切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11288阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 lRr-S%  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! jQ)>XOok  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  MlK`sH6  
    qf`xH"$  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 }K80G~O2<  
    ;c- ]bhBB  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) mNx,L+ 3  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Eg`R|CF  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of q8?= *1g  
    %   order N and frequency M, evaluated at R.  N is a vector of XhE$&Ff  
    %   positive integers (including 0), and M is a vector with the Kd/[ Bs%  
    %   same number of elements as N.  Each element k of M must be a rkfQr9Vc  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) (F,(]71Z+  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is m|[\F#+C  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix }%!FMXe  
    %   with one column for every (N,M) pair, and one row for every h-r6PY=i  
    %   element in R. qSEB}1  
    % M)"]$TM  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Ii~; d3.  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is zP :~O  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ka2F !   
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 _8[UtZYG  
    %   for all [n,m]. WYwzo V-  
    % *|];f#^9  
    %   The radial Zernike polynomials are the radial portion of the X)Dqeb6  
    %   Zernike functions, which are an orthogonal basis on the unit v9E+(4I9_  
    %   circle.  The series representation of the radial Zernike |?x^8e<*  
    %   polynomials is 0 &*P}U}Uc  
    % E\R raPkQT  
    %          (n-m)/2 0rku4T  
    %            __ /rIm7FW)  
    %    m      \       s                                          n-2s Job/@> ;  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r "H5&3sF2  
    %    n      s=0 ATMc`z:5T  
    % <\, & :<  
    %   The following table shows the first 12 polynomials. Z$!C=  
    % @Pxw hlxa  
    %       n    m    Zernike polynomial    Normalization :v#k&Uh3y  
    %       --------------------------------------------- I:F'S#  
    %       0    0    1                        sqrt(2) h`?y2?O  
    %       1    1    r                           2 ,dHP`j ?  
    %       2    0    2*r^2 - 1                sqrt(6) 4id3P{aU  
    %       2    2    r^2                      sqrt(6) T(Y}V[0+  
    %       3    1    3*r^3 - 2*r              sqrt(8) rGTWcJ   
    %       3    3    r^3                      sqrt(8) ,3:QB_  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) KU+( YF$1  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) yDd=& T   
    %       4    4    r^4                      sqrt(10) X$BXT  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) %S{o5txo  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) sL)Rg(rkx  
    %       5    5    r^5                      sqrt(12) ^pJ0nY# c  
    %       --------------------------------------------- xe(MHNrj  
    % ob0~VEH-  
    %   Example: OYBotk]{1  
    % C0zrXhY_v  
    %       % Display three example Zernike radial polynomials Dp!;7e s|  
    %       r = 0:0.01:1;  pz$_W  
    %       n = [3 2 5]; Lb!r(o>8Cb  
    %       m = [1 2 1]; BwJNi6,  
    %       z = zernpol(n,m,r); =f o4x|{O  
    %       figure /ca(a\@R  
    %       plot(r,z) DeA@0HOxh  
    %       grid on --Oprl  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ?#4+r_dP  
    % = Q@6c   
    %   See also ZERNFUN, ZERNFUN2. ab{;Z 5O  
    #xlZU  
    % A note on the algorithm. :ezA+=ENg  
    % ------------------------ fb /qoZ  
    % The radial Zernike polynomials are computed using the series l#Yx TY  
    % representation shown in the Help section above. For many special V{KjRSVf=  
    % functions, direct evaluation using the series representation can 1x { XE*%;  
    % produce poor numerical results (floating point errors), because Hr8\QgD<4  
    % the summation often involves computing small differences between AQ-mE9>P  
    % large successive terms in the series. (In such cases, the functions o5>/}wIf  
    % are often evaluated using alternative methods such as recurrence *h2`^Z  
    % relations: see the Legendre functions, for example). For the Zernike )eECOfmnZ  
    % polynomials, however, this problem does not arise, because the [4Y[?)7  
    % polynomials are evaluated over the finite domain r = (0,1), and NNgK:YibD  
    % because the coefficients for a given polynomial are generally all }bp.OV-+  
    % of similar magnitude. <p09oZ{6  
    % 3Mw}R6g@#  
    % ZERNPOL has been written using a vectorized implementation: multiple (JWv *p  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 7iP5T  
    % values can be passed as inputs) for a vector of points R.  To achieve 6zuze0ud  
    % this vectorization most efficiently, the algorithm in ZERNPOL E$w#+.QP  
    % involves pre-determining all the powers p of R that are required to ):S!Nl  
    % compute the outputs, and then compiling the {R^p} into a single 2@fa rx:  
    % matrix.  This avoids any redundant computation of the R^p, and A$Wx#r7)  
    % minimizes the sizes of certain intermediate variables. E&'#=K[  
    % 4X*Q6rW  
    %   Paul Fricker 11/13/2006 ^L ]B5,} -  
    ANotUty;y  
    F, zG;_  
    % Check and prepare the inputs: :v_w!+,/  
    % ----------------------------- ZlrhC= 0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0F1u W>D1  
        error('zernpol:NMvectors','N and M must be vectors.') G&jZ\IV  
    end B.}cB'|  
    b) Ux3PB  
    if length(n)~=length(m)  b)Tl*  
        error('zernpol:NMlength','N and M must be the same length.') nz[ m3]  
    end "(<%Ua  
    5E`JD  
    n = n(:); 5\&]J7(  
    m = m(:); O)`Gzx*ShU  
    length_n = length(n); l**3%cTb  
    '<W<B!HP5Z  
    if any(mod(n-m,2)) lr0M<5d=p  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 2qlIy  
    end GoazH?%  
    W1hX?!xp!  
    if any(m<0) z<i,D08|d  
        error('zernpol:Mpositive','All M must be positive.') #v+;:  
    end C;ptir1G;  
    S_$nCyaH2  
    if any(m>n) SetX#e?q~  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') fQO ""qh  
    end ]hL:33  
    .+HcAx{/2  
    if any( r>1 | r<0 ) **n y!  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 1U'ZVJ5bpK  
    end UG #X/%p  
    j$mz3Yk  
    if ~any(size(r)==1) <n\i>A3`,S  
        error('zernpol:Rvector','R must be a vector.') m d_g}N(C  
    end >O3IfS(l  
    +X[8wUm|^  
    r = r(:); WI{; #A  
    length_r = length(r); 8RU.}PD  
     ni<[G0#T  
    if nargin==4 83Uw  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); FllX za)  
        if ~isnorm Zt_r9xs>  
            error('zernpol:normalization','Unrecognized normalization flag.') :T5A84/C  
        end p_r4^p\  
    else 6<PW./rk:  
        isnorm = false; F )7j@h^  
    end +<{m45  
    h9jc,X u5X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p(?g-  
    % Compute the Zernike Polynomials :]-$dEu&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \ FXp*FbQ  
    {:$NfW  
    % Determine the required powers of r: MO TE/JG  
    % ----------------------------------- C bQ4Y  
    rpowers = []; UBIIo'u  
    for j = 1:length(n) D7gHE  
        rpowers = [rpowers m(j):2:n(j)]; Z vRxi&Z{?  
    end Bq;1^gtpe  
    rpowers = unique(rpowers); OT@yPG  
    Mt=R*M}D0  
    % Pre-compute the values of r raised to the required powers, x;(g  
    % and compile them in a matrix: 6bUl > 4  
    % ----------------------------- kP?_kMOx  
    if rpowers(1)==0 fbV@=(y?  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }/"4|U  
        rpowern = cat(2,rpowern{:}); x) 5LT}p  
        rpowern = [ones(length_r,1) rpowern]; 7f r>ZY^  
    else 7"a4/e;^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); t#~XLCE  
        rpowern = cat(2,rpowern{:}); Si R\a!,C  
    end R>HY:-2  
    h$/JGm5uDb  
    % Compute the values of the polynomials: USFg_sO  
    % -------------------------------------- U=DEV7E  
    z = zeros(length_r,length_n); I)lC{v  
    for j = 1:length_n OpUA{P  
        s = 0:(n(j)-m(j))/2; 1$(  
        pows = n(j):-2:m(j); -N4z-ozhC  
        for k = length(s):-1:1 \Z'/+}^h  
            p = (1-2*mod(s(k),2))* ... O2lIlCL  
                       prod(2:(n(j)-s(k)))/          ... \4QH/e  
                       prod(2:s(k))/                 ... U(Z!J6{c  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... CIy^`2wq  
                       prod(2:((n(j)+m(j))/2-s(k))); 61>f(?s  
            idx = (pows(k)==rpowers); }LQ\a8]<  
            z(:,j) = z(:,j) + p*rpowern(:,idx); q5?{ 1  
        end R"{l[9j4>  
         I^:F)a:  
        if isnorm HU9p !I.  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); LD_M 3 P  
        end /=/ HB  
    end xW0Z'==  
    &?r*p0MQC  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ThiN9! Y  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Ck@M<(x  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Z/c_kf[  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Ko+al{2  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, :$2Yg[Zc3  
    %   and THETA is a vector of angles.  R and THETA must have the same s-%J 5_d f  
    %   length.  The output Z is a matrix with one column for every P-value, 69iM0X!'u  
    %   and one row for every (R,THETA) pair. 0$QIfT)  
    % 4i`S+`#  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike j-6v2MH  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ^}@`!ON  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ]!J<,f7W  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 m/{Y]D{2  
    %   for all p. }7Jp :.qk  
    % F+3!uWUK  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 qw2)v*Fn  
    %   Zernike functions (order N<=7).  In some disciplines it is | +fwvi&a  
    %   traditional to label the first 36 functions using a single mode *_#&"(P  
    %   number P instead of separate numbers for the order N and azimuthal u uSHCp  
    %   frequency M. =1IEpxh%  
    % o6|"J%9GX  
    %   Example: jr:drzr{I  
    % *w|iu^G  
    %       % Display the first 16 Zernike functions &urb!tQ>&  
    %       x = -1:0.01:1; WAv@F[  
    %       [X,Y] = meshgrid(x,x); *0\k Z,#BJ  
    %       [theta,r] = cart2pol(X,Y); ?R282l  
    %       idx = r<=1; F^xaz^=`u  
    %       p = 0:15; /k) NP  
    %       z = nan(size(X)); NN11}E6  
    %       y = zernfun2(p,r(idx),theta(idx)); r.?+gW!C  
    %       figure('Units','normalized') #r(a~  
    %       for k = 1:length(p) z1FL8=  
    %           z(idx) = y(:,k); O/$ v69:  
    %           subplot(4,4,k) ExQ--!AC=  
    %           pcolor(x,x,z), shading interp H6{Rd+\Z  
    %           set(gca,'XTick',[],'YTick',[]) aX]y`  
    %           axis square 8TI#7  
    %           title(['Z_{' num2str(p(k)) '}']) [?|5 oaK  
    %       end c[Yq5Bu{y  
    % PK8V2Ttv  
    %   See also ZERNPOL, ZERNFUN. B]i+,u  
    y/H8+0sEk  
    %   Paul Fricker 11/13/2006 sZT VM9<)  
    7F~xq#Wi#  
    a0 qj[+  
    % Check and prepare the inputs: 'h k @>"  
    % ----------------------------- 5uzpTNAMM1  
    if min(size(p))~=1 Xz" JY  
        error('zernfun2:Pvector','Input P must be vector.') ?nY/, q&  
    end ]Px:d+wX:  
    S;BP`g<l=  
    if any(p)>35 f}A^]6MO:  
        error('zernfun2:P36', ... jD<9=B(g  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 27$\sG|g  
               '(P = 0 to 35).']) g*^wF?t'T  
    end f&f[La  
    c'S M>7L  
    % Get the order and frequency corresonding to the function number: $*g{[&L|6  
    % ---------------------------------------------------------------- ]2g5Ka[>w  
    p = p(:); V` U/'N-ay  
    n = ceil((-3+sqrt(9+8*p))/2); .ZM]%[4  
    m = 2*p - n.*(n+2); S`fu+^c v  
    2 e )  
    % Pass the inputs to the function ZERNFUN: Y/#:)(&@  
    % ---------------------------------------- cS+?s=d  
    switch nargin 3$;J0{&[i  
        case 3 O $YJku  
            z = zernfun(n,m,r,theta); I)qKS@  
        case 4 l8eT{!4  
            z = zernfun(n,m,r,theta,nflag); {3jm%ex  
        otherwise CR P7U  
            error('zernfun2:nargin','Incorrect number of inputs.') zv>ZrFl*  
    end WReYF+Uen  
    (gFQ K[  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 RRK^~JQI.2  
    function z = zernfun(n,m,r,theta,nflag) 1v+JCOy  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. `kI?Af*;v  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 56 /.*qa  
    %   and angular frequency M, evaluated at positions (R,THETA) on the |E>v~qD8I  
    %   unit circle.  N is a vector of positive integers (including 0), and UXXqE4x  
    %   M is a vector with the same number of elements as N.  Each element vy>];!Cu  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) eG a#$x?.  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, \3J+OY  
    %   and THETA is a vector of angles.  R and THETA must have the same Y0R\u\b  
    %   length.  The output Z is a matrix with one column for every (N,M) P*?d6v,r  
    %   pair, and one row for every (R,THETA) pair. x0N-[//YV  
    % E,"b*l.  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /S-/SF:>g  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), k:&?$  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral hnM9-hqm  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 7=9A_4G!  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized HY@kw>I  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m].  Ep#<$6>  
    % HXl r  
    %   The Zernike functions are an orthogonal basis on the unit circle. G~Q*:m  
    %   They are used in disciplines such as astronomy, optics, and bqf]$}/8k  
    %   optometry to describe functions on a circular domain. 4okHAv8;  
    % ,4h! "c  
    %   The following table lists the first 15 Zernike functions. R(n0!h4  
    % v ](G?L9b  
    %       n    m    Zernike function           Normalization ,Yiq$Z{qQ  
    %       -------------------------------------------------- #]N&6ngJ  
    %       0    0    1                                 1 K{`2jK#  
    %       1    1    r * cos(theta)                    2 o{ YW  
    %       1   -1    r * sin(theta)                    2 {!:|.!-u  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ?[*@T2Ck  
    %       2    0    (2*r^2 - 1)                    sqrt(3) J"a2 @S&  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Xm0&U?dZB  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) NUxAv= xl  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) wUZ(Tin  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) iPtm@f,bI  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) !Ed<xG/  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) iYmzk?U  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {U+9,6.`  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ?()E5 4y  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "=v J }  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) :*w:eKk  
    %       -------------------------------------------------- (pRy1DH~  
    % 0N} wD-  
    %   Example 1: " N`V*0h  
    % o+6^|RP  
    %       % Display the Zernike function Z(n=5,m=1) [4+a 1/^  
    %       x = -1:0.01:1; s K$Sar  
    %       [X,Y] = meshgrid(x,x); eL] w' }\  
    %       [theta,r] = cart2pol(X,Y); =":V WHf  
    %       idx = r<=1; k*UR# z(I  
    %       z = nan(size(X)); ^0 ,&R\e+  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); p1`'1`.3  
    %       figure W0r5D9k  
    %       pcolor(x,x,z), shading interp aS1P]&  
    %       axis square, colorbar (fLbg,  
    %       title('Zernike function Z_5^1(r,\theta)') Hhce:E@K  
    % ko7-%+0|]  
    %   Example 2: Ow&'sR'CX  
    % ?-6x]l=]  
    %       % Display the first 10 Zernike functions 0I ND9h. %  
    %       x = -1:0.01:1; BR0p0%  
    %       [X,Y] = meshgrid(x,x); szM=U$jKq  
    %       [theta,r] = cart2pol(X,Y); S92 !jp/  
    %       idx = r<=1; 6u]OXP A|  
    %       z = nan(size(X)); UdM5R [  
    %       n = [0  1  1  2  2  2  3  3  3  3]; [7 Kj$PB3  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; (/rIodHJO  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ~)\1g0  
    %       y = zernfun(n,m,r(idx),theta(idx)); -^nQ^Td=j  
    %       figure('Units','normalized') :O @,Z_"  
    %       for k = 1:10 Q/9vDv  
    %           z(idx) = y(:,k); ]6c2[r?g{  
    %           subplot(4,7,Nplot(k)) l8n[8AT1  
    %           pcolor(x,x,z), shading interp TQxc?o  
    %           set(gca,'XTick',[],'YTick',[]) 5F_:[H =   
    %           axis square ^Ihdq89t  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) B #V 4  
    %       end V44sNi  
    % hcqmjqJ  
    %   See also ZERNPOL, ZERNFUN2. `a1R "A  
    Dm`U|<o  
    %   Paul Fricker 11/13/2006 _$jJpy  
    HI`A;G]  
    9QM"JEu@  
    % Check and prepare the inputs: 0R!}}*Ee>q  
    % ----------------------------- $R#L@iL-  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .^+$w $  
        error('zernfun:NMvectors','N and M must be vectors.') fm2Mi~}0  
    end uC8T!z  
    _/w-gL{  
    if length(n)~=length(m) +H^V},dBp!  
        error('zernfun:NMlength','N and M must be the same length.') X72X:"  
    end OQb9ijLeK  
    fyoB]{$p8  
    n = n(:); ^DCv-R+ p  
    m = m(:); c o%_~xO  
    if any(mod(n-m,2)) 9p'J(`  
        error('zernfun:NMmultiplesof2', ... Dp |FyP_w  
              'All N and M must differ by multiples of 2 (including 0).') o%JIJ7M  
    end V$F.`O!hfi  
    Ak-7}i  
    if any(m>n) FoXQ]X7"  
        error('zernfun:MlessthanN', ... EF^=3  
              'Each M must be less than or equal to its corresponding N.') 0*M}QXt  
    end umn~hb5O  
    qO3BQ]UF  
    if any( r>1 | r<0 ) 1kw4'#J8  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') U$JIF/MO_  
    end ^{+:w:g  
    *t*&Q /W  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Y/I6.K3  
        error('zernfun:RTHvector','R and THETA must be vectors.') DT]p14@t9  
    end |Ie`L("  
    m-FDCiN>  
    r = r(:); 2}C>{*}yQ  
    theta = theta(:); ->9xw  
    length_r = length(r); 1Moh`  
    if length_r~=length(theta) *xVAm7_v  
        error('zernfun:RTHlength', ... x{o5Ha{  
              'The number of R- and THETA-values must be equal.') SpiC0  
    end cZT.vA#  
    /<(ik&%N  
    % Check normalization: U jzz`!mz  
    % -------------------- 3NZFW{u  
    if nargin==5 && ischar(nflag) xVX||rrh  
        isnorm = strcmpi(nflag,'norm'); Yf`.Cq_:  
        if ~isnorm '*Mb .s"  
            error('zernfun:normalization','Unrecognized normalization flag.') &+iW:  
        end R*fR?  
    else % x;!s=U  
        isnorm = false;  Hu2g (!  
    end 'yjH~F.  
    trt\PP:H%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n k3lC/f  
    % Compute the Zernike Polynomials &nw ~gSe  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /\I%)B47^9  
    ''07Km@x  
    % Determine the required powers of r: ;7*@Gf}R  
    % ----------------------------------- 0! %}  
    m_abs = abs(m); s hvcc  
    rpowers = []; <&Xq`i/(  
    for j = 1:length(n) 7V``f:#d  
        rpowers = [rpowers m_abs(j):2:n(j)]; %"fKZ  
    end m6<0 hP  
    rpowers = unique(rpowers); Q8:ocEhR  
    ; O0rt1  
    % Pre-compute the values of r raised to the required powers, ,X6j$YLWp  
    % and compile them in a matrix: dph6aN(49  
    % ----------------------------- agD.J)v\  
    if rpowers(1)==0 `I{Q,HQ7  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); CxQ,yd;>  
        rpowern = cat(2,rpowern{:}); ha~s< I  
        rpowern = [ones(length_r,1) rpowern]; n9-[z2n  
    else N\&;R$[9:  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); M oHvXp;X  
        rpowern = cat(2,rpowern{:}); | :[vpJFK  
    end a[l5k  
    R?SHXJ%'  
    % Compute the values of the polynomials: .w)t<7 y  
    % -------------------------------------- ^`?> Huu<w  
    y = zeros(length_r,length(n)); +[`%b3Nk  
    for j = 1:length(n) 0E1)&f  
        s = 0:(n(j)-m_abs(j))/2; }`FPe   
        pows = n(j):-2:m_abs(j); _S1uJ~j;E  
        for k = length(s):-1:1 k<qH<<r*  
            p = (1-2*mod(s(k),2))* ... zSCPp6  
                       prod(2:(n(j)-s(k)))/              ... <2d@\"AoHE  
                       prod(2:s(k))/                     ... e84TL U?~  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... hDsORh!i  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 2jC\yY |PN  
            idx = (pows(k)==rpowers); ]Jq e)o  
            y(:,j) = y(:,j) + p*rpowern(:,idx);  Z.JTq~`I  
        end lsi8?91  
         .#|pje^  
        if isnorm k#[s)Ja?s  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4/|=0TC;  
        end KW<CU'  
    end _R6> Ayw*  
    % END: Compute the Zernike Polynomials I),8EEf\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZeZwzH)BD  
    Wz]S+IpY  
    % Compute the Zernike functions: .5xM7,  
    % ------------------------------ ]"6<"1)  
    idx_pos = m>0; bHnQLJ  
    idx_neg = m<0; IIZsN*^  
    l!,{bOZ  
    z = y; 2Oa-c|F  
    if any(idx_pos) B"v=Fr[  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M-gjS6c\3  
    end 9n'p7(s%  
    if any(idx_neg) +n dyR  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %Z4=3?5B"9  
    end < r~Tj  
    !A o?bs'  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的