切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11611阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ``l*;}  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Bb/if:XS  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  f/Y&)#g>k  
    =`+D/ W\[Y  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 z6`0Uv~  
    Htgo=7!?\3  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 2-@)'6"n  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M.  Z}t;:yhR  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of *OA(v^@tx7  
    %   order N and frequency M, evaluated at R.  N is a vector of kSV(T'#x  
    %   positive integers (including 0), and M is a vector with the H5 z1_O_+  
    %   same number of elements as N.  Each element k of M must be a BI%^7\HZ  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) (2eS:1+'8  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ,marNG  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ,< g%}P/  
    %   with one column for every (N,M) pair, and one row for every [y8(v ~H  
    %   element in R. E#_/#J]UQn  
    % |fKT@2(  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 4^r6RS@z  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is /Pe xtj<  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to z6)N![ X  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 )P7ep  
    %   for all [n,m]. DY#195H  
    % K+|XI|1p  
    %   The radial Zernike polynomials are the radial portion of the F^/KD<cgK  
    %   Zernike functions, which are an orthogonal basis on the unit 2V]a+Cgk  
    %   circle.  The series representation of the radial Zernike 1?BLL;[a8  
    %   polynomials is &?y@`',a0{  
    % gIrbOMQ7  
    %          (n-m)/2 .#~!w!T  
    %            __ pnuo;rs  
    %    m      \       s                                          n-2s dDA8IW![S  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r G2N0'R "  
    %    n      s=0 w)|9iL8  
    % qR aPh:Q'  
    %   The following table shows the first 12 polynomials. VHPqEaR  
    % SZXSVz0j  
    %       n    m    Zernike polynomial    Normalization PESvx>:  
    %       --------------------------------------------- Z-lhJ<0/Pa  
    %       0    0    1                        sqrt(2) K&&T:'=/  
    %       1    1    r                           2 v)np.j0V7  
    %       2    0    2*r^2 - 1                sqrt(6) LCSvw  
    %       2    2    r^2                      sqrt(6) ]*P9=!x|M  
    %       3    1    3*r^3 - 2*r              sqrt(8) Pl=)eq YY  
    %       3    3    r^3                      sqrt(8) 7HVENj_b+M  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) eyh}O  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) iDcTO}  
    %       4    4    r^4                      sqrt(10) @k{q[6c2 n  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) s<LnUF1b  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) oUn+tu:  
    %       5    5    r^5                      sqrt(12) LpY{<:y  
    %       --------------------------------------------- pq r_{  
    % lv?`+tU2_  
    %   Example: 3|!3R'g/ >  
    % ujnT B*Cqc  
    %       % Display three example Zernike radial polynomials $gnrd~v4e  
    %       r = 0:0.01:1; z2{y<a9;?  
    %       n = [3 2 5]; >d`GNE  
    %       m = [1 2 1]; D} B?~Lls  
    %       z = zernpol(n,m,r); QGI@5  
    %       figure Y!45Kio  
    %       plot(r,z) EVLL,x.~:z  
    %       grid on TrzAgNt  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') fZpi+I  
    % g%Tokl  
    %   See also ZERNFUN, ZERNFUN2. E`.hM}h  
    r+m.! +  
    % A note on the algorithm. C-S>'\ |8  
    % ------------------------ VoYL}67c  
    % The radial Zernike polynomials are computed using the series S'^ q  
    % representation shown in the Help section above. For many special 2~\SUGW-  
    % functions, direct evaluation using the series representation can LZ_0=Xx%  
    % produce poor numerical results (floating point errors), because Dqo#+_v  
    % the summation often involves computing small differences between ROn@tW  
    % large successive terms in the series. (In such cases, the functions { i6L/U.  
    % are often evaluated using alternative methods such as recurrence 5qH*"i+|s  
    % relations: see the Legendre functions, for example). For the Zernike c_ncx|dUs  
    % polynomials, however, this problem does not arise, because the d)V8FX,t  
    % polynomials are evaluated over the finite domain r = (0,1), and 4v/MZ:%C`  
    % because the coefficients for a given polynomial are generally all hFm^Fy[R  
    % of similar magnitude. f8[O]MrO;  
    % Ph]b6  
    % ZERNPOL has been written using a vectorized implementation: multiple qD*y60~]zz  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Pb;c:HeI/  
    % values can be passed as inputs) for a vector of points R.  To achieve pt"9zkPj  
    % this vectorization most efficiently, the algorithm in ZERNPOL k L6s49  
    % involves pre-determining all the powers p of R that are required to 2DPv7\fW  
    % compute the outputs, and then compiling the {R^p} into a single MG=8`J-`  
    % matrix.  This avoids any redundant computation of the R^p, and Nc(CGl:  
    % minimizes the sizes of certain intermediate variables. q=->) &D%  
    % pl3ap(/  
    %   Paul Fricker 11/13/2006 #S9J9k  
    UL}wGWaoG  
    O!nS3%De  
    % Check and prepare the inputs: xE;O =mI  
    % ----------------------------- ;PC!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ssLswb  
        error('zernpol:NMvectors','N and M must be vectors.') vVSDPlN;  
    end -t S\  
    gIz!~I_U  
    if length(n)~=length(m) NjZ~b/  
        error('zernpol:NMlength','N and M must be the same length.') NW5OLa")J<  
    end ;6``t+]q   
    2<B'PR-??y  
    n = n(:); 3%5YUG@  
    m = m(:); hT1JEu  
    length_n = length(n); %H\J@{f  
    DFWO5Y_  
    if any(mod(n-m,2)) Wgh@XB  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 5\z<xpJ  
    end uU3A,-{-  
    9o5D3 d K  
    if any(m<0) MuOKauYa  
        error('zernpol:Mpositive','All M must be positive.') +Mijio  
    end F<b'{qf"  
    [HY r|T  
    if any(m>n) B2j1G JEO  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Q*T 'tkp  
    end @~$"&B  
    $2h%IK>#G  
    if any( r>1 | r<0 ) >-N(o2j3  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') WqF,\y%W*  
    end zsJ# CDm  
    *'{-!Y  
    if ~any(size(r)==1) #PD6LO  
        error('zernpol:Rvector','R must be a vector.') gm)Uyr$  
    end LE<J<~2Z  
    exhU!p8  
    r = r(:); ;_"|#  
    length_r = length(r); ,9bnR;f\  
    FiiDmhu  
    if nargin==4 HQm_ K0$  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); A/<u>cCW  
        if ~isnorm z4SJxL  
            error('zernpol:normalization','Unrecognized normalization flag.') b*?u+tWP_  
        end WuU wd#e  
    else 5_'lu  
        isnorm = false; J;obh.}u"{  
    end Z,#H\1v3lB  
    ;9k>; g3m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [o#% Eg;  
    % Compute the Zernike Polynomials ia'z9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =|agW.l  
    yV8J-YdsG  
    % Determine the required powers of r: 6`CRT TJ7  
    % ----------------------------------- .^{%hc*w4  
    rpowers = []; RA[j=RxK  
    for j = 1:length(n) #3qeRl  
        rpowers = [rpowers m(j):2:n(j)]; j-ej7  
    end 7tcadXk0  
    rpowers = unique(rpowers); %BGg?&  
    AChz}N$C  
    % Pre-compute the values of r raised to the required powers, ;_(f(8BO   
    % and compile them in a matrix: [oTe8^@[  
    % ----------------------------- g&FTX>wX  
    if rpowers(1)==0 12n:)yQy  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); u)0I$Tc"  
        rpowern = cat(2,rpowern{:}); C")genMH  
        rpowern = [ones(length_r,1) rpowern]; 2 DW @}[G  
    else TsTc3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?+d`_/IB  
        rpowern = cat(2,rpowern{:}); ps 3 )d  
    end e NIzI]~  
    T-%=tY+-  
    % Compute the values of the polynomials: }9S}?R  
    % -------------------------------------- f(5(V %  
    z = zeros(length_r,length_n); 6^Wep- $  
    for j = 1:length_n O{X~,Em=q  
        s = 0:(n(j)-m(j))/2; F]3Y,{/V  
        pows = n(j):-2:m(j); yU v YV-7  
        for k = length(s):-1:1 qG6s.TcG  
            p = (1-2*mod(s(k),2))* ... zi-_l  
                       prod(2:(n(j)-s(k)))/          ... *V6| FU  
                       prod(2:s(k))/                 ... Z0Z6a Zeb  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... /WTEz\k  
                       prod(2:((n(j)+m(j))/2-s(k))); +x"uP  
            idx = (pows(k)==rpowers); ]P?< 2,  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ~18a&T:  
        end X 0y$xC|<  
         /d3Jd .l!  
        if isnorm ~ 29p|X<  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); >c,s}HJ  
        end P"vrYom  
    end n[ B~C  
    sT\:**  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) (GSP3KKo*G  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. _VrY7Mz:r  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated \/NF??k,jk  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive T D _@0Rd  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, &3Zq1o  
    %   and THETA is a vector of angles.  R and THETA must have the same ^dQ{vL@9b9  
    %   length.  The output Z is a matrix with one column for every P-value, 4_R|3L  
    %   and one row for every (R,THETA) pair. .Nn11F< d  
    % Qz~uD'Rs/  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike <g[z jV9p  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) XIW0Z C   
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) @UD:zUT)F  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 |mb2<!ag{  
    %   for all p. B 71/nt9  
    % tEhg',2t(  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 iM+` 7L'  
    %   Zernike functions (order N<=7).  In some disciplines it is Wc3z7xK1@  
    %   traditional to label the first 36 functions using a single mode ;5Sdx5`_  
    %   number P instead of separate numbers for the order N and azimuthal ?{ir$M  
    %   frequency M. ( ay AP  
    % jJ ,_-ui  
    %   Example: f O*jCl  
    % QZ a.c  
    %       % Display the first 16 Zernike functions '/W$9jm  
    %       x = -1:0.01:1; Z>rY9VvWD  
    %       [X,Y] = meshgrid(x,x); 2B,O/3y  
    %       [theta,r] = cart2pol(X,Y); &k }f"TX2  
    %       idx = r<=1; 3nxG>D7  
    %       p = 0:15; @R[{  
    %       z = nan(size(X)); m#7(<#  
    %       y = zernfun2(p,r(idx),theta(idx)); `Fy-"Uf  
    %       figure('Units','normalized') CKsVs.:u  
    %       for k = 1:length(p) ,erw(7}'.  
    %           z(idx) = y(:,k); t'qYM5  
    %           subplot(4,4,k) @YJI'Hf67  
    %           pcolor(x,x,z), shading interp 4U}qrN~=  
    %           set(gca,'XTick',[],'YTick',[]) [0H0%z#tU&  
    %           axis square .Mt3e c<  
    %           title(['Z_{' num2str(p(k)) '}']) f[^f/jGm  
    %       end M;(,0dk  
    % zKJ2 ~=  
    %   See also ZERNPOL, ZERNFUN. /R)wM#&  
    ^kez]>   
    %   Paul Fricker 11/13/2006 FfoOJzf~o  
    jwZ,_CK  
    \/a6h   
    % Check and prepare the inputs: .fA*WQ!lb  
    % ----------------------------- )- C3z   
    if min(size(p))~=1 xs$$fPAQ  
        error('zernfun2:Pvector','Input P must be vector.') 3*b5V<}'|  
    end bF'rK'',  
    %`Re {%1;  
    if any(p)>35 {28|LwmL  
        error('zernfun2:P36', ... 4=zs&   
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... zkQ[<  
               '(P = 0 to 35).']) _VtQMg|u  
    end .HqFdsm  
    ZCiCZ)oc  
    % Get the order and frequency corresonding to the function number: A4K.,bZ   
    % ---------------------------------------------------------------- ^J!q>KJs  
    p = p(:); (i1JRn-f  
    n = ceil((-3+sqrt(9+8*p))/2); !vnQ;g5  
    m = 2*p - n.*(n+2); -yYdj1y;  
    qe~x?FO_>  
    % Pass the inputs to the function ZERNFUN: _7 3q,3`24  
    % ---------------------------------------- z6>@9+V-&  
    switch nargin c OYD N[k  
        case 3 'M90Yia  
            z = zernfun(n,m,r,theta); [6/ QUD8  
        case 4 o4(*nz  
            z = zernfun(n,m,r,theta,nflag); UM}u(;oo%)  
        otherwise U84W(X  
            error('zernfun2:nargin','Incorrect number of inputs.') 6b|?@  
    end eL!41_QI  
    *GP2>oEM  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Ia&R/I  
    function z = zernfun(n,m,r,theta,nflag) a QH6akH  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. vDy&sgS$<  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _;<!8e$C  
    %   and angular frequency M, evaluated at positions (R,THETA) on the z\YIwrq3*  
    %   unit circle.  N is a vector of positive integers (including 0), and }\pI`;*O|  
    %   M is a vector with the same number of elements as N.  Each element jvT'N@  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ;"3B,Yj  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, H'+7z-% G  
    %   and THETA is a vector of angles.  R and THETA must have the same #;!&8iH  
    %   length.  The output Z is a matrix with one column for every (N,M) =;}W)V|X)S  
    %   pair, and one row for every (R,THETA) pair. 2[E wN!IZ  
    % ?b7\m":'  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ngY%T5-  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), / )0hsQs  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral k[=qx{Osx%  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8~=*\ @^  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized c :R?da  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. XtF m5\U  
    % lame/B&nc  
    %   The Zernike functions are an orthogonal basis on the unit circle. U"oNJ8&%|  
    %   They are used in disciplines such as astronomy, optics, and @hLkU4S  
    %   optometry to describe functions on a circular domain. YJi%vQ*]  
    % ]rcF/uQJ<n  
    %   The following table lists the first 15 Zernike functions. qnm_#!&uHT  
    % JAbUK[:K  
    %       n    m    Zernike function           Normalization "kg`TJf=  
    %       -------------------------------------------------- #-hO\ QdC  
    %       0    0    1                                 1 nHK(3Z4G  
    %       1    1    r * cos(theta)                    2 Qm%F]nyy  
    %       1   -1    r * sin(theta)                    2 H= dIZ  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) @Z)|_  
    %       2    0    (2*r^2 - 1)                    sqrt(3) P rt} 01$  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Cu"Cpt[  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Bx\&7|,x  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 5*0zI\  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ,'#TdLe  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) kmB!NxF>)F  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) F_-Lu]*  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f~IJ4T2#N  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) lU WXXuO]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 37AVk`a  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) i1iP'`r  
    %       -------------------------------------------------- g40Hj Y  
    % %E?Srs}j  
    %   Example 1: gGqrFh\  
    % ]5!3|UYS  
    %       % Display the Zernike function Z(n=5,m=1) VK}4 <u  
    %       x = -1:0.01:1; $-4](br|  
    %       [X,Y] = meshgrid(x,x); +X?ErQm  
    %       [theta,r] = cart2pol(X,Y); igO>)XbsM  
    %       idx = r<=1; XN<SKW(H3  
    %       z = nan(size(X)); Q PH=`s  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); `y8pwWo-o  
    %       figure :uL<UD,vu3  
    %       pcolor(x,x,z), shading interp i,Ct AbMx  
    %       axis square, colorbar  tm1 =  
    %       title('Zernike function Z_5^1(r,\theta)') +ikSa8)*i  
    % ?HEqv$n  
    %   Example 2: F^ q{[Z  
    % HB07 n4 |  
    %       % Display the first 10 Zernike functions 'g v0;L  
    %       x = -1:0.01:1; *dBy<dIy  
    %       [X,Y] = meshgrid(x,x); sqkWQ`Ur  
    %       [theta,r] = cart2pol(X,Y); FaHOutP  
    %       idx = r<=1; (f/(q-7VWt  
    %       z = nan(size(X)); }~FX!F#oU  
    %       n = [0  1  1  2  2  2  3  3  3  3]; X+vKY  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; U ?[ (  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; W/'1ftn?D  
    %       y = zernfun(n,m,r(idx),theta(idx)); q8 v iC|  
    %       figure('Units','normalized') hCxg6e<[  
    %       for k = 1:10 ]HKt7 %,  
    %           z(idx) = y(:,k); ?d')#WnC  
    %           subplot(4,7,Nplot(k)) ">V&{a-C4  
    %           pcolor(x,x,z), shading interp Y&2FH/(M  
    %           set(gca,'XTick',[],'YTick',[]) .#EU@Hc  
    %           axis square yi7.9/;a  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) h*w9{[L  
    %       end Y;'<u\^M"  
    % A;AQw  
    %   See also ZERNPOL, ZERNFUN2. :X>Wd+lY:_  
    n,I3\l9  
    %   Paul Fricker 11/13/2006 lyn%r  
    @@d_F<Ym[  
    Kda'N$|`  
    % Check and prepare the inputs: 6<&~ R 3dQ  
    % ----------------------------- *d._H1zT  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Hv6h7-  
        error('zernfun:NMvectors','N and M must be vectors.') dX(JV' 18A  
    end j^G=9r[,  
    g*k)ws  
    if length(n)~=length(m) Tigw+2  
        error('zernfun:NMlength','N and M must be the same length.') tE*BZXBlm  
    end J)nK9  
    VcjbRpTy&  
    n = n(:); !'f7;%7s  
    m = m(:); 5F kdGF  
    if any(mod(n-m,2)) Ek +R  
        error('zernfun:NMmultiplesof2', ... y)kxR  
              'All N and M must differ by multiples of 2 (including 0).') 6w.E Sm  
    end RhWQ:l]  
    9A |A@E#  
    if any(m>n) `_/bg(E  
        error('zernfun:MlessthanN', ... NuZ2,<~9  
              'Each M must be less than or equal to its corresponding N.') *'@O o  
    end 3Z*r#d$nh:  
    JCWTB`EB>  
    if any( r>1 | r<0 ) I0XJ& P%  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') VL%. maj  
    end PD#,KqL:  
    3W1Lh~Av  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) i)#-VOhX)  
        error('zernfun:RTHvector','R and THETA must be vectors.') (\\;A?  
    end +\!.X _Ij  
    ki1(b]rf  
    r = r(:); \`Hp/D1  
    theta = theta(:); c 4z&HQd  
    length_r = length(r); O|Uz)Y94  
    if length_r~=length(theta) & ALnE:F  
        error('zernfun:RTHlength', ... MA .;=T  
              'The number of R- and THETA-values must be equal.') U>tR:)  
    end #XQ/y}(  
    5lsslE+:J  
    % Check normalization: -K|1w'E  
    % -------------------- Ow 0>qzTg  
    if nargin==5 && ischar(nflag) fPe S;  
        isnorm = strcmpi(nflag,'norm'); vF\>;pcT  
        if ~isnorm qbyYNlXqm  
            error('zernfun:normalization','Unrecognized normalization flag.') ^\}MG!l  
        end "FHJ_$!  
    else r1!1u7dr t  
        isnorm = false; yr\ClIU  
    end B=A!hXNa  
    3.W[]zH/u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #]h X ."b2  
    % Compute the Zernike Polynomials %q5dV<X'c  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]B>76?2W  
    #j2kT  
    % Determine the required powers of r: ?G`m;S  
    % ----------------------------------- BX_yC=S  
    m_abs = abs(m); RV~t%Sw^  
    rpowers = []; 8LV6E5Q  
    for j = 1:length(n) Ysm RY=3  
        rpowers = [rpowers m_abs(j):2:n(j)]; @=kg K[t 9  
    end v3"6'.f;bY  
    rpowers = unique(rpowers); i l^;2`]&  
    8AR8u!;8  
    % Pre-compute the values of r raised to the required powers, FJn-cR.n  
    % and compile them in a matrix: { ^o.f  
    % ----------------------------- ]>M\|,wh  
    if rpowers(1)==0 |WB-Ng  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &S4*x|-C&  
        rpowern = cat(2,rpowern{:}); .\_):j*  
        rpowern = [ones(length_r,1) rpowern]; |z)s9B;:#i  
    else E#!N8fQ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); tW/k  
        rpowern = cat(2,rpowern{:}); Y`~B> J  
    end h,c*:  
    Kq[4I[+R  
    % Compute the values of the polynomials: "_/ih1z]  
    % -------------------------------------- W&5/1``u\  
    y = zeros(length_r,length(n)); kQkc+sGJf  
    for j = 1:length(n) [}szM^  
        s = 0:(n(j)-m_abs(j))/2; GDSV:]hL  
        pows = n(j):-2:m_abs(j); !hVbx#bXl  
        for k = length(s):-1:1 [IAUJ09>I  
            p = (1-2*mod(s(k),2))* ... 3(e_2v  
                       prod(2:(n(j)-s(k)))/              ... !E$$ FvL  
                       prod(2:s(k))/                     ... ^kfqw0!  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... t:2DB)  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); *2 Pr1U  
            idx = (pows(k)==rpowers); j(%N.f6  
            y(:,j) = y(:,j) + p*rpowern(:,idx); & /8Tth86  
        end i q`}c |c  
         _(-jk4 L  
        if isnorm a&>NuMDI  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {+9RJmZg  
        end z Rna=h!  
    end d,GOP_N8I  
    % END: Compute the Zernike Polynomials y#'hOSR2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6f +aGz  
    ;<Q%d~$xy}  
    % Compute the Zernike functions: hDxq9EF  
    % ------------------------------ `,]Bs*~  
    idx_pos = m>0; `X<B+:>v-  
    idx_neg = m<0; j n^X{R\  
    zT>!xGTu7~  
    z = y; }JFTe g  
    if any(idx_pos) UDEGQ^)Xz|  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); X +!+&RAN*  
    end Z:9Q~}x8  
    if any(idx_neg) b`X''6  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); oPi>]#X  
    end BwT[SI<Sg  
    >._d2.Q'  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的