切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11272阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 <"F\&M`G  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! f.8Jp<S2K  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  1|K>V;C  
    ;=rMIi  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 -KzU''  
    xL.T}f~y2>  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) !DnG)4#  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. *8p\.za1  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of <$.KCLP  
    %   order N and frequency M, evaluated at R.  N is a vector of XA])<dZ  
    %   positive integers (including 0), and M is a vector with the f}4c#x  
    %   same number of elements as N.  Each element k of M must be a )!dELS \ix  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 8Gb=aF1  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is /x_C  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix -<#n7b  
    %   with one column for every (N,M) pair, and one row for every ?xf59mY7  
    %   element in R. | -Di/.  
    % v\Y;)/!  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- !W:QLOe6F  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is y_"GMw  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 4\(;}M-R{  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 <YL\E v/[  
    %   for all [n,m]. Kw'Dzz%kN  
    % n#3y2,Ml  
    %   The radial Zernike polynomials are the radial portion of the {CH\TmSz  
    %   Zernike functions, which are an orthogonal basis on the unit ^J>28Q\S  
    %   circle.  The series representation of the radial Zernike nVG\*#*]|  
    %   polynomials is |~H'V4)zXu  
    % mUy/lo'4  
    %          (n-m)/2 @6*<Xs =  
    %            __ v85&s  
    %    m      \       s                                          n-2s ^ +{ ~ ^y7  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r UO"8 I2rB  
    %    n      s=0 9r1pdG_C@  
    % -lL*WA`  
    %   The following table shows the first 12 polynomials. +:&(Ag  
    % RqHxKj  
    %       n    m    Zernike polynomial    Normalization Op3 IL/  
    %       --------------------------------------------- z,rWj][P  
    %       0    0    1                        sqrt(2) aic6,>\!'  
    %       1    1    r                           2 O8u"Y0$*w  
    %       2    0    2*r^2 - 1                sqrt(6) Tf@t.4\  
    %       2    2    r^2                      sqrt(6) @YwaOc_%  
    %       3    1    3*r^3 - 2*r              sqrt(8) ?5mVC]W?]  
    %       3    3    r^3                      sqrt(8) =|3 L'cDC  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) QHs=Zh;"  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) N83RsL "}_  
    %       4    4    r^4                      sqrt(10) ]VJcV.7`  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) <Mc:Cg8>  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) (f#W:]o/  
    %       5    5    r^5                      sqrt(12) uFdSD  
    %       --------------------------------------------- /LSiDys  
    % !hH6!G  
    %   Example: @oRYQ|.R  
    % q/OraPAB  
    %       % Display three example Zernike radial polynomials q=?"0i&V  
    %       r = 0:0.01:1; D'nV &m  
    %       n = [3 2 5]; b}"/K$`Fd  
    %       m = [1 2 1]; [q.W!l4E  
    %       z = zernpol(n,m,r); ]Vwky]d  
    %       figure /v!H{Zw=c  
    %       plot(r,z) 7DYD+N+T  
    %       grid on V$v;lvt^Uq  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') iBUf1v  
    % aRG[F*BY  
    %   See also ZERNFUN, ZERNFUN2. }4 $EN  
    RTl7vzG  
    % A note on the algorithm. M3z7P.\G  
    % ------------------------ 0_]aF8j  
    % The radial Zernike polynomials are computed using the series P;_dil G  
    % representation shown in the Help section above. For many special B!tt e )  
    % functions, direct evaluation using the series representation can ^d=Z/d[  
    % produce poor numerical results (floating point errors), because S'@"a%EV  
    % the summation often involves computing small differences between 0N T3  
    % large successive terms in the series. (In such cases, the functions t#pY2!/T3  
    % are often evaluated using alternative methods such as recurrence *E. 2R{  
    % relations: see the Legendre functions, for example). For the Zernike Og*1pvN<  
    % polynomials, however, this problem does not arise, because the l%w7N9  
    % polynomials are evaluated over the finite domain r = (0,1), and F 1zc4l6  
    % because the coefficients for a given polynomial are generally all c//W#V2Q  
    % of similar magnitude. 8c/Ii"1  
    % 8v6rS-iHP  
    % ZERNPOL has been written using a vectorized implementation: multiple 57MoO  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] !<X_XA  
    % values can be passed as inputs) for a vector of points R.  To achieve 1b!l+ 8!  
    % this vectorization most efficiently, the algorithm in ZERNPOL WI~%n  
    % involves pre-determining all the powers p of R that are required to #&5\1Qu  
    % compute the outputs, and then compiling the {R^p} into a single fzio8m KVX  
    % matrix.  This avoids any redundant computation of the R^p, and RCX4;,DHx  
    % minimizes the sizes of certain intermediate variables. JWdG?[$  
    % 5g5pzww  
    %   Paul Fricker 11/13/2006 AN1bfF:C  
    $7bmUQ|  
    #62ww-E~  
    % Check and prepare the inputs: dk]ro~ [  
    % ----------------------------- !*ucVv;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =N0cz%  
        error('zernpol:NMvectors','N and M must be vectors.') , XR8qi~  
    end c]&VUWQ  
    _k@l-Bj  
    if length(n)~=length(m) h/VYH(Tj  
        error('zernpol:NMlength','N and M must be the same length.') ^R$dG[Qf  
    end enr mjA&3  
    .R"L$V$RU.  
    n = n(:); $.cGRz  
    m = m(:); 3gh^a;uC  
    length_n = length(n); ^KF'/9S  
    {p\KB!Y-  
    if any(mod(n-m,2)) t8+93,*B  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Smu x&e  
    end !Yf0y;e|:  
    '[E_7$d  
    if any(m<0) syfR5wc  
        error('zernpol:Mpositive','All M must be positive.') ~S6N'$^  
    end PWU#`>4  
    sP |i '  
    if any(m>n) R{B~Now3  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') gA|j\T{c  
    end Og npzN  
    ]rm=F]W/n  
    if any( r>1 | r<0 ) K\ ]r  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Z}C%%2Iz  
    end 2fk   
    b#U%aPH  
    if ~any(size(r)==1) c 1GP3  
        error('zernpol:Rvector','R must be a vector.') A~>=l=  
    end Oe!&Jma*>  
    T}TP.!0E  
    r = r(:); 'W*F[U*&HP  
    length_r = length(r); zE/(F;> FV  
    mTgn}rXk  
    if nargin==4 B=r/(e  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ?rDwYG(u]@  
        if ~isnorm y^rg%RV  
            error('zernpol:normalization','Unrecognized normalization flag.') jayoARUB  
        end 8IH gsW";  
    else g1|c?#fwo  
        isnorm = false; {;/o4[jlg  
    end *ZGN!0/  
    M[{:o/]<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3\G=J  
    % Compute the Zernike Polynomials AlxS?f2w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {@%(0d{n}  
    4C cb!?  
    % Determine the required powers of r: ?OyW|jL  
    % ----------------------------------- TbVL71c  
    rpowers = []; cF vx* n  
    for j = 1:length(n) WU\bJ}  
        rpowers = [rpowers m(j):2:n(j)]; z;fSd  
    end qI^jwl|k  
    rpowers = unique(rpowers); /f<(K-o]  
    WRyLpTr-  
    % Pre-compute the values of r raised to the required powers, B vc=gW  
    % and compile them in a matrix: EYG E#C; d  
    % ----------------------------- X%CPz.G  
    if rpowers(1)==0 Rp*t"HSaAW  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ={ '($t%|T  
        rpowern = cat(2,rpowern{:}); 9Q/!%y%5  
        rpowern = [ones(length_r,1) rpowern]; eb\`)MI/  
    else bicL %I2h  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [#Vr)\n  
        rpowern = cat(2,rpowern{:}); \k_3IP?o=  
    end *Mc\7D  
    T}[vfIJD  
    % Compute the values of the polynomials: 5I,X#}K[  
    % -------------------------------------- s= fKAxH  
    z = zeros(length_r,length_n); / nFw  
    for j = 1:length_n A5ID I<a  
        s = 0:(n(j)-m(j))/2; L? +|%[  
        pows = n(j):-2:m(j); o7XRa]O  
        for k = length(s):-1:1 yZ$;O0f&&  
            p = (1-2*mod(s(k),2))* ... j//wh1  
                       prod(2:(n(j)-s(k)))/          ... YO0x68  
                       prod(2:s(k))/                 ... |l(lrJ{  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... h_yR$H&tX  
                       prod(2:((n(j)+m(j))/2-s(k))); t|QMS M?s  
            idx = (pows(k)==rpowers); (Nb1R"J `  
            z(:,j) = z(:,j) + p*rpowern(:,idx); b.*4RL  
        end E}/|Lja  
         [frD L)  
        if isnorm 9z/_`Xd_  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); UO<claV  
        end 2(/ /slP  
    end 0\nhg5]?  
    F$ p*G][  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag)  m+{: ^  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 6_K#,_oZ  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated PVc|y.  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive gD+t'qg$  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, w!w _`7[  
    %   and THETA is a vector of angles.  R and THETA must have the same pbxcsA\  
    %   length.  The output Z is a matrix with one column for every P-value, (G%gVk]  
    %   and one row for every (R,THETA) pair. D K_v{R  
    % x0$:"68PW  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike i=H>D  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Le:mMd= G  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 7h&`BS  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 0+y~RTAVB  
    %   for all p. i3&B%JiLX  
    % cBR8HkP~  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 P^m 6di  
    %   Zernike functions (order N<=7).  In some disciplines it is =&:f+!1$  
    %   traditional to label the first 36 functions using a single mode l@/kPEh  
    %   number P instead of separate numbers for the order N and azimuthal FDs^S)B  
    %   frequency M. #33RhJu5,  
    % [P c[{(  
    %   Example: l%U_iqL&  
    % (My$@l973  
    %       % Display the first 16 Zernike functions yP9wYF^A\  
    %       x = -1:0.01:1; S@zkoj@  
    %       [X,Y] = meshgrid(x,x); UQ?OD~7  
    %       [theta,r] = cart2pol(X,Y); g74z]Uj.B  
    %       idx = r<=1; |-Esc|J(  
    %       p = 0:15; : tqm2t  
    %       z = nan(size(X)); ^zPEAXm  
    %       y = zernfun2(p,r(idx),theta(idx)); ?r E]s!K  
    %       figure('Units','normalized') c ^bk:=uj  
    %       for k = 1:length(p) 5~%,u2  
    %           z(idx) = y(:,k); {AL9o2  
    %           subplot(4,4,k) KW7? : x  
    %           pcolor(x,x,z), shading interp ^8l3j4  
    %           set(gca,'XTick',[],'YTick',[]) P(gVF |J?  
    %           axis square ytV)!xe  
    %           title(['Z_{' num2str(p(k)) '}']) QUZQY`' @  
    %       end z>p`!-'ID  
    % ?-::{2O)  
    %   See also ZERNPOL, ZERNFUN. .0fh>kQ  
    ) !}-\5F  
    %   Paul Fricker 11/13/2006 o),6o'w(  
    CndgfOF  
    O:^LQ  
    % Check and prepare the inputs: 3JZWhxkf[$  
    % ----------------------------- Xz .Y-5)  
    if min(size(p))~=1 $7DcQ b9  
        error('zernfun2:Pvector','Input P must be vector.') K7xWE,y  
    end Ag4Ga?&8ec  
    *xo;pe)9  
    if any(p)>35 #DK3p0d  
        error('zernfun2:P36', ... !MJe+.  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ,WB_C\.#XN  
               '(P = 0 to 35).']) J1]w*2  
    end Tq\~<rEo  
    sId(PT^  
    % Get the order and frequency corresonding to the function number: 71.\`'  
    % ---------------------------------------------------------------- it\DZGsg  
    p = p(:); ]dbSa1?  
    n = ceil((-3+sqrt(9+8*p))/2); :EmQ_?(^  
    m = 2*p - n.*(n+2); d=Df.H+3  
    T<f\*1~^  
    % Pass the inputs to the function ZERNFUN: }\u%)uZ  
    % ---------------------------------------- rx6-~0!eI=  
    switch nargin 95^i/6Gl!P  
        case 3 8 ih;#I=q  
            z = zernfun(n,m,r,theta); f7Df %&d  
        case 4 Q1nDl  
            z = zernfun(n,m,r,theta,nflag); %`?;V;{=  
        otherwise QSF"8Uk  
            error('zernfun2:nargin','Incorrect number of inputs.') C3\E.u ?  
    end y3cf[Q  
    sP?$G8-^  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _^ q\XPS  
    function z = zernfun(n,m,r,theta,nflag) 8VP"ydg-U  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. =9pw uH  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N l@N;sI<O-  
    %   and angular frequency M, evaluated at positions (R,THETA) on the % Cu.u)/+  
    %   unit circle.  N is a vector of positive integers (including 0), and JAlU%n?R  
    %   M is a vector with the same number of elements as N.  Each element !8Z2X!$m{<  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 6X7s 4  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, g@@&sB-A"  
    %   and THETA is a vector of angles.  R and THETA must have the same <Zp^lDxa  
    %   length.  The output Z is a matrix with one column for every (N,M) L6:W'u^  
    %   pair, and one row for every (R,THETA) pair. i s L{9^  
    % [dj5 $l|  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4l&"]9D  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), E &7@#'l  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral {J~(#i k   
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, g4:VR:o  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized M[aT2A  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2wx!Lpr<i_  
    % xfq]9<  
    %   The Zernike functions are an orthogonal basis on the unit circle. )Fqy%uR8  
    %   They are used in disciplines such as astronomy, optics, and 5M%,N-P^  
    %   optometry to describe functions on a circular domain. tu\mFHvlg  
    % iOT)0@f'  
    %   The following table lists the first 15 Zernike functions. r^$\t0h(U8  
    % [kbC'Eh*  
    %       n    m    Zernike function           Normalization E'5Ajtw;  
    %       -------------------------------------------------- 2Co@+I[,4&  
    %       0    0    1                                 1 3{N\A5 ~  
    %       1    1    r * cos(theta)                    2 aje^Z=]  
    %       1   -1    r * sin(theta)                    2 ?ork^4 $s  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) [6D>f?z  
    %       2    0    (2*r^2 - 1)                    sqrt(3) J &!B|TS  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) u8Y~_)\MA  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) dQ:?<zZ  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Bvz62?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) l8z%\p5cR  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) GDF{Lf)/v  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) NQ? x8h3  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) NuU'0_")/  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) (NX)o P  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R0%?:! F  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ]Ap`   
    %       -------------------------------------------------- >DL/ ..  
    % 81Z4>F:  
    %   Example 1: U.: sK*  
    % Fse['O~  
    %       % Display the Zernike function Z(n=5,m=1) >):m-I  
    %       x = -1:0.01:1; MDk*j,5V  
    %       [X,Y] = meshgrid(x,x); Hk,lX r  
    %       [theta,r] = cart2pol(X,Y); /Zc#j^_  
    %       idx = r<=1; kLJlS,nh\r  
    %       z = nan(size(X)); v"rl5x  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 3[VWTq)D=  
    %       figure J' W}7r  
    %       pcolor(x,x,z), shading interp @7-=zt+f  
    %       axis square, colorbar $,TGP+vH  
    %       title('Zernike function Z_5^1(r,\theta)') [FGgkd}  
    % O@s{uZ|A6  
    %   Example 2: Yv^p =-E  
    % c4\C[$  
    %       % Display the first 10 Zernike functions Jy9bY  
    %       x = -1:0.01:1; R*087X7 N|  
    %       [X,Y] = meshgrid(x,x); U IfH*6X  
    %       [theta,r] = cart2pol(X,Y); 2}w#3K  
    %       idx = r<=1; < kz[:n:  
    %       z = nan(size(X)); q/$ GE,"  
    %       n = [0  1  1  2  2  2  3  3  3  3]; be7L="vZw  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; IV0[!D  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; X(]Zr  
    %       y = zernfun(n,m,r(idx),theta(idx)); (#$$nQj  
    %       figure('Units','normalized') Ox^:)ii  
    %       for k = 1:10 ibXe"X/_  
    %           z(idx) = y(:,k); =+<d1W`>0  
    %           subplot(4,7,Nplot(k)) [ByQ;s5tY  
    %           pcolor(x,x,z), shading interp [(|^O>k8c  
    %           set(gca,'XTick',[],'YTick',[]) \^&   
    %           axis square 34ha26\np  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ~Q?!W0ZBE  
    %       end A[`G^ $  
    % ZHCr2^w6  
    %   See also ZERNPOL, ZERNFUN2. .5.8;/ /  
    ~].ggcl`w  
    %   Paul Fricker 11/13/2006 g`[`P@  
    >Q=Ukn;k  
    !2$ z *C2;  
    % Check and prepare the inputs: dx@QWTNE  
    % ----------------------------- Cp^g'&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) P? (vW&B  
        error('zernfun:NMvectors','N and M must be vectors.') H8f]}  
    end 'z5h3J  
    L,?/'!xV  
    if length(n)~=length(m) $w)~xE5;  
        error('zernfun:NMlength','N and M must be the same length.') .%'Z~|K4  
    end {oUAP1V^  
    R-  
    n = n(:); X\\7$  
    m = m(:); %v{1# ~u  
    if any(mod(n-m,2)) rQJ"&CapT  
        error('zernfun:NMmultiplesof2', ... T6Ctf#  
              'All N and M must differ by multiples of 2 (including 0).') R{?vQsLk  
    end >.<ooWw  
    \~#WY5  
    if any(m>n) +}a C-&  
        error('zernfun:MlessthanN', ... B[F-gq-  
              'Each M must be less than or equal to its corresponding N.') X3wX`V}  
    end {U"^UuU]  
    __I/F6{ 9V  
    if any( r>1 | r<0 ) nN aXp*J  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') HI`q1m.  
    end C!&y   
    \4{2eU  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) jQ=~g-y  
        error('zernfun:RTHvector','R and THETA must be vectors.') inAAgW#s}  
    end !tXZ%BP.u  
    ~e">_;k6  
    r = r(:); d-B7["z,  
    theta = theta(:); q'G,!];qL  
    length_r = length(r); xx)-d,S  
    if length_r~=length(theta) \.#p_U5In  
        error('zernfun:RTHlength', ... +}@ 8p[`)  
              'The number of R- and THETA-values must be equal.') h2w}wsb0l  
    end {v` 2sB  
    hoQ7).>  
    % Check normalization: S1J<9xqSQ8  
    % -------------------- @hif$  
    if nargin==5 && ischar(nflag) 4woO;Gm  
        isnorm = strcmpi(nflag,'norm'); lA^+Flh  
        if ~isnorm 1J}8sG2`  
            error('zernfun:normalization','Unrecognized normalization flag.') `f9gC3Hk  
        end 2p!"p`b~  
    else wX,F`e3"/  
        isnorm = false; %gd(wzco  
    end vq!uD!lr  
    &:5\"b  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u~1o(Zn =  
    % Compute the Zernike Polynomials 7&B$HZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z@Hp,|Vy[  
    |Au]1}  
    % Determine the required powers of r: E9}{1A  
    % ----------------------------------- "TS  
    m_abs = abs(m); '+Xlw  
    rpowers = []; a9U_ug58  
    for j = 1:length(n) 'ZP)cI:+X  
        rpowers = [rpowers m_abs(j):2:n(j)]; ;V5yXNQ   
    end Vj?DA5W`'  
    rpowers = unique(rpowers); 5x8+xw3Eh  
    # 1.YKo  
    % Pre-compute the values of r raised to the required powers, {ZsdLF#  
    % and compile them in a matrix: T=Z.TG|lIx  
    % ----------------------------- k`{7}zxS  
    if rpowers(1)==0 Wu1{[a|  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); MJ{%4S{K,p  
        rpowern = cat(2,rpowern{:}); XORk!m|  
        rpowern = [ones(length_r,1) rpowern]; ^U[D4UM  
    else ut2~rRiK  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !j:`7PT\  
        rpowern = cat(2,rpowern{:}); As&v Ft P  
    end OJAIaC\  
    o@bNpflb`  
    % Compute the values of the polynomials: 1|r,dE2k9  
    % -------------------------------------- LiQgR 6j  
    y = zeros(length_r,length(n)); xiblPF_n3  
    for j = 1:length(n) I=DxRgt  
        s = 0:(n(j)-m_abs(j))/2; zj{r^D$  
        pows = n(j):-2:m_abs(j); XT>.`, sv  
        for k = length(s):-1:1 g\SrO {*  
            p = (1-2*mod(s(k),2))* ... _<c$)1  
                       prod(2:(n(j)-s(k)))/              ... Cq)IayD@  
                       prod(2:s(k))/                     ... 4qi[r)G  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 6NWn(pZ]p  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); rQ`i8GF  
            idx = (pows(k)==rpowers); 5Por "&%  
            y(:,j) = y(:,j) + p*rpowern(:,idx); a>O9pX  
        end N_pUv   
         Ev"|FTI/  
        if isnorm nC1zzFFJ  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <^?1uzxH8A  
        end yp.[HMRD  
    end mEyK1h1G @  
    % END: Compute the Zernike Polynomials LUX*P7*B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y !$alE  
    *Lqg=9kzr  
    % Compute the Zernike functions: KJ2Pb"s  
    % ------------------------------ $Fkaa<9;P  
    idx_pos = m>0; (6l+lru[  
    idx_neg = m<0; nrm+z"7  
    NEt1[2X%  
    z = y; Fs_]RfG  
    if any(idx_pos) %UUH"  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); z!;1i[|x  
    end L|-98]8>  
    if any(idx_neg) c9qR'2  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); mm[2wfTE  
    end G;NF5`*4mc  
    b$ %0.s  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的