切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11507阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 "`QI2{!l  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! O@[jNs)].  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  17itC9U  
    N@oNg}D&:  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 FqvMi:F  
    GN7\p)  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) [5v[Zqud  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. =Yxu {]G  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of OV l,o  
    %   order N and frequency M, evaluated at R.  N is a vector of .js@F/H p  
    %   positive integers (including 0), and M is a vector with the wYf9&}k\4  
    %   same number of elements as N.  Each element k of M must be a YWf w%p?n"  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) IZ2c<B5&  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Lv;R8^n  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Cq7EdK;x  
    %   with one column for every (N,M) pair, and one row for every )8H5ovj.  
    %   element in R. G(alM=q  
    % y.zS?vv2g  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- u>G#{$)  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is EW* 's(  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to OVsZUmSG  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 va(ZGGS]N  
    %   for all [n,m]. Ha~g8R&  
    % KcGM=z?:  
    %   The radial Zernike polynomials are the radial portion of the EZm6WvlxSI  
    %   Zernike functions, which are an orthogonal basis on the unit x)X=sX.  
    %   circle.  The series representation of the radial Zernike x5Sc+5?*  
    %   polynomials is u&iMY3=  
    % *):xK;o  
    %          (n-m)/2 {9 >jWNx  
    %            __ 5WR(jl+M  
    %    m      \       s                                          n-2s Pkr0| bs*  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ^ fo2sN"   
    %    n      s=0 GEg8\  
    % Kn]c4h}@b5  
    %   The following table shows the first 12 polynomials. 2:(h17So  
    % QyJ2P{z  
    %       n    m    Zernike polynomial    Normalization ~W q[H  
    %       --------------------------------------------- 0Ey*ci^ue  
    %       0    0    1                        sqrt(2) ub |tX 'o  
    %       1    1    r                           2 w[>/(R7im  
    %       2    0    2*r^2 - 1                sqrt(6) Az_s"}G  
    %       2    2    r^2                      sqrt(6) MIcF "fB![  
    %       3    1    3*r^3 - 2*r              sqrt(8) @"*8nV#  
    %       3    3    r^3                      sqrt(8) ^]He]FW':G  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) %ZF6%m0S  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) WJG&`PP  
    %       4    4    r^4                      sqrt(10) #,dE)  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Pg3O )D9  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) PvzB, 2":  
    %       5    5    r^5                      sqrt(12) jk0Ja@8PK  
    %       --------------------------------------------- e]\{ Ia  
    % +L4_]  
    %   Example: DrD68$,QN  
    % 0K -jF5i$`  
    %       % Display three example Zernike radial polynomials `>@n6>f  
    %       r = 0:0.01:1; 33O@jb s@  
    %       n = [3 2 5]; u!([m; x|  
    %       m = [1 2 1]; y//yLrs;  
    %       z = zernpol(n,m,r); +jcg[|-' /  
    %       figure U>^u!1X  
    %       plot(r,z) Z8 \c'xN  
    %       grid on Z 8??+d=  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Qh)QdW4  
    % tqY)  
    %   See also ZERNFUN, ZERNFUN2. &H!#jh\w  
    *g$egipfF  
    % A note on the algorithm. :@6,|2b e=  
    % ------------------------ 4Fr0/="H  
    % The radial Zernike polynomials are computed using the series eMf+b;~R  
    % representation shown in the Help section above. For many special I!y[7^R  
    % functions, direct evaluation using the series representation can  *$nz<?  
    % produce poor numerical results (floating point errors), because p]*BeiT#n%  
    % the summation often involves computing small differences between Wq!n8O1  
    % large successive terms in the series. (In such cases, the functions C LhD[/Fo  
    % are often evaluated using alternative methods such as recurrence }e/P|7&  
    % relations: see the Legendre functions, for example). For the Zernike @0`Q  
    % polynomials, however, this problem does not arise, because the (,<ti):  
    % polynomials are evaluated over the finite domain r = (0,1), and gt3;Xi  
    % because the coefficients for a given polynomial are generally all hB#z8D  
    % of similar magnitude. .7-Yu1{2  
    % EM+_c)d}  
    % ZERNPOL has been written using a vectorized implementation: multiple ~Tv %6iaeE  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Az2HlKF"L  
    % values can be passed as inputs) for a vector of points R.  To achieve K (yuL[p`  
    % this vectorization most efficiently, the algorithm in ZERNPOL _zQ3sm  
    % involves pre-determining all the powers p of R that are required to &Y2mLPB  
    % compute the outputs, and then compiling the {R^p} into a single f!}c0nb  
    % matrix.  This avoids any redundant computation of the R^p, and |q?I(b4Q@  
    % minimizes the sizes of certain intermediate variables. h<oQ9zW)  
    % .S&S#}$/]  
    %   Paul Fricker 11/13/2006 :('7ly!h  
    Hh=D:kE  
    @b=b>V[d6  
    % Check and prepare the inputs: ' vO+,-  
    % ----------------------------- %=J<WA6\  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %Uk]e5Hu  
        error('zernpol:NMvectors','N and M must be vectors.') XJ;kyEx3=O  
    end LEMgRI`rf  
    24 S,w>j  
    if length(n)~=length(m) b'Gn)1NE  
        error('zernpol:NMlength','N and M must be the same length.') U$KdY _Z97  
    end zV {[0s  
    rt5UT~  
    n = n(:); Lxm1.TOJ  
    m = m(:); 6=]%Y  
    length_n = length(n); h3.wR]ut  
    {9KG06%+  
    if any(mod(n-m,2)) xUE9%qO  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Ek'  
    end KYY~ YP  
    *7hr3x  
    if any(m<0) 4NxtU/5-sU  
        error('zernpol:Mpositive','All M must be positive.') VIL #q  
    end X%!#Ic]Q  
    ?6@Y"5 z3g  
    if any(m>n) LQSno)OZ  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') >S5:zz\  
    end z;UkK  
    j'i-XIs  
    if any( r>1 | r<0 ) K"1xtpy  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') %&9tn0B  
    end 8"+Re [  
    ;pdW7  
    if ~any(size(r)==1) fL4F ~@`9l  
        error('zernpol:Rvector','R must be a vector.') M:h~;+s  
    end +` B m  
    5:SfPAx  
    r = r(:); F(/^??<5  
    length_r = length(r); ['m@RJm+  
    [vpZ3;  
    if nargin==4 Zk2-U"0\o  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); <#ujm fD  
        if ~isnorm $53I%.  
            error('zernpol:normalization','Unrecognized normalization flag.') zEJ|;oL  
        end kEWC  
    else  L's_lC  
        isnorm = false; ~DcX}VCm  
    end $@q)IK%FDL  
    39?iX'*p  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }Tn]cL{]C  
    % Compute the Zernike Polynomials 72} MspzUt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z7F~;IB*u  
    r: n^U#  
    % Determine the required powers of r: XXacWdh \  
    % ----------------------------------- 3/o-\wWO  
    rpowers = []; kc `Q- N}  
    for j = 1:length(n) YD$fN"}-  
        rpowers = [rpowers m(j):2:n(j)]; xtN%v0ZZ  
    end @Y*ONnl  
    rpowers = unique(rpowers); ws4a(1  
    ?f[#O&#  
    % Pre-compute the values of r raised to the required powers, HKx2QFB  
    % and compile them in a matrix: \(jSkrrD  
    % ----------------------------- f;#hcRSH  
    if rpowers(1)==0 ? e%Pvy<i  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); G_=`&i"4  
        rpowern = cat(2,rpowern{:}); :<Y,^V(  
        rpowern = [ones(length_r,1) rpowern]; 9)s=%dL  
    else xlkEW&N&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @rkNx@[~  
        rpowern = cat(2,rpowern{:}); %v:9_nwO)  
    end )Z0pU\  
    n_sCZ6uXEQ  
    % Compute the values of the polynomials: k 61Ot3  
    % -------------------------------------- Ix ! O&_6s  
    z = zeros(length_r,length_n); s$J0^8Q~i  
    for j = 1:length_n FVsVY1  
        s = 0:(n(j)-m(j))/2; D_`MeqF}C  
        pows = n(j):-2:m(j); ?n>h/[/  
        for k = length(s):-1:1 #/!a=0  
            p = (1-2*mod(s(k),2))* ... ` :Am#"j]}  
                       prod(2:(n(j)-s(k)))/          ... $/nU0W  
                       prod(2:s(k))/                 ... }'a}s0h  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Zz= +?L  
                       prod(2:((n(j)+m(j))/2-s(k))); j*<H18^G  
            idx = (pows(k)==rpowers); "'-f?kZ  
            z(:,j) = z(:,j) + p*rpowern(:,idx); [F%INl-sy  
        end WMZ&LlB%  
         bNp RGhlV  
        if isnorm |/[?]`  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); <i`Ipj  
        end v/\l  
    end dGMBgj  
    >%x7-->IB  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag)  Zm!T4pL  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. uj,YCJ8UZs  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated qk{2%,u$@{  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Z{xm(^'i  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, rg)>ZHx  
    %   and THETA is a vector of angles.  R and THETA must have the same nAG2!2_8  
    %   length.  The output Z is a matrix with one column for every P-value, $(K[W}  
    %   and one row for every (R,THETA) pair. SwpS6  
    % Tn< <i  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike A?<R9A  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) f1y3l1/  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) @v\Osp t=  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 R$k4}p  
    %   for all p. py VTA1  
    % >VM@9Cph  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 /]=Ih  
    %   Zernike functions (order N<=7).  In some disciplines it is v8W.84e-  
    %   traditional to label the first 36 functions using a single mode ;D&FZ|`(u  
    %   number P instead of separate numbers for the order N and azimuthal EE(1;] d-  
    %   frequency M. 2'Cwx-_G`  
    % <0g.<n,  
    %   Example: ozwPtF5  
    % A^nB!veh  
    %       % Display the first 16 Zernike functions {.qeVE{  
    %       x = -1:0.01:1; rg64f'+Eug  
    %       [X,Y] = meshgrid(x,x); $!%/Kk4M  
    %       [theta,r] = cart2pol(X,Y); 9`]Gosz  
    %       idx = r<=1; N]udZhkn  
    %       p = 0:15; E58fY|9  
    %       z = nan(size(X)); XUc(7>k  
    %       y = zernfun2(p,r(idx),theta(idx)); ;NQ9A &$)  
    %       figure('Units','normalized') uMKO^D  
    %       for k = 1:length(p) b6Pi:!4  
    %           z(idx) = y(:,k); 5&Al  
    %           subplot(4,4,k) k#X~+}N^  
    %           pcolor(x,x,z), shading interp /I}#0}  
    %           set(gca,'XTick',[],'YTick',[]) z)p( l!  
    %           axis square hAX@|G.  
    %           title(['Z_{' num2str(p(k)) '}']) kk#%x#L[  
    %       end &u&+:m  
    % ~ (bY-6z  
    %   See also ZERNPOL, ZERNFUN. o~<Xc  
    + 2 v6fan  
    %   Paul Fricker 11/13/2006 .P(k |D&  
    V,:^@ 7d  
    UgI0 *PE2  
    % Check and prepare the inputs: UtPFkase  
    % ----------------------------- 9'+Eu)l:  
    if min(size(p))~=1 3}R}|Ha J#  
        error('zernfun2:Pvector','Input P must be vector.') NV\t%/ ?  
    end l7#5.%A  
    1oU/gm$7\q  
    if any(p)>35 xe?!UCUb@  
        error('zernfun2:P36', ... &iKy  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... QL/I/EgqC  
               '(P = 0 to 35).']) j'r"_*%  
    end 8'XAZSd(  
    &?X0;,5)  
    % Get the order and frequency corresonding to the function number: >}<1  
    % ---------------------------------------------------------------- q[?xf3  
    p = p(:); .5$"qb ?  
    n = ceil((-3+sqrt(9+8*p))/2); W D8  
    m = 2*p - n.*(n+2); R|&jvG=|  
     wO<.wPa`  
    % Pass the inputs to the function ZERNFUN: >D]g:t@v  
    % ---------------------------------------- iW u  
    switch nargin kIl!n  
        case 3 ((0nJJjz  
            z = zernfun(n,m,r,theta); PY81MTv0;  
        case 4 EPeKg{w  
            z = zernfun(n,m,r,theta,nflag); 9r2l~zE  
        otherwise $[f-{B{>*  
            error('zernfun2:nargin','Incorrect number of inputs.') j-]`;&L  
    end -t#YL  
    suKr//_  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 b-8}TTL>  
    function z = zernfun(n,m,r,theta,nflag) [&(~{#}M:  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]`eP"U{  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 52,[dP,g  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 8 $qj&2 N  
    %   unit circle.  N is a vector of positive integers (including 0), and wn-1fz <d  
    %   M is a vector with the same number of elements as N.  Each element WuuF &0?8C  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Q{[l1:  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, A3mvd-k  
    %   and THETA is a vector of angles.  R and THETA must have the same <uG6!P  
    %   length.  The output Z is a matrix with one column for every (N,M) /@w w"dmqU  
    %   pair, and one row for every (R,THETA) pair. q-hREO  
    % .Gt_~x  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;mT  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !S~0T!afF  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral xovsh\s  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, vSnGPLl  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized x^zw1e,y  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Q Yg V[\&  
    % i 558&:  
    %   The Zernike functions are an orthogonal basis on the unit circle. ;Zm-B]\  
    %   They are used in disciplines such as astronomy, optics, and EVlj#~mV  
    %   optometry to describe functions on a circular domain. fc&djd`FuX  
    % 6Ki!j<  
    %   The following table lists the first 15 Zernike functions. (kTu6t*  
    % 5pT8 }?7  
    %       n    m    Zernike function           Normalization {E[t(Ig  
    %       -------------------------------------------------- s(T0lul  
    %       0    0    1                                 1 Xf#+^cQ  
    %       1    1    r * cos(theta)                    2 =PF2p'.o  
    %       1   -1    r * sin(theta)                    2 ]Z nASlc)  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) YK\pV'&+  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Vk> &  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) O9P+S|hcY  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) L} "bp  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) *Z$W"JP  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) '%X29B5  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) esiU._:u  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) j{j5TvsrY  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }Y^o("c(  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) I_m3|VCa|t  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bcq&yL'D  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) OqWm5(u&S  
    %       -------------------------------------------------- : *XAQb0  
    % g< xE}[gF  
    %   Example 1: d_,Ql708f  
    % fK6[ p&  
    %       % Display the Zernike function Z(n=5,m=1) ?b:Pl{?  
    %       x = -1:0.01:1; >F>VlRg  
    %       [X,Y] = meshgrid(x,x); bg!(B<!X  
    %       [theta,r] = cart2pol(X,Y); i)$P1h  
    %       idx = r<=1; kY?tUpM!TB  
    %       z = nan(size(X)); * RyU*au  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); $q*a}d[Q  
    %       figure 'QQq0.  
    %       pcolor(x,x,z), shading interp a>6D3n W  
    %       axis square, colorbar #mU<]O  
    %       title('Zernike function Z_5^1(r,\theta)') Z($i+L%.  
    % I 12Zh7Cc:  
    %   Example 2: 02tt.0go  
    % C1fd@6  
    %       % Display the first 10 Zernike functions EDz;6Z*4N  
    %       x = -1:0.01:1; }h sNsQ   
    %       [X,Y] = meshgrid(x,x); Gy[anDE&  
    %       [theta,r] = cart2pol(X,Y); c4u/tt.)  
    %       idx = r<=1; <(@Z#%O9)  
    %       z = nan(size(X)); {i+ o'Lw  
    %       n = [0  1  1  2  2  2  3  3  3  3]; !u'xdV+bf  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; gD51N()s,  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; u]Q}jqiq"  
    %       y = zernfun(n,m,r(idx),theta(idx)); o l41%q*  
    %       figure('Units','normalized') MhR`  
    %       for k = 1:10 a{ L&RRJ  
    %           z(idx) = y(:,k); I(Qz%/Ox  
    %           subplot(4,7,Nplot(k)) F b?^+V]9  
    %           pcolor(x,x,z), shading interp S]ayH$w\Q  
    %           set(gca,'XTick',[],'YTick',[]) ,oUzaEX  
    %           axis square h=S7Z:IaM  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %W8iC%~  
    %       end %Z4*;VwQ  
    % 8h0CG]  
    %   See also ZERNPOL, ZERNFUN2. 8{=|<  
    HAL\j 5i  
    %   Paul Fricker 11/13/2006 ht*(@MCr<  
    78{9@\e"0  
    ii_kgqT^  
    % Check and prepare the inputs: "AZ|u#0P  
    % ----------------------------- .8Bu%Sf  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) G^tazAEfo  
        error('zernfun:NMvectors','N and M must be vectors.') P JATRJ1.  
    end xxyc^\$  
    Wlxmp['Bh  
    if length(n)~=length(m) g<(!>:h  
        error('zernfun:NMlength','N and M must be the same length.') wgIm{;T[u  
    end {f\wIZ-K A  
    p:TE##  
    n = n(:); /='0W3+o*L  
    m = m(:); $K!Jm7O\  
    if any(mod(n-m,2)) $cIaLq  
        error('zernfun:NMmultiplesof2', ... |,@D <  
              'All N and M must differ by multiples of 2 (including 0).') $1 "gFg  
    end 1&! i:F#  
    R;!@ xy  
    if any(m>n) CV\^gTPmx  
        error('zernfun:MlessthanN', ... "d:rPJT)(@  
              'Each M must be less than or equal to its corresponding N.') 41Z@_J|&  
    end Cyd/HTNh<  
    bJetqF6 n  
    if any( r>1 | r<0 ) :P}3cl_  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Gn=b_!  
    end |,p"<a!+{w  
    {=3A@/vM  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Ij7P-5=<  
        error('zernfun:RTHvector','R and THETA must be vectors.') {h|<qfH  
    end 7tXy3-~biz  
    P4q5#r  
    r = r(:); A[uE#T ^  
    theta = theta(:); ':fp|m)M  
    length_r = length(r); ru@#s2  
    if length_r~=length(theta) ( ne[a2%>  
        error('zernfun:RTHlength', ... $/s"It  
              'The number of R- and THETA-values must be equal.') ;.Bz'Q  
    end 2PYnzAsl  
    mP&\?  
    % Check normalization: aaig1#a@1b  
    % -------------------- z'm}p  
    if nargin==5 && ischar(nflag) #Z1-+X8P  
        isnorm = strcmpi(nflag,'norm'); j{OA%G(I  
        if ~isnorm b'\Q/;oz>  
            error('zernfun:normalization','Unrecognized normalization flag.') '";#v.!  
        end .*x:  
    else ,Q56A#Y\  
        isnorm = false; X#ttDB  
    end ,_u7@Ix  
    Cu8mNB{H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +#MXeUX"  
    % Compute the Zernike Polynomials ;Y\LsmZ;F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fr/EkL1Dl  
    $KYGQP  
    % Determine the required powers of r: A:< %>  
    % ----------------------------------- It[51NMal  
    m_abs = abs(m); ?{qUn8f2  
    rpowers = []; 8In\Jo$|q>  
    for j = 1:length(n) 4HGT gS  
        rpowers = [rpowers m_abs(j):2:n(j)]; 7. <jdp  
    end EL`|>/[J  
    rpowers = unique(rpowers); g8N"-j&@  
    ,gVVYH?qR  
    % Pre-compute the values of r raised to the required powers, 3_)I&RM  
    % and compile them in a matrix: xT"V9t[f  
    % ----------------------------- RG{T\9]n  
    if rpowers(1)==0 `f;w  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;[::&qf  
        rpowern = cat(2,rpowern{:}); KkZx6A)$u  
        rpowern = [ones(length_r,1) rpowern]; 4C=W~6~  
    else Uw("+[5O0  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); LZn'+{\`  
        rpowern = cat(2,rpowern{:}); LG&BWs!  
    end TI DgIK  
    oRCc8&  
    % Compute the values of the polynomials: p-}X=O$  
    % -------------------------------------- Jj\4P1|'7  
    y = zeros(length_r,length(n)); 3[ [oAp  
    for j = 1:length(n) cF8  2wg  
        s = 0:(n(j)-m_abs(j))/2; Rlewp8?LB  
        pows = n(j):-2:m_abs(j); ?gMx  
        for k = length(s):-1:1 Z6zV 9hn  
            p = (1-2*mod(s(k),2))* ... J =^IS\m  
                       prod(2:(n(j)-s(k)))/              ... V O:4wC"7  
                       prod(2:s(k))/                     ... mLuNl^)3  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... J#..xJ?XRD  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 2|>\A.I|=  
            idx = (pows(k)==rpowers); >}V?GK36  
            y(:,j) = y(:,j) + p*rpowern(:,idx); !"F;wg$  
        end J 6KHc^,7  
         L[Vk6e  
        if isnorm Y6v{eWtSn  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); vN{@c(=g  
        end _Q5mPBO  
    end `DY yK?R  
    % END: Compute the Zernike Polynomials qi4P(s-i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5*%Gh&)  
    wD9K\%jIr!  
    % Compute the Zernike functions: >R F|Q  
    % ------------------------------ EH |+S  
    idx_pos = m>0; ,R[$S"]!SH  
    idx_neg = m<0; l ;:IL\*1I  
    uxf,95<g)  
    z = y; E@SFK=`  
    if any(idx_pos) l53i {o  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); dQj/ Sr  
    end W"Ip]LJ  
    if any(idx_neg) @)U.Dbm  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ?#K.D vGJ  
    end LlX)xJ  
    a#j,0FKv  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的