切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11027阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 9{$8\E9*nd  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! "1K:/n  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 [%?y( q  
    function z = zernfun(n,m,r,theta,nflag) c.0]1  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. B=dseeG[To  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "S(yZ6r"  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 5 q65nF  
    %   unit circle.  N is a vector of positive integers (including 0), and lJ&y&N<O  
    %   M is a vector with the same number of elements as N.  Each element ]4o?BkL  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) {xToz]YA  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 5 VKcV&D  
    %   and THETA is a vector of angles.  R and THETA must have the same sUbF Rq  
    %   length.  The output Z is a matrix with one column for every (N,M) np=kTJ  
    %   pair, and one row for every (R,THETA) pair. `|?]CkP  
    % 0bSz4<}  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike o:9$UV[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ]F+K|X9-  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral puF%=i  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, akCIa'>t  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]u0Jd#@  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. #w*"qn#2Uz  
    % i-.c= M  
    %   The Zernike functions are an orthogonal basis on the unit circle. qtY m!g  
    %   They are used in disciplines such as astronomy, optics, and .8(%4ejJ(  
    %   optometry to describe functions on a circular domain. fGTOIi@#  
    % 8lb-}=  
    %   The following table lists the first 15 Zernike functions. 8gI\zgS  
    % L/ fRF"V  
    %       n    m    Zernike function           Normalization 3e 73l  
    %       -------------------------------------------------- H(&Z:{L  
    %       0    0    1                                 1 5r7h=[N  
    %       1    1    r * cos(theta)                    2 [q3+$W \r  
    %       1   -1    r * sin(theta)                    2 Jn#K0( FQ  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Hm4bN\%  
    %       2    0    (2*r^2 - 1)                    sqrt(3) !M^\f N1  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ;{Jb6'K1h  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) RHI&j~  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) `)tA YH  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ]7vf#1i<  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) xqv[? ?  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Ow)R|/e /  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tN2 W8d  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) (3W&A M  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |[LE9Lq/  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 8[R1A  
    %       -------------------------------------------------- Q.ukY@L.'  
    % ^Plc}W7h  
    %   Example 1: EY$?^iS  
    % 61|B]ei/  
    %       % Display the Zernike function Z(n=5,m=1) C0(sAF@  
    %       x = -1:0.01:1; >3P9 i ;W  
    %       [X,Y] = meshgrid(x,x); tT-=hDw  
    %       [theta,r] = cart2pol(X,Y); enumK\  
    %       idx = r<=1; P^zy;Qs7  
    %       z = nan(size(X)); 7P*Z0%Q  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); WK4@:k m6)  
    %       figure YxyG\J\|,  
    %       pcolor(x,x,z), shading interp wT/6aJoX  
    %       axis square, colorbar }e2F{pQ  
    %       title('Zernike function Z_5^1(r,\theta)') a.,i.2  
    % 1Is%]6  
    %   Example 2: [pR)@$"k'  
    % &I)\*Ue2t  
    %       % Display the first 10 Zernike functions b{pg!/N4  
    %       x = -1:0.01:1; [gZDQcU  
    %       [X,Y] = meshgrid(x,x); Abf1"#YImy  
    %       [theta,r] = cart2pol(X,Y); j+Zt.KXjT  
    %       idx = r<=1; 9wMEvX70  
    %       z = nan(size(X)); tW(+xu36  
    %       n = [0  1  1  2  2  2  3  3  3  3]; +?V0:Kz]  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; )Mi'(C;  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; r<|nwFJ  
    %       y = zernfun(n,m,r(idx),theta(idx)); -[$&s FD  
    %       figure('Units','normalized') F.0d4:A+  
    %       for k = 1:10 N&x:K+Zm .  
    %           z(idx) = y(:,k); ]QS](BbD:  
    %           subplot(4,7,Nplot(k)) q^]tyU!w  
    %           pcolor(x,x,z), shading interp ,CKvTxz0  
    %           set(gca,'XTick',[],'YTick',[]) D$hQyhz'  
    %           axis square ~6sE an3p  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9P0yv3  
    %       end ^#w{/C/n  
    % rhoeZ  
    %   See also ZERNPOL, ZERNFUN2. $?$9y ^\  
    50,Y  
    %   Paul Fricker 11/13/2006 ZpWu,1  
    nsl*Dm"*F  
    #TATqzA  
    % Check and prepare the inputs: e?=elN  
    % ----------------------------- v F[CWV.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Pw  xIz  
        error('zernfun:NMvectors','N and M must be vectors.') ]#5^&w)'  
    end -#%X3F7/w  
    |*E"G5WZM  
    if length(n)~=length(m) 8 }z3CuM  
        error('zernfun:NMlength','N and M must be the same length.') lM+ xU;  
    end PY -+Bf  
    gQR1$n0  
    n = n(:); =)*JbwQ   
    m = m(:); %YCd%lAe,  
    if any(mod(n-m,2)) uS-3\$  
        error('zernfun:NMmultiplesof2', ... I+~bCcgPi  
              'All N and M must differ by multiples of 2 (including 0).') AsAFUuI  
    end H/`G  
    1MV@5j  
    if any(m>n) J 8q  
        error('zernfun:MlessthanN', ... agW9Go_F[  
              'Each M must be less than or equal to its corresponding N.') `#U ]iwW!  
    end HL8(lPgS  
    J | q^+K  
    if any( r>1 | r<0 ) C#$6O8O  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^]7,1dH}M  
    end (Y)!"_|  
    gD1+]am  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~v\hIm3=m  
        error('zernfun:RTHvector','R and THETA must be vectors.') 48k 7/w\  
    end RJ*F>2  
    ^Xa*lR 3  
    r = r(:); OM{Dq|  
    theta = theta(:); O4N-_Kfp/  
    length_r = length(r); 0 {,h.:  
    if length_r~=length(theta) ~?-qZ<9/  
        error('zernfun:RTHlength', ... Pxk0(oBX  
              'The number of R- and THETA-values must be equal.') S\b K+  
    end tIp{},bQ^  
    ,{+6$h3  
    % Check normalization: %Zu Ll(  
    % -------------------- Ge0Lb+<G  
    if nargin==5 && ischar(nflag) 8H_l[/  
        isnorm = strcmpi(nflag,'norm'); [,GU5,o  
        if ~isnorm 6W:1>,xS  
            error('zernfun:normalization','Unrecognized normalization flag.') Ju4.@  
        end w49{-Pp[  
    else qPUA!-'  
        isnorm = false; (M8h y4Ex  
    end *(p7NYf1  
    !3 ?yG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *:[b'D!A  
    % Compute the Zernike Polynomials Vq U|kv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X?R |x[  
    Hh@2m\HA  
    % Determine the required powers of r: ?CFoe$M  
    % ----------------------------------- H@4/#V|Uy  
    m_abs = abs(m); i3d y  
    rpowers = []; PK}vh%  
    for j = 1:length(n) N;g$)zCV1  
        rpowers = [rpowers m_abs(j):2:n(j)]; 9 R  
    end ?lyltAxs'  
    rpowers = unique(rpowers);  ^ `je  
    I5Q~T5Ar  
    % Pre-compute the values of r raised to the required powers, ZBC@xM&-  
    % and compile them in a matrix: ([tG y  
    % ----------------------------- E$R_rX4x  
    if rpowers(1)==0 DUhT>,~]  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); p&uCp7]U  
        rpowern = cat(2,rpowern{:}); q#|r   
        rpowern = [ones(length_r,1) rpowern]; M_; w %FV  
    else hRLKb}  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9ClF<5?M  
        rpowern = cat(2,rpowern{:}); ,$ mLL  
    end ^9s"FdB]24  
    uD[^K1Ag]^  
    % Compute the values of the polynomials: YLigP"*~^  
    % -------------------------------------- 3r`<(%\  
    y = zeros(length_r,length(n)); .X^43 q  
    for j = 1:length(n) &#Wkww&Y  
        s = 0:(n(j)-m_abs(j))/2; G_0)oC@Jl:  
        pows = n(j):-2:m_abs(j); !YIb  
        for k = length(s):-1:1 Stt* 1gT  
            p = (1-2*mod(s(k),2))* ... )6g&v'dq  
                       prod(2:(n(j)-s(k)))/              ... ff[C'  
                       prod(2:s(k))/                     ... YY\Rua/nG  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 9[Y*k^.!  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); cT I,1U  
            idx = (pows(k)==rpowers); (]}XLMi,|!  
            y(:,j) = y(:,j) + p*rpowern(:,idx); =:;YTie  
        end T*8_FR<  
         &62` Wr0C  
        if isnorm [C2kK *JZ  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7Y)s#FJ  
        end {vjq y&?y  
    end o3fR3P%$  
    % END: Compute the Zernike Polynomials Ae.]F)w_\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6Z$b?A3zM  
    o;%n,S8J|^  
    % Compute the Zernike functions: EtJD'&  
    % ------------------------------ uO6c3|Zjs  
    idx_pos = m>0; \ x:_*`fU  
    idx_neg = m<0; )S#j.8P'B  
    yTP[,bM  
    z = y; 2=Jmi?k  
    if any(idx_pos) 9W$m D w6f  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6OMb`A@/2  
    end FDl,Ey^r/  
    if any(idx_neg) ^971<B(v  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); :C> J-zY  
    end EmF]W+!z%  
    n|J.)E.  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 2lX[hFa5  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 4RlnnXY  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated sb8z_3   
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive (/To?`  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, |+>%o.M&i  
    %   and THETA is a vector of angles.  R and THETA must have the same h 3eGq:!9  
    %   length.  The output Z is a matrix with one column for every P-value, e=0l<Rj  
    %   and one row for every (R,THETA) pair. S83]O!w0  
    % 6JUav."`~  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike -WQ_[t9l  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) XB6N[E  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) b/T20F{W\o  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 'O!Z:-qE  
    %   for all p. *Pa2bY3:  
    % cr2{sGn|  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 S(@*3]!q  
    %   Zernike functions (order N<=7).  In some disciplines it is v$qpcu#o  
    %   traditional to label the first 36 functions using a single mode {vf+sf ^^q  
    %   number P instead of separate numbers for the order N and azimuthal eUzU]6h  
    %   frequency M. f0:EQYYZ  
    % eTLI/?|+N  
    %   Example: p_D on3  
    % p,3go[9X:R  
    %       % Display the first 16 Zernike functions eA3`]XP.`b  
    %       x = -1:0.01:1; <\qY " .`  
    %       [X,Y] = meshgrid(x,x); Y*]l|)a6_]  
    %       [theta,r] = cart2pol(X,Y); cq+nWHqF{J  
    %       idx = r<=1; NN31?wt  
    %       p = 0:15; dqIZ#;:g  
    %       z = nan(size(X)); FKDamHL<  
    %       y = zernfun2(p,r(idx),theta(idx)); U[K0{PbY  
    %       figure('Units','normalized') :Vu7,o  
    %       for k = 1:length(p) +!mNm?H[!  
    %           z(idx) = y(:,k); vHZX9LQU0+  
    %           subplot(4,4,k) >cvE_g"?C  
    %           pcolor(x,x,z), shading interp I{i:B  
    %           set(gca,'XTick',[],'YTick',[]) gOBj0P8s|}  
    %           axis square M6@'9E]|>  
    %           title(['Z_{' num2str(p(k)) '}']) <k!mdj)  
    %       end 5n&)q=jk=  
    % &>+I7Ts]  
    %   See also ZERNPOL, ZERNFUN. ~v{C6)  
    |SSf G~r  
    %   Paul Fricker 11/13/2006 I;bg?RsF  
    R#[QoyJ  
    (ffOu#RQ3  
    % Check and prepare the inputs: uFA|r X  
    % ----------------------------- Yc. ~qmG/z  
    if min(size(p))~=1 Vq)|gF[6i  
        error('zernfun2:Pvector','Input P must be vector.') 1I:"0("}  
    end 5~<a>>  
    dQWA"6 ?i  
    if any(p)>35 KxgR5#:i"  
        error('zernfun2:P36', ... 5JXzfc9rL  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... / y":/" h  
               '(P = 0 to 35).']) ,=q7}5o Y  
    end h&:Q$*A>   
    i;uG:,ro  
    % Get the order and frequency corresonding to the function number: 5VoOJ_hq  
    % ---------------------------------------------------------------- [Ls2k&)0  
    p = p(:); utFcFd X  
    n = ceil((-3+sqrt(9+8*p))/2); .:|#9%5  
    m = 2*p - n.*(n+2); 4N%2w(,+8  
    h0Sy'] 3m  
    % Pass the inputs to the function ZERNFUN: ~#N.!e4  
    % ---------------------------------------- 0k] ju  
    switch nargin )ZQ9a4%  
        case 3 5~kW-x  
            z = zernfun(n,m,r,theta); /ut~jf`  
        case 4 %BKR}  
            z = zernfun(n,m,r,theta,nflag); >? A `C!i  
        otherwise f)ucC$1=  
            error('zernfun2:nargin','Incorrect number of inputs.') l9ch  
    end O>o}<t7  
    b;~EJ  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) )2<B$p  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. J:TI>*tn  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of i"\AyKiJ  
    %   order N and frequency M, evaluated at R.  N is a vector of 1X!f!0=g+  
    %   positive integers (including 0), and M is a vector with the *nUpO]  
    %   same number of elements as N.  Each element k of M must be a Fh!!T%5>C  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Oa_o"p<Lr  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is LP m# 3U  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix }:c,S O!  
    %   with one column for every (N,M) pair, and one row for every MTFVnoZMQ_  
    %   element in R. :v WYI I7  
    % p#8LQP~0$  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- a@a1TpLQ  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is &Ow?Hd0  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to :x*|lz[  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 -R8!"~o  
    %   for all [n,m]. $=QGua V  
    % g]PLW3  
    %   The radial Zernike polynomials are the radial portion of the $M3A+6["H  
    %   Zernike functions, which are an orthogonal basis on the unit w]5f3CIm  
    %   circle.  The series representation of the radial Zernike 39a]B`y  
    %   polynomials is T~ q'y~9o  
    % glKs8^W  
    %          (n-m)/2 O^="T^J  
    %            __ y\f8Ird  
    %    m      \       s                                          n-2s )hZ}$P1  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r _ry En  
    %    n      s=0 vdFQf ^l  
    % B+q+)O+  
    %   The following table shows the first 12 polynomials. .Zo9^0`C  
    % jv#" vQ9A]  
    %       n    m    Zernike polynomial    Normalization +n.j.JP"X  
    %       --------------------------------------------- t=pkYq5t8  
    %       0    0    1                        sqrt(2)  rgvc5p  
    %       1    1    r                           2 K&P{2Hndr  
    %       2    0    2*r^2 - 1                sqrt(6) u b>K^  
    %       2    2    r^2                      sqrt(6) vJj j+:  
    %       3    1    3*r^3 - 2*r              sqrt(8) nKa ;FaJ  
    %       3    3    r^3                      sqrt(8) @Q1F#IU  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) \#oV<MR  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) fdEj#Ux<H  
    %       4    4    r^4                      sqrt(10) qx<zX\qI6n  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) I:>d@e/;  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) UmI@":|-  
    %       5    5    r^5                      sqrt(12) yar IR|  
    %       --------------------------------------------- "YvBb:Z>  
    % ={D B  
    %   Example: $Qc%9p @i  
    % m4.V$U,H]  
    %       % Display three example Zernike radial polynomials xXh]z |  
    %       r = 0:0.01:1; Z 7ZMu  
    %       n = [3 2 5]; {Ll8@'5  
    %       m = [1 2 1]; `3s-%>  
    %       z = zernpol(n,m,r); Yiw^@T\H`  
    %       figure *l8vCa9Y  
    %       plot(r,z) 5lA 8e  
    %       grid on 6!=9V0G~  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') cFNtY~(b  
    % /<Nt$n  
    %   See also ZERNFUN, ZERNFUN2. ?[fl$EG  
    ;8x^9Q  
    % A note on the algorithm. Hx/Vm`pRyX  
    % ------------------------ yaGVY*M0  
    % The radial Zernike polynomials are computed using the series 2{tJ'3  
    % representation shown in the Help section above. For many special a}]@o"  
    % functions, direct evaluation using the series representation can ^?VT y5yp  
    % produce poor numerical results (floating point errors), because qpH-P8V   
    % the summation often involves computing small differences between ~,4Znuin  
    % large successive terms in the series. (In such cases, the functions iQj{J1V  
    % are often evaluated using alternative methods such as recurrence "@|V.d@  
    % relations: see the Legendre functions, for example). For the Zernike jM@I"JZ b  
    % polynomials, however, this problem does not arise, because the x@\'@>_GM  
    % polynomials are evaluated over the finite domain r = (0,1), and 5GpKX  
    % because the coefficients for a given polynomial are generally all Z]+Xh  
    % of similar magnitude. L ]'CA^N  
    % EHM 7=|#  
    % ZERNPOL has been written using a vectorized implementation: multiple v%e"4:K}?  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] T:n ^$RiT  
    % values can be passed as inputs) for a vector of points R.  To achieve Z#V\[  
    % this vectorization most efficiently, the algorithm in ZERNPOL PbH]K$mj{"  
    % involves pre-determining all the powers p of R that are required to ~$obcW1  
    % compute the outputs, and then compiling the {R^p} into a single {8Nd-WJ{  
    % matrix.  This avoids any redundant computation of the R^p, and S|h  m  
    % minimizes the sizes of certain intermediate variables. 13@| {H CB  
    % ;rdLYmmx^  
    %   Paul Fricker 11/13/2006 iiFKt(  
    ,Yt&PE  
    r?>Hg+  
    % Check and prepare the inputs: *==nOO9G  
    % ----------------------------- PG]mwaj])  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Hx0,kOh)  
        error('zernpol:NMvectors','N and M must be vectors.') 3&2q\]Y,  
    end 7Zn Q] ?  
    %NoZf^ ?  
    if length(n)~=length(m) !{0!G  
        error('zernpol:NMlength','N and M must be the same length.') bW3o%srxa  
    end 6Izv&  
    6%y: hLT  
    n = n(:); k&;L(D  
    m = m(:); fJV VW  
    length_n = length(n); "Y0[rSz,UW  
    FaM~ 56Pa  
    if any(mod(n-m,2)) Om~C0  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') J#WPXE+Ds  
    end \F3t&:  
    pQ\ [F  
    if any(m<0) ]<= t  
        error('zernpol:Mpositive','All M must be positive.') 0g)mf6}o  
    end 9R3=h5Y  
    Agf!6kh  
    if any(m>n) U#4W"1~iX  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') =w>QG{-N  
    end /q]@|5I  
    FX 3[U+  
    if any( r>1 | r<0 ) K`<P^XJr  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') L+CSF ]  
    end 6w ,xb&S  
    y}`%I&]n  
    if ~any(size(r)==1) Ymvd= F   
        error('zernpol:Rvector','R must be a vector.') bhYaG i0  
    end \ed(<e>  
    *k$&Hcr$  
    r = r(:); Q+dI,5YF  
    length_r = length(r); _v,n~a}&  
    df\>-Hl  
    if nargin==4 uuB\~ #?T  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Z;:-8 HPDY  
        if ~isnorm p,fin?nW c  
            error('zernpol:normalization','Unrecognized normalization flag.') ha 5\T'  
        end )]R8 $S  
    else ZC-N4ESr  
        isnorm = false; @gz?T;EC  
    end `r V,<  
    NKrk*I"G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jL$X3QS:  
    % Compute the Zernike Polynomials +\Q@7Lj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZAwl,N){  
    ]CYe=m1<2Q  
    % Determine the required powers of r: M}u2aW2]X  
    % ----------------------------------- ,\7okf7H,-  
    rpowers = []; *<1m 2t>.  
    for j = 1:length(n) z_)$g= 9$  
        rpowers = [rpowers m(j):2:n(j)]; ;7hr8?M|  
    end P/ 5r(l5  
    rpowers = unique(rpowers); ?1sY S  
    = '[@UVH(Z  
    % Pre-compute the values of r raised to the required powers, #oI`j q  
    % and compile them in a matrix: S;~_9i]upe  
    % ----------------------------- :08UeEy  
    if rpowers(1)==0 \D=B-dREq  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); vvCGzOv  
        rpowern = cat(2,rpowern{:}); ly2R8$Y`y`  
        rpowern = [ones(length_r,1) rpowern]; ,*30Q  
    else (%1*<6ka  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); s~CA @  
        rpowern = cat(2,rpowern{:}); BlCKJp{m$  
    end hSmM OS{  
    B!0[LlF+  
    % Compute the values of the polynomials: -}s?!Pg>  
    % -------------------------------------- Aj_}B.  
    z = zeros(length_r,length_n); !=pemLvH  
    for j = 1:length_n j#,O,\  
        s = 0:(n(j)-m(j))/2; :gXj( $  
        pows = n(j):-2:m(j); 9w1)Mf}  
        for k = length(s):-1:1 E_P]f%  
            p = (1-2*mod(s(k),2))* ... A|^?.uIM  
                       prod(2:(n(j)-s(k)))/          ... +7w>ujeeJA  
                       prod(2:s(k))/                 ... ]@EjKgs  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 53A=O gk8S  
                       prod(2:((n(j)+m(j))/2-s(k))); G>j/d7  
            idx = (pows(k)==rpowers); vs +N{ V  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 0#G"{M  
        end Z:}^fZP  
         K^+B"  
        if isnorm !jm a --  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 4b)xW&K{  
        end h!.(7qdd  
    end kI]1J  
    p\ASf  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  $)6y:t"  
    af.yC[  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。  2>p>AvcK  
    qEE V&  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)