切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11569阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 d@R7b^#g  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 5whW>T  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  f"7MYw\  
    /si<Fp)z  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ,7wYa&  
    }ktIG|GC  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) hrnE5=iY  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. g$NUu  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of @U!&XZ]h  
    %   order N and frequency M, evaluated at R.  N is a vector of =COQv=GT  
    %   positive integers (including 0), and M is a vector with the [;Ih I  
    %   same number of elements as N.  Each element k of M must be a "Bwz Fh  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ,y'6vW`%g9  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is s<LnUF1b  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix C[.Xi  
    %   with one column for every (N,M) pair, and one row for every 8x- 19#  
    %   element in R. g^H,EaPl  
    % mxZ+r#|di  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Yr"Of*VNH  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is $}vzBuWHwN  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to EVLL,x.~:z  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 va_u4  
    %   for all [n,m]. Zoxblk  
    % cY5;~lO  
    %   The radial Zernike polynomials are the radial portion of the  &lU\9  
    %   Zernike functions, which are an orthogonal basis on the unit h STcL:b   
    %   circle.  The series representation of the radial Zernike !&Q?ASJH  
    %   polynomials is 4Cu\|"5)  
    % ZHjL8Iq  
    %          (n-m)/2 C_>XtcU  
    %            __ 7omHorU+  
    %    m      \       s                                          n-2s q 8sfG;)  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r D'u7"^=  
    %    n      s=0 #<==7X#  
    % @@^iN~uf  
    %   The following table shows the first 12 polynomials. awo'#Y2>  
    % L,.~VNy-  
    %       n    m    Zernike polynomial    Normalization $.C-_L  
    %       --------------------------------------------- :8eI_X  
    %       0    0    1                        sqrt(2) 9vyf9QE;  
    %       1    1    r                           2 \~A qA!)6  
    %       2    0    2*r^2 - 1                sqrt(6) hsrf2Xw[  
    %       2    2    r^2                      sqrt(6) 66F?exr  
    %       3    1    3*r^3 - 2*r              sqrt(8) =K0%bI  
    %       3    3    r^3                      sqrt(8) )aGSZ1`/  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Q;VuoHj!  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) kd!?N  
    %       4    4    r^4                      sqrt(10) @ :Zk,   
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) gZ^Qt.6Z  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) WtZI1`\qe  
    %       5    5    r^5                      sqrt(12) YX-~?Pl  
    %       --------------------------------------------- h-1?c\Qq:  
    % `K5*Fjx  
    %   Example: MAkr9AKb,  
    % DNq(\@x[!  
    %       % Display three example Zernike radial polynomials :Q"|%#P  
    %       r = 0:0.01:1; aA#79LS  
    %       n = [3 2 5]; p" >*WQ   
    %       m = [1 2 1]; lh'S_p8g  
    %       z = zernpol(n,m,r); 7xeqs q  
    %       figure ?nW>' z  
    %       plot(r,z) kd^H}k  
    %       grid on -&Xv,:'?  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') V_gKl;Kfe8  
    % *KvD$(ny  
    %   See also ZERNFUN, ZERNFUN2. !-7n69:G  
    GA gTy  
    % A note on the algorithm. HCN/|z1Xq  
    % ------------------------  eo9/  
    % The radial Zernike polynomials are computed using the series Pt"H_SW~k  
    % representation shown in the Help section above. For many special O<cP1TF  
    % functions, direct evaluation using the series representation can Ldjz-  
    % produce poor numerical results (floating point errors), because j-ej7  
    % the summation often involves computing small differences between -Ty~lZ)TDT  
    % large successive terms in the series. (In such cases, the functions d{4;qM#  
    % are often evaluated using alternative methods such as recurrence \Vf:/9^  
    % relations: see the Legendre functions, for example). For the Zernike 12n:)yQy  
    % polynomials, however, this problem does not arise, because the <R$ 2x_  
    % polynomials are evaluated over the finite domain r = (0,1), and ~'_cBJ 'XD  
    % because the coefficients for a given polynomial are generally all *vaYI3{qN  
    % of similar magnitude. e NIzI]~  
    % *XTd9E^tXq  
    % ZERNPOL has been written using a vectorized implementation: multiple R p&J!hlA  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 4qie&:4j  
    % values can be passed as inputs) for a vector of points R.  To achieve yc](  
    % this vectorization most efficiently, the algorithm in ZERNPOL ~w>h#{RB  
    % involves pre-determining all the powers p of R that are required to HK!ecQ^+  
    % compute the outputs, and then compiling the {R^p} into a single /WTEz\k  
    % matrix.  This avoids any redundant computation of the R^p, and FRd"F$U  
    % minimizes the sizes of certain intermediate variables. lxhb)]c ^>  
    % F^O83[S  
    %   Paul Fricker 11/13/2006 D`LBv,n  
    eQbHf  
    glMHT,  
    % Check and prepare the inputs: @gI1:-chB  
    % ----------------------------- F_ F"3'[  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) I/dy^5@F  
        error('zernpol:NMvectors','N and M must be vectors.') $`F9e5}G  
    end bU! v  
    I_J&>}V'  
    if length(n)~=length(m) jo`ZuN{  
        error('zernpol:NMlength','N and M must be the same length.') )j_El ]?  
    end A'|!O:s   
    sl]< A[jR  
    n = n(:); Y9+_MxC"  
    m = m(:); 4yl{:!la  
    length_n = length(n); `geHSx_  
    bNea5u##  
    if any(mod(n-m,2)) ~e{ @5.g  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') " 9Gn/-V>  
    end K;?D^n.  
    .Bm%  
    if any(m<0) L|=5jn9 :  
        error('zernpol:Mpositive','All M must be positive.') /at7 H!  
    end /DYyl/  
    ++0)KSvw  
    if any(m>n) TQa}Ps  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 2{OR#v~  
    end Luq4q95]  
    >L7s[vKn  
    if any( r>1 | r<0 ) )Z}AhX  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') xA] L0h]  
    end 3N7H7(IR  
    G.W !   
    if ~any(size(r)==1) FKa";f"  
        error('zernpol:Rvector','R must be a vector.') u^80NR  
    end *IG$"nu  
    *ukyQZ9  
    r = r(:); )- C3z   
    length_r = length(r); n<I{x^!  
    C-'hXh;hQ  
    if nargin==4 Wa_qD  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); zkQ[<  
        if ~isnorm L4#pMc  
            error('zernpol:normalization','Unrecognized normalization flag.') K1B9t{T  
        end I=Y>z ^4  
    else !vnQ;g5  
        isnorm = false; }f}.>B0#  
    end nwRltK  
    % RSZ.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sp9gz~Kq  
    % Compute the Zernike Polynomials E-e(K8R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @ZKf3,J0  
    |{jT+  
    % Determine the required powers of r: !3ggQG!e  
    % ----------------------------------- ~(5r+Z}*`  
    rpowers = []; cNs'GfD}  
    for j = 1:length(n) <Au2e  
        rpowers = [rpowers m(j):2:n(j)]; Ucj?$=  
    end cs9^&N:w[  
    rpowers = unique(rpowers); H=r-f@EOrI  
    x-^6U  
    % Pre-compute the values of r raised to the required powers, OMGggg  
    % and compile them in a matrix: 2|1fb-AR  
    % ----------------------------- K%(y<%Xp  
    if rpowers(1)==0 3>,}N9P-v  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ON?Y Df  
        rpowern = cat(2,rpowern{:}); H'+7z-% G  
        rpowern = [ones(length_r,1) rpowern]; 'sNZFB#  
    else nK&]8"  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ngY%T5-  
        rpowern = cat(2,rpowern{:}); +)]YvZ6%[,  
    end n|`3d~9$&  
    yPyu)  
    % Compute the values of the polynomials: "fFSZ@,r  
    % -------------------------------------- E?m~DYnU  
    z = zeros(length_r,length_n); >1y6DC  
    for j = 1:length_n voWH.[n^_  
        s = 0:(n(j)-m(j))/2; 7#8Gn=g  
        pows = n(j):-2:m(j); x2"iZzQlD  
        for k = length(s):-1:1 9&Y@g)+2  
            p = (1-2*mod(s(k),2))* ... &&ioGy}1  
                       prod(2:(n(j)-s(k)))/          ... :t?B)  
                       prod(2:s(k))/                 ... J3 $>~?^1  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 4=PjS<Lu8  
                       prod(2:((n(j)+m(j))/2-s(k))); j!;LN)s@?  
            idx = (pows(k)==rpowers); 3;nOm =I  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 8\"<t/_ W  
        end qY_qS=H^  
         ~^t@TMk$  
        if isnorm XxqGsGx4  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); @SQsEq+A?\  
        end "gJ?LojB<  
    end s.3"2waZ=T  
    :uL<UD,vu3  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) iOL$|Z(  
    %ZERNFUN2 Single-index Zernike functions on the unit circle.  F/Goq`  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ["Zvwes#7  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive w OL,LU  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, XM'tIE+|  
    %   and THETA is a vector of angles.  R and THETA must have the same fRp]  
    %   length.  The output Z is a matrix with one column for every P-value, F)3+IuY  
    %   and one row for every (R,THETA) pair. g_>&R58  
    %  Y@,iDQ  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike $5nMD=   
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ^WA7X9ed  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) /9vi  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 (s8b?Ol/  
    %   for all p. I~,.@{4  
    % ]n^iG7aB?  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 .?}M(mL  
    %   Zernike functions (order N<=7).  In some disciplines it is Ni~IY# '  
    %   traditional to label the first 36 functions using a single mode CKAd\L   
    %   number P instead of separate numbers for the order N and azimuthal 4uF.kz-cg  
    %   frequency M. Dfs^W{YA  
    % z/t|'8f  
    %   Example: 0`/G(ukO  
    % W(q3m;n  
    %       % Display the first 16 Zernike functions fCt|8,-H  
    %       x = -1:0.01:1; C% -Tw]T$_  
    %       [X,Y] = meshgrid(x,x); GRZz@bAO?$  
    %       [theta,r] = cart2pol(X,Y); c^}G=Z1@  
    %       idx = r<=1; y2W+YV*  
    %       p = 0:15; oR#W@OK@is  
    %       z = nan(size(X)); \,R;  
    %       y = zernfun2(p,r(idx),theta(idx)); AVT % AS  
    %       figure('Units','normalized') 7F<{ Qn  
    %       for k = 1:length(p) WNR]GI  
    %           z(idx) = y(:,k); 0ix(1`Z  
    %           subplot(4,4,k) .W]k 8N E  
    %           pcolor(x,x,z), shading interp yr\ClIU  
    %           set(gca,'XTick',[],'YTick',[]) St5;X&Q  
    %           axis square !}Xoqamm  
    %           title(['Z_{' num2str(p(k)) '}']) 1$Hou   
    %       end A f'&, 1=q  
    %  3IxC@QR  
    %   See also ZERNPOL, ZERNFUN. 9'MGv*Ho  
    i1evB9FZ1z  
    %   Paul Fricker 11/13/2006 HK )m^!=  
    21TR_0g&<  
    [,Ehu<mEK  
    % Check and prepare the inputs: $+j1^  
    % ----------------------------- >zJHvb)b\  
    if min(size(p))~=1 uV:R3#^  
        error('zernfun2:Pvector','Input P must be vector.') W.3b]zcV  
    end E2DfG^sGV  
    @}y.  
    if any(p)>35 I>?oVY6M@u  
        error('zernfun2:P36', ... fd[N]I3  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... O9daeIF0#  
               '(P = 0 to 35).']) !hVbx#bXl  
    end Vn5T Jw  
    _?-oPb  
    % Get the order and frequency corresonding to the function number: ^PEw#.WG  
    % ---------------------------------------------------------------- eN])qw{  
    p = p(:);  VAiJL  
    n = ceil((-3+sqrt(9+8*p))/2); _(-jk4 L  
    m = 2*p - n.*(n+2); QIiy\E%  
    SIp)&  
    % Pass the inputs to the function ZERNFUN: P<g(i 6]  
    % ---------------------------------------- uZ6krI  
    switch nargin ^/BGOBK  
        case 3 k[@P526  
            z = zernfun(n,m,r,theta); JP4DV=}L  
        case 4 d-b04Q7DQ  
            z = zernfun(n,m,r,theta,nflag); EHUx~Q   
        otherwise b`X''6  
            error('zernfun2:nargin','Incorrect number of inputs.') 2 GRI<M  
    end @` KYgjjH  
    c|/HX%Y  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Dck/Ea  
    function z = zernfun(n,m,r,theta,nflag) ?I?G+(bq  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. h,{Q%sqO  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `Na()r$T  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 5e7YM@ng  
    %   unit circle.  N is a vector of positive integers (including 0), and _=$~l^Y[  
    %   M is a vector with the same number of elements as N.  Each element ^$Y9.IH"  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) == wX.y\.n  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :$D*ab^^P  
    %   and THETA is a vector of angles.  R and THETA must have the same {N~mDUoJ|  
    %   length.  The output Z is a matrix with one column for every (N,M) &>qUT]w  
    %   pair, and one row for every (R,THETA) pair. |:S6Gp[\O  
    % Aits<0  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike CA#g(SiZ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {($bz T7c  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral d.+*o  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, d[t0K]  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized -`' |z+V  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. y11^q*}  
    % c~U0&V_`j  
    %   The Zernike functions are an orthogonal basis on the unit circle. B?%u< F  
    %   They are used in disciplines such as astronomy, optics, and ,g?ny<#o  
    %   optometry to describe functions on a circular domain. nWsRa uY  
    % b%lB&}uw}  
    %   The following table lists the first 15 Zernike functions. 5.^pD9[mT  
    % wKpGJ& {  
    %       n    m    Zernike function           Normalization z<eu=OD4t  
    %       -------------------------------------------------- P' VHga  
    %       0    0    1                                 1 l-w4E"n3  
    %       1    1    r * cos(theta)                    2 <qR$ `mLN  
    %       1   -1    r * sin(theta)                    2 $R}C(k ;?  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) DG;u_6;JR  
    %       2    0    (2*r^2 - 1)                    sqrt(3) St?mq* ,  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) `:lcN0n  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) H s)]  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) c&T5C, ]  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) wA{) 9.  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) p+P@I7V  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) &3/`cl[+  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .g/!u(iy  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) #xmiUN,|  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) SsX$l<t*  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) wp:$Tqa$  
    %       -------------------------------------------------- u0R[TA3  
    % %enJ[a%Qg  
    %   Example 1: m@nGXl'!  
    % Yy 4Was#  
    %       % Display the Zernike function Z(n=5,m=1) zpT{!V  
    %       x = -1:0.01:1; 1%M^MT%&  
    %       [X,Y] = meshgrid(x,x); >]}VD "\  
    %       [theta,r] = cart2pol(X,Y); qbnlD\  
    %       idx = r<=1; w+rw<,u%  
    %       z = nan(size(X)); %/zHL?RqJ  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Nj6Np^@sH  
    %       figure h%:wIkZ/  
    %       pcolor(x,x,z), shading interp &>B|?d  
    %       axis square, colorbar Nt+UL/1]  
    %       title('Zernike function Z_5^1(r,\theta)')  UDpI @  
    % .*k!Zl*  
    %   Example 2: ;$a|4_U$m  
    % ~l+~MB  
    %       % Display the first 10 Zernike functions F`Vp   
    %       x = -1:0.01:1; yPbOiA*lHz  
    %       [X,Y] = meshgrid(x,x); hQSJt[8My  
    %       [theta,r] = cart2pol(X,Y); \l6mX In=>  
    %       idx = r<=1; j@Us7Q)A(  
    %       z = nan(size(X)); \@2sI  
    %       n = [0  1  1  2  2  2  3  3  3  3]; I |D]NY^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 7Ph+Vs+h  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 8/34{2048  
    %       y = zernfun(n,m,r(idx),theta(idx)); '9wD+'c=A  
    %       figure('Units','normalized') ZG)C#I1;O  
    %       for k = 1:10 (aCl*vV1  
    %           z(idx) = y(:,k); WY~}sE  
    %           subplot(4,7,Nplot(k)) uP ?gGo  
    %           pcolor(x,x,z), shading interp "ZVBn!  
    %           set(gca,'XTick',[],'YTick',[]) ~w%Z Bp  
    %           axis square dR /UXzrc  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) fs]Zw mA^  
    %       end $j}sxxTT  
    % OEGAwP?F  
    %   See also ZERNPOL, ZERNFUN2. a( {`<F  
    skP_us~  
    %   Paul Fricker 11/13/2006 0\}j[-`pF  
    CM's6qhQnn  
    XWy iS\  
    % Check and prepare the inputs: kAk,:a;P  
    % ----------------------------- f&cG;Y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +Vf|YLbhJ  
        error('zernfun:NMvectors','N and M must be vectors.') yZ)ScB^  
    end izW l5}+'B  
    |]\bgh  
    if length(n)~=length(m) @x J^JcE  
        error('zernfun:NMlength','N and M must be the same length.') u!`C:C'  
    end :3n.nKANr  
    quUJ%F  
    n = n(:); yRi/YR#  
    m = m(:); SCH![Amq  
    if any(mod(n-m,2)) m[7:p{  
        error('zernfun:NMmultiplesof2', ... ]D-48o0  
              'All N and M must differ by multiples of 2 (including 0).') tB3CX\e  
    end Po4cbFZ  
    7VXeu+-P  
    if any(m>n) lM1!2d'P  
        error('zernfun:MlessthanN', ... M>J ADt_]  
              'Each M must be less than or equal to its corresponding N.') W=\dsdnu*  
    end eo_T .q  
    E\*",MGL  
    if any( r>1 | r<0 ) XZ&v3ul  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') &"h!SkX/  
    end rWs5s!l,  
    uY~A0I5Z  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) G!;[If :<e  
        error('zernfun:RTHvector','R and THETA must be vectors.') #"{8Z&Z  
    end KUyJ"q<W  
    [;f"',)y,  
    r = r(:); {|E7N"Qzg  
    theta = theta(:); u" g p">  
    length_r = length(r); v+sbRuo8  
    if length_r~=length(theta) Mv=cLG?X  
        error('zernfun:RTHlength', ... JrAc]=  
              'The number of R- and THETA-values must be equal.') 6 {Z\cwP)c  
    end =x'%zUgE  
    k>CtWV5B  
    % Check normalization: ;LE @Ezx  
    % -------------------- mD)O\.uA  
    if nargin==5 && ischar(nflag) WCu%@hh=h  
        isnorm = strcmpi(nflag,'norm'); }aM`Jp-O  
        if ~isnorm ;/T-rVND  
            error('zernfun:normalization','Unrecognized normalization flag.') $SVGpEw  
        end |u;PU`^-z  
    else p ri{vveN@  
        isnorm = false; Gnt!!1_8L  
    end r&sOM_BUF  
    30E v"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # :w2Hf6Q  
    % Compute the Zernike Polynomials .b oizW1+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u g"<\"  
    9 /(c cj  
    % Determine the required powers of r: QS*cd|7J;  
    % ----------------------------------- A]%t0>EL<  
    m_abs = abs(m); =>\-ma+  
    rpowers = []; (x0*(*A}  
    for j = 1:length(n) ]UT|BE4v  
        rpowers = [rpowers m_abs(j):2:n(j)]; qU*&49X  
    end ko2j|*D6@~  
    rpowers = unique(rpowers); /&as)  
    M.N~fSJ   
    % Pre-compute the values of r raised to the required powers, WAXts]=  
    % and compile them in a matrix: yUmsE-W  
    % ----------------------------- yL x .#kx6  
    if rpowers(1)==0 [RPAkp  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D *I;|.=u  
        rpowern = cat(2,rpowern{:}); ;GFB@I@  
        rpowern = [ones(length_r,1) rpowern]; uoY`qF.`  
    else a<wQzgxG  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); =l2Dm  
        rpowern = cat(2,rpowern{:}); [ 7Lxt  
    end k;_KKvQ  
    14n="-9  
    % Compute the values of the polynomials: tK|9qs<%  
    % -------------------------------------- \btR^;_\A  
    y = zeros(length_r,length(n)); IgVo%)n  
    for j = 1:length(n) w-H%B`/  
        s = 0:(n(j)-m_abs(j))/2; %:w% o$  
        pows = n(j):-2:m_abs(j); >[H&k8\7n  
        for k = length(s):-1:1 Uy59zB2|=  
            p = (1-2*mod(s(k),2))* ... IFrb}yH  
                       prod(2:(n(j)-s(k)))/              ... :x""E5H  
                       prod(2:s(k))/                     ... !q$&JZY  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... qH h'l;.  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); +eBMn(7Cgv  
            idx = (pows(k)==rpowers); UGmuX:@y76  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Dpdn%8+Z  
        end O| 1f^_S/  
          t$H':l0  
        if isnorm sArje(5Eo  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); L`jB)wF /J  
        end xz"Z3B  
    end ~[zFQ)([  
    % END: Compute the Zernike Polynomials vr{'FMc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A-a17}fta  
    oI_oz0nHk  
    % Compute the Zernike functions: q}<.x8\  
    % ------------------------------ qukjS#>+  
    idx_pos = m>0; : F7k{~  
    idx_neg = m<0; ~5r=FF6  
    cQ(}^KO  
    z = y; K,eqD<  
    if any(idx_pos) v)@,:u)  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Pgn_9Y?<  
    end r]k*7PK  
    if any(idx_neg) `E3:;|  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); [3j$ 4rP  
    end y#S1c)vU  
    N@Xg5huO  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的