非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 GzhYY"iif#
function z = zernfun(n,m,r,theta,nflag) LhA*F[6$M
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. gZN8!#h}B
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N e%svrJ2
% and angular frequency M, evaluated at positions (R,THETA) on the c/D+|X*
% unit circle. N is a vector of positive integers (including 0), and c23oCfB>
% M is a vector with the same number of elements as N. Each element j_K4;k#r
% k of M must be a positive integer, with possible values M(k) = -N(k) ^]H5h ]U'
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ). <-X^@
% and THETA is a vector of angles. R and THETA must have the same 6Y^23W F
% length. The output Z is a matrix with one column for every (N,M) abuh`H#
% pair, and one row for every (R,THETA) pair. zNs55e.rx
% aRj9E}
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike bWH&P/>
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), yQU{zY
% with delta(m,0) the Kronecker delta, is chosen so that the integral Z-^LKe
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Pr3qo4t.L
% and theta=0 to theta=2*pi) is unity. For the non-normalized =#;3Q~:Jl^
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. urbp#G/>
% U_M$#i{_
% The Zernike functions are an orthogonal basis on the unit circle. )F}F_Y
% They are used in disciplines such as astronomy, optics, and N:S/SZI
% optometry to describe functions on a circular domain. =b%MXT
% Yrb{ByO&
% The following table lists the first 15 Zernike functions. DGRXd#
% *QpMF/<?
% n m Zernike function Normalization r/YMLQ
% -------------------------------------------------- `nUXDmdwzO
% 0 0 1 1 vq0Vq(V=
% 1 1 r * cos(theta) 2 bfFeBBi
% 1 -1 r * sin(theta) 2 R_ B7EP
% 2 -2 r^2 * cos(2*theta) sqrt(6) @ju@WY45$^
% 2 0 (2*r^2 - 1) sqrt(3) r A`V}>Xj
% 2 2 r^2 * sin(2*theta) sqrt(6) 8*W#DH!
% 3 -3 r^3 * cos(3*theta) sqrt(8) iJ-23_D
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ]3x?
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) @'w"R/,n-@
% 3 3 r^3 * sin(3*theta) sqrt(8) B\=L3eL<D
% 4 -4 r^4 * cos(4*theta) sqrt(10) hW%TM3l}
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y0Fb_"}
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Dl<bnx;0
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) l}a)ZeR1
% 4 4 r^4 * sin(4*theta) sqrt(10)
-?H#LUk
% -------------------------------------------------- 2V"B:X\
% Q!o'}nA
% Example 1: oL!EYbFD'Z
% .t{MIC
% % Display the Zernike function Z(n=5,m=1) 9{'N{
% x = -1:0.01:1; D60aH!ft
% [X,Y] = meshgrid(x,x); 18|m)(W
% [theta,r] = cart2pol(X,Y); Tre]"2l
% idx = r<=1; EOIN^4V"
% z = nan(size(X)); q]\:P.x!>
% z(idx) = zernfun(5,1,r(idx),theta(idx)); viW!,QQ(S
% figure <5-[{Q/2z
% pcolor(x,x,z), shading interp -Y1e8H ='
% axis square, colorbar ^?-:'<4q$
% title('Zernike function Z_5^1(r,\theta)') 9/{(%XwX
% SAH-p*.
% Example 2: &c` nR<
% !Xh=k36
% % Display the first 10 Zernike functions L(/e&J@><
% x = -1:0.01:1; Y4OPEo 5o
% [X,Y] = meshgrid(x,x); qt"G[9;
% [theta,r] = cart2pol(X,Y); NiNM{[3oS
% idx = r<=1; =qoWCmg"&
% z = nan(size(X)); T%x}Y#U'`
% n = [0 1 1 2 2 2 3 3 3 3]; zE336
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; :I"2V
% Nplot = [4 10 12 16 18 20 22 24 26 28]; h(<,fg1
% y = zernfun(n,m,r(idx),theta(idx)); Um}
% figure('Units','normalized') ob+b<HFv
% for k = 1:10 qPWP&k
% z(idx) = y(:,k); FGPB:
% subplot(4,7,Nplot(k)) [8.c8-lZ^
% pcolor(x,x,z), shading interp 6}Vf\j~
% set(gca,'XTick',[],'YTick',[]) kj|6iG
% axis square rR$h*
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *]. 7dec/
% end 4ae`pAu
% ,oORW/0iS
% See also ZERNPOL, ZERNFUN2. Z_PNI#h*
CHdX;'`*
% Paul Fricker 11/13/2006 8&;UO{
}elc `jj
@v$Y7mw3D
% Check and prepare the inputs: qsF<!'m7`
% ----------------------------- ZWii)0'PV
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~{*7"o/
error('zernfun:NMvectors','N and M must be vectors.') +ylTGSZS
end !ds"9w
n?oW < &
if length(n)~=length(m) E0BMv/r8b
error('zernfun:NMlength','N and M must be the same length.') fs|)l$Rd
end ,368d9,rDz
BmBj7
n = n(:); Nw:GCf-L
m = m(:); anuL1fXO
if any(mod(n-m,2)) ^le<}
error('zernfun:NMmultiplesof2', ... xpNH?#&
'All N and M must differ by multiples of 2 (including 0).') h~A/ y!s
end >@BnV{ d
cy*?&~;
if any(m>n) jy7\+i
error('zernfun:MlessthanN', ... a! (4Ch
'Each M must be less than or equal to its corresponding N.') 'z
);
end ]~844Jp
+_7*iJtD5
if any( r>1 | r<0 ) C#QpQg2
error('zernfun:Rlessthan1','All R must be between 0 and 1.') XoXM^*Vk
end TH)"wNa
$JS L-NkE
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) d; [C6d
error('zernfun:RTHvector','R and THETA must be vectors.') zh4#A
<e
end D>|H 2
|HU@
>
r = r(:); J`^ag'
theta = theta(:); =Xm@YVf&ZD
length_r = length(r); liEPCWl&
if length_r~=length(theta) U6=..K!q
error('zernfun:RTHlength', ... `id9j
'The number of R- and THETA-values must be equal.') }{M#EP8q+
end fz;iOjr>
|
H!28h
% Check normalization: :s=NUw_^
% -------------------- z|fmrwkN'$
if nargin==5 && ischar(nflag) k")R[)92b?
isnorm = strcmpi(nflag,'norm'); %lL.[8r|
if ~isnorm ODZ5IO}v
error('zernfun:normalization','Unrecognized normalization flag.') JROM_>mC
end IOTR/anu
else ckV`OaRw4
isnorm = false; P
D4Tz!F
end 0YaA `
sfLMkE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9Kr+\F
% Compute the Zernike Polynomials 'AzDP;6qFI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U0=]
nJbtS#`G4
% Determine the required powers of r: r/& sub"X
% ----------------------------------- uC.K<jD%
m_abs = abs(m); ekI2icD
rpowers = []; D@G\7KH@
for j = 1:length(n) @95FN)TXZY
rpowers = [rpowers m_abs(j):2:n(j)]; #u2J;9P
end %R1 tJ( /
rpowers = unique(rpowers); L93l0eEt
=,%CLS,6w
% Pre-compute the values of r raised to the required powers, C?ulj9=Z
% and compile them in a matrix: vesJEaw7
% ----------------------------- & +4gSr
if rpowers(1)==0 ;_8#f%Y#R
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); P-`M
rpowern = cat(2,rpowern{:}); CQwL|$)]Y
rpowern = [ones(length_r,1) rpowern]; 5'0xz.)!
else 9Kg21-?
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [FK<96.nt
rpowern = cat(2,rpowern{:}); ~jK{ ,$:=
end )=\#UE+W
Y^36>1.:
% Compute the values of the polynomials: ]DZE%
% -------------------------------------- U;bK!&