切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10949阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 <r7qq$  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 7>t$<J  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ]^yV`Z8  
    function z = zernfun(n,m,r,theta,nflag) y+ 6`| h_  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. q:`77  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N T@K7DkP@  
    %   and angular frequency M, evaluated at positions (R,THETA) on the z9k*1:  
    %   unit circle.  N is a vector of positive integers (including 0), and tsTR2+GZS  
    %   M is a vector with the same number of elements as N.  Each element pY{; Yn&t  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) PtVo7zO ye  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, N5q}::Odc  
    %   and THETA is a vector of angles.  R and THETA must have the same ou<S)_|Iu  
    %   length.  The output Z is a matrix with one column for every (N,M) RL7C YB  
    %   pair, and one row for every (R,THETA) pair. o9KyAP$2  
    % %|:;Ti  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike IZ4W_NN  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), f p v= P  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral @!z$Sp=  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, k%EWkM)?  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ntrY =Y  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7.wR"1p#  
    % #d }0}7ue  
    %   The Zernike functions are an orthogonal basis on the unit circle. CTh1+&Pa  
    %   They are used in disciplines such as astronomy, optics, and c&E*KfOG  
    %   optometry to describe functions on a circular domain. l 8O"w&  
    % *A~($ZtL  
    %   The following table lists the first 15 Zernike functions. i&A{L}eCr:  
    % 2x-'>i_|g  
    %       n    m    Zernike function           Normalization l?3vNa FeR  
    %       -------------------------------------------------- :[y]p7;{f  
    %       0    0    1                                 1 a(PjcQ4dY  
    %       1    1    r * cos(theta)                    2 HBt|}uZ?6i  
    %       1   -1    r * sin(theta)                    2 ?ada>"~GR_  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ,bB( 24LD  
    %       2    0    (2*r^2 - 1)                    sqrt(3) lTa1pp Zw  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) R(M}0JRm  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Hnfvo*6d.e  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Ivz+Jj w  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) GwgFi@itN  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) _ oQtk^fp  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) [Xxw]C6\>(  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #^5a\XJb  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Cr' ! "F  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T&o,I  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) pBlRd{#fL  
    %       -------------------------------------------------- %)zk..K{l  
    % 17e=GL  
    %   Example 1: xCR; K]!  
    % \\Y,?x_0T  
    %       % Display the Zernike function Z(n=5,m=1) zt7_r`#z  
    %       x = -1:0.01:1; Bj;\mUsk  
    %       [X,Y] = meshgrid(x,x); Vh 2Bz  
    %       [theta,r] = cart2pol(X,Y); /yLzDCKn  
    %       idx = r<=1; 3CA|5A.Pa  
    %       z = nan(size(X)); f&6w;T=  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); J$1j-\KS  
    %       figure " <<A  
    %       pcolor(x,x,z), shading interp mG0L !5  
    %       axis square, colorbar =hJfL}&O3  
    %       title('Zernike function Z_5^1(r,\theta)') `-~`<#E[  
    % Bx+d3  
    %   Example 2: Z+Kv+GmqH  
    % Q}WL/X5  
    %       % Display the first 10 Zernike functions 5i^`vmK  
    %       x = -1:0.01:1; [m~b[ZwES  
    %       [X,Y] = meshgrid(x,x); ^Y$QR]  
    %       [theta,r] = cart2pol(X,Y); V@B7 P{gH  
    %       idx = r<=1; f_oq1W)9  
    %       z = nan(size(X)); S  <2}8D  
    %       n = [0  1  1  2  2  2  3  3  3  3]; uK"^*NEC';  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 66/Z\H^d  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; I|H,)!Z  
    %       y = zernfun(n,m,r(idx),theta(idx)); D0f*eSXE{  
    %       figure('Units','normalized') ,o BlJvm  
    %       for k = 1:10 OWqrD@  
    %           z(idx) = y(:,k); B,4q>KQA  
    %           subplot(4,7,Nplot(k)) 5(423"(y  
    %           pcolor(x,x,z), shading interp k69kv9v@J  
    %           set(gca,'XTick',[],'YTick',[]) :lNg:r$4  
    %           axis square cvhlRI%6  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) g8KY`MBnC&  
    %       end }6<)yW}U  
    % >J.Qm0TY(  
    %   See also ZERNPOL, ZERNFUN2. n;%y  
    w2k<)3 g~  
    %   Paul Fricker 11/13/2006 Dzo{PstM%  
    Y=9qJ`q  
    h iAxh Y  
    % Check and prepare the inputs: hXNH"0VCV  
    % ----------------------------- vuXS/ d  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3u*82s\8T  
        error('zernfun:NMvectors','N and M must be vectors.') aQga3;S!  
    end 4ffU;6~l'  
     -H`\? R  
    if length(n)~=length(m) `n6/ A)  
        error('zernfun:NMlength','N and M must be the same length.') 9WOu8Ia  
    end Np$z%ewK.  
    &&&9  
    n = n(:); l"kx r96  
    m = m(:); c& 3#-DNI  
    if any(mod(n-m,2)) UkZ\cc}aC/  
        error('zernfun:NMmultiplesof2', ... R'L?Xn}3  
              'All N and M must differ by multiples of 2 (including 0).') '5AvT: ^u  
    end ZBF1rx?  
    k5wi'  
    if any(m>n) GYd]5`ri  
        error('zernfun:MlessthanN', ... ~> PgJ ^G  
              'Each M must be less than or equal to its corresponding N.') R+d< fe  
    end 8-ZUS|7B  
    jM]d'E?ZLA  
    if any( r>1 | r<0 ) RE 9nU%!  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') &-=K:;x  
    end *o!l/>4g  
    $6# lTYN~  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Vg{Zv4+t  
        error('zernfun:RTHvector','R and THETA must be vectors.') ;@9e\!%  
    end +>4^mE" \  
    D;jK/2  
    r = r(:); sXiv,  
    theta = theta(:); l0Y?v 4  
    length_r = length(r); f|#8qiUS  
    if length_r~=length(theta) tfA}`*$s  
        error('zernfun:RTHlength', ... 1Fs-0)s8  
              'The number of R- and THETA-values must be equal.') Ssf+b!e]  
    end z{|LQt6q  
    9KyZEH;pY  
    % Check normalization: ' l|R5   
    % -------------------- -6`;},Yr  
    if nargin==5 && ischar(nflag) W^k,Pmopy  
        isnorm = strcmpi(nflag,'norm'); L7}i q0  
        if ~isnorm ]-:1se  
            error('zernfun:normalization','Unrecognized normalization flag.') N xFUO0O3  
        end 1[s0Lz  
    else g_vm&~U/'  
        isnorm = false; O#:&*Mv  
    end \_ 9rr6^ "  
    f`?0WJ(M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !R6ApB4ZI  
    % Compute the Zernike Polynomials Gm A!Mo  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w12}Rn8  
    ;Xu22f Kh  
    % Determine the required powers of r: t8/%D gu  
    % ----------------------------------- krjN7&  
    m_abs = abs(m); Xu#:Fe}:  
    rpowers = []; /zT`Y=1  
    for j = 1:length(n) @1bH}QS  
        rpowers = [rpowers m_abs(j):2:n(j)]; 8_a3'o%5  
    end JDA]t&D!v  
    rpowers = unique(rpowers); 2m"_z  
    {cR=N~_EO  
    % Pre-compute the values of r raised to the required powers, B |&F%P0:  
    % and compile them in a matrix: \[ M_\&GC  
    % ----------------------------- 5un^yRMB-  
    if rpowers(1)==0 c`jDW S  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :u/mTZDi  
        rpowern = cat(2,rpowern{:}); b#a@ rh  
        rpowern = [ones(length_r,1) rpowern]; 1 i3k  
    else q@ZlJ3%l,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); DP*@dFU"  
        rpowern = cat(2,rpowern{:}); vq>l>as9O  
    end .S7:;%qL6  
    8+&JQ"UaB  
    % Compute the values of the polynomials: opD-vDa h  
    % -------------------------------------- 5)M 2r!\  
    y = zeros(length_r,length(n)); >1ZJ{se  
    for j = 1:length(n) g5Td("& n  
        s = 0:(n(j)-m_abs(j))/2; 3sbK7,4  
        pows = n(j):-2:m_abs(j); n8u*JeN  
        for k = length(s):-1:1 3?`"  
            p = (1-2*mod(s(k),2))* ...  ;:OsSq&  
                       prod(2:(n(j)-s(k)))/              ... O('Nn]wo~9  
                       prod(2:s(k))/                     ... pbLGe'  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... " U8S81'  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ; )llt G  
            idx = (pows(k)==rpowers); &{z<kmc$6  
            y(:,j) = y(:,j) + p*rpowern(:,idx);  zF: j  
        end H;S%Y`V  
         *7RvHHf  
        if isnorm l r~gG3   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); @;Y~frT  
        end o`6|ba  
    end cj g.lzY H  
    % END: Compute the Zernike Polynomials Vz"u>BP3~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /;oqf4MF  
    8\Hr5FqB(  
    % Compute the Zernike functions: /!T> b:0  
    % ------------------------------ Z<"K_bj   
    idx_pos = m>0; Qf@iU%G  
    idx_neg = m<0; c\.P/~  
    M_|> kp  
    z = y; Ns=AjhLc z  
    if any(idx_pos) ,}J_:\j  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); gQouOjfP  
    end ; Lql_1  
    if any(idx_neg) \ZH&LPAY  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); b$- e\XB!  
    end Tlodn7%",  
    ~uj;qq  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) _[K#O,D,  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 8;"*6vHZ  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated '2nqHX D  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Q8qz*v]{  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, :&w{\-0{  
    %   and THETA is a vector of angles.  R and THETA must have the same '&yeQ   
    %   length.  The output Z is a matrix with one column for every P-value, =? :@  
    %   and one row for every (R,THETA) pair. ga0'zo9K  
    % I021p5h|  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Q-eCHr)  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) !; v~^#M]~  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) c&'JmKV>&  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ;#k-)m%  
    %   for all p. %0-wpuHc(]  
    % L%cVykWY"  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Vpp&|n9^  
    %   Zernike functions (order N<=7).  In some disciplines it is m~`>`4  
    %   traditional to label the first 36 functions using a single mode ,mFsM!|  
    %   number P instead of separate numbers for the order N and azimuthal ;4#D,zlO^  
    %   frequency M. 3,eIB(  
    % [L~@uAMw:  
    %   Example: 0$P/jt  
    % #kmh:P  
    %       % Display the first 16 Zernike functions lU2c_4  
    %       x = -1:0.01:1; d- E4~)Qy  
    %       [X,Y] = meshgrid(x,x); L;6.r3bL  
    %       [theta,r] = cart2pol(X,Y); ;LwqTlJ*[L  
    %       idx = r<=1; C>QIrZu  
    %       p = 0:15; &KC!*}<tx  
    %       z = nan(size(X)); SpSnoVI  
    %       y = zernfun2(p,r(idx),theta(idx)); {]}s#vvy  
    %       figure('Units','normalized') =VP=|g  
    %       for k = 1:length(p) 5OP`c<  
    %           z(idx) = y(:,k); $t =O:  
    %           subplot(4,4,k) jE/oA<^  
    %           pcolor(x,x,z), shading interp u{f* M,k  
    %           set(gca,'XTick',[],'YTick',[]) 8im@4A+n`  
    %           axis square wts:65~  
    %           title(['Z_{' num2str(p(k)) '}']) 8v92N g7  
    %       end ~H6;I$e[  
    % YJF#)TkF  
    %   See also ZERNPOL, ZERNFUN. RW7(r/C  
    >_ \<E!j  
    %   Paul Fricker 11/13/2006 C!x/ ^gw  
    n!ok?=(kQ  
    2WBq  
    % Check and prepare the inputs: P=8>c'Q  
    % ----------------------------- +a+`Z>  
    if min(size(p))~=1 )j&"%[2F  
        error('zernfun2:Pvector','Input P must be vector.') H{G{H=K_  
    end _}Ps(_5D  
    6[dur'x  
    if any(p)>35 GG6% bF  
        error('zernfun2:P36', ... yJ2B3i@T 4  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... E;(Rm>lB  
               '(P = 0 to 35).']) m7|RD]q&  
    end 8<#U9]  
    /2uQCw&x-  
    % Get the order and frequency corresonding to the function number: ;[0&G6g  
    % ---------------------------------------------------------------- GH4iuPh]  
    p = p(:); =tdSq"jh  
    n = ceil((-3+sqrt(9+8*p))/2); oduDA:  
    m = 2*p - n.*(n+2); zY9 H%  
    <G3&z#]#4  
    % Pass the inputs to the function ZERNFUN: 7v"lNP-?jU  
    % ---------------------------------------- }iN2KeLAF  
    switch nargin : mGAt[Cc  
        case 3  z01>'  
            z = zernfun(n,m,r,theta); U8QX46Br  
        case 4 $ 17 su')  
            z = zernfun(n,m,r,theta,nflag); pw020}`  
        otherwise uQ Co6"e  
            error('zernfun2:nargin','Incorrect number of inputs.') |;vi*u  
    end 2 h|e  
    l}g;'9ZB  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) %"$@%"8;3  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. F@<0s&)1  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of gPC@Yy  
    %   order N and frequency M, evaluated at R.  N is a vector of ~%y@Xsot>  
    %   positive integers (including 0), and M is a vector with the ]dPZ.r  
    %   same number of elements as N.  Each element k of M must be a Owv +1+B  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) '_0]vupvY  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is wo^Sy41bF  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 3TuC+'`G  
    %   with one column for every (N,M) pair, and one row for every JqUADm  
    %   element in R. UHO_Z  
    % VV_l$E$  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 9l/EjF^  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is vP-M,4c  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Pt< s* (  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 V9 }t0$LN  
    %   for all [n,m]. % g"eV4 j  
    % 6)gd^{  
    %   The radial Zernike polynomials are the radial portion of the Z0,~V  
    %   Zernike functions, which are an orthogonal basis on the unit LxN*)[Wb  
    %   circle.  The series representation of the radial Zernike `cB_.&  
    %   polynomials is D$e B ,~  
    % F1azZ (  
    %          (n-m)/2 <&!]K?Q9i  
    %            __ ,K9f_bv  
    %    m      \       s                                          n-2s p#d+>7  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 4g _"ku  
    %    n      s=0 %i{;r35M;9  
    % %,*$D} H  
    %   The following table shows the first 12 polynomials. ekSY~z=/u  
    % jk~:\8M(A  
    %       n    m    Zernike polynomial    Normalization D$k8^Vs  
    %       --------------------------------------------- b%(6EiUA  
    %       0    0    1                        sqrt(2) ZDLMMX x>  
    %       1    1    r                           2 USML~]G z  
    %       2    0    2*r^2 - 1                sqrt(6) ),^eA  
    %       2    2    r^2                      sqrt(6) OJ>.-"  
    %       3    1    3*r^3 - 2*r              sqrt(8) [pOg'  
    %       3    3    r^3                      sqrt(8) !|wzf+V  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) h5%|meZQb  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) yYJY;".H  
    %       4    4    r^4                      sqrt(10) /ONV5IkPy  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) &Y>zT9]$K  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) x ,/TXTZ6  
    %       5    5    r^5                      sqrt(12) 8s}J!/2  
    %       --------------------------------------------- 5rxA<G s  
    % 5CYo7mJ6+  
    %   Example: Y#V8(DTyH  
    % CX/(o]  
    %       % Display three example Zernike radial polynomials ;I6s-moq_  
    %       r = 0:0.01:1; {i{xo2<1"  
    %       n = [3 2 5]; {kB `>VS  
    %       m = [1 2 1]; 2i=H"('G)+  
    %       z = zernpol(n,m,r); =5]n\"/  
    %       figure |!z2oO  
    %       plot(r,z) 8}p8r|d!ls  
    %       grid on haSM=;uPM  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') [`fI:ao|  
    % Ibr%d2yS=  
    %   See also ZERNFUN, ZERNFUN2. 1hQN8!:<  
    ^J=hrYGA  
    % A note on the algorithm. t={0(  
    % ------------------------ H ZJL/=;  
    % The radial Zernike polynomials are computed using the series GRYe<K  
    % representation shown in the Help section above. For many special |WQ9a' '  
    % functions, direct evaluation using the series representation can g$37;d3Tx  
    % produce poor numerical results (floating point errors), because ;6;H*Y0,|E  
    % the summation often involves computing small differences between s'I)A^i+  
    % large successive terms in the series. (In such cases, the functions EYzg%\HH  
    % are often evaluated using alternative methods such as recurrence :> -1'HC  
    % relations: see the Legendre functions, for example). For the Zernike Ggm` ~fS  
    % polynomials, however, this problem does not arise, because the >wON\N0V_  
    % polynomials are evaluated over the finite domain r = (0,1), and |w&~g9   
    % because the coefficients for a given polynomial are generally all xh9qg0d  
    % of similar magnitude. fZryG  
    % 3!9 Z=- tD  
    % ZERNPOL has been written using a vectorized implementation: multiple %HuyK  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] |^n3{m  
    % values can be passed as inputs) for a vector of points R.  To achieve j+ ::y) $  
    % this vectorization most efficiently, the algorithm in ZERNPOL pK_?}~  
    % involves pre-determining all the powers p of R that are required to _2Py\+$  
    % compute the outputs, and then compiling the {R^p} into a single d.F)9h]XHO  
    % matrix.  This avoids any redundant computation of the R^p, and 'Z!G a.I  
    % minimizes the sizes of certain intermediate variables. 7qIB7_K5  
    %  $g8}^1  
    %   Paul Fricker 11/13/2006 m\0cE1fir  
    H'g?llh1J  
    >9K//co"of  
    % Check and prepare the inputs: S'i;xL>  
    % ----------------------------- **;p (CI  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) j BS4vvX?  
        error('zernpol:NMvectors','N and M must be vectors.') zQ)+/e(8  
    end 'ig, ATY  
    [ = M%  
    if length(n)~=length(m) YcM;S  
        error('zernpol:NMlength','N and M must be the same length.') P~7.sM  
    end )/t6" "  
    a+z2Zd!u\x  
    n = n(:); 7nE"F!d+0  
    m = m(:); 5D`26dB2  
    length_n = length(n); @PkJY  
    |m>}%{  
    if any(mod(n-m,2)) ;IP~Tb]&  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 8n)WW$  
    end &y. dmW  
    o#hI5  
    if any(m<0) <e"J4gZf&  
        error('zernpol:Mpositive','All M must be positive.') a5c'V   
    end 2W$lQ;iO  
    q?  z>  
    if any(m>n) s;.=5wcvi?  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') !C&%T]  
    end BWK IbG  
    $[CA&Y.  
    if any( r>1 | r<0 ) %efGt6&  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') LJuW${Y  
    end K&`Awv  
    00<{:  
    if ~any(size(r)==1) NPU^) B  
        error('zernpol:Rvector','R must be a vector.') L]bVN)JU  
    end AlX3Wv }  
    &9B_/m3  
    r = r(:); ;iX<`re~  
    length_r = length(r); /^<en(0=P  
    #+jUhxq  
    if nargin==4 >)Dhi+D  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); /6tcSg)  
        if ~isnorm s (PY/{8  
            error('zernpol:normalization','Unrecognized normalization flag.') X#J6Umutm  
        end 1i-[+   
    else ,b.n{91[]x  
        isnorm = false; qu{mqkfN>  
    end h_ ZX/k  
    P[i\e7mR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (2txM"Dja  
    % Compute the Zernike Polynomials :YvbU Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;93KG4a  
    O% $O(l  
    % Determine the required powers of r: %$n02"@  
    % ----------------------------------- '`o[+.  
    rpowers = []; WYO\'W  
    for j = 1:length(n) /~hbOs/ L  
        rpowers = [rpowers m(j):2:n(j)]; ]Z@k|Nw  
    end MUwVG>b8J~  
    rpowers = unique(rpowers); }98-5'u.X  
    r%-n*_?.s  
    % Pre-compute the values of r raised to the required powers, "iek,Y}j7  
    % and compile them in a matrix: xqWj|jA  
    % ----------------------------- )Vk:YL++  
    if rpowers(1)==0 <94WZ?{p  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); fM":f| G  
        rpowern = cat(2,rpowern{:}); {nRUH*(d9  
        rpowern = [ones(length_r,1) rpowern]; vInFo.e[4  
    else yYX :huw  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >d%VDjk .  
        rpowern = cat(2,rpowern{:}); ~3 @*7B5Q  
    end \R Z3Hh  
    o;;,iHu*  
    % Compute the values of the polynomials: a<p %hY3  
    % -------------------------------------- Phlk1*1n  
    z = zeros(length_r,length_n); p7[(z  
    for j = 1:length_n n~%}Z[5D  
        s = 0:(n(j)-m(j))/2; `o-*Tr  
        pows = n(j):-2:m(j); cjY@Ot*i$  
        for k = length(s):-1:1 )%#?3X^sI  
            p = (1-2*mod(s(k),2))* ... ;&mxqY8`'  
                       prod(2:(n(j)-s(k)))/          ... p#<nK+6.8  
                       prod(2:s(k))/                 ... Mjw[:70  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... _3&/(B%H  
                       prod(2:((n(j)+m(j))/2-s(k))); f\'G`4e  
            idx = (pows(k)==rpowers); 04\Ta  
            z(:,j) = z(:,j) + p*rpowern(:,idx); N cM3P G  
        end ,.7vBt6 p  
         fLM.k CD?u  
        if isnorm nKu(XgFv  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); jkCHi@  
        end 9:\A7 =  
    end m5qCq9Y  
    .EzSSU7n)  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  AviT+^7E  
    3xc:Y> *`  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 rjfc.l#v  
    n\~"Wim<b  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)