切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11231阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 AamVms  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! izKfU?2]X@  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  R(j1n,c]  
    ,Ma.V\T[  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 t6c<kIQ:-O  
    o;b0m;~   
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) %/kyT%1  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ^"8G`B$r  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of O!D/|.Q#%  
    %   order N and frequency M, evaluated at R.  N is a vector of &PcyKpyd  
    %   positive integers (including 0), and M is a vector with the mq/zTm  
    %   same number of elements as N.  Each element k of M must be a 2EQ 6J  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Oc9#e+_&  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is dAJ,x =`  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix `Lyq[zg8  
    %   with one column for every (N,M) pair, and one row for every  Z:2I/  
    %   element in R. R)!`JKeO/  
    % ')+0nPV  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- \(I6_a_{  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is N132sN2   
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ~ aZedQc  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 <<MjC5  
    %   for all [n,m]. UVf\2\Y  
    % kfC0zd+  
    %   The radial Zernike polynomials are the radial portion of the {u7##Vrgt8  
    %   Zernike functions, which are an orthogonal basis on the unit JU0]Wq<^[  
    %   circle.  The series representation of the radial Zernike ]T O/kl/  
    %   polynomials is ETv9k g  
    % 5IVksg  
    %          (n-m)/2 v4?iOD  
    %            __ (.K\Jg'Y6j  
    %    m      \       s                                          n-2s F-n"^.7  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r %XhfXd'  
    %    n      s=0 'p)Q68;&  
    % ]/]ju$l9Z  
    %   The following table shows the first 12 polynomials. )J/HkOj"V  
    % ;mm!0]V  
    %       n    m    Zernike polynomial    Normalization a7H0!9^h  
    %       --------------------------------------------- OQ_stE2i  
    %       0    0    1                        sqrt(2) h~HB0^|  
    %       1    1    r                           2 c yQ(fIYl  
    %       2    0    2*r^2 - 1                sqrt(6) U` R;P-  
    %       2    2    r^2                      sqrt(6) ~M ?|Vn  
    %       3    1    3*r^3 - 2*r              sqrt(8) 2x$x; \*j  
    %       3    3    r^3                      sqrt(8) ]XUl@Y.   
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) #/J 'P[z  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) t> Q{yw  
    %       4    4    r^4                      sqrt(10) g: %9jf  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) l_FGZ!7  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) XOr fs sj  
    %       5    5    r^5                      sqrt(12) RcY[rnI6  
    %       --------------------------------------------- NlR"$  
    % ;M v~yb3v  
    %   Example: @ "d2.h  
    % Uku5wPS  
    %       % Display three example Zernike radial polynomials Iur9I>8h  
    %       r = 0:0.01:1; u'9gVU B  
    %       n = [3 2 5]; sn\;bq  
    %       m = [1 2 1]; <3 @}Lj  
    %       z = zernpol(n,m,r); ~P1_BD(  
    %       figure K\=8eg93Z  
    %       plot(r,z) vX1uR]A[  
    %       grid on ~2%3FV^  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') :Am-8  
    % m Pt)pn!rA  
    %   See also ZERNFUN, ZERNFUN2. '% 4P;HO  
    7s>a2  
    % A note on the algorithm. \d68-JS@~  
    % ------------------------ #;j9}N  
    % The radial Zernike polynomials are computed using the series Z}Cqd?_')  
    % representation shown in the Help section above. For many special 3l:XhLOj  
    % functions, direct evaluation using the series representation can w-FnE}"l  
    % produce poor numerical results (floating point errors), because v+q<BYq  
    % the summation often involves computing small differences between Y5TS>iEE]  
    % large successive terms in the series. (In such cases, the functions L4974E?S  
    % are often evaluated using alternative methods such as recurrence l)}t,!M6  
    % relations: see the Legendre functions, for example). For the Zernike eqzTQen8q  
    % polynomials, however, this problem does not arise, because the X\2_; zwf  
    % polynomials are evaluated over the finite domain r = (0,1), and ,7/ _T\d<  
    % because the coefficients for a given polynomial are generally all k&Jo"[i&WO  
    % of similar magnitude. 7c1+t_Ew  
    % -ut=8(6&  
    % ZERNPOL has been written using a vectorized implementation: multiple 9`X&,S~e  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] !'c| N9  
    % values can be passed as inputs) for a vector of points R.  To achieve qe?Ggz3p.  
    % this vectorization most efficiently, the algorithm in ZERNPOL Y}1 P~  
    % involves pre-determining all the powers p of R that are required to aPBX=;(  
    % compute the outputs, and then compiling the {R^p} into a single S=9E@(]  
    % matrix.  This avoids any redundant computation of the R^p, and az(5o  
    % minimizes the sizes of certain intermediate variables. qzdaN5  
    % Qilj/x68  
    %   Paul Fricker 11/13/2006 V9jFjc?  
    # cWHDRLX  
    9+VF<;Xw  
    % Check and prepare the inputs: "Pdvmur  
    % ----------------------------- 0/A-#'>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) & l^n4  
        error('zernpol:NMvectors','N and M must be vectors.') D0%FELG05  
    end {CP o<lz  
    NG-`ag`s  
    if length(n)~=length(m) 5ZsDgOeY  
        error('zernpol:NMlength','N and M must be the same length.') pI^=B-7  
    end +{vQS FW  
    @,6ST0xT (  
    n = n(:); Y@:3 B:m#  
    m = m(:); sFx$>:$  
    length_n = length(n); lZ a?Y@  
    +FBi5h  
    if any(mod(n-m,2))  sL ~,  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') m+$/DD^-zl  
    end RK3.-  
    ; $6x=uZ  
    if any(m<0) 1Zq   
        error('zernpol:Mpositive','All M must be positive.') 7-g^2sa'(  
    end R<j<. h  
    r`>~Lp`  
    if any(m>n) ;y>'yq}  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') -d_ 7*>m$  
    end ,lP7 ri  
    @ V5S4E  
    if any( r>1 | r<0 ) yA0Y 14\*  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') vK'9{q|g  
    end |0DP} `~  
    z (#Xca  
    if ~any(size(r)==1) }wG|%Y#+r  
        error('zernpol:Rvector','R must be a vector.') VVN # $  
    end Ei~]iZ}  
    0$?qoS  
    r = r(:); `E%(pjG  
    length_r = length(r); 3Pa3f >}-  
    JchA=n  
    if nargin==4 1l~.R#WG&  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); jqqaw  
        if ~isnorm yHtGp%j  
            error('zernpol:normalization','Unrecognized normalization flag.') 5D-BIPn=JV  
        end /J8o_EV  
    else =_pmy>_z  
        isnorm = false; %IPyCEJD  
    end 6i^0T  
    &BTfDsxAK  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l]/> `62  
    % Compute the Zernike Polynomials W=M< c@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i 63?"  
    5bF5~D(E  
    % Determine the required powers of r: ;\q<zO@x  
    % ----------------------------------- r5Wkc$  
    rpowers = []; w[M5M2CF  
    for j = 1:length(n) M Yu?&}%^  
        rpowers = [rpowers m(j):2:n(j)]; I(y`)$}  
    end [I_BCf  
    rpowers = unique(rpowers); 6J]~A0vsi}  
    0rGj|@+;  
    % Pre-compute the values of r raised to the required powers,  ,&4zKm  
    % and compile them in a matrix: ul}4p{ m[  
    % ----------------------------- 8[f8k 3g  
    if rpowers(1)==0 i{4'cdr?  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); d7\k  gh  
        rpowern = cat(2,rpowern{:}); US"2O!u  
        rpowern = [ones(length_r,1) rpowern]; `7F@6n   
    else (PyTq 5:F  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {W]bU{%.  
        rpowern = cat(2,rpowern{:}); TIKEg10I  
    end u;QH8LK  
    <)=3XEcb  
    % Compute the values of the polynomials: ,d3Q+9/  
    % -------------------------------------- hw7~i  
    z = zeros(length_r,length_n); t.gq5Y.[  
    for j = 1:length_n G!-7ic_4  
        s = 0:(n(j)-m(j))/2; w 5!ndu  
        pows = n(j):-2:m(j); m`[oT\  
        for k = length(s):-1:1 `\nON  
            p = (1-2*mod(s(k),2))* ... ^7J~W'hI  
                       prod(2:(n(j)-s(k)))/          ... k{zs578h2  
                       prod(2:s(k))/                 ... zK[ 7:<  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... @G7w(>_T3  
                       prod(2:((n(j)+m(j))/2-s(k))); (ej:_w1  
            idx = (pows(k)==rpowers); pE~9o 9  
            z(:,j) = z(:,j) + p*rpowern(:,idx); <=#lRZW[z  
        end 7AS.)Q#=x  
         X v`2hf  
        if isnorm (9Fabo\SH  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); hg$qb eUl  
        end s@.`"TF.7  
    end )w^GP lh  
    <W=~UUsn  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) U)O?| VN^o  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. #i}#jMT  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 6R$ F =MB  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive s BeP;ox  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, lBizC5t!o  
    %   and THETA is a vector of angles.  R and THETA must have the same 8MYLXW6  
    %   length.  The output Z is a matrix with one column for every P-value, ^&f{beU9  
    %   and one row for every (R,THETA) pair. +0oyt?  
    % = ]dz1~/  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike l(3'Re  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) v#FJ+  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) I?^Q084  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 q\ \8b{~  
    %   for all p. 1]D/3!  
    % ^g}gT-l%  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 A{DIp+  
    %   Zernike functions (order N<=7).  In some disciplines it is CS^ oiV%{s  
    %   traditional to label the first 36 functions using a single mode \]L::"![?  
    %   number P instead of separate numbers for the order N and azimuthal 9^#zxmH)  
    %   frequency M. e]dPF[?7  
    % P;HVLflu  
    %   Example: tu?Z@W/  
    % +l[Z2mW  
    %       % Display the first 16 Zernike functions L V[66<T  
    %       x = -1:0.01:1; PsF- 9&_  
    %       [X,Y] = meshgrid(x,x); ?34EJ !  
    %       [theta,r] = cart2pol(X,Y); fY)4]=L  
    %       idx = r<=1; Zh@4_Z9n!  
    %       p = 0:15; %~~z96(  
    %       z = nan(size(X)); !9e\O5PmO  
    %       y = zernfun2(p,r(idx),theta(idx)); iECC@g@a  
    %       figure('Units','normalized') M[`w{A  
    %       for k = 1:length(p) |2t7G9[n  
    %           z(idx) = y(:,k); jFJW3az@z  
    %           subplot(4,4,k) BM=V,BZy  
    %           pcolor(x,x,z), shading interp )$9C`d[  
    %           set(gca,'XTick',[],'YTick',[]) OTNZ!U/)j  
    %           axis square x 1%J1?Fp  
    %           title(['Z_{' num2str(p(k)) '}']) oneSgJ  
    %       end ,\m;DR1  
    % Sug~FV?k$e  
    %   See also ZERNPOL, ZERNFUN. 8vX*SrM  
    ^cPo{xf  
    %   Paul Fricker 11/13/2006 u$Pf.#  
    i SAidK,  
    l7D4`i<F  
    % Check and prepare the inputs: 3u"J4%zg|L  
    % ----------------------------- fRv S@  
    if min(size(p))~=1 H(5ui`'s  
        error('zernfun2:Pvector','Input P must be vector.') @=MZ6q  
    end WW8YB"  
    *'`3]!A  
    if any(p)>35 npG+# z  
        error('zernfun2:P36', ... l b1sV  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... x jP" 'yU  
               '(P = 0 to 35).']) 9`gGsC  
    end 0%&fUz36E6  
    %xbz&'W,  
    % Get the order and frequency corresonding to the function number: 2'O!~8U  
    % ---------------------------------------------------------------- 63y':g  
    p = p(:); Vbqm]2o&  
    n = ceil((-3+sqrt(9+8*p))/2); x#}j3" PP  
    m = 2*p - n.*(n+2); ^$&"<  
    ]~g|SqPA@  
    % Pass the inputs to the function ZERNFUN: ./BP+\)l O  
    % ---------------------------------------- gn e #v  
    switch nargin v&CO#vK5.  
        case 3 3MBz  
            z = zernfun(n,m,r,theta); EDa08+Y  
        case 4 K9z_=c+  
            z = zernfun(n,m,r,theta,nflag); iK6<^,]'  
        otherwise Vp{RX8?.  
            error('zernfun2:nargin','Incorrect number of inputs.') .>gU 9A(Nk  
    end fB @pwmu  
    8HH.P`Vk#  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ]zM90$6  
    function z = zernfun(n,m,r,theta,nflag) *i]Z=  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. :EldP,s#x%  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [F>n!`8  
    %   and angular frequency M, evaluated at positions (R,THETA) on the \8>N<B)  
    %   unit circle.  N is a vector of positive integers (including 0), and BKP!+V/  
    %   M is a vector with the same number of elements as N.  Each element  V\7u  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Nm :|C 3_I  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, MgK(gL/&[  
    %   and THETA is a vector of angles.  R and THETA must have the same 8KdcLN@  
    %   length.  The output Z is a matrix with one column for every (N,M) 8-g$HXqs_#  
    %   pair, and one row for every (R,THETA) pair. #.G>SeTn2}  
    % B8#f^}8  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike DkMC!Q\  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), o'}Z!@h  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral UNH}*]u4`  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $;`2^L  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized <wGT s6  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. VTX'f2\  
    % Y<$"]@w  
    %   The Zernike functions are an orthogonal basis on the unit circle. qaSv]k.  
    %   They are used in disciplines such as astronomy, optics, and &WWO13\qd  
    %   optometry to describe functions on a circular domain. v_ F?x!  
    % ;7og  
    %   The following table lists the first 15 Zernike functions. "e};?|y  
    % c$Nl-?W  
    %       n    m    Zernike function           Normalization _q!ck0_  
    %       -------------------------------------------------- ojs/yjvx  
    %       0    0    1                                 1 d5W[A#}  
    %       1    1    r * cos(theta)                    2 F9G$$%Q-Z  
    %       1   -1    r * sin(theta)                    2 +z/73s0~  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) K]azUK7  
    %       2    0    (2*r^2 - 1)                    sqrt(3) E rymx$@P  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 6 VJj(9%  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Q^5 t]HKn  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) )UU6\2^  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) K0!#l Br  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ` ];[T=  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ha'm`LiX  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) XXdMppoR  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) hdDI%3vk3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X/D9%[{&  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) JG+o~tQC  
    %       -------------------------------------------------- M]:B: ;  
    % ZFw743G  
    %   Example 1: YO4ppL~xe  
    % w5G34[v  
    %       % Display the Zernike function Z(n=5,m=1)  [ ^ \)  
    %       x = -1:0.01:1; us *l+Jw,m  
    %       [X,Y] = meshgrid(x,x); /]58:euR  
    %       [theta,r] = cart2pol(X,Y); SxQDqoA~  
    %       idx = r<=1; |vE#unA  
    %       z = nan(size(X)); 20xGj?M  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Xpz-@fqKdf  
    %       figure %[F;TZt  
    %       pcolor(x,x,z), shading interp F>{uB!!L4  
    %       axis square, colorbar #z5?Y2t7~^  
    %       title('Zernike function Z_5^1(r,\theta)') N9hWx()v  
    % ep1Ajz.l  
    %   Example 2: GdwHm  
    % !f[N&se  
    %       % Display the first 10 Zernike functions fO|u(e  
    %       x = -1:0.01:1; VH*(>^Of F  
    %       [X,Y] = meshgrid(x,x); &%51jM<  
    %       [theta,r] = cart2pol(X,Y); Xst}tz62F  
    %       idx = r<=1; T[K?A+l  
    %       z = nan(size(X)); dKG<"  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ol>=tk 8}  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 4p g(QeR  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; h.%Qn vL  
    %       y = zernfun(n,m,r(idx),theta(idx)); lw lW.C  
    %       figure('Units','normalized') nr%^:u  
    %       for k = 1:10 PU\q.y0R  
    %           z(idx) = y(:,k); 1Ee>pbd  
    %           subplot(4,7,Nplot(k)) _e^V\O>  
    %           pcolor(x,x,z), shading interp 667tL(  
    %           set(gca,'XTick',[],'YTick',[]) J8[Xl.  
    %           axis square e q.aN3KB"  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) XX;%:?n  
    %       end l)eaIOyk  
    % :zZM&r>  
    %   See also ZERNPOL, ZERNFUN2. je0 ?iovY  
    !kYmrj**  
    %   Paul Fricker 11/13/2006 uATRZMai  
    LD"}$vfs  
    .h } D%Qa  
    % Check and prepare the inputs: <0MUn#7'  
    % ----------------------------- 1&WFs6  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) D{}\7qe  
        error('zernfun:NMvectors','N and M must be vectors.') \p|!=H@  
    end }jXUd=.Nu  
    m)2U-3*iX  
    if length(n)~=length(m) MYm6C;o$  
        error('zernfun:NMlength','N and M must be the same length.') (6aZQ`H  
    end 4WnxJ]5`  
    Np)!23 "  
    n = n(:); F:U_gW?  
    m = m(:); rGO 3  
    if any(mod(n-m,2)) 2Ki/K(  
        error('zernfun:NMmultiplesof2', ... Z/;SR""wa  
              'All N and M must differ by multiples of 2 (including 0).') Mqy`j9FbL  
    end :H 7 "W<  
    6C5qW8q]u3  
    if any(m>n) G 3x1w/L  
        error('zernfun:MlessthanN', ... @5ybBh]   
              'Each M must be less than or equal to its corresponding N.') /267Q;d C)  
    end ]YKWa"  
    `_ L|I s=n  
    if any( r>1 | r<0 ) !Hg#c!eOg  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') p*,mwKN:  
    end R["7%|RV  
    &c !-C_L 2  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) n40Z  
        error('zernfun:RTHvector','R and THETA must be vectors.') <WmCH+>?r  
    end E{B<}n|}&  
    ^6n]@4P  
    r = r(:); Sy55w={  
    theta = theta(:); q fe#kF9  
    length_r = length(r); r~t7Z+PXF  
    if length_r~=length(theta) R&p53n  
        error('zernfun:RTHlength', ... aV.<<OS   
              'The number of R- and THETA-values must be equal.') bf+2c6_BN0  
    end $P~a   
    '` "&RuB  
    % Check normalization: ~>|U%3}]  
    % -------------------- + u+fEg/A  
    if nargin==5 && ischar(nflag) c9'b `#'  
        isnorm = strcmpi(nflag,'norm'); m9S5;kB]  
        if ~isnorm Ab)7hCUW  
            error('zernfun:normalization','Unrecognized normalization flag.') Y_B( R  
        end 8'$n|<1X  
    else 5kz`_\ &  
        isnorm = false; UK/k?0  
    end zrM|8Cu  
    ,#{aAx|]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AnQRSB (  
    % Compute the Zernike Polynomials FS0SGBo  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +{Ttv7l_2  
    *,u{~(thR  
    % Determine the required powers of r: xOH@V4z:  
    % ----------------------------------- 4P5wEqU.<  
    m_abs = abs(m); jC=_>\<|X*  
    rpowers = [];  LvaF4Y2v  
    for j = 1:length(n) inPGWG K]  
        rpowers = [rpowers m_abs(j):2:n(j)]; $I%]jAh6  
    end &M0v/!%L  
    rpowers = unique(rpowers); %!RQ:?=  
    (nm&\b~j  
    % Pre-compute the values of r raised to the required powers, q.4DwY5 L  
    % and compile them in a matrix: W=/B[@3'  
    % ----------------------------- ~?FKww|_*J  
    if rpowers(1)==0 qmGB~N|N  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); b~-9u5.L1  
        rpowern = cat(2,rpowern{:}); |ONOF  
        rpowern = [ones(length_r,1) rpowern]; Pt$7U[N  
    else +9t@eHJT1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Z q)A"'Y  
        rpowern = cat(2,rpowern{:}); y!j1xnzki  
    end tfO _b5g  
    :HC{6W`$  
    % Compute the values of the polynomials: LdcP0G\"VG  
    % -------------------------------------- a[!':-R`s  
    y = zeros(length_r,length(n)); ^B<jMt  
    for j = 1:length(n) PeOgXg)L`z  
        s = 0:(n(j)-m_abs(j))/2; 0X;Dr-3<  
        pows = n(j):-2:m_abs(j); e>/PW&Z8Z  
        for k = length(s):-1:1  ^(y4]yZ  
            p = (1-2*mod(s(k),2))* ... pdM|dGq^  
                       prod(2:(n(j)-s(k)))/              ... hM-qC|!  
                       prod(2:s(k))/                     ... +-ue={ '  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &Ef'5  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); y3vOb, 4  
            idx = (pows(k)==rpowers); (q utgnW  
            y(:,j) = y(:,j) + p*rpowern(:,idx); zK}.Bhj#  
        end fE >FT9c  
         !|SawT5t   
        if isnorm RSy1 wp4W  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); i^yQ; 2 -  
        end Xo P]PR`cQ  
    end &}WSfZ0{  
    % END: Compute the Zernike Polynomials |oX l+&u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |yS4um(w  
     u >x2  
    % Compute the Zernike functions: g\ 2Y605DM  
    % ------------------------------ ]C_6I\Z#=W  
    idx_pos = m>0; LGK}oL'  
    idx_neg = m<0; & )Z JT.S  
    'Z';$N ]  
    z = y; ;kdJxxUox  
    if any(idx_pos) Mb-C DPT  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); r3|vu"Uei  
    end hsi#J^n{  
    if any(idx_neg) f"/NY6  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); | r2'B  
    end @qeI4io-n  
    ?P}7AF A(W  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的