切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11279阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 I93 ~8wQ  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! YCirOge  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  N}8HK^n*  
    qB+:#Yrx/  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 zxk??0] /  
    ~)! V8  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ! 6p)t[s  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. jnU*l\,  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of [o[v"e\w  
    %   order N and frequency M, evaluated at R.  N is a vector of 7n\j"0z  
    %   positive integers (including 0), and M is a vector with the {'c%#\  
    %   same number of elements as N.  Each element k of M must be a @KXz4PU  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 02# b:  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is }TX'Z?Lq  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix jy__Y=1}  
    %   with one column for every (N,M) pair, and one row for every T^(n+lv  
    %   element in R. y_7XYT!w  
    % %<ptkZK#  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- } ^GV(]K  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is TgQ|T57  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ?%za:{  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Z:B Y*#B  
    %   for all [n,m]. .X<"pd*@e  
    % Nz>E#.++  
    %   The radial Zernike polynomials are the radial portion of the qK6  uU9z  
    %   Zernike functions, which are an orthogonal basis on the unit s:jL/%+COZ  
    %   circle.  The series representation of the radial Zernike tN'- qdm  
    %   polynomials is E/L?D  
    %  CK!pH{n+  
    %          (n-m)/2 dl7p1Cr  
    %            __ &J&w4"0N'  
    %    m      \       s                                          n-2s ?/l}(t$H  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r K3r>nGLBo  
    %    n      s=0 wkZ2Y-#='  
    % ZAo)_za&mH  
    %   The following table shows the first 12 polynomials. i:Z.;z$1  
    % t6L^ #\'  
    %       n    m    Zernike polynomial    Normalization xBI"{nGoN  
    %       --------------------------------------------- T`'3Cp$q  
    %       0    0    1                        sqrt(2) c;|&>Fp  
    %       1    1    r                           2 k0 e|8g X  
    %       2    0    2*r^2 - 1                sqrt(6) ++{+ #s6  
    %       2    2    r^2                      sqrt(6) _9O }d  
    %       3    1    3*r^3 - 2*r              sqrt(8) b1>$sPJ+  
    %       3    3    r^3                      sqrt(8) kDpZnXP  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) B=Jd%Av  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) RH'F<!p  
    %       4    4    r^4                      sqrt(10) /wxxcq  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) c"sw@<HG  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Ff#N|L'9_  
    %       5    5    r^5                      sqrt(12) milK3+N  
    %       --------------------------------------------- jf)JPa_  
    % 7quwc'!  
    %   Example: +zdq+<9X  
    % -ZoOX"N}  
    %       % Display three example Zernike radial polynomials J>|:T  
    %       r = 0:0.01:1; ={i&F  
    %       n = [3 2 5]; bd 1J#V]  
    %       m = [1 2 1]; `SS~=~WY  
    %       z = zernpol(n,m,r); by y1MgQd  
    %       figure 2,e|,N"zN  
    %       plot(r,z) 2|NyAtPb5  
    %       grid on \=G Xe.}4d  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') MdoWqpC  
    % eg~^wi  
    %   See also ZERNFUN, ZERNFUN2. ]zMBZs  
    JK8@J9(#  
    % A note on the algorithm. MVL }[J  
    % ------------------------ 3]]6z K^i  
    % The radial Zernike polynomials are computed using the series UCj#t!Mw  
    % representation shown in the Help section above. For many special \utH*;J|x  
    % functions, direct evaluation using the series representation can k#r7&Y  
    % produce poor numerical results (floating point errors), because p*&LEjaVM4  
    % the summation often involves computing small differences between 3{L vKe  
    % large successive terms in the series. (In such cases, the functions /G{3p&9  
    % are often evaluated using alternative methods such as recurrence [Z G j7  
    % relations: see the Legendre functions, for example). For the Zernike x2&! PpM  
    % polynomials, however, this problem does not arise, because the [c!vsh]^  
    % polynomials are evaluated over the finite domain r = (0,1), and ZG[0rvW  
    % because the coefficients for a given polynomial are generally all fu "z%h]   
    % of similar magnitude. @k #y-/~?  
    % r~Ubgd ]U  
    % ZERNPOL has been written using a vectorized implementation: multiple np>!lF:  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] WI 4_4  
    % values can be passed as inputs) for a vector of points R.  To achieve PaeafL65=  
    % this vectorization most efficiently, the algorithm in ZERNPOL MGC0^voe  
    % involves pre-determining all the powers p of R that are required to ! tPK"k  
    % compute the outputs, and then compiling the {R^p} into a single IguG0 3:.N  
    % matrix.  This avoids any redundant computation of the R^p, and &E '>+6  
    % minimizes the sizes of certain intermediate variables. `IRT w"  
    % 9*Twx&  
    %   Paul Fricker 11/13/2006 6)<oO(  
    o%>nu  
    VM|)\?Q  
    % Check and prepare the inputs: z'K7J'(R  
    % ----------------------------- 1 'pQ,  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ^[z\KmUqt  
        error('zernpol:NMvectors','N and M must be vectors.') ~4` ec   
    end zw9ULQ$#  
    8A]q!To  
    if length(n)~=length(m) W",jZ"7  
        error('zernpol:NMlength','N and M must be the same length.') 61wG:  
    end iw;Alav"x  
     !3M!p&  
    n = n(:); F7Yuky  
    m = m(:); cW/~4.v$  
    length_n = length(n); 'u%;6'y  
    L`@&0Zk  
    if any(mod(n-m,2)) s"F,=]HQ!G  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') &|FG#.2yw  
    end `CouP-g.  
    8-6{MJ?F  
    if any(m<0) vjWgR9 4/{  
        error('zernpol:Mpositive','All M must be positive.') F qyJ*W\1  
    end {73DnC~N  
    N5]68Fu'({  
    if any(m>n) ,qh  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 9.}3RAB(cv  
    end  ]= D  
    ATewdq[C  
    if any( r>1 | r<0 ) E0Xu9IW/A  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') a' fb0fz  
    end 52Ffle8  
    OU=IV;V{  
    if ~any(size(r)==1) [o6<aE-  
        error('zernpol:Rvector','R must be a vector.') Y mSaIf  
    end iU|C<A%Hh  
    \srOU|  
    r = r(:); "d*  
    length_r = length(r); Ase1R=0  
    [vJosbU;  
    if nargin==4 }E_zW.{!  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ~z"->.u  
        if ~isnorm :{imRa-  
            error('zernpol:normalization','Unrecognized normalization flag.') >CA1Ub&ls  
        end $S=OmdgR  
    else (VR nv  
        isnorm = false; v3]M;Y\  
    end E_*T0&P.P  
    1O{67Pf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6n4S$a  
    % Compute the Zernike Polynomials }Q*ec/^{f  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !2,.C+,  
    <m\TZQBD  
    % Determine the required powers of r: &$ 9bC 't6  
    % ----------------------------------- s @9#hjv2  
    rpowers = []; P=g+6-1  
    for j = 1:length(n) $x<-PN  
        rpowers = [rpowers m(j):2:n(j)]; (9h{6rc=I  
    end w%"q=V  
    rpowers = unique(rpowers);  yw^, @'  
    /;J;,G`?  
    % Pre-compute the values of r raised to the required powers, ![Y$[l  
    % and compile them in a matrix: Yi,um-%  
    % ----------------------------- DenCD9 f  
    if rpowers(1)==0 FL}8h/  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 06r cW `  
        rpowern = cat(2,rpowern{:}); @ZWKs  
        rpowern = [ones(length_r,1) rpowern]; Z!6G (zz:>  
    else NIGFu{S  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l$NEx0Dffz  
        rpowern = cat(2,rpowern{:}); Ei!z? sxzx  
    end jk?(W2c#{  
    n$K_KU v  
    % Compute the values of the polynomials: Ro69woU  
    % -------------------------------------- PI?[  
    z = zeros(length_r,length_n); dzap]RpB  
    for j = 1:length_n 9)`wd&!  
        s = 0:(n(j)-m(j))/2; ekXHfA!i%  
        pows = n(j):-2:m(j); 9w|q':<  
        for k = length(s):-1:1 O\z%6:'M  
            p = (1-2*mod(s(k),2))* ... g.qp _O  
                       prod(2:(n(j)-s(k)))/          ... A1@a:P=  
                       prod(2:s(k))/                 ... 4O'ho0w7  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... e!y t<[ph  
                       prod(2:((n(j)+m(j))/2-s(k))); UbXz`i  
            idx = (pows(k)==rpowers); n1V*VQV  
            z(:,j) = z(:,j) + p*rpowern(:,idx); fzcT(y  
        end +-i@R%  
         e wR0e.g  
        if isnorm 4H)a7 <,  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 0o`o'ZV=c  
        end i+6/ g  
    end #:X :~T  
    :8FH{sqR  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) +a{>jzR  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 5;+Bl@zGu  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Qoc-ZC"<6  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive c|XnPqo;f  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, x1Uj4*Au  
    %   and THETA is a vector of angles.  R and THETA must have the same -ydT%x  
    %   length.  The output Z is a matrix with one column for every P-value, V3S`8VI  
    %   and one row for every (R,THETA) pair. G!uxpZ   
    % )DW;Gc  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Mh\c+1MFs  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) G9]GK+@&F  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) E;SF f  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 eL*Edl|#  
    %   for all p. ;iWCV& >w  
    % U3>G9g>^B  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 3i<*,@CY  
    %   Zernike functions (order N<=7).  In some disciplines it is zB4gnVhus|  
    %   traditional to label the first 36 functions using a single mode W/+0gh7`,(  
    %   number P instead of separate numbers for the order N and azimuthal MC3{LVNK  
    %   frequency M. :DEZ$gi  
    % Ec|#i  
    %   Example: L3S,*LnA  
    % %q@@0qenv  
    %       % Display the first 16 Zernike functions [>fE{ ~Y  
    %       x = -1:0.01:1; >:.Bn8-  
    %       [X,Y] = meshgrid(x,x); Xv6s,<#\  
    %       [theta,r] = cart2pol(X,Y); cK""Xz&m  
    %       idx = r<=1; 6w' ^,V  
    %       p = 0:15; DY%E&Vd:h  
    %       z = nan(size(X)); gC?k6)p$N  
    %       y = zernfun2(p,r(idx),theta(idx)); D n^RZLRhy  
    %       figure('Units','normalized')   ~*RNJ  
    %       for k = 1:length(p) Ha<(~qf  
    %           z(idx) = y(:,k); ^#Shs^#  
    %           subplot(4,4,k) \;~>AL*  
    %           pcolor(x,x,z), shading interp 7@:uVowQ  
    %           set(gca,'XTick',[],'YTick',[]) w%htY.-  
    %           axis square sXAXHZ{  
    %           title(['Z_{' num2str(p(k)) '}']) 9d v+u6)  
    %       end \ FA7 +Q  
    % ^ `!6Yax?  
    %   See also ZERNPOL, ZERNFUN. Xln'~5~)  
    6+>q1,<  
    %   Paul Fricker 11/13/2006 jl@xcs]#  
    ]P-;]*&=  
    lUDzf J}3  
    % Check and prepare the inputs: n@xU5Q  
    % ----------------------------- ]cbY@U3!2  
    if min(size(p))~=1 EBJaFz'  
        error('zernfun2:Pvector','Input P must be vector.') .Sm7na K  
    end `.@N9+Aj  
    9R!.U\sq  
    if any(p)>35 8[eH8m#~$  
        error('zernfun2:P36', ... =OCHV+m  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... jZ)1]Q2  
               '(P = 0 to 35).']) I~Ziq10  
    end #=h~Lr'UH  
    V^"5cW  
    % Get the order and frequency corresonding to the function number: 7JjTm^bu  
    % ---------------------------------------------------------------- ) "'J]6  
    p = p(:); 3(X"IoNQ  
    n = ceil((-3+sqrt(9+8*p))/2); `Q,03W#GJ%  
    m = 2*p - n.*(n+2); B#8!8  
    iCx}v[;Ol  
    % Pass the inputs to the function ZERNFUN: =MA$xz3  
    % ---------------------------------------- kd2+k4@#  
    switch nargin b:oB $E  
        case 3 +as(m  
            z = zernfun(n,m,r,theta); *?cE]U6;  
        case 4 |GLa `2q|  
            z = zernfun(n,m,r,theta,nflag); %kUIIH V}  
        otherwise nF]lSg&]X  
            error('zernfun2:nargin','Incorrect number of inputs.') ^2=11  
    end [+UF]m%W  
    Ft'?43J  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 0@k)C z[0;  
    function z = zernfun(n,m,r,theta,nflag) .*+%-%CbP  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. R^4JM,v9x`  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N N$i!25F`  
    %   and angular frequency M, evaluated at positions (R,THETA) on the [_q3 02  
    %   unit circle.  N is a vector of positive integers (including 0), and ye4 T2=  
    %   M is a vector with the same number of elements as N.  Each element 0e-M 24,C  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) u[k0z!p_ c  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 9mZ[SQf  
    %   and THETA is a vector of angles.  R and THETA must have the same ,t2Mur  
    %   length.  The output Z is a matrix with one column for every (N,M) ~qekM>z  
    %   pair, and one row for every (R,THETA) pair. bLuAe EA  
    % zT4SI'r?f  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3@7IY4>o  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),  UDl[  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ,NB?_\$c  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, iEjUo, Y[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized oK\{#<gCZ  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. UaG })  
    % kyR=U`OW  
    %   The Zernike functions are an orthogonal basis on the unit circle. /r2*le (H  
    %   They are used in disciplines such as astronomy, optics, and 2"~|k_  
    %   optometry to describe functions on a circular domain. VEFUj&t;xW  
    % l1 Nr5PT  
    %   The following table lists the first 15 Zernike functions. l7vU{Fd-h^  
    % |}$ZOwc  
    %       n    m    Zernike function           Normalization 7 G37V"''  
    %       -------------------------------------------------- l<X8Ooan#{  
    %       0    0    1                                 1 d^pzMaCI  
    %       1    1    r * cos(theta)                    2 H.-VfROi2  
    %       1   -1    r * sin(theta)                    2 GE?M. '!{{  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) B bP&-c  
    %       2    0    (2*r^2 - 1)                    sqrt(3) `0)'&HbLY  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) jxeZ,w o  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) O S?S$y  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ey!QAEg"X1  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) iTUOJ3V7i  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) @?bO@  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) `YL)[t? V  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #u]'3en  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) zw ,( kv  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,.6)y1!  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 5|:t$  
    %       -------------------------------------------------- Z @f4=  
    % 2d:IYCl4q  
    %   Example 1: \A#YL1hh  
    % D0 5JQ*  
    %       % Display the Zernike function Z(n=5,m=1) I)s~kA.e  
    %       x = -1:0.01:1; zfGS=@e]G  
    %       [X,Y] = meshgrid(x,x); ZlEQzL~  
    %       [theta,r] = cart2pol(X,Y); ?R#?=<VkG  
    %       idx = r<=1; fC|NK+Xd`  
    %       z = nan(size(X)); u"hv _ml  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); SobOUly5{  
    %       figure <?h,;]U  
    %       pcolor(x,x,z), shading interp BU;o$"L  
    %       axis square, colorbar o%j[]P@4G  
    %       title('Zernike function Z_5^1(r,\theta)') e]5 n4"]D)  
    % QP?eK W9 :  
    %   Example 2: caH!(V}6  
    % 6O@/Y;5i  
    %       % Display the first 10 Zernike functions M?[~_0_J  
    %       x = -1:0.01:1; ?mq<#/qb  
    %       [X,Y] = meshgrid(x,x); ZkA05wPZ#  
    %       [theta,r] = cart2pol(X,Y); BK *Bw,KQ<  
    %       idx = r<=1; <&47W  
    %       z = nan(size(X)); Thc"QIk&4  
    %       n = [0  1  1  2  2  2  3  3  3  3]; mu$0x)  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 3{/[gX9  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; J}?:\y<  
    %       y = zernfun(n,m,r(idx),theta(idx)); K+P:g%M  
    %       figure('Units','normalized') _+=M)lPm  
    %       for k = 1:10 9fhgCu]$  
    %           z(idx) = y(:,k); $_5a1Lq1  
    %           subplot(4,7,Nplot(k)) G?$0OU  
    %           pcolor(x,x,z), shading interp :*g3PhNE  
    %           set(gca,'XTick',[],'YTick',[]) L!qXt(`  
    %           axis square u#bd*(  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) I%?ia5]H  
    %       end GeydVT-  
    % jT:z#B%  
    %   See also ZERNPOL, ZERNFUN2. h+d  \u  
    I7C*P~32{n  
    %   Paul Fricker 11/13/2006 .$]%gjIBCl  
    I 7 B$X=  
    hW Va4  
    % Check and prepare the inputs: f#>ubmuI^  
    % ----------------------------- {3H)c^Q  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) UB9n7L(@c  
        error('zernfun:NMvectors','N and M must be vectors.') N3U.62  
    end q-<t'uhs[  
    ^1 U<,<  
    if length(n)~=length(m) l!7O2Ai5  
        error('zernfun:NMlength','N and M must be the same length.') VdC,M;/=Z  
    end #)7THx/=  
    ]IQ`.:g=9  
    n = n(:); &l-1.muQ  
    m = m(:); {9_}i#,vR  
    if any(mod(n-m,2)) o?]N2e&(  
        error('zernfun:NMmultiplesof2', ... 0 v> *P*  
              'All N and M must differ by multiples of 2 (including 0).') Nk ~"f5q7  
    end V'Z Z4og  
    _VM()n;  
    if any(m>n) 40i]I@:JK  
        error('zernfun:MlessthanN', ... *= ;M',nx  
              'Each M must be less than or equal to its corresponding N.') G[4$@{  
    end W? SFt z  
    ==XO:P  
    if any( r>1 | r<0 ) 8~@?cy1j!  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') !kG2$/lR  
    end <RaUs2Q3.  
    ?nc:B]=pTY  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) nMT"Rp  
        error('zernfun:RTHvector','R and THETA must be vectors.') 9esMr0*=  
    end +[_mSt  
    X8uAwHa6F  
    r = r(:); yzH[~O7  
    theta = theta(:); lHI ;fR  
    length_r = length(r); A^3M~  
    if length_r~=length(theta) ?BA~$|lfxu  
        error('zernfun:RTHlength', ... Z!eW_""wp  
              'The number of R- and THETA-values must be equal.') /$Ca }>  
    end u301xc,N<z  
    >JUOS2  
    % Check normalization: B3 NDx+%m  
    % -------------------- 8}_M1w6v  
    if nargin==5 && ischar(nflag) z-g"`w:Lj  
        isnorm = strcmpi(nflag,'norm'); )&pcRFl  
        if ~isnorm zxhE9 [`*e  
            error('zernfun:normalization','Unrecognized normalization flag.') gAxf5 A_x)  
        end 8Ts_;uId  
    else s-lNpOi  
        isnorm = false; *^=zQ~  
    end Z6\H4,k&  
    q1_iV.G<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hwj:$mR  
    % Compute the Zernike Polynomials .d?2Kc)SV\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 57~/QEdy  
    gi#g)9HG  
    % Determine the required powers of r: DYej<T'?3  
    % ----------------------------------- `"RT(` m  
    m_abs = abs(m); mLb>*xt$b@  
    rpowers = []; zg+6< .Sf  
    for j = 1:length(n) ~[ZRE @  
        rpowers = [rpowers m_abs(j):2:n(j)]; 7^<{aE:  
    end :SJxG&Pm=~  
    rpowers = unique(rpowers); ww#]i&6  
    .sBwJZ  
    % Pre-compute the values of r raised to the required powers, Q XLHQ_V  
    % and compile them in a matrix: hztxsvw  
    % ----------------------------- Ax{C ^u  
    if rpowers(1)==0 Uw5AHq).  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \iQ{Q &JR:  
        rpowern = cat(2,rpowern{:}); <yg! D21Y  
        rpowern = [ones(length_r,1) rpowern]; XN %tcaY  
    else  f2.|[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); mK_2VZj&  
        rpowern = cat(2,rpowern{:}); [L`w nP  
    end tcD DX'S  
    J<h! H  
    % Compute the values of the polynomials: }_|qDMk+  
    % -------------------------------------- rZ:-%#Q4  
    y = zeros(length_r,length(n)); 3Q:HzqG  
    for j = 1:length(n) 45aFH}w:  
        s = 0:(n(j)-m_abs(j))/2; , aJC7'(  
        pows = n(j):-2:m_abs(j); 0/TP`3$X#"  
        for k = length(s):-1:1 j[Z<|Da  
            p = (1-2*mod(s(k),2))* ... ttfCiP$  
                       prod(2:(n(j)-s(k)))/              ... Ra)AQ n  
                       prod(2:s(k))/                     ... 0 qp Pz|h  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &qMt07  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); L{F[>^1Sb  
            idx = (pows(k)==rpowers); .u3Z*+  
            y(:,j) = y(:,j) + p*rpowern(:,idx); +rWcfXOHM  
        end /{%p%Q[X  
         oa<%R8T?@  
        if isnorm 7N4)T'B  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); F9Co m}  
        end d3jzGJrU}  
    end aNDpCpy  
    % END: Compute the Zernike Polynomials M'5PPBSR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'aqlNBG*  
    ArVW2gL  
    % Compute the Zernike functions: q~6a$8+t  
    % ------------------------------ Lc! t  
    idx_pos = m>0; %@MO5#)NI  
    idx_neg = m<0; _X)`S"EsJ  
    ~jD~_JGp  
    z = y; ;|r<mT/,  
    if any(idx_pos) ]Il}ymkIZ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); c@|f'V4  
    end BK)3b6L=%  
    if any(idx_neg) .Ge`)_e  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); vB Vg/  
    end Zt ;u8O  
    >41K>=K  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的