切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11304阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ')cgx9   
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 1X}Tp\e  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  nHrCSfK  
    VAt9JE;#  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 -"H4brj;G  
    d]`,}vi#E9  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ^MV%\0o  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ifZNl,  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of  ?Nql7F4  
    %   order N and frequency M, evaluated at R.  N is a vector of >/bK?yT<  
    %   positive integers (including 0), and M is a vector with the \}NWR{=  
    %   same number of elements as N.  Each element k of M must be a 7!w nx.  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Un{ln*AR\  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 0u2uYiE-l  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix QPE.b-S  
    %   with one column for every (N,M) pair, and one row for every tC-KW~&  
    %   element in R. uf] $@6)  
    % ;tiU OixJ  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- r0 C6Ww7u  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is f om"8iL1  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to >]8.xkQq  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 >irT|VTf  
    %   for all [n,m]. 1G.gPx[  
    % tta0sJ8 i  
    %   The radial Zernike polynomials are the radial portion of the Nn1^#kc  
    %   Zernike functions, which are an orthogonal basis on the unit *Bsmn!_cB{  
    %   circle.  The series representation of the radial Zernike :Xh`.*{EX  
    %   polynomials is rd4'y~#S  
    % dvF48,kr  
    %          (n-m)/2 Fxx2vTV4ag  
    %            __ o;_bs~}y  
    %    m      \       s                                          n-2s q|l|mO  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r w{x(YVS H  
    %    n      s=0 Y_hRL&u3W  
    % AiHf?"EVT  
    %   The following table shows the first 12 polynomials. bKZ#>%|:o  
    % fhx:EZ:~  
    %       n    m    Zernike polynomial    Normalization =c^=Yvc7U  
    %       --------------------------------------------- kA=~ 8N  
    %       0    0    1                        sqrt(2) E?U]w0g  
    %       1    1    r                           2 0.+eF }'H  
    %       2    0    2*r^2 - 1                sqrt(6) 8lSn*;S,  
    %       2    2    r^2                      sqrt(6) aZGDtzNG5h  
    %       3    1    3*r^3 - 2*r              sqrt(8) q%Jy>IXt  
    %       3    3    r^3                      sqrt(8) 4,ynt&  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) `h5eej&s(  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ~U6YN_W  
    %       4    4    r^4                      sqrt(10) v/.h%6n?  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) o 0ivja  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) m>dcb 6B+g  
    %       5    5    r^5                      sqrt(12) 05I39/T%  
    %       --------------------------------------------- :P~& b P  
    % 'oQP:*Btl3  
    %   Example: G5y  
    % RTBBb:eX  
    %       % Display three example Zernike radial polynomials B00wcYM<1r  
    %       r = 0:0.01:1; _D,f 4.R  
    %       n = [3 2 5]; Cf=q_\0|W  
    %       m = [1 2 1]; "`*a)'.'^c  
    %       z = zernpol(n,m,r); 3b\8907  
    %       figure C!k9JAa$Z  
    %       plot(r,z) i)PV{3v$J  
    %       grid on jNG?2/P6&  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') VN-#R=D  
    % m?% H<4X  
    %   See also ZERNFUN, ZERNFUN2. q&d&#3Rh  
    D6)Cjc>a  
    % A note on the algorithm. jl-Aos"/  
    % ------------------------ J$9xC{L4  
    % The radial Zernike polynomials are computed using the series 3_*Xk. .d  
    % representation shown in the Help section above. For many special & Yf#O*  
    % functions, direct evaluation using the series representation can \i;&@Kp.N  
    % produce poor numerical results (floating point errors), because 0mD;.1:  
    % the summation often involves computing small differences between ~73i^3yf  
    % large successive terms in the series. (In such cases, the functions '}pgUh_  
    % are often evaluated using alternative methods such as recurrence 0"qim0%|DF  
    % relations: see the Legendre functions, for example). For the Zernike Q}?N4kg  
    % polynomials, however, this problem does not arise, because the %*6oUb  
    % polynomials are evaluated over the finite domain r = (0,1), and LLn{2,jfQ  
    % because the coefficients for a given polynomial are generally all H@2"ove-uC  
    % of similar magnitude. Ma=6kX]  
    % tGO[A#9a  
    % ZERNPOL has been written using a vectorized implementation: multiple Ie&b <k  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] feI[M;7u  
    % values can be passed as inputs) for a vector of points R.  To achieve +>WC^s  
    % this vectorization most efficiently, the algorithm in ZERNPOL JQ/t, v$G  
    % involves pre-determining all the powers p of R that are required to j*La ,iF  
    % compute the outputs, and then compiling the {R^p} into a single S|q!? /jqj  
    % matrix.  This avoids any redundant computation of the R^p, and i B!hEbz  
    % minimizes the sizes of certain intermediate variables. H (NT|  
    % k#Ez  
    %   Paul Fricker 11/13/2006 4$zFR}f  
    $]H=  
    !` M;#  
    % Check and prepare the inputs: *)`kx   
    % ----------------------------- 2^ ,H_PS  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Y( $Ji12  
        error('zernpol:NMvectors','N and M must be vectors.') |j~EV~A J  
    end Y7kb1UG  
    {NY~JFM  
    if length(n)~=length(m) Rg?{?qK\K  
        error('zernpol:NMlength','N and M must be the same length.') OSa}8rlr'  
    end .qIy7_^  
    ~C"k$;(n  
    n = n(:); 5Q$r@&qp  
    m = m(:); $\,BpZ }3  
    length_n = length(n); 5@UC c  
    n-hvh-ZO  
    if any(mod(n-m,2)) ;naq-%'Sg  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Wm$`ae   
    end P!FEh'.  
    eg2U+g4  
    if any(m<0) 2 ]V>J  
        error('zernpol:Mpositive','All M must be positive.') y^d[( c  
    end =CjNtD2]  
    A{aw< P|+  
    if any(m>n) < g3du~  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') -3G 4vRIo  
    end 5 PGlR!^  
    8R\>FNk;  
    if any( r>1 | r<0 ) tM^;?HL]  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Hbjb7Y?[  
    end wc7mJxJxA  
    _(oP{w gB  
    if ~any(size(r)==1) L$29L:  
        error('zernpol:Rvector','R must be a vector.') >~5lYD  
    end kqKj7L  
    `dv}a-Q)c  
    r = r(:); 't|Un G  
    length_r = length(r); pHen>BA[  
    $hjP}- oUX  
    if nargin==4 h"%|\o+3  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); "U% n0r2  
        if ~isnorm F l_dzh,E  
            error('zernpol:normalization','Unrecognized normalization flag.') n+{HNr  
        end RgB6:f,  
    else f0 uUbJ5  
        isnorm = false; W\@?e32  
    end ?Oy'awf_  
    bBUbw*DF)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w4e%-Ln  
    % Compute the Zernike Polynomials t&GA6ML#s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0?lp/|K  
    E`Jp(gK9F  
    % Determine the required powers of r: NP K#].F  
    % ----------------------------------- qQfqlD<  
    rpowers = []; |SGgy|/a#  
    for j = 1:length(n) nG"tO'J6  
        rpowers = [rpowers m(j):2:n(j)]; ?EI'^xg  
    end b8J @K"  
    rpowers = unique(rpowers); )uQ-YC('0  
    (jU/Wj!q  
    % Pre-compute the values of r raised to the required powers, 1.# |QX  
    % and compile them in a matrix: #TMm#?lC  
    % ----------------------------- |@ikx{W  
    if rpowers(1)==0 tg.|$n  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [YC=d1F5  
        rpowern = cat(2,rpowern{:}); zRwb"  
        rpowern = [ones(length_r,1) rpowern]; Yim{U:F  
    else ]43alf F#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {S[I_\3  
        rpowern = cat(2,rpowern{:}); 3B@y &a#&  
    end wYZT D*A2h  
    $.H:8^W  
    % Compute the values of the polynomials: 06 QU  
    % -------------------------------------- "pt+Fe|@c;  
    z = zeros(length_r,length_n); P!kw;x  
    for j = 1:length_n CzYGq  
        s = 0:(n(j)-m(j))/2; P DRnW  
        pows = n(j):-2:m(j); sK+ (v  
        for k = length(s):-1:1 81~Kpx  
            p = (1-2*mod(s(k),2))* ... LmP qLH'(Q  
                       prod(2:(n(j)-s(k)))/          ... gks ==|s.  
                       prod(2:s(k))/                 ... 7FAIew\r  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 4L8z>9D  
                       prod(2:((n(j)+m(j))/2-s(k))); Lp_$?MCD.  
            idx = (pows(k)==rpowers); Ls&+XlrX8  
            z(:,j) = z(:,j) + p*rpowern(:,idx); G+0><,S  
        end UQ/qBbn  
         rkkU"l$v  
        if isnorm 94\t1fE  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); &~RR&MdZ2  
        end BR+nL6sU  
    end z9[[C^C  
    U4Z[!s$  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Ht#@'x  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. J1bA2+5.*e  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated U[R@x`  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive } ^i b  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1,  9:5:`' b  
    %   and THETA is a vector of angles.  R and THETA must have the same SyO79e*t  
    %   length.  The output Z is a matrix with one column for every P-value, b.s9p7:J  
    %   and one row for every (R,THETA) pair. RPVT*`o  
    % 3\AM=`  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike TI=h_%mO  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 1~J5uB4  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ZPHXzi3j  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 nU(DYHc+l  
    %   for all p. V  }>n  
    % Bn?:w\%Ue  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 m 41t(i  
    %   Zernike functions (order N<=7).  In some disciplines it is V >Hf9sZ  
    %   traditional to label the first 36 functions using a single mode NBjeH tT  
    %   number P instead of separate numbers for the order N and azimuthal AVG>_$<  
    %   frequency M. t|V0x3X  
    % *:_P8G;  
    %   Example: B<7/,d'  
    % EATu KLP\  
    %       % Display the first 16 Zernike functions y:d{jG^  
    %       x = -1:0.01:1; MAqLIf<G  
    %       [X,Y] = meshgrid(x,x); ;Wc4qJ.@  
    %       [theta,r] = cart2pol(X,Y); /4$4h;_8  
    %       idx = r<=1; w%dL 8k  
    %       p = 0:15; I;7nb4]AmF  
    %       z = nan(size(X)); w\w(U  
    %       y = zernfun2(p,r(idx),theta(idx)); :m'+tGs  
    %       figure('Units','normalized') A5fwAB  
    %       for k = 1:length(p) \'Z<P,8~  
    %           z(idx) = y(:,k); f?56=& pHY  
    %           subplot(4,4,k) Q6 ?z_0  
    %           pcolor(x,x,z), shading interp ,Q/Ac{C  
    %           set(gca,'XTick',[],'YTick',[]) mM/i^zT  
    %           axis square aRJcSV  
    %           title(['Z_{' num2str(p(k)) '}']) 7\XE,;4>  
    %       end 4 o(bxs"  
    % :jEPu3E:  
    %   See also ZERNPOL, ZERNFUN. LO:fJ{ -  
    6Pn8f  
    %   Paul Fricker 11/13/2006 U7iuY~L  
    ]XA4;7  
    W `z 0"  
    % Check and prepare the inputs: K93p"nHN  
    % ----------------------------- zf[`~g  
    if min(size(p))~=1 BVw Wj-,  
        error('zernfun2:Pvector','Input P must be vector.') bU54-3Ox*  
    end wGsRS[  
    cK`"lxO  
    if any(p)>35 6rN(_Oi-  
        error('zernfun2:P36', ... {g6Qv-  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... {/<6v. v  
               '(P = 0 to 35).']) x9W(cKB'S  
    end }_ mT l@*  
    ILwn&[A0  
    % Get the order and frequency corresonding to the function number: v$wBxCY  
    % ---------------------------------------------------------------- ?=;qK{)37  
    p = p(:); ^pnG0(9  
    n = ceil((-3+sqrt(9+8*p))/2); !xIm2+:(  
    m = 2*p - n.*(n+2); Xz 4 x  
    qTQ!jN  
    % Pass the inputs to the function ZERNFUN: ]bi)$j.9s  
    % ---------------------------------------- Zm ogM7B  
    switch nargin q2rUbU_A(  
        case 3 L,,*gK  
            z = zernfun(n,m,r,theta); l8h&|RY[  
        case 4 TBrGA E  
            z = zernfun(n,m,r,theta,nflag); f~{}zGTM:  
        otherwise *Vw\'%p*  
            error('zernfun2:nargin','Incorrect number of inputs.') X+k}2HvNG  
    end WQNE2Q  
    Xjio Z  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 iJ' xh n  
    function z = zernfun(n,m,r,theta,nflag) /walu+]h  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Cxod[$8  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ;Vik5)D2D  
    %   and angular frequency M, evaluated at positions (R,THETA) on the @+F4YJmB?l  
    %   unit circle.  N is a vector of positive integers (including 0), and klgy;jSEr  
    %   M is a vector with the same number of elements as N.  Each element &N~ZI*^  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) fb~=Y$|  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 'J&f%kx"  
    %   and THETA is a vector of angles.  R and THETA must have the same BBG3OAyg_  
    %   length.  The output Z is a matrix with one column for every (N,M) |2\{z{?  
    %   pair, and one row for every (R,THETA) pair. `LAR@a5i  
    % r_e7a6  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike C98]9  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 'bld,Do6  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral I+>%uShm  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 6 5y+Z  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized mbnV[  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )irRO8  
    % rqP FU6  
    %   The Zernike functions are an orthogonal basis on the unit circle. 'TH15r@  
    %   They are used in disciplines such as astronomy, optics, and a22Mufl  
    %   optometry to describe functions on a circular domain. \I"Z2N>^z  
    % *_E|@y  
    %   The following table lists the first 15 Zernike functions. "YdEE\  
    % Hqnxq  
    %       n    m    Zernike function           Normalization ?Kvl!F!`  
    %       -------------------------------------------------- [.RO'>2z  
    %       0    0    1                                 1 7\*FEjRM]  
    %       1    1    r * cos(theta)                    2 %AOja+  
    %       1   -1    r * sin(theta)                    2 E0%~! b  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) pwwH<0[  
    %       2    0    (2*r^2 - 1)                    sqrt(3) jM-)BP6f4  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) h~{aGo  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 7eWk7&Xul  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) DvvT?K  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ) ri}nL.  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ?4H i-  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 2I*;A5$N1  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Bs?7:kN(  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) /Q~gU<  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &Tl 0Pf  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) zIP6\u  
    %       -------------------------------------------------- ` PYJ^I0  
    % WTImRXK4  
    %   Example 1: ,`ZYvF^%  
    % Hwo$tVa:=  
    %       % Display the Zernike function Z(n=5,m=1) ~QvqG{bFB  
    %       x = -1:0.01:1; []a[v%PkG  
    %       [X,Y] = meshgrid(x,x); aK`@6F,]j  
    %       [theta,r] = cart2pol(X,Y); Y&/]O$<  
    %       idx = r<=1; 1hcjSO  
    %       z = nan(size(X)); u,}{I}x_  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); vjjSKP6B  
    %       figure u%~igt@x  
    %       pcolor(x,x,z), shading interp LM&y@"wfm  
    %       axis square, colorbar CHV*vU<N  
    %       title('Zernike function Z_5^1(r,\theta)') $Of0n` e  
    % !"8fdSfg w  
    %   Example 2: p~*UpU8u  
    % ,t\* ZTt$  
    %       % Display the first 10 Zernike functions R(n^)^?  
    %       x = -1:0.01:1; Bz5-ITX   
    %       [X,Y] = meshgrid(x,x); i1S>yV^l  
    %       [theta,r] = cart2pol(X,Y); 2h[85\4  
    %       idx = r<=1; |&Ym@Jyj  
    %       z = nan(size(X)); 0ez(A  
    %       n = [0  1  1  2  2  2  3  3  3  3]; TDd{.8qf  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; rj6#1kt  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; oh$Q6G  
    %       y = zernfun(n,m,r(idx),theta(idx)); Ur*6Gi6  
    %       figure('Units','normalized') wm+/e#'&  
    %       for k = 1:10 u]vQ>Uu  
    %           z(idx) = y(:,k); 'uq#ai[5I  
    %           subplot(4,7,Nplot(k)) eds26(  
    %           pcolor(x,x,z), shading interp )Tk1 QHU  
    %           set(gca,'XTick',[],'YTick',[]) #!)n {h+  
    %           axis square tU_y6  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) C+|b1/N-  
    %       end ?JL:CBvCp  
    % ,\qs4&  
    %   See also ZERNPOL, ZERNFUN2. _x!7}O#k  
    jg?x&'u\)  
    %   Paul Fricker 11/13/2006 5 Kkdo!z  
    ve\X3"p#  
    H@ t'~ZO  
    % Check and prepare the inputs: W"Gkq!3u{  
    % ----------------------------- `X3^fg  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~i`>adJ:  
        error('zernfun:NMvectors','N and M must be vectors.') =2@B&  
    end n5{Xj:}  
    6 ~ >FYX  
    if length(n)~=length(m)  Br` IW  
        error('zernfun:NMlength','N and M must be the same length.') }fKSqB]T-  
    end /{|fyKo\?  
    Zfyo-Wk  
    n = n(:); QcgfBsv96  
    m = m(:); .w]GWL  
    if any(mod(n-m,2)) < P`u}  
        error('zernfun:NMmultiplesof2', ... )KP5Wud X  
              'All N and M must differ by multiples of 2 (including 0).') F+@5C:<?  
    end '3?\K3S4i  
    :H c0b=  
    if any(m>n) !%c'$f/  
        error('zernfun:MlessthanN', ... VO"("7L  
              'Each M must be less than or equal to its corresponding N.') C*`mM'#  
    end 8cA~R-  
    s M+WkN}{  
    if any( r>1 | r<0 ) Aj0Tfdxy  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') zD<or&6  
    end f4BnX(1u  
    VqS#waNrx  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) AZmb!}m+d  
        error('zernfun:RTHvector','R and THETA must be vectors.') 9D4NX<_  
    end HQB(*  
    D&S26jrZ  
    r = r(:); ;g~TWy^o  
    theta = theta(:); 6,9o>zT%H  
    length_r = length(r); N&M~0iw  
    if length_r~=length(theta) &-mX ,   
        error('zernfun:RTHlength', ... !tp1:'KG  
              'The number of R- and THETA-values must be equal.') 8KRba4[  
    end Jej` ;I  
    J.8IwN1E  
    % Check normalization: L@gWzC~?Q  
    % -------------------- C?2' +K  
    if nargin==5 && ischar(nflag) #b~JDO(  
        isnorm = strcmpi(nflag,'norm'); 46 PoM  
        if ~isnorm ,13Lq-  
            error('zernfun:normalization','Unrecognized normalization flag.') /FIE:Io  
        end W]nSR RWco  
    else A$w4PVS  
        isnorm = false; PnoPb k[<  
    end |M+<m">E  
    )LyojwY_g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% APO>y  
    % Compute the Zernike Polynomials rSJ9 v :  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WH= EPOR,  
    %wSj%>&-R  
    % Determine the required powers of r: p1|f<SF')  
    % ----------------------------------- (x3.poSt  
    m_abs = abs(m); WoBo9aR  
    rpowers = []; MzL1Bh!M  
    for j = 1:length(n) D)d~3`=#  
        rpowers = [rpowers m_abs(j):2:n(j)]; 'UYR5Y>  
    end V,G|k!!  
    rpowers = unique(rpowers); +9") KQT  
    r3\cp0P;s  
    % Pre-compute the values of r raised to the required powers, PZ*pQ=`  
    % and compile them in a matrix: !Uq^7Mw  
    % ----------------------------- W]5USFan  
    if rpowers(1)==0 $t6e2=7  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); iySRY^  
        rpowern = cat(2,rpowern{:}); ?G -e](]^<  
        rpowern = [ones(length_r,1) rpowern]; UNkCL4N  
    else `YI f_a{  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); g2T -TG'd  
        rpowern = cat(2,rpowern{:}); %y%j*B!%  
    end YE9,KVV;$n  
    oD$J0{K6  
    % Compute the values of the polynomials: x*Y@Q?`>5W  
    % -------------------------------------- 4'LB7}WG  
    y = zeros(length_r,length(n)); &Y^WP?HS  
    for j = 1:length(n) yn/rW$  
        s = 0:(n(j)-m_abs(j))/2; 1Q. \s_2  
        pows = n(j):-2:m_abs(j); E,f>1meN=  
        for k = length(s):-1:1 iX4Iu3  
            p = (1-2*mod(s(k),2))* ... ~PHB_cyth  
                       prod(2:(n(j)-s(k)))/              ... Y14W?|KOB  
                       prod(2:s(k))/                     ... 3dRr/Ilc  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... gw}Mw  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Yl.0aS  
            idx = (pows(k)==rpowers); hc'-Dh  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Ed ,D8ND  
        end C,.Ee3T  
         _z1(y}u}  
        if isnorm Z%n(O(^L  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2[ r^M'J  
        end jWYV#ifs2  
    end xQp|;oW;z  
    % END: Compute the Zernike Polynomials 8{Fsm;UsY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HO' '&hz  
    C(K; zo*S(  
    % Compute the Zernike functions: xQ'2BAEa  
    % ------------------------------ oI#a_/w  
    idx_pos = m>0; vVgg0Y2  
    idx_neg = m<0; zD?K>I=  
    //4Xq8y  
    z = y; /mK?E5H'r1  
    if any(idx_pos) Y}vr>\  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); gB4U*D0[e~  
    end h)Ff2tX  
    if any(idx_neg) NmSo4Dg`U  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); j8sH#b7Z  
    end Rv/Bh< t  
    +(+Itmx2&  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的