function z = zernpol(n,m,r,nflag) T/_u;My;
%ZERNPOL Radial Zernike polynomials of order N and frequency M. H9mN nZ_k
% Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of {821e&r
% order N and frequency M, evaluated at R. N is a vector of 'J,UKK\5
% positive integers (including 0), and M is a vector with the g8<ODU0[g
% same number of elements as N. Each element k of M must be a cx\E40WD
% positive integer, with possible values M(k) = 0,2,4,...,N(k) )9YDNVo*-
% for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd. R is g:o/^_
% a vector of numbers between 0 and 1. The output Z is a matrix * Gg7(cnpw
% with one column for every (N,M) pair, and one row for every OS(`H5D
% element in R. y, l[v39
% AxH;psj
% Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- .xT?%xSi/
% nomials. The normalization factor Nnm = sqrt(2*(n+1)) is I-]G{
% chosen so that the integral of (r * [Znm(r)]^2) from r=0 to hX.cdt_?
% r=1 is unity. For the non-normalized polynomials, Znm(r=1)=1 uY]';OtG
% for all [n,m]. \p4*Q}t
% *k{Llq
% The radial Zernike polynomials are the radial portion of the OrkcY39"~a
% Zernike functions, which are an orthogonal basis on the unit h4hAzFQ.s
% circle. The series representation of the radial Zernike aTvyzr1
% polynomials is )Te\6qM
% <Wn~s=
% (n-m)/2 o?baiOkH
% __ 7{#p'.nc5
% m \ s n-2s 2{ F-@}=
% Z(r) = /__ (-1) [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r xV>
.]
% n s=0 [k7(t|Q{
% ;jzJ6~<
% The following table shows the first 12 polynomials. iC#a+G*N_M
% La ?A@SD
% n m Zernike polynomial Normalization n!4}Hwz!
% --------------------------------------------- o?a2wY^_
% 0 0 1 sqrt(2)
b] 5dBZ(
% 1 1 r 2 -'&l!23a~
% 2 0 2*r^2 - 1 sqrt(6) {!I`EN]
% 2 2 r^2 sqrt(6) $bE"3/uf
% 3 1 3*r^3 - 2*r sqrt(8) .x=abA$!9
% 3 3 r^3 sqrt(8) f7&ni#^Ztj
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(10) 4@{;z4*`
% 4 2 4*r^4 - 3*r^2 sqrt(10) {]IY;cL
% 4 4 r^4 sqrt(10) mS%4
% 5 1 10*r^5 - 12*r^3 + 3*r sqrt(12) Hk}P
% 5 3 5*r^5 - 4*r^3 sqrt(12) Ftyxz&-4$p
% 5 5 r^5 sqrt(12) -RP{viGWK
% --------------------------------------------- Z\0wQ;}
% qsj$u-xhX
% Example:
K3zY-yIco
% @1j*\gYz
% % Display three example Zernike radial polynomials @WazSL;N
% r = 0:0.01:1; eEqcAUn
% n = [3 2 5]; 9O- otAGM
% m = [1 2 1]; 6nA9r5Ghv
% z = zernpol(n,m,r); _N5pxe`
% figure dw6ysOR@
% plot(r,z) ,zjz "7'
% grid on gbdzS6XW~
% legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') PcsYy]Q/
% u&*[
% See also ZERNFUN, ZERNFUN2. R*6TS"aL
5%TSUU+<I
% A note on the algorithm. N1Y
uLG:
% ------------------------ 5B~]%_gZr
% The radial Zernike polynomials are computed using the series nzbVI
% representation shown in the Help section above. For many special ^2dQVV.
% functions, direct evaluation using the series representation can D?BegF
% produce poor numerical results (floating point errors), because P*k n}:
% the summation often involves computing small differences between e\}@w1
% large successive terms in the series. (In such cases, the functions kiF}+,z"
% are often evaluated using alternative methods such as recurrence O
C;~ H{
% relations: see the Legendre functions, for example). For the Zernike OTYkJEC8\N
% polynomials, however, this problem does not arise, because the 5]G%MB/|$
% polynomials are evaluated over the finite domain r = (0,1), and tO&n$$
% because the coefficients for a given polynomial are generally all d\-*Fmp(S
% of similar magnitude.
6(7
56
% %Ja0:e
% ZERNPOL has been written using a vectorized implementation: multiple c{kpgN
% Zernike polynomials can be computed (i.e., multiple sets of [N,M] blomB2vQ
% values can be passed as inputs) for a vector of points R. To achieve p63fpnH
% this vectorization most efficiently, the algorithm in ZERNPOL $JOtUB{
% involves pre-determining all the powers p of R that are required to {JdXn
% compute the outputs, and then compiling the {R^p} into a single $$ $[Vn_H<
% matrix. This avoids any redundant computation of the R^p, and dOaOWMrfdf
% minimizes the sizes of certain intermediate variables. |7K>`
% `j{q
% Paul Fricker 11/13/2006 *QN,wBQ
xsU%?"r
+6:
% Check and prepare the inputs: a,fcKe&B
% ----------------------------- J<0sT=/2$
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) d v4~CW%Td
error('zernpol:NMvectors','N and M must be vectors.') D<70rBf2
end C\{ KB@C\*
H{*rV>%
if length(n)~=length(m) jcC"vr'u|
error('zernpol:NMlength','N and M must be the same length.') SP<(24zdd
end {.U:Ce
X6}W]
n = n(:); o]I8Ghk>/z
m = m(:); I@qGDKz;
length_n = length(n); qQfNT.
JS03BItt
if any(mod(n-m,2)) O=LW[h!
error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') le_aIbB"P
end l_;6xkv4
u[SqZftmO
if any(m<0) ;wJe%Nw?
error('zernpol:Mpositive','All M must be positive.') -F(luRBS(W
end 7'At_oG
/)RH-_63
if any(m>n) e1b?TF@lz
error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 0i5S=L`j
end u)zv`m
`'3&tAy
if any( r>1 | r<0 ) xVYa-I[Z
error('zernpol:Rlessthan1','All R must be between 0 and 1.') !ni
1 qM
end GwA\>qXw
#I MaN%
if ~any(size(r)==1) : &nF>
error('zernpol:Rvector','R must be a vector.')
|Ch,C
end amExZ/
3_9CREZCl
r = r(:); HNc/p4z
length_r = length(r); O46v
_PGd\>Ve
if nargin==4 UlNiH
isnorm = ischar(nflag) & strcmpi(nflag,'norm'); J8@.qC'!
if ~isnorm [zq2h3r
error('zernpol:normalization','Unrecognized normalization flag.') =[:E
end kVCWyZh4
else _Wk*h}x
isnorm = false; -ON-0L
end FSz<R*2
;"#y HP`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #Muh|P]%\
% Compute the Zernike Polynomials RO3q!+a$/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZI4dD.B
raSga'uT;
% Determine the required powers of r: 0 ;)Q
% ----------------------------------- .x] pJ9
rpowers = []; W2v'2qAs
for j = 1:length(n) x)Zm5&"Gg
rpowers = [rpowers m(j):2:n(j)]; F?jD5M08t/
end jAcKSx$}y"
rpowers = unique(rpowers); R
i,_x
KJS-{ed
% Pre-compute the values of r raised to the required powers, x![.C,O
% and compile them in a matrix: N^wHO<IO1
% ----------------------------- 9@IL5 47V
if rpowers(1)==0 %CnNu
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); z Fj |E
rpowern = cat(2,rpowern{:}); }CZw'fhVWO
rpowern = [ones(length_r,1) rpowern]; A)j!Wgs^z
else ;/pI@Ck
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); cX4]ViXSr
rpowern = cat(2,rpowern{:}); Z]tQmV8e
end ]9_}S
?*xH
HI/
% Compute the values of the polynomials: Y-st2r[,
% -------------------------------------- 5}w
z = zeros(length_r,length_n); 3` oOoKX
for j = 1:length_n _Yp~Oj
s = 0:(n(j)-m(j))/2; ]xoG{%vgb
pows = n(j):-2:m(j); XjP;O,x
for k = length(s):-1:1 f}*:wj
p = (1-2*mod(s(k),2))* ... SsZSR.tD
prod(2:(n(j)-s(k)))/ ... '3sySsD&O
prod(2:s(k))/ ... .m\0<8C
prod(2:((n(j)-m(j))/2-s(k)))/ ... KZ#\ >
prod(2:((n(j)+m(j))/2-s(k))); dS <*DP
idx = (pows(k)==rpowers); b5Q>e%i#
z(:,j) = z(:,j) + p*rpowern(:,idx); k.c.7%|~;
end d:^B2~j
Z^'\()3t
if isnorm TXyiCS3
z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); W[j,QU
end GP %hf{
end gJ9"$fIPc
v4'kV:;&
% EOF zernpol