切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11480阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 gV's=cQ  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Uiw2oi&_  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  "<1{9  
    }&J q}j  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ##>H&,Dp[  
    1>h]{%I  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) oUlVI*~ND  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 3^yK!-Wp(  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Cp0=k  
    %   order N and frequency M, evaluated at R.  N is a vector of N;`n@9BF  
    %   positive integers (including 0), and M is a vector with the TM%%O :3  
    %   same number of elements as N.  Each element k of M must be a w``U=sfmV  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) oEpFuWp%A  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is A.w.rVDD  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix SE*g;Cvg1  
    %   with one column for every (N,M) pair, and one row for every yJIscwF  
    %   element in R. 3u0RKLc\  
    % cw <l{A  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- nX8v+:&}  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Lr pM\}t  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to TB31- ()  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 #Gi$DMW  
    %   for all [n,m]. K{+2G&i  
    % "3J}b?u_[  
    %   The radial Zernike polynomials are the radial portion of the 0w7DsPdS  
    %   Zernike functions, which are an orthogonal basis on the unit A,!-{/wc  
    %   circle.  The series representation of the radial Zernike G' 1'/  
    %   polynomials is "" EQE>d  
    % -XG@'P_  
    %          (n-m)/2 TWX.D`W  
    %            __ n+M<\  
    %    m      \       s                                          n-2s 8 L Cb+^  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r f _:A0  
    %    n      s=0 @2i9n  
    % <F'\lA9  
    %   The following table shows the first 12 polynomials. uPvEwq* C  
    % CTmT@A{  
    %       n    m    Zernike polynomial    Normalization Dw"\/p:-3  
    %       --------------------------------------------- r9XZ(0/p  
    %       0    0    1                        sqrt(2) |DwZ{(R"W  
    %       1    1    r                           2 +b 6v!7_  
    %       2    0    2*r^2 - 1                sqrt(6) Q,Eo mt  
    %       2    2    r^2                      sqrt(6) [nh>vqum  
    %       3    1    3*r^3 - 2*r              sqrt(8) /x *3}oI  
    %       3    3    r^3                      sqrt(8) E{vbO/|kf  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 8{ I|$*nB  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) l U]nd[x  
    %       4    4    r^4                      sqrt(10) 4<v&S2Yq  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) x?<FJ"8"k  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 8zb /xP>  
    %       5    5    r^5                      sqrt(12) |uJ%5y#  
    %       --------------------------------------------- ~V6D<  
    % "J1 4C9u   
    %   Example: '5tCz9}Y  
    % yt2PU_),  
    %       % Display three example Zernike radial polynomials U $UIN#  
    %       r = 0:0.01:1; 1Z&(6cDY8M  
    %       n = [3 2 5]; XK vi=0B  
    %       m = [1 2 1]; wuo,kM  
    %       z = zernpol(n,m,r); VxBo1\'  
    %       figure 19] E 5'AI  
    %       plot(r,z) 5lum$5  
    %       grid on ugBCBr  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') M3au{6y  
    % }QmqoCAE~m  
    %   See also ZERNFUN, ZERNFUN2. 9tnD=A<PS  
    'c~4+o4co  
    % A note on the algorithm. %l%HHT  
    % ------------------------ 1.>m@Slr>  
    % The radial Zernike polynomials are computed using the series ji= "DYtL  
    % representation shown in the Help section above. For many special 3(UVg!t  
    % functions, direct evaluation using the series representation can 1 TXioDs=_  
    % produce poor numerical results (floating point errors), because *NQ/UXE  
    % the summation often involves computing small differences between to&m4+5?6  
    % large successive terms in the series. (In such cases, the functions 8?C5L8)  
    % are often evaluated using alternative methods such as recurrence mp3s-YfRc  
    % relations: see the Legendre functions, for example). For the Zernike oL<St$1  
    % polynomials, however, this problem does not arise, because the qJw_  
    % polynomials are evaluated over the finite domain r = (0,1), and Yr|4Fl~U  
    % because the coefficients for a given polynomial are generally all Qg/rRiV  
    % of similar magnitude. E(|>Ddv B&  
    % yCo.cd-  
    % ZERNPOL has been written using a vectorized implementation: multiple ,"ql5Q4  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] eV~goj  
    % values can be passed as inputs) for a vector of points R.  To achieve i@'dH3-kO  
    % this vectorization most efficiently, the algorithm in ZERNPOL t$ *0{w E  
    % involves pre-determining all the powers p of R that are required to T^q 0'#/  
    % compute the outputs, and then compiling the {R^p} into a single FiU#T.`9'  
    % matrix.  This avoids any redundant computation of the R^p, and Ir]\|t  
    % minimizes the sizes of certain intermediate variables. `$NP> %J-  
    % fc@A0Hf  
    %   Paul Fricker 11/13/2006 B7%U_F|m  
    WEpoBP CL  
    M^I(OuRMeI  
    % Check and prepare the inputs: [00m/fT6  
    % ----------------------------- -K$)DvV^(E  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :hA#m[  
        error('zernpol:NMvectors','N and M must be vectors.') yLcE X  
    end DTs;{c  
    eDB;cN  
    if length(n)~=length(m) tnIX:6  
        error('zernpol:NMlength','N and M must be the same length.') "7`<~>9t.  
    end QSj]ZA  
    2"~8Z(0  
    n = n(:); mA}"a<0  
    m = m(:); A)KZa"EX  
    length_n = length(n); |7Kbpj  
    B-ESFATc  
    if any(mod(n-m,2)) oXS}IL og'  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') (iGTACoF  
    end |nF8gh~}  
    /7LR;>Bj  
    if any(m<0) |'2d_vR  
        error('zernpol:Mpositive','All M must be positive.') hzC>~Ub5  
    end < 7$1kGlA  
     C.QO#b  
    if any(m>n) -.3w^D"l  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') L8n|m!MOD  
    end "h ^Z  
    k_R"CKd  
    if any( r>1 | r<0 ) ze;KhUPRm  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') RT5T1K08I  
    end 1nOCQ\$l  
    (I}v[W  
    if ~any(size(r)==1) Np)lIGE  
        error('zernpol:Rvector','R must be a vector.') ]{LjRSV  
    end R GX=)  
    cS+>J@L  
    r = r(:); |D.ND%K&  
    length_r = length(r); Xm 2'6f,  
    u2[w#   
    if nargin==4 U%<Inb}ad  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); iyog`s c  
        if ~isnorm Xx(T">]vJ  
            error('zernpol:normalization','Unrecognized normalization flag.') . [ mR M  
        end wdZ/Xp9]  
    else PxE3K-S)G  
        isnorm = false; L_s:l9!r  
    end 8.~kK<)!  
    PYzvCf`?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~v"L!=~G;a  
    % Compute the Zernike Polynomials C8\^#5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bJ;'`sw1  
    -`t^7pr  
    % Determine the required powers of r: [fIg{Q  
    % ----------------------------------- 'P}0FktP`  
    rpowers = []; m#F`] {  
    for j = 1:length(n) 8JD,u  
        rpowers = [rpowers m(j):2:n(j)]; ]0\MmAJRn  
    end CWS4lx  
    rpowers = unique(rpowers); 4H<lm*!^  
    v9->nVc-  
    % Pre-compute the values of r raised to the required powers, FsryEHz  
    % and compile them in a matrix: ?R#)1{(8d~  
    % ----------------------------- j8`BdKg  
    if rpowers(1)==0 C6y&#uX\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); E+JqWR5  
        rpowern = cat(2,rpowern{:}); Oc; G(l(  
        rpowern = [ones(length_r,1) rpowern]; @ry_nKr9  
    else S Z$Kz n  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GM<-&s!Uj  
        rpowern = cat(2,rpowern{:}); fd2T=fz-  
    end tnG# IU *  
    )>- =R5ZV  
    % Compute the values of the polynomials: K96<M);:g  
    % -------------------------------------- r>U@3%0&  
    z = zeros(length_r,length_n); m9Hit8f@Q  
    for j = 1:length_n VAu&@a`  
        s = 0:(n(j)-m(j))/2; 3%ZOKb"D*  
        pows = n(j):-2:m(j); ZQ0F$J)2~  
        for k = length(s):-1:1 DDH:)=;z  
            p = (1-2*mod(s(k),2))* ... '08=yqy4N  
                       prod(2:(n(j)-s(k)))/          ... # Vha7  
                       prod(2:s(k))/                 ... '6Q =#:mc\  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... :4%k9BGAj"  
                       prod(2:((n(j)+m(j))/2-s(k))); |H+Wed|  
            idx = (pows(k)==rpowers); 8*T=Xei8  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ^ovR7+V  
        end aAA U{EWW  
         ( ICd}  
        if isnorm ,WB{i^TD  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); iW /}#  
        end 5o8EC" 0  
    end /~f'}]W  
    /gkX38  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ?m? ::RH  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. DZ PPJ2}  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 8eHyL  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive u^qT2Ss0  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ~1vDV>dpE  
    %   and THETA is a vector of angles.  R and THETA must have the same xjj6WED  
    %   length.  The output Z is a matrix with one column for every P-value, _t #k,;  
    %   and one row for every (R,THETA) pair. c|@bwat4  
    % d,n 'n  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Y#P%6Fy  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) g~A`N=r;h  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) K}MK<2vU  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ByNn  
    %   for all p. DG:Z=LuJr  
    % &AbNWtCV+G  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 !NvI:C_4|  
    %   Zernike functions (order N<=7).  In some disciplines it is oEKvl3Hz_  
    %   traditional to label the first 36 functions using a single mode U0N 60  
    %   number P instead of separate numbers for the order N and azimuthal }oGA-Qc}B  
    %   frequency M. 2)HuZda  
    % k5.Lna  
    %   Example: EE'io5\et  
    % T !WT;A  
    %       % Display the first 16 Zernike functions xBi' X  
    %       x = -1:0.01:1; 9H`XeQ.  
    %       [X,Y] = meshgrid(x,x); XG{zlOD+  
    %       [theta,r] = cart2pol(X,Y); 54R#W:t  
    %       idx = r<=1; Xg!{K3OS  
    %       p = 0:15; T&u5ki4NE  
    %       z = nan(size(X)); xH"/1g  
    %       y = zernfun2(p,r(idx),theta(idx)); "Nbq#w\  
    %       figure('Units','normalized') CSq4x5!_7>  
    %       for k = 1:length(p) )g#T9tx2D  
    %           z(idx) = y(:,k); *@=/qkaJaI  
    %           subplot(4,4,k) } .m<  
    %           pcolor(x,x,z), shading interp pm0{R[:T7  
    %           set(gca,'XTick',[],'YTick',[]) JL}_72gs  
    %           axis square V_}"+&W9  
    %           title(['Z_{' num2str(p(k)) '}']) ywm8N%]v  
    %       end %^GfS@t  
    % lbl?k5  
    %   See also ZERNPOL, ZERNFUN. =BAW[%1b  
    0 e ~JMUb  
    %   Paul Fricker 11/13/2006 ;m{1 _1  
    jc[Y}gd,  
    -Xm'dwm  
    % Check and prepare the inputs: vJc-6EO  
    % ----------------------------- ']z{{UNUN  
    if min(size(p))~=1 ZWU)\}}_R  
        error('zernfun2:Pvector','Input P must be vector.') -g Sa_8R  
    end D_^ nI:  
    gANuBWh8T  
    if any(p)>35 Z<y I\1  
        error('zernfun2:P36', ...  zC@o  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... $f=J2&D,Cz  
               '(P = 0 to 35).']) d#rf5<i  
    end aPfO$b:  
    6J6BF%  
    % Get the order and frequency corresonding to the function number: 1 A !bE  
    % ---------------------------------------------------------------- Jg\zdi:t  
    p = p(:); 1&evG-#<:  
    n = ceil((-3+sqrt(9+8*p))/2); 6x[}g  
    m = 2*p - n.*(n+2); j9 4=hJVKi  
    C>j@,G4  
    % Pass the inputs to the function ZERNFUN: a /l)qB#  
    % ---------------------------------------- Ln<`E|[29  
    switch nargin lC("y' ::  
        case 3 E }Z/*lX  
            z = zernfun(n,m,r,theta); L Mbn  
        case 4 ex9g?*Q  
            z = zernfun(n,m,r,theta,nflag); Ou!2 [oe@M  
        otherwise |w1Bq  
            error('zernfun2:nargin','Incorrect number of inputs.') 2 %@4]  
    end #TX/aKr:  
    Cc' 37~6~P  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 v/0QOp  
    function z = zernfun(n,m,r,theta,nflag) B=yqW  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. E$:*NSXj  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ]kG"ubHV?h  
    %   and angular frequency M, evaluated at positions (R,THETA) on the V b4#,  
    %   unit circle.  N is a vector of positive integers (including 0), and ^aMg/.j  
    %   M is a vector with the same number of elements as N.  Each element 9T}pT{~V  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) KL:j?.0  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, *1 ]uH e  
    %   and THETA is a vector of angles.  R and THETA must have the same 7he,?T)vD  
    %   length.  The output Z is a matrix with one column for every (N,M) z(exA  
    %   pair, and one row for every (R,THETA) pair. /-ch`u md  
    % |`Ntv }  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike c74.< @w  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), =J]]EoX/  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral z8~NZ;A  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +EAsW(F1  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized FLCexlv^  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .b&t ;4q  
    % wd^':  
    %   The Zernike functions are an orthogonal basis on the unit circle.  ZrxD`1L  
    %   They are used in disciplines such as astronomy, optics, and _AYK435>N  
    %   optometry to describe functions on a circular domain.  &)Tdc  
    % Ic:(Gi- %  
    %   The following table lists the first 15 Zernike functions. Ovt.!8  
    % M~#gRAUJ  
    %       n    m    Zernike function           Normalization # E^1|:  
    %       -------------------------------------------------- y$F'(b| )  
    %       0    0    1                                 1 ^q vbqfh  
    %       1    1    r * cos(theta)                    2 } FlT%>Gw  
    %       1   -1    r * sin(theta)                    2 [0[i5'K:  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) =:,g  
    %       2    0    (2*r^2 - 1)                    sqrt(3) b8VTo lJ  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) He/8=$c%  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) hh)`645=x  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) cAqLE\h  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) uR4z &y  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ksqQM  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) UA0Bzoky;  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Lpz>>}  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) c|B('3h  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o>i4CCU+  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) q&- `,8#  
    %       -------------------------------------------------- k&q;JyUi  
    % K5VWt)Z#  
    %   Example 1: 7P5)Z-K[  
    % Z1f8/?`W  
    %       % Display the Zernike function Z(n=5,m=1) K.nHii   
    %       x = -1:0.01:1; FZ<gpIv!NS  
    %       [X,Y] = meshgrid(x,x); [{,T.;'<j  
    %       [theta,r] = cart2pol(X,Y); 4Zddw0|2  
    %       idx = r<=1; 82qoGSD.  
    %       z = nan(size(X)); fS:&Ak ];  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); y`5 9A  
    %       figure #PW9:_BE  
    %       pcolor(x,x,z), shading interp c(m<h+ 2VL  
    %       axis square, colorbar !bx;Ta.  
    %       title('Zernike function Z_5^1(r,\theta)') Y;Dp3v !  
    % G1tY)_-8[  
    %   Example 2: 6qpJUkd  
    % l -mfFN  
    %       % Display the first 10 Zernike functions (k)v!O-  
    %       x = -1:0.01:1; Z'W =\rl  
    %       [X,Y] = meshgrid(x,x); :T$|bc  
    %       [theta,r] = cart2pol(X,Y); S-b/S5  
    %       idx = r<=1; zOIDU  
    %       z = nan(size(X)); $am$ EU?s  
    %       n = [0  1  1  2  2  2  3  3  3  3]; beGa#JH,  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; EhvX)s  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; e@ 07  
    %       y = zernfun(n,m,r(idx),theta(idx)); b<ZIWfs  
    %       figure('Units','normalized') u8g~  
    %       for k = 1:10 JPUW6e07o  
    %           z(idx) = y(:,k); ^j7Vt2-  
    %           subplot(4,7,Nplot(k)) ({)+3]x  
    %           pcolor(x,x,z), shading interp fk>aqm7D!  
    %           set(gca,'XTick',[],'YTick',[]) .},'~NM]  
    %           axis square su( 1<S}  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) >J?fl8  
    %       end `r':by0M  
    % [Ek7b *  
    %   See also ZERNPOL, ZERNFUN2. >dD@j:Qc  
    FUb\e-Q=  
    %   Paul Fricker 11/13/2006 nEy&>z  
    X-Kh(Z  
    MYvY]Jx3  
    % Check and prepare the inputs: <w9JRpFY  
    % ----------------------------- 9YyLf;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (gU!=F?#m  
        error('zernfun:NMvectors','N and M must be vectors.') S Lj!v&'  
    end $6 9&O  
    y9GoPC`z  
    if length(n)~=length(m) 50wulGJud  
        error('zernfun:NMlength','N and M must be the same length.') }?i0  I  
    end !hy-L_wL]  
    MrFQ5:=  
    n = n(:); }C?'BRX  
    m = m(:); Tv=mgH=b  
    if any(mod(n-m,2)) P>D)7 V9Hh  
        error('zernfun:NMmultiplesof2', ... #A/  
              'All N and M must differ by multiples of 2 (including 0).') >T-u~i$s  
    end "m8^zg hL  
    6l x>>J!H  
    if any(m>n) :\c ^*K(9  
        error('zernfun:MlessthanN', ... ]:-mbgW  
              'Each M must be less than or equal to its corresponding N.') o#Dk& cH  
    end 6;d*r$0Fc  
    FVbb2Y?R  
    if any( r>1 | r<0 ) pE0Sw}A:9  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') _6hQ %hv8  
    end #p&qUw  
    |aS.a&vwR  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) H$t_Xw==  
        error('zernfun:RTHvector','R and THETA must be vectors.') xm~`7~nFR  
    end ksUcx4;a@F  
    k]|~>9eY]  
    r = r(:); s!zx} 5  
    theta = theta(:); '<)n8{3Q5w  
    length_r = length(r); .`H5cuF`  
    if length_r~=length(theta) my1@41 H  
        error('zernfun:RTHlength', ... ET*SB  
              'The number of R- and THETA-values must be equal.') )2o?#8J  
    end J]'zIOQ  
    f'RX6$}\1X  
    % Check normalization:  |>^JRx  
    % -------------------- | YWD8 +  
    if nargin==5 && ischar(nflag) ^z*t%<@[Q  
        isnorm = strcmpi(nflag,'norm'); Dx?,=~W9  
        if ~isnorm n( yn<  
            error('zernfun:normalization','Unrecognized normalization flag.') a58H9w"u)  
        end 2l'6.  
    else vh%B[brUJ  
        isnorm = false; ,ZNq,$j  
    end oZgjQM$YP  
    H%td hu\e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F/{!tx  
    % Compute the Zernike Polynomials ="H`V V_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C{rcs'  
    0#hlsfc]\  
    % Determine the required powers of r: !f [_+CD  
    % ----------------------------------- q?yVR3]M  
    m_abs = abs(m); 8TKnL\aar  
    rpowers = []; >+1duAC  
    for j = 1:length(n) U7F!Z( 9  
        rpowers = [rpowers m_abs(j):2:n(j)]; tcI*a>  
    end h[Y1?ln&h  
    rpowers = unique(rpowers); vvMT}-!  
    UI0VtR]   
    % Pre-compute the values of r raised to the required powers, (w3YvG.  
    % and compile them in a matrix: wwZ,;\  
    % ----------------------------- b8UO,fY q  
    if rpowers(1)==0 *i%d,w0+  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4+8@`f>s  
        rpowern = cat(2,rpowern{:}); 1GcE) e!>  
        rpowern = [ones(length_r,1) rpowern]; g! |kp?  
    else 0{D'n@veP  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %tGO?JMkd  
        rpowern = cat(2,rpowern{:}); n_A3#d<9  
    end oG\Vxg*  
    6 H$FhJF  
    % Compute the values of the polynomials: S,UDezxg  
    % -------------------------------------- "!^"[mX4  
    y = zeros(length_r,length(n)); I\ob7X'Xu!  
    for j = 1:length(n) A;M'LM-M  
        s = 0:(n(j)-m_abs(j))/2; _Fl9>C"u  
        pows = n(j):-2:m_abs(j); >kVz49j  
        for k = length(s):-1:1 Y$_B1_  
            p = (1-2*mod(s(k),2))* ... 3=j"=-=  
                       prod(2:(n(j)-s(k)))/              ... rV#ch(  
                       prod(2:s(k))/                     ... onzxx4bax  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 4!?eRY  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Fx.=#bVX7  
            idx = (pows(k)==rpowers); m{HS0l'  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 4tBYR9|  
        end B]tQ(s~  
         e\L8oOk#r  
        if isnorm iYy1!\  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 26h21Z16q  
        end F)eelPZ+,  
    end 4kx N<]  
    % END: Compute the Zernike Polynomials 'H;*W|:-]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xA*<0O\V  
    Km$\:Xo  
    % Compute the Zernike functions: x.$FNt(9  
    % ------------------------------ gPPkT"  
    idx_pos = m>0; k<?b(&`J  
    idx_neg = m<0; i/Zd8+.n$  
    [7y]n;Fy  
    z = y; ckCE1e>s  
    if any(idx_pos) ~t~|"u"P  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); WpvhTX  
    end &};zvo~P.  
    if any(idx_neg) ;$g?T~v7  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); p`qgrI`  
    end kAUymds;O  
    ECmW`#Otb)  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的