R.;59s  
    end kICYPy  
    b6BIDuRb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p?nVPTh  
    % Compute the Zernike Polynomials QLl44*@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,1L^#?Q~  
    J1t?Qj;f3  
    % Determine the required powers of r: H/f= 2b  
    % ----------------------------------- 3I(H.u  
    rpowers = []; 6 dMpd4"\  
    for j = 1:length(n) Mq?21gW  
        rpowers = [rpowers m(j):2:n(j)]; 6j#5Ag:  
    end 0g4cyK~n]  
    rpowers = unique(rpowers); BJ/%{ C`g  
    + P.Ir  
    % Pre-compute the values of r raised to the required powers, IYN`q'%|  
    % and compile them in a matrix: SfT]C~#$N  
    % ----------------------------- |lY8u~%  
    if rpowers(1)==0 s]OXB {M  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +.St"f/1  
        rpowern = cat(2,rpowern{:}); ,0xN#&?Ohh  
        rpowern = [ones(length_r,1) rpowern]; G>"[nXmcu  
    else u e~1144  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Jo]g{GX[  
        rpowern = cat(2,rpowern{:}); [$X(i|6  
    end 4esf&-gG  
    (aLnbJeJ  
    % Compute the values of the polynomials: YQJ_t@0C  
    % -------------------------------------- FliN@RNo  
    z = zeros(length_r,length_n); d1N&J`R\1  
    for j = 1:length_n _G`aI*rKsy  
        s = 0:(n(j)-m(j))/2; WxdYvmp6z[  
        pows = n(j):-2:m(j); on|>"F`pb  
        for k = length(s):-1:1 seim?LK  
            p = (1-2*mod(s(k),2))* ... k9 E ?5  
                       prod(2:(n(j)-s(k)))/          ... /hHD\+0({  
                       prod(2:s(k))/                 ... gnt[l0m  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... w*0T"hK  
                       prod(2:((n(j)+m(j))/2-s(k))); DlP=R  
            idx = (pows(k)==rpowers); TkykI  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Gf>T{Q`,is  
        end 89l}6p/L  
         klKt^h-  
        if isnorm l8Ox]%F  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 3.Qwn.   
        end #0tM88Wi  
    end EP @=i  
    +%^D)   
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  C;M.dd  
    JZ'`.yK:  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 MWu67">"  
    }h>QkV,{2  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)