非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 4Nsp<Kn>
function z = zernfun(n,m,r,theta,nflag) 1qA;/-Zr<o
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. H:|uw
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N })%{AfDRF
% and angular frequency M, evaluated at positions (R,THETA) on the `c$V$/IT
% unit circle. N is a vector of positive integers (including 0), and 2^7`mES
% M is a vector with the same number of elements as N. Each element @yYkti;4-
% k of M must be a positive integer, with possible values M(k) = -N(k) !a\^Sk
/
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ?J0y|
% and THETA is a vector of angles. R and THETA must have the same !nnC3y{G
% length. The output Z is a matrix with one column for every (N,M) [/r(__.
% pair, and one row for every (R,THETA) pair. L4W5EO$
% Pm7}"D'/
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike E1
2uZ$X
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), L/K(dkx
% with delta(m,0) the Kronecker delta, is chosen so that the integral 8s@3hXD&
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, PKz':_|
% and theta=0 to theta=2*pi) is unity. For the non-normalized At;LO9T3z
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ;uGv:$([g
% R;LP:,)
% The Zernike functions are an orthogonal basis on the unit circle. %cn<ych
G
% They are used in disciplines such as astronomy, optics, and {qVZNXDn
% optometry to describe functions on a circular domain. -~w'Xo #
% KI.hy2?e
% The following table lists the first 15 Zernike functions. o mx=
% .%-8 t{dt
% n m Zernike function Normalization y~V(aih}D
% -------------------------------------------------- xE}>,O|'q
% 0 0 1 1 53h0UL
% 1 1 r * cos(theta) 2 dE3) |%
% 1 -1 r * sin(theta) 2 ;tf=gdX;
% 2 -2 r^2 * cos(2*theta) sqrt(6) HzJz+ x:
% 2 0 (2*r^2 - 1) sqrt(3) 6A ah9
% 2 2 r^2 * sin(2*theta) sqrt(6) |w=zOC;v
% 3 -3 r^3 * cos(3*theta) sqrt(8) Z\sDUJ
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) l]SX@zTb
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) XjBD{m(
% 3 3 r^3 * sin(3*theta) sqrt(8) |s_GlJV.
% 4 -4 r^4 * cos(4*theta) sqrt(10) 9gIrt 6
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /bmN\I
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) :4|4 =mkr
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 46;uW{EY
% 4 4 r^4 * sin(4*theta) sqrt(10) LP=)~K<
% -------------------------------------------------- @4#vm@Yf_
% lTsjxw
o
% Example 1: zuCSj~
% %iB,IEw
% % Display the Zernike function Z(n=5,m=1) O6Y0XL
% x = -1:0.01:1; V]^$S"Tv
% [X,Y] = meshgrid(x,x); `vV7c`K?
% [theta,r] = cart2pol(X,Y); h+,@G,|D
% idx = r<=1; /L3:
% z = nan(size(X)); rN>R|].
% z(idx) = zernfun(5,1,r(idx),theta(idx)); \2z>?i)
% figure [F7hu7zY8
% pcolor(x,x,z), shading interp Ys7]B9/1O
% axis square, colorbar p
ll)Y
% title('Zernike function Z_5^1(r,\theta)') $cgcX
% "N#Y gSr
% Example 2: H?w6C):]
% dr"1s-D4IQ
% % Display the first 10 Zernike functions |j|rS5
% x = -1:0.01:1; i/.6>4tE:
% [X,Y] = meshgrid(x,x); ~#/
% [theta,r] = cart2pol(X,Y); 1~gCtBRM
% idx = r<=1; HOi`$vX}N
% z = nan(size(X)); wuBPfb
% n = [0 1 1 2 2 2 3 3 3 3]; Y-9I3?ar
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; $~kA
B8z
% Nplot = [4 10 12 16 18 20 22 24 26 28]; TqQ[_RKg2
% y = zernfun(n,m,r(idx),theta(idx)); +`15le`R
% figure('Units','normalized') OrW
% for k = 1:10 $;PMkUE
% z(idx) = y(:,k); @VI@fN
% subplot(4,7,Nplot(k)) EX"yxZ~
% pcolor(x,x,z), shading interp `0svy}
% set(gca,'XTick',[],'YTick',[]) N>E_%]C h
% axis square gDzK{6Z}
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) p4QU9DF
% end {{1G`;|v9
% G/W>S,(
% See also ZERNPOL, ZERNFUN2. O0:q;<>z
_v:SP
L U
% Paul Fricker 11/13/2006 QWU-m{@~&
7$#u
(?];VG
% Check and prepare the inputs: y>LBl]
% ----------------------------- =|9!vzG4
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &3&HY:yF
error('zernfun:NMvectors','N and M must be vectors.') F[MFx^sT{
end eH,or ,r
z!\*Y
=e
if length(n)~=length(m) Xc.`-J~Il
error('zernfun:NMlength','N and M must be the same length.') ?4uL-z](V
end "jCu6Rj d
!~Z"9(v'C
n = n(:); m+9#5a-
m = m(:); SWLo|)@[/
if any(mod(n-m,2)) q\)-BXw:
error('zernfun:NMmultiplesof2', ... Zd&S@Z
'All N and M must differ by multiples of 2 (including 0).')
lRQYpc\
end 2zpr~cB=
HT@=evV
if any(m>n) $Q0n
error('zernfun:MlessthanN', ... *ui</+
'Each M must be less than or equal to its corresponding N.') !9x}
end xD$\,{
5-M-X#(
if any( r>1 | r<0 ) (sj,[
error('zernfun:Rlessthan1','All R must be between 0 and 1.') V8(-
end \NC3'G:Ii
u:EiwRW
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^Dx&|UwiZa
error('zernfun:RTHvector','R and THETA must be vectors.') ;}t(Wnu.
end Ho%CDz
z
.(vwIb8\_
r = r(:); @ P|y{e6
theta = theta(:); Dh*n!7lD`
length_r = length(r); v0y(58Rz.
if length_r~=length(theta) Xr{v~bf
error('zernfun:RTHlength', ... n`KY9[0U=
'The number of R- and THETA-values must be equal.') #;<Y[hR{P
end ~K=b\xc^
}\LQ3y"[
% Check normalization: 1eKT^bgM
% -------------------- svSVG:48
if nargin==5 && ischar(nflag) t&p|Ynz?i
isnorm = strcmpi(nflag,'norm'); = /8cp
if ~isnorm > P)w?:k
error('zernfun:normalization','Unrecognized normalization flag.') cZ06Kx..
end cNH7C"@GVu
else g=rbPbu
isnorm = false; s @C}P
end `{Ul!
[
3HfQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7d vnupLh
% Compute the Zernike Polynomials yHGADH0B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@8
6f
;=N#`l
% Determine the required powers of r: ;PH~<T
% ----------------------------------- n*$ g]G$
m_abs = abs(m); He)%S]RLk
rpowers = []; BuwY3F\-O
for j = 1:length(n) DrQ`]]jj7
rpowers = [rpowers m_abs(j):2:n(j)]; W4N{S.#!
end u&NV,6Fj2[
rpowers = unique(rpowers); B1STG L`nK
he4(hX^
% Pre-compute the values of r raised to the required powers, *8Z32c+C
% and compile them in a matrix: M_8{]uo
% ----------------------------- g5yJfRLxp
if rpowers(1)==0 fIF8%J ^3
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); kP"9&R`E
rpowern = cat(2,rpowern{:}); "}!G!k:
rpowern = [ones(length_r,1) rpowern]; HV.t6@\};
else =Uh$&m
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;aBG,dr}i
rpowern = cat(2,rpowern{:}); ]tD]Wx%
end RZ7@cQY
ys~x$
% Compute the values of the polynomials: Dj +f]~
% -------------------------------------- TNth
y = zeros(length_r,length(n)); &vJH$R
for j = 1:length(n) c:0L+OF}xY
s = 0:(n(j)-m_abs(j))/2; PdCEUh\>y
pows = n(j):-2:m_abs(j); TN.rrop`#g
for k = length(s):-1:1 ! z**y}<T
p = (1-2*mod(s(k),2))* ... Z7#+pPt!
prod(2:(n(j)-s(k)))/ ... /ouPg=+Nl
prod(2:s(k))/ ... ,'+kBZOv
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... IU[ [H#
prod(2:((n(j)+m_abs(j))/2-s(k))); i$@:@&(~Y
idx = (pows(k)==rpowers); G#CXs:1pd+
y(:,j) = y(:,j) + p*rpowern(:,idx); k\IbIv7?i
end s>en
p[-O( 3Y
if isnorm :svqE+2
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); +:f"Y0
end KP"+e:a%
end +%&yJ4-
% END: Compute the Zernike Polynomials yr6V3],Tp
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <[phnU^
8
@oNXZRg6
% Compute the Zernike functions: ?(PKeq6
% ------------------------------ IcEdG(
idx_pos = m>0; \lY_~*J
idx_neg = m<0; VQs5"K"
I*&8^r:A
z = y; ),)lzN%!
if any(idx_pos) ;j7#7MN2_E
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); C+]I@Go'Tk
end /{[o~:'p
if any(idx_neg) 5\v3;;A[
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); s.#`&Sd>
end 92c HwWZ!
omFz@
% EOF zernfun