切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11379阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦  d*([!!i  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! l_ x jsu  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  d8^S~7  
    91FVe  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 1HRcEzA  
    Gx%f&H~Z^  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) /h K/t;  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. m/1;os5+8  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of !4fT<V (  
    %   order N and frequency M, evaluated at R.  N is a vector of I !g+K  
    %   positive integers (including 0), and M is a vector with the l|  QQ  
    %   same number of elements as N.  Each element k of M must be a f:/"OCig  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) qyY]: (8  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is \7tJ)[0aF  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix @D=i|f  
    %   with one column for every (N,M) pair, and one row for every <Lfo5:.  
    %   element in R. gib;> nuBK  
    % kwpbgQ  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Znh) m  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is \yA*)X+  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to `&o>7a;  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 s!j vBy  
    %   for all [n,m]. -f%J_`  
    % |6zx YuX  
    %   The radial Zernike polynomials are the radial portion of the E>x,$w<?  
    %   Zernike functions, which are an orthogonal basis on the unit [O^mG 9  
    %   circle.  The series representation of the radial Zernike :3By7BZgj  
    %   polynomials is [!>DQE  
    % OC_i,  
    %          (n-m)/2 A&qZ:&(OM  
    %            __ 2g_2$)2  
    %    m      \       s                                          n-2s bxF'`^En  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r };nOG;  
    %    n      s=0 5?C) v}w+  
    % 1<&nHFJ;[  
    %   The following table shows the first 12 polynomials. ?89 _2W  
    % sGFC?1r?\  
    %       n    m    Zernike polynomial    Normalization |C.[eHe&D  
    %       --------------------------------------------- sWX\/Iyy2p  
    %       0    0    1                        sqrt(2) LP5@ID2G  
    %       1    1    r                           2 \kVi&X=q:  
    %       2    0    2*r^2 - 1                sqrt(6) $|!@$Aj  
    %       2    2    r^2                      sqrt(6) u75(\<{  
    %       3    1    3*r^3 - 2*r              sqrt(8) g ,""j`  
    %       3    3    r^3                      sqrt(8) DeR C_ [  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) dp#'~[j  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ev%}\^Vl[  
    %       4    4    r^4                      sqrt(10) y,vrMWDy  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) . I#dR*  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) PitDk 1T  
    %       5    5    r^5                      sqrt(12) hYU4%"X  
    %       --------------------------------------------- R{SN.%{;  
    % RI-)Qx&!f  
    %   Example: 2sNV09id  
    % "2 J2za  
    %       % Display three example Zernike radial polynomials \tZZn~ex  
    %       r = 0:0.01:1; W)m\q}]FYz  
    %       n = [3 2 5]; Qwu~ {tf+'  
    %       m = [1 2 1]; `{W>Dy  
    %       z = zernpol(n,m,r); bf-V Q7  
    %       figure 56^#x  
    %       plot(r,z) ?cD2EX%(  
    %       grid on +C ){&/=#  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 'AJlkLqm#>  
    % .]H1uoci|  
    %   See also ZERNFUN, ZERNFUN2. >Yt+LdG!-  
    \XT~5N6  
    % A note on the algorithm. 29AWg(9?aS  
    % ------------------------ P`!31P#]L  
    % The radial Zernike polynomials are computed using the series ^%~ux0%^T  
    % representation shown in the Help section above. For many special `%A>{A"  
    % functions, direct evaluation using the series representation can oBZzMTPe  
    % produce poor numerical results (floating point errors), because Z^SF $+UN  
    % the summation often involves computing small differences between kxVR#:  
    % large successive terms in the series. (In such cases, the functions <c$K3  
    % are often evaluated using alternative methods such as recurrence \?rBtD(  
    % relations: see the Legendre functions, for example). For the Zernike ]J>{ZL   
    % polynomials, however, this problem does not arise, because the w@"l0gm+u[  
    % polynomials are evaluated over the finite domain r = (0,1), and K1*]6x,  
    % because the coefficients for a given polynomial are generally all T9=55tpG9  
    % of similar magnitude. 3pk `&'  
    % 55]E<2't  
    % ZERNPOL has been written using a vectorized implementation: multiple Y<EdFzle  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] <\C/;  
    % values can be passed as inputs) for a vector of points R.  To achieve ~AbTbQ3  
    % this vectorization most efficiently, the algorithm in ZERNPOL a2\r^fY/  
    % involves pre-determining all the powers p of R that are required to -P7JaH/Q  
    % compute the outputs, and then compiling the {R^p} into a single y( uE  
    % matrix.  This avoids any redundant computation of the R^p, and w,v~  
    % minimizes the sizes of certain intermediate variables. U|}Bk/0.  
    % b Q6<R4  
    %   Paul Fricker 11/13/2006 `' "125T  
    >@wyiBU  
    B2DWSp-8*  
    % Check and prepare the inputs: VwxLElV  
    % ----------------------------- $wx)/t<  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) pz]#/Ry?  
        error('zernpol:NMvectors','N and M must be vectors.') {Mx3G*hr  
    end ?,0 5!]  
    ~99DE78  
    if length(n)~=length(m) us TPr  
        error('zernpol:NMlength','N and M must be the same length.') "o.g}Pv  
    end F1aI4H<(T  
    ~i ImM|*0  
    n = n(:); H^N 5yOj/  
    m = m(:); [[sfuJD  
    length_n = length(n); N! N>/9  
    DsZBhjCB  
    if any(mod(n-m,2)) C/L+gU&  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') bQFMg41*w7  
    end 3Sb'){.MT+  
    /9..hEq^  
    if any(m<0) !?u{2 D  
        error('zernpol:Mpositive','All M must be positive.') 7@*l2edXm+  
    end UZ` <D/  
    .3 JLa8y  
    if any(m>n) &>]c"?C*  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') >PBP:s1f4>  
    end Sl RQi:  
    vm y?8E6+  
    if any( r>1 | r<0 ) Sb;=YW 1<  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') WzwH;!  
    end GV"HkE;  
    0~:Eo89  
    if ~any(size(r)==1) WK<:(vu.  
        error('zernpol:Rvector','R must be a vector.') 3r]:k) J  
    end `$5 QTte  
    ^[]@dk9  
    r = r(:); >m-VBo  
    length_r = length(r); X>W2aDuEZ  
    ?Dr K2;q  
    if nargin==4 RMfKM! vE  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ?mCino  
        if ~isnorm wcI? .  
            error('zernpol:normalization','Unrecognized normalization flag.') O ^+H:Y|  
        end (v'#~)R_`  
    else &=-ZNWNo  
        isnorm = false; p]-\\o}  
    end ,sqx xq  
    vTdJe  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $k|:V&6SV  
    % Compute the Zernike Polynomials [10y13  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `3CdW  
    g]V_)}  
    % Determine the required powers of r: kU {>hG4  
    % ----------------------------------- {Hu@|Q\ ~&  
    rpowers = []; `pfZJ+  
    for j = 1:length(n) 'fGB#uBt  
        rpowers = [rpowers m(j):2:n(j)]; "nzQ$E>?$  
    end oN\IQ7oI  
    rpowers = unique(rpowers); h'tb  
    Ww[Xqmg  
    % Pre-compute the values of r raised to the required powers, ruKm_j#J  
    % and compile them in a matrix: P~H?[ ;  
    % ----------------------------- b-+~D9U <  
    if rpowers(1)==0 MN.h,^b  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %\|9_=9Wn  
        rpowern = cat(2,rpowern{:}); !d)Vr5x  
        rpowern = [ones(length_r,1) rpowern]; O_kBAC-|R(  
    else o;zU;pkB  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); C2[* $ 1U  
        rpowern = cat(2,rpowern{:}); I+4#LR3;  
    end vo]!IY  
    u3B[1Ae:K  
    % Compute the values of the polynomials: +'ZJ]  
    % -------------------------------------- `Pcbc\"*y  
    z = zeros(length_r,length_n); D["~G v  
    for j = 1:length_n RI[=N:C^  
        s = 0:(n(j)-m(j))/2; .T63:  
        pows = n(j):-2:m(j); aJ{-m@/ 5  
        for k = length(s):-1:1 .yF@Ow  
            p = (1-2*mod(s(k),2))* ... {PTB]D'  
                       prod(2:(n(j)-s(k)))/          ... ]27  
                       prod(2:s(k))/                 ... KmYSYNr@,  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 2 lc  
                       prod(2:((n(j)+m(j))/2-s(k))); 1z6$>{FUR  
            idx = (pows(k)==rpowers); I0qS x{K  
            z(:,j) = z(:,j) + p*rpowern(:,idx); QH d^?H*  
        end !<8-juY  
         i0TbsoKh:  
        if isnorm "?X,);5S  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); @|2L>N  
        end XY h)59oM%  
    end aob+_9o  
    (^@rr[. o7  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) N8E  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. B4Fuvi  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated CiNOGSlDj  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive l"rX'g?  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, -\9K'8 C  
    %   and THETA is a vector of angles.  R and THETA must have the same  3cA '9  
    %   length.  The output Z is a matrix with one column for every P-value, .}c&" L;W  
    %   and one row for every (R,THETA) pair. zCe[+F  
    % \V_ Tc`  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike H,3WdSL`K  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ,6 IKkyD  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) B{lj.S` mB  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 q21l{R{Y  
    %   for all p. qN"Q3mU^h*  
    % WqJrDj~  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Z_h-5VU-  
    %   Zernike functions (order N<=7).  In some disciplines it is (UB?UJc  
    %   traditional to label the first 36 functions using a single mode 8-PHW,1@a3  
    %   number P instead of separate numbers for the order N and azimuthal fpa ~~E-  
    %   frequency M. h.*v0cq:  
    % &~a S24c  
    %   Example: Rz#q68  
    % [0n[\& 0  
    %       % Display the first 16 Zernike functions } 3}H}  
    %       x = -1:0.01:1; /&  W&  
    %       [X,Y] = meshgrid(x,x); YvG=P<_xw  
    %       [theta,r] = cart2pol(X,Y); sR4B/1'E  
    %       idx = r<=1; c[>xM3=e^q  
    %       p = 0:15; AnK~<9WQj  
    %       z = nan(size(X)); 6E-AfY'<  
    %       y = zernfun2(p,r(idx),theta(idx)); M5kw3Jy5  
    %       figure('Units','normalized') Lb,wn{  
    %       for k = 1:length(p) cSTF$62E  
    %           z(idx) = y(:,k); #M)+sK$H%f  
    %           subplot(4,4,k) ~Z~V:~  
    %           pcolor(x,x,z), shading interp ntntB{t  
    %           set(gca,'XTick',[],'YTick',[]) )~0TGy|  
    %           axis square VTa%  
    %           title(['Z_{' num2str(p(k)) '}']) 2e9.U/9  
    %       end +# 3e<+!F  
    % al"=ld(  
    %   See also ZERNPOL, ZERNFUN. U,K=(I7OBX  
    \^1S:z  
    %   Paul Fricker 11/13/2006 ek"U q RY  
    iax0V  
    aka)#0l .  
    % Check and prepare the inputs: }P'c8$  
    % ----------------------------- cLf<YF  
    if min(size(p))~=1 hv`I`[/J  
        error('zernfun2:Pvector','Input P must be vector.') +BVY9U?\"  
    end :8`~dj.  
    N%F4ug@i   
    if any(p)>35 5eiKMKW[  
        error('zernfun2:P36', ... Z(XohWe2  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... \U3v5|Q  
               '(P = 0 to 35).']) 2?{'(i ay  
    end .e5d#gE0  
    edo+ o{^  
    % Get the order and frequency corresonding to the function number: aaP6zJXi  
    % ---------------------------------------------------------------- !FwNq'Q8$  
    p = p(:); D94bq_2}  
    n = ceil((-3+sqrt(9+8*p))/2); H:)_;k  
    m = 2*p - n.*(n+2); N% ?R(  
    >=4('  
    % Pass the inputs to the function ZERNFUN: I^nDO\m <  
    % ---------------------------------------- iu?gZVyka  
    switch nargin a^8PB|G  
        case 3 U:z5`z!  
            z = zernfun(n,m,r,theta); e#)NYcr6  
        case 4 Bf.iRh0Q5  
            z = zernfun(n,m,r,theta,nflag); Qvty;2$o@  
        otherwise W4,'?o  
            error('zernfun2:nargin','Incorrect number of inputs.')  !TivQB  
    end Gr4v&Mz:  
    ):[}NDmC  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 P@keg*5@  
    function z = zernfun(n,m,r,theta,nflag) sQJGwZ 7  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. tS>^x  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N M\/hK2J# #  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ="5D}%  
    %   unit circle.  N is a vector of positive integers (including 0), and <:Mz2Rg  
    %   M is a vector with the same number of elements as N.  Each element y%X! l(gQ  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) d]Y;rqjue  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :EAh%q  
    %   and THETA is a vector of angles.  R and THETA must have the same cS'{h  
    %   length.  The output Z is a matrix with one column for every (N,M) Fuzb4Df  
    %   pair, and one row for every (R,THETA) pair. uorX;yekC  
    % Q`W2\Kod]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]'"Sa<->  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), s[sv4hq  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral h=0a9vIXF  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, x1?mE)n]  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized w|6/i/X  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. hPUAm6 b;  
    % ?].MnwYo  
    %   The Zernike functions are an orthogonal basis on the unit circle. |?#JCG  
    %   They are used in disciplines such as astronomy, optics, and e`S\-t?Z  
    %   optometry to describe functions on a circular domain. [gpO?'~  
    % +C8O"  
    %   The following table lists the first 15 Zernike functions. Eamt_/LKf  
    % Z[OX {_2]K  
    %       n    m    Zernike function           Normalization 9OV@z6  
    %       -------------------------------------------------- |$b8(g$s)  
    %       0    0    1                                 1 _FYA? d}  
    %       1    1    r * cos(theta)                    2 `!/[9Y#Hp  
    %       1   -1    r * sin(theta)                    2 ~1%*w*  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]c~yMA+]FZ  
    %       2    0    (2*r^2 - 1)                    sqrt(3) L FkDb}  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) K^U ="  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) D>[Sib/@  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) O7Jux-E1C  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 2t9UJu4  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) w8w0:@0(  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 5, ,~k=  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S )rr  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) CYLab5A  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [9${4=Kq  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) b9RHsr]V  
    %       -------------------------------------------------- vI I{i  
    % &F uPd}F  
    %   Example 1: aL4^ po  
    % D9[19,2r`  
    %       % Display the Zernike function Z(n=5,m=1) >jsY'Bm  
    %       x = -1:0.01:1; {#qUZ z-  
    %       [X,Y] = meshgrid(x,x); V!+iq*Z|=  
    %       [theta,r] = cart2pol(X,Y); wKLYyetM!  
    %       idx = r<=1; j*<J&/luYZ  
    %       z = nan(size(X)); D[/fs`XES  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); /iFn =pk1?  
    %       figure \ saV8U7B  
    %       pcolor(x,x,z), shading interp Vo@7G@7K(  
    %       axis square, colorbar LDc EjFK(  
    %       title('Zernike function Z_5^1(r,\theta)') K2zln_W  
    % SjB"#E)  
    %   Example 2: oI{.{]  
    % (vO3vCYeQ  
    %       % Display the first 10 Zernike functions iHGVR  
    %       x = -1:0.01:1; <E4(KE  
    %       [X,Y] = meshgrid(x,x); Y2x|6{ #  
    %       [theta,r] = cart2pol(X,Y); Uv(R^50>  
    %       idx = r<=1; \{ @m  
    %       z = nan(size(X)); 'z;(Y*jb  
    %       n = [0  1  1  2  2  2  3  3  3  3]; A7Ql%$v7^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; |@u2/U9  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ^A@f{g$KB+  
    %       y = zernfun(n,m,r(idx),theta(idx)); /AD&z?My+E  
    %       figure('Units','normalized') Pp-N2t86#2  
    %       for k = 1:10 Xe %J{  
    %           z(idx) = y(:,k); bgi_QB#k\  
    %           subplot(4,7,Nplot(k)) ?Fl}@EA#M  
    %           pcolor(x,x,z), shading interp &))d],tJX  
    %           set(gca,'XTick',[],'YTick',[]) PaI\y! f  
    %           axis square ->b5"{t  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) k sv]  
    %       end Iw`tb N L[  
    % 6kH6"  
    %   See also ZERNPOL, ZERNFUN2. 9fEe={ B+  
    ;#85 _/  
    %   Paul Fricker 11/13/2006 d/7R}n^  
    _u[tv,  
    =7<JD}G  
    % Check and prepare the inputs: #"N60T@  
    % ----------------------------- LeLUt<4~  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [[ ie  
        error('zernfun:NMvectors','N and M must be vectors.') &s+l/;3  
    end [A7TSN  
    $xWwI( SaB  
    if length(n)~=length(m) idYB.]Y(  
        error('zernfun:NMlength','N and M must be the same length.') ['IH*gi  
    end 7 ~~ug  
     O`@Nl  
    n = n(:); ^aSb~lce  
    m = m(:); YCbvCw$Ob  
    if any(mod(n-m,2)) !q2zuxq!R  
        error('zernfun:NMmultiplesof2', ... B>fZH \Y  
              'All N and M must differ by multiples of 2 (including 0).') !zX() V  
    end % "(&a'B  
    F@u7Oel@m  
    if any(m>n) 4aS}b3=n  
        error('zernfun:MlessthanN', ... $X#y9<bW  
              'Each M must be less than or equal to its corresponding N.') *]]Zpa6  
    end xsH1)  
    Z_q+Ac{p  
    if any( r>1 | r<0 ) sF {,n0<8  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') n5$#M  
    end Z~J]I|R:  
    "N}t =3i$  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) j}^w :W76  
        error('zernfun:RTHvector','R and THETA must be vectors.') %y RGN  
    end f;{Q ~  
    axnlI*!  
    r = r(:); eN=jWUoCh  
    theta = theta(:); ]{1{XIF  
    length_r = length(r); H>C bMz1u  
    if length_r~=length(theta) j$)ogGu  
        error('zernfun:RTHlength', ... !/}3/iU  
              'The number of R- and THETA-values must be equal.') I\Op/`_=E  
    end j9+4},>>CU  
    ]>X_E%`G<b  
    % Check normalization: e(t}$Q=  
    % -------------------- e$~[\ w  
    if nargin==5 && ischar(nflag) )=5 &Q  
        isnorm = strcmpi(nflag,'norm'); 'S_i6K  
        if ~isnorm uN`/&_$c  
            error('zernfun:normalization','Unrecognized normalization flag.') :*Wq%Y=  
        end 4qid+ [B  
    else ]*=4>(F[  
        isnorm = false; 296}LW  
    end o !tC{"g  
    j .q}OK  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f!'i5I]  
    % Compute the Zernike Polynomials ]DNPG"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q_b!+Y  
    PT~htG<Fw  
    % Determine the required powers of r: y#GHmHeh  
    % ----------------------------------- FP=B/!g  
    m_abs = abs(m); L I<S  
    rpowers = []; dbby.%  
    for j = 1:length(n) sT)>Vdwf_  
        rpowers = [rpowers m_abs(j):2:n(j)]; /JR+WmO  
    end :F:1(FDP  
    rpowers = unique(rpowers); ?h}NL5a  
    XKWq{,Ks  
    % Pre-compute the values of r raised to the required powers, \BnU ?z  
    % and compile them in a matrix: : B^"V\WE  
    % ----------------------------- kq}byv}3I  
    if rpowers(1)==0 jYp!?%!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); i7#4&r  
        rpowern = cat(2,rpowern{:}); 11oNlgY&  
        rpowern = [ones(length_r,1) rpowern]; m]n2wmE3n  
    else ,:t,$A  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^ptybVo  
        rpowern = cat(2,rpowern{:}); 4#IT" i  
    end t%}<S~"  
    IJ Jp5[w  
    % Compute the values of the polynomials: qZd*'ki<  
    % -------------------------------------- P(shbi@  
    y = zeros(length_r,length(n)); k6b ct@7  
    for j = 1:length(n) |3]/C rR_  
        s = 0:(n(j)-m_abs(j))/2; F vkyp"W3  
        pows = n(j):-2:m_abs(j); jqaX|)8|$  
        for k = length(s):-1:1 D;R~!3f./b  
            p = (1-2*mod(s(k),2))* ... 3F;C{P!  
                       prod(2:(n(j)-s(k)))/              ... 91]|4k93  
                       prod(2:s(k))/                     ... 16L YVvmW  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &>\;4E.O5  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ;\pVc)\4"  
            idx = (pows(k)==rpowers); Q a (Sb  
            y(:,j) = y(:,j) + p*rpowern(:,idx); roQI;gq^  
        end oP,*H6)i  
         ,`HweIq(  
        if isnorm KqG b+N-@  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); h*fN]k6  
        end R%jOgZG  
    end t W UI?\  
    % END: Compute the Zernike Polynomials s;vt2>;q+e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -qP)L;n  
    &Gt{9#  
    % Compute the Zernike functions: j.&dHtp  
    % ------------------------------ nqy*>X`  
    idx_pos = m>0; Q4cCg7|0  
    idx_neg = m<0; 6&$.E! z  
    7fR5V  
    z = y; @AZNF+ \W$  
    if any(idx_pos) $)#orZtzr  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); RhowhQ)G  
    end :M"+  
    if any(idx_neg) 8$}<4 `39  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); __ g?xw  
    end 6BV 6<PHJ  
    hi"C<b.  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的