切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11293阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 x mo&![P  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦!  H!eh J$[  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 K-@bwB7~s  
    function z = zernfun(n,m,r,theta,nflag) ua#K>su r.  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. P(_(w 9  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N # "r kuDO  
    %   and angular frequency M, evaluated at positions (R,THETA) on the VkXn8J  
    %   unit circle.  N is a vector of positive integers (including 0), and q$>_WF#||  
    %   M is a vector with the same number of elements as N.  Each element mQ,{=C=D  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) e^frVEV  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, DQ_ 2fX~)  
    %   and THETA is a vector of angles.  R and THETA must have the same .mt^m   
    %   length.  The output Z is a matrix with one column for every (N,M) ;1E_o  
    %   pair, and one row for every (R,THETA) pair. 3^~Zj95M  
    % EXHR(t}e  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %UG/ak%z  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |[WL2<  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral &;U|7l~vl  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <9N4"d !A  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ;Jo*|pju  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 32y[  
    % yA}nPXrd  
    %   The Zernike functions are an orthogonal basis on the unit circle. Rp4FXR jC  
    %   They are used in disciplines such as astronomy, optics, and ,\>g  
    %   optometry to describe functions on a circular domain. p">WK<N  
    % dqz1xQ1  
    %   The following table lists the first 15 Zernike functions. BvJ\x)  
    % ~2 Oc K  
    %       n    m    Zernike function           Normalization *-7fa0<  
    %       -------------------------------------------------- \E&thp  
    %       0    0    1                                 1 s((b"{fFb  
    %       1    1    r * cos(theta)                    2 gix>DHq$k  
    %       1   -1    r * sin(theta)                    2 @Yarz1  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) J[o${^  
    %       2    0    (2*r^2 - 1)                    sqrt(3) &<t79d%{  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) `&,_xUA  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) NYwGK|  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ]:!8 s\#  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) j]Ua\|t  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) % &2B  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) SZE`J:w  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7YD\ !2b  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 2{gwY85:  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) n4R]+&*  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) V^WQ6G1  
    %       -------------------------------------------------- -G!6U2*#  
    % R/rcXX7%  
    %   Example 1: *V<)p%l.  
    % <L%HG  
    %       % Display the Zernike function Z(n=5,m=1) P;>!wU~*  
    %       x = -1:0.01:1; &gJW6 <  
    %       [X,Y] = meshgrid(x,x); `U!(cDY  
    %       [theta,r] = cart2pol(X,Y); G\uU- z$)  
    %       idx = r<=1; Pgx+\;w"  
    %       z = nan(size(X)); vj(@.uU)  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); WQTendS  
    %       figure A` =]RJ  
    %       pcolor(x,x,z), shading interp b sMC#xT  
    %       axis square, colorbar nE^wxtY  
    %       title('Zernike function Z_5^1(r,\theta)') Ho>p ^p  
    % ~6MMErSj  
    %   Example 2: iPz1eUj  
    % JqQ3C}z  
    %       % Display the first 10 Zernike functions O2$!'!hz  
    %       x = -1:0.01:1; dZ-Ny_@&  
    %       [X,Y] = meshgrid(x,x); t3 K>\ :  
    %       [theta,r] = cart2pol(X,Y); "wF*O"WQo  
    %       idx = r<=1; PQQgDtiH  
    %       z = nan(size(X)); Y'?Izn b  
    %       n = [0  1  1  2  2  2  3  3  3  3]; VDPxue  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; v  F]  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 5#P: "U  
    %       y = zernfun(n,m,r(idx),theta(idx)); <kROH0+  
    %       figure('Units','normalized') Fu#Y7)r  
    %       for k = 1:10 8R&z3k;!t  
    %           z(idx) = y(:,k); ~xP Szf  
    %           subplot(4,7,Nplot(k)) YdPlN];[  
    %           pcolor(x,x,z), shading interp ^NcTWbs-T  
    %           set(gca,'XTick',[],'YTick',[]) s!bHS_\e|  
    %           axis square C CC4(v  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) "[Yip5  
    %       end 7Zhli Y1  
    % LxIuxt=X|p  
    %   See also ZERNPOL, ZERNFUN2. 9'D8[p%  
    ;.L!%$0i#  
    %   Paul Fricker 11/13/2006 NT'Ie]|  
    hcj{%^p  
    twAw01".  
    % Check and prepare the inputs:  n})  
    % ----------------------------- CzK%x?~]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?exALv'B  
        error('zernfun:NMvectors','N and M must be vectors.') * .oi3m  
    end _P>1`IR  
    >3v0yh_3  
    if length(n)~=length(m) OX'/?B((  
        error('zernfun:NMlength','N and M must be the same length.') k&n\ =tKN  
    end y>?k<)nA{  
    ))c*_n  
    n = n(:); 0m qS A  
    m = m(:); (L]T*03#  
    if any(mod(n-m,2)) D "JMSL4r  
        error('zernfun:NMmultiplesof2', ... Z?5,cI[6#  
              'All N and M must differ by multiples of 2 (including 0).') 77)OW $G  
    end ^!N;F"  
    y[TaM9<  
    if any(m>n) A)=X?x  
        error('zernfun:MlessthanN', ... <t% Ao,"  
              'Each M must be less than or equal to its corresponding N.') dP$y>%cB  
    end tW'qO:y+  
    '&rw=.cU  
    if any( r>1 | r<0 ) B(HNB\3u  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') = .fc"R|<K  
    end F[Qsv54  
    z1z =P%WK  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) c`Lpqs`  
        error('zernfun:RTHvector','R and THETA must be vectors.') 4yJ01s  
    end E;ndw/GZjR  
    A0'tCq]?0  
    r = r(:); '5&B~ 1&  
    theta = theta(:); x'VeL|  
    length_r = length(r); FZ;Y vdX6  
    if length_r~=length(theta) j(wY/Hl  
        error('zernfun:RTHlength', ... :/I={)5  
              'The number of R- and THETA-values must be equal.') `K1PGibV  
    end _Eet2;9  
    e!O &~#'h}  
    % Check normalization: 9 ayH:;  
    % -------------------- kW*W4{Fth  
    if nargin==5 && ischar(nflag) 2nOe^X!*  
        isnorm = strcmpi(nflag,'norm'); )AZ`R8-A  
        if ~isnorm oZ|{J  
            error('zernfun:normalization','Unrecognized normalization flag.')  uhPIV\  
        end ?,A8  fR  
    else iX&Z  
        isnorm = false; Br?++\  
    end ZVCv(J  
    5k!(#@a_T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kr &:;  
    % Compute the Zernike Polynomials @DjG? yLK$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7]0\[9DyJ  
    5Lo==jHif  
    % Determine the required powers of r: C 6:pY-  
    % ----------------------------------- k;9#4^4(  
    m_abs = abs(m); CVn;RF6  
    rpowers = []; JJ= ~o@|c  
    for j = 1:length(n) #dXZA>b9  
        rpowers = [rpowers m_abs(j):2:n(j)]; `pn-fk  
    end la6e`  
    rpowers = unique(rpowers); WoN]eO  
    eFeCS{LV+  
    % Pre-compute the values of r raised to the required powers, "@):*3 4  
    % and compile them in a matrix: M\x7=*\  
    % ----------------------------- `jl. f  
    if rpowers(1)==0 'SXpb?CZ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); uvAy#,  
        rpowern = cat(2,rpowern{:}); $(!D/bvJ  
        rpowern = [ones(length_r,1) rpowern]; M 2U@gC|{  
    else q, 19NZ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); c"_H%x<[  
        rpowern = cat(2,rpowern{:}); o Q!g!xz  
    end #gr+%=S'6C  
    mYU dhL ^  
    % Compute the values of the polynomials: N NXwT0t  
    % -------------------------------------- RI< Yg#   
    y = zeros(length_r,length(n)); CuGOjQ-k~  
    for j = 1:length(n) :7AauoI  
        s = 0:(n(j)-m_abs(j))/2; qhHRR/p  
        pows = n(j):-2:m_abs(j); B[k+#YYY  
        for k = length(s):-1:1 &bRxy`ZH  
            p = (1-2*mod(s(k),2))* ... }<x!95  
                       prod(2:(n(j)-s(k)))/              ... QI^8b\36  
                       prod(2:s(k))/                     ... d}A2I  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Tef3 Z6  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); jL[Is2<@  
            idx = (pows(k)==rpowers); 4N^Qd3[d  
            y(:,j) = y(:,j) + p*rpowern(:,idx); JCMEhI6d*  
        end /A`zy  
         4wEpyQ|L  
        if isnorm RHA>fXp  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \Q BpgMi(  
        end "Y J;-$rb  
    end J7aK3 he  
    % END: Compute the Zernike Polynomials  ]9l%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "Z1&z-   
    xWI 0s;k  
    % Compute the Zernike functions: %A Du[M.  
    % ------------------------------ M`,Z#)Af  
    idx_pos = m>0; . I9] `Q  
    idx_neg = m<0; =xQfgj  
    )@&?i.  
    z = y; ]> "/<"  
    if any(idx_pos) s%?p%2&RA  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); frO/ nx|9  
    end I4DlEX  
    if any(idx_neg) oVZ8p-  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); c#-97"_8  
    end EG:WE^4  
    x~Esu}x7  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Oh85*3  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. m.g@S30  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated w0`L)f5v  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 3e<^-e)+xL  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, >+LgJo R  
    %   and THETA is a vector of angles.  R and THETA must have the same cg5{o|x  
    %   length.  The output Z is a matrix with one column for every P-value, v/6,eIz  
    %   and one row for every (R,THETA) pair. z7}zf@Y-qv  
    % 8q LgB  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike u! FSXX<  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) .7^-*HT}  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi)  s !vROJ  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 YxqQg  
    %   for all p. L/+J|_J)  
    % g#2X'%&+  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 h*LL(ow5  
    %   Zernike functions (order N<=7).  In some disciplines it is 5WN Z7cO  
    %   traditional to label the first 36 functions using a single mode 5K-)X9z?  
    %   number P instead of separate numbers for the order N and azimuthal (dt_ D  
    %   frequency M. =}KbE4D+8  
    % %{_ YJXpO  
    %   Example: xa*gQ%+F  
    % UN4) >\Y  
    %       % Display the first 16 Zernike functions @{a-IW 3  
    %       x = -1:0.01:1; WQC6{^/4[1  
    %       [X,Y] = meshgrid(x,x); T1di$8  
    %       [theta,r] = cart2pol(X,Y); oVsazYJ|?  
    %       idx = r<=1; #E@i@'T  
    %       p = 0:15; (`Mz.VN  
    %       z = nan(size(X)); A)\DPLAG  
    %       y = zernfun2(p,r(idx),theta(idx)); Bx!` UdRn  
    %       figure('Units','normalized') ~,1q :Kue  
    %       for k = 1:length(p) %$KO]   
    %           z(idx) = y(:,k); Ax*~[$$~%  
    %           subplot(4,4,k) }f'1x%RS^  
    %           pcolor(x,x,z), shading interp $NRb'   
    %           set(gca,'XTick',[],'YTick',[]) {xoo9jq-  
    %           axis square j7+t@DqQ  
    %           title(['Z_{' num2str(p(k)) '}']) !Qzp!k9d  
    %       end A+DYIS  
    % eV%bJkt.  
    %   See also ZERNPOL, ZERNFUN. itgO#(g$Q  
    >D#}B1(!  
    %   Paul Fricker 11/13/2006 E-iBA(H  
    gD =5M\  
    S:\hcW6  
    % Check and prepare the inputs: 1y;zPJ<ntm  
    % ----------------------------- Z!eq/  
    if min(size(p))~=1 r,KK%B  
        error('zernfun2:Pvector','Input P must be vector.') {3Wc<&D C1  
    end _=x_"rz x  
    9D w&b  
    if any(p)>35 0.0!5D[  
        error('zernfun2:P36', ... Q0_W<+`  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... -Lb^O/  
               '(P = 0 to 35).']) +N@F,3yNa  
    end &/?jMyD@  
    uy:=V }p  
    % Get the order and frequency corresonding to the function number: 5^/[]*  
    % ---------------------------------------------------------------- }O  
    p = p(:); wCmv/m  
    n = ceil((-3+sqrt(9+8*p))/2); &2igX?60  
    m = 2*p - n.*(n+2); .x8$PXjPG  
    [ 1GEe  
    % Pass the inputs to the function ZERNFUN: D:EF@il  
    % ---------------------------------------- H\bIO!vb  
    switch nargin Q>yt O'v1  
        case 3 TMsoQ82  
            z = zernfun(n,m,r,theta); dhkpkt<G8  
        case 4 nWu4HFi  
            z = zernfun(n,m,r,theta,nflag); L{pg?#\yC  
        otherwise R!G7;m'N1  
            error('zernfun2:nargin','Incorrect number of inputs.') -`EoTXT*U  
    end )&Bv\Tfjt  
    >cL2PN_y  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 7!;/w;C  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. aM!#  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of I1O?)x~  
    %   order N and frequency M, evaluated at R.  N is a vector of yw!`1#3.  
    %   positive integers (including 0), and M is a vector with the fM.|#eLi  
    %   same number of elements as N.  Each element k of M must be a =:eE!  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) f*Js= hvO  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Al}PJz\  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix l.l~K%P'h  
    %   with one column for every (N,M) pair, and one row for every  H>6;I  
    %   element in R. <Q)}  
    % 06 s3 b  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- pr(\?\a  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is [{$0E=&0  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to n^#LB*q  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 %WR"85  
    %   for all [n,m]. IoOnS)  
    % /GGu` f  
    %   The radial Zernike polynomials are the radial portion of the Ya 4$7|(  
    %   Zernike functions, which are an orthogonal basis on the unit e]h'  
    %   circle.  The series representation of the radial Zernike 5&= n  
    %   polynomials is (=V[tI+Ngt  
    % bz]O(`  
    %          (n-m)/2 %;$Y|RbmqE  
    %            __  _Qc\v0%  
    %    m      \       s                                          n-2s vI}S6-"<  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r a=VT|CX[  
    %    n      s=0 %nF\tVP3]  
    % !Jl0Eu  
    %   The following table shows the first 12 polynomials. |LH*)GrD*t  
    % s;$TX304  
    %       n    m    Zernike polynomial    Normalization >+8I =S  
    %       --------------------------------------------- P@`"MNS  
    %       0    0    1                        sqrt(2) ygt)7f5  
    %       1    1    r                           2 u6T?oK9j  
    %       2    0    2*r^2 - 1                sqrt(6) REBDr;tv  
    %       2    2    r^2                      sqrt(6) j],.`Y  
    %       3    1    3*r^3 - 2*r              sqrt(8) rxeXz<  
    %       3    3    r^3                      sqrt(8) ZY$@_DOB}  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ; @~*z4U  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) e/jM+%  
    %       4    4    r^4                      sqrt(10) |9Ks13?Ck  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) j88sE MZ  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) h xJgxM  
    %       5    5    r^5                      sqrt(12) iDc|9"|Tf3  
    %       --------------------------------------------- 1R9? [RE  
    % _O9H. _E  
    %   Example: de{YgN  
    % *r$.1nke  
    %       % Display three example Zernike radial polynomials "m;]6B."  
    %       r = 0:0.01:1; =2)t1 H  
    %       n = [3 2 5]; G$uOk?R#5c  
    %       m = [1 2 1]; UVUO}B@[S  
    %       z = zernpol(n,m,r); l{m~d!w`a  
    %       figure {bqKb=nyZ  
    %       plot(r,z) Go7hDmu  
    %       grid on +J8/,d  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') $!C+i"q$  
    % _k.bGYldk  
    %   See also ZERNFUN, ZERNFUN2. N4|q2Jvj6  
    eE`1;13;  
    % A note on the algorithm. \[I .  
    % ------------------------ NVWeJ+w  
    % The radial Zernike polynomials are computed using the series #ic 2ofI  
    % representation shown in the Help section above. For many special (ul-J4E\O  
    % functions, direct evaluation using the series representation can A=]F_  
    % produce poor numerical results (floating point errors), because H<7DcwXv  
    % the summation often involves computing small differences between 8'WMspX  
    % large successive terms in the series. (In such cases, the functions q)xl$*g  
    % are often evaluated using alternative methods such as recurrence ;Jn0e:x`E  
    % relations: see the Legendre functions, for example). For the Zernike 4{WV  
    % polynomials, however, this problem does not arise, because the mX.3R+t  
    % polynomials are evaluated over the finite domain r = (0,1), and E816 YS='  
    % because the coefficients for a given polynomial are generally all yXo0z_ G  
    % of similar magnitude. C;:L~)C@t  
    % aX'g9E  
    % ZERNPOL has been written using a vectorized implementation: multiple |abst&yp  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] %g@3S!lK  
    % values can be passed as inputs) for a vector of points R.  To achieve s_Oh >y?Aq  
    % this vectorization most efficiently, the algorithm in ZERNPOL 05VOUa*pb  
    % involves pre-determining all the powers p of R that are required to  `pd   
    % compute the outputs, and then compiling the {R^p} into a single 7e{X$'  
    % matrix.  This avoids any redundant computation of the R^p, and + >gbZ-S  
    % minimizes the sizes of certain intermediate variables. RR"W O  
    % xZ=FH>Y6'  
    %   Paul Fricker 11/13/2006 (X_,*3Yxk  
    skD k/-*R  
     QXxLe*  
    % Check and prepare the inputs: cm 9oG  
    % ----------------------------- i,Wm{+H-O  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;(0(8G  
        error('zernpol:NMvectors','N and M must be vectors.') !:O/|.+Vmf  
    end UQ.D!q  
    QJIItx4hE  
    if length(n)~=length(m) ;.Oh88|k  
        error('zernpol:NMlength','N and M must be the same length.') Tb0;Mbr  
    end H(G^O&ppdB  
    oD#< ?h)(  
    n = n(:); u ?G\b{$m  
    m = m(:); y.*=Ww+  
    length_n = length(n); %6IlE.*,  
    ,*nZf|  
    if any(mod(n-m,2)) "^ 6lvZP(  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') DR yESi  
    end P 5qa:<  
    x\J;ZiWwW  
    if any(m<0) M o"JV  
        error('zernpol:Mpositive','All M must be positive.') x !:9c<  
    end q 5v?`c  
    bxhg*A  
    if any(m>n) f*T)*R_  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') B=gsd0^]  
    end NrJ_6sjF0g  
    Z'}(t,  
    if any( r>1 | r<0 ) *bxJ)9B  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') -q&7J' N  
    end l4mUx`!  
    q1TW?\pjb:  
    if ~any(size(r)==1) bQdSX8: !R  
        error('zernpol:Rvector','R must be a vector.') $vTAF-~Ql  
    end \>Ga-gv6/  
    )zW%\s*'  
    r = r(:); qF{DArc  
    length_r = length(r); ||=[kjG~  
    O@r.>  
    if nargin==4 XYb^C s;  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 'ybth  
        if ~isnorm Ev+HWx~Y  
            error('zernpol:normalization','Unrecognized normalization flag.') CP]S-o}yd  
        end .L^pMU+!^  
    else !]rETP_  
        isnorm = false; :>P4L,Da]  
    end U R1JbyT  
    S$jV|xK B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r:c@17  
    % Compute the Zernike Polynomials *^@#X-NG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2JiAd*WK  
    <'}b*wUB  
    % Determine the required powers of r: n^iNo  
    % ----------------------------------- :Su#xI  
    rpowers = []; <?LfOSdMs^  
    for j = 1:length(n) *2,e=tY>  
        rpowers = [rpowers m(j):2:n(j)]; #+K Kvk  
    end &2io^A P  
    rpowers = unique(rpowers); RIy5ww}3|  
    t['k%c  
    % Pre-compute the values of r raised to the required powers, Ew %{ i(d  
    % and compile them in a matrix: EjR_-8@FK  
    % ----------------------------- PPoI>J  
    if rpowers(1)==0 9;0V  /y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3Q'[Ee2-3  
        rpowern = cat(2,rpowern{:}); #`jE%ONC  
        rpowern = [ones(length_r,1) rpowern]; gDQkn {T.%  
    else [=F>#8=  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hWD !  
        rpowern = cat(2,rpowern{:}); h4CTTe)  
    end n7IL7?!o  
    m~)Fr8Wh6  
    % Compute the values of the polynomials: tZaD${  
    % -------------------------------------- V$/u  
    z = zeros(length_r,length_n); mje<d"bW  
    for j = 1:length_n q2x|%H RF  
        s = 0:(n(j)-m(j))/2; lx\qp`w  
        pows = n(j):-2:m(j); FI]P<)*r  
        for k = length(s):-1:1 ~ X-)_zH  
            p = (1-2*mod(s(k),2))* ... q>_vE{UB  
                       prod(2:(n(j)-s(k)))/          ... .:}.b"%m  
                       prod(2:s(k))/                 ... 1)TK01R8  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... vkd[: CC  
                       prod(2:((n(j)+m(j))/2-s(k))); '[Mlmgc5  
            idx = (pows(k)==rpowers); :s'o~   
            z(:,j) = z(:,j) + p*rpowern(:,idx); xGYSi5}z  
        end ZCy`2Fir  
         &w+;N5}3  
        if isnorm -1qZqU$h  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); fCgBH~w,9  
        end ry.;u*F  
    end *#3*;dya]  
    C=fsJ=a5;  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  !:CJPM6j3  
    %O%=rUD  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 9bJQT'<R  
    93O;+Z5J  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)