切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11241阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 cuV8#: i  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! c&| '3i+  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 mNnw G);$  
    function z = zernfun(n,m,r,theta,nflag) Rvu3Qo+  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 8~[C'+r  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Qa7S'(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the }n2-*{)x  
    %   unit circle.  N is a vector of positive integers (including 0), and /_VRO9R\V  
    %   M is a vector with the same number of elements as N.  Each element #<tWYE  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) {xBjEhQm  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, pw<q?q%  
    %   and THETA is a vector of angles.  R and THETA must have the same rjpafGCp  
    %   length.  The output Z is a matrix with one column for every (N,M) a7v[l04  
    %   pair, and one row for every (R,THETA) pair. Hh/ -^G  
    % Io4:$w  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike rs 1*H  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Y)4Nydq  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral c~L6fvS  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Dt~}9HrU  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 8SCW.;0  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. $?/Xk%d+  
    % \_I)loPc8  
    %   The Zernike functions are an orthogonal basis on the unit circle. SJ~I r#  
    %   They are used in disciplines such as astronomy, optics, and d*\C^:Z  
    %   optometry to describe functions on a circular domain. Lx:N!RDw  
    % q5\LdI2  
    %   The following table lists the first 15 Zernike functions. D 5r   
    % wx"6",M  
    %       n    m    Zernike function           Normalization Er/5 ,  
    %       -------------------------------------------------- @Z=|$*9  
    %       0    0    1                                 1 t zW<&^  
    %       1    1    r * cos(theta)                    2 j]?0}Z*  
    %       1   -1    r * sin(theta)                    2 aWsKJo>j[#  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) da?th  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Bbt8fJA~  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) #Hn yE+tD  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) \2<yZCn  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) \(>$mtS:  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) a] wcA  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) k>0cTBY&  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) rIFC#Jd/  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) DN 8pJa  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) V\M!]Nnxr  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V+a%,sI  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) '3u]-GU2_  
    %       -------------------------------------------------- pTX'5   
    % etK,zEd  
    %   Example 1: ;gW|qb+#)j  
    % qVRO"/R  
    %       % Display the Zernike function Z(n=5,m=1) +#JhhW Zj(  
    %       x = -1:0.01:1; SQKY;p  
    %       [X,Y] = meshgrid(x,x); U)/Ul>dY  
    %       [theta,r] = cart2pol(X,Y); T4}?w  
    %       idx = r<=1; $9i5<16  
    %       z = nan(size(X)); tEX~72v  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ^$Io;*N4  
    %       figure 7fzyD  
    %       pcolor(x,x,z), shading interp wY ;8UN  
    %       axis square, colorbar !zkEh9G  
    %       title('Zernike function Z_5^1(r,\theta)') pnA]@FW  
    % +e]b,9.sR  
    %   Example 2: ]ifHA# z`~  
    % T17LYHIT  
    %       % Display the first 10 Zernike functions 8`~3MsE"  
    %       x = -1:0.01:1; <[5${)  
    %       [X,Y] = meshgrid(x,x); MJ"Mn^:/  
    %       [theta,r] = cart2pol(X,Y); }NBJ T4R  
    %       idx = r<=1; !6/IKh`J  
    %       z = nan(size(X)); 4"X>_Nt6  
    %       n = [0  1  1  2  2  2  3  3  3  3]; , sJfMY  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; =i5:*J  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; |AfQ_iT6c  
    %       y = zernfun(n,m,r(idx),theta(idx)); ?{z$ { bD  
    %       figure('Units','normalized') z57papo  
    %       for k = 1:10 ^$,kTU'=  
    %           z(idx) = y(:,k); ^oB1 &G  
    %           subplot(4,7,Nplot(k)) x0;}b-f  
    %           pcolor(x,x,z), shading interp pVa|o&,  
    %           set(gca,'XTick',[],'YTick',[]) wG?kcfu  
    %           axis square XXwhs-:o  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Mh.eAM8_  
    %       end U1|4vd9  
    % gwz _b  
    %   See also ZERNPOL, ZERNFUN2. xAz4ZXj=q  
    FC(cXPX}  
    %   Paul Fricker 11/13/2006 3 <lhoD  
    )Q j9kJq  
    E0Y/N?  
    % Check and prepare the inputs: h16Nr x  
    % ----------------------------- H.[&gm}p>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [}>6n72gNh  
        error('zernfun:NMvectors','N and M must be vectors.') +2 o|#`)i  
    end m.a1  
    lKwT5ma7  
    if length(n)~=length(m) gO%i5  
        error('zernfun:NMlength','N and M must be the same length.') RTY4%6]O  
    end <T/L.>p4  
    =l'_*B8  
    n = n(:); a4.: i  
    m = m(:); 'htA! KHF  
    if any(mod(n-m,2)) wEc5{ b5M  
        error('zernfun:NMmultiplesof2', ... <0 idG  
              'All N and M must differ by multiples of 2 (including 0).') YY<?w  
    end ?N*@o.  
    RcM0VbR"EU  
    if any(m>n) P]x+Q  
        error('zernfun:MlessthanN', ... wXGFq3`  
              'Each M must be less than or equal to its corresponding N.') @VS5Mg8  
    end a&VJ YAB  
    {-`OE  
    if any( r>1 | r<0 ) c]R![sa  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') g uWqHVSs  
    end ujqktrhuLb  
    CscJy0dB  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) q;Pz B4#  
        error('zernfun:RTHvector','R and THETA must be vectors.') c qyh#uWe  
    end ^ED>{UiNI  
    TC#B^m`'p  
    r = r(:); <sB45sNbU`  
    theta = theta(:); '|?r&-5 h  
    length_r = length(r); 2`U&,,-Mf  
    if length_r~=length(theta) eSBf;lr=  
        error('zernfun:RTHlength', ... , tj7'c$0  
              'The number of R- and THETA-values must be equal.') XJ?z{gXJ  
    end GZX!iT  
    @BhAFv,7  
    % Check normalization: kDa#yN\  
    % -------------------- )II,HT-LY  
    if nargin==5 && ischar(nflag) M':.b+xN  
        isnorm = strcmpi(nflag,'norm'); deY<+!  
        if ~isnorm becQ5w/~  
            error('zernfun:normalization','Unrecognized normalization flag.') ClZyQ=UAD  
        end [E7@W[xr  
    else .Q)"F /  
        isnorm = false; @il}0  
    end O^% ace1  
    .WE0T|qDX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N<(`+ ?  
    % Compute the Zernike Polynomials 8E%*o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :/l   
    e' VXyf  
    % Determine the required powers of r: Sd6^%YB  
    % ----------------------------------- 2Hwf:S'  
    m_abs = abs(m); 8!>pFVNJf  
    rpowers = []; R\amcQ 9  
    for j = 1:length(n) xyz86r ^u  
        rpowers = [rpowers m_abs(j):2:n(j)]; ^D[;JV  
    end *60)Vo.=  
    rpowers = unique(rpowers); dD<kNa}2  
    BIyG[y?qO  
    % Pre-compute the values of r raised to the required powers,  E/;YhFb[  
    % and compile them in a matrix: !:{_<C"D  
    % ----------------------------- ]#.#]}=  
    if rpowers(1)==0 ;gV8f{X{Z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %TgM-F,8  
        rpowern = cat(2,rpowern{:}); 1*jm9])#  
        rpowern = [ones(length_r,1) rpowern]; &W!@3O{~.  
    else # t Ki6u  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^dD?riFAk  
        rpowern = cat(2,rpowern{:}); 7S Zs/wWh%  
    end p~ItHwiT  
    _ 0E,@[  
    % Compute the values of the polynomials: ~vF o 0k(  
    % -------------------------------------- pBkPn+@  
    y = zeros(length_r,length(n)); rnE'gH(V'  
    for j = 1:length(n) 'WCTjTob/  
        s = 0:(n(j)-m_abs(j))/2; c= u ORt>  
        pows = n(j):-2:m_abs(j); /p"R}&z  
        for k = length(s):-1:1 Z4' v  
            p = (1-2*mod(s(k),2))* ... 7yl'!uz)9  
                       prod(2:(n(j)-s(k)))/              ... pE,BE%  
                       prod(2:s(k))/                     ... IA `  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... B.#0kjA}  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); W:J00rsv=`  
            idx = (pows(k)==rpowers); 8 K!a:{  
            y(:,j) = y(:,j) + p*rpowern(:,idx); wf1DvsJQl  
        end iwJgU b  
         iSlVe~ef  
        if isnorm E!M+37/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); bmpB$@  
        end ;7>--_?=  
    end +i =78  
    % END: Compute the Zernike Polynomials &ii =$4"R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "(qO}&b>  
    l/LUwDI{  
    % Compute the Zernike functions: ^(:Rbsl  
    % ------------------------------ i,T{SV  
    idx_pos = m>0; Rw`s O:eZ  
    idx_neg = m<0; H l@rS  
    &tIm  
    z = y; p?@D'  
    if any(idx_pos) n3\vq3^?  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Fu$sfq  
    end z16++LKmM  
    if any(idx_neg) [-ecKPx  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); i^l;PvIF  
    end FC#Q tu~J  
    l ,.;dw  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) zqkmsFH{  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. nDvWOt  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated xT/&'$@{)  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive o%a$m9I  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, zl5S)/A  
    %   and THETA is a vector of angles.  R and THETA must have the same pifgt  
    %   length.  The output Z is a matrix with one column for every P-value, AXCJFqk;  
    %   and one row for every (R,THETA) pair. "x11 YM{F  
    % Fwr,e;Z  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike By9/tB  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 7Fp2=j  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) vKeK]  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 "`k[ 4C  
    %   for all p. >+r2I%  
    % {`LV{ !  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 =3'wHl  
    %   Zernike functions (order N<=7).  In some disciplines it is e_I 8Jj4  
    %   traditional to label the first 36 functions using a single mode Syk^7l  
    %   number P instead of separate numbers for the order N and azimuthal w#XJ!f6*_9  
    %   frequency M. 3A5" %  
    % ! [X<>  
    %   Example: y[cAU:P?  
    % "'Q:%_;  
    %       % Display the first 16 Zernike functions So:89T  
    %       x = -1:0.01:1; *sTQ9 Kr  
    %       [X,Y] = meshgrid(x,x); s5.2gu|"%  
    %       [theta,r] = cart2pol(X,Y); T1E=<q4  
    %       idx = r<=1; Z& %61jGK  
    %       p = 0:15; ])`F$S  
    %       z = nan(size(X)); 5>HI/QG  
    %       y = zernfun2(p,r(idx),theta(idx)); FD<~?-  
    %       figure('Units','normalized') 8Y9mB #X  
    %       for k = 1:length(p) TsQMwV_h  
    %           z(idx) = y(:,k); G>Q{[m$  
    %           subplot(4,4,k) 7>nA;F 8_  
    %           pcolor(x,x,z), shading interp i=ba=-"Mt  
    %           set(gca,'XTick',[],'YTick',[]) ~4M]SX1z  
    %           axis square zri<'W  
    %           title(['Z_{' num2str(p(k)) '}']) __QT lj  
    %       end nT>?}/S  
    % ~LVa#  
    %   See also ZERNPOL, ZERNFUN. 3eB2= _V`  
    y& )z\8  
    %   Paul Fricker 11/13/2006 ,O2F}5|;  
    ()r DM@  
    #E#70vWp\O  
    % Check and prepare the inputs: Xf0pQ]8\  
    % ----------------------------- <ANKoPNie  
    if min(size(p))~=1 z|9 ^T@)  
        error('zernfun2:Pvector','Input P must be vector.') &~j"3G;e  
    end mp#5V c  
    ()7=(<x{  
    if any(p)>35 j_}e%,}  
        error('zernfun2:P36', ... |89`O^   
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... FUDM aI  
               '(P = 0 to 35).']) NY CkYI  
    end |y]#-T?)t  
    6ugBbP +^  
    % Get the order and frequency corresonding to the function number: yY1&h op  
    % ---------------------------------------------------------------- |peZ`O^ ~  
    p = p(:); S^_na]M"4  
    n = ceil((-3+sqrt(9+8*p))/2); Eb.{M  
    m = 2*p - n.*(n+2); AOTI&v  
    -Xj+7}4  
    % Pass the inputs to the function ZERNFUN: kxKBI{L  
    % ---------------------------------------- h\1_$ac  
    switch nargin QKVZ![Y!s  
        case 3 6)TFb,  
            z = zernfun(n,m,r,theta); Nk 7Q  
        case 4 a`T{ 5*@  
            z = zernfun(n,m,r,theta,nflag); Q>.-u6(&  
        otherwise 39OZZaWL  
            error('zernfun2:nargin','Incorrect number of inputs.') .G^ .kg ,  
    end s~GO-v7  
    `Z{7Ut^)  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ^*iZN =\  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. GwpJxiFgk  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of j88H3bi0  
    %   order N and frequency M, evaluated at R.  N is a vector of _$1W:!f4  
    %   positive integers (including 0), and M is a vector with the /P,J);Y  
    %   same number of elements as N.  Each element k of M must be a 0|d%@  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) *s_)E 2  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is nkv zv  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix BM:je(*p  
    %   with one column for every (N,M) pair, and one row for every B&tl6?7h  
    %   element in R. lT*Hj.  
    % +lE 9*Gs_$  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- b-ZvEDCR  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is e\/Lcng  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to y*P[* /g  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 TVKuvKH8U  
    %   for all [n,m]. N2C^'dFj  
    % w2Pkw'a{  
    %   The radial Zernike polynomials are the radial portion of the (zUERw\a X  
    %   Zernike functions, which are an orthogonal basis on the unit \p.ku%{  
    %   circle.  The series representation of the radial Zernike Q~uj:A]n<  
    %   polynomials is GCc@ :*4[  
    % QarA.Ne~  
    %          (n-m)/2 "Sl";.   
    %            __ 3q<\ \8Y*  
    %    m      \       s                                          n-2s #Jg )HU9  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r _t3n<  
    %    n      s=0 -p9|l%W  
    % (]rtBeT  
    %   The following table shows the first 12 polynomials. U2!9Tl9".  
    % =eYrz@,  
    %       n    m    Zernike polynomial    Normalization Xa+ u>1"2"  
    %       --------------------------------------------- Z5\u9E"]  
    %       0    0    1                        sqrt(2) '%kk&&3'  
    %       1    1    r                           2 /)6<`S(  
    %       2    0    2*r^2 - 1                sqrt(6) d&t |Y:,8  
    %       2    2    r^2                      sqrt(6) C 2FewsRz  
    %       3    1    3*r^3 - 2*r              sqrt(8) r\a9<nZ{  
    %       3    3    r^3                      sqrt(8) +K]kGF  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) k_$w+Q  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) vxK}f*d  
    %       4    4    r^4                      sqrt(10) YG<?|AS/  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Q+gQ"l,95  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 'Aai.PE:  
    %       5    5    r^5                      sqrt(12) |no '^  
    %       --------------------------------------------- =p:D_b  
    % #\o VbVq  
    %   Example: 1+v)#Wj  
    % b4i=eI8  
    %       % Display three example Zernike radial polynomials DTPYCG&%  
    %       r = 0:0.01:1; #%Uk}5;-  
    %       n = [3 2 5]; wF[^?K '  
    %       m = [1 2 1]; 79=w]y  
    %       z = zernpol(n,m,r); V#=o<  
    %       figure 4)i/B99k  
    %       plot(r,z) rl[&s\[  
    %       grid on u:NSPAD)  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') M+9G^o)u  
    % ^.M*pe  
    %   See also ZERNFUN, ZERNFUN2. vEOoG>'Zq  
    >kd&>)9v  
    % A note on the algorithm. &Nt4dp`qj  
    % ------------------------ *h$Z:p-g  
    % The radial Zernike polynomials are computed using the series +QqYf1@F  
    % representation shown in the Help section above. For many special }LN +V~  
    % functions, direct evaluation using the series representation can St^s"A  
    % produce poor numerical results (floating point errors), because a3sXl+$D@  
    % the summation often involves computing small differences between d7qHUx'=z  
    % large successive terms in the series. (In such cases, the functions 2D,9$ 0k_]  
    % are often evaluated using alternative methods such as recurrence [0w @0?[  
    % relations: see the Legendre functions, for example). For the Zernike _T7tq  
    % polynomials, however, this problem does not arise, because the ?`3` azfM  
    % polynomials are evaluated over the finite domain r = (0,1), and f^Lw3|rq4  
    % because the coefficients for a given polynomial are generally all ,?P@ :S<8  
    % of similar magnitude. )E'iC  
    % "(>P=  
    % ZERNPOL has been written using a vectorized implementation: multiple MyXgp>?~T  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ECWn/4Aws  
    % values can be passed as inputs) for a vector of points R.  To achieve V \,Z (  
    % this vectorization most efficiently, the algorithm in ZERNPOL cF7I  
    % involves pre-determining all the powers p of R that are required to ]4ya$%A  
    % compute the outputs, and then compiling the {R^p} into a single j ~:Dr   
    % matrix.  This avoids any redundant computation of the R^p, and CD;C z*c  
    % minimizes the sizes of certain intermediate variables. i"p)%q~ z  
    % qe8dpI;  
    %   Paul Fricker 11/13/2006 l}A8  
    8A~5@  
    !'Q/9%g  
    % Check and prepare the inputs: %(79;#2`  
    % ----------------------------- Ph'*s{   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %qfql  
        error('zernpol:NMvectors','N and M must be vectors.') DJ2EV^D+P  
    end SxdH %agM  
    A]id*RtY  
    if length(n)~=length(m) > SU2Jw  
        error('zernpol:NMlength','N and M must be the same length.') gBA UrY%]  
    end ]cdKd)  
    nlQ<Aa-%  
    n = n(:); +1zCb=;!{  
    m = m(:); @kw#\%Uz  
    length_n = length(n); ],YIEOx6  
    vr+O)/P})  
    if any(mod(n-m,2)) ^Qt4}V=  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') *4"s,1?@BG  
    end B{^o}:e  
    Sp3?I2 o  
    if any(m<0) rV>/:FG  
        error('zernpol:Mpositive','All M must be positive.') po~V{>fUm  
    end 0!!b(X(  
    vtM!?#  
    if any(m>n) ~3< Li}W  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') { K'QE0'x  
    end [XK Ke  
    :biM}L  
    if any( r>1 | r<0 ) n>T1KC%  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') c%9wI*l  
    end k\W%^Z  
    J*?BwmD'8  
    if ~any(size(r)==1) Bt[OGa(q  
        error('zernpol:Rvector','R must be a vector.') m{4e+&S|  
    end &rj3UF@hb  
    u4*7 n-(  
    r = r(:); %T4htZa  
    length_r = length(r); ?9 hw]Q6r}  
    /^v?Q9=Y  
    if nargin==4 m`l3@ Z  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Xo]QV.n  
        if ~isnorm 28J ; 9  
            error('zernpol:normalization','Unrecognized normalization flag.') @|! 9~F  
        end STmn%&  
    else iTJSW  
        isnorm = false; Ta^l1]9.*  
    end E#?*6/  
    W&23M26"{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ""Nu["|E  
    % Compute the Zernike Polynomials [zmx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U9GmkXRix  
     yG -1g0  
    % Determine the required powers of r: __<u!;f  
    % ----------------------------------- SEsc"l8  
    rpowers = []; *IL x-D5qr  
    for j = 1:length(n) wN1%;~?7  
        rpowers = [rpowers m(j):2:n(j)]; p"" #Gbwj  
    end PI@/jh  
    rpowers = unique(rpowers); A??(}F L  
    h&d%#6mB  
    % Pre-compute the values of r raised to the required powers, foY=?mbL  
    % and compile them in a matrix: <8Y;9N|94!  
    % ----------------------------- &iCE/  
    if rpowers(1)==0 )f(.{M  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ljg2P5  
        rpowern = cat(2,rpowern{:}); FRa@T N/Ic  
        rpowern = [ones(length_r,1) rpowern]; 2K?~)q&t*  
    else 'ap<]mf2  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); wO:!B\e  
        rpowern = cat(2,rpowern{:}); $OOZ-+8  
    end ,Y 1&[  
    ivL}\~L  
    % Compute the values of the polynomials: gx+bKGB`  
    % -------------------------------------- OL+dx`Y  
    z = zeros(length_r,length_n); 3J t_=!qlo  
    for j = 1:length_n V?"X0>]0  
        s = 0:(n(j)-m(j))/2; g}HB|$P7  
        pows = n(j):-2:m(j); r~ gjn`W  
        for k = length(s):-1:1 W'2T7ha Es  
            p = (1-2*mod(s(k),2))* ... 9+<%74|,  
                       prod(2:(n(j)-s(k)))/          ... BZAeg">3  
                       prod(2:s(k))/                 ... V mxVE=l  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... u;1/.`NPB  
                       prod(2:((n(j)+m(j))/2-s(k))); h'Tn&2r6  
            idx = (pows(k)==rpowers); 9$[I~I#z  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 3k)W0]:|<  
        end R  Fgy  
         F\&Sn1>k  
        if isnorm -<rQOPH%  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); >s#[dr\ww  
        end VA4>!t)  
    end 2uonT,W  
    =@%;6`AVcp  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  b?-%Uzp<  
    ogv86d  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 <[xxCW(2  
    uR"srn;^  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)