非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 s Ce{V*ua
function z = zernfun(n,m,r,theta,nflag) P'g$F<~V
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 8&3G|m1-2
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N n\d-^ml
% and angular frequency M, evaluated at positions (R,THETA) on the 2cww7z/B
% unit circle. N is a vector of positive integers (including 0), and TEY%OIzU+
% M is a vector with the same number of elements as N. Each element [Y5B$7|s<
% k of M must be a positive integer, with possible values M(k) = -N(k) 9XS'5AXN
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, s:Memvf
% and THETA is a vector of angles. R and THETA must have the same 2?HLEiI1
% length. The output Z is a matrix with one column for every (N,M) oJ5V^.
% pair, and one row for every (R,THETA) pair. {|
Tl3
% R7vO,kZ6Q
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike O7E0{8
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *c xYB
% with delta(m,0) the Kronecker delta, is chosen so that the integral A9[l5E
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, c$>Tfa'H
% and theta=0 to theta=2*pi) is unity. For the non-normalized /S]<MS
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. :] :q=1;c
% ,%Dn}mWu
% The Zernike functions are an orthogonal basis on the unit circle. ]81P<Y(7
% They are used in disciplines such as astronomy, optics, and @q|I$'K]x
% optometry to describe functions on a circular domain. D;m>9{=
% F(mm0:lT
% The following table lists the first 15 Zernike functions. I>:M1Yc0
% q&7J1
% n m Zernike function Normalization Yf<6[(6 O
% -------------------------------------------------- _},u[+
% 0 0 1 1 =`u4xa#m
% 1 1 r * cos(theta) 2 KYMz
% 1 -1 r * sin(theta) 2 }ufH![|[r
% 2 -2 r^2 * cos(2*theta) sqrt(6) .I<#i9Le
% 2 0 (2*r^2 - 1) sqrt(3) `Fnt#F}
% 2 2 r^2 * sin(2*theta) sqrt(6) u|i.6:/=
% 3 -3 r^3 * cos(3*theta) sqrt(8) aO6w:IO
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) usX
aT(K
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) e0qU2
% 3 3 r^3 * sin(3*theta) sqrt(8) 66!cfpM
% 4 -4 r^4 * cos(4*theta) sqrt(10) S }mqK|!
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 94\k++kc
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 8Y_wS&eB
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =UT*1-yhR
% 4 4 r^4 * sin(4*theta) sqrt(10) n}}$-xl
% -------------------------------------------------- [O7:<co
% +<7`Gn(n3
% Example 1: zq _*)V
% E:!?A@Fy
% % Display the Zernike function Z(n=5,m=1) { LZ` _1D
% x = -1:0.01:1; wgp{P>oBX
% [X,Y] = meshgrid(x,x); 6O>NDTd%
% [theta,r] = cart2pol(X,Y); bC&*U|de
% idx = r<=1; *;5P65:u$>
% z = nan(size(X)); XcD$xFDZ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 4'_PLOgnX
% figure 7&-B6Y4
% pcolor(x,x,z), shading interp tUaDwIu#
% axis square, colorbar ^Q0%_V,
% title('Zernike function Z_5^1(r,\theta)') 3+ JkV\AF
% Ahv %Q%m%2
% Example 2: Q+YYj
% ]rY:C "#
% % Display the first 10 Zernike functions jbZ%Y0km%
% x = -1:0.01:1; 'So,*>]63
% [X,Y] = meshgrid(x,x); VB=$D|Ll
% [theta,r] = cart2pol(X,Y); FX}kH ]
% idx = r<=1; LpN_s#
% z = nan(size(X)); bh
V.uBH
% n = [0 1 1 2 2 2 3 3 3 3]; Hwiw:lPq`E
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; G6@XRib3
% Nplot = [4 10 12 16 18 20 22 24 26 28]; N/CL?Z>c
% y = zernfun(n,m,r(idx),theta(idx)); #k?uY g8
% figure('Units','normalized') \2]M&n GT
% for k = 1:10 &![3{G"+>l
% z(idx) = y(:,k); M5\$+Tu
% subplot(4,7,Nplot(k)) Ww\M3Q`h
% pcolor(x,x,z), shading interp ~*NG~Kn"s
% set(gca,'XTick',[],'YTick',[]) >JVdL\3
% axis square x)GpNkx:
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .0 }eg$d
% end [C@|qAh
% $DS|jnpV
% See also ZERNPOL, ZERNFUN2. *,az`U
lW6$v*
s9
% Paul Fricker 11/13/2006 ,y5,+:Y
~
we?#
Dui
rHngYcjR
% Check and prepare the inputs: ^W#161&
% ----------------------------- =2J^
'7
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) FqwH:Fcr:
error('zernfun:NMvectors','N and M must be vectors.') I)]"`2w2w
end |[./jg"
UmEc")3
if length(n)~=length(m) q#C;iK4
error('zernfun:NMlength','N and M must be the same length.') b';oFUU>Q
end ^L4"X~eM
P z<
\q;
n = n(:); yX7P5c.
m = m(:); H;w8[ImK
if any(mod(n-m,2)) G1tua"Px
error('zernfun:NMmultiplesof2', ... 2e_ m>I
'All N and M must differ by multiples of 2 (including 0).') ]Y;5U
end VPi*9(LS
z*,J0)<Q
if any(m>n) 9u0<$UY%
error('zernfun:MlessthanN', ... ks19e>'5Q
'Each M must be less than or equal to its corresponding N.') +Z7:(o<
end |X47&Y
e|1.-P@
if any( r>1 | r<0 ) "rVf{
error('zernfun:Rlessthan1','All R must be between 0 and 1.') a'!p^/6?
end 7ILb&JQ!%{
u;G-46
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) T;C0t9Yew
error('zernfun:RTHvector','R and THETA must be vectors.') (Q(=MEar
end 1[:tiTG|C
`=%mU/v
r = r(:); g>*P}r~;^b
theta = theta(:); +?9.
&<?
length_r = length(r); O=
84ZP%
if length_r~=length(theta) i+@t_pxc
error('zernfun:RTHlength', ... A<p6]#t#X)
'The number of R- and THETA-values must be equal.') wG LSei-s
end +bdjZD3
2 Q}^<^r
% Check normalization: ~{cG"
% -------------------- NTV@,
if nargin==5 && ischar(nflag) CNM pyr
isnorm = strcmpi(nflag,'norm'); n?mV(? N
if ~isnorm |V-)3#c
error('zernfun:normalization','Unrecognized normalization flag.') Jp 7m$D%
end 9v3%a3
else O>,Rsj!e
isnorm = false; Lq#$q>!K
end kO}QOL4
k#"}oI{<
6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HDQH7Bs
% Compute the Zernike Polynomials ItxC}qT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \Xpq=2`
jM[]Uh
% Determine the required powers of r: )-\[A<(
% ----------------------------------- \O=t5yS
m_abs = abs(m); 5:vy_e&
rpowers = []; l*-$H$
for j = 1:length(n) <IwfiI3y
rpowers = [rpowers m_abs(j):2:n(j)]; eh /QFm
4
end WUK{st.z
rpowers = unique(rpowers); "t&_!Rm
NR.YeKsBq
% Pre-compute the values of r raised to the required powers, L(`Rf0smt
% and compile them in a matrix: ' Ivr =-
% ----------------------------- D:#e;K
if rpowers(1)==0 4l~B/"}
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); `VXC*A
rpowern = cat(2,rpowern{:}); R4AKp1Y
rpowern = [ones(length_r,1) rpowern]; X;QhK] Z
else L4!T
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); NsF8`rg
rpowern = cat(2,rpowern{:}); $E6bu4I
end VWT\wAL
Z"5ewU<?
% Compute the values of the polynomials: "
"{#~X}
% -------------------------------------- Uu(FFd~3
y = zeros(length_r,length(n)); zrE Dld9
for j = 1:length(n) L@x#:s=
s = 0:(n(j)-m_abs(j))/2; v~KgCLo
pows = n(j):-2:m_abs(j); ~T:L0||.%9
for k = length(s):-1:1 MD,+>kh
p = (1-2*mod(s(k),2))* ... aP` V
prod(2:(n(j)-s(k)))/ ... k*k 9hv?
prod(2:s(k))/ ... ^k}%k#)
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =x-@-\m
prod(2:((n(j)+m_abs(j))/2-s(k))); KiYz]IM$4
idx = (pows(k)==rpowers); +&qj`hA-b
y(:,j) = y(:,j) + p*rpowern(:,idx); lQl
end Wer.VL
"2>_eZ#b
if isnorm W8Aii'Q8C/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Kn4x_9
end u
4$$0 `
end *c'hmAs
% END: Compute the Zernike Polynomials We:b1sZR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3ox
0-+_
m)"wd$O^w
% Compute the Zernike functions: b^C2<'
% ------------------------------ a6 epew!2
idx_pos = m>0; 6+
C7vG`
idx_neg = m<0; [O\[,E"K
![hVTZ,hyZ
z = y; PNG!q}(c
if any(idx_pos) 4t< mX
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i5CBLv
end /p7-D;
if any(idx_neg) xZ(f_Oy
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); jLCZ
JSK
end ';Ew-u
Gb_y"rx?0
% EOF zernfun