切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11116阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 .:*V CDOM  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! LXG,IG  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  OvqCuX  
    &4Q(>"iL4  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 j}7as&  
    .[%em9u  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Q- ( [3%  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. tYV%izE  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of XQL"D)fw  
    %   order N and frequency M, evaluated at R.  N is a vector of 5sJi- ^  
    %   positive integers (including 0), and M is a vector with the JTbg8b  
    %   same number of elements as N.  Each element k of M must be a &"GHD{ix  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ^Q!qJav  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is '@enl]J  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix cx%[hM09  
    %   with one column for every (N,M) pair, and one row for every [pMJ9 d$  
    %   element in R. YT!QY@qw  
    % =f'MiU!p6  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- <hlH@[7!  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is iC-WQkQY  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to K..L8#SC  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 DVCO( fz  
    %   for all [n,m]. }G^Bc4@b  
    % p\lS ) 9  
    %   The radial Zernike polynomials are the radial portion of the 2q}M1-^  
    %   Zernike functions, which are an orthogonal basis on the unit =Gsn4>~%n  
    %   circle.  The series representation of the radial Zernike r~q*E'n  
    %   polynomials is T' O5> e  
    % RqTW$94RD  
    %          (n-m)/2 + $i-"^  
    %            __ (ov=D7>t0  
    %    m      \       s                                          n-2s :%GxU;<E{  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 5G.A\`u%  
    %    n      s=0 Jej P91  
    % (lv|-Phc.  
    %   The following table shows the first 12 polynomials. Jp)>Wd  
    % ow:}NI  
    %       n    m    Zernike polynomial    Normalization d;(&_;  
    %       --------------------------------------------- Bkg/A;H  
    %       0    0    1                        sqrt(2) Id8^6FLw  
    %       1    1    r                           2 pQ0yZpN%;  
    %       2    0    2*r^2 - 1                sqrt(6)  _Y@'<S.  
    %       2    2    r^2                      sqrt(6) >L$g ;(g  
    %       3    1    3*r^3 - 2*r              sqrt(8) jJ% *hDZ6t  
    %       3    3    r^3                      sqrt(8) S-[]z*  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) q 4_&C&7  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) zo66=vE!  
    %       4    4    r^4                      sqrt(10) FG8genCH@  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) >W 2Z]V  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) e* gCc7zz  
    %       5    5    r^5                      sqrt(12) d!) &@k  
    %       --------------------------------------------- Zyq h  
    % xM85^B'  
    %   Example: /$zYSP)YT  
    % 2d+IROA  
    %       % Display three example Zernike radial polynomials ai"Kd=R  
    %       r = 0:0.01:1; GRz`fO  
    %       n = [3 2 5]; s]Z/0:`  
    %       m = [1 2 1]; fx|$(D@9  
    %       z = zernpol(n,m,r); i}Ea>bi{N  
    %       figure Pz3jc|Ga  
    %       plot(r,z) _QCspPT' c  
    %       grid on P(fTlrb  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') *1iJa  
    % -Zfzl`r  
    %   See also ZERNFUN, ZERNFUN2. o2?[*pa  
    UMUr"-l =  
    % A note on the algorithm. hBDPz1<  
    % ------------------------ p"ht|x  
    % The radial Zernike polynomials are computed using the series 8^j u=  
    % representation shown in the Help section above. For many special ~$w-I\Q!  
    % functions, direct evaluation using the series representation can %,%s09tO  
    % produce poor numerical results (floating point errors), because S*rgYe!E  
    % the summation often involves computing small differences between EL80f>K  
    % large successive terms in the series. (In such cases, the functions ~Bn#A kL  
    % are often evaluated using alternative methods such as recurrence /HH5Mn*  
    % relations: see the Legendre functions, for example). For the Zernike T#?KY  
    % polynomials, however, this problem does not arise, because the oz%ZEi \bW  
    % polynomials are evaluated over the finite domain r = (0,1), and N8:?Z#z  
    % because the coefficients for a given polynomial are generally all u9}}}UN!  
    % of similar magnitude. ":?>6'*1  
    % @m!~![  
    % ZERNPOL has been written using a vectorized implementation: multiple 3nf+ imAF  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 6N\~0d>5m  
    % values can be passed as inputs) for a vector of points R.  To achieve D:'|poH  
    % this vectorization most efficiently, the algorithm in ZERNPOL `7}6  
    % involves pre-determining all the powers p of R that are required to 3(%hHM7DM  
    % compute the outputs, and then compiling the {R^p} into a single N5csq(  
    % matrix.  This avoids any redundant computation of the R^p, and s@ m A\  
    % minimizes the sizes of certain intermediate variables. !TP8LQ  
    % L+bO X  
    %   Paul Fricker 11/13/2006 ovzIJbf  
    UZMo(rG.]{  
    ^CI.F.#X|  
    % Check and prepare the inputs: "cRc~4%K  
    % ----------------------------- EnA) Rz  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &M=12>ah]  
        error('zernpol:NMvectors','N and M must be vectors.') g}|a-  
    end 1K^blOLXe  
    8qp!S1Qnv  
    if length(n)~=length(m) 3lhXD_Y  
        error('zernpol:NMlength','N and M must be the same length.') 4?g~GI3  
    end jJ?MT#v  
    B o.x  
    n = n(:); F}<&@7kF  
    m = m(:); n_AW0i .  
    length_n = length(n); r ^_8y8&l  
    >BMJA:j  
    if any(mod(n-m,2)) gWqmK/.U.0  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ;#78`x2  
    end t #MU2b  
    HI#}M|4n  
    if any(m<0) >pO[ S[  
        error('zernpol:Mpositive','All M must be positive.') 2,/("lV@0  
    end }fZT$'*;  
    yopEqO  
    if any(m>n) 7 ;|jq39  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') $%`OJf*k  
    end d"Y9go"Z  
    b.47KJzt  
    if any( r>1 | r<0 ) 3ypB~bNw  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') y7wy9+>l  
    end &E.0!BuqV  
    l6Ze6X I  
    if ~any(size(r)==1) .sAcnf"  
        error('zernpol:Rvector','R must be a vector.') M7Cq)cT  
    end YN n,{Xi  
    8^\DQ&D  
    r = r(:); gEIjG  
    length_r = length(r); 6|X  
    ?qAX *j  
    if nargin==4 8*=N\'m],  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); }EE  
        if ~isnorm $.R$I&U  
            error('zernpol:normalization','Unrecognized normalization flag.') ?=_l=dR  
        end @{@x2'-A  
    else ;Y?7|G97*S  
        isnorm = false; #AyM!   
    end `XP]y=  
    E+dr\Xhv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mJc'oG-  
    % Compute the Zernike Polynomials }=^YLu=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k <A>J-|  
    ZWG$MFEjl  
    % Determine the required powers of r: /jC0[%~jV  
    % ----------------------------------- /e|`mu%  
    rpowers = []; AQ32rJT8c`  
    for j = 1:length(n) I/|)?  
        rpowers = [rpowers m(j):2:n(j)]; 8 fVI33  
    end j()_ VoB1  
    rpowers = unique(rpowers); U.crRrN  
    &~6Z)}  
    % Pre-compute the values of r raised to the required powers, Iu 2RK  
    % and compile them in a matrix: ?WG9}R[qE/  
    % ----------------------------- j08 G-_Gjn  
    if rpowers(1)==0 1mJBxg}(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); pA!+;Y!ZB<  
        rpowern = cat(2,rpowern{:}); y{? 6U>_  
        rpowern = [ones(length_r,1) rpowern]; j Z3N+_J1  
    else G- Sw`HHo  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #fG!dD42  
        rpowern = cat(2,rpowern{:}); ~fAdOh  
    end .',ikez  
    lR{eO~'~V  
    % Compute the values of the polynomials: cI?dvfU?  
    % -------------------------------------- 9gn_\!Mp  
    z = zeros(length_r,length_n); |42E'zH&  
    for j = 1:length_n s8WA@)L  
        s = 0:(n(j)-m(j))/2; H }uT'  
        pows = n(j):-2:m(j); y:iE'SRRK6  
        for k = length(s):-1:1 Z&s+*& TM  
            p = (1-2*mod(s(k),2))* ... _Y|k \|'  
                       prod(2:(n(j)-s(k)))/          ... V*5:Vt7N  
                       prod(2:s(k))/                 ... ok-sm~bp  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... yIXM}i:  
                       prod(2:((n(j)+m(j))/2-s(k))); "0`r]5 5d  
            idx = (pows(k)==rpowers); k:m~'r8z  
            z(:,j) = z(:,j) + p*rpowern(:,idx); S?OK@UEJ  
        end &ad9VB7  
         qk~QcVg  
        if isnorm 5}*aP  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 9 ?MOeOV8  
        end +@Fy) {C7  
    end >kz5azV0  
    &KbtW_  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) cp0>Euco=  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. %[lX  H  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated f:Nfw+/q  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Z>o;Yf[  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, L9fhe,en  
    %   and THETA is a vector of angles.  R and THETA must have the same %CF(SK2w  
    %   length.  The output Z is a matrix with one column for every P-value, ]hF[f|V  
    %   and one row for every (R,THETA) pair. *3S,XMS{O  
    % .g(yTA  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike kL*Q})  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) p'KU!I }  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) [Gh T.  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 &:akom8  
    %   for all p. u\Fq\_  
    % w gATfygr  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ;?=] ffa{  
    %   Zernike functions (order N<=7).  In some disciplines it is yHr/i) c  
    %   traditional to label the first 36 functions using a single mode U g]6i+rp  
    %   number P instead of separate numbers for the order N and azimuthal k/?+jb  
    %   frequency M. *Z|!%C  
    % Fd5{pM3  
    %   Example: &p8K0 |  
    % Z(/jQ=ozQ  
    %       % Display the first 16 Zernike functions NjYpNd?g  
    %       x = -1:0.01:1; B964#4& 9  
    %       [X,Y] = meshgrid(x,x); xzW]D0o0  
    %       [theta,r] = cart2pol(X,Y); a3R#Bg(  
    %       idx = r<=1; "JJ )w0  
    %       p = 0:15; O:xRUjpL  
    %       z = nan(size(X)); C<qJnB:B 9  
    %       y = zernfun2(p,r(idx),theta(idx)); ^B?{X|U37  
    %       figure('Units','normalized') aWOApXJ  
    %       for k = 1:length(p) HQ/PHUg2  
    %           z(idx) = y(:,k); `+1*)bYxU  
    %           subplot(4,4,k) iknBc-TLD  
    %           pcolor(x,x,z), shading interp <\X4_sdy  
    %           set(gca,'XTick',[],'YTick',[]) {s=QwZdR  
    %           axis square f IQ$a >  
    %           title(['Z_{' num2str(p(k)) '}']) CWCE}WU>4  
    %       end ^4B6IF*  
    % j#-ZL-N  
    %   See also ZERNPOL, ZERNFUN. D~NH 4B  
    >9<h?F%S  
    %   Paul Fricker 11/13/2006 \&@Tq-o  
    [rqq*_eB  
    (zk'i13#6  
    % Check and prepare the inputs: 9e=F  
    % ----------------------------- /~J#c=  
    if min(size(p))~=1 Rp}6}4=d  
        error('zernfun2:Pvector','Input P must be vector.') 5_G7XBvD/w  
    end k5g\s9n]  
    )bi*y`UM]  
    if any(p)>35 #mx;t3ja7  
        error('zernfun2:P36', ... >hB]T%'  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... |],{kUIXO  
               '(P = 0 to 35).']) N7+K$)3  
    end iu*u|e  
    [#3:CDT  
    % Get the order and frequency corresonding to the function number: rZ:  
    % ---------------------------------------------------------------- 6$fC R  
    p = p(:); =*"Amd,  
    n = ceil((-3+sqrt(9+8*p))/2); 9XobTi3+'  
    m = 2*p - n.*(n+2); 99 :`58G  
    uZd)o AB  
    % Pass the inputs to the function ZERNFUN: [RC|W%<Z>  
    % ---------------------------------------- (:Bo'q S  
    switch nargin 3w!oJB  
        case 3 tQo"$ JN}  
            z = zernfun(n,m,r,theta); F_YZV)q!W  
        case 4 (t<i? >p  
            z = zernfun(n,m,r,theta,nflag); (Clf]\_II  
        otherwise ~NU~jmT2  
            error('zernfun2:nargin','Incorrect number of inputs.') ax>en]rNP  
    end >[ lj8n  
    ,_\h)R_  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 'Nfg%)-N  
    function z = zernfun(n,m,r,theta,nflag) ~aA+L-s|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Haq23K  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N f 4!^0%l  
    %   and angular frequency M, evaluated at positions (R,THETA) on the *zz/U (9D  
    %   unit circle.  N is a vector of positive integers (including 0), and 2z )h,<D  
    %   M is a vector with the same number of elements as N.  Each element g&_0)(a\  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 6"&&s  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, -#rFCfPy^  
    %   and THETA is a vector of angles.  R and THETA must have the same EMs$~CL4  
    %   length.  The output Z is a matrix with one column for every (N,M) g\ <Lb  
    %   pair, and one row for every (R,THETA) pair. LoBKR c2t  
    % tC|5;'m.2  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike jWP(7}U  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %[NefA(  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral `pII-dSC%  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >A2& Mjo  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized hrEKmRmF-  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. <@;eN&  
    % e[Q(OV5(R  
    %   The Zernike functions are an orthogonal basis on the unit circle. [0)iY%^  
    %   They are used in disciplines such as astronomy, optics, and %pTbJaM\U  
    %   optometry to describe functions on a circular domain. 5 0~L(<  
    % Y;-"Z  
    %   The following table lists the first 15 Zernike functions. RsTpjY*Xb  
    % *dUnP{6g  
    %       n    m    Zernike function           Normalization Nm\I_wjX  
    %       -------------------------------------------------- QI`Z[caF  
    %       0    0    1                                 1 6 D!,vu  
    %       1    1    r * cos(theta)                    2 #n~/~*:i92  
    %       1   -1    r * sin(theta)                    2 9H.E15B  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) li/O&@g`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 9J2% 9,^  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) G=~T)e  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ;'=!Fv  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) (CuaBHR  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 6pr}A  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) {d^&$~  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) D5AKOM!`  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) p?Yovckm  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) XPWK"t0 1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tw*qlbFHv  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 0 w@~ynW[  
    %       -------------------------------------------------- kw=+"U   
    % QdDdrR^&  
    %   Example 1: m[Zz(tL  
    % Ev$?c9*>  
    %       % Display the Zernike function Z(n=5,m=1) L$(W* PG}  
    %       x = -1:0.01:1; IybMO5Mwn  
    %       [X,Y] = meshgrid(x,x); n:k~\-&WJ  
    %       [theta,r] = cart2pol(X,Y); OmKT}D~ 4  
    %       idx = r<=1; ~!)_3o  
    %       z = nan(size(X)); RQ/X{<lQ)  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Q&n  
    %       figure *h-nI=  
    %       pcolor(x,x,z), shading interp Y\9uR!0  
    %       axis square, colorbar 7 NJ1cQ-}t  
    %       title('Zernike function Z_5^1(r,\theta)') f}XUxIQ-<  
    % G]q6Ika  
    %   Example 2: E;-R<X5n  
    % UXIq>[2Z1  
    %       % Display the first 10 Zernike functions _CI!7%  
    %       x = -1:0.01:1; oSy[/Y44a  
    %       [X,Y] = meshgrid(x,x); :/Sx\Nz78  
    %       [theta,r] = cart2pol(X,Y); -V4@BKI8  
    %       idx = r<=1; >rYP}k  
    %       z = nan(size(X)); UyK|KL  
    %       n = [0  1  1  2  2  2  3  3  3  3]; w6#hsRq[C  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; B8B^@   
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; $!KV]]  
    %       y = zernfun(n,m,r(idx),theta(idx)); v*3ezf\  
    %       figure('Units','normalized') _W?}%;  
    %       for k = 1:10 K*CO%:,-  
    %           z(idx) = y(:,k); P8;|>OLZ)  
    %           subplot(4,7,Nplot(k)) C/ ;f)k<  
    %           pcolor(x,x,z), shading interp Dc BTW+  
    %           set(gca,'XTick',[],'YTick',[]) SjG=H%  
    %           axis square =I7#Vtd^K<  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +J+]P\:  
    %       end m=j7 vb  
    % })T_D\2M  
    %   See also ZERNPOL, ZERNFUN2. B6=8cf"i  
    CQ3;NY=o  
    %   Paul Fricker 11/13/2006 ]j_S2lt  
    UY)YhXW  
    fn;7Nf7{  
    % Check and prepare the inputs: PtmdUHvD  
    % ----------------------------- htMpL  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) gpE5ua&  
        error('zernfun:NMvectors','N and M must be vectors.') Pme`UcE3H  
    end  l R;<6  
    xE4T\%-K  
    if length(n)~=length(m) p,ZubR J"  
        error('zernfun:NMlength','N and M must be the same length.') 1Qf5H!5vx  
    end t{84ioJ"$  
    ^qV*W1|0  
    n = n(:); ~Bj-n6QDE  
    m = m(:); ;:"~utL7  
    if any(mod(n-m,2)) f9OVylm  
        error('zernfun:NMmultiplesof2', ... c67O/ B(  
              'All N and M must differ by multiples of 2 (including 0).') ,'82;oP4  
    end "o[\Aec:  
    i3#]_ p{  
    if any(m>n) 4S03W  
        error('zernfun:MlessthanN', ... #4d 0/28b  
              'Each M must be less than or equal to its corresponding N.') !BK^5,4?--  
    end C"hc.A&4  
    VWbgusxJ  
    if any( r>1 | r<0 ) HykJ}ezX4  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') /mqEc9sq,  
    end nQ/(*d  
    q(a6@6f"kD  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;k!Ej-(  
        error('zernfun:RTHvector','R and THETA must be vectors.') b4,yLVi<T  
    end 7xWX:2l*?  
    NIV&)`w  
    r = r(:); #pOW2 Uj8\  
    theta = theta(:); -,zNFC:6g  
    length_r = length(r); e2/[`k=7-  
    if length_r~=length(theta) w3,QT}WvY  
        error('zernfun:RTHlength', ... 6=|Q>[K  
              'The number of R- and THETA-values must be equal.') _K/h/!\n  
    end Kd^ ._  
    3MkF  
    % Check normalization: ^ "*r'  
    % -------------------- ~#) DJ  
    if nargin==5 && ischar(nflag) N2q'$o  
        isnorm = strcmpi(nflag,'norm'); dL[mX .j"  
        if ~isnorm #?8'Z/1 )  
            error('zernfun:normalization','Unrecognized normalization flag.') Pm" ,7  
        end 5n?fZ?6(  
    else Lo9+#ITyx  
        isnorm = false; 5TzMv3;in2  
    end =]etw  
    =Z%&jul  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5k<HO_]  
    % Compute the Zernike Polynomials Y}e$5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Uv5E$Y"e10  
    0 ,Bd,<3  
    % Determine the required powers of r: qItj`F)d  
    % ----------------------------------- 8G(wYlxi  
    m_abs = abs(m); `[CXxp  
    rpowers = []; OG}0{?  
    for j = 1:length(n) ~ TurYvf  
        rpowers = [rpowers m_abs(j):2:n(j)]; !k%Vw1 8  
    end % sT=>\  
    rpowers = unique(rpowers); 5RZAs63t  
    u3c e\  
    % Pre-compute the values of r raised to the required powers, s)&"g a  
    % and compile them in a matrix: u9k##a4.E  
    % ----------------------------- E~{-RZNK  
    if rpowers(1)==0 *i)GoQoB  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [,G]#<G?q  
        rpowern = cat(2,rpowern{:}); .B>|>W O  
        rpowern = [ones(length_r,1) rpowern]; 6t*=.b,N  
    else fZXd<Fg+  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >Li ~Og@  
        rpowern = cat(2,rpowern{:}); !"p,9  
    end /m9t2,KB  
    sveFxI  
    % Compute the values of the polynomials: 85Ms*[g  
    % -------------------------------------- /kNr5s  
    y = zeros(length_r,length(n)); M.H4ud  
    for j = 1:length(n) DHm$gk  
        s = 0:(n(j)-m_abs(j))/2; a08B8  
        pows = n(j):-2:m_abs(j); sm\/wlbE  
        for k = length(s):-1:1 :i?Z1x1`  
            p = (1-2*mod(s(k),2))* ... OJ] {FI  
                       prod(2:(n(j)-s(k)))/              ... 4!iS"QH?;^  
                       prod(2:s(k))/                     ... q;Qpd]H  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... !)_5z<  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9l OUE  
            idx = (pows(k)==rpowers); }2DeqY  
            y(:,j) = y(:,j) + p*rpowern(:,idx); \h _hd%'G  
        end 6 U# C  
         9Q].cDe[  
        if isnorm [yjC@docH  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); b @5&<V;r2  
        end uodO^5"-  
    end p7 2+:I  
    % END: Compute the Zernike Polynomials QT^( oog=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <1_?.gSi  
    -7;RPHJs  
    % Compute the Zernike functions: lL%7lO   
    % ------------------------------ 2yeq2v   
    idx_pos = m>0; m0/J3  
    idx_neg = m<0; {`l]RIig  
    r|0C G^:C  
    z = y; iHQFieZ.E  
    if any(idx_pos) _VR4 |)1g  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (}] 74Lc  
    end Gs*ea'T)  
    if any(idx_neg) ^k u~m5v  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _%<7!|"  
    end j>0S3P,  
    yf_<o   
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的