切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10754阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 g|4>S<uC  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 0$U\H>r  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  =Q!V6+}nY^  
    j?! /#'  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 a]I~.$G   
    /j\.~=,_  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    851
    光币
    831
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Z7dVy8J  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. M`|E)Y  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of FW"gj\  
    %   order N and frequency M, evaluated at R.  N is a vector of F2$?[1^f  
    %   positive integers (including 0), and M is a vector with the l>@){zxL  
    %   same number of elements as N.  Each element k of M must be a ;VgB!  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ,Z[pLF  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ZJ |&t  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix b!z=:  
    %   with one column for every (N,M) pair, and one row for every h.aXW]]}(P  
    %   element in R. cb_nlG!  
    % R|!4klb  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- r} a,  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is |Q#CQz  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to fZ  pUnc  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ??g = `yH  
    %   for all [n,m]. ":01M},RA  
    % ;)!);q+  
    %   The radial Zernike polynomials are the radial portion of the DbH'Qs?z  
    %   Zernike functions, which are an orthogonal basis on the unit Hr=?_Un"  
    %   circle.  The series representation of the radial Zernike ZrDr/Q~  
    %   polynomials is gPy}.g{tH$  
    % ^e1mK4`  
    %          (n-m)/2 r-c1_ [Q#  
    %            __ DMd&9EsRG  
    %    m      \       s                                          n-2s Q%_MO`<]$  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r >W=^>8u  
    %    n      s=0 jxDA+7  
    % 6i*LP(n  
    %   The following table shows the first 12 polynomials. QQX7p!~E  
    % 3qwSm <  
    %       n    m    Zernike polynomial    Normalization lA ZBlO  
    %       --------------------------------------------- a*Ng+~5)6  
    %       0    0    1                        sqrt(2) 5OHF=wh  
    %       1    1    r                           2 $R/@%U)-o  
    %       2    0    2*r^2 - 1                sqrt(6) :X#'E Lo|  
    %       2    2    r^2                      sqrt(6) <l^#FH  
    %       3    1    3*r^3 - 2*r              sqrt(8) &uG@I=}TIY  
    %       3    3    r^3                      sqrt(8) Yj>ezFo  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) lgh+\pj  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 87:V-*8  
    %       4    4    r^4                      sqrt(10) WlnS.P\+E  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) "$N 4S9U  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) C: a</Sl  
    %       5    5    r^5                      sqrt(12) 8POLp9>X  
    %       --------------------------------------------- o\:vxj+%*  
    % to;cF6X  
    %   Example: zirnur1  
    % `Bv, :i  
    %       % Display three example Zernike radial polynomials %51HJB}C]  
    %       r = 0:0.01:1; 8DZ OPA  
    %       n = [3 2 5]; "AHuq%j  
    %       m = [1 2 1]; jI,?*n<  
    %       z = zernpol(n,m,r); +&8'@v$  
    %       figure 7N[Cs$_]  
    %       plot(r,z) ]gB:ht  
    %       grid on S+//g+e|f  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') K{]\}7+   
    % !9.`zW"40  
    %   See also ZERNFUN, ZERNFUN2. [35>T3Ku  
    >Ms_bfSK  
    % A note on the algorithm. A>QAR)YP  
    % ------------------------ ny[\yj4F  
    % The radial Zernike polynomials are computed using the series D 13bQ&\B-  
    % representation shown in the Help section above. For many special -owap-Va  
    % functions, direct evaluation using the series representation can dZ'H'm;,!  
    % produce poor numerical results (floating point errors), because IyGW>g6_.  
    % the summation often involves computing small differences between Rln@9muXA  
    % large successive terms in the series. (In such cases, the functions :V:siIDn  
    % are often evaluated using alternative methods such as recurrence @!2vS@f  
    % relations: see the Legendre functions, for example). For the Zernike a #Pr)H  
    % polynomials, however, this problem does not arise, because the hwd{^  
    % polynomials are evaluated over the finite domain r = (0,1), and (j884bu  
    % because the coefficients for a given polynomial are generally all ]`_eaW?Ua  
    % of similar magnitude. l08JL  
    % ~M LBO  
    % ZERNPOL has been written using a vectorized implementation: multiple cg'z:_l  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Tlz~o[`&  
    % values can be passed as inputs) for a vector of points R.  To achieve ,ko0XQBl  
    % this vectorization most efficiently, the algorithm in ZERNPOL 1c}LX.9K  
    % involves pre-determining all the powers p of R that are required to tz`T#9  
    % compute the outputs, and then compiling the {R^p} into a single ;@G5s+<l  
    % matrix.  This avoids any redundant computation of the R^p, and }tUr V   
    % minimizes the sizes of certain intermediate variables. Dh B*k<S  
    % k2ZMDU  
    %   Paul Fricker 11/13/2006 ,kw:g&A  
    @w@ `-1  
    [,|;rt\o>  
    % Check and prepare the inputs: Cw]bhaG g  
    % ----------------------------- u13v@<HGc  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T,fDH!a  
        error('zernpol:NMvectors','N and M must be vectors.') "BD$-]  
    end $' >|r]  
    IltU6=]"l  
    if length(n)~=length(m) [p&2k&.XYe  
        error('zernpol:NMlength','N and M must be the same length.') 4dI =  
    end QN OA66  
    L<H6AzR+  
    n = n(:); E8PlGQ~z{d  
    m = m(:); A!fRpN  
    length_n = length(n); )5U2-g#U  
    so@wUxF  
    if any(mod(n-m,2)) 'w~e>$WI  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') G.sf>.[  
    end l\1_v7s  
    ck K9@RQ  
    if any(m<0) YTYCv7  
        error('zernpol:Mpositive','All M must be positive.')  o C#W  
    end uEcK0>xp  
    *d$r`.9j  
    if any(m>n) EawtT  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') b{hdEb  
    end +U*:WKdI?  
    j`ybzG^  
    if any( r>1 | r<0 ) |!.VpN&  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') cux<7#6af  
    end n`2LGc[rP  
    rWD*DmY@"  
    if ~any(size(r)==1) V"R,omh  
        error('zernpol:Rvector','R must be a vector.') YKG}4{T  
    end kCZxv"Ts  
    &)#bdt[  
    r = r(:); Trt1M  
    length_r = length(r); |;MW98 A  
    o1]ZeF  
    if nargin==4 {BS`v5*  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 8u4FagQ,  
        if ~isnorm sRDxa5<MD  
            error('zernpol:normalization','Unrecognized normalization flag.') =%oQIx  
        end p|o?nI  
    else a7wc>@9Q,  
        isnorm = false; i!dQ Sdf  
    end +o^sm'$  
    YB3?Ftgw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Nvj0MD{ X  
    % Compute the Zernike Polynomials _&|<(m&."  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N(= \S:  
    w^wh|'u^_@  
    % Determine the required powers of r: Q _ M:v  
    % ----------------------------------- 9  7Mi{Zz  
    rpowers = []; Tg\wBhJr|  
    for j = 1:length(n) 1@{qPmf^  
        rpowers = [rpowers m(j):2:n(j)]; ooIA#u  
    end 2!;U.+(  
    rpowers = unique(rpowers); 6R+EG{`  
    iK3gw<g  
    % Pre-compute the values of r raised to the required powers, U<jAZU[L  
    % and compile them in a matrix: qjI.Sr70  
    % ----------------------------- h1jEulcMtq  
    if rpowers(1)==0 vfPIC!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %m?$"<q_K  
        rpowern = cat(2,rpowern{:}); #AUV&pI[  
        rpowern = [ones(length_r,1) rpowern]; ~5sH`w~vQ  
    else +[Zcz4\9  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]B>g~t5J  
        rpowern = cat(2,rpowern{:}); pCt0[R;?  
    end q$BS@   
    Os"T,`F2s  
    % Compute the values of the polynomials: E (bx/f  
    % -------------------------------------- a?P$8NLr  
    z = zeros(length_r,length_n); 8xQjJ  
    for j = 1:length_n J'#R9NO<  
        s = 0:(n(j)-m(j))/2; UTph(U#  
        pows = n(j):-2:m(j); XYdr~/[HPy  
        for k = length(s):-1:1 X>kW)c4{b  
            p = (1-2*mod(s(k),2))* ... *>8Y/3Y\B  
                       prod(2:(n(j)-s(k)))/          ... *Ph@XkhU  
                       prod(2:s(k))/                 ... YqNI:znm-  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... v!77dj 6I  
                       prod(2:((n(j)+m(j))/2-s(k))); M&~cU{9c  
            idx = (pows(k)==rpowers); 0o &B 7N  
            z(:,j) = z(:,j) + p*rpowern(:,idx); [&h%T;!Qii  
        end A&/VO$Y9wp  
         bc(b1u?  
        if isnorm NQqq\h  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); tX7TP(  
        end 'e5,%"5(c  
    end v7@O ,%  
    Sxg&73;ZV  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) k}$k6Sr"  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. (D <o=Q  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 7UA|G2Zr  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive gt{$G|bi  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, }}MZgm~U)  
    %   and THETA is a vector of angles.  R and THETA must have the same JwM Fu5@  
    %   length.  The output Z is a matrix with one column for every P-value, o; N s-=  
    %   and one row for every (R,THETA) pair. QQIU5  
    % IWD21lS  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike y_A?} 'X  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) K}1eQS&$a  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) oq3{q  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 `.F+T)G  
    %   for all p. Oxq} dX7S  
    % 4[^lE?+  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ;)gNe:Q  
    %   Zernike functions (order N<=7).  In some disciplines it is ?~#{3b  
    %   traditional to label the first 36 functions using a single mode Zk#?.z}  
    %   number P instead of separate numbers for the order N and azimuthal h&$,mbEoI  
    %   frequency M. [tY+P7j9)  
    % j~:N8(=  
    %   Example: 5*31nMP\  
    % %zA$+eT  
    %       % Display the first 16 Zernike functions 1ps_zn(  
    %       x = -1:0.01:1; z~+gche>  
    %       [X,Y] = meshgrid(x,x); I'%(f@u~  
    %       [theta,r] = cart2pol(X,Y); b1NB:  
    %       idx = r<=1; J~URv)g  
    %       p = 0:15; 6*r3T:u3  
    %       z = nan(size(X)); 9}DF*np`G  
    %       y = zernfun2(p,r(idx),theta(idx)); KIfR4,=Q|  
    %       figure('Units','normalized') y/}ENUGR  
    %       for k = 1:length(p) u{"@ 4  
    %           z(idx) = y(:,k); #w:6<$  
    %           subplot(4,4,k) ]p sx\ZMa  
    %           pcolor(x,x,z), shading interp #v QyECf  
    %           set(gca,'XTick',[],'YTick',[]) ?=X_a{}/  
    %           axis square Vn1hr;i]  
    %           title(['Z_{' num2str(p(k)) '}']) v'zj<|2  
    %       end 1=X"|`<!  
    % 2r~&+0sBP  
    %   See also ZERNPOL, ZERNFUN. SXI3y  
    Ap [}[:U  
    %   Paul Fricker 11/13/2006 Jxy94y*  
    )-4xI4  
    "t\gkJyK  
    % Check and prepare the inputs: m;]glAtt  
    % ----------------------------- |+0XO?,sZ  
    if min(size(p))~=1 9BM 8  
        error('zernfun2:Pvector','Input P must be vector.') `!$I6KxT  
    end %: .{?FB_  
    s*0PJ\E2  
    if any(p)>35 Cw_XLMY%V1  
        error('zernfun2:P36', ... CN"hx-f  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 0 w#[?.  
               '(P = 0 to 35).']) aj:B+}1  
    end C*I~14  
    F]SA1ry  
    % Get the order and frequency corresonding to the function number: O7A W9*<  
    % ---------------------------------------------------------------- s s*% 3<  
    p = p(:); *NDM{WB|)  
    n = ceil((-3+sqrt(9+8*p))/2); ?]# U~M<'  
    m = 2*p - n.*(n+2); ~<, QxFG5  
    D/&^Y'|T  
    % Pass the inputs to the function ZERNFUN: ]O\Oj6C  
    % ---------------------------------------- 3+E AMn  
    switch nargin 5z>kz/uxW  
        case 3 KiJRq>  
            z = zernfun(n,m,r,theta); CK+GD "Z$  
        case 4 iJrF$Xw  
            z = zernfun(n,m,r,theta,nflag); 9w=GB?/  
        otherwise ByK!r~>Z1Q  
            error('zernfun2:nargin','Incorrect number of inputs.') 6O>GVJbw  
    end i: ZL0nH-  
    <6s?M1J  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ?Sq?f?  
    function z = zernfun(n,m,r,theta,nflag) zw`T^N#  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1N_Gk&  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _JZw d9K  
    %   and angular frequency M, evaluated at positions (R,THETA) on the :D>afC8,  
    %   unit circle.  N is a vector of positive integers (including 0), and cu4&*{  
    %   M is a vector with the same number of elements as N.  Each element ] {r*Z6bs  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) H+`s#'(i_P  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, E*ug.nxy  
    %   and THETA is a vector of angles.  R and THETA must have the same P,x'1 `k~  
    %   length.  The output Z is a matrix with one column for every (N,M) )x/Spb  
    %   pair, and one row for every (R,THETA) pair. Dk!;s8}*c  
    % lw4#xH-?  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Tl^9!>\Q  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), cuO)cj]@e  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral bqHR~4 #IR  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, BULf@8~(  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized k !S0-/ h  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0UEEvD5  
    % 8,Jjv*  
    %   The Zernike functions are an orthogonal basis on the unit circle. =l_B58wrx  
    %   They are used in disciplines such as astronomy, optics, and .{` :  
    %   optometry to describe functions on a circular domain. /STFXR1@.u  
    % ZqhCGHy  
    %   The following table lists the first 15 Zernike functions. j {w'#x,  
    % e`pYO]Z  
    %       n    m    Zernike function           Normalization |g vx^)ro  
    %       -------------------------------------------------- '~HCYE:5  
    %       0    0    1                                 1 Z*EK56.b  
    %       1    1    r * cos(theta)                    2 !o+Y" * /  
    %       1   -1    r * sin(theta)                    2 9E/{HNkf  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) mXd,{b'  
    %       2    0    (2*r^2 - 1)                    sqrt(3) [Bn C_^[W  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) =IQ+9Fl2  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) poZ04Uxo>  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Lo^0VD!O  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Yv?nw-HM  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ' c[[H3s!;  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) v=kQ / h  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _g|zDi^  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) e>zCzKK  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \K$9r=!(  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) S]E1+,-*  
    %       -------------------------------------------------- KMO(f!?  
    % 3*< O-Jr  
    %   Example 1: J*Dt\[X  
    % q\2q3}n  
    %       % Display the Zernike function Z(n=5,m=1) RRW/.y  
    %       x = -1:0.01:1; 4~mYj@lvd  
    %       [X,Y] = meshgrid(x,x); f tS^|%p  
    %       [theta,r] = cart2pol(X,Y); Y$3 &?LA  
    %       idx = r<=1; ^}JGWGib=+  
    %       z = nan(size(X)); G:$Ta6=  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Tm!pAD  
    %       figure Sz_bjhyT}  
    %       pcolor(x,x,z), shading interp ({XB,Rm  
    %       axis square, colorbar VRuY8<E  
    %       title('Zernike function Z_5^1(r,\theta)') T bMW?Su  
    % ETt7?,x@  
    %   Example 2: ;VhilWaF-  
    % |mx)W}  
    %       % Display the first 10 Zernike functions ZY_aE  
    %       x = -1:0.01:1; %gK@ R3p  
    %       [X,Y] = meshgrid(x,x); <gvuCydsh  
    %       [theta,r] = cart2pol(X,Y); `/ W6, ]  
    %       idx = r<=1; ,t"?~Hl".  
    %       z = nan(size(X)); q"Ct=d  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Yp*Dd}n`  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :{:R5d(_I  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; %N jRD|  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]>j>bHG  
    %       figure('Units','normalized') m=g\@&N  
    %       for k = 1:10 )uj:k*`)  
    %           z(idx) = y(:,k);  4RPc&%  
    %           subplot(4,7,Nplot(k)) ?8ZOiY(  
    %           pcolor(x,x,z), shading interp \<cs:C\h7  
    %           set(gca,'XTick',[],'YTick',[]) 'CF?pxNQ l  
    %           axis square R,]J~TfPK  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) S511}KPbm/  
    %       end Gi=sJV  
    % T;7=05k<_  
    %   See also ZERNPOL, ZERNFUN2. DC9\Sp?  
    |p4D!M+$7  
    %   Paul Fricker 11/13/2006 vy:-a G  
    yf > rG  
    pr\wI?:k  
    % Check and prepare the inputs: ^("23mhfJ  
    % ----------------------------- ua!i3]18  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ivgV5 )".  
        error('zernfun:NMvectors','N and M must be vectors.') CcGE4BB  
    end HuVx^y` @  
    8IeE7  
    if length(n)~=length(m) tu4-##{  
        error('zernfun:NMlength','N and M must be the same length.') Ox| ?  
    end SRU }-  
    [-ONs  
    n = n(:); !?AgAsSmc  
    m = m(:); _*K=Z,a;\  
    if any(mod(n-m,2)) fGZZ['E  
        error('zernfun:NMmultiplesof2', ... Yz%AKp  
              'All N and M must differ by multiples of 2 (including 0).') ~J~@mE2ks  
    end dBWi1vTF  
    ILN Yh3  
    if any(m>n) nj90`O.K  
        error('zernfun:MlessthanN', ... AVn?86ri  
              'Each M must be less than or equal to its corresponding N.') 3np |\i  
    end ?* {Vn5aX{  
    u&M:w5EM  
    if any( r>1 | r<0 ) 9$ VudE>;  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') pB;U*lt  
    end n]3Lqe;  
    sKg IKYG}T  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) U"qR6  
        error('zernfun:RTHvector','R and THETA must be vectors.') K2Z]MpLD  
    end \!51I./Q/  
    j1 Ns|oph1  
    r = r(:); +hIC N,8!  
    theta = theta(:); vtByCu5  
    length_r = length(r); v=pkze  
    if length_r~=length(theta) K/flg|uZ/V  
        error('zernfun:RTHlength', ... =qJlSb  
              'The number of R- and THETA-values must be equal.') Wr j<}L|  
    end Ii.0Bul  
    IPVD^a ?  
    % Check normalization: ZwFVtR  
    % -------------------- s ahXPl%;U  
    if nargin==5 && ischar(nflag) gN/kNck  
        isnorm = strcmpi(nflag,'norm'); kd=|Iip;(  
        if ~isnorm vk jHh.  
            error('zernfun:normalization','Unrecognized normalization flag.') %&iY5A  
        end Md*~hb8J  
    else )yTBtYw3  
        isnorm = false; .:~{+ <*`  
    end 6f'THU$  
    ZRy'lW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TOH+JL8L  
    % Compute the Zernike Polynomials t/vw%|AS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2ophh/]  
    _xmS$z)TO  
    % Determine the required powers of r: x:? EL)(  
    % ----------------------------------- =C(((T.  
    m_abs = abs(m); g7l?/p[n  
    rpowers = []; >zS<1  
    for j = 1:length(n) :z^,>So:  
        rpowers = [rpowers m_abs(j):2:n(j)]; %wQE lkB  
    end F*4zC@;  
    rpowers = unique(rpowers); j /)A<j$  
    }8LTYn  
    % Pre-compute the values of r raised to the required powers, &y+)xe:&S  
    % and compile them in a matrix: <*3#nA-O>i  
    % ----------------------------- lJJ`aYDp  
    if rpowers(1)==0 sK/Z 'h{|  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >(\Z-I&YQ  
        rpowern = cat(2,rpowern{:}); 0s72BcP  
        rpowern = [ones(length_r,1) rpowern]; (7*((  
    else 8-s7s!j  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); EEp~\^ -  
        rpowern = cat(2,rpowern{:}); #zed8I:w  
    end OnND(YiX  
    jr2wK?LbB  
    % Compute the values of the polynomials: >mW*K _~  
    % -------------------------------------- ..fbRt  
    y = zeros(length_r,length(n)); 2]V&]s8Wi=  
    for j = 1:length(n) ,Zva^5  
        s = 0:(n(j)-m_abs(j))/2; ?m\? #  
        pows = n(j):-2:m_abs(j); )qeed-{  
        for k = length(s):-1:1 Yl`)%6'5|  
            p = (1-2*mod(s(k),2))* ... 0x2[*pJ|IW  
                       prod(2:(n(j)-s(k)))/              ... 18WJ*q7:  
                       prod(2:s(k))/                     ... DEQ7u`6  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >|rU*+I`  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9#:B_?e=  
            idx = (pows(k)==rpowers); ^US ol/  
            y(:,j) = y(:,j) + p*rpowern(:,idx); G0lg5iA<fC  
        end r:U/a=V  
         $)Ty@@7C  
        if isnorm 'pHxO,vo  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); *[+{KJ  
        end h#}'9oA  
    end /2x@Z>  
    % END: Compute the Zernike Polynomials ]T;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PlRcrT"#w  
    sEHA?UP$<F  
    % Compute the Zernike functions: sI5S)^'IQ  
    % ------------------------------ <T`&NA@%~$  
    idx_pos = m>0; YZZog6%  
    idx_neg = m<0; kL e{3>}j  
    B&"c:)1 C2  
    z = y; :NynNu'  
    if any(idx_pos) E[Bj+mX9  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -u^f;4|u  
    end ^IqD^(Kb  
    if any(idx_neg) M&}_3  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \ch4c9  
    end <N8z<o4rku  
    #b@ sV$  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的