切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11334阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 E3gQ`+wNg?  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! -7pZRnv  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  &%INfl>o7.  
    Qs*g)Yr  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 J;G+6C$:  
    !v94FkS>  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) +r"{$'{^  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. pMKnA. |  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of >7p?^*&7;  
    %   order N and frequency M, evaluated at R.  N is a vector of SBg BZm}%  
    %   positive integers (including 0), and M is a vector with the 6 `+dP"@  
    %   same number of elements as N.  Each element k of M must be a V^As@P8,'(  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) F /IXqj  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is xJ:15eDC  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ,dLh`t<\  
    %   with one column for every (N,M) pair, and one row for every K}L-$B*i  
    %   element in R. 4%0eX]  
    % u`O xY  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 2I* 7?`  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is esIE i!d  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to /ZUKt  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 L#1Y R}m  
    %   for all [n,m]. ]<V[H  
    % K?8{ y  
    %   The radial Zernike polynomials are the radial portion of the ryg1o=1v/  
    %   Zernike functions, which are an orthogonal basis on the unit yF8 av=<{  
    %   circle.  The series representation of the radial Zernike aqSHo2]DX9  
    %   polynomials is g[!t@K  
    % }_vE lBh6$  
    %          (n-m)/2 , `ST Va-  
    %            __ n*D-01v YP  
    %    m      \       s                                          n-2s /'ccFm2  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r @`^+XPK\  
    %    n      s=0 3Un q 9  
    % J\^ZRu_K  
    %   The following table shows the first 12 polynomials. e C?adCb  
    % XCc /\  
    %       n    m    Zernike polynomial    Normalization $vlq]6V8  
    %       --------------------------------------------- R@ N I  
    %       0    0    1                        sqrt(2) Ri=>evx  
    %       1    1    r                           2 rXPq'k'h#-  
    %       2    0    2*r^2 - 1                sqrt(6) hy3j8?66  
    %       2    2    r^2                      sqrt(6) B&ItA76  
    %       3    1    3*r^3 - 2*r              sqrt(8) aVNBF`  
    %       3    3    r^3                      sqrt(8) 8QDs4Bv|  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ~za=yZo7(  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) `z=U-v'H)D  
    %       4    4    r^4                      sqrt(10) `$vTGkGpY  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) N}HQvlLkF9  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Cp` [0v~0  
    %       5    5    r^5                      sqrt(12) :8\!;!  
    %       --------------------------------------------- \x P$m|Y3  
    % ~w_4 nE  
    %   Example: ,7&`V=C  
    % ?f<JwF<  
    %       % Display three example Zernike radial polynomials +LuGjDn0  
    %       r = 0:0.01:1; +[C dd{2  
    %       n = [3 2 5]; ~47Bbom  
    %       m = [1 2 1]; (C>FM8$J  
    %       z = zernpol(n,m,r); Y /$`vgqs  
    %       figure <Z GEmQ  
    %       plot(r,z) `@1y|j:m  
    %       grid on l$N b1&  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ;T0F1  
    % D;VQoO  
    %   See also ZERNFUN, ZERNFUN2. d$Y3 a^O|  
    o8Vtxnkg  
    % A note on the algorithm. 3NAU|//J  
    % ------------------------ ilJeI@  
    % The radial Zernike polynomials are computed using the series Whp;wAz  
    % representation shown in the Help section above. For many special .@KpN*`KH  
    % functions, direct evaluation using the series representation can G8b/eWtP  
    % produce poor numerical results (floating point errors), because [!1z; /  
    % the summation often involves computing small differences between 5{/CqUIl  
    % large successive terms in the series. (In such cases, the functions D#Fe\8!l  
    % are often evaluated using alternative methods such as recurrence db#QA#^S  
    % relations: see the Legendre functions, for example). For the Zernike =2!AK[KxX  
    % polynomials, however, this problem does not arise, because the U  ?'$E\  
    % polynomials are evaluated over the finite domain r = (0,1), and XN65bq  
    % because the coefficients for a given polynomial are generally all 65X31vU  
    % of similar magnitude. &U q++f6  
    % O92a*)  
    % ZERNPOL has been written using a vectorized implementation: multiple 64xq@_+  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 5y-8_)y8o  
    % values can be passed as inputs) for a vector of points R.  To achieve banie{ e  
    % this vectorization most efficiently, the algorithm in ZERNPOL \)Jv4U\;  
    % involves pre-determining all the powers p of R that are required to =Lx*TbsFYt  
    % compute the outputs, and then compiling the {R^p} into a single E)z[@Np  
    % matrix.  This avoids any redundant computation of the R^p, and Pl^-]~  
    % minimizes the sizes of certain intermediate variables. 7LMad%  
    % ;ELQIHnD"  
    %   Paul Fricker 11/13/2006 Y8!T4dkn  
    uMOm<kn  
    Cx$C+  
    % Check and prepare the inputs: 6&V4W"k  
    % ----------------------------- AdBF$nn[  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @gzm4  
        error('zernpol:NMvectors','N and M must be vectors.') eBiP\  
    end \bAsn89O  
    gNk x]bm  
    if length(n)~=length(m) t95hI DtD  
        error('zernpol:NMlength','N and M must be the same length.') <K4`GT"n  
    end R7aS{8nn  
    k#"Pv"  
    n = n(:); Q|eRek  
    m = m(:); q)JG_Y.p  
    length_n = length(n); 2}`Q9?  
    N_S>%Z+  
    if any(mod(n-m,2))  FkJa+ZA  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') [XFZ2'OO  
    end 86d *  
    BOqq=WY  
    if any(m<0) aIaydu+\  
        error('zernpol:Mpositive','All M must be positive.') 0_JbE  
    end g*$ 0G  
    ^$3 ~;/|  
    if any(m>n) PRm Z 3  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') N!6{c~^  
    end d5<@WI:wz  
    .UNh\R?r  
    if any( r>1 | r<0 ) ~N+lI\K  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 8>q:Q<BB2  
    end ^9T6Ix{=  
    6_/oVvd  
    if ~any(size(r)==1) $$YLAgO4  
        error('zernpol:Rvector','R must be a vector.') %8iA0t+  
    end -,j J{Y~  
    y@g{:/cmO  
    r = r(:); rXo2MX@u  
    length_r = length(r); ?#]K54?  
    1xK'T_[  
    if nargin==4 [;B_ENV  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); rC]jz$sle  
        if ~isnorm Cnf;5/  
            error('zernpol:normalization','Unrecognized normalization flag.') -F,o@5W>Y  
        end 2c fzLW(  
    else }i_[wq{E&  
        isnorm = false; D[{p~x^  
    end |E @Gsw  
    Avw"[~Xd  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u&l2s&i  
    % Compute the Zernike Polynomials vj0`[X   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /:dVW" A|  
    *|AnL}GJ  
    % Determine the required powers of r: GV)#>PL  
    % ----------------------------------- [:$j<}UmB  
    rpowers = []; [ d<|Cde  
    for j = 1:length(n) A`u04Lm7  
        rpowers = [rpowers m(j):2:n(j)]; ;}IF'ANA  
    end 77/y{#Sk  
    rpowers = unique(rpowers); W#'c6Hq2c  
    Y5LESZWo  
    % Pre-compute the values of r raised to the required powers, {neE(0c  
    % and compile them in a matrix: FsZM_0>/s  
    % ----------------------------- f ;|[  
    if rpowers(1)==0 !$h%$se  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _%l+v  
        rpowern = cat(2,rpowern{:}); ;nj'C1  
        rpowern = [ones(length_r,1) rpowern]; t&SJ!>7_c  
    else M "p6xp/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x@.iDP@(  
        rpowern = cat(2,rpowern{:}); G/(oQA  
    end )?'sw5C  
    M4M 4*o  
    % Compute the values of the polynomials: `{I,!to  
    % -------------------------------------- H_;Dq*  
    z = zeros(length_r,length_n); F']Vg31c  
    for j = 1:length_n 8s8q`_.)(  
        s = 0:(n(j)-m(j))/2; 3f's>+,#%  
        pows = n(j):-2:m(j); 3leg,q d  
        for k = length(s):-1:1 #f.@XIt'  
            p = (1-2*mod(s(k),2))* ... )ACa0V>*p  
                       prod(2:(n(j)-s(k)))/          ... v)N6ZOj*C  
                       prod(2:s(k))/                 ... pvy;L[c  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... m|~,#d@  
                       prod(2:((n(j)+m(j))/2-s(k))); R2Tvo?xI7  
            idx = (pows(k)==rpowers); 3D\.S j%  
            z(:,j) = z(:,j) + p*rpowern(:,idx); DWJ%r"aN  
        end ~'fa,XZ<  
         k;zb q  
        if isnorm w,8 M  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); i40r}?-  
        end hv*n";V   
    end /G[y 24 Q  
    y(.WK8  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) O-T/H-J`  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. QH\*l~;B\  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated (!X:[Ah*$  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive .v1rrH?  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 5tq$SF42X  
    %   and THETA is a vector of angles.  R and THETA must have the same yvDzxu  
    %   length.  The output Z is a matrix with one column for every P-value, SVq7qc9K?  
    %   and one row for every (R,THETA) pair. 3%EwA\V(  
    % S"3g 1yU^_  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike DvOg|XUU0  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ?U-p jjM  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ;;nmF#  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 m(OBk;S~   
    %   for all p. )1x333.[c  
    % LiV]!*9$KG  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 fI$, ?>  
    %   Zernike functions (order N<=7).  In some disciplines it is >MQW{^  
    %   traditional to label the first 36 functions using a single mode *"zE,Bp"  
    %   number P instead of separate numbers for the order N and azimuthal APc@1="#J  
    %   frequency M. !uO|T'u0a  
    % STOE=TC>  
    %   Example: ae!_u \$  
    % IL%&*B  
    %       % Display the first 16 Zernike functions ~o # NOfYi  
    %       x = -1:0.01:1; R:ar85F  
    %       [X,Y] = meshgrid(x,x); #='#`5_5  
    %       [theta,r] = cart2pol(X,Y); b/5~VY*T  
    %       idx = r<=1; UVI=&y]c,p  
    %       p = 0:15; Yhsb$wu  
    %       z = nan(size(X)); .FMF0r>l  
    %       y = zernfun2(p,r(idx),theta(idx)); HPCA,*YR`  
    %       figure('Units','normalized') hcf>J6ZLT  
    %       for k = 1:length(p) T2(+HI2  
    %           z(idx) = y(:,k); hR`dRbBi%  
    %           subplot(4,4,k) El+]}D"  
    %           pcolor(x,x,z), shading interp *M`[YG19!e  
    %           set(gca,'XTick',[],'YTick',[]) %xk]y&jv  
    %           axis square 5N|77AAxK  
    %           title(['Z_{' num2str(p(k)) '}']) "R30oA#m  
    %       end }Ql;%7  
    % SfR!q4b=  
    %   See also ZERNPOL, ZERNFUN.  E;|\?>  
    G: &Q)_  
    %   Paul Fricker 11/13/2006 ?b7vc^E&  
    %vThbP#mR|  
    K 6G n  
    % Check and prepare the inputs: (f.A5~e  
    % ----------------------------- eBN>|mE4N  
    if min(size(p))~=1 >C&!# 3  
        error('zernfun2:Pvector','Input P must be vector.') ,}|V'y  
    end tllg$CQ5  
    2 rBF<z7  
    if any(p)>35 d8r+UP@#  
        error('zernfun2:P36', ... ypifXO;m7  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ^IId =V=2  
               '(P = 0 to 35).']) Rd!.8K[  
    end gSv<.fD"  
    l3MH+o  
    % Get the order and frequency corresonding to the function number: i)p__Is  
    % ---------------------------------------------------------------- SwL\=nq+~  
    p = p(:); WUV Q_<i+  
    n = ceil((-3+sqrt(9+8*p))/2); hg&AQk  
    m = 2*p - n.*(n+2);  _HL3XT  
    nbRg<@  
    % Pass the inputs to the function ZERNFUN: \G"/Myi  
    % ---------------------------------------- q>X:z0H  
    switch nargin d+w<y~\ q  
        case 3 h}d7M55#|  
            z = zernfun(n,m,r,theta); Umd!j,  
        case 4 $R5-JvJJH  
            z = zernfun(n,m,r,theta,nflag); -|T^  
        otherwise V cL  
            error('zernfun2:nargin','Incorrect number of inputs.') -Tt}M#W   
    end 0jS/U|0  
    x?F{=\z/o  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 uj@<_|7  
    function z = zernfun(n,m,r,theta,nflag) }X?*o `sW  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. LNb![Rq  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N P:TpB6.=q  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ]3,0 8JW=  
    %   unit circle.  N is a vector of positive integers (including 0), and +g[B &A!d+  
    %   M is a vector with the same number of elements as N.  Each element w;(gi  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) :&%;s*-9  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 9|`@czw  
    %   and THETA is a vector of angles.  R and THETA must have the same yM2&cMHH~  
    %   length.  The output Z is a matrix with one column for every (N,M) ChGM7uu2  
    %   pair, and one row for every (R,THETA) pair. m [g}vwS  
    % ""d>f4,S  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike v\eBL&WK  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), SDwSlwf  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral "=(;l3-o  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, E-D5iiF  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized _XZ=4s  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. B`aAvD`7  
    % NjxW A&[ng  
    %   The Zernike functions are an orthogonal basis on the unit circle. SS~Q;9o  
    %   They are used in disciplines such as astronomy, optics, and sdWl5 "  
    %   optometry to describe functions on a circular domain. xNkY'4%  
    % "BRE0Ir:  
    %   The following table lists the first 15 Zernike functions. Z]f2&  
    % >B  
    %       n    m    Zernike function           Normalization OpLSjr  
    %       -------------------------------------------------- nS4S[|w"  
    %       0    0    1                                 1 8tMte!E  
    %       1    1    r * cos(theta)                    2 02[II_< 1  
    %       1   -1    r * sin(theta)                    2 )mdNvb[*n  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) s>\g03=  
    %       2    0    (2*r^2 - 1)                    sqrt(3) pG6-.F;  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) BT3O_X`u  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ntV >m*^  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) =fG8YZ(  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) LDeVNVM  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 63S1ed [  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) :$aW@?zAY  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L@r.R_*H?s  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 17)M.(qmuP  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) HW72 6K*  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) M[u3]dN  
    %       -------------------------------------------------- ,~xU>L^  
    % ]ECZU   
    %   Example 1: ;;!{m(;LS}  
    % Rk%M~D*-  
    %       % Display the Zernike function Z(n=5,m=1) o$VH,2 QF  
    %       x = -1:0.01:1; 3gy;$}Lq T  
    %       [X,Y] = meshgrid(x,x); *^6xt7  
    %       [theta,r] = cart2pol(X,Y); +c`C9RXk  
    %       idx = r<=1; "NH+qQhs  
    %       z = nan(size(X)); [!? ,TGM}^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); [9om"'  
    %       figure ZHlin#"  
    %       pcolor(x,x,z), shading interp Z(mn U;9{v  
    %       axis square, colorbar .oj"ru  
    %       title('Zernike function Z_5^1(r,\theta)') KHz838C]  
    % g/Jj]X#r  
    %   Example 2: D{c>i`\G  
    % Z'dI!8(Nf  
    %       % Display the first 10 Zernike functions 8M+F!1-#  
    %       x = -1:0.01:1; :TYzzl43  
    %       [X,Y] = meshgrid(x,x); zl 0^EltiU  
    %       [theta,r] = cart2pol(X,Y); up3<=u{>  
    %       idx = r<=1; MVP)rugU  
    %       z = nan(size(X)); \Ntdl:fSw  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ({ kGK0  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ?>jArzI  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 50bP&dj&  
    %       y = zernfun(n,m,r(idx),theta(idx)); efkie}  
    %       figure('Units','normalized') [pgkY!R?)  
    %       for k = 1:10 s k6|_  
    %           z(idx) = y(:,k); yn ":!4U1  
    %           subplot(4,7,Nplot(k)) "rDzrz  
    %           pcolor(x,x,z), shading interp [I<'E LX  
    %           set(gca,'XTick',[],'YTick',[]) q\ y#  
    %           axis square T>Rf?%o  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ajW$d!  
    %       end FJ,\?ooGf  
    % S%s|P=u  
    %   See also ZERNPOL, ZERNFUN2. 'A(-MTd%  
    m\Fb ,  
    %   Paul Fricker 11/13/2006 Ldj^O9p(  
    &R FM d=  
    us,,W(q  
    % Check and prepare the inputs: ~K#_'Ldrd  
    % ----------------------------- \3(| c#c  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?CW^*So  
        error('zernfun:NMvectors','N and M must be vectors.') q MdtJ(gq  
    end t2%@py*bU  
    _ KhEwd  
    if length(n)~=length(m) 'j<:FUDJ  
        error('zernfun:NMlength','N and M must be the same length.') 0/00 W6r0  
    end [xs)u3b  
    m>-^ K  
    n = n(:); ^AjYe<RU}  
    m = m(:); (=tF2YBV  
    if any(mod(n-m,2)) aU]O$Pg{  
        error('zernfun:NMmultiplesof2', ... g yH7((#i  
              'All N and M must differ by multiples of 2 (including 0).') a0/n13c?G  
    end t"bPKFRy9E  
    iMeRQYW  
    if any(m>n) -f;j1bQ  
        error('zernfun:MlessthanN', ... CbH T #  
              'Each M must be less than or equal to its corresponding N.') {{[jC"4AY  
    end k1Mxsd  
    GKsL~;8"  
    if any( r>1 | r<0 ) B/9<b{6  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') JXRf4QmG  
    end 0@e}hv;  
    >[%.h(h/%  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 6[3Ioh  
        error('zernfun:RTHvector','R and THETA must be vectors.') Rr;LV<q+  
    end qfP"UAc{/  
    D.&eM4MZ  
    r = r(:); 5IE+M  
    theta = theta(:); mLk6!&zN  
    length_r = length(r); z1SMQLk  
    if length_r~=length(theta) )<x;ra^  
        error('zernfun:RTHlength', ... kSDa\l!W]  
              'The number of R- and THETA-values must be equal.') NtA|#"^  
    end eYD9#y  
    ZaUcP6[h  
    % Check normalization: Yr"!&\[oz  
    % -------------------- J.e8UQ@=5  
    if nargin==5 && ischar(nflag) j#nO6\&o  
        isnorm = strcmpi(nflag,'norm'); x+*L5$;h  
        if ~isnorm "U5Ln2X{J  
            error('zernfun:normalization','Unrecognized normalization flag.') 0q>NE <L  
        end K@j^gF/0B  
    else mb~=Xyk&  
        isnorm = false; zmL~]! ~&  
    end DvRA2(M  
    S `m- 5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y5AXL5  
    % Compute the Zernike Polynomials =6Kv`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4<3?al&  
    Z*vpQBbu  
    % Determine the required powers of r: d[>N6?JA/  
    % ----------------------------------- O2'bNR  
    m_abs = abs(m); ll<9f)  
    rpowers = []; `3sy>GU?  
    for j = 1:length(n) B=Zukg1G  
        rpowers = [rpowers m_abs(j):2:n(j)]; 9OQ0Yc!3  
    end UP~WP@0F  
    rpowers = unique(rpowers); 7k`*u) Q  
    -M>K4*%K  
    % Pre-compute the values of r raised to the required powers, S4{Mu(^xT  
    % and compile them in a matrix: K5)yM @cq  
    % ----------------------------- g@k#J"Q '[  
    if rpowers(1)==0 4*D fI  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Dc&9emKI  
        rpowern = cat(2,rpowern{:}); M]4=(Vv+5  
        rpowern = [ones(length_r,1) rpowern]; 7{K i;1B[w  
    else V$-~%7@>;9  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ].k+Nzf_  
        rpowern = cat(2,rpowern{:}); J2oWssw"  
    end *b6I%MZn  
    ^ =/?<C4  
    % Compute the values of the polynomials: >TlW]st  
    % -------------------------------------- O7'<I|aD  
    y = zeros(length_r,length(n)); ;Oi[:Ck  
    for j = 1:length(n) |Uy e>%*}4  
        s = 0:(n(j)-m_abs(j))/2; Ha=_u+@  
        pows = n(j):-2:m_abs(j); _\4`  
        for k = length(s):-1:1 n ,&/D  
            p = (1-2*mod(s(k),2))* ... Uxk[O  
                       prod(2:(n(j)-s(k)))/              ... hr_9;,EPh  
                       prod(2:s(k))/                     ... :~ZqB\>i  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]< s\V-y  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); j]!7BHC  
            idx = (pows(k)==rpowers); 9k=U0]!ch  
            y(:,j) = y(:,j) + p*rpowern(:,idx); n2xLgK=  
        end (<bm4MPf  
         xb+RRTgj  
        if isnorm `x{.z=xC  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); (b/A|hl  
        end wQD0 vsD  
    end MG7 ?N #  
    % END: Compute the Zernike Polynomials Q )LXL.0h  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d}{LM!s  
    Ci7P%]9  
    % Compute the Zernike functions: O6m.t%*  
    % ------------------------------ {) :%Wn M9  
    idx_pos = m>0; %]a @A8o0  
    idx_neg = m<0; ;~Q  
    JQKC ;p  
    z = y; /~3N@J  
    if any(idx_pos) b 0LGH. z4  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); &v5G92  
    end v`#j  
    if any(idx_neg) "3{#d9Gs  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @uI?  
    end w(76H^e  
    Vs#"SpH{'  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的