非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 P@keg*5@
function z = zernfun(n,m,r,theta,nflag) sQJGwZ7
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. tS>^x
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N M\/hK2J# #
% and angular frequency M, evaluated at positions (R,THETA) on the ="5D}%
% unit circle. N is a vector of positive integers (including 0), and <:Mz2Rg
% M is a vector with the same number of elements as N. Each element y%X!l(gQ
% k of M must be a positive integer, with possible values M(k) = -N(k) d]Y;rqjue
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, :EAh%q
% and THETA is a vector of angles. R and THETA must have the same cS'{h
% length. The output Z is a matrix with one column for every (N,M) Fuzb4Df
% pair, and one row for every (R,THETA) pair. uorX;yekC
% Q`W2\Kod]
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]'"Sa<->
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), s[sv4hq
% with delta(m,0) the Kronecker delta, is chosen so that the integral h=0a9vIXF
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, x1?mE)n]
% and theta=0 to theta=2*pi) is unity. For the non-normalized w|6/ i/X
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. hPUAm6b;
% ?].MnwYo
% The Zernike functions are an orthogonal basis on the unit circle. |?#JCG
% They are used in disciplines such as astronomy, optics, and e`S\-t?Z
% optometry to describe functions on a circular domain. [gpO?'~
% +C8O"
% The following table lists the first 15 Zernike functions. Eamt_/LKf
% Z[OX{_2]K
% n m Zernike function Normalization 9OV@z6
% -------------------------------------------------- |$b8(g$s)
% 0 0 1 1 _FYA? d}
% 1 1 r * cos(theta) 2 `!/[9Y#H p
% 1 -1 r * sin(theta) 2 ~1%*w*
% 2 -2 r^2 * cos(2*theta) sqrt(6) ]c~yMA+]FZ
% 2 0 (2*r^2 - 1) sqrt(3) L FkDb}
% 2 2 r^2 * sin(2*theta) sqrt(6) K^U="
% 3 -3 r^3 * cos(3*theta) sqrt(8) D>[Sib/@
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) O7Jux-E1C
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 2t9UJu4
% 3 3 r^3 * sin(3*theta) sqrt(8) w8w0:@0(
% 4 -4 r^4 * cos(4*theta) sqrt(10) 5, ,~k=
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S)rr
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) CYLab5A
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [9${4=Kq
% 4 4 r^4 * sin(4*theta) sqrt(10) b9RHsr]V
% -------------------------------------------------- vII{i
% &F
uPd}F
% Example 1: aL4^ po
% D9[19,2r`
% % Display the Zernike function Z(n=5,m=1) >jsY'Bm
% x = -1:0.01:1; {#qUZ z-
% [X,Y] = meshgrid(x,x); V!+iq*Z|=
% [theta,r] = cart2pol(X,Y); wKLYyetM!
% idx = r<=1; j*<J&/luYZ
% z = nan(size(X)); D[/fs`XES
% z(idx) = zernfun(5,1,r(idx),theta(idx)); /iFn=pk1?
% figure \ s aV8U7B
% pcolor(x,x,z), shading interp Vo@7G@7K(
% axis square, colorbar LDc EjFK(
% title('Zernike function Z_5^1(r,\theta)') K2zln_W
% SjB"#E)
% Example 2: oI{.{]
% (vO3vCYeQ
% % Display the first 10 Zernike functions iHGVR
% x = -1:0.01:1; <E4(KE
% [X,Y] = meshgrid(x,x); Y2x|6{ #
% [theta,r] = cart2pol(X,Y); Uv(R^50>
% idx = r<=1; \{ @m
% z = nan(size(X)); 'z;(Y*jb
% n = [0 1 1 2 2 2 3 3 3 3]; A7Ql%$v7^
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; |@u2/U9
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ^A@f{g$KB+
% y = zernfun(n,m,r(idx),theta(idx)); /AD&z?My+E
% figure('Units','normalized') Pp-N2t86#2
% for k = 1:10 Xe%J{
% z(idx) = y(:,k); bg i_QB#k\
% subplot(4,7,Nplot(k)) ?Fl}@EA#M
% pcolor(x,x,z), shading interp &))d],tJX
% set(gca,'XTick',[],'YTick',[]) PaI\y!f
% axis square ->b5"{t
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ksv]
% end Iw`tbN
L[
% 6kH6"
% See also ZERNPOL, ZERNFUN2. 9fEe={ B+
;#85 _/
% Paul Fricker 11/13/2006 d/7R}n^
_u[tv,
=7<JD}G
% Check and prepare the inputs: #"N60T@
% ----------------------------- LeLUt<4~
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [[ie
error('zernfun:NMvectors','N and M must be vectors.') &s+l/;3
end [A7TSN
$xWwI(SaB
if length(n)~=length(m) idYB.]Y(
error('zernfun:NMlength','N and M must be the same length.') ['IH*gi
end 7
~~ug
O`@Nl
n = n(:); ^aSb~lce
m = m(:); YCbvCw$Ob
if any(mod(n-m,2)) !q2zuxq!R
error('zernfun:NMmultiplesof2', ... B>fZH\Y
'All N and M must differ by multiples of 2 (including 0).') !zX()V
end %
"(&a'B
F@u7Oel@m
if any(m>n) 4aS}b3=n
error('zernfun:MlessthanN', ... $X#y9<bW
'Each M must be less than or equal to its corresponding N.') *]]Zpa6
end xsH1)
Z_q+Ac{p
if any( r>1 | r<0 ) sF
{,n0<8
error('zernfun:Rlessthan1','All R must be between 0 and 1.') n5$#M
end Z~J]I|R:
"N}t =3i$
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) j}^w:W76
error('zernfun:RTHvector','R and THETA must be vectors.') %y RGN
end f;{Q ~
axnlI*!
r = r(:); eN=jWUoCh
theta = theta(:); ]{1{XIF
length_r = length(r); H>CbMz1u
if length_r~=length(theta) j$)ogGu
error('zernfun:RTHlength', ... !/}3/iU
'The number of R- and THETA-values must be equal.') I\Op/`_=E
end j9+4},>>CU
]>X_E%`G<b
% Check normalization: e(t}$Q=
% -------------------- e$~[\
w
if nargin==5 && ischar(nflag) )=5&Q
isnorm = strcmpi(nflag,'norm'); 'S_i6K
if ~isnorm uN`/&_$c
error('zernfun:normalization','Unrecognized normalization flag.') :*Wq%Y=
end 4qid+ [B
else ]*=4>(F[
isnorm = false; 296}LW
end o!tC{"g
j.q}OK
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f!'i5I]
% Compute the Zernike Polynomials ]DNPG"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q_b!+Y
PT~htG<Fw
% Determine the required powers of r: y#GHmHeh
% ----------------------------------- FP=B/!g
m_abs = abs(m); L I<S
rpowers = []; dbby.%
for j = 1:length(n) sT)>Vdwf_
rpowers = [rpowers m_abs(j):2:n(j)]; /JR+WmO
end :F:1(FDP
rpowers = unique(rpowers); ?h}NL5a
XKWq{,Ks
% Pre-compute the values of r raised to the required powers, \BnU?z
% and compile them in a matrix: : B^"V\WE
% ----------------------------- kq}byv}3I
if rpowers(1)==0 jYp!?%!
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); i7#4&r
rpowern = cat(2,rpowern{:}); 11oNlgY&
rpowern = [ones(length_r,1) rpowern]; m]n2wmE3n
else ,:t,$A
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^ptybVo
rpowern = cat(2,rpowern{:}); 4#IT" i
end t%}<S~"
IJ Jp5[w
% Compute the values of the polynomials: qZd*'ki<
% -------------------------------------- P(shbi@
y = zeros(length_r,length(n)); k6bct@7
for j = 1:length(n)
|3]/CrR_
s = 0:(n(j)-m_abs(j))/2; F vkyp"W3
pows = n(j):-2:m_abs(j); jqaX|)8|$
for k = length(s):-1:1 D;R~!3f./b
p = (1-2*mod(s(k),2))* ... 3F;C{P!
prod(2:(n(j)-s(k)))/ ... 91]|4k93
prod(2:s(k))/ ... 16L YVvmW
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &>\;4E.O5
prod(2:((n(j)+m_abs(j))/2-s(k))); ;\pVc)\4"
idx = (pows(k)==rpowers); Q a (Sb
y(:,j) = y(:,j) + p*rpowern(:,idx); roQI;gq^
end oP,*H6)i
,`HweIq(
if isnorm KqGb+N-@
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); h*fN]k6
end R%jOgZG
end tW UI?\
% END: Compute the Zernike Polynomials s;vt2>;q+e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -qP)L;n
&Gt{9#
% Compute the Zernike functions: j.&dHtp
% ------------------------------ nqy*>X`
idx_pos = m>0; Q4cCg7|0
idx_neg = m<0; 6&$.E! z
7fR5V
z = y; @AZNF+
\W$
if any(idx_pos) $)#orZtzr
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); RhowhQ) G
end :M"+
if any(idx_neg) 8$}<4 `39
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); __g?xw
end 6BV 6<PHJ
hi"C<b.
% EOF zernfun