切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11351阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 *lRP ZN  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! g^OU+7o  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 zim]3%b*A;  
    function z = zernfun(n,m,r,theta,nflag) nQ 2V  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. dmI,+hHtL  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,6:ya8vB  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ,=whwl "tA  
    %   unit circle.  N is a vector of positive integers (including 0), and 6<jh0=$  
    %   M is a vector with the same number of elements as N.  Each element 1^ZQXUzl%i  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Se/VOzzg  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 3qU#Rg ;7  
    %   and THETA is a vector of angles.  R and THETA must have the same )X2=x^u*U  
    %   length.  The output Z is a matrix with one column for every (N,M) +U_> Bo  
    %   pair, and one row for every (R,THETA) pair. 5m{!Rrb  
    % >fRI^Q,  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }w .[ZeP  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gBfYm  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral VcKufV'  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, m-9{@kgAM?  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 8wz%e(  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -02c I}e  
    % fQ c%a1'  
    %   The Zernike functions are an orthogonal basis on the unit circle.  Ht| No  
    %   They are used in disciplines such as astronomy, optics, and I:l<t*  
    %   optometry to describe functions on a circular domain. WtOpxAq  
    % Mqc"  
    %   The following table lists the first 15 Zernike functions. S\=j; Uem  
    % b@j**O>[q)  
    %       n    m    Zernike function           Normalization O* `v1>  
    %       -------------------------------------------------- 9[K".VeT]  
    %       0    0    1                                 1 S^0Po%d  
    %       1    1    r * cos(theta)                    2 by; %k/  
    %       1   -1    r * sin(theta)                    2 _V\rs{ 5  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) P @N7g`u3}  
    %       2    0    (2*r^2 - 1)                    sqrt(3) F0h`>{1%  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) o}H7;v8H  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) &1)4B  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) a_Y*pOu  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) (#x <qi,T  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) mOji\qia  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) EUH&"8 L  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |hms'n0  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ParOWs~W/  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Tbv", b  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 1xN6V-qk  
    %       -------------------------------------------------- 6\>S%S2:  
    % MzZYzz  
    %   Example 1: kSx^Uu*  
    %  pleLdGq  
    %       % Display the Zernike function Z(n=5,m=1) OI0#@_L&  
    %       x = -1:0.01:1; vf6_oX<Os  
    %       [X,Y] = meshgrid(x,x);  eX7dyM  
    %       [theta,r] = cart2pol(X,Y); l_tr,3_w  
    %       idx = r<=1; Sq^f}q  
    %       z = nan(size(X)); .?{rd3[ec  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); y'\BpP  
    %       figure qgREkb0  
    %       pcolor(x,x,z), shading interp IB9[Lx  
    %       axis square, colorbar tGHZU^B:}  
    %       title('Zernike function Z_5^1(r,\theta)') zUX%$N+w}>  
    % (B|4wR\  
    %   Example 2: JGQlx-qv  
    % S+(TRIjk  
    %       % Display the first 10 Zernike functions tPu0r],`o  
    %       x = -1:0.01:1; :pj 00  
    %       [X,Y] = meshgrid(x,x); lbM)U  
    %       [theta,r] = cart2pol(X,Y); 48;6C g  
    %       idx = r<=1; }  IJ  
    %       z = nan(size(X)); {A2EGUmF2  
    %       n = [0  1  1  2  2  2  3  3  3  3]; $|+q9 o\  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; #ra"(/)  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ]WlE9z7:8  
    %       y = zernfun(n,m,r(idx),theta(idx)); HKu? J  
    %       figure('Units','normalized') ]7<}EG  
    %       for k = 1:10 _<tWy+.  
    %           z(idx) = y(:,k); GJ YXCi  
    %           subplot(4,7,Nplot(k)) n8W+q~sW%  
    %           pcolor(x,x,z), shading interp Ln6\Iis  
    %           set(gca,'XTick',[],'YTick',[]) :`('lrq  
    %           axis square GIXxOea1  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) O?`=<W/R  
    %       end /{Ff)<Q.Z  
    % Yq~$Q4  
    %   See also ZERNPOL, ZERNFUN2. ;',hwo_LBf  
    %`*`HU#X  
    %   Paul Fricker 11/13/2006 6)<g%bH!  
    [O)(0  
    &'%b1CbE  
    % Check and prepare the inputs: kLc}a5;  
    % ----------------------------- |'@c ~yc  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <1")JDW  
        error('zernfun:NMvectors','N and M must be vectors.') 5f5bhBZ<  
    end ,w>WuRN"  
    +; /]'  
    if length(n)~=length(m) 8 MUY  
        error('zernfun:NMlength','N and M must be the same length.') "},0Cs  
    end 9A|deETa-  
    kmfz=q?  
    n = n(:); <ezv  
    m = m(:); 3FWl_d~uD  
    if any(mod(n-m,2)) 0 #*M'C#  
        error('zernfun:NMmultiplesof2', ... <'s_3AC  
              'All N and M must differ by multiples of 2 (including 0).') tE&@U$0>o  
    end P-B3<~*i!  
    21(8/F ~{  
    if any(m>n) &.dC%  
        error('zernfun:MlessthanN', ... "ecG\}R=  
              'Each M must be less than or equal to its corresponding N.') o }EipTL  
    end SePPI.n  
    j?!BHNs  
    if any( r>1 | r<0 ) LJ^n6 m|_  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') oW0A8_|9  
    end 6yDc4AX  
    lqD.epm  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) c?@WNv  
        error('zernfun:RTHvector','R and THETA must be vectors.') ;Y/{q B!  
    end g&z)y  
    _hM #*?}v  
    r = r(:); 9 \2<#,R1q  
    theta = theta(:); Cs2hi,s  
    length_r = length(r); >j5,Z]  
    if length_r~=length(theta) jg2 UX   
        error('zernfun:RTHlength', ... (~C_zG  
              'The number of R- and THETA-values must be equal.') f?KHp|  
    end xZmO^F5KHj  
    !_zp'V]?  
    % Check normalization: rL{3O4O  
    % -------------------- q_0So}  
    if nargin==5 && ischar(nflag) !Q-h#']~L  
        isnorm = strcmpi(nflag,'norm'); _e2=BE`W)  
        if ~isnorm |r5e#3w  
            error('zernfun:normalization','Unrecognized normalization flag.') rE:"8d}z  
        end 5|T[:m  
    else yr4j  
        isnorm = false; +>zjTP7\e"  
    end 0Dx,)C  
    dv?ael^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _(#HQd,i  
    % Compute the Zernike Polynomials {zTo[i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CV9o,rL  
    HR.^ y$IE  
    % Determine the required powers of r: :5Y yI.T  
    % ----------------------------------- 7(ni_|$|  
    m_abs = abs(m); E5^P*6c(  
    rpowers = []; IJWUNKqo=  
    for j = 1:length(n) :v=^-&t  
        rpowers = [rpowers m_abs(j):2:n(j)]; ySfot`LQ  
    end 2 kP0//  
    rpowers = unique(rpowers); %kS4v,I  
    pQQN8Y~^Y  
    % Pre-compute the values of r raised to the required powers, )K=%s%3h<  
    % and compile them in a matrix: bOEO2v'cQ  
    % ----------------------------- Yf=an`"  
    if rpowers(1)==0 VR8 kY&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); vb o| q[z  
        rpowern = cat(2,rpowern{:}); 8R3x74fL  
        rpowern = [ones(length_r,1) rpowern]; x.5!F2$  
    else e8WuAI86  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &.m.ruab  
        rpowern = cat(2,rpowern{:}); xz$-_NWW  
    end UN FQ`L  
    l**gM  
    % Compute the values of the polynomials: q <, b  
    % -------------------------------------- (D.B'V#>  
    y = zeros(length_r,length(n)); cO8':P5Q  
    for j = 1:length(n) e;|:W A  
        s = 0:(n(j)-m_abs(j))/2; {7'Evfn)  
        pows = n(j):-2:m_abs(j); _1c0pQ^}3  
        for k = length(s):-1:1 W2$MH: j  
            p = (1-2*mod(s(k),2))* ... 6 5%WjO  
                       prod(2:(n(j)-s(k)))/              ... 9\QeH'A  
                       prod(2:s(k))/                     ... Po)!vL"   
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... mp !S<m  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); %>z4hH,  
            idx = (pows(k)==rpowers); |41NRGgY  
            y(:,j) = y(:,j) + p*rpowern(:,idx); p\'0m0*   
        end kFRl+,bi~  
         ifXGH>C  
        if isnorm pmWt7 }  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); O(R1D/A[  
        end ; ,vGw <|o  
    end Q!91uNL  
    % END: Compute the Zernike Polynomials c\Z.V*o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wV604eO(  
    X7bS{GT  
    % Compute the Zernike functions: & t.G4  
    % ------------------------------ bwC~  
    idx_pos = m>0; 483/ZgzT`  
    idx_neg = m<0; 3)6TnY/u6{  
    =O1py_m  
    z = y; y6hb-: #1  
    if any(idx_pos) F3?PlH:Y  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); } SNZl`>  
    end !y$:}W?_  
    if any(idx_neg) nF)b4`Nd  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); |zkZF|-  
    end up@I,9C/  
    /q^\g4J  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) xU!eT'Y  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Mb^E  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated MS~+P'  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive }0oVIr  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Xl %ax!/  
    %   and THETA is a vector of angles.  R and THETA must have the same CX}==0od  
    %   length.  The output Z is a matrix with one column for every P-value, \3WQ<t)W  
    %   and one row for every (R,THETA) pair. c gOkm}h  
    % Ncr*F^J4  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike u85  dG7  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) $`&zIz  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) a;h.I}*]  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 K(3_1*e  
    %   for all p. i",7<01  
    % KNG7$icG  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 P#l"`C /  
    %   Zernike functions (order N<=7).  In some disciplines it is _+6aD|7x  
    %   traditional to label the first 36 functions using a single mode TY`t3  
    %   number P instead of separate numbers for the order N and azimuthal _ *.ImD  
    %   frequency M. Fz{T;  
    % pGdFeEkB/  
    %   Example: Tl!}Rw~Pg  
    % ^1-Vd5g  
    %       % Display the first 16 Zernike functions g2%fla7r  
    %       x = -1:0.01:1; V%Ww;Ca]I  
    %       [X,Y] = meshgrid(x,x); "j/jhe6  
    %       [theta,r] = cart2pol(X,Y); a{@gzB  
    %       idx = r<=1; Yv/T6z@  
    %       p = 0:15; E0)43  
    %       z = nan(size(X)); )>(ZX9diV  
    %       y = zernfun2(p,r(idx),theta(idx)); P[%nD cB  
    %       figure('Units','normalized') 1W'0h$5^"  
    %       for k = 1:length(p) %PlA9@:IZ  
    %           z(idx) = y(:,k); Y=ksrs>w  
    %           subplot(4,4,k) fZavZ\qU  
    %           pcolor(x,x,z), shading interp E*"oA1/I  
    %           set(gca,'XTick',[],'YTick',[]) ]ne  
    %           axis square n+57# pS7  
    %           title(['Z_{' num2str(p(k)) '}']) #SX-Y)> 1@  
    %       end rHp2I6.0a  
    % )?;+<,  
    %   See also ZERNPOL, ZERNFUN. 'Bwv-J  
    K"jS,a?s 6  
    %   Paul Fricker 11/13/2006 dCA! R"HD  
    .$ X|96~$  
    |c[= V?AC  
    % Check and prepare the inputs: Z 5 Xis"j  
    % ----------------------------- a];1)zVA6  
    if min(size(p))~=1 kfgkZ"9  
        error('zernfun2:Pvector','Input P must be vector.') 9/JB n  
    end ?k^~qlye  
    _>E=.$  
    if any(p)>35 :E.T2na  
        error('zernfun2:P36', ... ]P >c{  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... /RI"a^&9A  
               '(P = 0 to 35).']) hr W2#v  
    end @xeJ$ rlu  
    ]oLyvG  
    % Get the order and frequency corresonding to the function number: V-9\@'gc  
    % ---------------------------------------------------------------- DJb9] ,=a  
    p = p(:); wpg7xx!  
    n = ceil((-3+sqrt(9+8*p))/2); 9p,PWA  
    m = 2*p - n.*(n+2); @a i2A|  
    E?FUr?-[  
    % Pass the inputs to the function ZERNFUN: k\X yR4r  
    % ---------------------------------------- { u3giB  
    switch nargin & zv!cf  
        case 3 U%n>(!d  
            z = zernfun(n,m,r,theta); <+Gf!0i  
        case 4 P9)L1l<3I  
            z = zernfun(n,m,r,theta,nflag); `R*SHy! _  
        otherwise .=zBUvy  
            error('zernfun2:nargin','Incorrect number of inputs.') >P ~j@Lv  
    end "?^#+@LV  
    2(f-0or(  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ]xGpN ]u  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. n#sK31;yb  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of vX_;Y#uD  
    %   order N and frequency M, evaluated at R.  N is a vector of [6Q1yNE  
    %   positive integers (including 0), and M is a vector with the 3WM*4   
    %   same number of elements as N.  Each element k of M must be a  $Gcjm~  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) xDNXI01o  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Qq%~e41ec  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix CwD=nT5`  
    %   with one column for every (N,M) pair, and one row for every JNo[<SZb  
    %   element in R. CjEzsjqe<I  
    % qP-_xpu]R  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 4X!4S6JfB  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ^r,0aNzAs  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to xo4lM  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 <"8F=3:uk  
    %   for all [n,m]. RXw1HRR$V  
    % jX0^1d@  
    %   The radial Zernike polynomials are the radial portion of the y t7>,  
    %   Zernike functions, which are an orthogonal basis on the unit 1'P4{T0 [  
    %   circle.  The series representation of the radial Zernike E;, __  
    %   polynomials is $y{.fjy3  
    % 6s>io%,:  
    %          (n-m)/2 ?_r{G7|D  
    %            __ P/xE n_*v  
    %    m      \       s                                          n-2s YP[8d,  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r .<Ays?  
    %    n      s=0 _GM?`  
    % b7'l3mQjk  
    %   The following table shows the first 12 polynomials. \58bz<u"  
    % wp83E,  
    %       n    m    Zernike polynomial    Normalization ]$#9B-uB  
    %       --------------------------------------------- o_BRsJy  
    %       0    0    1                        sqrt(2) x4h.WDT$  
    %       1    1    r                           2 9{e/ V)  
    %       2    0    2*r^2 - 1                sqrt(6) K{,'%|  
    %       2    2    r^2                      sqrt(6) W.%p{wB |  
    %       3    1    3*r^3 - 2*r              sqrt(8) 3h$E^"  
    %       3    3    r^3                      sqrt(8) ~dzD7lG6  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) X(BX+)YR  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) BHiG3fP  
    %       4    4    r^4                      sqrt(10) =oM#]M'G+(  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) OT(0~,.GJ  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) e tL?UF$  
    %       5    5    r^5                      sqrt(12) |Qcj +HH.  
    %       --------------------------------------------- p+5J  
    % oW(EV4J"  
    %   Example: / !y~Q|<|=  
    % hk$I-  
    %       % Display three example Zernike radial polynomials $xK\$kw\  
    %       r = 0:0.01:1; y4r?M8]"r  
    %       n = [3 2 5]; HAo=t  
    %       m = [1 2 1]; >?_}NZ,y  
    %       z = zernpol(n,m,r); 59p'U/|  
    %       figure aX zb]">  
    %       plot(r,z) A6J:!sY4A  
    %       grid on ^vTx%F  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 5;G0$M0  
    % C#8A|  
    %   See also ZERNFUN, ZERNFUN2. ,F*HZBNFZ  
    ?|pP&8r  
    % A note on the algorithm. ti$60Up  
    % ------------------------ q/Vl>t  
    % The radial Zernike polynomials are computed using the series R]o0V*n  
    % representation shown in the Help section above. For many special hS*&p0YV~M  
    % functions, direct evaluation using the series representation can KFRf5^%  
    % produce poor numerical results (floating point errors), because gK(G1  
    % the summation often involves computing small differences between !* KQ2#e  
    % large successive terms in the series. (In such cases, the functions :>Bk^"  
    % are often evaluated using alternative methods such as recurrence 4q:8<*W=  
    % relations: see the Legendre functions, for example). For the Zernike 9HPmJ`b  
    % polynomials, however, this problem does not arise, because the ~H:=p  
    % polynomials are evaluated over the finite domain r = (0,1), and q317~ z_nl  
    % because the coefficients for a given polynomial are generally all X y`2ux+>/  
    % of similar magnitude. mIp> ~  
    % $06('Hg&  
    % ZERNPOL has been written using a vectorized implementation: multiple =HJ7tele  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] K :kb&W  
    % values can be passed as inputs) for a vector of points R.  To achieve @'5*jXd  
    % this vectorization most efficiently, the algorithm in ZERNPOL wjZ Q.T!  
    % involves pre-determining all the powers p of R that are required to ylb)SXBf  
    % compute the outputs, and then compiling the {R^p} into a single XA(.O|VZ  
    % matrix.  This avoids any redundant computation of the R^p, and u!HX`~q+A  
    % minimizes the sizes of certain intermediate variables. cui%r!D  
    % k}I65 ^l#  
    %   Paul Fricker 11/13/2006 (C1~>7L  
    xWqV~NnE  
    isdNW l  
    % Check and prepare the inputs: ^^*L;b>I  
    % ----------------------------- Q'!'+;&%  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) )siW c_Z4  
        error('zernpol:NMvectors','N and M must be vectors.') 3$Vx8:Rhdn  
    end xpCZlOld  
    jIwN,H1$-  
    if length(n)~=length(m) /OB)\{-  
        error('zernpol:NMlength','N and M must be the same length.') Iz83T9I&  
    end 8DMqjt3B  
    ?.uhp  
    n = n(:); ,fTC}>s4  
    m = m(:); zUDXkG*Lv  
    length_n = length(n); LFqY2,#i  
    'Z=_zG/RX  
    if any(mod(n-m,2)) Hmk xE  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') %Y0BPTt$  
    end =cb!2%?}  
    dtTfV.y4w  
    if any(m<0)  LAM{ ,?~  
        error('zernpol:Mpositive','All M must be positive.') @o*~\E<T  
    end 6rWq hIaI  
    +5I'? _{V  
    if any(m>n) .Y^3G7On  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 6d6Dk>(V  
    end mF!4*k  
    =R 4]Kf  
    if any( r>1 | r<0 ) DfU= i'R  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') kP/<S<h,g  
    end n @R/zy  
    =qoOr~  
    if ~any(size(r)==1) bA2[=6  
        error('zernpol:Rvector','R must be a vector.') {dP6fr1z  
    end ZR%$f-  
    2TQZu3$c  
    r = r(:); iPY)Ew`Im  
    length_r = length(r); KHx;r@{<  
    v@ qDR|?^  
    if nargin==4 {QmK4(k?|c  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); nUVk;0at  
        if ~isnorm n%RaEL  
            error('zernpol:normalization','Unrecognized normalization flag.') &OE-+z  
        end m\CU,9;;(  
    else ,quUGS  
        isnorm = false; e-UWbn'~  
    end f x4#R(N  
    ^+-]V9?+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]bmf}&  
    % Compute the Zernike Polynomials AZ^>osr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3djw  
    yS:w>xU @<  
    % Determine the required powers of r: !};Ll=dz  
    % ----------------------------------- oOLA&N-A~  
    rpowers = []; u rQvJ  
    for j = 1:length(n) l+@k:IK  
        rpowers = [rpowers m(j):2:n(j)]; mA%}ijR6y  
    end uOKD#   
    rpowers = unique(rpowers); xh CQ Rw  
    I![/bwObG  
    % Pre-compute the values of r raised to the required powers, ^jdtp  
    % and compile them in a matrix: \I/"W#\SJo  
    % ----------------------------- vN@04a\h  
    if rpowers(1)==0 Pg`+Q^^6S  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bA$ElKT  
        rpowern = cat(2,rpowern{:}); 7mv([}Va  
        rpowern = [ones(length_r,1) rpowern]; >gq=W5vN(  
    else :RZ'_5P[If  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  P s|[  
        rpowern = cat(2,rpowern{:}); Er8F_,M+  
    end p[%~d$JUq  
    LkK[,Qj  
    % Compute the values of the polynomials: <;>k[P'  
    % -------------------------------------- p`Tl)[*  
    z = zeros(length_r,length_n); nygeR|:\  
    for j = 1:length_n ) k[XO  
        s = 0:(n(j)-m(j))/2; U8HuqFC  
        pows = n(j):-2:m(j); P,F5Hf  
        for k = length(s):-1:1 !B{(EL=g  
            p = (1-2*mod(s(k),2))* ... e.(d?/!F_  
                       prod(2:(n(j)-s(k)))/          ...  ]SL+ZT  
                       prod(2:s(k))/                 ... q3-cWfU  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... )@y'$)5s  
                       prod(2:((n(j)+m(j))/2-s(k))); -`Zk`s|!  
            idx = (pows(k)==rpowers); k%-UW%  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 3BLH d<  
        end rTJU)4I^h  
         GMLx$?=j  
        if isnorm qX6zk0I a  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); :x3DuQP  
        end 1GLb^:~A  
    end $Op:-aW&  
    -cZuP7oA  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  3VmF1w 2  
    VaylbYUCT/  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 u]QG^1.qYe  
    #N|A@B5 x  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)