切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10878阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ",\,lqV  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ,h'q}5  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  D|W^PR:@h  
    6&o9mc\I  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 PiD%PBmUl  
    'iM;e K  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    855
    光币
    840
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) iB[>uW  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. > Y <in/  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of V[-4cu,Ph^  
    %   order N and frequency M, evaluated at R.  N is a vector of JcsJfTI  
    %   positive integers (including 0), and M is a vector with the Qq;` 9-&j  
    %   same number of elements as N.  Each element k of M must be a TRwlUC3hQ  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) M17oAVN7D  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Z$R6'EUb1  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix NG-Wn+W@b  
    %   with one column for every (N,M) pair, and one row for every ]3tg|? %B  
    %   element in R. .Ap-<FB  
    % ,1'9l)zP  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ~F8M_  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is )Lht}I ]:  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Ov1$7 r@  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ]>fAV(ix  
    %   for all [n,m]. tx}} Kd  
    % %4#,y(dO  
    %   The radial Zernike polynomials are the radial portion of the NvH9?Ek"  
    %   Zernike functions, which are an orthogonal basis on the unit wjk-$p  
    %   circle.  The series representation of the radial Zernike hzIP ?0^E  
    %   polynomials is 7.fpGzUM  
    % 4`lt 4L  
    %          (n-m)/2 ;K<e]RI;?  
    %            __ 5Hvg%g-c  
    %    m      \       s                                          n-2s f}q4~NPn-  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r  |4uH  
    %    n      s=0 (lbF/F>v  
    % 1@Dp<Q  
    %   The following table shows the first 12 polynomials. !g}?x3  
    % tydD~a  
    %       n    m    Zernike polynomial    Normalization hS]g^S==2h  
    %       --------------------------------------------- 2XhtK  
    %       0    0    1                        sqrt(2) yidUtSv=,  
    %       1    1    r                           2 Az4+([  
    %       2    0    2*r^2 - 1                sqrt(6) `ER">@&  
    %       2    2    r^2                      sqrt(6) WAPN,WuW  
    %       3    1    3*r^3 - 2*r              sqrt(8) VXt8y)?a  
    %       3    3    r^3                      sqrt(8) fl| 8#\r  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ;V(- ;O  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) T^LpoN/T  
    %       4    4    r^4                      sqrt(10) X|+o4R?  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) n< UuVu  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Wbo{v r[2+  
    %       5    5    r^5                      sqrt(12) cIqk=_]  
    %       --------------------------------------------- _DPWp,k<~  
    % 4\'1j|nS[  
    %   Example: D=}UKd  
    % q) %F#g  
    %       % Display three example Zernike radial polynomials utIR\e#:B  
    %       r = 0:0.01:1; /BB(riG  
    %       n = [3 2 5]; :3`6P:^  
    %       m = [1 2 1]; FqQqjA  
    %       z = zernpol(n,m,r); XWH{+c"  
    %       figure #<ppiu$  
    %       plot(r,z) &YQ  
    %       grid on :;[pl|}tM  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Ay7I_" %  
    % ,ra!O=d~0  
    %   See also ZERNFUN, ZERNFUN2. , ~^0AtLv  
    `"CIy_m  
    % A note on the algorithm. ~`'!nzP5H  
    % ------------------------ x] [/9e  
    % The radial Zernike polynomials are computed using the series RlH|G  
    % representation shown in the Help section above. For many special 0* Ox>O>  
    % functions, direct evaluation using the series representation can w,hl<=:(FB  
    % produce poor numerical results (floating point errors), because P:GAJ->;]>  
    % the summation often involves computing small differences between $OI 6^  
    % large successive terms in the series. (In such cases, the functions |l\&4/SJ  
    % are often evaluated using alternative methods such as recurrence 2=Sv#  
    % relations: see the Legendre functions, for example). For the Zernike eF]`?AeWQ  
    % polynomials, however, this problem does not arise, because the }SL&Y`Y]  
    % polynomials are evaluated over the finite domain r = (0,1), and VO#x+u]/  
    % because the coefficients for a given polynomial are generally all g)7~vm2/,  
    % of similar magnitude. l,cnM r^.W  
    % 8U,VpuQ:  
    % ZERNPOL has been written using a vectorized implementation: multiple Rf*we+  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] yV=Ku  
    % values can be passed as inputs) for a vector of points R.  To achieve gO>XNXN{  
    % this vectorization most efficiently, the algorithm in ZERNPOL +/u)/ey  
    % involves pre-determining all the powers p of R that are required to N ]KS\  
    % compute the outputs, and then compiling the {R^p} into a single \Fd6Q_  
    % matrix.  This avoids any redundant computation of the R^p, and IXE`MLc  
    % minimizes the sizes of certain intermediate variables. VyQ@. Lm  
    % : utY4  
    %   Paul Fricker 11/13/2006 ;pk4Voo$  
    uSnG=tB  
    Y+il>.Z  
    % Check and prepare the inputs: >< <(6  
    % ----------------------------- ,;3#}OGg  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )  y|r+<  
        error('zernpol:NMvectors','N and M must be vectors.') 4n55{ ?Z  
    end i?+ZrAx>  
    ZL!,s#  
    if length(n)~=length(m) Z) nB  
        error('zernpol:NMlength','N and M must be the same length.') pq8XCOllXx  
    end 5u/dr9n  
    5%H(AaG*q  
    n = n(:); <2b&AF{En  
    m = m(:); O~3<P3W  
    length_n = length(n); ?HD(EGdx  
    6T-h("t  
    if any(mod(n-m,2)) m |K"I3W$  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') xBba&A]=  
    end ,1xX`:  
    JQ5E;8J>  
    if any(m<0) i.QS(gM  
        error('zernpol:Mpositive','All M must be positive.') EPEy60Rx5  
    end X`-7: !+  
    R]dN-'U  
    if any(m>n) Ck`-<)uN  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 2o8:[3C5  
    end 9;W 2zcN  
    @zu IR0Gr)  
    if any( r>1 | r<0 ) L7kNQ/  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') .h({P#QT  
    end VU8EjuOetb  
    "LwLTPC2  
    if ~any(size(r)==1) i rjOGn  
        error('zernpol:Rvector','R must be a vector.') 6Jrw PZB  
    end ALcin))+B  
    UCu0Xqf  
    r = r(:); ++9?LH4S4  
    length_r = length(r); W=E+/ZvPt  
    Q#kSp8  
    if nargin==4 Iax-~{B3AY  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); *R'r=C`  
        if ~isnorm F747K);_  
            error('zernpol:normalization','Unrecognized normalization flag.') d_v]mfUF  
        end 6XP>qI,AJ  
    else w\V1pu^6@  
        isnorm = false; 0o2*X|i(  
    end s<z`<^hRe  
    + 6noQYe  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W D/\f$4  
    % Compute the Zernike Polynomials ]izrr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }Z="}Dg|T  
    ;s*   
    % Determine the required powers of r: 9f(0 qa  
    % ----------------------------------- HZASIsl  
    rpowers = []; <QuIXA  
    for j = 1:length(n) _+sb~  
        rpowers = [rpowers m(j):2:n(j)]; }l>\D~:M  
    end rCK   
    rpowers = unique(rpowers); N F$k~r  
    64LX[8Ax#  
    % Pre-compute the values of r raised to the required powers, W)X" G3  
    % and compile them in a matrix: &9+]{jXF  
    % ----------------------------- H^Mfj!S  
    if rpowers(1)==0 xNrPj8V<Y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); lQS(\}N  
        rpowern = cat(2,rpowern{:}); ;\]& k  
        rpowern = [ones(length_r,1) rpowern]; bUzo>fm_  
    else @:dn\{Zsea  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Gye84C2E=  
        rpowern = cat(2,rpowern{:}); aM7e?.rU  
    end SD/=e3  
    ]8n*fo2#  
    % Compute the values of the polynomials: @=7[KMb  
    % -------------------------------------- f};RtRo2  
    z = zeros(length_r,length_n); (U{,D1?  
    for j = 1:length_n R7o'V* d  
        s = 0:(n(j)-m(j))/2; ]/9@^D}&  
        pows = n(j):-2:m(j); YujR}=B!/  
        for k = length(s):-1:1 "[QQ(]={  
            p = (1-2*mod(s(k),2))* ... -l Y,lC>{  
                       prod(2:(n(j)-s(k)))/          ... -Qy@-s $  
                       prod(2:s(k))/                 ... a Xn:hn~O  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... !+k);;.+  
                       prod(2:((n(j)+m(j))/2-s(k))); QO/nUl0E  
            idx = (pows(k)==rpowers); :' =le*h  
            z(:,j) = z(:,j) + p*rpowern(:,idx); }6'%p Bd  
        end {e+}jZ[L  
         _v#Vf*#  
        if isnorm 9bQD"%ha=d  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); &wX568o  
        end %A3ci[$g  
    end ynZp|'b?<  
    p uZY4}b_  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) \>\_OfY1W  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. vn+~P9SHQ  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated $qR<_6j  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive xV0:K=  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, M9QYYo@  
    %   and THETA is a vector of angles.  R and THETA must have the same (Fj"<  
    %   length.  The output Z is a matrix with one column for every P-value, IkuE|  
    %   and one row for every (R,THETA) pair. nK)hv95i_  
    % V}MRdt7  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ;d .gVR_V  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) IvX+yU  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) nh]HEG0CZJ  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 FN<S agj  
    %   for all p. VBtdx`9  
    % `)tIXMn  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Zg4kO;r08  
    %   Zernike functions (order N<=7).  In some disciplines it is sE])EwZ  
    %   traditional to label the first 36 functions using a single mode O'{g{  
    %   number P instead of separate numbers for the order N and azimuthal T<%%f.x[s  
    %   frequency M. yf2P6b\  
    % )!lx'>0>  
    %   Example: 6 u1|pX8  
    % GP(ze-Yp  
    %       % Display the first 16 Zernike functions Yy{(XBJ~%t  
    %       x = -1:0.01:1; [ <j4w  
    %       [X,Y] = meshgrid(x,x); U/A [al  
    %       [theta,r] = cart2pol(X,Y); 'A,)PZL9i  
    %       idx = r<=1; $q##Tys  
    %       p = 0:15; HF<h-gX  
    %       z = nan(size(X)); GvBmh.  
    %       y = zernfun2(p,r(idx),theta(idx)); y q!{\@-  
    %       figure('Units','normalized') !-m 'diE  
    %       for k = 1:length(p) 25;(`Td 5  
    %           z(idx) = y(:,k); FY)US>  
    %           subplot(4,4,k) N<O<wtXIj  
    %           pcolor(x,x,z), shading interp *LEI@  
    %           set(gca,'XTick',[],'YTick',[]) k+zskfo  
    %           axis square X2E=2tXl`7  
    %           title(['Z_{' num2str(p(k)) '}']) K@vU_x0Sl  
    %       end 2%/+r  
    % f#\Nz>tOhE  
    %   See also ZERNPOL, ZERNFUN. 3i#'osq  
    4>Y*owa4  
    %   Paul Fricker 11/13/2006 s &f\gp1  
    yUN>mD-  
    _h I81Lzq  
    % Check and prepare the inputs: /z )Nz2W  
    % ----------------------------- p~v0pi  
    if min(size(p))~=1 lMgPwvs'  
        error('zernfun2:Pvector','Input P must be vector.') (3Z;c_N  
    end m:c0S8#:  
    VHG}'r9KC%  
    if any(p)>35 7u:QT2=&  
        error('zernfun2:P36', ... 9TbbIP1  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... kz G W/  
               '(P = 0 to 35).']) #itZ~tol  
    end LKA/s ~G  
    L9]d$ r"  
    % Get the order and frequency corresonding to the function number: Z^J 7r&\V  
    % ---------------------------------------------------------------- J$d']%Dwb  
    p = p(:); qYQ vjp  
    n = ceil((-3+sqrt(9+8*p))/2); MS]Q\g}U  
    m = 2*p - n.*(n+2); Q\}Ck+d` a  
    +i[vJRLxl~  
    % Pass the inputs to the function ZERNFUN: tNQACM8F;  
    % ---------------------------------------- dl(!{tZ#  
    switch nargin 0]zMb^wo  
        case 3 lx7]rkWo|a  
            z = zernfun(n,m,r,theta); 4HpKKhv"  
        case 4 CaVVlL  
            z = zernfun(n,m,r,theta,nflag); !;Ke#E_d  
        otherwise aMGyV"6(-6  
            error('zernfun2:nargin','Incorrect number of inputs.') _j*a5fsPU  
    end ^v+p@k  
    i.^:xZ  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 !L<z(dV|(  
    function z = zernfun(n,m,r,theta,nflag) p=\Q7<Z6d,  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. <+<Nsza  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [,{Nu EI  
    %   and angular frequency M, evaluated at positions (R,THETA) on the >WLHw!I!6  
    %   unit circle.  N is a vector of positive integers (including 0), and y.-Kqa~  
    %   M is a vector with the same number of elements as N.  Each element FNw]DJ]  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) S~R[*Gk_uT  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 5#y_EpL"  
    %   and THETA is a vector of angles.  R and THETA must have the same B4 5#-V  
    %   length.  The output Z is a matrix with one column for every (N,M) ~z,qr09  
    %   pair, and one row for every (R,THETA) pair. [Zzztn+  
    % 5tk7H2K^<  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike <8YvsJ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), } 7ND] y48  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral F%.UpV,  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, `xZ,*G7(*  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized IfT: 9 &  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -<sW`HpD'  
    % VGc.yM)& j  
    %   The Zernike functions are an orthogonal basis on the unit circle. \#IKirf?  
    %   They are used in disciplines such as astronomy, optics, and D;*cy<_K8  
    %   optometry to describe functions on a circular domain. ,9MNB3  
    % 'ka$@,s:  
    %   The following table lists the first 15 Zernike functions. 0JKTwLhC  
    % Q#*R({)GH  
    %       n    m    Zernike function           Normalization G_zK .N   
    %       -------------------------------------------------- 73nM9  
    %       0    0    1                                 1 c]i;0j? Dl  
    %       1    1    r * cos(theta)                    2 0{XT#H  
    %       1   -1    r * sin(theta)                    2 a8gOb6qF/H  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) A8o)^T(vJ  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "rfBYl`  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) uvw1 _j?  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 4eF{Y^   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) -%Rbd0gVH\  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) fwlicbs'  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) L}'^FqO[IW  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) `m #i|8  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %;|dEY  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) %$'fq*8b  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) REh\WgV!u  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) SBdd_Fn  
    %       -------------------------------------------------- f0R+Mz8{  
    % `C$QR 8  
    %   Example 1: hm k ~  
    % 3}fhU{-c  
    %       % Display the Zernike function Z(n=5,m=1) `U|zNizO  
    %       x = -1:0.01:1; EEo I|  
    %       [X,Y] = meshgrid(x,x); Se37-  
    %       [theta,r] = cart2pol(X,Y); \ H#"  
    %       idx = r<=1; TA qX f_  
    %       z = nan(size(X)); mx}4iO:Xp  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); .g?D3$|K  
    %       figure 0Wc_m;  
    %       pcolor(x,x,z), shading interp mNEh\4ai  
    %       axis square, colorbar e Qk5:{[  
    %       title('Zernike function Z_5^1(r,\theta)') !w@i,zqu  
    % C\vOxBAB  
    %   Example 2: Qpj[]c5  
    % mlUj%:Gm#  
    %       % Display the first 10 Zernike functions rl&.|;5uH;  
    %       x = -1:0.01:1; ,}"jiGgS4  
    %       [X,Y] = meshgrid(x,x); &49WfctT  
    %       [theta,r] = cart2pol(X,Y); 6eA)d#  
    %       idx = r<=1; uu"hu||0_  
    %       z = nan(size(X)); -yTIv* y  
    %       n = [0  1  1  2  2  2  3  3  3  3]; UX<)hvKj  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Hl'AnxE  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28];  rvK%m_r  
    %       y = zernfun(n,m,r(idx),theta(idx)); 7$t['2j3  
    %       figure('Units','normalized') ]0[ot$Da6  
    %       for k = 1:10 Oamz>Hplu  
    %           z(idx) = y(:,k); [7g-M/jvY  
    %           subplot(4,7,Nplot(k)) ^HtB!Xc  
    %           pcolor(x,x,z), shading interp `e?~c'a@  
    %           set(gca,'XTick',[],'YTick',[]) ^4'!B +}F  
    %           axis square Qw }1mRv  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) y$_]}<b  
    %       end 8?x:PkK  
    % ?Zk;NL9  
    %   See also ZERNPOL, ZERNFUN2. RCxwiZaf33  
    ):}A Quy]  
    %   Paul Fricker 11/13/2006 3 `mtc@*  
    25j\p{*  
    X#K;(.},h  
    % Check and prepare the inputs: 8G9( )UF.  
    % ----------------------------- <P6d-+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) rk@qcQR  
        error('zernfun:NMvectors','N and M must be vectors.') eH[i<Z  
    end yy&L&v'  
    +P,ic*Kq*  
    if length(n)~=length(m) m|t\w|B2  
        error('zernfun:NMlength','N and M must be the same length.') oA7|s1  
    end Yx,7e(AI`  
    |.&GmP  
    n = n(:); ,?Zy4-  
    m = m(:); V<;_wO^  
    if any(mod(n-m,2)) *!{&n*N  
        error('zernfun:NMmultiplesof2', ... `&xdSH  
              'All N and M must differ by multiples of 2 (including 0).') +Ar4X-A{y  
    end @Y>PtA&w*  
    n2Mpo\2  
    if any(m>n) }gB^C3b6  
        error('zernfun:MlessthanN', ... %y*'bS  
              'Each M must be less than or equal to its corresponding N.') $b2~H+u(  
    end V0&7MY*  
    kC6Y?g  
    if any( r>1 | r<0 ) Y6d~hLC  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') oDJ &{N|  
    end C3~~h|:  
    Ro<x#Uo  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?4Fev_5m  
        error('zernfun:RTHvector','R and THETA must be vectors.') VB T 66kV  
    end ;OD-?bC  
    </?ef&  
    r = r(:); _@gg,2 u-  
    theta = theta(:); 6E:H  
    length_r = length(r); d6 -q"  
    if length_r~=length(theta) pSIXv%1J  
        error('zernfun:RTHlength', ... pGy k61  
              'The number of R- and THETA-values must be equal.') bFlI:R&<  
    end ]KXyi;n2  
    DIWyv-  
    % Check normalization: pF8:?p['z  
    % -------------------- OL:hNbw'~T  
    if nargin==5 && ischar(nflag) 4mEJu  
        isnorm = strcmpi(nflag,'norm'); 4;gw&sFF  
        if ~isnorm es\ qnq  
            error('zernfun:normalization','Unrecognized normalization flag.') burSb:JF  
        end aI`d  
    else |ITb1O`_P  
        isnorm = false; UX.rzYM&T  
    end &jQqlQ j  
    ;:ZD<'+N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f~TkU\Rh  
    % Compute the Zernike Polynomials :,R>e}lM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .h4Z\R`  
    E?|NYu#I6  
    % Determine the required powers of r: @,6*yyO  
    % ----------------------------------- #UI`+2w  
    m_abs = abs(m); IB 4L(n1  
    rpowers = []; )FIFf;r  
    for j = 1:length(n) O#C0~U]dDW  
        rpowers = [rpowers m_abs(j):2:n(j)]; nGc'xQy0  
    end ^T1caVb|>  
    rpowers = unique(rpowers); nmE H/a  
    T2)CiR-b  
    % Pre-compute the values of r raised to the required powers, XpK  Y#  
    % and compile them in a matrix: wN/v-^2  
    % ----------------------------- /RxqFpu|.  
    if rpowers(1)==0 q D=b+\F  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); k]RQ 7e  
        rpowern = cat(2,rpowern{:}); ba ,n/yH  
        rpowern = [ones(length_r,1) rpowern]; 7M5H vG#w%  
    else p} eO  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); US-f<Wq  
        rpowern = cat(2,rpowern{:}); 0JR)-*  
    end '.S02=/  
    Qm"~XP  
    % Compute the values of the polynomials: yT7{,Z7t  
    % -------------------------------------- \ :q@I]2  
    y = zeros(length_r,length(n)); 48G^$T{  
    for j = 1:length(n) h4Arg~Or  
        s = 0:(n(j)-m_abs(j))/2; `022gHYv  
        pows = n(j):-2:m_abs(j); /~fu,2=7  
        for k = length(s):-1:1 .RmoO\ ,Gm  
            p = (1-2*mod(s(k),2))* ... FB>P39u  
                       prod(2:(n(j)-s(k)))/              ... S==0/  
                       prod(2:s(k))/                     ... aM,g@'.=  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s- 0Xt<  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ,kYX|8SO  
            idx = (pows(k)==rpowers); K>XZrt  
            y(:,j) = y(:,j) + p*rpowern(:,idx); <8Zs; >YuK  
        end ;<E?NBV^  
         p}wysVB  
        if isnorm T<y fpUzX  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ! /|B4Yv  
        end v{*2F  
    end }v_|N"@  
    % END: Compute the Zernike Polynomials dpt P(H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J<Ki;_=I  
    pjSM7PhQ  
    % Compute the Zernike functions: cP@H8|c=  
    % ------------------------------ np}0O  X  
    idx_pos = m>0; 3!#FG0Z   
    idx_neg = m<0; L/vw7XNrX  
    WUQa2$.  
    z = y; p#r qe<Ua  
    if any(idx_pos) QAY:H@Gt:  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]<q!pE;t  
    end zqI|VH  
    if any(idx_neg) IM2<:N%'  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Olt;^> MQ  
    end T`<Tj?:^&  
    k{ZQM  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的