切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11560阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 zGaqYbQD  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ~A03J:Yc7  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)   \|C*b<  
    q<[o 4qY  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 O-!Q~;3][  
    3Xm> 3  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Hp5.F>-  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. CR;E*I${  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of *9|p}q9n  
    %   order N and frequency M, evaluated at R.  N is a vector of PXML1.r$Q  
    %   positive integers (including 0), and M is a vector with the VVcli*  
    %   same number of elements as N.  Each element k of M must be a K_k'#j~*?  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) }R%*J  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is hj{)6dBX%  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Wf-XH|j[  
    %   with one column for every (N,M) pair, and one row for every JSID@ n<b?  
    %   element in R. gk;hpO  
    % I8c:U2D  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- !yr4B "kz  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Db  !8N  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Ikw.L  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 IusZYB  
    %   for all [n,m]. :4\%a4{Ie  
    % YV} "#  
    %   The radial Zernike polynomials are the radial portion of the 8(\J~I[^  
    %   Zernike functions, which are an orthogonal basis on the unit ;-BN~1Jg  
    %   circle.  The series representation of the radial Zernike $$EEhy  
    %   polynomials is ~gHn>]S0  
    % T8%!l40v  
    %          (n-m)/2 O#p_rfQ  
    %            __ qz2`%8}F)  
    %    m      \       s                                          n-2s !\'H{,G  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r QcJC:sP\>  
    %    n      s=0 !%$,S=_F  
    % %nG>3.%  
    %   The following table shows the first 12 polynomials. s {^wr6B  
    % #)@#Qd  
    %       n    m    Zernike polynomial    Normalization f~/hsp~Hp  
    %       --------------------------------------------- ijvDFyN>  
    %       0    0    1                        sqrt(2) 8 nL9#b  
    %       1    1    r                           2 EUVD)+it  
    %       2    0    2*r^2 - 1                sqrt(6) |QMmF"0  
    %       2    2    r^2                      sqrt(6) oI'& &Bt  
    %       3    1    3*r^3 - 2*r              sqrt(8) sI h5cT  
    %       3    3    r^3                      sqrt(8) wwQ2\2w>Hm  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) /y|ZAN  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) FP}I+Ys  
    %       4    4    r^4                      sqrt(10) Ryh 0r  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) :U=3*f.{  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) qL`yaU  
    %       5    5    r^5                      sqrt(12) w w[|| =  
    %       --------------------------------------------- fM|s,'Q1x  
    % A?$-Uqb"  
    %   Example: 87W!R<G  
    % 3 S*KjY'@  
    %       % Display three example Zernike radial polynomials /8nUecr  
    %       r = 0:0.01:1; 4_sJ0=z-  
    %       n = [3 2 5]; pLCS\AUTsv  
    %       m = [1 2 1]; <m\<yZ2aa  
    %       z = zernpol(n,m,r); G 9 (*F  
    %       figure gat;Er  
    %       plot(r,z) {MyI3mvA  
    %       grid on -iY-rzW  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') *uf)t,%  
    % *9xxX,QT8Q  
    %   See also ZERNFUN, ZERNFUN2. jT< I`K*  
    Di27=_J  
    % A note on the algorithm. Q672iR\#)  
    % ------------------------ 43-Bx`6\  
    % The radial Zernike polynomials are computed using the series g5"I{ol5T~  
    % representation shown in the Help section above. For many special I8% -ii  
    % functions, direct evaluation using the series representation can 9_F&G('V{a  
    % produce poor numerical results (floating point errors), because BDzAmrO<  
    % the summation often involves computing small differences between J/E''*  
    % large successive terms in the series. (In such cases, the functions 3$q#^UvD  
    % are often evaluated using alternative methods such as recurrence w{ |`F>f9  
    % relations: see the Legendre functions, for example). For the Zernike  8y  
    % polynomials, however, this problem does not arise, because the -mGG:#yP  
    % polynomials are evaluated over the finite domain r = (0,1), and /5z,G r  
    % because the coefficients for a given polynomial are generally all <|.]$QSi  
    % of similar magnitude. <8Tp]1z  
    % F$jy~W_  
    % ZERNPOL has been written using a vectorized implementation: multiple Otx>S' 5  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] X }i2qv  
    % values can be passed as inputs) for a vector of points R.  To achieve ,x!r^YO=  
    % this vectorization most efficiently, the algorithm in ZERNPOL q }>3NCh  
    % involves pre-determining all the powers p of R that are required to MRK=\qjD  
    % compute the outputs, and then compiling the {R^p} into a single Y\WVkd(+G  
    % matrix.  This avoids any redundant computation of the R^p, and 8~t8^eBg  
    % minimizes the sizes of certain intermediate variables. HeO&p@  
    % Yy 0" G  
    %   Paul Fricker 11/13/2006 a^|9rho<  
    4lpcJ+:o  
    iY?#R&  
    % Check and prepare the inputs: )=X g  
    % ----------------------------- wIR"!C>LE  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) iGz*4^ %  
        error('zernpol:NMvectors','N and M must be vectors.') u-s*k*VHoc  
    end r|*_KQq  
    s8 MQ:eAP  
    if length(n)~=length(m) rc<Ix  
        error('zernpol:NMlength','N and M must be the same length.') n1JV)4Mv  
    end .9=4Af  
    \'[tfSB  
    n = n(:); ]+m 2pEO  
    m = m(:); = M4:nt  
    length_n = length(n); (ER9.k2  
    =)c-Xz  
    if any(mod(n-m,2)) ti6X=@ P:  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') [>pBz3fn,  
    end SCe$v76p#  
    ot2zY dWAz  
    if any(m<0) 3{t[>O;  
        error('zernpol:Mpositive','All M must be positive.') *`wz  
    end S ~h*U2  
    =[!(s/+>L  
    if any(m>n) CueC![pj  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') $N}t)iA  
    end PN 8#T:E  
    .K(9=yh  
    if any( r>1 | r<0 ) (`E`xb@E,=  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') =Hn--DEMg  
    end <;W-!R759  
    *c=vEQn-  
    if ~any(size(r)==1) 4k3pm&  
        error('zernpol:Rvector','R must be a vector.') Qc?W;Q+  
    end z_lKq}^~6  
    g] }!  
    r = r(:); 1P1h);*Z  
    length_r = length(r); EirZ}fDJzB  
    l4U*Lv>   
    if nargin==4 f~Pce||e  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); k+?gWZ \  
        if ~isnorm ;L-)$Dy4  
            error('zernpol:normalization','Unrecognized normalization flag.') PX/{!_mM  
        end ){#INmsF  
    else #X %!7tU6  
        isnorm = false; Ri_2@U-  
    end @#N7M2/  
    UjoA$A!Od;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZYY2pY 1  
    % Compute the Zernike Polynomials kqj)&0|X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pp8G2|bz  
    Q4LPi;{\  
    % Determine the required powers of r: tN\I2wm  
    % ----------------------------------- KN657 |f  
    rpowers = []; 0x5Ax=ut  
    for j = 1:length(n) _4L6  
        rpowers = [rpowers m(j):2:n(j)]; R-NM ~gp  
    end VY8cy2  
    rpowers = unique(rpowers); [ei~Xkzkj  
    "]q xjs^3?  
    % Pre-compute the values of r raised to the required powers, BLaNS4e  
    % and compile them in a matrix: :*|Ua%L_  
    % ----------------------------- 0k16f3uI   
    if rpowers(1)==0 hbvcIGaT  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); wL, -"  
        rpowern = cat(2,rpowern{:}); et)n`NlcK  
        rpowern = [ones(length_r,1) rpowern]; % PB{jo  
    else & ck}3\sQ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); = <Sn&uL  
        rpowern = cat(2,rpowern{:}); zz(|V  
    end )~R[aXkvY  
    V?G%-+^  
    % Compute the values of the polynomials: T"za|Fo  
    % -------------------------------------- fi*b]a\'  
    z = zeros(length_r,length_n); 9d/- +j'  
    for j = 1:length_n |X A0F\  
        s = 0:(n(j)-m(j))/2; e CN:  
        pows = n(j):-2:m(j); $<2d|;7r  
        for k = length(s):-1:1 g&F$hm  
            p = (1-2*mod(s(k),2))* ... E%D.a=UX,  
                       prod(2:(n(j)-s(k)))/          ... e<9 ^h)G  
                       prod(2:s(k))/                 ... )}N:t:rry  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... G93V=Bk=  
                       prod(2:((n(j)+m(j))/2-s(k))); #'> )?]tn  
            idx = (pows(k)==rpowers); c,;VnZ 9wC  
            z(:,j) = z(:,j) + p*rpowern(:,idx); H.;}%id  
        end /"k[T  
         "~ $i#  
        if isnorm jR[c3EA ;  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); _,(s  
        end .4"BN<9  
    end v.C  
    :fL7"\ pf~  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) O-UA2?N@j  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. `!I/6d?A  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated dz/@]a  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive EFVZAY"+!;  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, K{DmMi];I  
    %   and THETA is a vector of angles.  R and THETA must have the same q#c+%,Z=C  
    %   length.  The output Z is a matrix with one column for every P-value, j~ds)dW%`&  
    %   and one row for every (R,THETA) pair. OZf@cOTWK  
    % T>(X`(  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike z;9D[ME#1  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) `G: 1  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) xL.m<XDL  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 k -R"e  
    %   for all p. j?o6>j  
    % \Q}Y"oq  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 'JdK0w#  
    %   Zernike functions (order N<=7).  In some disciplines it is K7JZUS`C!  
    %   traditional to label the first 36 functions using a single mode DN=W2MEfc  
    %   number P instead of separate numbers for the order N and azimuthal 9"S iHp\)  
    %   frequency M. %Ul,9qG+  
    % #=y)Wuo=  
    %   Example: nxuH22:  
    % Wm"#"l4  
    %       % Display the first 16 Zernike functions w<!,mL5 N  
    %       x = -1:0.01:1;  9Ca0Tu  
    %       [X,Y] = meshgrid(x,x); ?nL,Otz  
    %       [theta,r] = cart2pol(X,Y); {#?|&n<  
    %       idx = r<=1; S`b!sT-sD  
    %       p = 0:15; )XSHKPTQ1  
    %       z = nan(size(X)); kGnT4R*E  
    %       y = zernfun2(p,r(idx),theta(idx)); i;]0>g4  
    %       figure('Units','normalized') Z~94<*LEp  
    %       for k = 1:length(p) +\ "NPK@3  
    %           z(idx) = y(:,k); |n;);T(  
    %           subplot(4,4,k) fATVAv  
    %           pcolor(x,x,z), shading interp > fV "bj.  
    %           set(gca,'XTick',[],'YTick',[]) 4*f+np  
    %           axis square f &NX~(  
    %           title(['Z_{' num2str(p(k)) '}']) YGQ/zB^Pj  
    %       end ( ?(gz#-  
    % K>~YO~~  
    %   See also ZERNPOL, ZERNFUN. v8C($<3%  
    G!C }ULq  
    %   Paul Fricker 11/13/2006 7>MG8pf3a  
    fsEQ4xN'  
    J{a9pr6  
    % Check and prepare the inputs: kFkI[WKyZ  
    % ----------------------------- 32aI0CT  
    if min(size(p))~=1 _(:$ :*@  
        error('zernfun2:Pvector','Input P must be vector.') Zz:%KUl3  
    end d:A'|;']  
    t~ I;IB  
    if any(p)>35 ~$^ >Vo  
        error('zernfun2:P36', ... ?ZC!E0]  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... }JQy&V%  
               '(P = 0 to 35).']) vY.VFEP/  
    end e#}Fm;|d  
    m0.g}N-w  
    % Get the order and frequency corresonding to the function number: eG2'W  
    % ---------------------------------------------------------------- fXnewPr=#  
    p = p(:); WZ!zUUp}V  
    n = ceil((-3+sqrt(9+8*p))/2); hop| xtai;  
    m = 2*p - n.*(n+2); 4|cRYZj5  
    ] FvGAG.*  
    % Pass the inputs to the function ZERNFUN: Pz D30VA  
    % ---------------------------------------- ]3 GO_tL  
    switch nargin M?P\YAn$  
        case 3 ;C1#[U1Uy  
            z = zernfun(n,m,r,theta); zHNBX Rx  
        case 4 ,1CmB@  
            z = zernfun(n,m,r,theta,nflag); tG9C(D`G  
        otherwise 4=y&}3om(0  
            error('zernfun2:nargin','Incorrect number of inputs.') 0cfGI%  
    end An?#B4:  
    8n2;47 a  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #M#$2Vt  
    function z = zernfun(n,m,r,theta,nflag) U6H3T0#  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. q&6|uV])H  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N rxy5Nrue  
    %   and angular frequency M, evaluated at positions (R,THETA) on the B2LXF3#/  
    %   unit circle.  N is a vector of positive integers (including 0), and WL,2<[)Ew  
    %   M is a vector with the same number of elements as N.  Each element ;0 +Dx~  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) CHO_3QIz  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, +mR^I$9  
    %   and THETA is a vector of angles.  R and THETA must have the same k5Q1.;fW76  
    %   length.  The output Z is a matrix with one column for every (N,M) fY78  
    %   pair, and one row for every (R,THETA) pair. ;P8% yf  
    % `0_ Y| 4KB  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike _tje xS'  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {(Mmv[y  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral br k*;  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,(sE|B#s  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ",Mrdxn7  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. G^VOA4  
    % [wQJVYv  
    %   The Zernike functions are an orthogonal basis on the unit circle. &AeNrtGu  
    %   They are used in disciplines such as astronomy, optics, and 8gt*`]I  
    %   optometry to describe functions on a circular domain. :mLXB75gH  
    % k*,+ag*j  
    %   The following table lists the first 15 Zernike functions. {+{p.  
    % _"t>72 `  
    %       n    m    Zernike function           Normalization |tLD^`bt  
    %       -------------------------------------------------- uz$p'Q  
    %       0    0    1                                 1 TOa6sB!H  
    %       1    1    r * cos(theta)                    2 KC(z TY  
    %       1   -1    r * sin(theta)                    2 ;GOu'34j  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) @y * TVy  
    %       2    0    (2*r^2 - 1)                    sqrt(3) L5|g \Y`  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) fshG ~L7S9  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) '<ZHzDW@  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) +`V<& Y-5l  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) X+,0;% p  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) &?xmu204  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) FQ47j)p;  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tW-[.Y -M,  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Tj<B;f!u  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tgl 4pAc  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) S^EAE]  
    %       -------------------------------------------------- 61gyx6v  
    % QSM3qke  
    %   Example 1: W|n$H`;R  
    % @8A[HP  
    %       % Display the Zernike function Z(n=5,m=1) C#)T$wl[E  
    %       x = -1:0.01:1; : vgn0 IQ  
    %       [X,Y] = meshgrid(x,x); R4k+.hR  
    %       [theta,r] = cart2pol(X,Y); LH`2Y,E  
    %       idx = r<=1; ^rjUye%EK  
    %       z = nan(size(X)); BxQ,T@  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); CM[83>  
    %       figure zA3r&stN+  
    %       pcolor(x,x,z), shading interp 7d|1T'  
    %       axis square, colorbar 2:nI4S  
    %       title('Zernike function Z_5^1(r,\theta)') Lh.-*H  
    % l2dj GZk  
    %   Example 2: iAXGf V  
    % mU]^PC2[  
    %       % Display the first 10 Zernike functions L8 NZU*"  
    %       x = -1:0.01:1; ?q2Yk/P  
    %       [X,Y] = meshgrid(x,x); +$2`"%nBG  
    %       [theta,r] = cart2pol(X,Y); = 8y,7u)  
    %       idx = r<=1; 5e0d;Rd  
    %       z = nan(size(X)); %4YSuZg  
    %       n = [0  1  1  2  2  2  3  3  3  3]; E:PPb9Kd  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; =d:3]M^  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; E m+&I  
    %       y = zernfun(n,m,r(idx),theta(idx)); pm:-E(3#  
    %       figure('Units','normalized') B8.}9  
    %       for k = 1:10 |m@>AbR5dk  
    %           z(idx) = y(:,k); kDM?`(r  
    %           subplot(4,7,Nplot(k)) aU[!*n 4Ux  
    %           pcolor(x,x,z), shading interp &1`Y&x:p  
    %           set(gca,'XTick',[],'YTick',[]) bs16G3- p  
    %           axis square EdSUBoWF}  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) C>,> _  
    %       end >dD$GD{  
    % I,)\506  
    %   See also ZERNPOL, ZERNFUN2. y"U)&1 c%  
    ZBN,%P!P0  
    %   Paul Fricker 11/13/2006 3=} P l,  
    dZb;`DjTH  
    UTN[! 0[  
    % Check and prepare the inputs: b7T;6\[m  
    % ----------------------------- gOah5*Lj  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) " *W# z  
        error('zernfun:NMvectors','N and M must be vectors.') owVks-/  
    end oj)(.X<8N  
    7^LCP*  
    if length(n)~=length(m) Z'}%Mkm`i}  
        error('zernfun:NMlength','N and M must be the same length.') h.l.da1#  
    end Y3(I;~$!  
    Ze#DFe$  
    n = n(:); 5 ddfdIp  
    m = m(:); gwXmoM5  
    if any(mod(n-m,2)) ~%f$}{  
        error('zernfun:NMmultiplesof2', ... V d]7v  
              'All N and M must differ by multiples of 2 (including 0).') ux| QGT2LY  
    end 83{P7PBQ;]  
    V7p hD3Y  
    if any(m>n) l+hOD{F4pS  
        error('zernfun:MlessthanN', ... .jtv Hr}U  
              'Each M must be less than or equal to its corresponding N.') ;c DMcKKIA  
    end t imY0fx #  
    `ah|BV  
    if any( r>1 | r<0 ) GU/-L<g  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') _9p79S<+  
    end #Er"i  
    :eJJL,v  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) A,=> |&*  
        error('zernfun:RTHvector','R and THETA must be vectors.') HJ0;BD.]  
    end |_-w{2K  
    ^3H:I8gRCl  
    r = r(:); UX<-jY#'V  
    theta = theta(:); S $o1Q  
    length_r = length(r); gFu,q`Vf*  
    if length_r~=length(theta) S7#dyAX8  
        error('zernfun:RTHlength', ... dga4|7-MY  
              'The number of R- and THETA-values must be equal.') kN8B,  
    end hiA\~}sl n  
    )|k#cT{=M  
    % Check normalization: ~w|h;*Bj  
    % -------------------- ,9_O4O%  
    if nargin==5 && ischar(nflag) kS9;Tjcx  
        isnorm = strcmpi(nflag,'norm'); :l1-s]  
        if ~isnorm N mxh zjJ  
            error('zernfun:normalization','Unrecognized normalization flag.') uozq^sy  
        end BT_XqO  
    else {2D|,yH=  
        isnorm = false; 1EC;t1.7  
    end A*81}P_  
    )cZHBG.0H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BnGoB`n  
    % Compute the Zernike Polynomials '<uM\v^k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $e--"@[Y  
    /~f[>#  
    % Determine the required powers of r: Z~8%bfpe  
    % ----------------------------------- H-v[ShE  
    m_abs = abs(m); B7|%N=S%/  
    rpowers = []; #W3H;'~/5  
    for j = 1:length(n) r `n|fD.  
        rpowers = [rpowers m_abs(j):2:n(j)]; vR2);ywX  
    end Iz. h  
    rpowers = unique(rpowers); kD%MFT4  
    Dykh|"  
    % Pre-compute the values of r raised to the required powers, !k*B-@F  
    % and compile them in a matrix: U1E@pDH  
    % ----------------------------- F --b,,  
    if rpowers(1)==0 \/;c^!(<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); vcp{Gf|^  
        rpowern = cat(2,rpowern{:}); @fp@1n  
        rpowern = [ones(length_r,1) rpowern]; z 5(5\j]  
    else Ka-o$o[^u`  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &B[*L+-E  
        rpowern = cat(2,rpowern{:}); b$fmU"%&|  
    end GIcq|Pe  
    L8f+uI   
    % Compute the values of the polynomials: p5vQ.Ni*\-  
    % -------------------------------------- #0uu19+}  
    y = zeros(length_r,length(n)); 1hgIR^;[b  
    for j = 1:length(n) Ax;?~v4Z  
        s = 0:(n(j)-m_abs(j))/2; Zy;jp*Q  
        pows = n(j):-2:m_abs(j); mI4GBp  
        for k = length(s):-1:1 vN],9 q  
            p = (1-2*mod(s(k),2))* ... |9]-_a  
                       prod(2:(n(j)-s(k)))/              ... qCfEv4  
                       prod(2:s(k))/                     ... r,0D I  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 24? _k]Y  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); i7r)9^y  
            idx = (pows(k)==rpowers); L FJ@4]%V  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 7sOAaWx  
        end \ moLQ  
         g|?}a]G  
        if isnorm hLgX0QV  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); #-G@p  
        end C=q&S6/+  
    end  ~,&8)1  
    % END: Compute the Zernike Polynomials % R25,  V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y'odn ;  
    tugIOA  
    % Compute the Zernike functions: { >[ ]iX  
    % ------------------------------ )^s> 21  
    idx_pos = m>0; mHju$d  
    idx_neg = m<0;  ArAe=m!u  
    , otXjz  
    z = y; 85Yi2+8f4  
    if any(idx_pos) V'W*'wo   
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); U!o  
    end !h7:rv/  
    if any(idx_neg) TsoxS/MI"  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); R$ +RTG:E  
    end [|eIax xR,  
    zc;kNkV#1Y  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的