非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #%;Uh
function z = zernfun(n,m,r,theta,nflag) |eu8;~A
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. cz9J&Le>
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N '8;bc@cE
% and angular frequency M, evaluated at positions (R,THETA) on the ;W?#l$R
% unit circle. N is a vector of positive integers (including 0), and I8gNg
Z
% M is a vector with the same number of elements as N. Each element U4!KO;Jc
% k of M must be a positive integer, with possible values M(k) = -N(k) ?y-^Fq|h
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, H
d|p@$I
% and THETA is a vector of angles. R and THETA must have the same g5nJ0=9
% length. The output Z is a matrix with one column for every (N,M) |c/=9Bb
% pair, and one row for every (R,THETA) pair. F$as#.7FF
% D m0)%#
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :|W=2(>
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), nc;eNB
% with delta(m,0) the Kronecker delta, is chosen so that the integral ,m#
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, KHAc!4lA
% and theta=0 to theta=2*pi) is unity. For the non-normalized t.9s4 9P
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. +|LM"
% '.bf88D
% The Zernike functions are an orthogonal basis on the unit circle. n&:ohOH%
% They are used in disciplines such as astronomy, optics, and sjyr9AF
% optometry to describe functions on a circular domain. AmF[#)90P
% 8 MO-QO
% The following table lists the first 15 Zernike functions. KmNnW1T
% PB@IPnB-
% n m Zernike function Normalization gE6'A
% -------------------------------------------------- V$ H(a`!
% 0 0 1 1 b{<?E };%
% 1 1 r * cos(theta) 2 N#ggT9>X
% 1 -1 r * sin(theta) 2 %nZ:)J>kz
% 2 -2 r^2 * cos(2*theta) sqrt(6) #sw4)*v
% 2 0 (2*r^2 - 1) sqrt(3) 9-pt}U
% 2 2 r^2 * sin(2*theta) sqrt(6) >aAM&4
% 3 -3 r^3 * cos(3*theta) sqrt(8) s/7Z.\
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) fd
)v{OC
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) WLl8oE<X
% 3 3 r^3 * sin(3*theta) sqrt(8) s0iG|vw
% 4 -4 r^4 * cos(4*theta) sqrt(10) Vc9rc}
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w0~%,S
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ^m#tWb)f
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +.!D>U$)}
% 4 4 r^4 * sin(4*theta) sqrt(10) BH0m[9nU;
% -------------------------------------------------- T01Iu
% -P}A26qB
% Example 1: ]Ucw&B*@
% NBPP?\1
% % Display the Zernike function Z(n=5,m=1) MDlH[PJ@i
% x = -1:0.01:1; ii?T:T@
% [X,Y] = meshgrid(x,x); D6L+mTN
% [theta,r] = cart2pol(X,Y); :i<*~0r<
% idx = r<=1; ,m{R
m0
% z = nan(size(X)); ;U=b6xE
% z(idx) = zernfun(5,1,r(idx),theta(idx)); AXlVH%'
% figure hWy@?r.
% pcolor(x,x,z), shading interp ?y?9;;
% axis square, colorbar yh
E% X
% title('Zernike function Z_5^1(r,\theta)') KUJ Lx
% 1b%Oi.;
% Example 2: EnWv9I<
% EIRDH'[L
% % Display the first 10 Zernike functions J1G}l5N
% x = -1:0.01:1; q SNCBn '
% [X,Y] = meshgrid(x,x);
t1hQ0 B
% [theta,r] = cart2pol(X,Y); {5B j*m5
% idx = r<=1; 8'*x88+
% z = nan(size(X)); ;5ki$)v"
% n = [0 1 1 2 2 2 3 3 3 3]; 8{ZTHY-
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 86{>X5 +
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ,'0#q
% y = zernfun(n,m,r(idx),theta(idx)); 1b~21n
% figure('Units','normalized') ?b+Y])SJK
% for k = 1:10 c]{}|2u
% z(idx) = y(:,k); M 2hZ'
% subplot(4,7,Nplot(k)) (X "J)xaQ
% pcolor(x,x,z), shading interp V*@aE
% set(gca,'XTick',[],'YTick',[]) j,.M!q]
% axis square -zFJ)!/?
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) y$%oR6K7-
% end .Exvuo`F
% \8xSfe
% See also ZERNPOL, ZERNFUN2. on7
n4
qTJ0}F
% Paul Fricker 11/13/2006 `PbY(6CF
^t})T*hM0
%'1iT!g8
% Check and prepare the inputs: tY;<S}[@7w
% ----------------------------- A1prYD
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6=/sEz S'
error('zernfun:NMvectors','N and M must be vectors.') uP* kvi:e
end VNTbjn]
r,JQR)l0@V
if length(n)~=length(m) 8H4NNj Oy
error('zernfun:NMlength','N and M must be the same length.') Ye3o}G9z
end 44u)F@)
I#2$CSJ
n = n(:); kU/MvoV
m = m(:); {g.YGO
if any(mod(n-m,2)) ?(gha
error('zernfun:NMmultiplesof2', ... dM;\)jm
'All N and M must differ by multiples of 2 (including 0).') *F1TZ_GS
end >8"(go+02
A M[f
if any(m>n) ~6;I"0b5
error('zernfun:MlessthanN', ... ESB^"|9
'Each M must be less than or equal to its corresponding N.') svmb~n &x6
end zwV!6xG
Zp7Pw
if any( r>1 | r<0 ) 7dY_b
error('zernfun:Rlessthan1','All R must be between 0 and 1.') )vO"S
end
oT\K P
cjL)M=pIS
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) pL,XHR@Iv
error('zernfun:RTHvector','R and THETA must be vectors.') yzK<yvN
end d'96$e o~
|p/*OFC6
r = r(:); uZL]mwkj]
theta = theta(:); Sesdhuy.@
length_r = length(r); Z|C,HF+m.
if length_r~=length(theta) /[_aK0U3
error('zernfun:RTHlength', ... e#/&A5#Ya
'The number of R- and THETA-values must be equal.') znE1t%V
end 8vuTF*{yZ
HVus\s\&y%
% Check normalization: ^<!R%"o-
% -------------------- .L^*9Y0)
if nargin==5 && ischar(nflag) ,;t:x|{%
isnorm = strcmpi(nflag,'norm'); {A==av
if ~isnorm =W7-;&
error('zernfun:normalization','Unrecognized normalization flag.') |aLK_]!
end ei4LE
XQ16
else [@9S-$Xa
isnorm = false; `:=1*7)?
end 5)< Y3nU~
z"
tz-~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F%
n}vA`
% Compute the Zernike Polynomials (Huvo9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #8h7C8]&
D\5+2 G
% Determine the required powers of r: In1{&sS
% ----------------------------------- 79 ;uHR&S