非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 o`q_wdy?
function z = zernfun(n,m,r,theta,nflag) hweaGL t0
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. '^FGc
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _Jt 2YZdA
% and angular frequency M, evaluated at positions (R,THETA) on the `p7&>
BOA
% unit circle. N is a vector of positive integers (including 0), and _!?Hu/zo
% M is a vector with the same number of elements as N. Each element LI6hEcM=
% k of M must be a positive integer, with possible values M(k) = -N(k) V]vc(rH
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, !\,kZ|#>
% and THETA is a vector of angles. R and THETA must have the same ?w+Ix~k
% length. The output Z is a matrix with one column for every (N,M) 't9hXzAfW
% pair, and one row for every (R,THETA) pair. -~QHqU.
% pKjoi{
Z
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike p!<$vE
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), nYt/U\n!
% with delta(m,0) the Kronecker delta, is chosen so that the integral fz3lV
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, "n=vN<8(o
% and theta=0 to theta=2*pi) is unity. For the non-normalized Xe^Cn
R
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. d'|,[p
% ]wWPXx[>/
% The Zernike functions are an orthogonal basis on the unit circle. )5.C]4jol
% They are used in disciplines such as astronomy, optics, and LT,? $I
% optometry to describe functions on a circular domain. A,)VM9M_l
% T1r3=Y4
% The following table lists the first 15 Zernike functions. A?oXqb
% u]ZqOJXxu
% n m Zernike function Normalization =Mb1o[
% -------------------------------------------------- f*24)Wn<
% 0 0 1 1 fVM`-8ZTq
% 1 1 r * cos(theta) 2 ]l(wg]
% 1 -1 r * sin(theta) 2 6Vbzd0dk
% 2 -2 r^2 * cos(2*theta) sqrt(6) 6Kj'ZyVL
% 2 0 (2*r^2 - 1) sqrt(3) Cua%1]"4w
% 2 2 r^2 * sin(2*theta) sqrt(6) U7DCx=B
% 3 -3 r^3 * cos(3*theta) sqrt(8) ;_(PVo
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ad_`x
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) s-7RW
% 3 3 r^3 * sin(3*theta) sqrt(8) u^j {U}
% 4 -4 r^4 * cos(4*theta) sqrt(10) 3w!c`;c%
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _"%B7FK
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) hG_?8:W8HT
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .y&QqxiE
% 4 4 r^4 * sin(4*theta) sqrt(10) atW'
% -------------------------------------------------- k3t78Qg
% 6y5A"-
% Example 1: pW]4bx@E
% x+@&(NMP5
% % Display the Zernike function Z(n=5,m=1) Fbp{,V@F2
% x = -1:0.01:1; fof2
xcH!
% [X,Y] = meshgrid(x,x); \i[BP
% [theta,r] = cart2pol(X,Y); c0Dmq)HK?
% idx = r<=1; D r9 ?2
% z = nan(size(X)); 1H,g=Y4f%
% z(idx) = zernfun(5,1,r(idx),theta(idx)); q,2]5'
% figure oiH|uIsqR
% pcolor(x,x,z), shading interp 8V-\e?&^
% axis square, colorbar cFagz* !
% title('Zernike function Z_5^1(r,\theta)') BvU"4d;x
% lI/0:|l
% Example 2: Z.wA@ ~e
% &|<xqt
% % Display the first 10 Zernike functions G3G6IP
% x = -1:0.01:1; vwr74A.g0
% [X,Y] = meshgrid(x,x); "|m|E/Z-9
% [theta,r] = cart2pol(X,Y); =D^TK-H
% idx = r<=1; 3},Zlu
% z = nan(size(X)); 3[XQR8o
% n = [0 1 1 2 2 2 3 3 3 3]; poJg"R4
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; vLO&Lpv
% Nplot = [4 10 12 16 18 20 22 24 26 28]; !%Y~~'5 h
% y = zernfun(n,m,r(idx),theta(idx)); C`'W#xnp1
% figure('Units','normalized') ?'r9"M>
% for k = 1:10 ?Mp1~{8
% z(idx) = y(:,k); `E\imL
% subplot(4,7,Nplot(k)) %k0EpJE%
% pcolor(x,x,z), shading interp R1-k3;v^
% set(gca,'XTick',[],'YTick',[]) $iM=4
3W
% axis square L;QY<b
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?_`0G/xl
% end &)pK%SAM
% w G8Wez%
% See also ZERNPOL, ZERNFUN2. *wV[TKaN
L"<B;u5pM
% Paul Fricker 11/13/2006 o/,NG U
Z7jX9e"L
A7P`lJgv
% Check and prepare the inputs: 2BzqY`O
% ----------------------------- [^~7]2 i
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) A.Bk/N1G
error('zernfun:NMvectors','N and M must be vectors.') &gc`<kLu
end +@VYs*&&
r?l;I3~
if length(n)~=length(m) P=H+ #
error('zernfun:NMlength','N and M must be the same length.') MF[z-7
end 1'G8o=~
JLb6C52
n = n(:); Ewo*yY>
m = m(:); y7<&vIEC
if any(mod(n-m,2)) 0p fnV%
error('zernfun:NMmultiplesof2', ... &14W vAU
'All N and M must differ by multiples of 2 (including 0).') A6ewdT?>,
end F3ZxhkF
J<JBdk
if any(m>n) J fcMca
error('zernfun:MlessthanN', ... eSl-9
^
'Each M must be less than or equal to its corresponding N.') -cNx1et
end FoPginZ]J
G5Q!L;3HZ
if any( r>1 | r<0 ) ~_ !ts{[E
error('zernfun:Rlessthan1','All R must be between 0 and 1.') )%du@a8
end ke/_k/
;^l_i4A
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) fo\\o4Qyh
error('zernfun:RTHvector','R and THETA must be vectors.') yZSvn[f
end FQf#*
bdV3v`
r = r(:); [V@yRWI
theta = theta(:); b"8FlZ$
length_r = length(r); H?}wl%
if length_r~=length(theta) Fc0jQ@4=
error('zernfun:RTHlength', ... !Y;<:zx5
'The number of R- and THETA-values must be equal.')
U
5`y
end ~SVQ;U)-
=LZ>su
% Check normalization: # bX~=`
% -------------------- \iMyo
if nargin==5 && ischar(nflag) Q?;C4n4]l
isnorm = strcmpi(nflag,'norm'); 7dD.G/'
if ~isnorm Ku3!*n_\
error('zernfun:normalization','Unrecognized normalization flag.') ;.Zh,cU
end jXEGSn
else =aow
d4t
isnorm = false; ) Ypz!
end J0Four#MD
R @r{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?^3B3qqh9
% Compute the Zernike Polynomials "2h5m4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *d
l"wH&
J>v$2?w`w
% Determine the required powers of r: ;]h.m)~|
% ----------------------------------- MOV =n75
m_abs = abs(m); J1-):3A
rpowers = [];
X^in};&d
for j = 1:length(n) U5rxt^
rpowers = [rpowers m_abs(j):2:n(j)]; k.Zll,s
end $T*KaX\{B
rpowers = unique(rpowers); -Uf4v6A
g)M#{"H
% Pre-compute the values of r raised to the required powers, 9kd.j@C
% and compile them in a matrix: +-HE'4mo
% ----------------------------- y@9Y,ZR*
if rpowers(1)==0 3@X|Gs'_S
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |'@[N,
rpowern = cat(2,rpowern{:}); sM9-0A
rpowern = [ones(length_r,1) rpowern]; -~'kP /E^
else G4yUC<TqBP
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); pSrsp r
rpowern = cat(2,rpowern{:}); UQdyv(jXq
end xL&PJ /'
~}%&p&
p
% Compute the values of the polynomials: ,%= '>A
% -------------------------------------- x=3I)}J(kn
y = zeros(length_r,length(n)); N K"%DU<
for j = 1:length(n) IuWX*b`v
s = 0:(n(j)-m_abs(j))/2; SbJh(V-pr
pows = n(j):-2:m_abs(j); F25<+1kr
for k = length(s):-1:1 3qcpf:
p = (1-2*mod(s(k),2))* ... 9R:(^8P8
prod(2:(n(j)-s(k)))/ ... hE5G!@1F
prod(2:s(k))/ ... 2e\Kw+(>{
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... lDU#7\5.
prod(2:((n(j)+m_abs(j))/2-s(k))); cV(H<"I
idx = (pows(k)==rpowers); 7n>|D^
y(:,j) = y(:,j) + p*rpowern(:,idx); mE_iS?1
end GsRt5?X/*
]h!*T{:
if isnorm #?5VsD8
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); DzmqR0)
end Vdy\4 nu(
end c8tP+O9
% END: Compute the Zernike Polynomials T@>63
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kpY%&
=KW|#]RB^
% Compute the Zernike functions: |>[X<>m
% ------------------------------ ~{Ua92zV9
idx_pos = m>0; C0f[eA
idx_neg = m<0; v5gQ9
L`JY4JM"
z = y; 0Sz/c+ 6
if any(idx_pos) tpd|y|
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); T)O]:v
end aH9L|BN*
if any(idx_neg) aEZJNWv
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _BCT.ual
end ~CJYQFt
` C ?a
% EOF zernfun