切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11477阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 d-8g  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 'Ze& LQ  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 oJ 0 #U  
    function z = zernfun(n,m,r,theta,nflag) t(- 5l  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. j&,%v+x  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N GYri\<[  
    %   and angular frequency M, evaluated at positions (R,THETA) on the )-LS n  
    %   unit circle.  N is a vector of positive integers (including 0), and _M[T8"e(  
    %   M is a vector with the same number of elements as N.  Each element *3y:Wv T>  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) /gLi(Uw  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, p-%m/d?  
    %   and THETA is a vector of angles.  R and THETA must have the same }RkD7  
    %   length.  The output Z is a matrix with one column for every (N,M) "Ze<dB#,Y  
    %   pair, and one row for every (R,THETA) pair. -$j|&l  
    % Io)@u~yz  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]1KF3$n0  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), TSP#.QY  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral z Q11dLjs  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (w, Gv-S  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized h&t9CpTfeJ  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^:m7Qd?Z[  
    % N1z:9=(I  
    %   The Zernike functions are an orthogonal basis on the unit circle. <o_(,,P%  
    %   They are used in disciplines such as astronomy, optics, and f.u+({"ql  
    %   optometry to describe functions on a circular domain. ^WIGd"^  
    % !\1Pu|  
    %   The following table lists the first 15 Zernike functions. !bIhw}^C*  
    % -$kA WP8P4  
    %       n    m    Zernike function           Normalization ' sTMUPg`  
    %       -------------------------------------------------- k /lDE  
    %       0    0    1                                 1 Z;GZ?NOlY  
    %       1    1    r * cos(theta)                    2 5 ]@"f/  
    %       1   -1    r * sin(theta)                    2 l=t$ XWh!  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]s:%joj%^  
    %       2    0    (2*r^2 - 1)                    sqrt(3) gLPgh%B4  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) {vAv ;m  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) SH M@H93  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) R9lb<`  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ioS(;2F  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ;_= +h,n  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 8Ir = @  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0N>R!  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) %u02KmV.  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <Yy|.=6 D  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 4BAG GD2  
    %       -------------------------------------------------- 0:4w@"Q  
    % VTvNn  
    %   Example 1: 6.g k6  
    % 'nh^'i&0.  
    %       % Display the Zernike function Z(n=5,m=1) 924a1  
    %       x = -1:0.01:1; Q !G^CG  
    %       [X,Y] = meshgrid(x,x); g\lEdxm6Sj  
    %       [theta,r] = cart2pol(X,Y); %w3"B,k'9D  
    %       idx = r<=1; |jE0H!j  
    %       z = nan(size(X)); 0P_3%   
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); :f5"w+  
    %       figure  a EmLf  
    %       pcolor(x,x,z), shading interp Y|96K2BR  
    %       axis square, colorbar jz72~+)T  
    %       title('Zernike function Z_5^1(r,\theta)') +LsACSB  
    % OtFGo 8  
    %   Example 2: Z</.Ss 4  
    % -yP_S~ \n  
    %       % Display the first 10 Zernike functions Dk`(Wgk2  
    %       x = -1:0.01:1; ct![eWsuB  
    %       [X,Y] = meshgrid(x,x); wxSJ  
    %       [theta,r] = cart2pol(X,Y); ,c9K]>8m`  
    %       idx = r<=1; \t^h|<`  
    %       z = nan(size(X)); $c<NEt_\  
    %       n = [0  1  1  2  2  2  3  3  3  3]; w_]`)$9  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; >crFIkOJ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; yRv4,{B}X>  
    %       y = zernfun(n,m,r(idx),theta(idx)); /[RO>Z9  
    %       figure('Units','normalized') #1oyRD-  
    %       for k = 1:10 M"Q{lR  
    %           z(idx) = y(:,k); DZE@C^ 0%  
    %           subplot(4,7,Nplot(k)) -oR P ZtW  
    %           pcolor(x,x,z), shading interp 5isqBu  
    %           set(gca,'XTick',[],'YTick',[]) T.?}iz=ZEq  
    %           axis square Ty;P`Uv]r  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %{HeXe  
    %       end Ek%mX"  
    % w=feXA3-S  
    %   See also ZERNPOL, ZERNFUN2. &Y3 r'"  
    '| rhm  
    %   Paul Fricker 11/13/2006 f*46,` x  
    N>Q~WXvV#  
    I$HO[Z!  
    % Check and prepare the inputs: AD^Q`7K?uR  
    % ----------------------------- ATscP hk  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) {~cM 6W]f  
        error('zernfun:NMvectors','N and M must be vectors.') 3P2x%Gp  
    end vA&MJD{  
    ptMDhMVW  
    if length(n)~=length(m) 'K*. ?M  
        error('zernfun:NMlength','N and M must be the same length.') ,A9_xdv5  
    end oo2CF!Xy  
    ,,HoD~]rd  
    n = n(:); -fCR^`UOS  
    m = m(:); ]m<z  
    if any(mod(n-m,2)) {DWL 5V#M  
        error('zernfun:NMmultiplesof2', ... P}8cSX9  
              'All N and M must differ by multiples of 2 (including 0).') &Xh_`*]ox  
    end bAS/cuZs  
    wlsq[x P  
    if any(m>n) <kOdd)X  
        error('zernfun:MlessthanN', ... 8$`$24Wx  
              'Each M must be less than or equal to its corresponding N.') n5>OZ3 E@  
    end 6%L#FSI  
    [D_s`'tg  
    if any( r>1 | r<0 ) Ci(c`1av  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') IC6r?  
    end oFL7dL  
    D A_}pS"  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 34<k)0sO  
        error('zernfun:RTHvector','R and THETA must be vectors.') tg6iHFa  
    end "el}9OitC  
    ~`X$b F  
    r = r(:); buKSZ  
    theta = theta(:); _?v&\j  
    length_r = length(r); W:8pmI  
    if length_r~=length(theta) <N{Y*,^z  
        error('zernfun:RTHlength', ... ,s`4k?y  
              'The number of R- and THETA-values must be equal.') 8h,=yAn5  
    end ToR@XL!%rP  
    sWv!ig_  
    % Check normalization: Z;~7L*|  
    % -------------------- !xvAy3  
    if nargin==5 && ischar(nflag) ~yiw{:\  
        isnorm = strcmpi(nflag,'norm'); YHzP/&0  
        if ~isnorm )|wC 1J!L  
            error('zernfun:normalization','Unrecognized normalization flag.') :hTmt{LjN  
        end kX%vTl7F  
    else Qo\?(E M  
        isnorm = false; O-&^;]ieJ  
    end @Nn'G{8OG  
    M$s9   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s"5wnp6pW  
    % Compute the Zernike Polynomials GB4^ 4Ajx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c2Wp 8l  
    tUi@'%>=5  
    % Determine the required powers of r: L$6W,D  
    % ----------------------------------- u0F{.fe  
    m_abs = abs(m); KAg-M#  
    rpowers = []; X`28?  
    for j = 1:length(n) *$Y_ %}  
        rpowers = [rpowers m_abs(j):2:n(j)]; Ug  )eyu  
    end apjoIO-<  
    rpowers = unique(rpowers); W. BX6  
    <:4b4Nl  
    % Pre-compute the values of r raised to the required powers, 9Ed=`c  
    % and compile them in a matrix: bbT1p :RF  
    % ----------------------------- L~Y^O`c  
    if rpowers(1)==0 (_]D\g~  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @MP;/o+  
        rpowern = cat(2,rpowern{:}); gg/2R?O]  
        rpowern = [ones(length_r,1) rpowern]; q $PO. #  
    else Q^*4FH!W  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .d6b ?t  
        rpowern = cat(2,rpowern{:}); fJ=v?  
    end f2u4*X E\  
    sQ.t3a3m  
    % Compute the values of the polynomials: w=FU:q/  
    % -------------------------------------- KM?w{ ~9  
    y = zeros(length_r,length(n)); /ke[nr  
    for j = 1:length(n) TE: |w Xe  
        s = 0:(n(j)-m_abs(j))/2; m 48Ab`  
        pows = n(j):-2:m_abs(j); YJ|U| [  
        for k = length(s):-1:1 "B>8on8O  
            p = (1-2*mod(s(k),2))* ... L+~XW'P?  
                       prod(2:(n(j)-s(k)))/              ... @z^7*#vQv  
                       prod(2:s(k))/                     ... /U} )mdFm  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... wg<t*6&'x  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 2 fg P  
            idx = (pows(k)==rpowers); Z*Rg ik  
            y(:,j) = y(:,j) + p*rpowern(:,idx); %C_c%3d  
        end h>F"GR?U_(  
         EQ.K+d*K][  
        if isnorm iBwM]Eyv.  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); hj}PL  
        end V|~o`(]  
    end Lp(i&A  
    % END: Compute the Zernike Polynomials ~E/=nv$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Shv$"x:W  
    tSe[*V4{'  
    % Compute the Zernike functions: $z`l{F4eMf  
    % ------------------------------ G[6i\Et   
    idx_pos = m>0; Lrmhr3 w5  
    idx_neg = m<0; \ AIFIy  
    a?xZsR  
    z = y; zp5ZZcj_  
    if any(idx_pos) $+PyW( r  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); I E{:{b\  
    end z,bK.KFSs  
    if any(idx_neg) -{q'Tmst  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); K>C@oE[W  
    end SSq4KFO1  
    [b_qC'K[  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Y`#6MhFT7  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. -+M360  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated (#Xs\IEVF  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive UNK.39  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, d3Y;BxEz  
    %   and THETA is a vector of angles.  R and THETA must have the same ens]?,`0  
    %   length.  The output Z is a matrix with one column for every P-value, }+Q4s]  
    %   and one row for every (R,THETA) pair. t{QQ;'  
    % G&@d J &B  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike oe|8  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ;xiwyfqgE  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) |rG)Q0H,  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 dwQ1~  
    %   for all p. <*WGvCh%w  
    % KVh#"]<WV  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 q"6$#o{~U  
    %   Zernike functions (order N<=7).  In some disciplines it is KVr9kcs  
    %   traditional to label the first 36 functions using a single mode |a a\t  
    %   number P instead of separate numbers for the order N and azimuthal i7Cuc+ j8  
    %   frequency M. T?QW$cU!e:  
    % ,RM8D)m\  
    %   Example: ];"40/X  
    % a+\<2NXYD  
    %       % Display the first 16 Zernike functions '2hy%  
    %       x = -1:0.01:1; P3n#s2o6y  
    %       [X,Y] = meshgrid(x,x); q |FOU  
    %       [theta,r] = cart2pol(X,Y); REYvFx?i  
    %       idx = r<=1; a DXaQ  
    %       p = 0:15; >3pT).wH|M  
    %       z = nan(size(X)); Tl'wA^~H  
    %       y = zernfun2(p,r(idx),theta(idx)); B-$?5Ft!  
    %       figure('Units','normalized') /!^,+  
    %       for k = 1:length(p) wu><a!3`=o  
    %           z(idx) = y(:,k); %P M#gnt@  
    %           subplot(4,4,k) |TP,   
    %           pcolor(x,x,z), shading interp }mzd23^W>P  
    %           set(gca,'XTick',[],'YTick',[]) KO~KaN  
    %           axis square _x1W\#  
    %           title(['Z_{' num2str(p(k)) '}']) =.&8ghJ*M  
    %       end ?QzL#iO }h  
    % $v[mIR  
    %   See also ZERNPOL, ZERNFUN. U#]J5'i  
    +3o0GJ   
    %   Paul Fricker 11/13/2006 'RhS%l  
    >j3':>\U  
    p5tb=Zg_  
    % Check and prepare the inputs: ('Qq"cn#  
    % ----------------------------- \Vroz=IT:  
    if min(size(p))~=1 h#KSKKNW  
        error('zernfun2:Pvector','Input P must be vector.') c61OT@dZEA  
    end 8)=(eI$  
    iw=e"6V  
    if any(p)>35 2O*At%CzW  
        error('zernfun2:P36', ... 6i~|<vcSP  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... dNNXMQ0"  
               '(P = 0 to 35).']) jex\5  
    end F'OO{nF  
    FU/:'/ L  
    % Get the order and frequency corresonding to the function number: 2 oV6#!{Z  
    % ---------------------------------------------------------------- z-b78A/8  
    p = p(:); /3Gq&[R{  
    n = ceil((-3+sqrt(9+8*p))/2); D!! B4zt  
    m = 2*p - n.*(n+2); t!SxJ B e  
    ~tyqvHC  
    % Pass the inputs to the function ZERNFUN: wpt$bqs|1  
    % ---------------------------------------- @&`^#pok  
    switch nargin ]Idwy|eG  
        case 3 ybqmPT'|_  
            z = zernfun(n,m,r,theta); *$|f9jVh  
        case 4 Z37Dv;&ZD  
            z = zernfun(n,m,r,theta,nflag); yP"}(!~m  
        otherwise +6$+] u]  
            error('zernfun2:nargin','Incorrect number of inputs.') >r7PK45.K  
    end 036m\7+Qj  
    U5wh( vi  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ~cSXBc,+  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. NQ;X|$!zH  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of nRB3VsL  
    %   order N and frequency M, evaluated at R.  N is a vector of 89^g$ ac  
    %   positive integers (including 0), and M is a vector with the Qs za,09  
    %   same number of elements as N.  Each element k of M must be a ?!U.o1  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) aaCRZKr  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is #}B1W&\sw  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix IB| 6\uKn  
    %   with one column for every (N,M) pair, and one row for every 4gC(zJ  
    %   element in R. A03io8D6  
    % <!FcQVH+L  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- (wq8[1Wzup  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is hBnUpYec  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to \By_mw  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 f4\$<g/~  
    %   for all [n,m]. 2^ ]^Yc  
    % Z\`SDC  
    %   The radial Zernike polynomials are the radial portion of the SO *oBA'  
    %   Zernike functions, which are an orthogonal basis on the unit *(1 <J2j  
    %   circle.  The series representation of the radial Zernike 1!G}*38;  
    %   polynomials is og35Vs0  
    % [pEb`s  
    %          (n-m)/2 q MrM^ ~  
    %            __ yUJ#LDW  
    %    m      \       s                                          n-2s /huh}&NNu  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r M^Z=~512g  
    %    n      s=0 x$` lQ%  
    % aY? VP?BL  
    %   The following table shows the first 12 polynomials. Miw=2F  
    % I50Ly sM  
    %       n    m    Zernike polynomial    Normalization sV2D:%\K:  
    %       --------------------------------------------- LKcp.i  
    %       0    0    1                        sqrt(2) zEO~mJzo  
    %       1    1    r                           2 t !6sU]{  
    %       2    0    2*r^2 - 1                sqrt(6) #`gX(C>  
    %       2    2    r^2                      sqrt(6) `.O$RwC&7B  
    %       3    1    3*r^3 - 2*r              sqrt(8) .6$=]hdAp  
    %       3    3    r^3                      sqrt(8) h7fytO  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) K;"oK  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) X$ \CC18  
    %       4    4    r^4                      sqrt(10) x3FB`3y~s  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) #z&R9$  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ~<<32t'S:  
    %       5    5    r^5                      sqrt(12) $8U$.~v  
    %       --------------------------------------------- v5\ALWy+p  
    % eL"'-d+]  
    %   Example: CSoVB[vS  
    % AN:s%w2  
    %       % Display three example Zernike radial polynomials U W8yu.`?  
    %       r = 0:0.01:1; =dHdq D  
    %       n = [3 2 5]; nTo?~=b  
    %       m = [1 2 1]; `ql8y'  
    %       z = zernpol(n,m,r); 9-{+U,3)  
    %       figure .hxFFk%5  
    %       plot(r,z) VT4 >6u}  
    %       grid on H.XyNtJ  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') }]dzY(   
    % k"gm;,`  
    %   See also ZERNFUN, ZERNFUN2. BNE:,I*&  
    =|Qxv`S1  
    % A note on the algorithm. &F :.V$  
    % ------------------------ Hs8JJGXWB  
    % The radial Zernike polynomials are computed using the series Ih.)iTs~%  
    % representation shown in the Help section above. For many special ZDzG8E0Sq  
    % functions, direct evaluation using the series representation can SC%HHu\l  
    % produce poor numerical results (floating point errors), because A9@coP5  
    % the summation often involves computing small differences between 6l2O>V  
    % large successive terms in the series. (In such cases, the functions l3^'bp6HQ  
    % are often evaluated using alternative methods such as recurrence 8$]SvfX  
    % relations: see the Legendre functions, for example). For the Zernike x?B`p"ifS  
    % polynomials, however, this problem does not arise, because the q:M'|5P  
    % polynomials are evaluated over the finite domain r = (0,1), and %hBwc#^  
    % because the coefficients for a given polynomial are generally all n(#yGzq  
    % of similar magnitude. w/ZP. B  
    % b|k^   
    % ZERNPOL has been written using a vectorized implementation: multiple zQ,M795@EA  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] "{E%Y*  
    % values can be passed as inputs) for a vector of points R.  To achieve q] pHD})O  
    % this vectorization most efficiently, the algorithm in ZERNPOL .p=J_%K}0x  
    % involves pre-determining all the powers p of R that are required to &g90q   
    % compute the outputs, and then compiling the {R^p} into a single _i7yyt;h  
    % matrix.  This avoids any redundant computation of the R^p, and A#?Cts ,M  
    % minimizes the sizes of certain intermediate variables. P8h|2,c%  
    % Q.jThP`p  
    %   Paul Fricker 11/13/2006 73S N\  
    Q6URaw#Yt`  
    GY@:[u.&  
    % Check and prepare the inputs: ucz~y! 4L{  
    % ----------------------------- NQuqM`LSQ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4noy!h  
        error('zernpol:NMvectors','N and M must be vectors.') >h~ik/|*  
    end i9qIaG/  
    l?_Fy_fBt  
    if length(n)~=length(m) /%7&De6Xg  
        error('zernpol:NMlength','N and M must be the same length.') N$t<&5 +  
    end L1G)/Vkw  
    V>obMr^5  
    n = n(:); ?-2s}IJO  
    m = m(:); B>cT <B  
    length_n = length(n); IIGx+>  
    iT| 7**+3  
    if any(mod(n-m,2)) icIWv  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') \i-CTv6f  
    end e, 2/3jO  
    ^^!G{ *F  
    if any(m<0) NLx TiyQy  
        error('zernpol:Mpositive','All M must be positive.') {0a\<l  
    end nvwf!iU6  
    :|ah u  
    if any(m>n) "WtYqXyd  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') jK[*_V  
    end 3HcduJntl  
    aY .cx1"  
    if any( r>1 | r<0 ) 5wAKA`p"z  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') jy>?+hm?  
    end @T L|\T  
    s3@mk\?qMe  
    if ~any(size(r)==1) t\YM Hq<Y  
        error('zernpol:Rvector','R must be a vector.') Nr*X1lJ6  
    end O x`K7$)  
     W{Z 7=  
    r = r(:); =w`uZ;l$Q  
    length_r = length(r); 7p!ROl^  
    0,@^<G8?  
    if nargin==4 #l- 0$  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); uF}B:53A  
        if ~isnorm 2,g4yXws5  
            error('zernpol:normalization','Unrecognized normalization flag.') h*1T3U$  
        end W)T'?b'.  
    else /uR/,R++  
        isnorm = false; H=~7g3  
    end zv;xxAX  
    \Z42EnJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gE^pOn  
    % Compute the Zernike Polynomials ?fC9)s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9MI9$s2y  
    7hPwa3D^  
    % Determine the required powers of r: L$);50E  
    % ----------------------------------- v)gMNzt  
    rpowers = []; +zLw%WD[l  
    for j = 1:length(n) =)g}$r &<  
        rpowers = [rpowers m(j):2:n(j)]; #%E^cGfY  
    end :HY =^$\  
    rpowers = unique(rpowers); $-t@=N@vO?  
    , #GB  
    % Pre-compute the values of r raised to the required powers, 1(>2tEjYT  
    % and compile them in a matrix: |=,jom  
    % ----------------------------- 2&]LZ:(  
    if rpowers(1)==0 i_r708ep6  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); mPQT%%MF  
        rpowern = cat(2,rpowern{:}); 1HAnOy0   
        rpowern = [ones(length_r,1) rpowern]; coPdyw'9&  
    else -gt ?5H h  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); + %K~  
        rpowern = cat(2,rpowern{:}); XSK<hr0m  
    end 0#uB[N  
    =23@"ji@D  
    % Compute the values of the polynomials: +U_1B%e(%  
    % -------------------------------------- A! HJ  
    z = zeros(length_r,length_n); M&faa7  
    for j = 1:length_n I"3C/ pU2  
        s = 0:(n(j)-m(j))/2; puWMgvv  
        pows = n(j):-2:m(j); SVd@- '-K  
        for k = length(s):-1:1 QE)zH)(  
            p = (1-2*mod(s(k),2))* ... , u%V%  
                       prod(2:(n(j)-s(k)))/          ... qAbmQ{|w  
                       prod(2:s(k))/                 ... kRX?o'U~C  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... (/]#G8  
                       prod(2:((n(j)+m(j))/2-s(k))); h2Th)&Fb>  
            idx = (pows(k)==rpowers); $Q'z9ghEg  
            z(:,j) = z(:,j) + p*rpowern(:,idx); % C2Vga#  
        end nIfAG^?|*  
         7_)38  
        if isnorm L1(-xNUo_i  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); p19@to5l  
        end ]a~sJz!  
    end n4+q7  
    =GF=_Ac  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  >iOf3I-ATt  
    EyPJ Jc8  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 PZ8,E{V  
    EA6l11{Gk1  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)