非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 wKk
3)@il
function z = zernfun(n,m,r,theta,nflag) >wKu6-
]a
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 7k[pvd|L
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N hG3m7ht
% and angular frequency M, evaluated at positions (R,THETA) on the ]D LZ&5pv
% unit circle. N is a vector of positive integers (including 0), and PNbcy!\U
% M is a vector with the same number of elements as N. Each element %9T~8L
@.
% k of M must be a positive integer, with possible values M(k) = -N(k) j9URl$T:
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, LAv:+o(m/
% and THETA is a vector of angles. R and THETA must have the same LBmM{Gu
% length. The output Z is a matrix with one column for every (N,M) 4jX@m
% pair, and one row for every (R,THETA) pair. |Bx||=z`
% C}mYt/
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike V(;55ycr
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;Y'8:ncDn
% with delta(m,0) the Kronecker delta, is chosen so that the integral GS
;HtUQ
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 7~wFU*P1
% and theta=0 to theta=2*pi) is unity. For the non-normalized =Kc|C~g
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. |*^8~u3J"
% L#`2.nU
% The Zernike functions are an orthogonal basis on the unit circle. }_{y|NW
% They are used in disciplines such as astronomy, optics, and Nfv="t9e
% optometry to describe functions on a circular domain. {ExII<=6
% 0A#*4ap
% The following table lists the first 15 Zernike functions. 7_9+=.
+X5
% {I0w`xe
% n m Zernike function Normalization _urG_~q
% -------------------------------------------------- *8$>Whr
% 0 0 1 1 3ty4D 2y
% 1 1 r * cos(theta) 2 (U|)xA]y!
% 1 -1 r * sin(theta) 2 (M ]XNn
% 2 -2 r^2 * cos(2*theta) sqrt(6) Mv.Ciyc
% 2 0 (2*r^2 - 1) sqrt(3) 6xH;:B)d
% 2 2 r^2 * sin(2*theta) sqrt(6) j4;Du>obQ
% 3 -3 r^3 * cos(3*theta) sqrt(8) 2E^"r jLm
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) fL!V$]HNt
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) EjWgaV
% 3 3 r^3 * sin(3*theta) sqrt(8) :KEq<fEI
% 4 -4 r^4 * cos(4*theta) sqrt(10) 5;W\2yj
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vO\:vp4fH
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) a9[mZVMgUK
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y!SE;N&
% 4 4 r^4 * sin(4*theta) sqrt(10) }>2t&+v+
% -------------------------------------------------- XZ.7c{B<
% ;\N79)Gk
% Example 1: b-PSm=`
% oZgHSR RL
% % Display the Zernike function Z(n=5,m=1) 9khjwt
% x = -1:0.01:1; Le*`r2
% [X,Y] = meshgrid(x,x); gs?8Wzh90*
% [theta,r] = cart2pol(X,Y); /@VsqD
% idx = r<=1; 8tU>DJ}0
% z = nan(size(X)); d]U`?A,
% z(idx) = zernfun(5,1,r(idx),theta(idx)); v@VLVf)>9^
% figure i8K_vo2Z)
% pcolor(x,x,z), shading interp (Aorx #z
% axis square, colorbar
6DB0ni
% title('Zernike function Z_5^1(r,\theta)') o&~dGG4J
% Y?<)Dg.[
% Example 2: _ w/_(k
% wHf&R3fg
% % Display the first 10 Zernike functions *-0>3
% x = -1:0.01:1; T/ik/lFI
% [X,Y] = meshgrid(x,x); IXnb]q.
% [theta,r] = cart2pol(X,Y); U_]=E<el
% idx = r<=1; >?z:2@Q)B
% z = nan(size(X)); wh%xkXa[ur
% n = [0 1 1 2 2 2 3 3 3 3]; rWA6XDM7
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; h\(B#SN
% Nplot = [4 10 12 16 18 20 22 24 26 28]; C,fY.CeI
% y = zernfun(n,m,r(idx),theta(idx)); J,??x0GDx,
% figure('Units','normalized') I!P4(3skAB
% for k = 1:10 E>E*ZZuhj
% z(idx) = y(:,k); }MP>]8Aq
% subplot(4,7,Nplot(k)) Xx_tpC?
% pcolor(x,x,z), shading interp ?ty>}.c t
% set(gca,'XTick',[],'YTick',[]) P$_&
% axis square ~(P&g7u
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 30s; }
% end 6ZcXS
% U9
#w
% See also ZERNPOL, ZERNFUN2. V@[rf<,
[
7g><
% Paul Fricker 11/13/2006 eTT)P
S`0NPGn;@[
5Q W}nRCZ
% Check and prepare the inputs: |#k@U6`SG
% ----------------------------- M7rIi\4K4
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :|rPT)yT]
error('zernfun:NMvectors','N and M must be vectors.') nq1
'F
end /&r|ec5
M*w' 1fT
if length(n)~=length(m) sef]>q
error('zernfun:NMlength','N and M must be the same length.') nBkh:5E5%
end &kzj?xK=(j
(!3;X"l
n = n(:); A|L'ih/
m = m(:); #Y2i*:<
if any(mod(n-m,2)) 3@_Elu
error('zernfun:NMmultiplesof2', ... {]^O:i"
'All N and M must differ by multiples of 2 (including 0).') 22&;jpL'?
end YHB9mZi
1Ipfw
if any(m>n) [*Uu#9
error('zernfun:MlessthanN', ... i7 w(S3a
'Each M must be less than or equal to its corresponding N.') 2o4^
end p$Hi[upy
MLr-,
"gs
if any( r>1 | r<0 ) t0Mx!p'T
error('zernfun:Rlessthan1','All R must be between 0 and 1.') \vRd}
end WF[bO7:
j/KO|iNL2
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) T]9m:zX9s
error('zernfun:RTHvector','R and THETA must be vectors.') v7,$7@$:\
end iX "C/L|JN
9AQxNbs
r = r(:); 3TS_-l
theta = theta(:); g9~]s9
length_r = length(r); cj$d=k~
if length_r~=length(theta) /<{: I \<
error('zernfun:RTHlength', ... TB!(('
'The number of R- and THETA-values must be equal.') r@kP*
end > 'i
) #+^
sAO
% Check normalization: V 1/p_)A
% -------------------- ?6"{!s{v
if nargin==5 && ischar(nflag) ~b)74M/
isnorm = strcmpi(nflag,'norm'); [9o4hw
if ~isnorm !5Sd2<N
error('zernfun:normalization','Unrecognized normalization flag.') G8J*Wnwu[K
end ^5; `-Ky
else gE])!GMM3
isnorm = false; @7<uMasfp
end ypdT&5Mqb!
t9cl"F=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'xE
_Cj
% Compute the Zernike Polynomials )Xtnk
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =1.9/hW
])}]/Qw
% Determine the required powers of r: 8gy_Yj&{P
% ----------------------------------- !EIjN
m_abs = abs(m); x@KZ]
rpowers = []; qfoD
for j = 1:length(n) t#i,1aHA
rpowers = [rpowers m_abs(j):2:n(j)]; j)C:$
end .(CP. d
rpowers = unique(rpowers); =
ieag7!
D5,P)[
% Pre-compute the values of r raised to the required powers, `bjizS'^
% and compile them in a matrix: ZJ*g))k7
% ----------------------------- ]#2Y e7+
if rpowers(1)==0 qIMA6u/
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ch \&GzQ
rpowern = cat(2,rpowern{:}); |r%D\EB
rpowern = [ones(length_r,1) rpowern]; 36.N>G,
else 6CbxuzYer
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); tptN6Isuh
rpowern = cat(2,rpowern{:}); D B E4&
end [`RX*OH2
H<EQu|f&x
% Compute the values of the polynomials: 67SV~L#%O
% -------------------------------------- `n5"0QRd
y = zeros(length_r,length(n)); rl2&^N
for j = 1:length(n) ,#?uJTLH
s = 0:(n(j)-m_abs(j))/2; jhbonuV_
pows = n(j):-2:m_abs(j); kn"(mJe$
for k = length(s):-1:1 a^d8I
p = (1-2*mod(s(k),2))* ... sZGj"_-Hzu
prod(2:(n(j)-s(k)))/ ... PjA6Ji;Hu
prod(2:s(k))/ ... uvP2Wgt
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... jh2t9SI~
prod(2:((n(j)+m_abs(j))/2-s(k))); 9}a_:hAy/
idx = (pows(k)==rpowers); G6@M&u5RT
y(:,j) = y(:,j) + p*rpowern(:,idx); l>*"mh
end OyV<u@[i
0sca4G0{
if isnorm :0& X^]\
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); OCZaQ33
end LJk%#yV|_
end K*UgX(xu4P
% END: Compute the Zernike Polynomials ,1OyN]f3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w}Uhd,
b306&ZVEk
% Compute the Zernike functions: HK|ynBAo
% ------------------------------ WOuEW w=
idx_pos = m>0; ib{-A&
idx_neg = m<0; Q'_z<V
Vq;dJ%sY
z = y; iY"l}.7)
if any(idx_pos) H"ZZ.^"5FV
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M9zfT!-
end #Zrlp.M4
if any(idx_neg) EdZ\1'&/9
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); g~(E>6Y
end oy<WsbnS
E4m`
% EOF zernfun