切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11578阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 \RFA?PuY  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! UX|3LpFX&I  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  n+vv %  
    7.kH="@  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 BcQw-<veu  
    p}X *HJq$  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ]BmnE#n&  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. SJsbuLxR  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Z)}2bJwA  
    %   order N and frequency M, evaluated at R.  N is a vector of %+C6#cj  
    %   positive integers (including 0), and M is a vector with the OA[fQH#{lX  
    %   same number of elements as N.  Each element k of M must be a &NI\<C7_Gw  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) zN\C  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is :y_] JL;w  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Lu4>C2{  
    %   with one column for every (N,M) pair, and one row for every 6ywO L'OBM  
    %   element in R. X*&Thmee  
    % ]qEg5:yY  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Q>L.  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is bj?=\u  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to J!@R0U.  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Rq|]KAN  
    %   for all [n,m]. m RC   
    % (!9+QXb'  
    %   The radial Zernike polynomials are the radial portion of the _k(&<1i  
    %   Zernike functions, which are an orthogonal basis on the unit [4;G^{ bX  
    %   circle.  The series representation of the radial Zernike zV"'-iP  
    %   polynomials is ?&VKZSo  
    % _93:_L  
    %          (n-m)/2 7{NH;U t  
    %            __ +IlQZwm~  
    %    m      \       s                                          n-2s $JiypX^DOP  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r [|(=15;  
    %    n      s=0 #E_<}o  
    % bb-u'"5^]  
    %   The following table shows the first 12 polynomials. s$^2Qp  
    % D|'[[=  
    %       n    m    Zernike polynomial    Normalization A}_pJH  
    %       --------------------------------------------- cV4Y= &  
    %       0    0    1                        sqrt(2) 8K&=]:(  
    %       1    1    r                           2 &/g^J\0M)  
    %       2    0    2*r^2 - 1                sqrt(6) 3L{)Y`P  
    %       2    2    r^2                      sqrt(6) zqp>Xw  
    %       3    1    3*r^3 - 2*r              sqrt(8) y-"QY[  
    %       3    3    r^3                      sqrt(8) Hv%$6,/*v  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) LbR'nG{J  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) x_wWe>0  
    %       4    4    r^4                      sqrt(10) pB7^l|\]  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) t~8H~%T>v  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 3h}i="i   
    %       5    5    r^5                      sqrt(12) ]3 QW\k~  
    %       --------------------------------------------- Q2* ~9QkU  
    % f|~X}R  
    %   Example: |AS<I4+&  
    % .=9d3uWJ/  
    %       % Display three example Zernike radial polynomials 9q\_UbF  
    %       r = 0:0.01:1; 6.6?Rp".  
    %       n = [3 2 5]; 2)-4?uz~  
    %       m = [1 2 1]; NnaO!QW%  
    %       z = zernpol(n,m,r); m!]J{OGG:  
    %       figure SnM^T(gtS3  
    %       plot(r,z) QuC_sFP10  
    %       grid on V~do6[(  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Gz(l~!n~a  
    % ~Bi%8G  
    %   See also ZERNFUN, ZERNFUN2. p+y"r4   
    aP B4!3W  
    % A note on the algorithm. (/X ]9  
    % ------------------------ '"'RC O  
    % The radial Zernike polynomials are computed using the series %OP|%^2  
    % representation shown in the Help section above. For many special ]0W64cuT  
    % functions, direct evaluation using the series representation can jINI<[v[  
    % produce poor numerical results (floating point errors), because Sf@xP.d  
    % the summation often involves computing small differences between z:1t vG  
    % large successive terms in the series. (In such cases, the functions 4 =T_h`  
    % are often evaluated using alternative methods such as recurrence (^E5y,H<g  
    % relations: see the Legendre functions, for example). For the Zernike W{~ y< `D  
    % polynomials, however, this problem does not arise, because the c:<a"$  
    % polynomials are evaluated over the finite domain r = (0,1), and _'*(-K5&  
    % because the coefficients for a given polynomial are generally all q$Ms7 `a  
    % of similar magnitude. 4&v&XLkb  
    % 7U2B=]<e-  
    % ZERNPOL has been written using a vectorized implementation: multiple `7[!bCl  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 0|8cSE< i  
    % values can be passed as inputs) for a vector of points R.  To achieve .i^ @v<+  
    % this vectorization most efficiently, the algorithm in ZERNPOL 7nP{a"4_  
    % involves pre-determining all the powers p of R that are required to e>bARK<  
    % compute the outputs, and then compiling the {R^p} into a single 'pB?  
    % matrix.  This avoids any redundant computation of the R^p, and X8A.ag0Uu  
    % minimizes the sizes of certain intermediate variables. O- LwX >  
    % E[4 vUnm-  
    %   Paul Fricker 11/13/2006 1aUg({  
    fzvyR2 I  
    *zW]IQ'A  
    % Check and prepare the inputs: XL'\$f  
    % ----------------------------- (]PH2<3t  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #zBqj;p  
        error('zernpol:NMvectors','N and M must be vectors.') D0z[h(m  
    end ^YB2E*  
    VE}r'MBk  
    if length(n)~=length(m) 'f CSP|  
        error('zernpol:NMlength','N and M must be the same length.') \,r* -jr  
    end iSg0X8J)  
    *xY3F8  
    n = n(:); %~,Fe7#p  
    m = m(:); mIqm/5  
    length_n = length(n); g:GywX W  
    uh\Tf5  
    if any(mod(n-m,2)) 23 #JmR  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') <K,X5ctM}  
    end PsD)]V9%:  
    0WYu5|  
    if any(m<0) Rw FA  
        error('zernpol:Mpositive','All M must be positive.') ,KU%"{6  
    end Upcx@zJ  
    axq~56"7E  
    if any(m>n) RDjw|V  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') He}?\C Bo  
    end ^ meU&  
    Lo5pn  
    if any( r>1 | r<0 ) po,U e>n/  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') iHK.hs;  
    end 3IB9-wG  
    R.F l5B  
    if ~any(size(r)==1) &K(y%ieIJ  
        error('zernpol:Rvector','R must be a vector.') dUl"w`3  
    end )Q>Ao.  
    B& R?{y*  
    r = r(:); wu`+KUx  
    length_r = length(r); >]C/ Q6  
    $5&~gHc,  
    if nargin==4 I,HtW),  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); V\opC6*L_e  
        if ~isnorm !H{>c@i  
            error('zernpol:normalization','Unrecognized normalization flag.') O:pg+o&  
        end DT)] [V^w  
    else  N&kUTSd  
        isnorm = false; 9F?-zn;2s  
    end [{Q$$aV1  
    Un,'a8>V`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5?? }9  
    % Compute the Zernike Polynomials qswC> Gi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3EY m@oZj  
    [@8po-()L  
    % Determine the required powers of r: ~K99DK.  
    % ----------------------------------- yFQaNuZPC  
    rpowers = []; H$ g*  
    for j = 1:length(n) CR%h$+dzy  
        rpowers = [rpowers m(j):2:n(j)]; ,d&3IhYhD  
    end )pT5"{  
    rpowers = unique(rpowers); (v|<" tv  
    +G[zE  
    % Pre-compute the values of r raised to the required powers, u%E8&T8,  
    % and compile them in a matrix: s/s&d pT*  
    % ----------------------------- -1d*zySL  
    if rpowers(1)==0 c00rq ~<K  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D %)L "5C  
        rpowern = cat(2,rpowern{:}); _~ei1 G.R  
        rpowern = [ones(length_r,1) rpowern]; |G$-5 7fk  
    else A#19&}  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Y~A I2HS  
        rpowern = cat(2,rpowern{:}); ^blw\;LB  
    end _KxR~k^  
    )oz2V9X{  
    % Compute the values of the polynomials: $Cfp1#  
    % -------------------------------------- Kg"eS`-  
    z = zeros(length_r,length_n); J'7;+.s(  
    for j = 1:length_n D15-pz|Q  
        s = 0:(n(j)-m(j))/2; F ]Zg  
        pows = n(j):-2:m(j); >A6W^J|[  
        for k = length(s):-1:1 -PGxG 8S  
            p = (1-2*mod(s(k),2))* ... !6RDq`  
                       prod(2:(n(j)-s(k)))/          ... {=mGXd`x?l  
                       prod(2:s(k))/                 ... ^B} m~qT  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... %O"Whe  
                       prod(2:((n(j)+m(j))/2-s(k))); 4;CI< &S  
            idx = (pows(k)==rpowers); ]&q<O0^'  
            z(:,j) = z(:,j) + p*rpowern(:,idx); W|2|v?v  
        end l 'wu-  
         CM++:Y vJ  
        if isnorm X9]} UX  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ryh"/lu[B  
        end kh2TDxa&  
    end ) 5$?e  
    oQu>Qr{Zp  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) DgW@v[#BK=  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 7kE+9HmfMk  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated d4\JM 65  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive m[3c,Axl7  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, iCg%$h  
    %   and THETA is a vector of angles.  R and THETA must have the same :adz~L$  
    %   length.  The output Z is a matrix with one column for every P-value, v G\J8s  
    %   and one row for every (R,THETA) pair. 5 D^#6h 4  
    % IjRUr\l  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike UWV%  y P  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) (&/4wI^M  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) MQN~I^v3  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 f)z(9JJL  
    %   for all p. n9={D  
    % w->Y92q]  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 NFEr ,n  
    %   Zernike functions (order N<=7).  In some disciplines it is n(eo_.W2|  
    %   traditional to label the first 36 functions using a single mode GAYn*'<  
    %   number P instead of separate numbers for the order N and azimuthal SF,:jpt`Z+  
    %   frequency M. a@W9\b@I  
    % ~B"HI+:\L  
    %   Example: HB5-B XBU  
    % 8uLS7\,$z  
    %       % Display the first 16 Zernike functions g1[BrT,  
    %       x = -1:0.01:1; Er j{_i?R?  
    %       [X,Y] = meshgrid(x,x); r.zgLZ}3&V  
    %       [theta,r] = cart2pol(X,Y); r1<*=Fs=>>  
    %       idx = r<=1; PLs`Ci|`  
    %       p = 0:15; `Tyd1!~  
    %       z = nan(size(X)); 1Xm>nF~  
    %       y = zernfun2(p,r(idx),theta(idx)); ez[x8M>  
    %       figure('Units','normalized') w[gt9]}N  
    %       for k = 1:length(p) S 4 17.n  
    %           z(idx) = y(:,k); W5`pQdk  
    %           subplot(4,4,k) k@|px#kq  
    %           pcolor(x,x,z), shading interp ]9/A=p?J@  
    %           set(gca,'XTick',[],'YTick',[]) U.t][#<3  
    %           axis square [y'blCb  
    %           title(['Z_{' num2str(p(k)) '}']) <zn)f@W  
    %       end ,v8e7T  
    % q&v~9~^}d  
    %   See also ZERNPOL, ZERNFUN. h>GbJ/^  
    ,IboPh&Q78  
    %   Paul Fricker 11/13/2006 IMqe(  
    Bx|W#:3e  
    Bt@?l]Y  
    % Check and prepare the inputs: aXVldt'  
    % ----------------------------- N}B&(dJ  
    if min(size(p))~=1 Ah7"qv'L\  
        error('zernfun2:Pvector','Input P must be vector.') ky[Cx!81C  
    end ^\O*e)#*  
    > VIFQ\  
    if any(p)>35 (b#M4ho*f  
        error('zernfun2:P36', ... _yN5sLLyb  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... W1"NKg~4  
               '(P = 0 to 35).']) P`Ku. ONQ  
    end SQf[1}$ .  
    PA,aYg0f  
    % Get the order and frequency corresonding to the function number: MSM8wYcD  
    % ---------------------------------------------------------------- V9"R8*@-  
    p = p(:); eUN aq&M  
    n = ceil((-3+sqrt(9+8*p))/2); ~\NQkaBkY  
    m = 2*p - n.*(n+2); R)Mkt8v  
    ' abEY  
    % Pass the inputs to the function ZERNFUN: \os"w "  
    % ---------------------------------------- r7R'beiH  
    switch nargin 4_QfM}Fyp  
        case 3 /fT"WaTEK  
            z = zernfun(n,m,r,theta); !% W5@tN  
        case 4 @B >D>B  
            z = zernfun(n,m,r,theta,nflag);  ]aF;  
        otherwise gw,K*ph}q  
            error('zernfun2:nargin','Incorrect number of inputs.') {z 5YJ*C  
    end mTX:?>  
    J  Y8Rk=  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 AeEdqX)  
    function z = zernfun(n,m,r,theta,nflag) }gX hN"  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. sHBTB6)lx  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Iv  
    %   and angular frequency M, evaluated at positions (R,THETA) on the #p*uk  
    %   unit circle.  N is a vector of positive integers (including 0), and o[Qb/ 7  
    %   M is a vector with the same number of elements as N.  Each element _p:n\9k  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) |X>'W"Mn  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, *\'t$se+  
    %   and THETA is a vector of angles.  R and THETA must have the same z~`X4Segw  
    %   length.  The output Z is a matrix with one column for every (N,M) $6UU58>n  
    %   pair, and one row for every (R,THETA) pair. N}n3 +F  
    % J7",fb  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike iQ Xlz] '  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), (SW6?5  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral &D{!zF  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 9VTAs:0D=  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized %"(HjanH  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]\|2=  
    % n7;jME/!  
    %   The Zernike functions are an orthogonal basis on the unit circle. dO z|CfUhI  
    %   They are used in disciplines such as astronomy, optics, and sk9Ejaf6>  
    %   optometry to describe functions on a circular domain. !?ZR_=Y%  
    % E@k'uyIu  
    %   The following table lists the first 15 Zernike functions. S{l)hwlE  
    % deYv&=SPl  
    %       n    m    Zernike function           Normalization U { 0~&  
    %       -------------------------------------------------- ~xY"P)(x;  
    %       0    0    1                                 1 Ek `bPQ5  
    %       1    1    r * cos(theta)                    2 #Swc>jYc  
    %       1   -1    r * sin(theta)                    2 {"~[F2qR  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Heh&;c  
    %       2    0    (2*r^2 - 1)                    sqrt(3) E-Xz  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) $#n9C79Z@  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) %E@o8  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) XYP RMa?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) n6Uh%rO7S|  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 3,v/zcV  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) H?;+C/-K`_  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xV+\R/)x  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) k?Hi_;o  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7Dssr [  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ;0kAm Vy  
    %       -------------------------------------------------- T'7>4MT(  
    % +~G:z|k  
    %   Example 1: \;'#8  
    % #y#TEw,  
    %       % Display the Zernike function Z(n=5,m=1) =/a`X[9vI  
    %       x = -1:0.01:1; a"xRc  
    %       [X,Y] = meshgrid(x,x); *jc >?)k  
    %       [theta,r] = cart2pol(X,Y); Y1r'\@L w  
    %       idx = r<=1; Gev\bQa  
    %       z = nan(size(X)); |Tmug X7  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); .4E24FB[f?  
    %       figure f eB ?  
    %       pcolor(x,x,z), shading interp PtUS7[]  
    %       axis square, colorbar JE:LA+ (  
    %       title('Zernike function Z_5^1(r,\theta)') lt4IoE`tk?  
    % uZ_?x~V/  
    %   Example 2: Q?j '4  
    % ,^mEi  
    %       % Display the first 10 Zernike functions ;8vB7|54.  
    %       x = -1:0.01:1; "Y^Fn,c  
    %       [X,Y] = meshgrid(x,x);  Rh6CV  
    %       [theta,r] = cart2pol(X,Y); d!<>Fh^6,  
    %       idx = r<=1; @eBo7#Zr  
    %       z = nan(size(X)); e^~dx}X  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ,)\G<q yO6  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; k~<Ozx^AyY  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; z"7?I$N Q  
    %       y = zernfun(n,m,r(idx),theta(idx)); AX{<d@z`j  
    %       figure('Units','normalized') LC=M{\  
    %       for k = 1:10 N4VZl[7?  
    %           z(idx) = y(:,k); w-)JCdS6Tb  
    %           subplot(4,7,Nplot(k)) lgVT~v{U`n  
    %           pcolor(x,x,z), shading interp *$VeR(QN  
    %           set(gca,'XTick',[],'YTick',[]) Tg@G-6u0c  
    %           axis square #+6j-^<_6  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) M-Vz$D/aed  
    %       end ;6 d-+(@  
    % x%$6l  
    %   See also ZERNPOL, ZERNFUN2. ^=-25%&^  
    7mi=Xa:U  
    %   Paul Fricker 11/13/2006 p[WlcbBwT  
    4?(=?0/[  
    k "7,-0gz  
    % Check and prepare the inputs: j3w~2q"r  
    % ----------------------------- %CQa8<q  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) nw*a?$S3  
        error('zernfun:NMvectors','N and M must be vectors.') tD}{/`{_t  
    end kd&~_=Q  
    t`}=~/#`X  
    if length(n)~=length(m) OBlQ   
        error('zernfun:NMlength','N and M must be the same length.') fOSJdX0e|Q  
    end h^IizrqU  
    Tp~Qg{%Og  
    n = n(:); 4s>L]! W$8  
    m = m(:); er 1zSTkg  
    if any(mod(n-m,2)) FR50y+h^$  
        error('zernfun:NMmultiplesof2', ... UZiL NKc  
              'All N and M must differ by multiples of 2 (including 0).') 1M_6X7PH  
    end %|/\Qu  
    ~Odclrs  
    if any(m>n) uW}M1kq?+l  
        error('zernfun:MlessthanN', ... 2" v{  
              'Each M must be less than or equal to its corresponding N.') c2GTN"  
    end Ygfy;G%  
    ~|{e"!(}  
    if any( r>1 | r<0 ) kp?_ir  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') k+@ :+ RL  
    end I )% bOK]  
    CIwI1VR^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) %ID48_>*  
        error('zernfun:RTHvector','R and THETA must be vectors.') M!VW/vdywL  
    end Wa?\W&  
    ) cOBP}j+  
    r = r(:); VD,g3B p  
    theta = theta(:); N1:)Z`r  
    length_r = length(r); tnb'\}Vn  
    if length_r~=length(theta) :%fnJg(  
        error('zernfun:RTHlength', ... ,Wd+&|Q  
              'The number of R- and THETA-values must be equal.') $RRh}w\0^  
    end ij_5=4aZ-  
    p4uObK,  
    % Check normalization: ^'sy hI\  
    % -------------------- 4 ;6,h6a  
    if nargin==5 && ischar(nflag) 6: R1jF*eG  
        isnorm = strcmpi(nflag,'norm'); FhEfW7]0,  
        if ~isnorm SrMfd7H8f  
            error('zernfun:normalization','Unrecognized normalization flag.') z+_d*\  
        end ! v%%_sRV  
    else HR'F  
        isnorm = false; )ZZ6 (O  
    end se_Oi$VZ{  
    j->5%y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a|dn3R>vX  
    % Compute the Zernike Polynomials _>t6]?*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T!&VT;   
    \3 rgwbF  
    % Determine the required powers of r: ?%>S5,f_  
    % ----------------------------------- w0.;86<MV  
    m_abs = abs(m); L1SZutWD?  
    rpowers = []; z"f+;1  
    for j = 1:length(n) ]D[\l$(  
        rpowers = [rpowers m_abs(j):2:n(j)]; lESv  
    end ;2[),k  
    rpowers = unique(rpowers); }!V-FAL  
    _RE;}1rb,  
    % Pre-compute the values of r raised to the required powers, CZog?O}<  
    % and compile them in a matrix: slAR<8  
    % ----------------------------- B[9y<FB+  
    if rpowers(1)==0 n 0g8B  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {@hJPK8  
        rpowern = cat(2,rpowern{:}); /}9)ZY Mx  
        rpowern = [ones(length_r,1) rpowern]; $$i Gs6az  
    else S_?sJwM  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2D /bMq  
        rpowern = cat(2,rpowern{:}); 5+yy:#J]  
    end u~PZK.Uf0  
    8:[ l1d86  
    % Compute the values of the polynomials: e$/y ~!  
    % -------------------------------------- ]- _ ma  
    y = zeros(length_r,length(n)); ZG-#YF.1  
    for j = 1:length(n) ubRhJ~XB  
        s = 0:(n(j)-m_abs(j))/2; -[}Aka,f!  
        pows = n(j):-2:m_abs(j); H3 -?cy  
        for k = length(s):-1:1 Lp/'-Y_  
            p = (1-2*mod(s(k),2))* ... [w!T  
                       prod(2:(n(j)-s(k)))/              ... g)=$zXWhP  
                       prod(2:s(k))/                     ... Ve${g`7&  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Y=?{TX=6<[  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); }Xfg~ %6  
            idx = (pows(k)==rpowers); l(Dr@LB~  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ]_|'N7J  
        end W?"l6s  
         qM+Ai*q  
        if isnorm nCQ".G  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Hpa6; eT  
        end (>E/C^Tc%  
    end -2!S>P Zs  
    % END: Compute the Zernike Polynomials *rbgDaQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _>n)HG  
    \4^zY'  
    % Compute the Zernike functions: ^/$dSXKF  
    % ------------------------------ dQ~GE}[  
    idx_pos = m>0; 0|J9Btbp  
    idx_neg = m<0; MgJ5FRQ  
    ^*4#ZvpG2  
    z = y; 6P}?+ Gc  
    if any(idx_pos) \!30t1EZ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8_w6% md  
    end GD)paTwO<  
    if any(idx_neg) >~Gy+-  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ;dMr2y`6  
    end 8+dsTX`|S  
    -?:8s v*X  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的