非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 m?kiGC&m
function z = zernfun(n,m,r,theta,nflag) ~&RTLr#\*M
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. x*Z'i<;B
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ~xd?y*gk;
% and angular frequency M, evaluated at positions (R,THETA) on the AYnPxiW|
% unit circle. N is a vector of positive integers (including 0), and L('1NN2
% M is a vector with the same number of elements as N. Each element wsmgkg
% k of M must be a positive integer, with possible values M(k) = -N(k) os5$(
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, *$=i1w
% and THETA is a vector of angles. R and THETA must have the same T >8P1p@A,
% length. The output Z is a matrix with one column for every (N,M) f30J8n"k
% pair, and one row for every (R,THETA) pair. t^'nh
1=
% *?<N3Rr*
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,)`_?^\$f
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), k ]NZ%.
% with delta(m,0) the Kronecker delta, is chosen so that the integral \\SQACN
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, e \Qys<2r
% and theta=0 to theta=2*pi) is unity. For the non-normalized DZ|*hQU>K
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. m[}P
% akvi^]x
% The Zernike functions are an orthogonal basis on the unit circle. pyhXET
'
% They are used in disciplines such as astronomy, optics, and tz):$1X_
% optometry to describe functions on a circular domain. vzSb(
% .\caRb[
% The following table lists the first 15 Zernike functions.
YNBM\Q
% TipH}
% n m Zernike function Normalization 8~(xi<"e
% -------------------------------------------------- z 3aGK
% 0 0 1 1 hF$`=hE,F~
% 1 1 r * cos(theta) 2 +0Q
% 1 -1 r * sin(theta) 2 \dHqCQ
% 2 -2 r^2 * cos(2*theta) sqrt(6) :$D*ab^^P
% 2 0 (2*r^2 - 1) sqrt(3) *duG/?>P
% 2 2 r^2 * sin(2*theta) sqrt(6) CE3l_[c
% 3 -3 r^3 * cos(3*theta) sqrt(8) 8C{&i5kj\E
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) m%L!eR
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) \9[vi +T
% 3 3 r^3 * sin(3*theta) sqrt(8) \=0;EI-j
% 4 -4 r^4 * cos(4*theta) sqrt(10) Wx0i_HFR
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b d 1^
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) `%Fp'`ZM$8
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <ww D*t
% 4 4 r^4 * sin(4*theta) sqrt(10) ZSu.0|0#
% -------------------------------------------------- ;VLDXvGd
% yx8G9SO?
% Example 1: Zbnxs.i!
% -`'|z+V
% % Display the Zernike function Z(n=5,m=1) "5N4
of
8
% x = -1:0.01:1; 65aYH4"
% [X,Y] = meshgrid(x,x); K e4oLF2
% [theta,r] = cart2pol(X,Y); 2_pF#M9
% idx = r<=1; xCZ_x$bk
% z = nan(size(X)); 44e]sT.B
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 2E40&
% figure nWsRauY
% pcolor(x,x,z), shading interp <PSz`)SN
% axis square, colorbar Owf!dMA;nF
% title('Zernike function Z_5^1(r,\theta)') THwM',6
% TFkG"ev
% Example 2: w"0$cL3
% wKpGJ&
{
% % Display the first 10 Zernike functions Kyh6QA^
% x = -1:0.01:1; ,t 2CQ
% [X,Y] = meshgrid(x,x); q]{gAGe~
% [theta,r] = cart2pol(X,Y); +jE)kaV%
% idx = r<=1; 1 fcV&qHR
% z = nan(size(X)); ()6%1zCO
% n = [0 1 1 2 2 2 3 3 3 3]; |&@q$d
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ^X&`YXjuN
% Nplot = [4 10 12 16 18 20 22 24 26 28]; }4>u_)nt
% y = zernfun(n,m,r(idx),theta(idx)); )?[2Y%P
% figure('Units','normalized') $+PioSq
% for k = 1:10 x[t?hl=:
% z(idx) = y(:,k); '`upSJ;e
% subplot(4,7,Nplot(k)) vGyQ306
% pcolor(x,x,z), shading interp XI`_PQco
% set(gca,'XTick',[],'YTick',[]) SLuQv?R}9
% axis square _ %mm
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Mzg'$]N
% end (m1m}* @
% q-t%spkl
% See also ZERNPOL, ZERNFUN2. @zS/J,:v}
G5qsnTxUJ
% Paul Fricker 11/13/2006 {b- C,J
E{6ku=2F
$MasYi
% Check and prepare the inputs: q<\r}1Dm
% ----------------------------- @Xoh@:j\
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .U(6])%;@
error('zernfun:NMvectors','N and M must be vectors.') -v9 (43
end >> cW0I/`
xLIyh7$t
if length(n)~=length(m) eQQVfEvS
error('zernfun:NMlength','N and M must be the same length.') .:H'9QJg
end O#igH
}|h-=T '
n = n(:); {Q/@ Y.~<
m = m(:); f@Mku0VT
if any(mod(n-m,2)) gS(JgN
error('zernfun:NMmultiplesof2', ... hak#Iz0[C
'All N and M must differ by multiples of 2 (including 0).') |g7)A?2J~
end 1%M^MT%&
fXevr `
if any(m>n) ,~;`@
error('zernfun:MlessthanN', ... `*CoVx~fk
'Each M must be less than or equal to its corresponding N.') a?Om;-i2`S
end lJa-O
])pX)(a
if any( r>1 | r<0 ) crd|r."
error('zernfun:Rlessthan1','All R must be between 0 and 1.') AkjoD7.*
end &/EZn xl
3>(~5
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -C^qN7Bz
error('zernfun:RTHvector','R and THETA must be vectors.') b c
.Vy
end iP7KM*ks
&\?{%xj
r = r(:); IAd^$9
theta = theta(:); 'PMzm/;8st
length_r = length(r); l$BKE{rg
if length_r~=length(theta) \@2sI
error('zernfun:RTHlength', ... Fo"'[`
'The number of R- and THETA-values must be equal.') fZd~},X
end 4z|Yfvq
cNN_KA
% Check normalization: h^9Ne/s~
% -------------------- '.&,.E&{$
if nargin==5 && ischar(nflag) {iq{<;)U?U
isnorm = strcmpi(nflag,'norm'); gvZLW!={
if ~isnorm D/{ Spw@
error('zernfun:normalization','Unrecognized normalization flag.') 1 _W5@)
end OQX ek@~2
else X>jwjRK
$
isnorm = false; _Q;M$.[zyR
end E{9{%J
\;tKss!|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I|[aa$G
% Compute the Zernike Polynomials }\ui}\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;Wr,VU]
Z42v@?R.!W
% Determine the required powers of r: }Lwj~{
% ----------------------------------- 13{"sY:PT#
m_abs = abs(m); ;lWy?53=@
rpowers = []; T{K+1SPy4
for j = 1:length(n) -ap;Ul?
rpowers = [rpowers m_abs(j):2:n(j)]; eEe8T=mD
end <Q-ufF85)
rpowers = unique(rpowers); S+OI?QS
m9>nvrQ
% Pre-compute the values of r raised to the required powers, g?o$:>c
% and compile them in a matrix: +XRv
iHA`
% ----------------------------- { K0T%.G
if rpowers(1)==0 VF==F_l
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); lR^dT4
rpowern = cat(2,rpowern{:}); tT#Q`cB
rpowern = [ones(length_r,1) rpowern]; 8UL:C?eY
else GrQAho
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?y45#Tk]
rpowern = cat(2,rpowern{:}); qaGIU`}:$A
end %J%gXk}]
E 0pF; P5
% Compute the values of the polynomials: s*#|EdD6@
% -------------------------------------- B
9Mwj:)}
y = zeros(length_r,length(n)); @%cJjZ5y
for j = 1:length(n) qP<,"9!I
s = 0:(n(j)-m_abs(j))/2; $ .Z2Rdlv(
pows = n(j):-2:m_abs(j); FZ2-e
for k = length(s):-1:1 8"*$e
I5
p = (1-2*mod(s(k),2))* ... ujWHO$uz!
prod(2:(n(j)-s(k)))/ ... /7"1\s0 U
prod(2:s(k))/ ... D3lYy>~d5;
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;qk~>
prod(2:((n(j)+m_abs(j))/2-s(k))); $xZk{ rK
idx = (pows(k)==rpowers); OB^2NL~Q~
y(:,j) = y(:,j) + p*rpowern(:,idx); @Q1jH~t
end a&ByV!%%+_
0De M
if isnorm XP;&iZJ
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); CijS=-
end gX _BJ6
end ^{K8uN7
% END: Compute the Zernike Polynomials DVcu*UVw
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l?1!h2z%
9G8QzIac
% Compute the Zernike functions: IP;@unBl
% ------------------------------ ,]{NZ9
idx_pos = m>0; d$,i?d,
idx_neg = m<0; _TXV{<E6
"AK3t'
jF*
z = y; dGteYt_F
if any(idx_pos) CzEn_ZMb
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2!3&Ub#FO
end Yr= mLT|JN
if any(idx_neg) fDqXM;a"
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @ty|HXW
end bgK(l d`
RZtL<2.@
% EOF zernfun