切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10995阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 =!`j7#:  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! }; f#^gz'  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  :OW ;?{ ~j  
    #?XQ7Im  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 1?| f lK  
    *FmTy|  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) cv(PP-'\  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. k/03ZxC-  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of xP=/N!,#  
    %   order N and frequency M, evaluated at R.  N is a vector of vfNAs>Xg"  
    %   positive integers (including 0), and M is a vector with the fGv#s X  
    %   same number of elements as N.  Each element k of M must be a |8bq>01~  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Lw'9  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 2Sq_Tw3^  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix hb/]8mR  
    %   with one column for every (N,M) pair, and one row for every xcJ `1*1N  
    %   element in R. y}v+c%d  
    % Bk}><H  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 2S8P}$mM  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is KI]wm  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to " v}pdUW  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 +f0~D(d!_  
    %   for all [n,m]. D{v8q)5r  
    % 5/QRL\  
    %   The radial Zernike polynomials are the radial portion of the f1PN |  
    %   Zernike functions, which are an orthogonal basis on the unit "C?5f]T  
    %   circle.  The series representation of the radial Zernike \7z^!m  
    %   polynomials is .d?%;2*{q  
    % _al|'obomy  
    %          (n-m)/2 ICB~_O5  
    %            __ 0GDvwy D1  
    %    m      \       s                                          n-2s 0Y]0!}  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r L&-hXGx=7  
    %    n      s=0 y[@\j9Hq  
    % ^+SkCO  
    %   The following table shows the first 12 polynomials. #,(sAj  
    % *[eL~oN.c  
    %       n    m    Zernike polynomial    Normalization O9(r{Vu7u  
    %       --------------------------------------------- as+GbstN  
    %       0    0    1                        sqrt(2) zNSu  
    %       1    1    r                           2 K1?Gmue#I  
    %       2    0    2*r^2 - 1                sqrt(6) %g]vxm5?  
    %       2    2    r^2                      sqrt(6) l$*=<tV  
    %       3    1    3*r^3 - 2*r              sqrt(8) q EUT90  
    %       3    3    r^3                      sqrt(8) ]v G{kAnH  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) "Dy'Kd%,%/  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) CJaKnz  
    %       4    4    r^4                      sqrt(10) A\Txb_x  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) d {2  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) *FR$vLGn  
    %       5    5    r^5                      sqrt(12) MYe HS   
    %       --------------------------------------------- jy2IZ o  
    % ":Edu,6O  
    %   Example: 'rb'7=z5  
    % Wk4.%tpeO7  
    %       % Display three example Zernike radial polynomials iP3Z  
    %       r = 0:0.01:1; 9^F2$+T[:  
    %       n = [3 2 5]; $!A:5jech  
    %       m = [1 2 1]; uk`8X`'  
    %       z = zernpol(n,m,r); s|bM%!$1  
    %       figure Gi^Ha=?J%  
    %       plot(r,z) >i,iOx|E-  
    %       grid on nL]^$J$  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 1U\$iy8}  
    % Aw!gSf)  
    %   See also ZERNFUN, ZERNFUN2. V_U'P>_I  
    r!N]$lB  
    % A note on the algorithm. *B)yy[8j+  
    % ------------------------ (y4#.vZh:  
    % The radial Zernike polynomials are computed using the series RBGlzk  
    % representation shown in the Help section above. For many special {Z{o"56f  
    % functions, direct evaluation using the series representation can %1McD{  
    % produce poor numerical results (floating point errors), because TB aVW  
    % the summation often involves computing small differences between |-2}j2'  
    % large successive terms in the series. (In such cases, the functions Ek.&Sf$cd'  
    % are often evaluated using alternative methods such as recurrence !{_yaVF  
    % relations: see the Legendre functions, for example). For the Zernike |I[7,`C~  
    % polynomials, however, this problem does not arise, because the \[wCp*;1}  
    % polynomials are evaluated over the finite domain r = (0,1), and HO|-@yOF^  
    % because the coefficients for a given polynomial are generally all Md; /nJO~{  
    % of similar magnitude. K=u0nrG*  
    % %NHYW\sKX  
    % ZERNPOL has been written using a vectorized implementation: multiple u>T76,8|\  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] #$'"cfRxc  
    % values can be passed as inputs) for a vector of points R.  To achieve &$fbP5uAZ  
    % this vectorization most efficiently, the algorithm in ZERNPOL &;q<M_<  
    % involves pre-determining all the powers p of R that are required to S9Y[4*//  
    % compute the outputs, and then compiling the {R^p} into a single ,i`h x, Rg  
    % matrix.  This avoids any redundant computation of the R^p, and `QP ~  
    % minimizes the sizes of certain intermediate variables. &b C}3D  
    % Vj^dD9:  
    %   Paul Fricker 11/13/2006 U_z2J(e~  
    EH9Hpo  
    +`| *s3M  
    % Check and prepare the inputs: p_terD:  
    % ----------------------------- 1-;?0en&0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) zDBD.5R;  
        error('zernpol:NMvectors','N and M must be vectors.') ]= x 1`j  
    end Aa(<L$e!`  
    |DG@ht  
    if length(n)~=length(m) 0~E 6QhV:  
        error('zernpol:NMlength','N and M must be the same length.') '?/&n8J\  
    end Q2'eQ0W{ o  
    : 1)}Epo,  
    n = n(:); M?6;|-HH  
    m = m(:); sB*o)8  
    length_n = length(n); 9k2,3It  
    whkJpK(  
    if any(mod(n-m,2)) w{7 ji}  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ] V G?+  
    end {K.rl%_|N  
    u35q,u=I  
    if any(m<0) *=nO  
        error('zernpol:Mpositive','All M must be positive.') NtZ6$o<Y  
    end K r3];(w{  
    c;V D}UD'  
    if any(m>n) -Ds|qzrN%  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ;~tsF.=  
    end IKm&xzV-  
    Yw"P)Zp  
    if any( r>1 | r<0 ) ckwF|:e 7*  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ?n*fy  
    end hLA;Bl  
    !UNNjBBP7  
    if ~any(size(r)==1) Wvr+y!F  
        error('zernpol:Rvector','R must be a vector.') VO9f~>`(  
    end R7aXR\ R  
    x0x $  9  
    r = r(:); 0$Ff#8  
    length_r = length(r); K\sbt7~  
    u6_jnZGB  
    if nargin==4 k:0P+d  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ER<eX4oU  
        if ~isnorm 5#u.pu  
            error('zernpol:normalization','Unrecognized normalization flag.') 'O "kt T  
        end ec'tFL#u{  
    else {})y^L  
        isnorm = false; X% J%A-k]  
    end _7 `E[&v  
    @&:VKpu\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zz3 r<?#5  
    % Compute the Zernike Polynomials hZF(/4Z2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u9}!Gq  
    + U5U.f%  
    % Determine the required powers of r: 3/tJDb5  
    % ----------------------------------- twv lQ|  
    rpowers = []; {,v: GMsm  
    for j = 1:length(n) 22I Yrk  
        rpowers = [rpowers m(j):2:n(j)]; $h]NXC6J  
    end !rHx}n{rw  
    rpowers = unique(rpowers); PN9^[X  
    QZ0R:TY  
    % Pre-compute the values of r raised to the required powers, $B ?? Ip?P  
    % and compile them in a matrix: ?H0m<jO8~  
    % ----------------------------- `(T!>QVW+g  
    if rpowers(1)==0 [D9:A  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |$Xf;N37t  
        rpowern = cat(2,rpowern{:}); [Pqn 3I[  
        rpowern = [ones(length_r,1) rpowern]; }z{wQ\  
    else %#4 +!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); P8]ORQ6 ZF  
        rpowern = cat(2,rpowern{:}); g 2#F_  
    end yjv&4pIc1  
    TMtI^mkB:  
    % Compute the values of the polynomials: mrReast  
    % -------------------------------------- aZxO/b^j  
    z = zeros(length_r,length_n); f@*>P_t  
    for j = 1:length_n rBD2Si=  
        s = 0:(n(j)-m(j))/2; KE#$+,?  
        pows = n(j):-2:m(j); :5<#X8>d  
        for k = length(s):-1:1 @:IL/o*  
            p = (1-2*mod(s(k),2))* ... H\f/n`@,G  
                       prod(2:(n(j)-s(k)))/          ... 0w+5'lOg  
                       prod(2:s(k))/                 ... wJ(8}eI  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... l}+Cdy9>  
                       prod(2:((n(j)+m(j))/2-s(k))); 64b<0;~  
            idx = (pows(k)==rpowers); mOSCkp{<e  
            z(:,j) = z(:,j) + p*rpowern(:,idx); \086O9  
        end XP4jZCt9  
         jB/V{Y#y9@  
        if isnorm cyHhy_~R  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); E6JV}`hSk  
        end 0ZT 0  
    end [{/$9k-aF?  
    79a9L{gso  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) "TUPYFK9  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. uGM>C"  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated `{%-*f^  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive &6Ns7w6*z  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, jB`7T^bU  
    %   and THETA is a vector of angles.  R and THETA must have the same ` -yhl3si  
    %   length.  The output Z is a matrix with one column for every P-value, ^b:Xo"q#H  
    %   and one row for every (R,THETA) pair. aDXpkG0E  
    % >b3@>W  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Q^vGj</u  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ` v>/  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) .$UTH@;7  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 C1n? ?Y[  
    %   for all p. e{:86C!d)  
    % S'|lU@P Cl  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 J&'>IA  
    %   Zernike functions (order N<=7).  In some disciplines it is $m{{,&}k  
    %   traditional to label the first 36 functions using a single mode oO8]lHS?@  
    %   number P instead of separate numbers for the order N and azimuthal xP42xv9U  
    %   frequency M. x Ridc^  
    % }Z^FEd"y  
    %   Example: l'W3=,G[?  
    % @h!U  
    %       % Display the first 16 Zernike functions |e~u!V\m  
    %       x = -1:0.01:1; uF+);ig  
    %       [X,Y] = meshgrid(x,x); >'ie!VW@  
    %       [theta,r] = cart2pol(X,Y); <xXiJU+  
    %       idx = r<=1; >y&[BB7S6  
    %       p = 0:15; 4(m/D>6:  
    %       z = nan(size(X)); w4NZt|>5j;  
    %       y = zernfun2(p,r(idx),theta(idx)); mf+K{y,L  
    %       figure('Units','normalized') +}&pVe\t  
    %       for k = 1:length(p) #)Ep(2  
    %           z(idx) = y(:,k); hT\p)w  
    %           subplot(4,4,k) _F! :(@}  
    %           pcolor(x,x,z), shading interp mi*:S%;h  
    %           set(gca,'XTick',[],'YTick',[]) Y"r3i]  
    %           axis square ?Ozk^#H[  
    %           title(['Z_{' num2str(p(k)) '}']) *oKgP8CF  
    %       end  =7*oC  
    % "tqS|ok.  
    %   See also ZERNPOL, ZERNFUN. t)YFTO"Jj  
    22l|!B%o  
    %   Paul Fricker 11/13/2006 E=$7ieW  
    IiG4ib>)W  
    niXHK$@5  
    % Check and prepare the inputs: ^H f+du  
    % ----------------------------- 1!K !oY  
    if min(size(p))~=1 FEge+`{,  
        error('zernfun2:Pvector','Input P must be vector.') wa9'2a1?  
    end Y+|L 3'H  
    mvUVy1-c  
    if any(p)>35 ?,.HA@T%  
        error('zernfun2:P36', ... 40`9t Xn  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... x& mz-  
               '(P = 0 to 35).']) mABwM$_  
    end B7NmET4  
    iuvtj]/  
    % Get the order and frequency corresonding to the function number: R^n* o  
    % ---------------------------------------------------------------- H[>klzh6 !  
    p = p(:); K * xM[vO  
    n = ceil((-3+sqrt(9+8*p))/2); J"m%q\'  
    m = 2*p - n.*(n+2); DW'0j$;  
    uJ2C+$=Ul  
    % Pass the inputs to the function ZERNFUN: >FK)p   
    % ---------------------------------------- wFKuSd  
    switch nargin ]w1BJZa36  
        case 3 r4]hS`X~%  
            z = zernfun(n,m,r,theta); Om&{4a\  
        case 4 w a-_O<  
            z = zernfun(n,m,r,theta,nflag); HYa$EE2  
        otherwise Pf^Ly 97  
            error('zernfun2:nargin','Incorrect number of inputs.') 75QXkJu  
    end X^?|Sz<^E  
    ')Dp%"\?  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 [~Z'xY y  
    function z = zernfun(n,m,r,theta,nflag) vUodp#s  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. zx_O"0{5  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #NVF\  
    %   and angular frequency M, evaluated at positions (R,THETA) on the qCxD{-9x{  
    %   unit circle.  N is a vector of positive integers (including 0), and N4Fy8qU;  
    %   M is a vector with the same number of elements as N.  Each element T9U2j-lA?  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ,_5YaX:<4  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, TCEXa?,L  
    %   and THETA is a vector of angles.  R and THETA must have the same {8*d;[X50  
    %   length.  The output Z is a matrix with one column for every (N,M) 5pKvNLy.t  
    %   pair, and one row for every (R,THETA) pair. {{4p{  
    % .5#tB*H  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike `lV  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), f2SU5e2  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral U||w6:W5  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, c],frhmyd  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized AD!<%h:  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. J6^Ct  
    % &ttv4BC^r  
    %   The Zernike functions are an orthogonal basis on the unit circle. SCt=OdP=  
    %   They are used in disciplines such as astronomy, optics, and iz%A0Z+`bg  
    %   optometry to describe functions on a circular domain. 35N/v G0  
    % %M0mwty]  
    %   The following table lists the first 15 Zernike functions. fEv<W  
    %  HN~v&,  
    %       n    m    Zernike function           Normalization aJa^~*N/Aa  
    %       -------------------------------------------------- ou,=MpXx*  
    %       0    0    1                                 1 4 HJZ^bq9|  
    %       1    1    r * cos(theta)                    2 #.<F5  
    %       1   -1    r * sin(theta)                    2 !=h|&Vta  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 9,EaN{GM  
    %       2    0    (2*r^2 - 1)                    sqrt(3) v ACsppa>#  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) P9tQS"Rs  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) u8k{N  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) k,*#I<($  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 5[j!\d}U  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 0Z) ;.l^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) |q.:hWYFpM  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) % Dr4~7=7a  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ;~gd<KK  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Oih2UrF  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) yzM+28}L<I  
    %       -------------------------------------------------- ]Re~V{uh  
    % C +?@iMh  
    %   Example 1: mP$G9R  
    % N5rG.6K  
    %       % Display the Zernike function Z(n=5,m=1) =`\,2Nb  
    %       x = -1:0.01:1; D`~{[cv)\  
    %       [X,Y] = meshgrid(x,x); >&TnTv?I  
    %       [theta,r] = cart2pol(X,Y); kj3o1Y  
    %       idx = r<=1; }MavI'  
    %       z = nan(size(X)); ^tKOxW# a  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); /4B4IT  
    %       figure MkNURy>n&  
    %       pcolor(x,x,z), shading interp D "] [&m  
    %       axis square, colorbar C"Y]W-Mgg  
    %       title('Zernike function Z_5^1(r,\theta)') cVHE}0Xd(  
    % M}oFn}-T9a  
    %   Example 2: 2bn@:71`  
    % UK <DcM~n  
    %       % Display the first 10 Zernike functions `TlUJ]d)  
    %       x = -1:0.01:1; R,5$ 0_]|+  
    %       [X,Y] = meshgrid(x,x); o? O,nD 6  
    %       [theta,r] = cart2pol(X,Y); mv%:[+!  
    %       idx = r<=1; >5@vY?QXO  
    %       z = nan(size(X)); > v!c\  
    %       n = [0  1  1  2  2  2  3  3  3  3]; j.'"CU  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; &<P^Tvqq&  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Qdr-GODx  
    %       y = zernfun(n,m,r(idx),theta(idx)); wAOVH].  
    %       figure('Units','normalized') 5f*'wA  
    %       for k = 1:10 L|1zHDxQ  
    %           z(idx) = y(:,k); Nb!6YY=Ez-  
    %           subplot(4,7,Nplot(k)) F3 l^^ Mc  
    %           pcolor(x,x,z), shading interp O"^a.`27  
    %           set(gca,'XTick',[],'YTick',[]) PUZXmnB  
    %           axis square \;:@=9`  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) pn%|;  
    %       end aq,)6P`  
    % u r.T YKF  
    %   See also ZERNPOL, ZERNFUN2. n `T[eb~  
    =O'%)Y&  
    %   Paul Fricker 11/13/2006 AUjTcu>i  
    'kg]|"M  
    #Xw[i  
    % Check and prepare the inputs: L%O8vn^3  
    % ----------------------------- (:Hbtr I  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Cz);mOb%M%  
        error('zernfun:NMvectors','N and M must be vectors.') y3[)zv  
    end 4x{ti5Y0  
    |Sv#f2`  
    if length(n)~=length(m) {ZM2WFpE  
        error('zernfun:NMlength','N and M must be the same length.') No&[ \;  
    end iN4'jD^oP  
    ~5!TV,>ls  
    n = n(:); g#%FY1xp  
    m = m(:); L8tLW09  
    if any(mod(n-m,2)) <d&)|W  
        error('zernfun:NMmultiplesof2', ... 8Pdnw/W  
              'All N and M must differ by multiples of 2 (including 0).') g7z9i[  
    end ^t ldm7{_  
    ftH%, /,  
    if any(m>n) "sx&8H"  
        error('zernfun:MlessthanN', ... ,Y8X"~{A  
              'Each M must be less than or equal to its corresponding N.') :aqskeT  
    end LLY;IUK!R  
    *#^1rKGWK  
    if any( r>1 | r<0 ) @d^h/w  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') )9jQ_  
    end Jb.u^3R@  
    |< FCt-U  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^QQ NJ  
        error('zernfun:RTHvector','R and THETA must be vectors.') ?[B[ F  
    end ~tuFjj^  
    "EhO )lR  
    r = r(:); T<?BIQz(}  
    theta = theta(:); 7<o;3gR7Kj  
    length_r = length(r); vGHYB1=~  
    if length_r~=length(theta) @CI6$  
        error('zernfun:RTHlength', ... A":b_!sW  
              'The number of R- and THETA-values must be equal.') W8h\ s {  
    end 5g>kr< K  
    p}7&x[fTLk  
    % Check normalization: %ys}Q!gR  
    % -------------------- pDq_nx9  
    if nargin==5 && ischar(nflag) y+afUJT  
        isnorm = strcmpi(nflag,'norm'); }z-  
        if ~isnorm PSR `8z n  
            error('zernfun:normalization','Unrecognized normalization flag.') +M&S  
        end oz-I/g3go  
    else T5_Cu9>ax  
        isnorm = false; swL|Ff`$  
    end (+ anTA=  
    a`iAA1HJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I'b]s~u  
    % Compute the Zernike Polynomials .{Oq)^!ot  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >! .9g  
    #de^~  
    % Determine the required powers of r: t3g! 5  
    % ----------------------------------- p=gUcO8  
    m_abs = abs(m); 4yv31QG$  
    rpowers = []; oa !P]r  
    for j = 1:length(n) g"? D>}@=  
        rpowers = [rpowers m_abs(j):2:n(j)]; d( g_y m*  
    end beZ| i 1:  
    rpowers = unique(rpowers); iRHQRdij  
    @2*6+w_Ae  
    % Pre-compute the values of r raised to the required powers, MXV4bgltT  
    % and compile them in a matrix: fEv36xb2S  
    % ----------------------------- ]X|G+[Ujv  
    if rpowers(1)==0 *7ro [  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); kk+8NwM1  
        rpowern = cat(2,rpowern{:}); ITlkw~'G  
        rpowern = [ones(length_r,1) rpowern]; S\!E;p  
    else c (8J  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j)qh>y)  
        rpowern = cat(2,rpowern{:}); <t37DnCgI  
    end uwA3!5  
    dwMwd@*j  
    % Compute the values of the polynomials: \hN2w]e  
    % -------------------------------------- t&]Mt 7  
    y = zeros(length_r,length(n)); :q1r2&ne  
    for j = 1:length(n) N&`ay{&`:  
        s = 0:(n(j)-m_abs(j))/2; 6E]rxps}"  
        pows = n(j):-2:m_abs(j); q Db}b d5  
        for k = length(s):-1:1 uK5x[m  
            p = (1-2*mod(s(k),2))* ... Mwc3@  
                       prod(2:(n(j)-s(k)))/              ... ?='9YM  
                       prod(2:s(k))/                     ... ZE` {J =,  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >K%x44|  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); &[5az/Hj*  
            idx = (pows(k)==rpowers); c.v)M\:  
            y(:,j) = y(:,j) + p*rpowern(:,idx); K_n%`5  
        end EPy/6-5b  
         Zh^w)}(W  
        if isnorm bp,CvQ'}a  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _s8_i6 Y  
        end  ?~IZ{!  
    end PM7/fv*,  
    % END: Compute the Zernike Polynomials UXHFti/A<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 55p=veq \  
    `0:@`)&g1  
    % Compute the Zernike functions: (Lnh> '2  
    % ------------------------------ n]Y _C^  
    idx_pos = m>0; f lB2gr^  
    idx_neg = m<0; I&Y(]S,cU  
    3(5Y-.aK}^  
    z = y; z?,5v`,t2  
    if any(idx_pos) e_TDO   
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); y{JkY\g  
    end :^a$ve3(Jq  
    if any(idx_neg) YyIt-fPZ  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 7i.aZ2a%  
    end ( Iew%U  
    )3sb 2 #  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的