非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ?Sq?f?
function z = zernfun(n,m,r,theta,nflag) zw`T^N#
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1N_Gk&
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _JZwd9K
% and angular frequency M, evaluated at positions (R,THETA) on the :D>afC8,
% unit circle. N is a vector of positive integers (including 0), and cu4&*{
% M is a vector with the same number of elements as N. Each element ]{r*Z6bs
% k of M must be a positive integer, with possible values M(k) = -N(k) H+`s#'(i_P
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, E*ug.nxy
% and THETA is a vector of angles. R and THETA must have the same P,x'1`k~
% length. The output Z is a matrix with one column for every (N,M) )x/Spb
% pair, and one row for every (R,THETA) pair. Dk!;s8}*c
% lw4#xH-?
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Tl^9!>\Q
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), cuO)cj]@e
% with delta(m,0) the Kronecker delta, is chosen so that the integral bqHR~4 #IR
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, BULf@8~(
% and theta=0 to theta=2*pi) is unity. For the non-normalized k !S0-/h
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0UEEvD5
% 8,Jjv*
% The Zernike functions are an orthogonal basis on the unit circle. =l_B58wrx
% They are used in disciplines such as astronomy, optics, and .{` :
% optometry to describe functions on a circular domain. /STFXR1@.u
% ZqhCGHy
% The following table lists the first 15 Zernike functions. j {w'#x,
% e`pYO]Z
% n m Zernike function Normalization |gvx^)ro
% -------------------------------------------------- '~HCYE:5
% 0 0 1 1 Z*EK56.b
% 1 1 r * cos(theta) 2 !o+Y"* /
% 1 -1 r * sin(theta) 2 9E/{HNkf
% 2 -2 r^2 * cos(2*theta) sqrt(6) mXd,{b'
% 2 0 (2*r^2 - 1) sqrt(3) [Bn C_^[W
% 2 2 r^2 * sin(2*theta) sqrt(6) =IQ+9Fl2
% 3 -3 r^3 * cos(3*theta) sqrt(8) poZ04Uxo>
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Lo^0VD!O
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Yv?nw-HM
% 3 3 r^3 * sin(3*theta) sqrt(8) 'c[[H3s!;
% 4 -4 r^4 * cos(4*theta) sqrt(10) v=kQ/h
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _g|zDi^
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) e>zCzKK
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \K$9r=!(
% 4 4 r^4 * sin(4*theta) sqrt(10) S]E1+,-*
% -------------------------------------------------- KMO(f!?
% 3*< O-Jr
% Example 1: J*Dt\[X
% q\2q3}n
% % Display the Zernike function Z(n=5,m=1) RRW/.y
% x = -1:0.01:1; 4~mYj@lvd
% [X,Y] = meshgrid(x,x); ftS^|%p
% [theta,r] = cart2pol(X,Y); Y$3 &?LA
% idx = r<=1; ^}JGWGib=+
% z = nan(size(X)); G:$Ta6=
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Tm!pAD
% figure Sz_bjh yT}
% pcolor(x,x,z), shading interp ({XB,Rm
% axis square, colorbar VRuY8<E
% title('Zernike function Z_5^1(r,\theta)') T bMW?Su
% ET t7?,x@
% Example 2: ;VhilWaF-
% |m x)W}
% % Display the first 10 Zernike functions ZY_aE
% x = -1:0.01:1; %gK@R3p
% [X,Y] = meshgrid(x,x); <gvuCydsh
% [theta,r] = cart2pol(X,Y); `/W6,]
% idx = r<=1; ,t"?~Hl".
% z = nan(size(X)); q"Ct=d
% n = [0 1 1 2 2 2 3 3 3 3]; Yp*Dd}n`
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; :{:R5d(_I
% Nplot = [4 10 12 16 18 20 22 24 26 28]; %N jRD|
% y = zernfun(n,m,r(idx),theta(idx)); ]>j>bHG
% figure('Units','normalized') m=g\@&N
% for k = 1:10 )uj:k*`)
% z(idx) = y(:,k); 4RPc&%
% subplot(4,7,Nplot(k)) ?8ZOiY(
% pcolor(x,x,z), shading interp \<cs:C\h7
% set(gca,'XTick',[],'YTick',[]) 'CF?pxNQ l
% axis square R,]J~TfPK
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) S511}KPbm/
% end Gi=sJV
% T;7=05k<_
% See also ZERNPOL, ZERNFUN2. DC9\Sp?
|p4D!M+$7
% Paul Fricker 11/13/2006 vy:-a G
yf >
rG
pr\wI?:k
% Check and prepare the inputs: ^("23mhfJ
% ----------------------------- ua!i3]18
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ivgV5)".
error('zernfun:NMvectors','N and M must be vectors.') CcGE4BB
end HuVx^y`
@
8 IeE7
if length(n)~=length(m) tu4-##{
error('zernfun:NMlength','N and M must be the same length.') Ox | ?
end SRU}-
[-ONs
n = n(:); !?AgAsSmc
m = m(:); _*K=Z,a;\
if any(mod(n-m,2)) fGZZ['E
error('zernfun:NMmultiplesof2', ... Yz%A Kp
'All N and M must differ by multiples of 2 (including 0).') ~J~@mE2ks
end dBWi1vTF
ILN Yh3
if any(m>n) nj90`O.K
error('zernfun:MlessthanN', ... AVn?86ri
'Each M must be less than or equal to its corresponding N.') 3np |\i
end ?*{Vn5aX{
u&M:w5EM
if any( r>1 | r<0 ) 9$
VudE>;
error('zernfun:Rlessthan1','All R must be between 0 and 1.') pB;U*lt
end n]3Lqe;
sKg
IKYG}T
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) U"qR6
error('zernfun:RTHvector','R and THETA must be vectors.') K2Z]MpLD
end \!51I./Q/
j1Ns|oph1
r = r(:); +hIC N,8!
theta = theta(:); vtByC u5
length_r = length(r); v=pkze
if length_r~=length(theta) K/flg|uZ/V
error('zernfun:RTHlength', ... =qJlSb
'The number of R- and THETA-values must be equal.') Wr j<}L|
end Ii.0Bul
IPVD^a?
% Check normalization: ZwFVtR
% -------------------- sahXPl%;U
if nargin==5 && ischar(nflag) gN/kNck
isnorm = strcmpi(nflag,'norm'); kd=|Iip;(
if ~isnorm vkj Hh.
error('zernfun:normalization','Unrecognized normalization flag.') %&iY5A
end Md*~hb8J
else )yTBtYw3
isnorm = false; .:~{+
<*`
end 6f'THU$
ZRy'lW
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TOH+JL8L
% Compute the Zernike Polynomials t/vw%|AS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2ophh/]
_xmS$z)TO
% Determine the required powers of r: x :? EL)(
% ----------------------------------- =C(((T.
m_abs = abs(m); g7l?/p[n
rpowers = []; >zS<1
for j = 1:length(n) :z^,>So :
rpowers = [rpowers m_abs(j):2:n(j)]; %wQE
lkB
end F*4zC@;
rpowers = unique(rpowers); j /)A<j$
}8LTYn
% Pre-compute the values of r raised to the required powers, &y+)xe:&S
% and compile them in a matrix: <*3#nA-O>i
% ----------------------------- lJJ`aYDp
if rpowers(1)==0 sK/Z'h{|
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >(\Z-I&YQ
rpowern = cat(2,rpowern{:}); 0s72BcP
rpowern = [ones(length_r,1) rpowern]; (7*((
else 8-s7s!j
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); EEp~\^-
rpowern = cat(2,rpowern{:}); #zed8I:w
end OnND(YiX
jr2wK?LbB
% Compute the values of the polynomials: >mW*K _~
% -------------------------------------- ..fbRt
y = zeros(length_r,length(n)); 2]V&]s8Wi=
for j = 1:length(n) ,Zva^5
s = 0:(n(j)-m_abs(j))/2; ?m\?
#
pows = n(j):-2:m_abs(j); )qeed-{
for k = length(s):-1:1 Yl`)%6'5|
p = (1-2*mod(s(k),2))* ... 0x2[*pJ|IW
prod(2:(n(j)-s(k)))/ ... 18WJ*q7:
prod(2:s(k))/ ... DEQ7u`6
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >|rU*+I`
prod(2:((n(j)+m_abs(j))/2-s(k))); 9#:B_?e=
idx = (pows(k)==rpowers); ^US ol/
y(:,j) = y(:,j) + p*rpowern(:,idx); G0lg5iA<fC
end r:U/a=V
$)Ty@@7C
if isnorm 'pHxO,vo
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); *[+{KJ
end h#}'9oA
end /2x@Z>
% END: Compute the Zernike Polynomials ]T;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PlRcrT"#w
sEHA?UP$<F
% Compute the Zernike functions: sI5S)^'IQ
% ------------------------------ <T`&NA@%~$
idx_pos = m>0; YZZog 6%
idx_neg = m<0; kLe{3>}j
B&"c:)1
C2
z = y; :NynNu'
if any(idx_pos) E[Bj+mX9
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -u^f;4|u
end ^IqD^(Kb
if any(idx_neg) M&}_3
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \ch4c9
end <N8z<o4rku
#b@ sV$
% EOF zernfun