function z = zernpol(n,m,r,nflag) [-Q"A
6!Zd
%ZERNPOL Radial Zernike polynomials of order N and frequency M. I0)iC[s8;
% Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of t@)~{W
{
% order N and frequency M, evaluated at R. N is a vector of sM~CP zMa
% positive integers (including 0), and M is a vector with the X3a:*1N
% same number of elements as N. Each element k of M must be a \k;raQR4t*
% positive integer, with possible values M(k) = 0,2,4,...,N(k) kv `x
% for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd. R is _k6N(c2Nd
% a vector of numbers between 0 and 1. The output Z is a matrix /Rt/Efu
% with one column for every (N,M) pair, and one row for every -pkeEuwv{
% element in R. t}*teo[
%
-pX/Tt6
% Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- nC>#@*+jK
% nomials. The normalization factor Nnm = sqrt(2*(n+1)) is Z< uwqA
% chosen so that the integral of (r * [Znm(r)]^2) from r=0 to i-niRu<
% r=1 is unity. For the non-normalized polynomials, Znm(r=1)=1 {L<t6A
% for all [n,m]. S :(1=@
% #gsAwna3
% The radial Zernike polynomials are the radial portion of the _);1dcnR
% Zernike functions, which are an orthogonal basis on the unit .fQDj{
% circle. The series representation of the radial Zernike d@#=cvW
% polynomials is _>3GNvS
% yd>kJk^~/
% (n-m)/2 _^&oNm1
% __ X*FK6,Y|(
% m \ s n-2s a#G7pZX/I}
% Z(r) = /__ (-1) [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r +{Q\B}3cj1
% n s=0 'OF)`5sj
% _$Z46wHmB
% The following table shows the first 12 polynomials. [nG/>Z]W
% 2.; OHQTE
% n m Zernike polynomial Normalization ncS^NH(&
% --------------------------------------------- ixfkMM,W
% 0 0 1 sqrt(2) R`s /^0
% 1 1 r 2 @6t3Us~/
% 2 0 2*r^2 - 1 sqrt(6) NK,)"WE
% 2 2 r^2 sqrt(6) 6 t A?<S
% 3 1 3*r^3 - 2*r sqrt(8) *sL'6"#Cre
% 3 3 r^3 sqrt(8) gs0,-)
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(10) >@ EQarD
% 4 2 4*r^4 - 3*r^2 sqrt(10) wBeOMA
% 4 4 r^4 sqrt(10) %M'"%Yn@(y
% 5 1 10*r^5 - 12*r^3 + 3*r sqrt(12) Kz^aW
% 5 3 5*r^5 - 4*r^3 sqrt(12) w8@MUz}/#
% 5 5 r^5 sqrt(12) b[BSUdCB
% --------------------------------------------- #uey1I@"9
% ",~3&wx
% Example: pCpj#+|_)
% xFyMg&
% % Display three example Zernike radial polynomials U?>zq!C&R
% r = 0:0.01:1; @?e;Jp9
% n = [3 2 5]; IXzad
% m = [1 2 1]; q)@.f.
% z = zernpol(n,m,r); T,H]svN5p
% figure c~$ipX
% plot(r,z) tgrQ$Yjk
% grid on -R&h?ec
% legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') XWB>'
UDQ#
% /~AwX8X
% See also ZERNFUN, ZERNFUN2. \&e+f#!u
YjdH7.js
% A note on the algorithm. `5q`ibyPI
% ------------------------ &4{%3 w_/
% The radial Zernike polynomials are computed using the series G&