非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 oB~V~c}8x
function z = zernfun(n,m,r,theta,nflag) lxr;AJ(
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. cBv"d ~
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 2e03m62*
% and angular frequency M, evaluated at positions (R,THETA) on the B2|0.G|[j
% unit circle. N is a vector of positive integers (including 0), and ).A9>^6?{
% M is a vector with the same number of elements as N. Each element ayQeT
% k of M must be a positive integer, with possible values M(k) = -N(k) !~vx|_$#
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, %wI)uJ2
% and THETA is a vector of angles. R and THETA must have the same >Bu9 D
% length. The output Z is a matrix with one column for every (N,M) f^ZhFu?
% pair, and one row for every (R,THETA) pair. ^@{"a
% Pn6~66a6
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike OiS\tK?|GV
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), xGOVMo
+
% with delta(m,0) the Kronecker delta, is chosen so that the integral p1K]m>Y{?
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <XtE|LG
% and theta=0 to theta=2*pi) is unity. For the non-normalized j%Xa8$
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 6>
z{xYat
% yz5! >|EB
% The Zernike functions are an orthogonal basis on the unit circle. HFlExau
% They are used in disciplines such as astronomy, optics, and Tku6X/LF
% optometry to describe functions on a circular domain. ~"<^4h
% ]>Gi_20*.
% The following table lists the first 15 Zernike functions. I)s_f5'
% TdT`Vf
% n m Zernike function Normalization x+;y0`oL
% -------------------------------------------------- +l.LwA
% 0 0 1 1 WglpWp)
% 1 1 r * cos(theta) 2 08D:2 z1z
% 1 -1 r * sin(theta) 2 rHk,OC
% 2 -2 r^2 * cos(2*theta) sqrt(6) Q'JK *.l
% 2 0 (2*r^2 - 1) sqrt(3) *'-t_F';
% 2 2 r^2 * sin(2*theta) sqrt(6) e+D]9wM8
% 3 -3 r^3 * cos(3*theta) sqrt(8) "tK|/R+
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 57 Bx-
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) |0?v4%g
% 3 3 r^3 * sin(3*theta) sqrt(8) >tx[UF@P@
% 4 -4 r^4 * cos(4*theta) sqrt(10) {?2|rv)
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !pkIaCxs
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) C&R U
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (DS"*4ty
% 4 4 r^4 * sin(4*theta) sqrt(10) ~P"Agpx3u
% -------------------------------------------------- {$i>\)
% 6x=w-32+ y
% Example 1:
S~E@A.7
% 8lGM>(:o
% % Display the Zernike function Z(n=5,m=1) 6-0sBB9=u
% x = -1:0.01:1; ZoSyc--Bv
% [X,Y] = meshgrid(x,x); 0fn*;f8{XJ
% [theta,r] = cart2pol(X,Y); q-ko)]
% idx = r<=1; W$()W)
% z = nan(size(X)); ?6{g7S%
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ?6hd(^
% figure YD;d*E%t
% pcolor(x,x,z), shading interp a]xGzv5
% axis square, colorbar `b] wyP
% title('Zernike function Z_5^1(r,\theta)') VZ=:`)
% K~I?i/P=z
% Example 2: 6vR6=@(`>
% XWQ `]m)
% % Display the first 10 Zernike functions `]] <.>R
% x = -1:0.01:1; k?TZY|_
% [X,Y] = meshgrid(x,x); x[Hx.G}5+
% [theta,r] = cart2pol(X,Y); FfrC/"N
% idx = r<=1; &vt)7[
% z = nan(size(X)); /3K)$Er
% n = [0 1 1 2 2 2 3 3 3 3]; 6M_:D
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; :z&kbG
% Nplot = [4 10 12 16 18 20 22 24 26 28]; H9_iTGBQ
% y = zernfun(n,m,r(idx),theta(idx)); NN1}P'6Ha
% figure('Units','normalized') $I>]61l%
% for k = 1:10 b;5j awG
% z(idx) = y(:,k); WFFQxd|Z
% subplot(4,7,Nplot(k)) R@s7s%y=
% pcolor(x,x,z), shading interp OKK Ko`RN
% set(gca,'XTick',[],'YTick',[]) w,vnpdT
% axis square )h&@}#A09
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) k ,+,,W
% end [fV"tf;
% j BBl{
% See also ZERNPOL, ZERNFUN2. 6$=>ck P
~;H,cPvrEg
% Paul Fricker 11/13/2006 Rvx7}ZL!
+ xO3<u
p9u*l
% Check and prepare the inputs: X&LJ"ahK
% ----------------------------- |N%
l
at
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Xq03o#-p+
error('zernfun:NMvectors','N and M must be vectors.') #jG?{j3;?
end D&2NO/
R
adIrrK
if length(n)~=length(m) T 4p}5ew'
error('zernfun:NMlength','N and M must be the same length.') X'
5R4j
end n8=Dzv0
&Tuj`DL
n = n(:); &*ocr &
m = m(:); !#W>x49}
if any(mod(n-m,2)) f^lcw
error('zernfun:NMmultiplesof2', ... f_[dFKoX
'All N and M must differ by multiples of 2 (including 0).') Fpn*]x
end 8b~
OG?7(
UJ
if any(m>n) F0z7".)
error('zernfun:MlessthanN', ... [f6BA|
'Each M must be less than or equal to its corresponding N.') d~%7A5
end rf4f'cUa
Nr `R3(X
if any( r>1 | r<0 ) d;0]xG?%=
error('zernfun:Rlessthan1','All R must be between 0 and 1.') aK;OzB)
end =<p=?16
x
R2a99# J
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Xm>zT'B_tJ
error('zernfun:RTHvector','R and THETA must be vectors.') y$]<m+1
end 2&n6:"u|
;<Hk Cd
r = r(:); !Md6Lh%-w
theta = theta(:); J( XDwt
length_r = length(r); IauLT;! X
if length_r~=length(theta) kBcTXl
error('zernfun:RTHlength', ... -sKtT 9o
'The number of R- and THETA-values must be equal.') oo &|(+"O_
end d]O:VghY\
h+j^VsP zB
% Check normalization: tJ K58m$
% -------------------- 0>td[f
if nargin==5 && ischar(nflag) d wG!]j>:_
isnorm = strcmpi(nflag,'norm'); s9CmR]C
if ~isnorm MooH`2Fd
error('zernfun:normalization','Unrecognized normalization flag.') Q~Mkf&s
end 1~K'r&
else U!r8}@
isnorm = false; )AkBo
end n:/!{.
hN!;Tny
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b)KEB9w
% Compute the Zernike Polynomials )G^k$j
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E9j<+Ik
Z+y'w#MZL
% Determine the required powers of r: WVpx
% ----------------------------------- s)]T"87H'_
m_abs = abs(m); Os$E,4,py
rpowers = []; OHBCanZZ,
for j = 1:length(n) HYGd
:SeH
rpowers = [rpowers m_abs(j):2:n(j)]; |rk.t g9
end qKd ="PR}
rpowers = unique(rpowers); t :YZua
K=0xR*ll5
% Pre-compute the values of r raised to the required powers, $RY-yKmi
% and compile them in a matrix: lkTA"8d
% ----------------------------- "0jwCX
Cu
if rpowers(1)==0 m=@xZw<
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); d}:-Q?
rpowern = cat(2,rpowern{:}); *izCXfW7
rpowern = [ones(length_r,1) rpowern]; TBPu&+3
else mJ<`/p?:
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ly8=SIZ
rpowern = cat(2,rpowern{:}); }M% 3
end ^0| :
dFw+nGN
% Compute the values of the polynomials: LJPJENtFIs
% -------------------------------------- Fy<:iv0>t
y = zeros(length_r,length(n)); eo4z!@pRN
for j = 1:length(n) E-C]<{`O
s = 0:(n(j)-m_abs(j))/2; a5t&{ajJ
pows = n(j):-2:m_abs(j); |X:`o;Uma
for k = length(s):-1:1 zX*5yNd
p = (1-2*mod(s(k),2))* ... &}e>JgBe0
prod(2:(n(j)-s(k)))/ ... iE"]S )
prod(2:s(k))/ ... h'&<A_C-7
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... z;oia!9z
prod(2:((n(j)+m_abs(j))/2-s(k))); 5)XUT`;'){
idx = (pows(k)==rpowers); 8e>B>'nH
y(:,j) = y(:,j) + p*rpowern(:,idx); ed',\+.uB
end _"Ym]y28li
.tG3g:
if isnorm i*:QbMb
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); )r{Wj*u
end e`={_R{N
end eEVB
% END: Compute the Zernike Polynomials jnOnV1I"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q&>fKS nKs
/}E2Rr?{
% Compute the Zernike functions: X:Wd%CHP
% ------------------------------ r&a}U6k(y
idx_pos = m>0; 2! ,ndLA
idx_neg = m<0; [XI:Yf
0;><@{'
z = y; EoPvF`T
if any(idx_pos) !J;Bm,Xn6
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); RRS)7fFm
end M| Gl&
if any(idx_neg) )cizd^{
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ?:`sE"
end q7KHx b
2_ u+&7
% EOF zernfun