非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 tzKIi_2
function z = zernfun(n,m,r,theta,nflag) qVpV ZH!
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5Lo\[K>j
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +wwb+aG6{
% and angular frequency M, evaluated at positions (R,THETA) on the nB#m?hK
% unit circle. N is a vector of positive integers (including 0), and R[l9f8
% M is a vector with the same number of elements as N. Each element x?*)
% k of M must be a positive integer, with possible values M(k) = -N(k) n&j@7R
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, x'c%w:
% and THETA is a vector of angles. R and THETA must have the same <x^Ab#K"
% length. The output Z is a matrix with one column for every (N,M) I1Jo 8s
% pair, and one row for every (R,THETA) pair. 04u^Q
% *G6Py,- !f
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike zlw+=NX
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), f7mN,_Lt
% with delta(m,0) the Kronecker delta, is chosen so that the integral `ecIy_O3P&
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, _3_kvs
% and theta=0 to theta=2*pi) is unity. For the non-normalized N"+o=nS
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. :nYnTo`
%
,'KS:`m!
% The Zernike functions are an orthogonal basis on the unit circle. 5Wyo!pRi
% They are used in disciplines such as astronomy, optics, and >Fzs%]M
% optometry to describe functions on a circular domain. ks}J
ke>
% }#0i1]n$D
% The following table lists the first 15 Zernike functions. D (>,#F
% |6ZH+6[
% n m Zernike function Normalization WaaF;|,(
% -------------------------------------------------- R[%ZyQ_
% 0 0 1 1 ^E)*i#."4
% 1 1 r * cos(theta) 2 \9Z1'W
% 1 -1 r * sin(theta) 2 V5ySOgzw,
% 2 -2 r^2 * cos(2*theta) sqrt(6) 19r4J(pV
% 2 0 (2*r^2 - 1) sqrt(3) mw[T[
% 2 2 r^2 * sin(2*theta) sqrt(6) ~g6`Cp`
% 3 -3 r^3 * cos(3*theta) sqrt(8) H;eGBVi
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) O>h,u[0
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) X*Qtbm,
% 3 3 r^3 * sin(3*theta) sqrt(8) 0pC}+
+
% 4 -4 r^4 * cos(4*theta) sqrt(10) 4IT`8n~
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ixf~3Y8
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) cg]\R1Gm
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^uDNArDmj5
% 4 4 r^4 * sin(4*theta) sqrt(10) %YH+=b:uW
% -------------------------------------------------- MPtn$@
% ['*{f(AI
% Example 1: ,"@Tm01os
% 8BHtN
% % Display the Zernike function Z(n=5,m=1) Q7~9~
% x = -1:0.01:1; -$;
h+9BO
% [X,Y] = meshgrid(x,x); +i@r-OL
% [theta,r] = cart2pol(X,Y); Hju7gP=y}
% idx = r<=1; !bPsJbIo>
% z = nan(size(X)); {#Lj,o
% z(idx) = zernfun(5,1,r(idx),theta(idx)); _`H2CXGg
% figure !'
D1aea5
% pcolor(x,x,z), shading interp 4F-r }Fj3
% axis square, colorbar 0c$0<2D%
% title('Zernike function Z_5^1(r,\theta)') #JOWiO0>
% sp2"c"_+
% Example 2: :nt 7jm,
% _>6xUt
% % Display the first 10 Zernike functions \L-K}U>J
% x = -1:0.01:1; B5nzkJV<X
% [X,Y] = meshgrid(x,x); %y{f]m
% [theta,r] = cart2pol(X,Y); BotGPk><c
% idx = r<=1; cIm_~HH
% z = nan(size(X)); TSl:a &
% n = [0 1 1 2 2 2 3 3 3 3]; -$@$
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; zE~{}\J
% Nplot = [4 10 12 16 18 20 22 24 26 28]; &EELq"5K
% y = zernfun(n,m,r(idx),theta(idx)); t7t?xk!2
% figure('Units','normalized') WRq:xDRn0
% for k = 1:10 uA'S8b%C
% z(idx) = y(:,k); )YKnFSm
% subplot(4,7,Nplot(k)) :75$e%'A
% pcolor(x,x,z), shading interp TpHvZ]c
% set(gca,'XTick',[],'YTick',[]) HP$GI
% axis square ')bas#=uP
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ="k9
y
% end 015
;'V#we
% gJ;
*?Uq(
% See also ZERNPOL, ZERNFUN2. xbN)z
sULCYiT|Hn
% Paul Fricker 11/13/2006 4;rt|X77
xla64Qld
CJDnHuozc
% Check and prepare the inputs: \z~wm&
% ----------------------------- q{fgsc8v\
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) e%Sw(=a
error('zernfun:NMvectors','N and M must be vectors.') z]^u@]@NC
end U)f;*{U
t#fbagTON
if length(n)~=length(m) y@T0
jI
error('zernfun:NMlength','N and M must be the same length.') ^:Mal[IR
end YqJ
`eLu
/M0A9ZT[
n = n(:); oPqWL9]
m = m(:); h^H~q<R[T
if any(mod(n-m,2)) 3:S>MFRn.3
error('zernfun:NMmultiplesof2', ... 2"'<Yk9
'All N and M must differ by multiples of 2 (including 0).') d*Wg>8|
end &D/@H1fBe
FLb
Q#c\
if any(m>n) L"_l(<g
error('zernfun:MlessthanN', ... _#jR6g TY
'Each M must be less than or equal to its corresponding N.') DCv=*=6w
end c2tf7fkH
9{A[n}
if any( r>1 | r<0 ) U= Gw(
error('zernfun:Rlessthan1','All R must be between 0 and 1.') \8KAK3i'
end l{2Y[&%
+K@wh
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /"f4aF[
error('zernfun:RTHvector','R and THETA must be vectors.') 8Hdm(>
end vFz#A/1
&e-MOM2&
r = r(:); dr54D
theta = theta(:); y{?wxg9
length_r = length(r); 6]Vf`i
if length_r~=length(theta) q
JdC5z\[
error('zernfun:RTHlength', ... =k{ n! e
'The number of R- and THETA-values must be equal.') daX$=n
end (]Pr[xB
t&oNC6
% Check normalization: Z{MR#.I
% -------------------- Z [aKic
if nargin==5 && ischar(nflag) IwTAM9n
isnorm = strcmpi(nflag,'norm'); Wv4x^nJ
if ~isnorm 4U;Zs3
error('zernfun:normalization','Unrecognized normalization flag.') 'Avp16zg
end fH>I/%
else .$rt>u,8<
isnorm = false; ;PA^.RB
end q#6K'=AC
Y*KP1=Md
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ac2G;}B|
% Compute the Zernike Polynomials 3SeM:OYq]s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $ YPU(y
kwM1f=!-
% Determine the required powers of r: ZQVr]/W^r
% ----------------------------------- -(Z%?]+
m_abs = abs(m); t=6[FK
rpowers = []; RyN}Gz/YN
for j = 1:length(n) d~>d\K%v
rpowers = [rpowers m_abs(j):2:n(j)]; ZJod=^T
end G<MX94?
rpowers = unique(rpowers); m|c5X)}-
ZDhl$m[m
% Pre-compute the values of r raised to the required powers, :
U Yn
% and compile them in a matrix: p
bT sn
% ----------------------------- HTa]T'
if rpowers(1)==0 hb,G'IU
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); X`+8rO[
rpowern = cat(2,rpowern{:}); NCKhrDd&
rpowern = [ones(length_r,1) rpowern]; n{@^ne4m
else ,t!K? Y
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); "h84D&V
rpowern = cat(2,rpowern{:}); Ln4zy*v{
end "A>/m"c]*
fPj*qi
% Compute the values of the polynomials: ?S~@Ea8/M
% -------------------------------------- kzb%=EI
y = zeros(length_r,length(n)); < 9 vS
for j = 1:length(n) }23#z
s = 0:(n(j)-m_abs(j))/2; #% 1|$V*:
pows = n(j):-2:m_abs(j); Pi!3wy
for k = length(s):-1:1 zg[.Pws:E
p = (1-2*mod(s(k),2))* ... / Ml d.
prod(2:(n(j)-s(k)))/ ... ^gu;
prod(2:s(k))/ ... FZi'#(y
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... W3h{5\d!
prod(2:((n(j)+m_abs(j))/2-s(k))); O\5q_>]
idx = (pows(k)==rpowers); IuW5LS
y(:,j) = y(:,j) + p*rpowern(:,idx); ).8i*Ys,:
end {<k}U;uiO
%ylpn7I\6
if isnorm g:&V9