切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11514阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 A3S<.. g2  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! L>a  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ,^x4sA[/  
     k7>|q"0C  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 y6IXdW  
    FcRW;e8-  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) [ e8x&{L-_  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. n':!,a[  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of pFm=y#!t  
    %   order N and frequency M, evaluated at R.  N is a vector of sk 2-5S  
    %   positive integers (including 0), and M is a vector with the %<\6TZr  
    %   same number of elements as N.  Each element k of M must be a +]|Z%;im  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) $YXMI",tt<  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is r)1'ePI"  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix %uoQ9lD'  
    %   with one column for every (N,M) pair, and one row for every 0k'e:AjP  
    %   element in R. ynB_"mg  
    % %rF?dvb;?  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- BA:yQ  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is !j\" w p  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to }->.k/vc  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 H{AMZyV0/d  
    %   for all [n,m]. 1=nUW":  
    % rC7``#5  
    %   The radial Zernike polynomials are the radial portion of the TeWMp6u,r  
    %   Zernike functions, which are an orthogonal basis on the unit Hzhceeh_+  
    %   circle.  The series representation of the radial Zernike Mze;k3  
    %   polynomials is [tH-D$V  
    % 5hbJOo0BZ  
    %          (n-m)/2 " beQZG  
    %            __ !bD@aVf?5  
    %    m      \       s                                          n-2s d @*GUmJ  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 5|I[>Su  
    %    n      s=0 \(PohwWWo  
    % xy<`#  
    %   The following table shows the first 12 polynomials. r&2~~_d3y  
    % N~?{UOZd  
    %       n    m    Zernike polynomial    Normalization e.*%K!(  
    %       --------------------------------------------- nZ_v/?O  
    %       0    0    1                        sqrt(2) Maqf[ Vky  
    %       1    1    r                           2 Yyfq  
    %       2    0    2*r^2 - 1                sqrt(6) 1N\D5g3  
    %       2    2    r^2                      sqrt(6) HeK h>  
    %       3    1    3*r^3 - 2*r              sqrt(8) bO;(bE m@  
    %       3    3    r^3                      sqrt(8) -@F fU2  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Y9=(zOqv  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Y];Ycj;  
    %       4    4    r^4                      sqrt(10) >F@qpjoQE  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) t9_E$w^U  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 4#(ZNP  
    %       5    5    r^5                      sqrt(12) WA$>pG5s  
    %       --------------------------------------------- )g|xpb  
    % #$1og=  
    %   Example: 97,rE$bC  
    % Xwa_3Xm*Le  
    %       % Display three example Zernike radial polynomials ZO7&vF}  
    %       r = 0:0.01:1; ]=EM@  
    %       n = [3 2 5]; X]y )ZF26  
    %       m = [1 2 1]; 9ktEm|F3  
    %       z = zernpol(n,m,r); M0' a9.d  
    %       figure 3^ StIw{X  
    %       plot(r,z) axk"^gps  
    %       grid on ]}mxY vu_i  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') cM&2SRBZ  
    % %y<ejM  
    %   See also ZERNFUN, ZERNFUN2. \@~UDP]7  
    kL90&nP   
    % A note on the algorithm. /:\3 \{?0m  
    % ------------------------ Vi]c%*k  
    % The radial Zernike polynomials are computed using the series @+Y8*Rj\3  
    % representation shown in the Help section above. For many special mF09U(ci  
    % functions, direct evaluation using the series representation can 0fs$#j  
    % produce poor numerical results (floating point errors), because T}D<Sc  
    % the summation often involves computing small differences between ;XC@ =RpX  
    % large successive terms in the series. (In such cases, the functions Y e+Ay  
    % are often evaluated using alternative methods such as recurrence _ OaRY]  
    % relations: see the Legendre functions, for example). For the Zernike MqKye8h9f  
    % polynomials, however, this problem does not arise, because the C*I(|.i@  
    % polynomials are evaluated over the finite domain r = (0,1), and q+a.G2S  
    % because the coefficients for a given polynomial are generally all e9^2,:wLB  
    % of similar magnitude. XMRNuEU  
    % xAwf49N~  
    % ZERNPOL has been written using a vectorized implementation: multiple 8z<r.joxC  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ue8qIZH  
    % values can be passed as inputs) for a vector of points R.  To achieve =3 +l  
    % this vectorization most efficiently, the algorithm in ZERNPOL tVqmn  
    % involves pre-determining all the powers p of R that are required to {^Pq\h;  
    % compute the outputs, and then compiling the {R^p} into a single t/Z:)4Z  
    % matrix.  This avoids any redundant computation of the R^p, and O}#yijU3e  
    % minimizes the sizes of certain intermediate variables. -@IL"U6  
    % O4No0xeWo  
    %   Paul Fricker 11/13/2006 q6wr=OWD  
    `!G7k  
    ]$M<]w,IJ2  
    % Check and prepare the inputs: *o' 4,+=am  
    % ----------------------------- cgj.e  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) M;Wha;%E"  
        error('zernpol:NMvectors','N and M must be vectors.') 5]jIg < j  
    end p8,0lo  
    }t>q9bZ9z  
    if length(n)~=length(m) b>~RSO*  
        error('zernpol:NMlength','N and M must be the same length.') 2 [!Mx&^  
    end HXJ9xkrr  
    f]d!hz!  
    n = n(:); )9P&=  
    m = m(:); {5Eyr$  
    length_n = length(n); j5%qv(w  
    nDlO5 pe"d  
    if any(mod(n-m,2)) 3AlqBXE"Z<  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ?z"KnR+?Q  
    end ~2/{3m{3A  
    hkW{88  
    if any(m<0) gvnj&h.GV  
        error('zernpol:Mpositive','All M must be positive.') -{9Gagy2&  
    end zH'2s-.bi  
    y67uH4&Vm  
    if any(m>n) `W[+%b  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 4VIg>EL*  
    end =J@`0H"  
    7CrpUh  
    if any( r>1 | r<0 ) RI@*O6\/I  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 3:|-#F*k{  
    end * Zd_ HJi  
    K!b8= K`  
    if ~any(size(r)==1) Sue 6+p  
        error('zernpol:Rvector','R must be a vector.') 2z98 3^  
    end F$*3@Y  
    *`KrVu 6s  
    r = r(:); Q[s 2}Z!N;  
    length_r = length(r); *=vlqpG  
    WL\^F#:  
    if nargin==4 " >6&+^BN'  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); jX|=n.#q  
        if ~isnorm 8Z:Ezg3^  
            error('zernpol:normalization','Unrecognized normalization flag.') M^ 5e~y  
        end ?mOg@) wx  
    else a{`"68  
        isnorm = false; +p?hGoF=  
    end S!7g)  
    w &vhWq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O|UxFnB}  
    % Compute the Zernike Polynomials <F=Dj*]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lA{(8sKN  
    l(Cf7o!  
    % Determine the required powers of r: Lht[g9  
    % ----------------------------------- 9bEM#Hj  
    rpowers = []; ,QS'$n  
    for j = 1:length(n) \Hs|$   
        rpowers = [rpowers m(j):2:n(j)]; 0 [i+  
    end \/,g VT  
    rpowers = unique(rpowers); uMDtdC8  
    ~Oh=   
    % Pre-compute the values of r raised to the required powers, l7Lj[d<n  
    % and compile them in a matrix: ? : md  
    % ----------------------------- 5w-JPjH  
    if rpowers(1)==0 NV#')+Ba  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )nnCCR S6  
        rpowern = cat(2,rpowern{:}); E!@/NE\-  
        rpowern = [ones(length_r,1) rpowern]; MW]8;`|jC  
    else 1CiA 8  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); MOyT< $  
        rpowern = cat(2,rpowern{:}); kr{)  
    end o PaZ  
    ! IgoL&=  
    % Compute the values of the polynomials: a)S(p1BGg  
    % -------------------------------------- i>"dBJh]b  
    z = zeros(length_r,length_n); .\)k+ R  
    for j = 1:length_n !2tw,QM  
        s = 0:(n(j)-m(j))/2; sVcdj|j  
        pows = n(j):-2:m(j); A|C_np^z2  
        for k = length(s):-1:1 \[k% )_  
            p = (1-2*mod(s(k),2))* ... K6(.KEW  
                       prod(2:(n(j)-s(k)))/          ... 1uC;$Aj6:  
                       prod(2:s(k))/                 ... #gI&lO*\gr  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 3q CHh  
                       prod(2:((n(j)+m(j))/2-s(k))); od(:Y(4  
            idx = (pows(k)==rpowers); G)~MbesJ  
            z(:,j) = z(:,j) + p*rpowern(:,idx); RnSm]}?  
        end NGj"ByVjx  
         7&px+155  
        if isnorm 4 iKR{P6  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); IwM8#6;S~  
        end v D&Kae<  
    end IW]*i?L  
    t]r7cA  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 'jN/~I  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. []r T? -  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated CvP`2S\  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive OFIMi^@  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, QS5H >5M)  
    %   and THETA is a vector of angles.  R and THETA must have the same \.kTe<.:_  
    %   length.  The output Z is a matrix with one column for every P-value, pY, O_ t$  
    %   and one row for every (R,THETA) pair. -$OD}5ku#  
    % >"O1`xdG  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike @7 )Z  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) &q"'_4  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) n'ehB%"  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 [qW<D/@  
    %   for all p. 2q/nAQ+  
    % [pr 9 $Jr  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 X:R%1+&*  
    %   Zernike functions (order N<=7).  In some disciplines it is m:b^,2"g  
    %   traditional to label the first 36 functions using a single mode y%2%^wF  
    %   number P instead of separate numbers for the order N and azimuthal 8i[".9}G\  
    %   frequency M. 6hLNJ  
    % T7^ulG1'  
    %   Example: D9,e3.?p  
    % K q/~T7Ru  
    %       % Display the first 16 Zernike functions _IC,9bbg  
    %       x = -1:0.01:1; ([[)Ub$U  
    %       [X,Y] = meshgrid(x,x); !8we8)7  
    %       [theta,r] = cart2pol(X,Y); 8g.AT@ ,Q  
    %       idx = r<=1; Is<x31R  
    %       p = 0:15; Gee~>:_Q{J  
    %       z = nan(size(X)); Fgskb"k/  
    %       y = zernfun2(p,r(idx),theta(idx)); nZ&T8@m  
    %       figure('Units','normalized') Mp^^!AP9  
    %       for k = 1:length(p) tSI& "-   
    %           z(idx) = y(:,k); _k6x=V;9g  
    %           subplot(4,4,k) `}[VwQ  
    %           pcolor(x,x,z), shading interp FPvuzBJ  
    %           set(gca,'XTick',[],'YTick',[]) tF<^9stM  
    %           axis square %A8Pkr<&E  
    %           title(['Z_{' num2str(p(k)) '}']) W)|c[Q\  
    %       end /SbSID_a  
    % S^|$23}  
    %   See also ZERNPOL, ZERNFUN. nt drXg  
    /3OC7!~;fM  
    %   Paul Fricker 11/13/2006 yI3Q|731)  
    GSC{F#:z  
    i5.?g<.H  
    % Check and prepare the inputs: '`9%'f)  
    % ----------------------------- gW'P`Oxw  
    if min(size(p))~=1 ;I[ht  
        error('zernfun2:Pvector','Input P must be vector.') '$n:CNha  
    end tCuN?_ UG  
    2T//%ys=  
    if any(p)>35 f#'8"ff*1  
        error('zernfun2:P36', ... gTqeJWX9wP  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Jq=00fcT+  
               '(P = 0 to 35).']) g@<sU0B  
    end q1U&vZ3]c  
    .=>\Qq%  
    % Get the order and frequency corresonding to the function number: j|&{e91,?  
    % ---------------------------------------------------------------- l#X=]xQf  
    p = p(:); BPwI8\V  
    n = ceil((-3+sqrt(9+8*p))/2); f0/jwfL  
    m = 2*p - n.*(n+2); UN-T ^  
    o9_(DJ<{  
    % Pass the inputs to the function ZERNFUN: Y8D7<V~Md  
    % ---------------------------------------- 44'=;/  
    switch nargin - P\S>G.  
        case 3 [u/zrpTk  
            z = zernfun(n,m,r,theta); t9?R/:B%  
        case 4 =$^Wkau  
            z = zernfun(n,m,r,theta,nflag); CWE Ejl  
        otherwise f@wsS m  
            error('zernfun2:nargin','Incorrect number of inputs.') j5PaSk&o=  
    end %T`4!:vy  
    ,:v.L}+Z  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 eNI kiJ$uS  
    function z = zernfun(n,m,r,theta,nflag) skk-.9  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. EO4" Z@ji  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N >Sc$R0  
    %   and angular frequency M, evaluated at positions (R,THETA) on the mtSNl|O&{  
    %   unit circle.  N is a vector of positive integers (including 0), and s,eld@  
    %   M is a vector with the same number of elements as N.  Each element xaGVu0q  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) r4;5b s6wm  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, MILIu;[{#r  
    %   and THETA is a vector of angles.  R and THETA must have the same ddUjs8VvJ  
    %   length.  The output Z is a matrix with one column for every (N,M) {toyQ)C7  
    %   pair, and one row for every (R,THETA) pair. el <<D  
    % Fy}MXe"f  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [<#<:h &\  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), B6tcKh9d,  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral E[)7tr  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, qT4I Y$h  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 8gVxiFjo  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. J{nyo1A  
    % s=H/b$v  
    %   The Zernike functions are an orthogonal basis on the unit circle. , aRJ!AZ  
    %   They are used in disciplines such as astronomy, optics, and l%sp[uqcg  
    %   optometry to describe functions on a circular domain. p?dGZ2` [I  
    % 8\qCj.>S  
    %   The following table lists the first 15 Zernike functions. ka?IX9t\  
    % w\"n!^ms  
    %       n    m    Zernike function           Normalization QOkE\ro  
    %       -------------------------------------------------- ,W)IVc   
    %       0    0    1                                 1 ,cGwtt(  
    %       1    1    r * cos(theta)                    2 &=s|  
    %       1   -1    r * sin(theta)                    2 Vu|Br  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) dO 1-c`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) m wRL zN  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Pe+ 8~0o=R  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ^7ea6G"  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ch5`fm  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) br34Eh  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) &xGfkCP.]  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) T3u5al  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y{Y;EY4  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 1jUhG2y  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^*cMry  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Q.pEUDq/  
    %       -------------------------------------------------- P`Hd*xh".j  
    % y(c|5CQ  
    %   Example 1: _SBp66 r  
    % Ie^Dn!0S  
    %       % Display the Zernike function Z(n=5,m=1) s0XRL1kWr  
    %       x = -1:0.01:1; +!L_E6pyXE  
    %       [X,Y] = meshgrid(x,x); ADLa.{  
    %       [theta,r] = cart2pol(X,Y); e6{[o@aM{  
    %       idx = r<=1; p0[,$$pM  
    %       z = nan(size(X)); )}k?r5g  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); =M/ UHOY  
    %       figure RB lOTQjv  
    %       pcolor(x,x,z), shading interp Q !RVD*(  
    %       axis square, colorbar lJ2|jFY9  
    %       title('Zernike function Z_5^1(r,\theta)') #FQm/Q<0  
    % I9:G9  
    %   Example 2: )MD*)O  
    % ctc`^#q  
    %       % Display the first 10 Zernike functions E1l\~%A  
    %       x = -1:0.01:1; `L"p)5H  
    %       [X,Y] = meshgrid(x,x); m]-v IUpb  
    %       [theta,r] = cart2pol(X,Y); ;G4HMtL  
    %       idx = r<=1; gq/ePSa  
    %       z = nan(size(X)); AjL?Qh4  
    %       n = [0  1  1  2  2  2  3  3  3  3]; aiR|.opIb  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; (:fE _H2z  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Y6;0khp  
    %       y = zernfun(n,m,r(idx),theta(idx)); A<YZBR_  
    %       figure('Units','normalized') D)O6| DiO  
    %       for k = 1:10 7/D9n9F  
    %           z(idx) = y(:,k); l# !@{ <  
    %           subplot(4,7,Nplot(k)) (. quX@w"m  
    %           pcolor(x,x,z), shading interp uhw5O9  
    %           set(gca,'XTick',[],'YTick',[]) {0)WS}&  
    %           axis square qa0JQ_?o]  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R@7GCj  
    %       end H%01&u  
    % vHI"C %  
    %   See also ZERNPOL, ZERNFUN2. d5sGkR`(  
    !0. 5  
    %   Paul Fricker 11/13/2006 ?(,5eg  
    $@u^Jt, ?  
    j quSR=  
    % Check and prepare the inputs: VH7iH|eW  
    % ----------------------------- cT>z  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) WfTdD.Xx  
        error('zernfun:NMvectors','N and M must be vectors.') a_pCjG89  
    end !7ZfT?&  
    Ltic_cjYd?  
    if length(n)~=length(m) j0pvLZjM  
        error('zernfun:NMlength','N and M must be the same length.') >+; b>  
    end c>U{,z  
    ek{PA!9Sk  
    n = n(:); >Rki[SNb-b  
    m = m(:); MR)KLM0  
    if any(mod(n-m,2)) ,I2re G  
        error('zernfun:NMmultiplesof2', ... L>5!3b=b  
              'All N and M must differ by multiples of 2 (including 0).') M;p q2$   
    end :LIKp;  
    rt@-Pw!B  
    if any(m>n) y`B!6p 5j  
        error('zernfun:MlessthanN', ... "mP*}VF  
              'Each M must be less than or equal to its corresponding N.') e}Af"LI  
    end Pu%>j'A  
    $MJDB  
    if any( r>1 | r<0 ) ^pQ;0[9Y0  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') "PX3%II  
    end SG|i/K|7  
    (y+5d00  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) kkE)zF   
        error('zernfun:RTHvector','R and THETA must be vectors.') H`6Jq?\  
    end eVCkPv *  
    : 7DVc&0  
    r = r(:); h$ETH1Ue  
    theta = theta(:); dVmAMQk.g  
    length_r = length(r); eR* ]<0=  
    if length_r~=length(theta) #g`cih=QL  
        error('zernfun:RTHlength', ... ]g-qWSKU  
              'The number of R- and THETA-values must be equal.') w7t"&=pF7  
    end W'2-3J  
    }rMpp[  
    % Check normalization: Q RmQ>  
    % -------------------- a@=36gx)  
    if nargin==5 && ischar(nflag)  0[!gk]p  
        isnorm = strcmpi(nflag,'norm'); .vOpU4  
        if ~isnorm }Mb'tGW  
            error('zernfun:normalization','Unrecognized normalization flag.') @#--dOWYR  
        end C"` 'Re5)  
    else KlqJ EtO_  
        isnorm = false; #<i> <EG  
    end .Qi1I  
    O->(9k<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vzrD"  
    % Compute the Zernike Polynomials :qSi>KCGh  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~ %YTJS  
    q;a*gqt   
    % Determine the required powers of r: X @jYQ.  
    % ----------------------------------- < ,cIc]eX  
    m_abs = abs(m); ?nGf Wx^  
    rpowers = []; ]Y: W[p  
    for j = 1:length(n) qT>& v_<  
        rpowers = [rpowers m_abs(j):2:n(j)]; _:=OHURc  
    end dR, NC-*  
    rpowers = unique(rpowers); +i_f.Ipp  
    .6Lhy3x  
    % Pre-compute the values of r raised to the required powers, w4MMo  
    % and compile them in a matrix: ~CdseSo 9  
    % ----------------------------- 6k=Wt7C  
    if rpowers(1)==0 }L7F g%,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U*fj5  
        rpowern = cat(2,rpowern{:}); tG ^?fc  
        rpowern = [ones(length_r,1) rpowern]; KsU&<eQ  
    else D*r Zaqy  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [BR}4(7  
        rpowern = cat(2,rpowern{:}); 79B`w #  
    end GxBPEIim  
    s1vYZ  
    % Compute the values of the polynomials: %b%<g%@i  
    % -------------------------------------- A8Z?[,Mq!  
    y = zeros(length_r,length(n)); E?h2e~ ,]  
    for j = 1:length(n) ,, #rv-*  
        s = 0:(n(j)-m_abs(j))/2; !2M[  
        pows = n(j):-2:m_abs(j); GKx,6E#JM  
        for k = length(s):-1:1 VJtTbt;>  
            p = (1-2*mod(s(k),2))* ... TN@JPoH  
                       prod(2:(n(j)-s(k)))/              ... pW^ ?g|_}  
                       prod(2:s(k))/                     ... Q2pboZ86  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... QDT{Xg* I  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); \C2P{q/m  
            idx = (pows(k)==rpowers); x7kg_`\U  
            y(:,j) = y(:,j) + p*rpowern(:,idx); .,K?\WZ  
        end !#gE'(J;c  
         kt0{-\ p  
        if isnorm o-<_X&"a|5  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Bsk2&17z  
        end ;Owu:}   
    end ggsi`Z{j?  
    % END: Compute the Zernike Polynomials xI\s9_"Qy  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TvG:T{jwy  
    ! E#.WX  
    % Compute the Zernike functions: svRaU7<UDN  
    % ------------------------------ }vA nP]!A5  
    idx_pos = m>0; A*U'SCg(G  
    idx_neg = m<0; V42*4hskL  
    eh/OCzWH  
    z = y; f4y;K>u7p  
    if any(idx_pos) z'D{:q  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); WHLKf  
    end Y[]+C8"O  
    if any(idx_neg) -2ij;pkIW$  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); x,G6`|Hl  
    end 7-g4S]r<  
    U7%pOpO!  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的