切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11449阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 sG`||Kb;n  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! yPrp:%PS  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  m[ *)sm  
    ~_ss[\N  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 h|OqM:J;  
    G)5w_^&%  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) pzcV[E1  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. pw;  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 7_t\wmvYp  
    %   order N and frequency M, evaluated at R.  N is a vector of lq0@)'D  
    %   positive integers (including 0), and M is a vector with the S[!sJ-rG  
    %   same number of elements as N.  Each element k of M must be a \-(.cj)?  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ygt7;};!  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is AITV+=sN  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Gvg)@VNr  
    %   with one column for every (N,M) pair, and one row for every 'iy &%?  
    %   element in R. ",wv*z)_>  
    % paFiuQ  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- xWkCP2$?P  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is :4 9ttJl  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to #H9J/k_  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 E"LSM]^^<f  
    %   for all [n,m]. jSMvZJX3n  
    % r![RRa^  
    %   The radial Zernike polynomials are the radial portion of the rv`kP"I  
    %   Zernike functions, which are an orthogonal basis on the unit pfd||Z  
    %   circle.  The series representation of the radial Zernike kMD:~ V  
    %   polynomials is j ys1Ki  
    % aXi5~,Ks_  
    %          (n-m)/2 + 3+^J?N  
    %            __ K/oC+Z;K  
    %    m      \       s                                          n-2s CKJ9YKu{W  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ?UD2}D[M  
    %    n      s=0 0*?/s\>PS;  
    % n _G< /8  
    %   The following table shows the first 12 polynomials. 02g!mJW>}y  
    % 5Ym/'eT  
    %       n    m    Zernike polynomial    Normalization *}BaO*A  
    %       --------------------------------------------- QwaCaYoh  
    %       0    0    1                        sqrt(2) tqI]S X  
    %       1    1    r                           2 X\X* -.]{  
    %       2    0    2*r^2 - 1                sqrt(6) gFk~SJd  
    %       2    2    r^2                      sqrt(6) 5sbMp;ZM  
    %       3    1    3*r^3 - 2*r              sqrt(8) l2>ka~  
    %       3    3    r^3                      sqrt(8) u=a5Z4N'  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Af8&PhyrU  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) {(mT,}`4  
    %       4    4    r^4                      sqrt(10) bs-O3w  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) f{ZOH<"Lo  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) HsA4NRF'7  
    %       5    5    r^5                      sqrt(12) F8e]sa$K\  
    %       --------------------------------------------- ^[]G sF  
    % g\sW2qXEw  
    %   Example: q}-q[p? 5  
    % SM>V o+  
    %       % Display three example Zernike radial polynomials jJ^p ?  
    %       r = 0:0.01:1; nAc02lJh|  
    %       n = [3 2 5]; h.\V;6ly  
    %       m = [1 2 1]; DDdMWH^o7  
    %       z = zernpol(n,m,r); dP8b\H  
    %       figure QR'yZ45n4  
    %       plot(r,z) z[kz [  
    %       grid on :W'Yt9v)  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Z i-)PK^  
    % r:h\{ DVf  
    %   See also ZERNFUN, ZERNFUN2. 9qIdwDRY  
    1mT3$Z  
    % A note on the algorithm. +5n,/YjS`  
    % ------------------------ f.?p"~!  
    % The radial Zernike polynomials are computed using the series w2B If[~t  
    % representation shown in the Help section above. For many special V!!E)I  
    % functions, direct evaluation using the series representation can j{)_&|^{  
    % produce poor numerical results (floating point errors), because jq6BwUN  
    % the summation often involves computing small differences between sSVgDQ~q  
    % large successive terms in the series. (In such cases, the functions 0cV=>|b>;  
    % are often evaluated using alternative methods such as recurrence m.ib#Y)y  
    % relations: see the Legendre functions, for example). For the Zernike 9b`J2_ ]k  
    % polynomials, however, this problem does not arise, because the RS&l68[6  
    % polynomials are evaluated over the finite domain r = (0,1), and T7f>u}T  
    % because the coefficients for a given polynomial are generally all (_^pX  
    % of similar magnitude. 20[_eu)  
    % l7G&[\~  
    % ZERNPOL has been written using a vectorized implementation: multiple 7CfHL;+m<4  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] %T:~N<8)  
    % values can be passed as inputs) for a vector of points R.  To achieve $~M#msK9  
    % this vectorization most efficiently, the algorithm in ZERNPOL _yje"  
    % involves pre-determining all the powers p of R that are required to }S{#DgZ@X  
    % compute the outputs, and then compiling the {R^p} into a single <0,c{e  
    % matrix.  This avoids any redundant computation of the R^p, and r+8%oWj  
    % minimizes the sizes of certain intermediate variables. _jmkAmeu  
    % |2mm@):  
    %   Paul Fricker 11/13/2006 Xy{\>}i]N  
    3Qt-%=b&  
    V+7x_>!&)  
    % Check and prepare the inputs: N}0-L$@SL  
    % ----------------------------- _8$arjx=  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LfD7 0r\  
        error('zernpol:NMvectors','N and M must be vectors.') yLfb'Ba  
    end {Lj]++`fB]  
    M7R.? nk  
    if length(n)~=length(m) DgOO\  
        error('zernpol:NMlength','N and M must be the same length.') a4gJ-FE  
    end %X(iAoxbj  
    v]CH L# |  
    n = n(:); 1`1U'ibhe  
    m = m(:); cPcp@Dp  
    length_n = length(n); T_}9b  
    "F/%{0d  
    if any(mod(n-m,2))  6C6<,c   
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') w i,}sEoM  
    end mfHZGk[[  
    <Wgp$qt;  
    if any(m<0) Yj+p^@{S2P  
        error('zernpol:Mpositive','All M must be positive.') RJ/4T#b"+  
    end uveby:dh  
    Ba$&4?8  
    if any(m>n) V4]t=3>  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 9&R. <I  
    end feOX]g#  
    Vf S&V*un  
    if any( r>1 | r<0 ) xij`Mr  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ;eYm+e^?.  
    end ~>:uMXyV2t  
    1-`Il]@?8  
    if ~any(size(r)==1) 2l5>>yY  
        error('zernpol:Rvector','R must be a vector.') E/MD]ox  
    end ?kfLOJQ:I  
    sem:"  
    r = r(:); LadE4:oy  
    length_r = length(r); V=%j ]`Os  
    6?an._ C  
    if nargin==4 {DzOXTI[Y  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); p^u;]~J O  
        if ~isnorm 5>{S^i~!  
            error('zernpol:normalization','Unrecognized normalization flag.') WEgJ_dB  
        end xVOoYr>O  
    else !]1'?8  
        isnorm = false; i7hWBd4wK  
    end r+6=b"  
    oWg"f*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |KF_h^  
    % Compute the Zernike Polynomials Fk01j;k.H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @LQe[`  
    [ +w=  
    % Determine the required powers of r: WCc7 MK  
    % ----------------------------------- .xnJT2uu'  
    rpowers = []; <Co\?h/<  
    for j = 1:length(n) +6dq+8msF  
        rpowers = [rpowers m(j):2:n(j)]; 0s>ozAJ  
    end D?yiK=:08`  
    rpowers = unique(rpowers); VKI`@rY4  
    J]|Zh  
    % Pre-compute the values of r raised to the required powers, sFh mp  
    % and compile them in a matrix: 1ztL._Td  
    % ----------------------------- QahM)Gb  
    if rpowers(1)==0 \]bAXa{ p  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2$G,pT1J  
        rpowern = cat(2,rpowern{:}); ;[pY>VJ(  
        rpowern = [ones(length_r,1) rpowern]; vwA d6Tm  
    else !% 'dyj  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W!@*3U]2R  
        rpowern = cat(2,rpowern{:}); C !a#M{:  
    end E?,O>bCJ5  
    l_Ee us  
    % Compute the values of the polynomials: 0O,Q]P 82f  
    % -------------------------------------- &-l(nr]h]  
    z = zeros(length_r,length_n); 1DzI@c~X  
    for j = 1:length_n QLr.5Wcg>  
        s = 0:(n(j)-m(j))/2; ,OGXH2!h  
        pows = n(j):-2:m(j); ' 3h"Ol{b  
        for k = length(s):-1:1 IEbk_-h[  
            p = (1-2*mod(s(k),2))* ... Pra,r9h,  
                       prod(2:(n(j)-s(k)))/          ... J. %%]-f=&  
                       prod(2:s(k))/                 ... )SJ18 no|l  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... =a!w)z_rw  
                       prod(2:((n(j)+m(j))/2-s(k))); ?H7YmN  
            idx = (pows(k)==rpowers); IYZ$a/{P  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ZT;8Wvo  
        end 9d5|rk8VS  
         WoYXXYP/E  
        if isnorm st91r V$y?  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Ze?(N~  
        end m]XG7:}V0  
    end v'fX'/  
    Pl2ZA)[g  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) A9:dHOmT^U  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ^nPk;%`0  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated f_{O U E  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive *_Sx^`"X`l  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, @'D ,T^I  
    %   and THETA is a vector of angles.  R and THETA must have the same p|q}z/  
    %   length.  The output Z is a matrix with one column for every P-value, ysHmi{V~  
    %   and one row for every (R,THETA) pair.  xRTr@  
    % =r?#,'a  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike .+.BNS   
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) KMU2Po qD  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) T?!D?YV  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 0\/cTNN  
    %   for all p. y,YK Mc  
    % bOvMXj/HV=  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 3 $~6+i  
    %   Zernike functions (order N<=7).  In some disciplines it is *{#l0My  
    %   traditional to label the first 36 functions using a single mode :\Pk>a  
    %   number P instead of separate numbers for the order N and azimuthal &I=27!S  
    %   frequency M. v"Z`#Bi  
    % v c r5  
    %   Example: K0YUN^St  
    % . #7B10  
    %       % Display the first 16 Zernike functions <E&[sQ|3  
    %       x = -1:0.01:1; Iz^lED  
    %       [X,Y] = meshgrid(x,x); ko Tb{UL  
    %       [theta,r] = cart2pol(X,Y); da,;IE{1u  
    %       idx = r<=1; 4Iq-4IG(  
    %       p = 0:15; :)PAj  
    %       z = nan(size(X)); 'K8emt$d+  
    %       y = zernfun2(p,r(idx),theta(idx)); 7y/Pch  
    %       figure('Units','normalized') -_4ZT^.Lna  
    %       for k = 1:length(p) 2u=Nb0  
    %           z(idx) = y(:,k); O]/BNacS  
    %           subplot(4,4,k) p3f>;|uh_  
    %           pcolor(x,x,z), shading interp L)mb.U$`c|  
    %           set(gca,'XTick',[],'YTick',[]) :t'*fHi~  
    %           axis square }BR@vY'd  
    %           title(['Z_{' num2str(p(k)) '}']) {&qB!axj  
    %       end <dd(i  
    % b+6%Mu}o  
    %   See also ZERNPOL, ZERNFUN. kr=&x)Wy!  
    .3Ag6YI0N  
    %   Paul Fricker 11/13/2006 #&oL iz=hZ  
    p1mY@  
    c}l?x \/  
    % Check and prepare the inputs: >axf_k  
    % ----------------------------- / }tMb  
    if min(size(p))~=1 _$f XK  
        error('zernfun2:Pvector','Input P must be vector.') hj<h]dhp  
    end kv)IG$S 0  
    j,%<16f^A  
    if any(p)>35 x9lG$0k:V  
        error('zernfun2:P36', ... X / {;  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... }ag -J."5M  
               '(P = 0 to 35).']) Z~WUILx,  
    end a-9Y &#U  
    FFvF4]|L  
    % Get the order and frequency corresonding to the function number: hG8 !aJo  
    % ---------------------------------------------------------------- <"SOH; w  
    p = p(:); b5Sgf'B^  
    n = ceil((-3+sqrt(9+8*p))/2); 13lJq:bM  
    m = 2*p - n.*(n+2); "y5LojdCs  
    $ M8ZF(W  
    % Pass the inputs to the function ZERNFUN: p^yuz (  
    % ---------------------------------------- YR\pt8(z?  
    switch nargin ~|>q)4is6a  
        case 3 O:hCUr  
            z = zernfun(n,m,r,theta); $vQ#ah/k  
        case 4 LKx<hl$O  
            z = zernfun(n,m,r,theta,nflag); $7~T+fmF  
        otherwise 555*IT3b  
            error('zernfun2:nargin','Incorrect number of inputs.') e 2@{Ab  
    end }r)T75_1  
    4,yS7l  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 tzKIi_2  
    function z = zernfun(n,m,r,theta,nflag) qVpV ZH!  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5Lo\[K >j  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +wwb+aG6{  
    %   and angular frequency M, evaluated at positions (R,THETA) on the nB#m?hK  
    %   unit circle.  N is a vector of positive integers (including 0), and R[l9f8  
    %   M is a vector with the same number of elements as N.  Each element x?*)  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) n& j@7R  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, x'c%w:  
    %   and THETA is a vector of angles.  R and THETA must have the same <x^Ab#K"  
    %   length.  The output Z is a matrix with one column for every (N,M) I1 Jo8s  
    %   pair, and one row for every (R,THETA) pair. 04u^Q  
    % *G6Py,- !f  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike zlw+=NX  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), f7mN,_Lt  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral `ecIy_O3P&  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, _3_kvs  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized N"+o=nS  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. :nYnTo`  
    % ,'KS:`m!  
    %   The Zernike functions are an orthogonal basis on the unit circle. 5Wyo!pRi  
    %   They are used in disciplines such as astronomy, optics, and >Fzs%]M  
    %   optometry to describe functions on a circular domain. ks}J ke>  
    % }#0i1]n$D  
    %   The following table lists the first 15 Zernike functions. D (>,#F  
    % |6ZH+6[  
    %       n    m    Zernike function           Normalization WaaF;| ,(  
    %       -------------------------------------------------- R[%ZyQ_  
    %       0    0    1                                 1 ^E)*i#."4  
    %       1    1    r * cos(theta)                    2 \9Z1'W  
    %       1   -1    r * sin(theta)                    2 V5ySOgzw,  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 19r4J(pV  
    %       2    0    (2*r^2 - 1)                    sqrt(3) mw[  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ~g6`Cp`  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) H;eGBVi  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) O>h,u[0  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) X*Qtbm,  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 0pC}+ +  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 4IT`8n~  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i xf~3Y8  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) cg]\R1Gm  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^uDNArDmj5  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) %YH+=b:uW  
    %       -------------------------------------------------- MPtn$@  
    % ['*{f(AI  
    %   Example 1: ,"@Tm01os  
    % 8 BHtN  
    %       % Display the Zernike function Z(n=5,m=1) Q7~9~  
    %       x = -1:0.01:1; -$; h+9BO  
    %       [X,Y] = meshgrid(x,x); +i@r-OL   
    %       [theta,r] = cart2pol(X,Y); Hju7gP=y}  
    %       idx = r<=1; !bPsJbIo>  
    %       z = nan(size(X)); {#Lj,o  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); _`H2CXG g  
    %       figure !' D1aea5  
    %       pcolor(x,x,z), shading interp 4F-r}Fj3  
    %       axis square, colorbar 0c$0<2D%  
    %       title('Zernike function Z_5^1(r,\theta)') #JOWiO0>  
    % sp2"c"_+  
    %   Example 2: :nt 7jm,  
    % _>6xU t  
    %       % Display the first 10 Zernike functions \L-K}U>J  
    %       x = -1:0.01:1; B5nzkJV<X  
    %       [X,Y] = meshgrid(x,x); %y{f] m  
    %       [theta,r] = cart2pol(X,Y); BotGPk><c  
    %       idx = r<=1; cIm_~HH  
    %       z = nan(size(X)); TSl:a &  
    %       n = [0  1  1  2  2  2  3  3  3  3]; -$@$  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; zE~{}\J  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; &EELq"5K  
    %       y = zernfun(n,m,r(idx),theta(idx)); t7t?xk!2  
    %       figure('Units','normalized') WRq:xDRn0  
    %       for k = 1:10 uA'S8b%C  
    %           z(idx) = y(:,k); )YKnFSm  
    %           subplot(4,7,Nplot(k)) :75$e%'A  
    %           pcolor(x,x,z), shading interp TpHvZ]c  
    %           set(gca,'XTick',[],'YTick',[]) HP$GI  
    %           axis square ')bas#=uP  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ="k9 y  
    %       end 015 ;'V#we  
    % gJ; *?Uq(  
    %   See also ZERNPOL, ZERNFUN2. xb N)z  
    sULCYiT|Hn  
    %   Paul Fricker 11/13/2006 4;rt|X77  
    xla64Qld  
    CJDnHuozc  
    % Check and prepare the inputs: \z~wm&  
    % ----------------------------- q{fgsc8v\  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) e%Sw(=a  
        error('zernfun:NMvectors','N and M must be vectors.') z]^u@]@NC  
    end U)f;*{U  
    t#fbagTON  
    if length(n)~=length(m) y@T 0 jI  
        error('zernfun:NMlength','N and M must be the same length.') ^:Mal[IR  
    end YqJ `eLu  
    /M0A9ZT[  
    n = n(:); oPqWL9]  
    m = m(:); h^H~q<R[T  
    if any(mod(n-m,2)) 3:S>MFRn.3  
        error('zernfun:NMmultiplesof2', ... 2"'<Yk9  
              'All N and M must differ by multiples of 2 (including 0).')  d*Wg>8|  
    end &D/@H1fBe  
    FLb Q#c\  
    if any(m>n) L"_l(<g  
        error('zernfun:MlessthanN', ... _#jR6g TY  
              'Each M must be less than or equal to its corresponding N.') DCv=*=6w  
    end c2tf7fkH  
    9{A[n}  
    if any( r>1 | r<0 ) U= Gw(  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') \8KAK3i'  
    end l{2Y[&%  
    +K@wh  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /"f4aF[  
        error('zernfun:RTHvector','R and THETA must be vectors.') 8Hdm(>  
    end vFz#A/1  
    &e-MOM2&  
    r = r(:); dr54 D  
    theta = theta(:); y{ ?wxg9  
    length_r = length(r); 6]Vf`i  
    if length_r~=length(theta) q JdC5z\[  
        error('zernfun:RTHlength', ... =k{ n! e  
              'The number of R- and THETA-values must be equal.') daX$=n  
    end (]Pr[xB  
    t&oNC6  
    % Check normalization: Z{MR#.I  
    % -------------------- Z [aKic  
    if nargin==5 && ischar(nflag) IwTAM9n  
        isnorm = strcmpi(nflag,'norm'); Wv4x^nJ  
        if ~isnorm 4U;Zs3  
            error('zernfun:normalization','Unrecognized normalization flag.') 'Avp16zg  
        end fH> I/%  
    else .$rt>u,8<  
        isnorm = false; ;PA^.RB  
    end q#6K'=AC  
    Y*KP1=Md  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ac2G;}B|  
    % Compute the Zernike Polynomials 3SeM:OYq]s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $YPU(y  
    kw M1f=!-  
    % Determine the required powers of r: ZQVr]/W^r  
    % ----------------------------------- -(Z%?]+  
    m_abs = abs(m);  t=6[FK  
    rpowers = []; RyN}Gz/YN  
    for j = 1:length(n) d~>d\K%v  
        rpowers = [rpowers m_abs(j):2:n(j)]; ZJod=^T  
    end G<M X94?  
    rpowers = unique(rpowers); m|c5X)}-  
    ZDhl$m [m  
    % Pre-compute the values of r raised to the required powers, : U Yn  
    % and compile them in a matrix: p bT sn  
    % ----------------------------- HTa]T'  
    if rpowers(1)==0 hb,G'IU  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); X`+8r O[  
        rpowern = cat(2,rpowern{:}); NCKhrDd&  
        rpowern = [ones(length_r,1) rpowern]; n{@^ne4 m  
    else ,t!K? Y  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); "h84D&V  
        rpowern = cat(2,rpowern{:}); Ln4zy*v{  
    end "A>/m"c]*  
    fPj*qi  
    % Compute the values of the polynomials: ?S~@Ea8/M  
    % -------------------------------------- kzb%=EI  
    y = zeros(length_r,length(n)); < 9 vS  
    for j = 1:length(n) }23#z  
        s = 0:(n(j)-m_abs(j))/2; #% 1|$V*:  
        pows = n(j):-2:m_abs(j); Pi!3wy  
        for k = length(s):-1:1 zg[.Pws:E  
            p = (1-2*mod(s(k),2))* ... / Ml d.  
                       prod(2:(n(j)-s(k)))/              ... ^gu;  
                       prod(2:s(k))/                     ... FZi'#(y  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... W3h{5\d!  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); O\5q_>]  
            idx = (pows(k)==rpowers); IuW5LS  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ).8i*Ys,:  
        end {<k}U;uiO  
         %ylpn7I\6  
        if isnorm g:&V9~FR  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); /yd<+on^  
        end l(fStpP  
    end l`' lqnhv  
    % END: Compute the Zernike Polynomials W4ygJL7 6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;'fn{j6C  
    gT=RJB  
    % Compute the Zernike functions: L>PPAI  
    % ------------------------------ ~=#jr0IZ  
    idx_pos = m>0; 3v:c".O2O  
    idx_neg = m<0; n#fc=L1U  
    mz<wYV*  
    z = y; }w%W A&"W  
    if any(idx_pos) E{#Y=  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); >.}ewz&9o  
    end B*,Qw_3dG  
    if any(idx_neg) #ozQF~  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); OpT0V]k^"9  
    end 5"cYZvGkJ  
    -y1t;yU.L  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的