切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11258阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 >>,G3/Zd*  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! cO*g4VL"[  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  E(r_mF7:  
    ,=u;1  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 c,~uurVi  
    yxt"vm;  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) pm6#azQ  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. o$No@~%v  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of U~x]2{}  
    %   order N and frequency M, evaluated at R.  N is a vector of <\&9Odqc  
    %   positive integers (including 0), and M is a vector with the \d@5*q  
    %   same number of elements as N.  Each element k of M must be a hq=;ZI  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) :21d  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is +RooU?Aq  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix b>uD-CSA  
    %   with one column for every (N,M) pair, and one row for every 5CY%h  
    %   element in R. ok:uTeJI  
    % 4IeCb?  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- E8PDIjp  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is mku@n;Hl_  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to xKUL}>8  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 5BVvT `<  
    %   for all [n,m]. P 45Irir  
    % K<>kT4  
    %   The radial Zernike polynomials are the radial portion of the F 3|^b{'zO  
    %   Zernike functions, which are an orthogonal basis on the unit ,PlH|  
    %   circle.  The series representation of the radial Zernike FNQ<k[#K'~  
    %   polynomials is ,2M}qs"P7G  
    % Z8SwW<{ $  
    %          (n-m)/2 d[a(u WEl  
    %            __ nR_Z rm  
    %    m      \       s                                          n-2s CHgip&(.F  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r "hk# pQ  
    %    n      s=0 o[ 5dR<  
    % qf? "v;  
    %   The following table shows the first 12 polynomials. pD<w@2K  
    % bZ`v1d (r  
    %       n    m    Zernike polynomial    Normalization vIV|y>;g  
    %       --------------------------------------------- CWdsOS=  
    %       0    0    1                        sqrt(2) @DysM~I  
    %       1    1    r                           2 BSm"]!D8*  
    %       2    0    2*r^2 - 1                sqrt(6) +z;*r8d<X  
    %       2    2    r^2                      sqrt(6) H>TO8;5(  
    %       3    1    3*r^3 - 2*r              sqrt(8) f[o~d`z  
    %       3    3    r^3                      sqrt(8) UoT`/.  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) As,`($=  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Y1PR?c Q  
    %       4    4    r^4                      sqrt(10) y'2|E+*V  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ^k6_j\5j  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) & zDuh[j}  
    %       5    5    r^5                      sqrt(12) xM jn=\}  
    %       --------------------------------------------- /!5Wd(:  
    % )?rq8VO  
    %   Example: h^3gYL7O6  
    % 5u$.!l8Nl  
    %       % Display three example Zernike radial polynomials R"t#dG]1t  
    %       r = 0:0.01:1; '/>Mr!H#  
    %       n = [3 2 5]; s#X/ F  
    %       m = [1 2 1]; )iN;1>  
    %       z = zernpol(n,m,r); 3aqH!?rVU  
    %       figure \YvG+7a  
    %       plot(r,z) hr vTFJ  
    %       grid on '@{:Fr G*U  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') e9LX0=  
    % @)Vpj\jM-C  
    %   See also ZERNFUN, ZERNFUN2. | eBwcC#^  
    "Z@P&jl  
    % A note on the algorithm. qDdO-fPev  
    % ------------------------ Y% iqSY  
    % The radial Zernike polynomials are computed using the series m.<_WXH  
    % representation shown in the Help section above. For many special 5H3o?x   
    % functions, direct evaluation using the series representation can 65LtCQ }  
    % produce poor numerical results (floating point errors), because o#qdgZ  
    % the summation often involves computing small differences between j )J |'b|  
    % large successive terms in the series. (In such cases, the functions dseI~}  
    % are often evaluated using alternative methods such as recurrence j yHa}OT  
    % relations: see the Legendre functions, for example). For the Zernike f{9+,z   
    % polynomials, however, this problem does not arise, because the ^to*ET{0  
    % polynomials are evaluated over the finite domain r = (0,1), and o5Oig  
    % because the coefficients for a given polynomial are generally all owNwj  
    % of similar magnitude. #49l\>1 z  
    % $?GggP d  
    % ZERNPOL has been written using a vectorized implementation: multiple tc~gn!"  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] vXKL<  
    % values can be passed as inputs) for a vector of points R.  To achieve lNe4e6  
    % this vectorization most efficiently, the algorithm in ZERNPOL I!/32* s1t  
    % involves pre-determining all the powers p of R that are required to ,3:f4e\<  
    % compute the outputs, and then compiling the {R^p} into a single !u7KgB<=/F  
    % matrix.  This avoids any redundant computation of the R^p, and {it.F4.  
    % minimizes the sizes of certain intermediate variables. NpVL;6?7T  
    % S`-I-VS=L  
    %   Paul Fricker 11/13/2006 lelmX  
    i c{I  
    F,_L}  
    % Check and prepare the inputs: k0Vri$x  
    % ----------------------------- xw*e`9vAe  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @<W` w  
        error('zernpol:NMvectors','N and M must be vectors.') 8\{!*?9!  
    end uda++^y:  
    pm O9mWq   
    if length(n)~=length(m) k^7!iOK2  
        error('zernpol:NMlength','N and M must be the same length.') }IygU 6{G  
    end 'o&d!  
    w:zo \  
    n = n(:); *f+s  
    m = m(:); ;+75"=[YT  
    length_n = length(n); n@pwOHQn<|  
    _9BL7W $;  
    if any(mod(n-m,2)) y [McdlH m  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') SK}jhm"y  
    end Luao?;|U  
    aImzK/  
    if any(m<0) Z}O]pm>=G  
        error('zernpol:Mpositive','All M must be positive.') z83v J*.  
    end Jt$YSp=!!  
    ~~yng-3)1  
    if any(m>n) +?\JQ|  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ld(60?z>FH  
    end }+j B5z'w  
    JE O$v|X  
    if any( r>1 | r<0 ) [#KY.n  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') xOkduk]  
    end Y1cL dQn  
    ]t<=a6 <P  
    if ~any(size(r)==1) IJf%OA>v  
        error('zernpol:Rvector','R must be a vector.') >33=0<  
    end ;Tbo \Wp9  
    4 QQt 0u0  
    r = r(:); K+Him] b  
    length_r = length(r); 'bbw0aB4  
    45biy(qa  
    if nargin==4 aQoB1 qd8  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); @Z/jaAjUC  
        if ~isnorm 8cO?VH,nk  
            error('zernpol:normalization','Unrecognized normalization flag.') '6zZ`Ll9  
        end NLZ5 5yo$  
    else _sy{rnaqvb  
        isnorm = false; w,P@@Q E  
    end 10Eun }  
    B2r[oT R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TX5??o  
    % Compute the Zernike Polynomials 4$^mLD$>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kO)Y|zQ  
    O n0!>-b,  
    % Determine the required powers of r:  Ht.P670  
    % ----------------------------------- B-g uz  
    rpowers = []; o"Xv)#g&  
    for j = 1:length(n) Op0*tj2i),  
        rpowers = [rpowers m(j):2:n(j)]; o;c"-^>  
    end <Ve0PhK  
    rpowers = unique(rpowers); DWtITO>  
    38sLyoG=i  
    % Pre-compute the values of r raised to the required powers, @Yt394gA%\  
    % and compile them in a matrix: uWx<J3~q.  
    % ----------------------------- qBF|' .$^  
    if rpowers(1)==0 6!i`\>I]  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ((Av3{05H&  
        rpowern = cat(2,rpowern{:}); IS" [<  
        rpowern = [ones(length_r,1) rpowern]; {zZ)JWM<w  
    else `Fcr`[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); z1b@JCWE  
        rpowern = cat(2,rpowern{:}); nql1I<I  
    end :PV3J0pB~  
    xjBY6Ylz  
    % Compute the values of the polynomials: ok6t| 7sq  
    % -------------------------------------- RQ0^ 1 R  
    z = zeros(length_r,length_n); 7zzFM  
    for j = 1:length_n 6`-<N!  
        s = 0:(n(j)-m(j))/2; !{,2uQXe  
        pows = n(j):-2:m(j); 2r2:  
        for k = length(s):-1:1 xw{K,; WeO  
            p = (1-2*mod(s(k),2))* ... =zH)R0!eG  
                       prod(2:(n(j)-s(k)))/          ... ,#N}Ni:  
                       prod(2:s(k))/                 ... mfj%-)l9  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... *_YH}U  
                       prod(2:((n(j)+m(j))/2-s(k))); @D[+@N  
            idx = (pows(k)==rpowers); ?h1g$SBxk  
            z(:,j) = z(:,j) + p*rpowern(:,idx); a{ke%W$*P  
        end U;kN o3=  
         kJ%a;p`O  
        if isnorm l`#rhuy`  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); dB~A4pZa  
        end K:e[#b8 :R  
    end L_ T+KaQCH  
    $$Tf1hIg  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Vo[.^0  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. hVyeHbx  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated OI0@lSAo<  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive N`d%4)|{  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, uzb|yV'B  
    %   and THETA is a vector of angles.  R and THETA must have the same >B``+ Z^2  
    %   length.  The output Z is a matrix with one column for every P-value, ,Y| ;V  
    %   and one row for every (R,THETA) pair. OW6dK #CFt  
    % <}.!G>X  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike CXuMNa  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) (I6Q"&h]  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 9*~";{O.Oa  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 >`[+24e  
    %   for all p. jT]R"U/Q  
    % d%L/[.&  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 n@H;*nI|  
    %   Zernike functions (order N<=7).  In some disciplines it is EqBTN07dZS  
    %   traditional to label the first 36 functions using a single mode }!r pH{y  
    %   number P instead of separate numbers for the order N and azimuthal sSk qU  
    %   frequency M. ~-G_c=E?  
    % cb|hIn\>7  
    %   Example: vV=rBO0a?  
    % c M<08-:v  
    %       % Display the first 16 Zernike functions OrL4G `O  
    %       x = -1:0.01:1; KRR)pT  
    %       [X,Y] = meshgrid(x,x); GbQg(%2F  
    %       [theta,r] = cart2pol(X,Y); *Jt+-ZM  
    %       idx = r<=1; f6\4 ,()  
    %       p = 0:15; pI.8Ip_r  
    %       z = nan(size(X)); fGA#0/_`  
    %       y = zernfun2(p,r(idx),theta(idx)); !M)] 1Y  
    %       figure('Units','normalized') Z:<wB#G  
    %       for k = 1:length(p) -glGOTk  
    %           z(idx) = y(:,k); S|KUh|=Q  
    %           subplot(4,4,k) 2[1t )EW  
    %           pcolor(x,x,z), shading interp uK#2vgT  
    %           set(gca,'XTick',[],'YTick',[]) B7Zi|-F  
    %           axis square 4$mtc*tzT  
    %           title(['Z_{' num2str(p(k)) '}']) !?J- Y  
    %       end -2u)orWP  
    % zmu+un"\j  
    %   See also ZERNPOL, ZERNFUN. 8N |K   
    $tc1 te  
    %   Paul Fricker 11/13/2006 uvR l`"Y  
    CbxWK#aMmB  
    UxF9Ko( ]d  
    % Check and prepare the inputs:  V_e  
    % ----------------------------- b>#=7;  
    if min(size(p))~=1 nWK7*  
        error('zernfun2:Pvector','Input P must be vector.') ; bHS^  
    end {61Y;  
    2 p}I  
    if any(p)>35 zN)).a  
        error('zernfun2:P36', ... / $s(OFbi#  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... P0sAq7"  
               '(P = 0 to 35).']) f `}/^*D  
    end +T4}wm  
    ZCBF&.!  
    % Get the order and frequency corresonding to the function number: ?'H+u[1.  
    % ---------------------------------------------------------------- `}L{gssv  
    p = p(:); '.gi@Sr5  
    n = ceil((-3+sqrt(9+8*p))/2); ^ rUq{  
    m = 2*p - n.*(n+2); z yp3 +|  
    %] :ZAmN  
    % Pass the inputs to the function ZERNFUN: mfffOG  
    % ---------------------------------------- k!bJ&} Q(b  
    switch nargin 19[!9ci  
        case 3 _I3v"d  
            z = zernfun(n,m,r,theta); 8X278^ #  
        case 4 2}* 8( 32  
            z = zernfun(n,m,r,theta,nflag); D dCcsYm,  
        otherwise -0]%#(E%`h  
            error('zernfun2:nargin','Incorrect number of inputs.') &m\Uc  
    end 5:5d=7WX  
    f<|*^+  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 rce._w }  
    function z = zernfun(n,m,r,theta,nflag) Dbq/t^  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. OQKc_z'"  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \I<R.4 9oW  
    %   and angular frequency M, evaluated at positions (R,THETA) on the vfXNN F  
    %   unit circle.  N is a vector of positive integers (including 0), and 28c6~*Te #  
    %   M is a vector with the same number of elements as N.  Each element &#gh :5  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) $"MVr5q6  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, wf\7sz  
    %   and THETA is a vector of angles.  R and THETA must have the same 8K8jz9.s  
    %   length.  The output Z is a matrix with one column for every (N,M) WB<MU:.Vc  
    %   pair, and one row for every (R,THETA) pair. .=d40m  
    % )~ &gBX  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {X_I>)Wg  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), fBz|-I:k +  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral :qj;f];|  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?_p!teb  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized H5 :,hrZY  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. pjoyMHWK  
    % esQ`6i  
    %   The Zernike functions are an orthogonal basis on the unit circle. K)+]as  
    %   They are used in disciplines such as astronomy, optics, and C+%eT&OO  
    %   optometry to describe functions on a circular domain. @,c` #,F/  
    % n6M#Xc'JA  
    %   The following table lists the first 15 Zernike functions. X?&{< vz  
    % %W=BdGr[8z  
    %       n    m    Zernike function           Normalization C@zG(?X  
    %       -------------------------------------------------- ._<, Eodv  
    %       0    0    1                                 1 sX3qrRY  
    %       1    1    r * cos(theta)                    2 Qnt9x,1m_  
    %       1   -1    r * sin(theta)                    2 Uq{$j5p8  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) `_i|\}tl  
    %       2    0    (2*r^2 - 1)                    sqrt(3) piuM#+Y\'S  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Dsc0 ;7~6  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) rwio>4=  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 1w7XM0SHcn  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) .}Ys+d1b9c  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) q4G$I?4  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) d<HO~+9  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W\5 -Yg(@  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) P{:Zxli0  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) . &`YlK  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) N`3^:EJL8  
    %       -------------------------------------------------- \&ZEIAe  
    % 7'Hh^0<  
    %   Example 1: mh`uvqY  
    % q8;MPXSG3  
    %       % Display the Zernike function Z(n=5,m=1) x*=m'IM[  
    %       x = -1:0.01:1; J P5en  
    %       [X,Y] = meshgrid(x,x); $/5\Hg1  
    %       [theta,r] = cart2pol(X,Y); v0=v1G*rvJ  
    %       idx = r<=1; yHlQKI  
    %       z = nan(size(X)); i_l{#*t  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); :F#^Q%-IS  
    %       figure *tk=DsRW  
    %       pcolor(x,x,z), shading interp h x8pg,X  
    %       axis square, colorbar h(J$-SUs  
    %       title('Zernike function Z_5^1(r,\theta)') %hw4IcWJ|  
    % }|N88PN  
    %   Example 2: DHuvHK0#  
    % ["Tro;K#  
    %       % Display the first 10 Zernike functions :RJo#ape  
    %       x = -1:0.01:1; .a(G=fk  
    %       [X,Y] = meshgrid(x,x); dTu*%S1Z  
    %       [theta,r] = cart2pol(X,Y); T<b* =i  
    %       idx = r<=1; :A:7^jrhi  
    %       z = nan(size(X)); *qAG0EM|  
    %       n = [0  1  1  2  2  2  3  3  3  3]; =h +SZXe<r  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; m|x_++3  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 0R `>F">  
    %       y = zernfun(n,m,r(idx),theta(idx)); ^,vFxN--q  
    %       figure('Units','normalized') MU2kA&LH  
    %       for k = 1:10 m .(\u?J  
    %           z(idx) = y(:,k); f7!48,(fB  
    %           subplot(4,7,Nplot(k)) T /IX(b'<  
    %           pcolor(x,x,z), shading interp 9) $[W  
    %           set(gca,'XTick',[],'YTick',[]) {hN<Ot  
    %           axis square &y|PseH"  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) d)D!np=  
    %       end P?c V d2Y  
    % U 0~BcFpD  
    %   See also ZERNPOL, ZERNFUN2. F9r/ M"5  
    %6^nb'l'C  
    %   Paul Fricker 11/13/2006 lcy+2)+  
    *P]]7DR  
    D+! S\~u  
    % Check and prepare the inputs: 3 Fy C D4#  
    % ----------------------------- <RbfW'<G  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) tlg}"lY  
        error('zernfun:NMvectors','N and M must be vectors.') nhC8Tq[m  
    end %H&WihQ  
    i O?f&u  
    if length(n)~=length(m) PNo:vRtsq  
        error('zernfun:NMlength','N and M must be the same length.') [q_62[-X  
    end b\o>4T  
    r|\{!;7  
    n = n(:); ahCwA}  
    m = m(:); \v<S:cTf  
    if any(mod(n-m,2)) ht>/7.p]  
        error('zernfun:NMmultiplesof2', ...  iycceZ  
              'All N and M must differ by multiples of 2 (including 0).') yD.(j*bMK;  
    end >hq{:m  
    q@XJ,e1A  
    if any(m>n) *icaKy3  
        error('zernfun:MlessthanN', ... _5(p=Zc  
              'Each M must be less than or equal to its corresponding N.') _y>drvg  
    end F$1{w"&  
    !TY0;is  
    if any( r>1 | r<0 ) S%Ky+0  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 89{;R  
    end u;1[_~  
    ! 9*l!(  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) be]/ROP>H  
        error('zernfun:RTHvector','R and THETA must be vectors.') i[FYR;C  
    end GE=S.P;  
    vkR ~nIp  
    r = r(:); On!+7is'  
    theta = theta(:); !v9`oL26  
    length_r = length(r); m?Cb^WgcF  
    if length_r~=length(theta) p}/D{|xO  
        error('zernfun:RTHlength', ... @W @,8e]c  
              'The number of R- and THETA-values must be equal.') -a~n_Z>_  
    end n&|N=zh  
    4!xRA''  
    % Check normalization: 1{d;Ngx  
    % -------------------- v UO[V$rx  
    if nargin==5 && ischar(nflag) F:jtzy"  
        isnorm = strcmpi(nflag,'norm'); i!3*)-a\~`  
        if ~isnorm -wl&~}%M  
            error('zernfun:normalization','Unrecognized normalization flag.') V:P]Ved  
        end ./0wt+  
    else "zTy_0[;  
        isnorm = false; hy%5LV<(  
    end &sBD0R(a  
    v.TgB)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *mWl=J;u  
    % Compute the Zernike Polynomials ~=[5X,Ta  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7,Z<PE  
    88[u^aC  
    % Determine the required powers of r: yIngenr$  
    % ----------------------------------- 3W#E$^G_v  
    m_abs = abs(m); 4t/?b  
    rpowers = []; $9X?LGUz  
    for j = 1:length(n) g=qaq  
        rpowers = [rpowers m_abs(j):2:n(j)]; EowzEGq!a5  
    end :5T=y @  
    rpowers = unique(rpowers); bXXX-Xc  
    'X6Y!VDd  
    % Pre-compute the values of r raised to the required powers, }opMf6`w  
    % and compile them in a matrix: /Lm~GmPt  
    % ----------------------------- di9OQ*6a7  
    if rpowers(1)==0 eK*oV}U-k  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); l.Ev]G/5  
        rpowern = cat(2,rpowern{:}); {+d)M  
        rpowern = [ones(length_r,1) rpowern]; VSV]6$~H  
    else yuJ>xsM  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7w8UnPuM  
        rpowern = cat(2,rpowern{:}); _G.!^+)kEm  
    end 5M5vxJ)Lh  
    =Bm|9A1  
    % Compute the values of the polynomials: \*b  .f  
    % -------------------------------------- P7bb2"_9  
    y = zeros(length_r,length(n)); ; 8eGf'  
    for j = 1:length(n) zOFHdd ,"g  
        s = 0:(n(j)-m_abs(j))/2; .q4$)8[Pg  
        pows = n(j):-2:m_abs(j); 5ZH3}B^L$  
        for k = length(s):-1:1 GJ2ZK=/  
            p = (1-2*mod(s(k),2))* ... P{_%p<:V  
                       prod(2:(n(j)-s(k)))/              ... ~%M*@ fm  
                       prod(2:s(k))/                     ... g"Ueo'd*  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... EfpMzD7/(  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); o:3(J}  
            idx = (pows(k)==rpowers); Hy,""Py  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 1-PlRQs.1  
        end }YM\IPsPu  
         xaoR\H  
        if isnorm B>=D$*_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _~C1M&b(X3  
        end En\q. 3 5  
    end g"m9[R=]6  
    % END: Compute the Zernike Polynomials L Yd:S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FeO1%#2<y  
    .8%b;b  
    % Compute the Zernike functions: M l@F  
    % ------------------------------ `#8kJt  
    idx_pos = m>0; IhZn  
    idx_neg = m<0; 7ZyP  
    wQd8/&mmk  
    z = y; )S`[ gK  
    if any(idx_pos) )rAJ>;  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); >G%oWRk  
    end S^p^) fAmF  
    if any(idx_neg) #-+Q]}fB4  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5$Kj#9g-#  
    end V rx,'/IS8  
    q+*\'H>  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的