切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9644阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 .O'S@ %]  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 02&mM% #  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 j% !   
    function z = zernfun(n,m,r,theta,nflag) ,g@U *06  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. eI; %/6#  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N >Be PE(k  
    %   and angular frequency M, evaluated at positions (R,THETA) on the a*6x^R;)  
    %   unit circle.  N is a vector of positive integers (including 0), and Fe%Q8RIh_  
    %   M is a vector with the same number of elements as N.  Each element *-T3'beg  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) bV|:MW <Wv  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, }k7@ X  
    %   and THETA is a vector of angles.  R and THETA must have the same ~HI|t2C  
    %   length.  The output Z is a matrix with one column for every (N,M) FVT_%"%C9  
    %   pair, and one row for every (R,THETA) pair. "T?%4^:g  
    % (A\qZtnyl  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fyYT#r  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), W@AZ<(RI:  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral k# ZO4  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, DY^q_+[V  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized h&L+Qx  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. "d/x`Dx  
    % U:c!9uhp  
    %   The Zernike functions are an orthogonal basis on the unit circle. M' "S:  
    %   They are used in disciplines such as astronomy, optics, and tx}{E<\>$  
    %   optometry to describe functions on a circular domain. lLxKC7b  
    % .Gh-T{\V'  
    %   The following table lists the first 15 Zernike functions. i>_V?OT#5  
    % fOm=#:O  
    %       n    m    Zernike function           Normalization [{ K$sd  
    %       -------------------------------------------------- b)(#/}jMkD  
    %       0    0    1                                 1 M/:kh,3  
    %       1    1    r * cos(theta)                    2 Ex^7`-2,B  
    %       1   -1    r * sin(theta)                    2 Q?L-6]pg  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Ui@Q&%b  
    %       2    0    (2*r^2 - 1)                    sqrt(3) }I}RqD:`  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) V9I5/~0c  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 5'?K(Jdmp  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) hZVF72D26  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) o?b$}Qrl  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) M'$n".,p  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) "639oB  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `]_#_  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 1,T8@8#  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xV}E3Yj2#  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) } =?kf3k  
    %       -------------------------------------------------- M,8a$Mdqh  
    % +IK~a9t  
    %   Example 1: R#`hT  
    % he8y  
    %       % Display the Zernike function Z(n=5,m=1) ~4.Tq{  
    %       x = -1:0.01:1; d2'9C6t  
    %       [X,Y] = meshgrid(x,x); D\ HmY_  
    %       [theta,r] = cart2pol(X,Y); BR8z%R  
    %       idx = r<=1; =7e~L 3 K  
    %       z = nan(size(X)); j0>S)Q  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); %g^dB M#  
    %       figure |t1D8){!  
    %       pcolor(x,x,z), shading interp J )oa:Q  
    %       axis square, colorbar V?kJYf(<  
    %       title('Zernike function Z_5^1(r,\theta)') J~V`"uo  
    % i{I'+%~R  
    %   Example 2: XG@_Lcv*  
    % }at8b ^  
    %       % Display the first 10 Zernike functions 7h<B:~(K  
    %       x = -1:0.01:1; [a53H$`\5  
    %       [X,Y] = meshgrid(x,x); U O YM   
    %       [theta,r] = cart2pol(X,Y); B%6>2S=E  
    %       idx = r<=1; o )GNV  
    %       z = nan(size(X)); oil s;*q  
    %       n = [0  1  1  2  2  2  3  3  3  3]; X<Rh-1$8F  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; k`62&"T  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Nj1vB;4Nx  
    %       y = zernfun(n,m,r(idx),theta(idx)); 0\qbJ  
    %       figure('Units','normalized') -A(] ",*J  
    %       for k = 1:10 8E H# IiP  
    %           z(idx) = y(:,k); cR 4xy26s  
    %           subplot(4,7,Nplot(k)) R;.zS^LL  
    %           pcolor(x,x,z), shading interp Vz1ro  
    %           set(gca,'XTick',[],'YTick',[]) ]7^OTrZ N  
    %           axis square M}!7/8HUC  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) $2A%y14  
    %       end 1`Cr1pH  
    % !`hiXDk*2  
    %   See also ZERNPOL, ZERNFUN2. ,}2M'DSWa  
    b7E= u0  
    %   Paul Fricker 11/13/2006 J_ ?;On5  
    =SA@3)kHH  
    x/ {  
    % Check and prepare the inputs: y&-wb'==p  
    % ----------------------------- A7>0Pn%D3  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S) Sv4Qm  
        error('zernfun:NMvectors','N and M must be vectors.') _}:9ic]e  
    end /k|y\'<  
    kLU$8L  
    if length(n)~=length(m) 1@" eeR  
        error('zernfun:NMlength','N and M must be the same length.') T3u%V_  
    end iK#5HW{  
    v*7}ux8  
    n = n(:); 'b]GcAL  
    m = m(:); <_=a1x  
    if any(mod(n-m,2)) |Kky+*  
        error('zernfun:NMmultiplesof2', ... |!euty ::  
              'All N and M must differ by multiples of 2 (including 0).') i64a]=  
    end rbS67--]  
    P6&@fwJ<  
    if any(m>n) 4`)`%R$  
        error('zernfun:MlessthanN', ... Pni  
              'Each M must be less than or equal to its corresponding N.') U=\ZeYK.  
    end y-m<&{q  
    b? jRA^  
    if any( r>1 | r<0 ) A1Ia9@=Mf  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') fWhwI+  
    end \< <u  
    $YSAD\a<  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) fdc ?`4  
        error('zernfun:RTHvector','R and THETA must be vectors.') UX}ZE.cV  
    end qX^#fk7]  
    "toyfZq@  
    r = r(:); <k-&Lh:o3  
    theta = theta(:); U']DB h  
    length_r = length(r); zPEx;lO$  
    if length_r~=length(theta) xQ\/6|  
        error('zernfun:RTHlength', ... /.9j$iK#  
              'The number of R- and THETA-values must be equal.') X|^E+ `M4  
    end 7(rNJPrU~=  
    tsVQXvo  
    % Check normalization: f=]+\0MQ  
    % -------------------- 0ubT/  
    if nargin==5 && ischar(nflag) mnZ/rb  
        isnorm = strcmpi(nflag,'norm'); td%]l1  
        if ~isnorm 6*8"?S'  
            error('zernfun:normalization','Unrecognized normalization flag.') O]>9\!0{  
        end :0|]cHm  
    else Tqz{{]%j~$  
        isnorm = false; 8!2NZOZOS  
    end |=L~>G  
    &b8Dy=#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4*'5EBa1  
    % Compute the Zernike Polynomials wi^zXcVj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?$i`K|  
    uCO-f<b  
    % Determine the required powers of r: W+36"?*k3  
    % ----------------------------------- Nd'+s>d0  
    m_abs = abs(m); Tj7OV}:  
    rpowers = []; !`"@!  
    for j = 1:length(n) O32p8AxEz  
        rpowers = [rpowers m_abs(j):2:n(j)]; GEj/Z};;[b  
    end #Jp_y|  
    rpowers = unique(rpowers); "| cNY_$&s  
    Sm(X/P=z  
    % Pre-compute the values of r raised to the required powers, EvSo|}JA[  
    % and compile them in a matrix: 7s@%LS  
    % ----------------------------- BOClMeA4  
    if rpowers(1)==0 gw' uY$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &?UIe]  
        rpowern = cat(2,rpowern{:}); l/0"'o_0v#  
        rpowern = [ones(length_r,1) rpowern]; 2 Z K:S+c  
    else lx _jy>$}r  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _^K)>  
        rpowern = cat(2,rpowern{:}); 1><@$kVMm~  
    end {JTO Q 8&  
    Z-X(. Q  
    % Compute the values of the polynomials: v zgR3r  
    % -------------------------------------- reseu*5  
    y = zeros(length_r,length(n)); C#{s[l\]  
    for j = 1:length(n) g$ bbm}6S  
        s = 0:(n(j)-m_abs(j))/2; h6J0b_3h4  
        pows = n(j):-2:m_abs(j); Ey<vvZ  
        for k = length(s):-1:1 q2 K@i*s  
            p = (1-2*mod(s(k),2))* ... s |B  
                       prod(2:(n(j)-s(k)))/              ... 7i^7sT8t  
                       prod(2:s(k))/                     ... 2..b/  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [ u7p:?WDW  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Hl-!rP.?0  
            idx = (pows(k)==rpowers); "Kky|(EQ$$  
            y(:,j) = y(:,j) + p*rpowern(:,idx); A+Uil\%  
        end IIrh|>d_7  
         >K:| +XbH  
        if isnorm OBrbWXp@  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); `w/:o$&  
        end v:/+Oz Y  
    end .}IxZM[}D  
    % END: Compute the Zernike Polynomials B-'oB>|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ab"6]%_  
    F<FNZQ@<U  
    % Compute the Zernike functions: Su" 9`  
    % ------------------------------ ZqT8G  
    idx_pos = m>0; jw63sn  
    idx_neg = m<0; .quui\I3  
    fKEZlrw  
    z = y; w7Fz(`\  
    if any(idx_pos) )@lZ~01~d  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Fu0"Asxce  
    end G bW1Lq&"  
    if any(idx_neg) \l)Jb*t  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); abog\0  
    end wxC&KrRF  
    \3nu &8d  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) RLy2d'DS  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Ih Yso7g  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated =*paa  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive d,%e? 8x5  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ^a>3U l{  
    %   and THETA is a vector of angles.  R and THETA must have the same R'Gka1v  
    %   length.  The output Z is a matrix with one column for every P-value, hY*ylzr83  
    %   and one row for every (R,THETA) pair. `.oWmBey\  
    % >z{*>i,m1  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 'YQVf]4P  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) PhUG}94  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) @*Y"[\"$  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 'gBGZ?^N!U  
    %   for all p. e6G=Bq$  
    % tW^oa  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 xi+bBqg<.K  
    %   Zernike functions (order N<=7).  In some disciplines it is I, 7~D!4G  
    %   traditional to label the first 36 functions using a single mode qS8p)pw  
    %   number P instead of separate numbers for the order N and azimuthal ig-V^P  
    %   frequency M. 2wCSjAWWh(  
    % CBkI! In2  
    %   Example: )GT*HJR(vc  
    % E O.Se9ux  
    %       % Display the first 16 Zernike functions 0f_+h %%=  
    %       x = -1:0.01:1; F.rNh`44  
    %       [X,Y] = meshgrid(x,x); \*a7o GyH>  
    %       [theta,r] = cart2pol(X,Y); QD8.C=2R  
    %       idx = r<=1; |_6V+/?"?`  
    %       p = 0:15; |\}&mBR  
    %       z = nan(size(X)); j ."L=  
    %       y = zernfun2(p,r(idx),theta(idx)); cVV@MC  
    %       figure('Units','normalized') y 4 wV]1  
    %       for k = 1:length(p) ?IN'Dc9&%-  
    %           z(idx) = y(:,k); mp'Z.4  
    %           subplot(4,4,k) :eH*biXy}2  
    %           pcolor(x,x,z), shading interp nE&`~  
    %           set(gca,'XTick',[],'YTick',[]) Hto RN^9  
    %           axis square  iH`Q4  
    %           title(['Z_{' num2str(p(k)) '}']) WX-J4ieL  
    %       end ]NEr]sc-"F  
    % 7 I$~E  
    %   See also ZERNPOL, ZERNFUN. 7:M`k#oDP  
    `i2:@?Kl9  
    %   Paul Fricker 11/13/2006 W>E/LBpE4  
    u?Uu>9@Z  
    cko^_V&x  
    % Check and prepare the inputs: +nIjW;RU  
    % ----------------------------- = :/4)  
    if min(size(p))~=1 !=3Ce3-  
        error('zernfun2:Pvector','Input P must be vector.') Nc da~h Q  
    end *HONA>u   
    m{w'&\T  
    if any(p)>35 mfW}^mu  
        error('zernfun2:P36', ... hEh` cBO  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 3LkcK1x.  
               '(P = 0 to 35).']) t?aOZps  
    end 3 0.&Lzz  
    0X<U.Sxn  
    % Get the order and frequency corresonding to the function number: G`e!WvC  
    % ---------------------------------------------------------------- u]z87#4  
    p = p(:); /'l"Us},^!  
    n = ceil((-3+sqrt(9+8*p))/2); p9y@5z  
    m = 2*p - n.*(n+2); 'PqKb%B|  
    `x:O&2  
    % Pass the inputs to the function ZERNFUN: ?on EqH>  
    % ---------------------------------------- 0'g e}2^  
    switch nargin v;sWI"Fv!  
        case 3 e~ZxDAd  
            z = zernfun(n,m,r,theta); )z_5I (?&  
        case 4 3 ,f3^A  
            z = zernfun(n,m,r,theta,nflag); |V&E q>G  
        otherwise .WVIdVO7  
            error('zernfun2:nargin','Incorrect number of inputs.') | 9 <+!t\  
    end *}'3|e4w}  
    xE5VXYU  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Y M,UM>  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. M%#F"^8v  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of B.4Or]  
    %   order N and frequency M, evaluated at R.  N is a vector of jfU$qo!gi  
    %   positive integers (including 0), and M is a vector with the 7P:/ (P  
    %   same number of elements as N.  Each element k of M must be a LYke\/ md  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k)  (,R\6  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is i3vg7V.  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix b=kY9!GN,v  
    %   with one column for every (N,M) pair, and one row for every m>^vr7  
    %   element in R. zXW;W$7V4  
    % re fAgS!=q  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- @GWlo\rM6^  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is +fN2%aC  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ge]Z5E(1  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 -HvJ&O.V$  
    %   for all [n,m]. K?u:-QX^  
    % u`"Y!*[ -  
    %   The radial Zernike polynomials are the radial portion of the ao"Z%#Jb~  
    %   Zernike functions, which are an orthogonal basis on the unit 7|k2~\@q  
    %   circle.  The series representation of the radial Zernike bQ-n<Lx  
    %   polynomials is ]Na;b  
    % N>w+YFM  
    %          (n-m)/2 ^ f[^.k$3d  
    %            __ XCT3:db  
    %    m      \       s                                          n-2s r_MP[]f|0  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 63'L58O  
    %    n      s=0 3uL$+F  
    % y]g5S-G  
    %   The following table shows the first 12 polynomials. U45-R -  
    % .Ms$)1  
    %       n    m    Zernike polynomial    Normalization em2Tet  
    %       --------------------------------------------- *i"Mu00b  
    %       0    0    1                        sqrt(2) t$PJ*F67M  
    %       1    1    r                           2 ab[V->>%  
    %       2    0    2*r^2 - 1                sqrt(6) & j*Ylj}  
    %       2    2    r^2                      sqrt(6) Gh}* <X;N  
    %       3    1    3*r^3 - 2*r              sqrt(8) G+t zp&G@  
    %       3    3    r^3                      sqrt(8) !1mAq+q!  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) iV:\,<8d  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 4{h^O@*g  
    %       4    4    r^4                      sqrt(10) cqp^**s  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) f[q_eY  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 4'.] -u  
    %       5    5    r^5                      sqrt(12) jX,A.  
    %       --------------------------------------------- 4M;S&LA  
    % 1pqYB]*u_  
    %   Example: GuF-HP}xM  
    % b/4gs62{k  
    %       % Display three example Zernike radial polynomials bd3>IWihp  
    %       r = 0:0.01:1; `FK qVd  
    %       n = [3 2 5]; !lKDNQ8>["  
    %       m = [1 2 1]; ]j.!   
    %       z = zernpol(n,m,r); _I%mY!x\`  
    %       figure F#o{/u?T  
    %       plot(r,z) n.A*(@noe  
    %       grid on d;a"rq@a)  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') &<) _7?  
    % jRp @-S#V  
    %   See also ZERNFUN, ZERNFUN2. "WqM<kLa  
    NJKk\RM@7  
    % A note on the algorithm. hysxHOL  
    % ------------------------ |[!0ry*N%  
    % The radial Zernike polynomials are computed using the series w$749jGx  
    % representation shown in the Help section above. For many special s%?<:9  
    % functions, direct evaluation using the series representation can z]sQ3"cmX  
    % produce poor numerical results (floating point errors), because k,y#|bf,Y  
    % the summation often involves computing small differences between ve4 QS P  
    % large successive terms in the series. (In such cases, the functions HPK}Z|Vl  
    % are often evaluated using alternative methods such as recurrence aX~' gq>  
    % relations: see the Legendre functions, for example). For the Zernike 5 d|+c<  
    % polynomials, however, this problem does not arise, because the C |rl",&  
    % polynomials are evaluated over the finite domain r = (0,1), and x_EU.924uY  
    % because the coefficients for a given polynomial are generally all o#IWH;ck.  
    % of similar magnitude. V{0V/Nv  
    % [ HjGdC  
    % ZERNPOL has been written using a vectorized implementation: multiple ) |hHbD^V  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] E} ]SGU"  
    % values can be passed as inputs) for a vector of points R.  To achieve + >v{#A_u  
    % this vectorization most efficiently, the algorithm in ZERNPOL bre6SP@  
    % involves pre-determining all the powers p of R that are required to EKT"pL-EY  
    % compute the outputs, and then compiling the {R^p} into a single :wJ!rn,4  
    % matrix.  This avoids any redundant computation of the R^p, and *OZ O} i  
    % minimizes the sizes of certain intermediate variables. FRTvo  
    % UKSI"/8I  
    %   Paul Fricker 11/13/2006 n6*; ~h5  
    A3zNUad;  
    I q47^  
    % Check and prepare the inputs: %$!EjyH9  
    % ----------------------------- ,I[A~  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) uMP&.Y(  
        error('zernpol:NMvectors','N and M must be vectors.') S[uHPYhlA  
    end .T*7nw  
    !?)iP  
    if length(n)~=length(m) <lLk (fC  
        error('zernpol:NMlength','N and M must be the same length.') J15$P8J  
    end $E@ke:  
    to 3i!b  
    n = n(:); #60<$HO:Z  
    m = m(:); Xgm9>/y  
    length_n = length(n); dnTXx*I:  
    Iyvl6  
    if any(mod(n-m,2)) :Ee5:S   
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') #D!3a%u0  
    end k4nA+k<WI`  
    VAR/"  
    if any(m<0) hO:X\:G  
        error('zernpol:Mpositive','All M must be positive.') Xq%!(YD|  
    end ?|Mmz@  
    iF]vIg#h  
    if any(m>n) :hxZ2O?5_  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') :Zd# }P  
    end =;xlmndT,  
    ]H<C Rw  
    if any( r>1 | r<0 )  ?hpk)Qu  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') kL qFh<  
    end <`m.Vbvm"  
    I!Za2?  
    if ~any(size(r)==1) IN]bAd8"  
        error('zernpol:Rvector','R must be a vector.') )O%lh 8fI  
    end |wj/lX7y  
    ]R{=|  
    r = r(:); )u&_}6z  
    length_r = length(r); Bf88f<Z  
    w02HSQ  
    if nargin==4 ;7<a0HZ5!  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Ic&t_B*i}]  
        if ~isnorm P-`^I`r  
            error('zernpol:normalization','Unrecognized normalization flag.') |qNrj~n@  
        end U^0vLyqW^5  
    else T}]Ao  
        isnorm = false; @]#+`pZ4A  
    end h?YjG^'9  
    Bv@m)$9\+3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J0p,P.G  
    % Compute the Zernike Polynomials +msHQk5#$m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?3z+|;t6C  
    <p0$Q!^dK=  
    % Determine the required powers of r: |H_)u  
    % ----------------------------------- (\/HGxv  
    rpowers = []; @7^#_772  
    for j = 1:length(n) 8rp-Xi W  
        rpowers = [rpowers m(j):2:n(j)]; pmW=l/6+V3  
    end D#t5*bwK  
    rpowers = unique(rpowers); EJtU(HmW  
    A#  M  
    % Pre-compute the values of r raised to the required powers, 1v\-jM"  
    % and compile them in a matrix: F5<{-{Ky  
    % ----------------------------- V!U[N.&$  
    if rpowers(1)==0 {M~!?# <K  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N[+dX_h  
        rpowern = cat(2,rpowern{:}); Z|?XQ-R5  
        rpowern = [ones(length_r,1) rpowern]; \+AH>I;vO  
    else };!c]/,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 610k#$  
        rpowern = cat(2,rpowern{:}); \!V6` @0KC  
    end ;W*$<~_  
    -5ec8m8  
    % Compute the values of the polynomials: uATBt   
    % -------------------------------------- -<O:isB   
    z = zeros(length_r,length_n); `( a^=e5  
    for j = 1:length_n ^ KjqS\<  
        s = 0:(n(j)-m(j))/2; G<dXJ ]\\  
        pows = n(j):-2:m(j); 86I*  
        for k = length(s):-1:1 YWZF*,4  
            p = (1-2*mod(s(k),2))* ... _INUJc  
                       prod(2:(n(j)-s(k)))/          ... }I`|*6Up  
                       prod(2:s(k))/                 ... HYH!;  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ha),N<'  
                       prod(2:((n(j)+m(j))/2-s(k))); N+V-V-PVk  
            idx = (pows(k)==rpowers); d?P aZz{4  
            z(:,j) = z(:,j) + p*rpowern(:,idx); vxt^rBA  
        end =% JDo  
         Bm7GU`j"  
        if isnorm ]1[;A$7  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ?hu 9c  
        end E{ ,O}  
    end %% >?<4t  
    uR%H"f  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    846
    光币
    834
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4347
    光币
    8695
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  )6:]o&bZ  
    ^ ]qV8  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ]vQ?]d?>a  
    XyM(@6,'  
    07年就写过这方面的计算程序了。
    提供免费光学设计培训,请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)