切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11179阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 +R_U  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! @^e@.)  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  @ni~ij  
    v%5(-  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 vEGK{rMA  
    j&.BbcE45  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) jMui+G(h  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. A5<Z&Y[  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Ks2%F&\cE  
    %   order N and frequency M, evaluated at R.  N is a vector of oh0|2IrM  
    %   positive integers (including 0), and M is a vector with the a9zph2o-  
    %   same number of elements as N.  Each element k of M must be a e uHu}  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) GY]6#>D#7  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is % 3-\3qx*  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix R+VLoz*J6  
    %   with one column for every (N,M) pair, and one row for every a<jE 25t  
    %   element in R. vr;Br-8  
    % IPi<sE  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- cN}A rv  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is c_$&Uii  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 'O2#1SWe  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 *M<BPxh0w]  
    %   for all [n,m]. tW"ptU^9)  
    % (L:Fb  
    %   The radial Zernike polynomials are the radial portion of the ?J@qg20z  
    %   Zernike functions, which are an orthogonal basis on the unit ivz9R'  
    %   circle.  The series representation of the radial Zernike 76Vyhf&7  
    %   polynomials is 'ag6B(0Z  
    % _% 9+U [@  
    %          (n-m)/2 pUMB)(<k  
    %            __ X#I`(iHY  
    %    m      \       s                                          n-2s 3r:)\E+Q_  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r a05:iFoJ  
    %    n      s=0 :CST!+)o  
    % J*~2 :{=%  
    %   The following table shows the first 12 polynomials. ,x"yZ  
    % >l< ~Z;  
    %       n    m    Zernike polynomial    Normalization PT@e),{~o9  
    %       --------------------------------------------- uj9tr`Zh  
    %       0    0    1                        sqrt(2) FWpN:|X BS  
    %       1    1    r                           2 Jv^cOc  
    %       2    0    2*r^2 - 1                sqrt(6) @W\4UX3dK  
    %       2    2    r^2                      sqrt(6) &#PBww  
    %       3    1    3*r^3 - 2*r              sqrt(8) Ms'TC; &PS  
    %       3    3    r^3                      sqrt(8) P[I*%  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Z++Z@J"  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Ik-E4pxKo  
    %       4    4    r^4                      sqrt(10) fZV8 o$V  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) r;on0wm&B  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) R!k<l<9q  
    %       5    5    r^5                      sqrt(12) !E {GcK  
    %       --------------------------------------------- *JY`.t  
    % 56=K@$L {F  
    %   Example: u->@|tEq  
    % <m /b]|  
    %       % Display three example Zernike radial polynomials 7hN6IP*so  
    %       r = 0:0.01:1; $mI:Im`s  
    %       n = [3 2 5]; (o6[4( G  
    %       m = [1 2 1]; <% 7P  
    %       z = zernpol(n,m,r); &.  =}g]  
    %       figure [[?[? V ,  
    %       plot(r,z) Ld}(*-1i  
    %       grid on UC+7-y,  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') mU3Y)  
    % 2 ]DCF  
    %   See also ZERNFUN, ZERNFUN2. &ap`}^8pM  
    3:~l2KIP4  
    % A note on the algorithm. v(Bp1~PPZM  
    % ------------------------ 3r-VxP 5n  
    % The radial Zernike polynomials are computed using the series Cwsoz  
    % representation shown in the Help section above. For many special ZO%fS'n  
    % functions, direct evaluation using the series representation can Z.aLk4QO@  
    % produce poor numerical results (floating point errors), because N0K>lL=  
    % the summation often involves computing small differences between e>,9]{N+$  
    % large successive terms in the series. (In such cases, the functions BbXU| QtY  
    % are often evaluated using alternative methods such as recurrence W7TXI~7  
    % relations: see the Legendre functions, for example). For the Zernike Wd^lt7(j  
    % polynomials, however, this problem does not arise, because the X"TUe>cM  
    % polynomials are evaluated over the finite domain r = (0,1), and T@Ss&eGT2  
    % because the coefficients for a given polynomial are generally all +24|_Lx0  
    % of similar magnitude. B-\,2rCCZ  
    % |B%BwE  
    % ZERNPOL has been written using a vectorized implementation: multiple )RA\kZ"  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] K9C@dvFH  
    % values can be passed as inputs) for a vector of points R.  To achieve dXhCyr%"6  
    % this vectorization most efficiently, the algorithm in ZERNPOL 1#> &p%P!  
    % involves pre-determining all the powers p of R that are required to tKG;k"wk  
    % compute the outputs, and then compiling the {R^p} into a single Q/QQ:t<XUi  
    % matrix.  This avoids any redundant computation of the R^p, and @)OnIQN~  
    % minimizes the sizes of certain intermediate variables. Q\o$**+{  
    % u>,lf\Fgz  
    %   Paul Fricker 11/13/2006 2AXF$YjY  
    BN\fv,  
    nW $A^  
    % Check and prepare the inputs: &\"Y/b]  
    % ----------------------------- [}A_uOGEP  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) QmH/yy3.%  
        error('zernpol:NMvectors','N and M must be vectors.') w69>tC  
    end 9Qt)m fqM  
    /'Qu u)~  
    if length(n)~=length(m) pAJ=f}",]E  
        error('zernpol:NMlength','N and M must be the same length.') y3={NB+  
    end k_*XJ<S!Y  
    B^i mG  
    n = n(:); j<l#qho{h  
    m = m(:); 0NL :z1N-h  
    length_n = length(n); hi;WFyJTu  
    E/wQ+rv  
    if any(mod(n-m,2)) ERp:EZ'  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') i(M(OR/4  
    end q3c*<n g#  
    @@xO+$6  
    if any(m<0) ~a'nHy1  
        error('zernpol:Mpositive','All M must be positive.') K,x$c %  
    end &Q'\WA'  
    tSEA999  
    if any(m>n) sTKab :  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') -@%t"8  
    end Y)'!'J  
    5wzQ?07T_  
    if any( r>1 | r<0 ) P<>[e9|  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') F1 <489  
    end <KHv|)ak  
    Ff[H>Lp~  
    if ~any(size(r)==1) /;(<fh<bY  
        error('zernpol:Rvector','R must be a vector.') ]~?S~l%  
    end K H>Sc3p  
    51&|t#8h  
    r = r(:); 9Tzc(yCY  
    length_r = length(r); W.yV/fu  
    pGY [f@_x-  
    if nargin==4 MS{Hz,I,  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); E=;BI">.  
        if ~isnorm >lA7*nn  
            error('zernpol:normalization','Unrecognized normalization flag.') rumAo'T/%  
        end ! (B_EM  
    else =RQ )$ %  
        isnorm = false; xM%H~(  
    end )2) Zz +<  
    ,"@w>WL<9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VKT@2HjNT`  
    % Compute the Zernike Polynomials C@ FxB[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% IgLVn<5n  
    3sS=?q  
    % Determine the required powers of r: btUq  
    % ----------------------------------- |)^clkuGX  
    rpowers = []; k |^vCZ<(x  
    for j = 1:length(n) B:e.gtM5  
        rpowers = [rpowers m(j):2:n(j)]; |$M@09,F"  
    end ~;}\zKQKE  
    rpowers = unique(rpowers); ktN%!Mh\  
    H9sZR>(^  
    % Pre-compute the values of r raised to the required powers, gB>(xY>LrA  
    % and compile them in a matrix: HpW" lYW4  
    % ----------------------------- c L?\^K)  
    if rpowers(1)==0 d?JAUbqy  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !K!)S^^Po?  
        rpowern = cat(2,rpowern{:}); 0xN!DvCg>.  
        rpowern = [ones(length_r,1) rpowern]; Po!oN~r  
    else \'[3^/('  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W5pn;u- sz  
        rpowern = cat(2,rpowern{:}); Dp^"J85}   
    end -y%QRO(  
    v,n);  
    % Compute the values of the polynomials: }|AX_=a  
    % -------------------------------------- 6e*%\2UA  
    z = zeros(length_r,length_n); % =y;L:S\p  
    for j = 1:length_n (viWY  
        s = 0:(n(j)-m(j))/2; {!lNL[x  
        pows = n(j):-2:m(j); FU[*8^Z  
        for k = length(s):-1:1 !zU/Hq{wcK  
            p = (1-2*mod(s(k),2))* ... HHZ`%  
                       prod(2:(n(j)-s(k)))/          ... Dq|GQdZ>o  
                       prod(2:s(k))/                 ... yGRR8F5>(  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ...  "";=DH  
                       prod(2:((n(j)+m(j))/2-s(k))); ^Fn%K].X  
            idx = (pows(k)==rpowers); Hyf"iYv+  
            z(:,j) = z(:,j) + p*rpowern(:,idx); '[%jjUU  
        end d60c$?"]a(  
         2v4W6R  
        if isnorm N5yJ'i~,M  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); X|,["Az 8  
        end 5Wo5 n7o  
    end z23#G>I&  
    \Ps5H5Qk;  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) eap8*ONl  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. d bCNhbN(  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated f$vwuW  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Z4#v~!  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1,  ![ a  
    %   and THETA is a vector of angles.  R and THETA must have the same )Z("O[  
    %   length.  The output Z is a matrix with one column for every P-value, ]Y{,Nx  
    %   and one row for every (R,THETA) pair. ewpig4  
    % Gy9 $Wj  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike l~NEGb  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) X{`1:c'x  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 7|Xe&o<n  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 i@XB&;*c\  
    %   for all p. 5?w.rcN[j  
    % W+K.r?G<j  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 07FT)QTE  
    %   Zernike functions (order N<=7).  In some disciplines it is HAd%k$Xu{  
    %   traditional to label the first 36 functions using a single mode !j0_ cA  
    %   number P instead of separate numbers for the order N and azimuthal TU%bOAKF\  
    %   frequency M. (vnoP< 0  
    % #~S>K3(  
    %   Example: =HS4I.@c_5  
    % \ADLMj`F|  
    %       % Display the first 16 Zernike functions T{tn.sT  
    %       x = -1:0.01:1; Q(e{~ ]*  
    %       [X,Y] = meshgrid(x,x); x)_r@l`$ix  
    %       [theta,r] = cart2pol(X,Y); kutJd{68  
    %       idx = r<=1; -x{&an=  
    %       p = 0:15; ' Rc#^U*n  
    %       z = nan(size(X)); t3a#%'Dv  
    %       y = zernfun2(p,r(idx),theta(idx)); hl<y4y&|  
    %       figure('Units','normalized') }vY.EEy!  
    %       for k = 1:length(p) Gc'M[9Mh  
    %           z(idx) = y(:,k); M$H`^Pv  
    %           subplot(4,4,k) #|?8~c;RWG  
    %           pcolor(x,x,z), shading interp Fm5Q&'`l  
    %           set(gca,'XTick',[],'YTick',[]) !3V{2-y$-  
    %           axis square f3 vF"O  
    %           title(['Z_{' num2str(p(k)) '}']) oqYt/4^Q  
    %       end nA+F  
    % $''UlWK  
    %   See also ZERNPOL, ZERNFUN. VX!hv`E  
    \7 Gz\=\LR  
    %   Paul Fricker 11/13/2006 xNIGO/uI~  
    ]Jn2Ra"j  
    @vt$MiOi  
    % Check and prepare the inputs: VE$t%QT  
    % ----------------------------- Kp&3=e;vn{  
    if min(size(p))~=1 l `R KqT+  
        error('zernfun2:Pvector','Input P must be vector.') "mA1H]r3  
    end `XgFga)  
    PS}73Y#  
    if any(p)>35 1'fb @vO  
        error('zernfun2:P36', ... 3+V#[JBJv  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... NO4Z"3Pd_  
               '(P = 0 to 35).']) /[{auUxSX  
    end F&az":  
    RX>2~^  
    % Get the order and frequency corresonding to the function number: \0&SI1Yp  
    % ---------------------------------------------------------------- 9go))&`PJL  
    p = p(:); X!c?CL  
    n = ceil((-3+sqrt(9+8*p))/2); fEwifSp.  
    m = 2*p - n.*(n+2); ;7j,MbU  
    `tVy_/3(9  
    % Pass the inputs to the function ZERNFUN: QNpu TZn#Q  
    % ---------------------------------------- d.AC%&W  
    switch nargin #U"1 9@|}  
        case 3 I_>`hTiR  
            z = zernfun(n,m,r,theta); n[CoS  
        case 4 8R?I`M_b  
            z = zernfun(n,m,r,theta,nflag); x.UaQ |F  
        otherwise h.}u?{  
            error('zernfun2:nargin','Incorrect number of inputs.') ) EXJ   
    end `0@z"D5c  
    q3+8]-9|5  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 p6[ (81  
    function z = zernfun(n,m,r,theta,nflag) S>t>6&A  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. "+h/-2rA  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N I$j|Rq  
    %   and angular frequency M, evaluated at positions (R,THETA) on the xS+rHC  
    %   unit circle.  N is a vector of positive integers (including 0), and 5[R?iSGL1  
    %   M is a vector with the same number of elements as N.  Each element (0C&z/  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) "b%FmM  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Y[G9Vok VX  
    %   and THETA is a vector of angles.  R and THETA must have the same 8zmv 5trt  
    %   length.  The output Z is a matrix with one column for every (N,M) n)RM+g  
    %   pair, and one row for every (R,THETA) pair. KB[QZ`"%!  
    % 0>@[o8  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike G Y-M.|%  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), n9] ~  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral (h,Ws-O  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, DsQ/aG9c%  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized BX3lP v  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 88o:NJ}_  
    % $E.XOpl&I  
    %   The Zernike functions are an orthogonal basis on the unit circle. ~gddcTp  
    %   They are used in disciplines such as astronomy, optics, and GV6mzD@ <  
    %   optometry to describe functions on a circular domain. e{!vNJ0`  
    % _B$"e[:yX  
    %   The following table lists the first 15 Zernike functions. =x H~ww (D  
    % U ~1 SF  
    %       n    m    Zernike function           Normalization '{VM> Q  
    %       -------------------------------------------------- ,Rz }=j  
    %       0    0    1                                 1 8R4qU!M  
    %       1    1    r * cos(theta)                    2 #{,h@g}W  
    %       1   -1    r * sin(theta)                    2 'C~9]Y].  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) mHs:t{q  
    %       2    0    (2*r^2 - 1)                    sqrt(3) GAp!nix6h  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 6?o>{e7n^  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Z*eoA  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) VGZ6  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) aYVDp{_  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) RIjM(P  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ]>8)|]O6n  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )4uq iA6  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 9L"?wv  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [Vp\$;\nT  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) !<r8~A3!(  
    %       -------------------------------------------------- ^'W%X  
    % oEIqA  
    %   Example 1: V(..8}LlD  
    % %6i=lyH-  
    %       % Display the Zernike function Z(n=5,m=1) sN]Z #7  
    %       x = -1:0.01:1; P(;Mb{  
    %       [X,Y] = meshgrid(x,x); C3.=GRg~l  
    %       [theta,r] = cart2pol(X,Y); bl.EIyG>  
    %       idx = r<=1; M/B/b<['  
    %       z = nan(size(X));  ?Ib}  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); DL4iXULNY  
    %       figure #r}uin*jD  
    %       pcolor(x,x,z), shading interp %wW'!p-<  
    %       axis square, colorbar f3n~{a,[  
    %       title('Zernike function Z_5^1(r,\theta)') or.\)(m#(  
    % z2~87fv+  
    %   Example 2: bNs[O22  
    % ? s4oDi|:  
    %       % Display the first 10 Zernike functions cL7C 2wB`  
    %       x = -1:0.01:1; ;)|nkI  
    %       [X,Y] = meshgrid(x,x); 8\_*1h40s  
    %       [theta,r] = cart2pol(X,Y); jY+Do:#/wO  
    %       idx = r<=1; FmI;lVF0j  
    %       z = nan(size(X)); q+%!<]7X  
    %       n = [0  1  1  2  2  2  3  3  3  3]; sam[s4@eQ  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; WZK :.y  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7d9Z/J@>  
    %       y = zernfun(n,m,r(idx),theta(idx)); |j# ^@R  
    %       figure('Units','normalized') - 0DZ::  
    %       for k = 1:10 hBy*09Sv  
    %           z(idx) = y(:,k); iNLDl~uU  
    %           subplot(4,7,Nplot(k)) ?*+1~m>  
    %           pcolor(x,x,z), shading interp  mn`5pha  
    %           set(gca,'XTick',[],'YTick',[]) fTgbF{?xh  
    %           axis square eJaUmK:  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5rN7':(H!%  
    %       end mu>] 9ZW  
    % a7*COh  
    %   See also ZERNPOL, ZERNFUN2. zq=&4afOE  
    vX.]hp5~  
    %   Paul Fricker 11/13/2006 8!4[#y<  
    DaDUK?  
    .hne)K%={y  
    % Check and prepare the inputs: Ql8^]gbp+  
    % ----------------------------- nX 8B;*p6b  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) r0uJ$/!  
        error('zernfun:NMvectors','N and M must be vectors.') ,!H\^Vfl  
    end +C5#$5];  
    eI?HwP{m  
    if length(n)~=length(m) ?FDJqJM  
        error('zernfun:NMlength','N and M must be the same length.') WL/5 oj  
    end 3P`WPph  
    ^XNw$@&',  
    n = n(:); Z9f/-|r5  
    m = m(:); Y{j7Q4{  
    if any(mod(n-m,2)) e# <4/FR  
        error('zernfun:NMmultiplesof2', ... %2YN,a4  
              'All N and M must differ by multiples of 2 (including 0).') IywiCMjH  
    end PJ;.31u  
    c dDY]"k  
    if any(m>n) K4Y'B o4  
        error('zernfun:MlessthanN', ... )*W=GY*  
              'Each M must be less than or equal to its corresponding N.') bq: [Nj  
    end p9Z ].5Pd"  
    $r):d  
    if any( r>1 | r<0 ) ?(>k,[n  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') HoL~j({  
    end (H2ylMpQt  
    ~f .y:Sbb  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) nfa_8  
        error('zernfun:RTHvector','R and THETA must be vectors.') 1]Lhk?4t  
    end y,V6h*x2  
    ]2PQ X4t 0  
    r = r(:); V07VwVD  
    theta = theta(:); wePI*."]  
    length_r = length(r); R~$hWu}}  
    if length_r~=length(theta) Ej{+U  
        error('zernfun:RTHlength', ... ]d^ k4 d  
              'The number of R- and THETA-values must be equal.') !*5_pGe  
    end W w^7^q&  
    *h:D|4oJ(  
    % Check normalization: 7oD y7nV4  
    % -------------------- *|^,DGfQ6  
    if nargin==5 && ischar(nflag) ;*nh=w  
        isnorm = strcmpi(nflag,'norm'); f&f`J/(  
        if ~isnorm .(JE-upJ"  
            error('zernfun:normalization','Unrecognized normalization flag.') ygMd$0:MN  
        end "~_$T@^k>  
    else 3Fgz)*Gu]  
        isnorm = false; JV&Zwbu  
    end )=y.^@UT@  
    vUqe.?5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ed=n``P~}  
    % Compute the Zernike Polynomials iQu^|,tHEM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fjcr<&{:  
    J0Jr BXCh  
    % Determine the required powers of r: b$dBV}0 L  
    % ----------------------------------- xUQdVrFU  
    m_abs = abs(m); /9P^{ OZ;y  
    rpowers = []; ::v;)VdX+*  
    for j = 1:length(n) 'y< t/qo  
        rpowers = [rpowers m_abs(j):2:n(j)]; 7,f:Qi@g  
    end !;TR2Zcn  
    rpowers = unique(rpowers);  ccRlql(  
    =Y/}b\9`T  
    % Pre-compute the values of r raised to the required powers, JR] )xPI`  
    % and compile them in a matrix: s%5Uj }  
    % ----------------------------- K4_~ruhr  
    if rpowers(1)==0 XMomFW_@  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); MST:.x ;  
        rpowern = cat(2,rpowern{:}); 15o9CaQw4"  
        rpowern = [ones(length_r,1) rpowern]; SwyaYK  
    else h] <GTWj  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); S>.q 5  
        rpowern = cat(2,rpowern{:}); 6BUBk>A`  
    end VIb;96$Or  
    Tc9&mKVE%(  
    % Compute the values of the polynomials: >ze>Xr'm5=  
    % -------------------------------------- 1]"D%U=  
    y = zeros(length_r,length(n)); )uANmThOz  
    for j = 1:length(n) pi|\0lH6W  
        s = 0:(n(j)-m_abs(j))/2; W&HF?w}s  
        pows = n(j):-2:m_abs(j); ,<7"K&  
        for k = length(s):-1:1 f+{c1fb>s  
            p = (1-2*mod(s(k),2))* ... qi( &8in  
                       prod(2:(n(j)-s(k)))/              ... 2=jd;2~  
                       prod(2:s(k))/                     ... -)p@BtMS  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >s;oOo+5  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 4 U3C~J  
            idx = (pows(k)==rpowers); rH[5~U  
            y(:,j) = y(:,j) + p*rpowern(:,idx); u9esdOv  
        end $Vo/CZW7  
         Lc58lV=  
        if isnorm lt }r}HM+  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); NKRaQ r  
        end SL6mNn9c  
    end _TtX`b_Z  
    % END: Compute the Zernike Polynomials V+Y|4Y&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% " ]aQ Hh]f  
    N<p5p0  
    % Compute the Zernike functions: s>LA3kT  
    % ------------------------------ fx]\)0n  
    idx_pos = m>0;  -0{T  
    idx_neg = m<0; P]|J?$1K  
    QIR4<]/  
    z = y; t8L<x  
    if any(idx_pos) Mr$# e  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); <E D8"~_  
    end jVLY!7Z4  
    if any(idx_neg) lF0K=L  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); qXXYF>Z-  
    end D-'i G%)kA  
    JQ~y- lt  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的