切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11616阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Q >/,QX  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! !5lV#w!vb  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  C.jWT1  
    )Zr9 `3[  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 HK!ecQ^+  
    u;_~{VJ-  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 9njl,Q:  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. qlO}=b/  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of *G19fJ[5  
    %   order N and frequency M, evaluated at R.  N is a vector of (eN7s_  
    %   positive integers (including 0), and M is a vector with the y?$DDD  
    %   same number of elements as N.  Each element k of M must be a r\Nfq(w  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) A6&*VD  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is *pKTJP  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix b^1QyX^?:  
    %   with one column for every (N,M) pair, and one row for every O `}EiyV  
    %   element in R. ScPVjqG2{  
    % #oUNF0L@6  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 2{OR#v~  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is % Y^J''  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 5~*)3z^V  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 /(N/DMl[  
    %   for all [n,m]. Wl j&_~  
    % / ;]5X  
    %   The radial Zernike polynomials are the radial portion of the %ByPwu:f  
    %   Zernike functions, which are an orthogonal basis on the unit xA] L0h]  
    %   circle.  The series representation of the radial Zernike ,WT>"9+  
    %   polynomials is h!EA;2yGKa  
    % 22\!Z2@T/  
    %          (n-m)/2 AU{"G  
    %            __ drq3=2  
    %    m      \       s                                          n-2s X\|!  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r )BP*|URc  
    %    n      s=0 %Tm*^  
    % +a1x;  
    %   The following table shows the first 12 polynomials. Zi!Ta"}8  
    % Gz[yD ~6a  
    %       n    m    Zernike polynomial    Normalization  T{YZ`[  
    %       --------------------------------------------- * QgKo$IF  
    %       0    0    1                        sqrt(2) Uzu6>yT  
    %       1    1    r                           2  <wH+\  
    %       2    0    2*r^2 - 1                sqrt(6) %`Re {%1;  
    %       2    2    r^2                      sqrt(6) {28|LwmL  
    %       3    1    3*r^3 - 2*r              sqrt(8) 4=zs&   
    %       3    3    r^3                      sqrt(8) zkQ[<  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) _VtQMg|u  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) .HqFdsm  
    %       4    4    r^4                      sqrt(10) C8N)!5(A  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) <xOv8IQ|  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) v9*m0|T0M  
    %       5    5    r^5                      sqrt(12) &p0e)o~Ux  
    %       --------------------------------------------- UO/sv2CN  
    % }f}.>B0#  
    %   Example: xmW~R*^  
    % v3tJtb^'!  
    %       % Display three example Zernike radial polynomials ?6#won  
    %       r = 0:0.01:1;  4M'>oa  
    %       n = [3 2 5]; Tkbao D  
    %       m = [1 2 1]; M6Fo.eeK3  
    %       z = zernpol(n,m,r); Szus*YL7  
    %       figure APQq F/  
    %       plot(r,z) -%K!Ra\W  
    %       grid on gv#\}/->4  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') sV^:u^  
    % /zn=AAYb  
    %   See also ZERNFUN, ZERNFUN2. d:H'[l.F%  
    JzHG5nmB  
    % A note on the algorithm. =bVPHrKNQ  
    % ------------------------ .6B\fr.za  
    % The radial Zernike polynomials are computed using the series vqf$("  
    % representation shown in the Help section above. For many special Hvl n>x@  
    % functions, direct evaluation using the series representation can 6% D9;-N)  
    % produce poor numerical results (floating point errors), because niVR!l  
    % the summation often involves computing small differences between W :w~ M'o  
    % large successive terms in the series. (In such cases, the functions aQk&#OQy  
    % are often evaluated using alternative methods such as recurrence I<SgKva;c  
    % relations: see the Legendre functions, for example). For the Zernike yU$ MB,1  
    % polynomials, however, this problem does not arise, because the .8hI ad  
    % polynomials are evaluated over the finite domain r = (0,1), and *6uccx7{  
    % because the coefficients for a given polynomial are generally all WzMYRKZ  
    % of similar magnitude. FhE{khc#  
    % vDy&sgS$<  
    % ZERNPOL has been written using a vectorized implementation: multiple }x8!{Y#cF  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] s?SspuV  
    % values can be passed as inputs) for a vector of points R.  To achieve I7f ^2  
    % this vectorization most efficiently, the algorithm in ZERNPOL O 4 !$  
    % involves pre-determining all the powers p of R that are required to %|Ps|iV  
    % compute the outputs, and then compiling the {R^p} into a single IG-\&  
    % matrix.  This avoids any redundant computation of the R^p, and R[WiW RfD  
    % minimizes the sizes of certain intermediate variables. }`"`VLh  
    % 4 1_gak;  
    %   Paul Fricker 11/13/2006 jm_-f  
    7>JYwU{  
    B.z$0=b  
    % Check and prepare the inputs: {Gxe%gu6K  
    % ----------------------------- R>Ra~ b  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) X/!_>@`7?  
        error('zernpol:NMvectors','N and M must be vectors.') O&`.R|v  
    end WJ7|0qb  
    HpwMm^  
    if length(n)~=length(m) (IJNBJb  
        error('zernpol:NMlength','N and M must be the same length.') }5o?7} ?  
    end pYO =pL^Q  
    MvVpp;bd  
    n = n(:); R>' %}|v/  
    m = m(:); h}b:-a  
    length_n = length(n); VYyija:  
    O5\r%&$xd  
    if any(mod(n-m,2)) b@:OlZ~ %  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Io6/Fv>!  
    end %36x'Dn ?  
    !Sq<_TO  
    if any(m<0) Hl*vS  
        error('zernpol:Mpositive','All M must be positive.')  %Bq~b$  
    end bbm\y] !t  
    5/H,UL  
    if any(m>n) f^c+M~\JKj  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') )U^=`* 7  
    end jU,Xlgz(A  
    3f;=#|l  
    if any( r>1 | r<0 ) 3;nOm =I  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') -@TY8#O#-  
    end jW/WG tz  
    UK`A:N2[  
    if ~any(size(r)==1) _ _Of0<  
        error('zernpol:Rvector','R must be a vector.') ?u|??z%  
    end H DVimoOq  
    8tvmqe_G  
    r = r(:); (Wzp sDte  
    length_r = length(r); z*@eQauA  
    =u~nLL  
    if nargin==4 %&ejO= r  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); X -pbSq~5  
        if ~isnorm %1z;l.c  
            error('zernpol:normalization','Unrecognized normalization flag.') P8 X07IK  
        end 4WT[(  
    else b UG,~\Z  
        isnorm = false; sEhvx +(  
    end 9u=A:n\  
    T^bA O-d#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =bKDD <(  
    % Compute the Zernike Polynomials 'K[ml ?_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n. %QWhUB  
    7*:zN  
    % Determine the required powers of r: ~uQ*u.wi  
    % ----------------------------------- =~^b  
    rpowers = []; -YoL.`s1   
    for j = 1:length(n) kUT2/3Vi  
        rpowers = [rpowers m(j):2:n(j)]; blc?[ [,!  
    end gF6> /  
    rpowers = unique(rpowers); IUMv{2C  
    uU  d"l,V  
    % Pre-compute the values of r raised to the required powers, ]xC56se  
    % and compile them in a matrix: z 4u&#.bU  
    % ----------------------------- :;?$5h*|`  
    if rpowers(1)==0 js$R^P  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); E0HqXd?  
        rpowern = cat(2,rpowern{:}); ["Zvwes#7  
        rpowern = [ones(length_r,1) rpowern]; FW]tDGJOw  
    else /A_:`MAZ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); R >xd*A  
        rpowern = cat(2,rpowern{:}); )e(<YST  
    end \C~X_/sg  
    I{Du/"r#  
    % Compute the values of the polynomials: F)3+IuY  
    % -------------------------------------- '/ Aq2  
    z = zeros(length_r,length_n); An2 >]\L  
    for j = 1:length_n {!,K[QwcI  
        s = 0:(n(j)-m(j))/2; T"wg/mT  
        pows = n(j):-2:m(j); *V>?m6y/  
        for k = length(s):-1:1 qs4jUm  
            p = (1-2*mod(s(k),2))* ... g 9,"u_  
                       prod(2:(n(j)-s(k)))/          ... 1 ?@HOu  
                       prod(2:s(k))/                 ... \w9}O2lL  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Q%e<0t7  
                       prod(2:((n(j)+m(j))/2-s(k))); WjD885Xo  
            idx = (pows(k)==rpowers); ;zCUx*{  
            z(:,j) = z(:,j) + p*rpowern(:,idx); RpdUR*K9x  
        end `}X3f#eO&  
         |)x7qy`  
        if isnorm qxZIH  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); "*vrrY  
        end 9a`Lr B  
    end G e;67  
    8/e-?2l  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) %=**cvVy  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. XkI'm\W  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated \Vc[/Qp7Bb  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive c5]Xqq,  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, /x3*oO1  
    %   and THETA is a vector of angles.  R and THETA must have the same 0C4eer+D  
    %   length.  The output Z is a matrix with one column for every P-value, uq5?t  
    %   and one row for every (R,THETA) pair. XgxE M1(  
    % _CD~5EA:  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike w8lrpbLh  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) %.Y5%T yP  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Hq.rG-,p  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 T//xxH]w-  
    %   for all p. 9xA4;)36  
    % N+&uR!:.C  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 uFr12ZFgK  
    %   Zernike functions (order N<=7).  In some disciplines it is {-A|f  
    %   traditional to label the first 36 functions using a single mode {4_s:+v0  
    %   number P instead of separate numbers for the order N and azimuthal ^ `LqNG  
    %   frequency M. &'6/H/J  
    % ?Q:SVxzUd  
    %   Example: }s,NM%oI  
    % j!+jLm!l  
    %       % Display the first 16 Zernike functions 8D.c."q  
    %       x = -1:0.01:1; i(~DhXz*T  
    %       [X,Y] = meshgrid(x,x); ElO|6kOBYG  
    %       [theta,r] = cart2pol(X,Y); SZGR9/* ^  
    %       idx = r<=1; t/|0"\ p  
    %       p = 0:15; 9'MGv*Ho  
    %       z = nan(size(X)); 2u.0AG   
    %       y = zernfun2(p,r(idx),theta(idx)); @i ~A7L0/  
    %       figure('Units','normalized') kf@JEcKV  
    %       for k = 1:length(p) @a 9.s  
    %           z(idx) = y(:,k); 8 063LWV  
    %           subplot(4,4,k) u X,n[u  
    %           pcolor(x,x,z), shading interp FJn-cR.n  
    %           set(gca,'XTick',[],'YTick',[]) { ^o.f  
    %           axis square ]>M\|,wh  
    %           title(['Z_{' num2str(p(k)) '}']) |WB-Ng  
    %       end &S4*x|-C&  
    % T"xJY#)}  
    %   See also ZERNPOL, ZERNFUN. wra0bS)4  
    (d4btcg  
    %   Paul Fricker 11/13/2006  kN=&"  
    EE 9w^.3a  
    cWW?@ _  
    % Check and prepare the inputs: izP )t  
    % ----------------------------- oq7G=8gTp  
    if min(size(p))~=1 <7P[)X_  
        error('zernfun2:Pvector','Input P must be vector.') s{b\\$Rb  
    end Zn9tG:V  
    k`5I"-e  
    if any(p)>35 *)K\&h<{  
        error('zernfun2:P36', ... J9lZ1,22  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 96w2qgc2  
               '(P = 0 to 35).']) +b 6R  
    end G&S2U=KdV%  
    Wt/;iq"  
    % Get the order and frequency corresonding to the function number: ULiRuN0 6  
    % ---------------------------------------------------------------- v,i|:;G  
    p = p(:); -nS f<  
    n = ceil((-3+sqrt(9+8*p))/2); JQ?`l)4  
    m = 2*p - n.*(n+2); g}MUfl-L  
    hywcj\[  
    % Pass the inputs to the function ZERNFUN: QIiy\E%  
    % ---------------------------------------- )Qb,zS6  
    switch nargin i"&FW&W  
        case 3 |Gic79b  
            z = zernfun(n,m,r,theta); yzN[%/  
        case 4 NQ`D"n  
            z = zernfun(n,m,r,theta,nflag); ;<Q%d~$xy}  
        otherwise OZ\6qMH3e  
            error('zernfun2:nargin','Incorrect number of inputs.') Mj;V.Y  
    end \Kf\%Q  
    *}\M!u{J  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 m?kiGC&m  
    function z = zernfun(n,m,r,theta,nflag) ~&RTLr#\*M  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. x*Z'i<;B  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ~xd?y*gk;  
    %   and angular frequency M, evaluated at positions (R,THETA) on the AYnPxiW|  
    %   unit circle.  N is a vector of positive integers (including 0), and L('1NN 2  
    %   M is a vector with the same number of elements as N.  Each element wsmgkg  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) os5$(  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, *$=i1w  
    %   and THETA is a vector of angles.  R and THETA must have the same T >8P1p@A,  
    %   length.  The output Z is a matrix with one column for every (N,M) f30J8n"k  
    %   pair, and one row for every (R,THETA) pair. t^'nh 1=  
    % *?<N3Rr*  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,)`_?^ \$f  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), k ]NZ%.  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral \\SQACN  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, e \Qys<2r  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized DZ|*hQU>K  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. m[}P  
    % akvi^]x  
    %   The Zernike functions are an orthogonal basis on the unit circle. pyhXET '  
    %   They are used in disciplines such as astronomy, optics, and tz):$1X_  
    %   optometry to describe functions on a circular domain. vzS b(  
    % .\caRb[  
    %   The following table lists the first 15 Zernike functions. YNBM\Q  
    % T ipH}  
    %       n    m    Zernike function           Normalization 8~(xi<"e  
    %       -------------------------------------------------- z3a GK  
    %       0    0    1                                 1 hF$`=hE,F~  
    %       1    1    r * cos(theta)                    2 +0Q   
    %       1   -1    r * sin(theta)                    2 \dHqCQ  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) :$D*ab^^P  
    %       2    0    (2*r^2 - 1)                    sqrt(3) *duG/?>P  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) CE3l_[c  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 8C{&i5kj\E  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) m%L!eR  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \9[vi +T  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) \=0;EI-j  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Wx0i_HFR  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b d 1^  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) `%Fp'`ZM$8  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <ww D*t  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ZSu.0|0#  
    %       -------------------------------------------------- ;VLDXvGd  
    % yx8G9SO?  
    %   Example 1: Zbnxs.i!  
    % -`' |z+V  
    %       % Display the Zernike function Z(n=5,m=1) "5N4 of 8  
    %       x = -1:0.01:1; 65aYH4"  
    %       [X,Y] = meshgrid(x,x); Ke4oLF2  
    %       [theta,r] = cart2pol(X,Y); 2_pF#M9  
    %       idx = r<=1; xCZ_x$bk  
    %       z = nan(size(X)); 44e]sT.B  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 2E40&  
    %       figure nWsRa uY  
    %       pcolor(x,x,z), shading interp <PSz`)SN  
    %       axis square, colorbar Owf!dMA;nF  
    %       title('Zernike function Z_5^1(r,\theta)') THwM',6  
    % TFkG"ev  
    %   Example 2: w"0$cL3  
    % wKpGJ& {  
    %       % Display the first 10 Zernike functions Kyh6QA^  
    %       x = -1:0.01:1;  ,t 2CQ  
    %       [X,Y] = meshgrid(x,x); q]{gAGe~  
    %       [theta,r] = cart2pol(X,Y); +jE)kaV%  
    %       idx = r<=1; 1 fcV&qHR  
    %       z = nan(size(X)); ()6% 1zCO  
    %       n = [0  1  1  2  2  2  3  3  3  3]; |&@q$d  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ^X&`YXjuN  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; }4>u_)nt  
    %       y = zernfun(n,m,r(idx),theta(idx)); )?[2Y%P  
    %       figure('Units','normalized') $+PioSq  
    %       for k = 1:10 x[t?hl=:  
    %           z(idx) = y(:,k); '`upSJ;e  
    %           subplot(4,7,Nplot(k)) vGyQ306  
    %           pcolor(x,x,z), shading interp XI`_PQco  
    %           set(gca,'XTick',[],'YTick',[]) SL uQv?R}9  
    %           axis square  _ %mm  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Mzg'$]N  
    %       end (m1m}* @  
    % q-t%spkl  
    %   See also ZERNPOL, ZERNFUN2. @zS/J,:v}  
    G5qsnTxUJ  
    %   Paul Fricker 11/13/2006 {b-C,J  
    E{6ku=2F  
    $MasYi  
    % Check and prepare the inputs: q<\r}1Dm  
    % ----------------------------- @Xoh@:j\  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .U(6])%;@  
        error('zernfun:NMvectors','N and M must be vectors.') -v9(43  
    end >> cW0I/`  
    xLIyh7$t  
    if length(n)~=length(m) eQQVfEvS  
        error('zernfun:NMlength','N and M must be the same length.') .:H'9QJg  
    end O#igH  
    }|h-=T '  
    n = n(:); {Q/@Y.~<  
    m = m(:); f@Mku0VT  
    if any(mod(n-m,2)) gS(JgN  
        error('zernfun:NMmultiplesof2', ... hak#Iz0[C  
              'All N and M must differ by multiples of 2 (including 0).') |g7)A?2J~  
    end 1%M^MT%&  
    fXevr `  
    if any(m>n) ,~;`@  
        error('zernfun:MlessthanN', ... `*CoVx~fk  
              'Each M must be less than or equal to its corresponding N.') a?Om;-i2`S  
    end lJa-O  
    ])pX)(a  
    if any( r>1 | r<0 ) crd|r."  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') AkjoD7.*  
    end &/EZn xl  
    3>(~5  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -C^qN7Bz  
        error('zernfun:RTHvector','R and THETA must be vectors.') b c .Vy  
    end iP7KM*ks  
    &\?{%xj  
    r = r(:); IAd ^$9  
    theta = theta(:); 'PMzm/;8st  
    length_r = length(r); l$BKE{rg  
    if length_r~=length(theta) \@2sI  
        error('zernfun:RTHlength', ... Fo"' [`  
              'The number of R- and THETA-values must be equal.') fZd~},X  
    end  4z|Yfvq  
    cNN_KA  
    % Check normalization: h^9Ne/s~  
    % -------------------- '.&,.E&{$  
    if nargin==5 && ischar(nflag) {iq{<;)U?U  
        isnorm = strcmpi(nflag,'norm'); gvZLW!={  
        if ~isnorm D/{Spw@  
            error('zernfun:normalization','Unrecognized normalization flag.') 1_W5@)  
        end OQX ek@~2  
    else X>jwjRK $  
        isnorm = false; _Q;M$.[zyR  
    end E{9{%J  
    \;tKss!|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I|[aa$G  
    % Compute the Zernike Polynomials }\ui} \  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;Wr,VU]  
    Z42v@?R.!W  
    % Determine the required powers of r: }Lwj~{  
    % ----------------------------------- 13{"sY:PT#  
    m_abs = abs(m); ;lWy?53=@  
    rpowers = []; T{K+1SPy4  
    for j = 1:length(n) -ap;Ul?  
        rpowers = [rpowers m_abs(j):2:n(j)]; eEe8T=mD  
    end <Q-ufF85)  
    rpowers = unique(rpowers); S+OI?QS  
    m9>nv rQ  
    % Pre-compute the values of r raised to the required powers, g?o$:>c  
    % and compile them in a matrix: +XRv iHA`  
    % ----------------------------- {K0T%.G  
    if rpowers(1)==0 VF==F_l  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); lR^dT4  
        rpowern = cat(2,rpowern{:}); tT#Q`cB  
        rpowern = [ones(length_r,1) rpowern]; 8UL:C?eY  
    else GrQAho  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?y45#Tk]  
        rpowern = cat(2,rpowern{:}); qaGIU`}:$A  
    end %J%gXk}]  
    E 0pF; P5  
    % Compute the values of the polynomials: s*#|EdD6@  
    % -------------------------------------- B 9Mwj:)}  
    y = zeros(length_r,length(n)); @%cJjZ5y  
    for j = 1:length(n) qP<,"9!I  
        s = 0:(n(j)-m_abs(j))/2; $ .Z2Rdlv(  
        pows = n(j):-2:m_abs(j);  FZ2-e  
        for k = length(s):-1:1 8"* $e I5  
            p = (1-2*mod(s(k),2))* ... ujWHO$uz!  
                       prod(2:(n(j)-s(k)))/              ... /7"1\s0U  
                       prod(2:s(k))/                     ... D3lYy>~d5;  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;qk~>  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); $xZk{ rK  
            idx = (pows(k)==rpowers); OB^2NL~Q~  
            y(:,j) = y(:,j) + p*rpowern(:,idx); @ Q1jH~t  
        end a&ByV!%%+_  
         0 De M  
        if isnorm XP;&iZJ  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); CijS=-  
        end gX _BJ6  
    end ^{K8uN7  
    % END: Compute the Zernike Polynomials DVcu*UVw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l?1!h2z%  
    9G8QzIac  
    % Compute the Zernike functions: IP;@unBl  
    % ------------------------------ ,] {NZ9  
    idx_pos = m>0; d$,i?d,  
    idx_neg = m<0; _TXV{<E6  
    "AK3t' jF*  
    z = y; dGteYt_F  
    if any(idx_pos) CzEn_ZMb  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2!3&Ub#FO  
    end Yr=mLT|JN  
    if any(idx_neg) fDqXM;a"  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @ty|HXW  
    end bgK(l d`  
    RZtL<2.@  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的