切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11088阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 qbr$>xH  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ITQA0PI SL  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 nF:4}qy\  
    function z = zernfun(n,m,r,theta,nflag) U>SShpmZA  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. T<>,lQs(a  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,THw"bm  
    %   and angular frequency M, evaluated at positions (R,THETA) on the `[yKFa I  
    %   unit circle.  N is a vector of positive integers (including 0), and =%O6:YM   
    %   M is a vector with the same number of elements as N.  Each element m7V/zne  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 8W7J3{d  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, DfD&)tsMQ  
    %   and THETA is a vector of angles.  R and THETA must have the same B-Hrex]  
    %   length.  The output Z is a matrix with one column for every (N,M) hfB%`x#akQ  
    %   pair, and one row for every (R,THETA) pair. {TROoX~H?  
    % MchA{p&Ol  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike YP<ms  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^DLfY-F+j  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral |-ALklXr  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, E]d. z6k  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized =XQ%t @z0  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ,qwuLBW  
    % C): 1?@  
    %   The Zernike functions are an orthogonal basis on the unit circle. ]/6z; ~3U  
    %   They are used in disciplines such as astronomy, optics, and 3=[mP, pLh  
    %   optometry to describe functions on a circular domain. {Xy5pfW Q  
    % J)> c9w  
    %   The following table lists the first 15 Zernike functions. >Tx?%nQ  
    % .Hm>i  
    %       n    m    Zernike function           Normalization v1JzP#  
    %       -------------------------------------------------- t?gic9 q  
    %       0    0    1                                 1 BlO<PMmhT&  
    %       1    1    r * cos(theta)                    2 s8Q 5ui]  
    %       1   -1    r * sin(theta)                    2 re<{ >  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 2,F .$X  
    %       2    0    (2*r^2 - 1)                    sqrt(3)  F(n$  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) P+sW[:  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) I{2hfKUe`  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) C) s5D  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ]W!0$'o  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) T-L||yE,h  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Zi i   
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) & .j&0WE  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5)  _[3D  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :Yl-w-oe  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) JQI: sj  
    %       -------------------------------------------------- 6 "sSoj  
    % *fxG?}YT  
    %   Example 1: J@'wf8Ub  
    % ITBE|b  
    %       % Display the Zernike function Z(n=5,m=1)  (ZizuHC  
    %       x = -1:0.01:1; 'H!Uh]!  
    %       [X,Y] = meshgrid(x,x); EVSX.'&f  
    %       [theta,r] = cart2pol(X,Y); T^KKy0ZGM  
    %       idx = r<=1; p6@)-2^  
    %       z = nan(size(X)); dn3y\  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 7}>EJ  
    %       figure Il 'fL'3  
    %       pcolor(x,x,z), shading interp ~ 7s!VR  
    %       axis square, colorbar kevrsV]/$  
    %       title('Zernike function Z_5^1(r,\theta)') 4VSU8tK|N]  
    % \b x$i*  
    %   Example 2: ?`ZU R& 20  
    % q} >%8;nm  
    %       % Display the first 10 Zernike functions X"Swi&4  
    %       x = -1:0.01:1; >bW #Zs,6  
    %       [X,Y] = meshgrid(x,x); oPM96 (  
    %       [theta,r] = cart2pol(X,Y); PZ9I`P! C  
    %       idx = r<=1; R 9\*#c  
    %       z = nan(size(X)); /x$nje,.  
    %       n = [0  1  1  2  2  2  3  3  3  3]; H{wl% G  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ?tbrbkx  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; c@7rqHU-0  
    %       y = zernfun(n,m,r(idx),theta(idx)); lo+A%\1  
    %       figure('Units','normalized') .q>iXE_c  
    %       for k = 1:10 } Kgy  
    %           z(idx) = y(:,k); ga+dt  
    %           subplot(4,7,Nplot(k)) VPo".BvG6  
    %           pcolor(x,x,z), shading interp S1_RjMbYM  
    %           set(gca,'XTick',[],'YTick',[]) K|, .C[  
    %           axis square f:} x7_Q  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]=BB#  
    %       end z} #JK? u  
    % 0H:X3y+  
    %   See also ZERNPOL, ZERNFUN2. hgq;`_;1,  
    ~DwpoeYX  
    %   Paul Fricker 11/13/2006 1qA;/-Zr<o  
    xJe%f\UDu  
    <P_-s*b  
    % Check and prepare the inputs: JZ x[W&]zT  
    % ----------------------------- bt?5*ETA  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h376Be{P  
        error('zernfun:NMvectors','N and M must be vectors.') zb3t IRH  
    end 75lA%| *X  
    Bzf^ivT3L  
    if length(n)~=length(m) ^cWnF0)j.  
        error('zernfun:NMlength','N and M must be the same length.')  ob]w;"  
    end R|(a@sL  
    \FaP|28h  
    n = n(:); ih3n<gXF  
    m = m(:); ? r4>"[  
    if any(mod(n-m,2)) UN#S;x*  
        error('zernfun:NMmultiplesof2', ... nw<uyaU-t  
              'All N and M must differ by multiples of 2 (including 0).') }SZd  
    end i%?*@uj  
    flx(HJK  
    if any(m>n) "AqB$^S9t  
        error('zernfun:MlessthanN', ... DEgXQ[  
              'Each M must be less than or equal to its corresponding N.') h(DTa  
    end HPVEnVn  
    n@3>6_^rwT  
    if any( r>1 | r<0 ) ;'1d1\wiDQ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') o8MZiU1Xf  
    end c71y'hnT  
    "[N!m1i:{  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {!`6zBsP  
        error('zernfun:RTHvector','R and THETA must be vectors.') x+]"  
    end 2~V*5~fb  
    Fr-SvsNFB  
    r = r(:); ['D]>Ot68  
    theta = theta(:); Lw,h+@0  
    length_r = length(r); zt%Mx>V@  
    if length_r~=length(theta) >\8+: oS^  
        error('zernfun:RTHlength', ... LzL So"n  
              'The number of R- and THETA-values must be equal.') 8P`"M#fI  
    end * y,v}-  
    !,PWb3S  
    % Check normalization: ~TtiO#,t  
    % -------------------- {;oPLr+Z  
    if nargin==5 && ischar(nflag) W,u:gzmhw  
        isnorm = strcmpi(nflag,'norm'); 7zc^!LrW<  
        if ~isnorm <UCl@5g&  
            error('zernfun:normalization','Unrecognized normalization flag.') K sCyFp  
        end L/[K"  
    else :T~  [  
        isnorm = false; HaYo!.(Fv  
    end 2mU.7!g)  
    : Dp0?&_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bbc^FHip  
    % Compute the Zernike Polynomials wIgS3K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lhJ'bYI  
    unxqkU/<Z  
    % Determine the required powers of r: FI.\%x  
    % ----------------------------------- AZ<= o  
    m_abs = abs(m); xz]~ jL@-]  
    rpowers = []; 6u%&<")4HP  
    for j = 1:length(n) pCG}Z Ka  
        rpowers = [rpowers m_abs(j):2:n(j)]; /wv0i3_e  
    end '"Nr,vQo  
    rpowers = unique(rpowers); m {}Lm)M  
    jiGTA:v  
    % Pre-compute the values of r raised to the required powers, y7<|_:00  
    % and compile them in a matrix: Wn6Sn{8W{  
    % ----------------------------- k:%%/  
    if rpowers(1)==0 Q{/Ef[(a@  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); xD7]C|8o  
        rpowern = cat(2,rpowern{:}); g)B]FH1  
        rpowern = [ones(length_r,1) rpowern]; OTv)  
    else JGZBL{8  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); r_d! ikOT(  
        rpowern = cat(2,rpowern{:}); iow"n$/  
    end 9H~n _   
    [>9is=>o.  
    % Compute the values of the polynomials: ->jDb/a{C  
    % -------------------------------------- A}^mdw9  
    y = zeros(length_r,length(n)); A}w/OA97RO  
    for j = 1:length(n) %2h>-.tY  
        s = 0:(n(j)-m_abs(j))/2; fV~~J2IK  
        pows = n(j):-2:m_abs(j); dWW.Y*339  
        for k = length(s):-1:1 C,zohlpC  
            p = (1-2*mod(s(k),2))* ... 'fW-Y!k%  
                       prod(2:(n(j)-s(k)))/              ... ^f@=:eWI  
                       prod(2:s(k))/                     ... +ai< q>+  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... tX[WH\(xI  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); #Q5o)x  
            idx = (pows(k)==rpowers); MOC/KNb  
            y(:,j) = y(:,j) + p*rpowern(:,idx); R-14=|7a-  
        end u:b=\T L  
         4z)]@:`}z  
        if isnorm k{0o9,  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4!$"ayGv;D  
        end <naz+QK'  
    end yQrD9*t&g  
    % END: Compute the Zernike Polynomials .]Z"C&"N]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k=^xVQuI  
    ('~LMu_  
    % Compute the Zernike functions: `_h&glMJ,q  
    % ------------------------------ Hp?/a?\Xm  
    idx_pos = m>0; $ Q0n  
    idx_neg = m<0; =u;MCQ[  
    JS77M-Ac  
    z = y; t,' <gI  
    if any(idx_pos) >sbu<|]a 7  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8Y?;x}  
    end !'Kj x  
    if any(idx_neg) ]^]wP]R_  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 9u:Q,0\  
    end >3bCTE   
    V.Mry`9-  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) E'8;10s  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 1&2>LE/P  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated E.f%H(b  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive  3CJwj  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 3o qHGA:}  
    %   and THETA is a vector of angles.  R and THETA must have the same ElXFeJ%[G  
    %   length.  The output Z is a matrix with one column for every P-value, HTtnXBJ)*H  
    %   and one row for every (R,THETA) pair. r/1(]#kOX  
    % \Cj B1] I  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike \DzGQ{`~m  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) <QvOs@i*  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) P*o9a  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 <}LC~B!  
    %   for all p. j#6.Gq  
    % dRDnJc3  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 U6VKMxSJ  
    %   Zernike functions (order N<=7).  In some disciplines it is ME dWLFf  
    %   traditional to label the first 36 functions using a single mode S[N5 ikg  
    %   number P instead of separate numbers for the order N and azimuthal `2snz1>!j  
    %   frequency M. u4j5w  
    % Q20 %"&Xp]  
    %   Example: 6wxs1G  
    % nrb Ok4Dz  
    %       % Display the first 16 Zernike functions 1"g<0 W  
    %       x = -1:0.01:1; xfQ1T)F3g  
    %       [X,Y] = meshgrid(x,x); AR=]=8  
    %       [theta,r] = cart2pol(X,Y); $C\BcKlmv  
    %       idx = r<=1; yjAL\U7`T  
    %       p = 0:15; 8_8l.!~  
    %       z = nan(size(X)); Vc2`b3"Br  
    %       y = zernfun2(p,r(idx),theta(idx)); g 'gdgfvn  
    %       figure('Units','normalized') hQ i2U  
    %       for k = 1:length(p) B3BN`mdn>  
    %           z(idx) = y(:,k); l\mPHA23  
    %           subplot(4,4,k) nlYNN/@"  
    %           pcolor(x,x,z), shading interp putrSSL}  
    %           set(gca,'XTick',[],'YTick',[]) 0mnw{fE8_  
    %           axis square pFXEu= $3  
    %           title(['Z_{' num2str(p(k)) '}']) ;fJ.8C  
    %       end (?c-iKGc  
    % ] @'!lhLi  
    %   See also ZERNPOL, ZERNFUN. q@qsp&0/  
    :0ep( <|;  
    %   Paul Fricker 11/13/2006 IU[ [ H#  
    i$@:@&(~Y  
    G#CXs:1pd+  
    % Check and prepare the inputs: Ngwb Q7)  
    % ----------------------------- "{n&~H`  
    if min(size(p))~=1 RpK@?[4s  
        error('zernfun2:Pvector','Input P must be vector.') Jv i#)  
    end ^"g~-  
    hc1N ~$3!G  
    if any(p)>35 8QK&_n*  
        error('zernfun2:P36', ... ;,TFr}p`  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... "z c l|@  
               '(P = 0 to 35).']) aYeR{Y]  
    end GmG 5[?)  
    g\U-VZ6;p  
    % Get the order and frequency corresonding to the function number: JVJMgim)0  
    % ---------------------------------------------------------------- >Q/Dk7#  
    p = p(:); ebq4g387X  
    n = ceil((-3+sqrt(9+8*p))/2); ;*N5Y}?j'  
    m = 2*p - n.*(n+2); :Al!1BJQ  
    SKtrtm  
    % Pass the inputs to the function ZERNFUN: /{[o ~:'p  
    % ---------------------------------------- 5\v3;;A[  
    switch nargin s.#`&Sd>  
        case 3 j+!v}*I![  
            z = zernfun(n,m,r,theta); G)YcJv7  
        case 4 @c#(.=  
            z = zernfun(n,m,r,theta,nflag); \!(zrfP{(  
        otherwise [RL9>n8f  
            error('zernfun2:nargin','Incorrect number of inputs.') ,I9bNO,%JK  
    end 5tnlrqC  
    fOHxtHM  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 7^285)UQA  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. vI?, 47Hj+  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 0_/[k*Re  
    %   order N and frequency M, evaluated at R.  N is a vector of >~f]_puT  
    %   positive integers (including 0), and M is a vector with the TvM~y\s  
    %   same number of elements as N.  Each element k of M must be a WAqINLdX  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) K:M8h{Ua  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is +t.b` U`-  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix yauvXosX  
    %   with one column for every (N,M) pair, and one row for every h1RSVp+?n  
    %   element in R. /QQ*8o8  
    % ^ 9sjj  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- jdN` mosJ  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is TpaInXR  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to K"6vXv4QO  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ,6/V" kqIP  
    %   for all [n,m]. #4:?gfIj  
    % Sdo-nt  
    %   The radial Zernike polynomials are the radial portion of the s"|Pdc4  
    %   Zernike functions, which are an orthogonal basis on the unit LeQjvW9y  
    %   circle.  The series representation of the radial Zernike x;S @bY  
    %   polynomials is U:`Kss`  
    % ~u{uZ(~  
    %          (n-m)/2 &m3lXl  
    %            __ y-k.U%  
    %    m      \       s                                          n-2s kstIgcI  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r GyIV Hby  
    %    n      s=0 @~e5<:|5#  
    % hxx.9x>ow  
    %   The following table shows the first 12 polynomials. 6863xOv{T  
    % mw!F{pw  
    %       n    m    Zernike polynomial    Normalization _t$sgz&  
    %       --------------------------------------------- ?[AD=rUC  
    %       0    0    1                        sqrt(2) wJ]d&::@h  
    %       1    1    r                           2 SBpL6~NW  
    %       2    0    2*r^2 - 1                sqrt(6) sK{e*[I>W  
    %       2    2    r^2                      sqrt(6) dM5-;  
    %       3    1    3*r^3 - 2*r              sqrt(8) 8}[).d160  
    %       3    3    r^3                      sqrt(8) XSDpRo  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) }EPY^VIw  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Ba,`TJ%y  
    %       4    4    r^4                      sqrt(10) |>Vb9:q9Po  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Wzh`or  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) j.Hf/vi`z  
    %       5    5    r^5                      sqrt(12) hM{bavd  
    %       --------------------------------------------- p?!/+  
    % =(Mch~  
    %   Example: 3Ul*QN{6  
    % = &]L00u.  
    %       % Display three example Zernike radial polynomials BLttb  
    %       r = 0:0.01:1; ]'}L 1r  
    %       n = [3 2 5]; 8Wx=p#_  
    %       m = [1 2 1]; DrR@n~  
    %       z = zernpol(n,m,r); ,2q-D&)\Z  
    %       figure L#J1b!D&<6  
    %       plot(r,z) Za9qjBH   
    %       grid on uYN`:b8  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') *T/']t  
    % Z~CjA%l  
    %   See also ZERNFUN, ZERNFUN2. ~a:  
    D^O@'zP=At  
    % A note on the algorithm. u[YGm:}  
    % ------------------------ %Zi} MPx  
    % The radial Zernike polynomials are computed using the series TDh5lI  
    % representation shown in the Help section above. For many special e= AKD#  
    % functions, direct evaluation using the series representation can fex@,I&  
    % produce poor numerical results (floating point errors), because 3n _htgcv  
    % the summation often involves computing small differences between  @5FQX  
    % large successive terms in the series. (In such cases, the functions Xhm c6?  
    % are often evaluated using alternative methods such as recurrence *pq\MiD/  
    % relations: see the Legendre functions, for example). For the Zernike J zl6eo[;  
    % polynomials, however, this problem does not arise, because the Sc0w.5m6  
    % polynomials are evaluated over the finite domain r = (0,1), and ^sw?gH*  
    % because the coefficients for a given polynomial are generally all $Yq9P0Ya  
    % of similar magnitude. ueudRb  
    % ;TYBx24vD'  
    % ZERNPOL has been written using a vectorized implementation: multiple b9krOe *j  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] t_^4`dW`  
    % values can be passed as inputs) for a vector of points R.  To achieve 3w=J'(RU  
    % this vectorization most efficiently, the algorithm in ZERNPOL +%'(!A?*`  
    % involves pre-determining all the powers p of R that are required to ]G\}k  
    % compute the outputs, and then compiling the {R^p} into a single \hXDO_U  
    % matrix.  This avoids any redundant computation of the R^p, and d0D] Q  
    % minimizes the sizes of certain intermediate variables. f#;>g  
    % /wp6KXm  
    %   Paul Fricker 11/13/2006 s<Ziegmw|g  
    Ac@VGT:9  
    *w&e\i|7  
    % Check and prepare the inputs: ,bi^P>X  
    % ----------------------------- jd: 6:Fm  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) zPO9!?7|  
        error('zernpol:NMvectors','N and M must be vectors.') HN"Z]/ 5j  
    end F5<H m_\:  
    N7"W{"3D  
    if length(n)~=length(m) Xvu(vA  
        error('zernpol:NMlength','N and M must be the same length.') COlqcq'qAu  
    end )5, v!X)  
    a(nlTMfu  
    n = n(:); -RwE%  cr  
    m = m(:); 1zv'.uu.,  
    length_n = length(n); 4RO}<$Nx}  
    i5Ggf"![  
    if any(mod(n-m,2)) la!~\wpa  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 9*g Z-#  
    end P pb\6|*  
    FrS]|=LJhX  
    if any(m<0) ?,mmYW6TjB  
        error('zernpol:Mpositive','All M must be positive.') 79gT+~z   
    end [,Gg^*umS  
    (QEG4&9  
    if any(m>n) 0mE 0 j  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') [n@] r2g)3  
    end 01]f2.5  
    )A6<c%d =x  
    if any( r>1 | r<0 ) 6P3*Z  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') }2jn[${ pr  
    end Wr 4,YQM  
    /uc>@!F  
    if ~any(size(r)==1) I7onX,U+  
        error('zernpol:Rvector','R must be a vector.') {: /}NpA$  
    end 4hB]vY\T  
    2/?|&[  
    r = r(:); Nn6%9PX_)  
    length_r = length(r); *4'"2"  
    2y4bwi  
    if nargin==4 $'vU2L  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Gc?a+T  
        if ~isnorm i-1op> Y  
            error('zernpol:normalization','Unrecognized normalization flag.') ("KF'fp&M2  
        end U^PgG|0N  
    else - ).C  
        isnorm = false; Wtnfa{gP%  
    end \bXa&Lq  
    &oNAv-m^GD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $xsd~L &  
    % Compute the Zernike Polynomials VbYdZCC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LVy yO3e  
    5xiEPh  
    % Determine the required powers of r: zLQx%Yg!  
    % ----------------------------------- }e1ZbmW  
    rpowers = []; W?& %x(6M  
    for j = 1:length(n) P \I|,  
        rpowers = [rpowers m(j):2:n(j)]; ]L jf?tk  
    end UKGPtKE<  
    rpowers = unique(rpowers); F4QVAOM]U  
    '/p4O2b,  
    % Pre-compute the values of r raised to the required powers, Wwo0%<2y  
    % and compile them in a matrix: PT ~D",k  
    % -----------------------------  7GGUV  
    if rpowers(1)==0 4+n\k  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _c07}aQ ],  
        rpowern = cat(2,rpowern{:}); TeQV?ZQ#}  
        rpowern = [ones(length_r,1) rpowern]; \U0Q<ot/7  
    else ~*7]r`6\@  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); , gHDx  
        rpowern = cat(2,rpowern{:}); Om&Dw |xG8  
    end /Oono6j  
    z:O8Ls^\T  
    % Compute the values of the polynomials: l;U?Z'n  
    % -------------------------------------- ZCw]m#lS  
    z = zeros(length_r,length_n); 3|7QU ld  
    for j = 1:length_n 3`HV(5U[  
        s = 0:(n(j)-m(j))/2; }H4RR}g  
        pows = n(j):-2:m(j); {g6%(X\r.r  
        for k = length(s):-1:1 bt *k.=p  
            p = (1-2*mod(s(k),2))* ... N`i/mP  
                       prod(2:(n(j)-s(k)))/          ... nN;u,}e  
                       prod(2:s(k))/                 ... =N@t'fOr  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ~[: 2I  
                       prod(2:((n(j)+m(j))/2-s(k))); /reX{Y  
            idx = (pows(k)==rpowers); CLSK'+l  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Ac6=(B  
        end :Tc^y%b0  
         :&Nbw  
        if isnorm 9uY'E'm*  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 58K5ZZG  
        end E^PB)D(.  
    end a.'*G6~Qgw  
    )0MB9RMk1  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ;6 wA"  
    ]_f<kW\1*  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ]~nKK@Rw  
    ;GI&lpKK  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)