切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11210阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ;T]d M fO  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! )o1eWL}  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  XLk<*0t p  
    \?>Hu v  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 7`vEe 'qz  
    75nNh~?)\  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 0CSv10Tg  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ys_`e  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of nEzf.[+9/  
    %   order N and frequency M, evaluated at R.  N is a vector of dd2[yKC`  
    %   positive integers (including 0), and M is a vector with the (SSRY9  
    %   same number of elements as N.  Each element k of M must be a +q6ydb,  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) fEB7j-t  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is yA{W  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix y@CHR  
    %   with one column for every (N,M) pair, and one row for every hF2IW{=!  
    %   element in R. w\) |  
    % A!1;}x  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- zMIT}$L  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is nRd)++  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to jYNrD"n  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 No2b" G@  
    %   for all [n,m]. S9HwIH\m  
    % \OlmF<~  
    %   The radial Zernike polynomials are the radial portion of the :JlP[I  
    %   Zernike functions, which are an orthogonal basis on the unit ,C3,TkA]  
    %   circle.  The series representation of the radial Zernike 04r$>#E  
    %   polynomials is ;?C #IU  
    % RN=` -*E1  
    %          (n-m)/2 \uss Uv  
    %            __ %s19KGpA  
    %    m      \       s                                          n-2s 8[6o (  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r @p\}pY$T  
    %    n      s=0 Dk48@`l2  
    % h6dPO"  
    %   The following table shows the first 12 polynomials. Vh>Z,()>>@  
    % bLt.O(T}  
    %       n    m    Zernike polynomial    Normalization mN8pg4  
    %       --------------------------------------------- 26CS6(sn  
    %       0    0    1                        sqrt(2) 6q 2_WX  
    %       1    1    r                           2 -G6U$  
    %       2    0    2*r^2 - 1                sqrt(6) \"hJCP?,  
    %       2    2    r^2                      sqrt(6) ;c$J=h]  
    %       3    1    3*r^3 - 2*r              sqrt(8) {v3P9s(  
    %       3    3    r^3                      sqrt(8) e%W$*f  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) QeF3qXI  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) yA47"R  
    %       4    4    r^4                      sqrt(10) YKQr, Now  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) U*.0XNKp{  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) X$/2[o#g  
    %       5    5    r^5                      sqrt(12) EJ2yO@5O  
    %       --------------------------------------------- #Fyuf,hw4  
    % cX3lt5  
    %   Example: W`^@)|9^)  
    % v%Wx4v@%SE  
    %       % Display three example Zernike radial polynomials sVex (X  
    %       r = 0:0.01:1; (XoH,K?{z  
    %       n = [3 2 5]; y(K" -?  
    %       m = [1 2 1]; (h:Rh  
    %       z = zernpol(n,m,r); >LDhU%bH  
    %       figure V')0 Mr  
    %       plot(r,z) R :B^  
    %       grid on \l~*PG2  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 1^gl}^|B  
    % Bj7gQ%>H4  
    %   See also ZERNFUN, ZERNFUN2.  T Q,?>6n  
    @IXsy  
    % A note on the algorithm. v$^Z6>vVI  
    % ------------------------ y!xE<S&Y  
    % The radial Zernike polynomials are computed using the series U(x]O/m  
    % representation shown in the Help section above. For many special 4>J   
    % functions, direct evaluation using the series representation can ;| 1$Q!4  
    % produce poor numerical results (floating point errors), because NVRLrJWpp  
    % the summation often involves computing small differences between "Wx]RN:  
    % large successive terms in the series. (In such cases, the functions 3do)Vg4  
    % are often evaluated using alternative methods such as recurrence Ha)ANAD  
    % relations: see the Legendre functions, for example). For the Zernike TsTPj8GAl[  
    % polynomials, however, this problem does not arise, because the bV"G~3COy  
    % polynomials are evaluated over the finite domain r = (0,1), and o=1X^,  
    % because the coefficients for a given polynomial are generally all fDSv?crv  
    % of similar magnitude. Z@r.pRr'  
    % = 9 T$Gr  
    % ZERNPOL has been written using a vectorized implementation: multiple uG<}N=  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] f7}*X|_Y  
    % values can be passed as inputs) for a vector of points R.  To achieve M9f35 :  
    % this vectorization most efficiently, the algorithm in ZERNPOL {AQ=<RDRF  
    % involves pre-determining all the powers p of R that are required to dUsx vho  
    % compute the outputs, and then compiling the {R^p} into a single Rn@# d}  
    % matrix.  This avoids any redundant computation of the R^p, and "^Ybs'-  
    % minimizes the sizes of certain intermediate variables. g&{9VK6.  
    % <m'ow  
    %   Paul Fricker 11/13/2006 !kC* g  
    )5 R=Z<  
    p'om-  
    % Check and prepare the inputs: aFLO{tr`  
    % ----------------------------- QPq7R  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) AoyX\iqQ  
        error('zernpol:NMvectors','N and M must be vectors.') 1x,tu}<u^  
    end //aF5 :Y#  
    4 uQT5  
    if length(n)~=length(m) ZzX~&95G  
        error('zernpol:NMlength','N and M must be the same length.') "]G\9b)   
    end ^4o;$u4R  
    dh $bfAb  
    n = n(:); Z:_D0jG  
    m = m(:); 'g{9@PkGn  
    length_n = length(n); ^I+)o1%F  
    }[xs~! 2F  
    if any(mod(n-m,2)) /:FOPPs  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') BXyo  
    end QNl'ZB \  
    m?&1yU9  
    if any(m<0) `ta7Gc/:UY  
        error('zernpol:Mpositive','All M must be positive.') F,'exuZ  
    end |p-t%xDdr  
    n\Lb.}]1~  
    if any(m>n) Zcc9e 03  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') of@#:Qs  
    end _(KbiEB{  
    ~#/hzS  
    if any( r>1 | r<0 ) ;{[.Zu  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') p*P)KP  
    end 3=L.uXVb  
    4f;HQ-Iv  
    if ~any(size(r)==1) S1?-I_t+]  
        error('zernpol:Rvector','R must be a vector.') ',S'.U  
    end rX1QMR7?  
    YSe.t_K2C  
    r = r(:); ;"m ,:5%  
    length_r = length(r); to$h2#i_  
    @i*|s~15  
    if nargin==4 /QJ?bD#a  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); z+>}RT]  
        if ~isnorm \0gM o&  
            error('zernpol:normalization','Unrecognized normalization flag.') jNC4_q&  
        end 0MdDXG-7  
    else ^) s2$A:L  
        isnorm = false; NW&b&o  
    end Ho *AAg  
    h?azFA~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FJ6u.u  
    % Compute the Zernike Polynomials Ny%(VI5:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :dqn h  
    5O6hxcMjT  
    % Determine the required powers of r: ,1"KHv  
    % ----------------------------------- 2m2;t0  
    rpowers = []; I'0@viF"Nx  
    for j = 1:length(n) ,kn"> k9  
        rpowers = [rpowers m(j):2:n(j)]; ,c)uX#1  
    end QhK#Y{xY  
    rpowers = unique(rpowers); >#y^;/bb  
    5EfS^MRf\n  
    % Pre-compute the values of r raised to the required powers, ;y2/-tL?  
    % and compile them in a matrix: v*[.a#1^  
    % ----------------------------- JC3m.)/  
    if rpowers(1)==0 se>MQM5 )  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); A, LuD.8  
        rpowern = cat(2,rpowern{:}); A`}rqhU.{-  
        rpowern = [ones(length_r,1) rpowern]; }I2@%tt?  
    else bG(3^"dS  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 6Avw-}.7>  
        rpowern = cat(2,rpowern{:});  MEGv}  
    end aWY gR  
    Sh8"F@P8  
    % Compute the values of the polynomials: d $Pab*  
    % -------------------------------------- YS%h^>I^  
    z = zeros(length_r,length_n); e;[F\ov %  
    for j = 1:length_n `u&Zrdr,  
        s = 0:(n(j)-m(j))/2; 5qP:/*+  
        pows = n(j):-2:m(j); 8Bjib&im  
        for k = length(s):-1:1 CLJ;<  
            p = (1-2*mod(s(k),2))* ... Uh):b%bS;J  
                       prod(2:(n(j)-s(k)))/          ... u[ Yk  
                       prod(2:s(k))/                 ... ^cz(}N 6&  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... :d#VE-e  
                       prod(2:((n(j)+m(j))/2-s(k))); &E=>Hj(dTG  
            idx = (pows(k)==rpowers); ]3 l9:|  
            z(:,j) = z(:,j) + p*rpowern(:,idx); q*7VqB  
        end 9B7^lR  
         sH[ROm  
        if isnorm e F3,2DD C  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); -u8NF_{c  
        end ssN6M./6  
    end uD @#  
    x-?Sn' m  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) @dPTk"P  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. v63"^%LX  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Qh'ATo  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive "$N+"3I  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, `6]%P(#a  
    %   and THETA is a vector of angles.  R and THETA must have the same @3C>BLI8+  
    %   length.  The output Z is a matrix with one column for every P-value, wlqpn(XR  
    %   and one row for every (R,THETA) pair. GfmI<{da  
    % 7B\Vs-d  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ~2QR{; XQ  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) =aBctd:eX`  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) NP/Gn6fr  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 n4R(.N00  
    %   for all p. UZJCvfi  
    % [VsKa\9u  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 G'ei/Me6{  
    %   Zernike functions (order N<=7).  In some disciplines it is xk5@d6Y{r  
    %   traditional to label the first 36 functions using a single mode 5a|w+HO,  
    %   number P instead of separate numbers for the order N and azimuthal ?-dX`n  
    %   frequency M. 9{5&^RbCp  
    % 2;DuHO1  
    %   Example: < v@9#c  
    % ~5CBEIF(NS  
    %       % Display the first 16 Zernike functions U<_3^  
    %       x = -1:0.01:1; YH\OFg@7  
    %       [X,Y] = meshgrid(x,x); C,ARXW1  
    %       [theta,r] = cart2pol(X,Y); 4;0lvDD  
    %       idx = r<=1; %B5wH_p  
    %       p = 0:15; P;qN(2L/=<  
    %       z = nan(size(X)); Vt".%d/`7  
    %       y = zernfun2(p,r(idx),theta(idx)); #AL=f'2=f  
    %       figure('Units','normalized') 'kL#]  
    %       for k = 1:length(p) ]dGw2y  
    %           z(idx) = y(:,k); I uMQ9 &  
    %           subplot(4,4,k) !y@NAa0  
    %           pcolor(x,x,z), shading interp 06c>$1-?  
    %           set(gca,'XTick',[],'YTick',[]) j/f?"VEr  
    %           axis square ?&63#B,iZ  
    %           title(['Z_{' num2str(p(k)) '}']) j/_ s"}m{  
    %       end y)W@{@{kl  
    % Of[XKFn_  
    %   See also ZERNPOL, ZERNFUN. 3c]b)n~Y  
     ]%wVHC  
    %   Paul Fricker 11/13/2006 C1m]*}U  
    e%@~MQ-  
    1^7hf;|#g  
    % Check and prepare the inputs: }NzpiY9  
    % ----------------------------- pgE}NlW  
    if min(size(p))~=1 =F]FP5V  
        error('zernfun2:Pvector','Input P must be vector.') KLitg6&P  
    end gy 3i+J  
    VcSVu  
    if any(p)>35 K1\a#w  
        error('zernfun2:P36', ... x,|hU@h  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... w35J.zn  
               '(P = 0 to 35).']) 1DE<rKI  
    end T"E6y"D  
    G IT>L  
    % Get the order and frequency corresonding to the function number: !'&n -Q  
    % ---------------------------------------------------------------- r^3acXl  
    p = p(:); V'8s8H  
    n = ceil((-3+sqrt(9+8*p))/2); T`\x,` ^  
    m = 2*p - n.*(n+2); vY${;#~|  
    $Q96,rb}k;  
    % Pass the inputs to the function ZERNFUN: [z`31F  
    % ---------------------------------------- ||hb~%JK6  
    switch nargin El[)?+;D  
        case 3 G~2jUyv  
            z = zernfun(n,m,r,theta); 1 u| wMO  
        case 4 Crho=RJPR  
            z = zernfun(n,m,r,theta,nflag); 3=FZ9>by  
        otherwise X(]WVCu  
            error('zernfun2:nargin','Incorrect number of inputs.') zF8dKFE~  
    end AX;8^6.F3  
    )Ch2E|C?=8  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 \W1,F6&j  
    function z = zernfun(n,m,r,theta,nflag) )0"wB  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. wRcAX%n&  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N WN?O'E=2  
    %   and angular frequency M, evaluated at positions (R,THETA) on the  [F0s!,P  
    %   unit circle.  N is a vector of positive integers (including 0), and s2'yY(u/  
    %   M is a vector with the same number of elements as N.  Each element T>}5:,N~  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) -(bXSBs#  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Tl$ [4heE  
    %   and THETA is a vector of angles.  R and THETA must have the same \`oT#|0  
    %   length.  The output Z is a matrix with one column for every (N,M) QDs^Ije  
    %   pair, and one row for every (R,THETA) pair. C([phT;  
    % ,0*&OXt  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike hAYTj0GZ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), v0-cd  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Sp@^XmX(S  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^?cz,N~  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized \ e\?I9  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1crnm J!C  
    % cik!GA  
    %   The Zernike functions are an orthogonal basis on the unit circle. -=)+dCyB^  
    %   They are used in disciplines such as astronomy, optics, and zEd0Tmt  
    %   optometry to describe functions on a circular domain. iVp,e  
    % (]0%}$Fo  
    %   The following table lists the first 15 Zernike functions. ORyE`h  
    % U1DXe h~V  
    %       n    m    Zernike function           Normalization _LMM,!f  
    %       -------------------------------------------------- )PG6gZYW  
    %       0    0    1                                 1 ?u/@PR\D  
    %       1    1    r * cos(theta)                    2 {5%5}[/x  
    %       1   -1    r * sin(theta)                    2 T&%ux=Jt  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) _hRcc"MS`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Bt> }rYz1  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) r"``QmM  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ,TXTS*V?  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) eqP&8^HP  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) GNXHM*~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) @ zs'Y8  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) /2UH=Q!x4E  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [s"O mAy4  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) }4Tc  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xIxn"^'  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) `tHvD=`m.  
    %       -------------------------------------------------- ^* J2'X38I  
    % Wc,~{  
    %   Example 1: 4]h =yc R  
    % _d"b;4l  
    %       % Display the Zernike function Z(n=5,m=1) M)eO6oX|  
    %       x = -1:0.01:1; [q/Abz'i  
    %       [X,Y] = meshgrid(x,x); ?&|5=>u2}$  
    %       [theta,r] = cart2pol(X,Y); 19O,a#{KHf  
    %       idx = r<=1; gZLP\_CL  
    %       z = nan(size(X)); xl6,s>ob  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Xe<sJ. &Wf  
    %       figure lV1G<qP  
    %       pcolor(x,x,z), shading interp \@8+U;d  
    %       axis square, colorbar &j4xgh9  
    %       title('Zernike function Z_5^1(r,\theta)') E=e*VEjy  
    % [z9 `)VIe  
    %   Example 2: c0%"&a1]]V  
    % 1QLbf*zeIW  
    %       % Display the first 10 Zernike functions FN\E*@>X=  
    %       x = -1:0.01:1; A6:es_  
    %       [X,Y] = meshgrid(x,x); BFL`!^  
    %       [theta,r] = cart2pol(X,Y); t?}zdI(4  
    %       idx = r<=1; ]z l [H7  
    %       z = nan(size(X)); B$b +Ymu  
    %       n = [0  1  1  2  2  2  3  3  3  3]; AtdlZ  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; k p<OJy  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; /LO -HnJ  
    %       y = zernfun(n,m,r(idx),theta(idx)); 1+9W+$=h2  
    %       figure('Units','normalized') i'9vL:3  
    %       for k = 1:10 2^^`n1?'  
    %           z(idx) = y(:,k); R{ a"Y$  
    %           subplot(4,7,Nplot(k)) 2Ou[u#H  
    %           pcolor(x,x,z), shading interp _9=Yvc=  
    %           set(gca,'XTick',[],'YTick',[]) Ezr:1 GJ  
    %           axis square H-~6Z",1  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^:#D0[  
    %       end  .Nw=[  
    % }o L'8-y  
    %   See also ZERNPOL, ZERNFUN2. tS|(K=$  
    zx-81fx+k  
    %   Paul Fricker 11/13/2006 '7+4`E  
    } \XfH  
    VO$ iNK  
    % Check and prepare the inputs: xn5l0'2  
    % ----------------------------- ^ q<v{_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @&1ZB6OCb:  
        error('zernfun:NMvectors','N and M must be vectors.') nHm}zOLc  
    end w+yC)Rmz  
    4WJ.^(  
    if length(n)~=length(m) rd9e \%A  
        error('zernfun:NMlength','N and M must be the same length.') %@.v2 cT  
    end b*`lk2oMa/  
    -?mfE+kt  
    n = n(:); ?)u@Rf9>  
    m = m(:); `-3O w[  
    if any(mod(n-m,2)) pov)Z):}G<  
        error('zernfun:NMmultiplesof2', ... S" xKL{5  
              'All N and M must differ by multiples of 2 (including 0).') P %#<I}0C  
    end O+]Ifm[  
    }[ 4r4 1[  
    if any(m>n) QKr,g  
        error('zernfun:MlessthanN', ... ^R# E:3e  
              'Each M must be less than or equal to its corresponding N.') ptU \[Tq  
    end `[W[H(AjQ  
    N7O-2Z *  
    if any( r>1 | r<0 ) |NpP2|4h  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') BDR.AZ  
    end y *fDwd~  
    ie2WL\tR4  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) y#q?A,C@n  
        error('zernfun:RTHvector','R and THETA must be vectors.') Pmh8sw  
    end Zo g']=  
    )pq;*~ IBI  
    r = r(:); T[j#M+p  
    theta = theta(:); <})2#sZO!  
    length_r = length(r); UE$UR#T'w  
    if length_r~=length(theta) ~c %hWt  
        error('zernfun:RTHlength', ... " N9 <wU  
              'The number of R- and THETA-values must be equal.') )i !o8YB  
    end Jo@|"cE=  
    px}|Mu7z~  
    % Check normalization: mg*qiScfW  
    % -------------------- /f|X(docI  
    if nargin==5 && ischar(nflag) Tl2C^j  
        isnorm = strcmpi(nflag,'norm'); P] UJ0b  
        if ~isnorm Mf&{7%  
            error('zernfun:normalization','Unrecognized normalization flag.') z7Q?D^miy  
        end |j#C|V%kV  
    else f!!V${)X  
        isnorm = false; 2vAQ  
    end F W/W%^  
    :'~ Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ( 5tvfz%  
    % Compute the Zernike Polynomials *#tJM.Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y#u}tE d  
    ?e,pN,4  
    % Determine the required powers of r: RPE5K:P  
    % ----------------------------------- h-Fn?  
    m_abs = abs(m); XqW@rU  
    rpowers = []; L1Iz<>  
    for j = 1:length(n) ?<(m 5Al7  
        rpowers = [rpowers m_abs(j):2:n(j)]; }Rz3<eON  
    end u%$Zqee  
    rpowers = unique(rpowers); 3b+d"`Y^S  
    Hhari!R XC  
    % Pre-compute the values of r raised to the required powers, ev#;t@^  
    % and compile them in a matrix: ,!7 H]4Qx  
    % ----------------------------- K)Q]a30  
    if rpowers(1)==0 S5G6Rj@W  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); iy14mh\ ~  
        rpowern = cat(2,rpowern{:}); >i5acuth  
        rpowern = [ones(length_r,1) rpowern]; X_$Cb<e  
    else @> E2?CV  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1Dv R[Lx%  
        rpowern = cat(2,rpowern{:}); ~:3QBMk::  
    end 4*e0 hWp  
    D (h18  
    % Compute the values of the polynomials: pBETA'fY  
    % -------------------------------------- ~[\_N\rm  
    y = zeros(length_r,length(n)); 0o9 3i u=&  
    for j = 1:length(n) 3WUTI(  
        s = 0:(n(j)-m_abs(j))/2; *T~Ve;3h;  
        pows = n(j):-2:m_abs(j); m3mp/g.>  
        for k = length(s):-1:1 21< j\ M  
            p = (1-2*mod(s(k),2))* ... {|1Y:&M?   
                       prod(2:(n(j)-s(k)))/              ... [$ejp>'Ud  
                       prod(2:s(k))/                     ... ?zQA  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 49w=XJ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); >]W)'lnO  
            idx = (pows(k)==rpowers); V\^EfQ  
            y(:,j) = y(:,j) + p*rpowern(:,idx); L (khAmm  
        end q~*t@  
         Z| V`B `  
        if isnorm QoG cWJ  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); @O[}QB?/fi  
        end U5He?  
    end Um: Hrjw  
    % END: Compute the Zernike Polynomials j& <i&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Oh'Y0_oB>  
    aEWWFN  
    % Compute the Zernike functions: hrhb!0  
    % ------------------------------ H<}^'#"p  
    idx_pos = m>0; ~d6DD;`K  
    idx_neg = m<0; >&p0d0  
    vh*U]3@  
    z = y; uvV;Mlo]  
    if any(idx_pos) L30$%G|  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1f8GW  
    end !X<~-G2)l  
    if any(idx_neg) j'BMAn ?  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); TH$N5w%  
    end 7?kIVP1r  
    dVFf.  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的