非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 gmF Cjs
function z = zernfun(n,m,r,theta,nflag) km%c0:
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. /Mac:;W`
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @jXdQY%{
% and angular frequency M, evaluated at positions (R,THETA) on the 6R.%I{x'
% unit circle. N is a vector of positive integers (including 0), and >a6{y
% M is a vector with the same number of elements as N. Each element ^T^l3B[
% k of M must be a positive integer, with possible values M(k) = -N(k) +`y{r^xD
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, U^AywE]
% and THETA is a vector of angles. R and THETA must have the same 0Yh Mwg?
% length. The output Z is a matrix with one column for every (N,M) uv&??F]/
% pair, and one row for every (R,THETA) pair. g>L4N.ZH_v
% y;'yob
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike UG@9X/l}
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), }8joltf
% with delta(m,0) the Kronecker delta, is chosen so that the integral HUP~
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +JDQ`Qk
% and theta=0 to theta=2*pi) is unity. For the non-normalized {>x6SVF
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. J(0E'o{ug
% o8PK,!Pl
% The Zernike functions are an orthogonal basis on the unit circle. 9FGe(t<
% They are used in disciplines such as astronomy, optics, and >#9f{
% optometry to describe functions on a circular domain. FR bmeq3c
% o#p{0y
% The following table lists the first 15 Zernike functions. bSG}I|
% 8Uv2p{ <#
% n m Zernike function Normalization yniXb2iM
% -------------------------------------------------- T+a\dgd
% 0 0 1 1 BVJ6U[h`
% 1 1 r * cos(theta) 2 fN!ci']
% 1 -1 r * sin(theta) 2 <./r%3$;7
% 2 -2 r^2 * cos(2*theta) sqrt(6) IdHydY1
% 2 0 (2*r^2 - 1) sqrt(3) 5c8tH=
% 2 2 r^2 * sin(2*theta) sqrt(6) *h <_gn
% 3 -3 r^3 * cos(3*theta) sqrt(8) F rKI=8
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) w<qn @f
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) rAv)k&l
% 3 3 r^3 * sin(3*theta) sqrt(8) ?j'Nx_RoX
% 4 -4 r^4 * cos(4*theta) sqrt(10) PU& v{gn
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Qru
iQ/t
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) [Yi;k,F:
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7I#<w[l>k
% 4 4 r^4 * sin(4*theta) sqrt(10) ls;!Og9
% -------------------------------------------------- 5{PT
% 5.IX
% Example 1: lR<1x
% r bfIH":
% % Display the Zernike function Z(n=5,m=1) 3QD+&9{D
% x = -1:0.01:1; k=^~\$e
% [X,Y] = meshgrid(x,x); L
`\>_
% [theta,r] = cart2pol(X,Y); 2#i*'.
% idx = r<=1; .kl.awT
% z = nan(size(X)); VB}4#-dG?
% z(idx) = zernfun(5,1,r(idx),theta(idx)); $;J:kd;<
% figure t.s;dlx[@
% pcolor(x,x,z), shading interp l KdY!j"
% axis square, colorbar _nn\O3TB
% title('Zernike function Z_5^1(r,\theta)') z1AYXW6F
% 2HX#:y{\l
% Example 2: *XCgl*% *
% ;YfKG8(0
% % Display the first 10 Zernike functions ,E._A(Z
% x = -1:0.01:1; "p"M9P'
% [X,Y] = meshgrid(x,x); \nzaF4+$
% [theta,r] = cart2pol(X,Y); i&di}x
% idx = r<=1; MEI.wJZ
% z = nan(size(X)); aioN)V
% n = [0 1 1 2 2 2 3 3 3 3]; KAFx^JLo
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; bTd94
% Nplot = [4 10 12 16 18 20 22 24 26 28]; pm4'2B|)g
% y = zernfun(n,m,r(idx),theta(idx)); r8wip\[
% figure('Units','normalized') N!Q~?/!d
% for k = 1:10 4nz$Ja)
% z(idx) = y(:,k); Vlf =gP
% subplot(4,7,Nplot(k)) |eu:qn8
% pcolor(x,x,z), shading interp tK0Ksnl^
% set(gca,'XTick',[],'YTick',[]) \'>8 (i~
% axis square (c\i .z
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) wBJP8wES=
% end U4.-{.
% 8o7%qWX
% See also ZERNPOL, ZERNFUN2. HX`>"
?{
.wPu
#*
% Paul Fricker 11/13/2006 !xRboPg
jTh^#Q
T1_qAz+
% Check and prepare the inputs: +gh*n,:|
% ----------------------------- -]-?>gkN5
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) R)Y*<Na
error('zernfun:NMvectors','N and M must be vectors.') ?3t]9z
end kKHGcm^r
|%tI!RN):
if length(n)~=length(m) g-NfZj?
error('zernfun:NMlength','N and M must be the same length.') Y2oN.{IH
end |EpL~G_
`9vCl@"IV
n = n(:); BIn7<.&
m = m(:); km=d'VvnI
if any(mod(n-m,2)) #^zUaPV 7r
error('zernfun:NMmultiplesof2', ... L>X39R~
'All N and M must differ by multiples of 2 (including 0).') 0,M1Q~u%.
end q)F@f /
lD]/Kx
if any(m>n) [7+dZL[
error('zernfun:MlessthanN', ... s6HfN'
'Each M must be less than or equal to its corresponding N.') :L&d>Ii|'
end \*r]v;NcP
?c0@A*:o
if any( r>1 | r<0 ) QP={b+8
error('zernfun:Rlessthan1','All R must be between 0 and 1.') i4g99Kvl
end ,Srj38p
JZom#A.
dt
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Rct=vDU
error('zernfun:RTHvector','R and THETA must be vectors.') ?]Wg{\NC6
end .0ExHcr
x/]]~@:
r = r(:); ,2/y(JX}*!
theta = theta(:); iI@m e=
length_r = length(r); 3w!,@=.q
if length_r~=length(theta) j%TcW!D-_
error('zernfun:RTHlength', ... okSCM#&:[2
'The number of R- and THETA-values must be equal.') =zXA0%
end kA/V=xO<
<}z,!w8
% Check normalization: KU5|~1t 4
% -------------------- l99{ eD
if nargin==5 && ischar(nflag) z&W5@6")`
isnorm = strcmpi(nflag,'norm'); mq!_/3
if ~isnorm xZ.c@u6:
error('zernfun:normalization','Unrecognized normalization flag.') 5IfyD ]<
end ]$xN`O4W{
else pU)g93
isnorm = false; r[votdFo
end x J[Xmre
Ix1[ $9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7$/%c{o
% Compute the Zernike Polynomials A3cW8OClz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q ,6[
-)dS`hM
% Determine the required powers of r: j+-+<h/(
% ----------------------------------- H6! <y-
m_abs = abs(m); C?h`i ^ >2
rpowers = []; "JBTsQDj!
for j = 1:length(n) tc4"huG
rpowers = [rpowers m_abs(j):2:n(j)]; xZpGSlA
end W%.ou\GN^t
rpowers = unique(rpowers); Btu=MUS
*LZ^0c: r
% Pre-compute the values of r raised to the required powers, mok%TK
% and compile them in a matrix: SeX:A)*ez%
% ----------------------------- tM&;b?bJ[
if rpowers(1)==0 g XThdNU4G
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 1p]Z9$Y
rpowern = cat(2,rpowern{:}); $Afw]F$
rpowern = [ones(length_r,1) rpowern]; DD(K@M
else 6*Y>Y&sea
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); o7B }~;L
rpowern = cat(2,rpowern{:}); 6;^ e
end [WxRwE
`E4OgO
% Compute the values of the polynomials: jh3XG
% -------------------------------------- !(L\X'jH
y = zeros(length_r,length(n)); JRT,%;*,
for j = 1:length(n) -g`3;1EV^
s = 0:(n(j)-m_abs(j))/2; 5lp};
pows = n(j):-2:m_abs(j); JLZ=$ d
for k = length(s):-1:1 RxZ#`$F
p = (1-2*mod(s(k),2))* ... SF#Rc>v
prod(2:(n(j)-s(k)))/ ... {6uh Ub
prod(2:s(k))/ ... 7HkQ|~zGT
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... WI+ 5x
prod(2:((n(j)+m_abs(j))/2-s(k)));
.gS
x`|!
idx = (pows(k)==rpowers); ,O[Maj/ch
y(:,j) = y(:,j) + p*rpowern(:,idx); V`;$Ua;y
end +&:?*(?Q
us,1:@a)a
if isnorm wWU5]v
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5PXo1"n8T
end ~BJ~]~0P`
end xU5+"t~
% END: Compute the Zernike Polynomials _/iw=-T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jj&4Sv#>
1FO T
% Compute the Zernike functions: J|D$
% ------------------------------ [Q+qu>&HB7
idx_pos = m>0; iH#b"h{w
idx_neg = m<0; QxjX:O
ag
\d4y6
z = y; `AO<r
if any(idx_pos) QaMB=wVr
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); QV@NA@;XZ
end i$Sq.NU
if any(idx_neg) dU4G!
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); xO<$xx
end #ErIot
OSsxO(;g
% EOF zernfun