切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11380阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 20rN,@2<  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 3TU'*w &  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Ip>^O/}$1  
    function z = zernfun(n,m,r,theta,nflag) DeA@0HOxh  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. :OHSxb>[  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N DWuRJ  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ]a)IMIh;  
    %   unit circle.  N is a vector of positive integers (including 0), and 0HjJaML  
    %   M is a vector with the same number of elements as N.  Each element ,MRvuw0P  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) @|^jq  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]yo_wGiwY  
    %   and THETA is a vector of angles.  R and THETA must have the same (%i!%{!]  
    %   length.  The output Z is a matrix with one column for every (N,M) B9wp*:.  
    %   pair, and one row for every (R,THETA) pair. fzl=d_  
    % K~USK?Q%  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike NzAQ@E 2d:  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P!5Z]+B#  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral %Hh3u$Y,  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 1sD~7KPg?  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 8AryIgy>@  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. j?( c}!}  
    % Bgf=\7;5  
    %   The Zernike functions are an orthogonal basis on the unit circle. C+`xx('N9  
    %   They are used in disciplines such as astronomy, optics, and Y7-*2"!  
    %   optometry to describe functions on a circular domain. T\jAk+$Jo  
    % C}9Kx }q  
    %   The following table lists the first 15 Zernike functions. @2u#93Y  
    % }0Y`|H\v  
    %       n    m    Zernike function           Normalization 2@fa rx:  
    %       -------------------------------------------------- _y>}#6B  
    %       0    0    1                                 1 =w6}\ 'X  
    %       1    1    r * cos(theta)                    2 q=njKC  
    %       1   -1    r * sin(theta)                    2 au}s=ua~i  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Ym'7vW#~  
    %       2    0    (2*r^2 - 1)                    sqrt(3) +uELTHH=  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) xLZ bU4  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) w m19T7*L  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) =C#*!N73  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ":V%(c  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ?;_H{/)m  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) |<1M&\oaQ'  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) e^=NL>V6p  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) X CzXS.  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bGu([VB  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 5E`JD  
    %       -------------------------------------------------- /,X7.t_-  
    % SAy{YOLtl  
    %   Example 1: o~;M"  
    % 4j^bpfb,  
    %       % Display the Zernike function Z(n=5,m=1) N2T&,&, t  
    %       x = -1:0.01:1; J]dW1boT@  
    %       [X,Y] = meshgrid(x,x); /w0w* n H  
    %       [theta,r] = cart2pol(X,Y); .D!WO  
    %       idx = r<=1; <}cZi4l'  
    %       z = nan(size(X)); -8/JP  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); FJ}gUs{m  
    %       figure \ZsP]};*  
    %       pcolor(x,x,z), shading interp eKyqU9  
    %       axis square, colorbar ^iuo^2+  
    %       title('Zernike function Z_5^1(r,\theta)') 7C?E z%a@  
    % *y?[ <2"$  
    %   Example 2: t|_{;!^  
    % mVt3WZa  
    %       % Display the first 10 Zernike functions ?;_O 9  
    %       x = -1:0.01:1; K_Re}\D  
    %       [X,Y] = meshgrid(x,x); <cj}:H *  
    %       [theta,r] = cart2pol(X,Y); W6i3Psjsw  
    %       idx = r<=1; ~TM>"eBb  
    %       z = nan(size(X)); ]q&tQJ/Fa  
    %       n = [0  1  1  2  2  2  3  3  3  3]; EWO /u.z  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; c@9##DPn  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; oBC]UL;8xJ  
    %       y = zernfun(n,m,r(idx),theta(idx)); >9MS" t  
    %       figure('Units','normalized') 9OfU7_m  
    %       for k = 1:10 zQ_z7FJCB  
    %           z(idx) = y(:,k); UhdqY]  
    %           subplot(4,7,Nplot(k)) 3Soy3Xp  
    %           pcolor(x,x,z), shading interp *{4 ETr7  
    %           set(gca,'XTick',[],'YTick',[]) /S[?{QA  
    %           axis square 6uqUiRs()  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ~2(]ZfO?>H  
    %       end h9jc,X u5X  
    % p(?g-  
    %   See also ZERNPOL, ZERNFUN2. :]-$dEu&  
    \ FXp*FbQ  
    %   Paul Fricker 11/13/2006 {:$NfW  
    MO TE/JG  
    C bQ4Y  
    % Check and prepare the inputs: UBIIo'u  
    % ----------------------------- D7gHE  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Z vRxi&Z{?  
        error('zernfun:NMvectors','N and M must be vectors.') Bq;1^gtpe  
    end +|0 t  
    |Qr:!MA  
    if length(n)~=length(m) #Z0-8<\  
        error('zernfun:NMlength','N and M must be the same length.') bJ6p,]g  
    end tpGCrn2w>  
    TL@mM  
    n = n(:); O J>iq@ >  
    m = m(:); <]'|$8&jY  
    if any(mod(n-m,2)) MyFCJJ/  
        error('zernfun:NMmultiplesof2', ... ^vM_kAr A  
              'All N and M must differ by multiples of 2 (including 0).') z37Z %^  
    end &(7$&Q  
    B!uxs  
    if any(m>n) B:nK)"{  
        error('zernfun:MlessthanN', ... Yt*vqm[WV  
              'Each M must be less than or equal to its corresponding N.') (l_:XG)7~b  
    end 8i[LR#D)  
    [<S^c[47U  
    if any( r>1 | r<0 ) SBL+e]P  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') g}Mi9Kp  
    end _r5wF(Y?7  
    uJ 8x  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) p6Gcts?,  
        error('zernfun:RTHvector','R and THETA must be vectors.') %6HX*_Mr&  
    end CIy^`2wq  
    61>f(?s  
    r = r(:); }LQ\a8]<  
    theta = theta(:); q5?{ 1  
    length_r = length(r); s~Gw  
    if length_r~=length(theta) .<.#aY;N  
        error('zernfun:RTHlength', ... O8y9dX-2  
              'The number of R- and THETA-values must be equal.') .)t (:)*b  
    end u>}zm_  
    HzEGq,.  
    % Check normalization: 3.FR C  
    % -------------------- /GN4I!LA  
    if nargin==5 && ischar(nflag) L#!$hq9{_  
        isnorm = strcmpi(nflag,'norm'); {$|/|*  
        if ~isnorm #D0W7 a  
            error('zernfun:normalization','Unrecognized normalization flag.') `)2[ST  
        end ll2Vk*xs  
    else Man^<T%F  
        isnorm = false; 5us^B8Q  
    end 0R4akLW0  
    ofK='G .  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0e\y~#-  
    % Compute the Zernike Polynomials @() {/cF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +`Fb_m)f  
    tvT4S  
    % Determine the required powers of r: 4|=vxJ  
    % ----------------------------------- b}}y=zO|$  
    m_abs = abs(m); om>VQ3  
    rpowers = []; gCL{Cw  
    for j = 1:length(n) vnZ4(  
        rpowers = [rpowers m_abs(j):2:n(j)]; s-%J 5_d f  
    end 7*MU2gb  
    rpowers = unique(rpowers); vzcz<i )  
    Uuz?8/w}#  
    % Pre-compute the values of r raised to the required powers, Q.1XP  
    % and compile them in a matrix: MX?}?"y  
    % ----------------------------- pl?kS8#U?  
    if rpowers(1)==0 m3luhGn  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3>M.]w6{  
        rpowern = cat(2,rpowern{:}); *F|+2?a:$  
        rpowern = [ones(length_r,1) rpowern]; BCBUb  
    else qw2)v*Fn  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); | @ *3^'  
        rpowern = cat(2,rpowern{:}); phmVkV2a;#  
    end g&kH'fR8  
    mt I MW9  
    % Compute the values of the polynomials: v4C3uNW  
    % -------------------------------------- |,{+;:  
    y = zeros(length_r,length(n)); |eF.ZC)QWh  
    for j = 1:length(n) <"A#Eok|4  
        s = 0:(n(j)-m_abs(j))/2; 6&mWIk^VC  
        pows = n(j):-2:m_abs(j); eVrNYa1>H  
        for k = length(s):-1:1 ?uig04@3  
            p = (1-2*mod(s(k),2))* ... V(DjF=8  
                       prod(2:(n(j)-s(k)))/              ... G>JxIrN0  
                       prod(2:s(k))/                     ... c8q G\\t[  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]| z")gOE  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ~T7\8K+ $  
            idx = (pows(k)==rpowers); /3s@6Ex}E  
            y(:,j) = y(:,j) + p*rpowern(:,idx); )%BT*)x  
        end Cc*|Zw  
         Bu' :2"7  
        if isnorm }-dF+m:  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); E}t-N  
        end ah>Dqb*  
    end D"'#one  
    % END: Compute the Zernike Polynomials A>5S]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *%nX#mwz  
    Gy$o7|PA"{  
    % Compute the Zernike functions: Q6xgLx[  
    % ------------------------------ TZkTz P[  
    idx_pos = m>0; dbd"pR8v  
    idx_neg = m<0; bu;vpNa  
    /lru"R D  
    z = y; Re{ej  
    if any(idx_pos) |]I#CdO  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); CO7CNN  
    end uQ-WTz|*  
    if any(idx_neg) X=\x&Wt  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); oUCVd}wH  
    end } cRi A  
    ga,A'Z  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) CR P7U  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. +W!'B r  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated zR_9D}  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 4{c`g$j>  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1,  ;I[ .  
    %   and THETA is a vector of angles.  R and THETA must have the same ,80jMs  
    %   length.  The output Z is a matrix with one column for every P-value, 1i ?gvzrq  
    %   and one row for every (R,THETA) pair. HdDo&#  
    % NWaI[P  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike uHTKo(NG  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) -(`K7T>D.  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) h4B+0  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 T "ZQPLg  
    %   for all p. @w+WLeJ$40  
    % 8s\8`2=  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 PL9zNCr-[  
    %   Zernike functions (order N<=7).  In some disciplines it is }S1Z>ZA5  
    %   traditional to label the first 36 functions using a single mode }//8$Z<(  
    %   number P instead of separate numbers for the order N and azimuthal t"jIfU>'a/  
    %   frequency M. 2X qPZ]2g  
    % uMljH@xBc  
    %   Example: 7/$nA<qM  
    % |s)VjS4@  
    %       % Display the first 16 Zernike functions yL^M~lws  
    %       x = -1:0.01:1; qen44;\L  
    %       [X,Y] = meshgrid(x,x); ~7FEY0/  
    %       [theta,r] = cart2pol(X,Y); x0N-[//YV  
    %       idx = r<=1; +Y_Q?/M@8  
    %       p = 0:15; A?%XO %  
    %       z = nan(size(X)); 'M]CZ}  
    %       y = zernfun2(p,r(idx),theta(idx)); AIIBd  
    %       figure('Units','normalized') )of5229  
    %       for k = 1:length(p) A= \'r<:  
    %           z(idx) = y(:,k); 0jl:Yzo&\  
    %           subplot(4,4,k) ^H@!)+ =  
    %           pcolor(x,x,z), shading interp 7zz(#  
    %           set(gca,'XTick',[],'YTick',[]) >n@>h$]  
    %           axis square WHdqO8  
    %           title(['Z_{' num2str(p(k)) '}']) dK-  ^  
    %       end dT*f-W  
    % js%4;  
    %   See also ZERNPOL, ZERNFUN. Uv W:#  
    `"^@[1  
    %   Paul Fricker 11/13/2006 9g<_JcN  
    -Ihn<<uE?  
    ^Y*`D_-G  
    % Check and prepare the inputs: !/=9VD{U!  
    % ----------------------------- d6Q :{!Sd"  
    if min(size(p))~=1 Y'+F0IZ+  
        error('zernfun2:Pvector','Input P must be vector.') <Bob#Tf ~  
    end N`L' 4v)  
    [xp~@5r'  
    if any(p)>35 9phD5b~j  
        error('zernfun2:P36', ... ~I8"l@H>  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ajcPt]f  
               '(P = 0 to 35).']) gn4g 43  
    end hCOy\[2$  
    80R= r  
    % Get the order and frequency corresonding to the function number: )KTWLr;  
    % ---------------------------------------------------------------- 4IGQ,RTB  
    p = p(:); ux/[d6To  
    n = ceil((-3+sqrt(9+8*p))/2); 4u{E D(  
    m = 2*p - n.*(n+2); #7cf 8y  
    4,R\3`b  
    % Pass the inputs to the function ZERNFUN: :Z7"c`6L!~  
    % ---------------------------------------- A<*tn?M]  
    switch nargin JVIcNK)  
        case 3 zN 729wK  
            z = zernfun(n,m,r,theta); Hi4@!]  
        case 4 SjNwT[.nr7  
            z = zernfun(n,m,r,theta,nflag); 2kmna/Qa6  
        otherwise [K|>s(Sf*  
            error('zernfun2:nargin','Incorrect number of inputs.') 3<1HqU  
    end EcS-tE 4%  
    ZCOuv6V+  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) N4GIb 6  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 3Jk?)D y  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of >=q!!'$:  
    %   order N and frequency M, evaluated at R.  N is a vector of dQ2i{A"BKz  
    %   positive integers (including 0), and M is a vector with the x.4)p6  
    %   same number of elements as N.  Each element k of M must be a bMK'J  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Uc%`? +Q  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is f+W[]KK*PW  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Zn=JmZ  
    %   with one column for every (N,M) pair, and one row for every n*8RYm)?  
    %   element in R. V~^6 TS(  
    % #}]il0d  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- NB6h/0*v  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is p=5H^E m1  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to -r2qIt  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 /n3&e  
    %   for all [n,m]. 4>tYMyLt0  
    % ^}pREe c=  
    %   The radial Zernike polynomials are the radial portion of the +`vZg^_c`  
    %   Zernike functions, which are an orthogonal basis on the unit e^fKatI1  
    %   circle.  The series representation of the radial Zernike z(#hL-{c  
    %   polynomials is D@vvy6>~s  
    % W;@ae,^  
    %          (n-m)/2 vYm& AD  
    %            __ |h~/Zz=  
    %    m      \       s                                          n-2s Cot\i\]jv  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r PHL@1K{)  
    %    n      s=0 J,M5<s[Xqt  
    % (9q{J(44  
    %   The following table shows the first 12 polynomials. +Q#Qu0_   
    % F>-@LOqHy  
    %       n    m    Zernike polynomial    Normalization )aA9z(x  
    %       --------------------------------------------- '!L1z45  
    %       0    0    1                        sqrt(2) BNm va  
    %       1    1    r                           2 o)D+qiA3U  
    %       2    0    2*r^2 - 1                sqrt(6) :H8L(BsI  
    %       2    2    r^2                      sqrt(6) ML"P"&~u6  
    %       3    1    3*r^3 - 2*r              sqrt(8) "9T`3cM0  
    %       3    3    r^3                      sqrt(8) D\&y(=fzf  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) s=@Ce V@4W  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ~acK$.#  
    %       4    4    r^4                      sqrt(10) ^3s&90  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) } K-[/;  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) eu|q {p  
    %       5    5    r^5                      sqrt(12) iBW6<2@oZF  
    %       --------------------------------------------- J0W).mD_H  
    % "@? kxRn!  
    %   Example: ,%G2>PBt  
    % |(ju!&  
    %       % Display three example Zernike radial polynomials [jn;| 3  
    %       r = 0:0.01:1; *K^O oS  
    %       n = [3 2 5]; 9F1stT0G%  
    %       m = [1 2 1]; oi4Wxcj  
    %       z = zernpol(n,m,r); g*imswj7  
    %       figure  wupD   
    %       plot(r,z) ^aWNtY' :  
    %       grid on D ;I;,Z  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') mnaD KeA  
    % D)Rf  
    %   See also ZERNFUN, ZERNFUN2. (>`SS#(T!  
    wz)9/bL  
    % A note on the algorithm. U+M?<4J) "  
    % ------------------------ QNwAuH T  
    % The radial Zernike polynomials are computed using the series jz:c)C&/  
    % representation shown in the Help section above. For many special g'7hc~=  
    % functions, direct evaluation using the series representation can "(VcYQ+  
    % produce poor numerical results (floating point errors), because 1Sk6[h'CL  
    % the summation often involves computing small differences between xTJ5VgG  
    % large successive terms in the series. (In such cases, the functions C2i..iD  
    % are often evaluated using alternative methods such as recurrence {S(T1ua  
    % relations: see the Legendre functions, for example). For the Zernike <s3(   
    % polynomials, however, this problem does not arise, because the Dx)XC?'xO  
    % polynomials are evaluated over the finite domain r = (0,1), and ,]qX_`qF  
    % because the coefficients for a given polynomial are generally all {# _C  
    % of similar magnitude. 0J</`/gH  
    % dV  
    % ZERNPOL has been written using a vectorized implementation: multiple SnU{ZGR>sP  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] DQnWLC"u  
    % values can be passed as inputs) for a vector of points R.  To achieve UH|.@7w  
    % this vectorization most efficiently, the algorithm in ZERNPOL T^G<)IX`c  
    % involves pre-determining all the powers p of R that are required to 'PbA/MN  
    % compute the outputs, and then compiling the {R^p} into a single Z"T(8>c;g  
    % matrix.  This avoids any redundant computation of the R^p, and Ls*=mh~IY  
    % minimizes the sizes of certain intermediate variables. X;>} ;LiK  
    % 1e} 3L2rC  
    %   Paul Fricker 11/13/2006 M3`A&*\;  
    P9wDTZ :4  
    @1Lc`;Wd  
    % Check and prepare the inputs:  p ivS8C  
    % ----------------------------- LdUpVO8)l  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) XLxr~Yo  
        error('zernpol:NMvectors','N and M must be vectors.') ^SCWT\E  
    end VNXVuM )c  
    rM |RGe  
    if length(n)~=length(m) $c47cJO)W  
        error('zernpol:NMlength','N and M must be the same length.') X\RTHlw']  
    end B[V=l<J  
    x0GZ2*vfsb  
    n = n(:); J)NpG9iN  
    m = m(:); s'4p+eJ  
    length_n = length(n); czRh.kz,  
    o#6}?g.  
    if any(mod(n-m,2))  cf!R  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 4*W7{MPY  
    end ztpb/9J9  
    SiT &p  
    if any(m<0) .5xg;Qg\Y  
        error('zernpol:Mpositive','All M must be positive.') gK#w$s50  
    end (5_(s`q.  
    g2q=&eI"  
    if any(m>n) 9Z 4R!Q  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') k>`X! "  
    end sA.yb,Fw  
    -2_$zk*n  
    if any( r>1 | r<0 ) 5yID%  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') $ 1ZY Vw  
    end bP@ _4Dy  
    Efl+`6`J  
    if ~any(size(r)==1) }JsdgO&z  
        error('zernpol:Rvector','R must be a vector.') Y~xZ{am  
    end 0<9TyN6  
    y"ck;OQD  
    r = r(:); ,YTIYG](  
    length_r = length(r); Ex3woT-  
    OLwxGRYX  
    if nargin==4 ewg WzB9c  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); \2!$HA7P  
        if ~isnorm ,}0pK\Y>$  
            error('zernpol:normalization','Unrecognized normalization flag.') qfU3Cwy  
        end 9iE66N>z  
    else r "R\  
        isnorm = false; 7SCI_8`  
    end .$iIr:Tc>  
    x?IT#ty  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tDo0Q/`  
    % Compute the Zernike Polynomials f/ZE_MN2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lLhCk>a  
    *$!LRmp?  
    % Determine the required powers of r: Ipe;%as#  
    % ----------------------------------- `O/)q^m1L  
    rpowers = []; y(k2p  
    for j = 1:length(n) rL=$WxdPU  
        rpowers = [rpowers m(j):2:n(j)]; KJiwM(o  
    end V|)>  
    rpowers = unique(rpowers); d9(FwmE  
    bBX~ZWw  
    % Pre-compute the values of r raised to the required powers, p98lu'?@  
    % and compile them in a matrix: &%lhov  
    % ----------------------------- $H^6I8>  
    if rpowers(1)==0 QVpZA,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); j4h 7q<  
        rpowern = cat(2,rpowern{:}); |}; ~YMH  
        rpowern = [ones(length_r,1) rpowern]; iYf4 /1IG,  
    else }W<L;yD  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Z=|@76  
        rpowern = cat(2,rpowern{:}); Li2)~4p><  
    end m"*:XfOL  
    2Y+*vNs3  
    % Compute the values of the polynomials: i]nE86.;  
    % -------------------------------------- \&H%k   
    z = zeros(length_r,length_n); Nd6z81  
    for j = 1:length_n Aq"_hjp  
        s = 0:(n(j)-m(j))/2; xn"g_2Hi  
        pows = n(j):-2:m(j); f As:[  
        for k = length(s):-1:1 uMI2Wnnc:/  
            p = (1-2*mod(s(k),2))* ... 0\+Qi?&  
                       prod(2:(n(j)-s(k)))/          ... ",}VB8K  
                       prod(2:s(k))/                 ... ,"'agg:St  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... i"'k|TGW^  
                       prod(2:((n(j)+m(j))/2-s(k))); ^ !9b#Ja  
            idx = (pows(k)==rpowers); 4g 1h:I/  
            z(:,j) = z(:,j) + p*rpowern(:,idx); EY>A(   
        end "a: ;  
         G<-.{Gx)  
        if isnorm P}5aN_v \  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); =9c24j  
        end SCjACQ}-  
    end *M"wH_cd  
    2C-u2;X2  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  oXGf#>keg  
    YGxdYwBwf  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 cW MZw|t  
    a5&wS@) ;  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)