非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 AeEdqX)
function z = zernfun(n,m,r,theta,nflag) }gXhN"
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. sHBTB6)lx
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Iv
% and angular frequency M, evaluated at positions (R,THETA) on the #p*uk
% unit circle. N is a vector of positive integers (including 0), and o[Qb/ 7
% M is a vector with the same number of elements as N. Each element _p: n\9k
% k of M must be a positive integer, with possible values M(k) = -N(k) |X>'W"Mn
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, *\'t$se+
% and THETA is a vector of angles. R and THETA must have the same z~`X4Segw
% length. The output Z is a matrix with one column for every (N,M)
$6UU58>n
% pair, and one row for every (R,THETA) pair. N}n3 +F
% J7",fb
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike iQ
Xlz]'
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), (S W6?5
% with delta(m,0) the Kronecker delta, is chosen so that the integral &D{!zF
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 9VTAs:0D=
% and theta=0 to theta=2*pi) is unity. For the non-normalized %"(HjanH
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ] \|2=
% n7;jME/!
% The Zernike functions are an orthogonal basis on the unit circle. dO z|CfUhI
% They are used in disciplines such as astronomy, optics, and sk9Ejaf6>
% optometry to describe functions on a circular domain. !?ZR_=Y%
% E@k'uyIu
% The following table lists the first 15 Zernike functions. S{l)hwlE
% deYv&=SPl
% n m Zernike function Normalization U{ 0~&
% -------------------------------------------------- ~xY"P)(x;
% 0 0 1 1 Ek `bPQ5
% 1 1 r * cos(theta) 2 #Swc>jYc
% 1 -1 r * sin(theta) 2 {"~[F 2qR
% 2 -2 r^2 * cos(2*theta) sqrt(6) Heh&;c
% 2 0 (2*r^2 - 1) sqrt(3) E-Xz
% 2 2 r^2 * sin(2*theta) sqrt(6) $#n9C79Z@
% 3 -3 r^3 * cos(3*theta) sqrt(8) %E@o8
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) XYP
RMa?
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) n6Uh%rO7S|
% 3 3 r^3 * sin(3*theta) sqrt(8) 3,v/zcV
% 4 -4 r^4 * cos(4*theta) sqrt(10) H?;+C/-K`_
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xV+\R/)x
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) k?Hi_;o
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7Dssr [
% 4 4 r^4 * sin(4*theta) sqrt(10) ;0kAm
Vy
% -------------------------------------------------- T'7>4MT(
% +~G:z|k
% Example 1: \; '#8
% #y#TEw,
% % Display the Zernike function Z(n=5,m=1) =/a`X[9vI
% x = -1:0.01:1; a"xRc
% [X,Y] = meshgrid(x,x); *jc
>?)k
% [theta,r] = cart2pol(X,Y); Y1r'\@L w
% idx = r<=1; Gev\bQa
% z = nan(size(X)); |Tmug X7
% z(idx) = zernfun(5,1,r(idx),theta(idx)); .4E24FB[f?
% figure feB ?
% pcolor(x,x,z), shading interp PtUS7[]
% axis square, colorbar JE:LA+ (
% title('Zernike function Z_5^1(r,\theta)') lt4IoE`tk?
% uZ_?x~V/
% Example 2: Q?j '4
% ,^mEi
% % Display the first 10 Zernike functions ;8vB7|54.
% x = -1:0.01:1; "Y^Fn,c
% [X,Y] = meshgrid(x,x); Rh6CV
% [theta,r] = cart2pol(X,Y); d!<>Fh^6,
% idx = r<=1; @eBo7#Zr
% z = nan(size(X)); e^~dx}X
% n = [0 1 1 2 2 2 3 3 3 3]; ,)\G<q
yO6
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; k~<Ozx^AyY
% Nplot = [4 10 12 16 18 20 22 24 26 28]; z"7?I$NQ
% y = zernfun(n,m,r(idx),theta(idx)); AX{<d@z`j
% figure('Units','normalized') LC=M{\
% for k = 1:10 N4VZl[7?
% z(idx) = y(:,k); w-)JCdS6Tb
% subplot(4,7,Nplot(k)) lgVT~v{U`n
% pcolor(x,x,z), shading interp *$VeR(QN
% set(gca,'XTick',[],'YTick',[]) Tg@G-6u0c
% axis square #+6j-^<_6
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) M-Vz$D/aed
% end ;6 d-+(@
% x%$6l
% See also ZERNPOL, ZERNFUN2. ^=-25%&^
7mi=Xa:U
% Paul Fricker 11/13/2006 p[WlcbBwT
4?(=?0/[
k
"7,-0gz
% Check and prepare the inputs: j3w~2q"r
% ----------------------------- %CQa8<q
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) nw*a?$S3
error('zernfun:NMvectors','N and M must be vectors.') tD}{/`{_t
end kd&~_=Q
t`}=~/#`X
if length(n)~=length(m) OBlQ
error('zernfun:NMlength','N and M must be the same length.') fOSJdX0e|Q
end h^IizrqU
Tp~Qg{%Og
n = n(:); 4s>L]!
W$8
m = m(:); er
1zSTkg
if any(mod(n-m,2)) FR50y+h^$
error('zernfun:NMmultiplesof2', ... UZiL NKc
'All N and M must differ by multiples of 2 (including 0).') 1M_6X7PH
end %|/\Qu
~Odclrs
if any(m>n) uW}M1kq?+l
error('zernfun:MlessthanN', ... 2"
v{
'Each M must be less than or equal to its corresponding N.') c2GTN "
end Ygfy;G%
~|{e"!(}
if any( r>1 | r<0 ) kp?_ir
error('zernfun:Rlessthan1','All R must be between 0 and 1.') k+@ :+RL
end I)%bOK]
CIwI1VR^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) %ID48_>*
error('zernfun:RTHvector','R and THETA must be vectors.') M!VW/vdywL
end Wa?\W&
)cOBP}j+
r = r(:);
VD,g3B p
theta = theta(:); N1:)Z`r
length_r = length(r); tnb'\}Vn
if length_r~=length(theta) :%fnJg(
error('zernfun:RTHlength', ... ,Wd+&|Q
'The number of R- and THETA-values must be equal.') $RRh}w\0^
end ij_5=4aZ-
p4uObK,
% Check normalization: ^'sy hI\
% -------------------- 4
;6,h6a
if nargin==5 && ischar(nflag) 6: R1jF*eG
isnorm = strcmpi(nflag,'norm'); FhEfW7]0,
if ~isnorm SrMfd7H8f
error('zernfun:normalization','Unrecognized normalization flag.') z+_d* \
end ! v%%_sRV
else HR'F
isnorm = false; )ZZ6 (O
end se _Oi$VZ{
j->5%y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a|dn3R>vX
% Compute the Zernike Polynomials _>t6]?*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T!&VT;
\3rgwbF
% Determine the required powers of r: ?%>S5,f_
% ----------------------------------- w0.;86<MV
m_abs = abs(m); L1SZutWD?
rpowers = []; z"f+;1
for j = 1:length(n) ]D[\l$(
rpowers = [rpowers m_abs(j):2:n(j)]; lESv
end ;2[),k
rpowers = unique(rpowers); }!V-FAL
_RE;}1rb,
% Pre-compute the values of r raised to the required powers, CZog?O}<
% and compile them in a matrix: slAR<8
% ----------------------------- B[9y<FB+
if rpowers(1)==0 n0g8B
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {@hJPK8
rpowern = cat(2,rpowern{:}); /}9)ZYMx
rpowern = [ones(length_r,1) rpowern]; $$i
Gs6az
else S_?sJwM
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2D/bMq
rpowern = cat(2,rpowern{:}); 5+yy:#J]
end u~PZK.Uf0
8:[ l1d86
% Compute the values of the polynomials: e$/y~!
% -------------------------------------- ]-_ ma
y = zeros(length_r,length(n)); ZG-#YF.1
for j = 1:length(n) ubRhJ~XB
s = 0:(n(j)-m_abs(j))/2; -[}Aka,f!
pows = n(j):-2:m_abs(j); H3 -?cy
for k = length(s):-1:1 Lp/'-Y_
p = (1-2*mod(s(k),2))* ... [w!T
prod(2:(n(j)-s(k)))/ ... g)=$zXWhP
prod(2:s(k))/ ... Ve${g`7&
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Y=?{TX=6<[
prod(2:((n(j)+m_abs(j))/2-s(k))); }Xfg~%6
idx = (pows(k)==rpowers); l(Dr@LB~
y(:,j) = y(:,j) + p*rpowern(:,idx); ]_|'N7J
end W?"l6s
qM+Ai*q
if isnorm nCQ".G
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Hpa6;eT
end (>E/C^Tc%
end -2!S>P Zs
% END: Compute the Zernike Polynomials *rbgDaQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _>n)HG
\ 4^zY'
% Compute the Zernike functions: ^/$dSXKF
% ------------------------------ dQ~GE}[
idx_pos = m>0; 0|J9Btbp
idx_neg = m<0; MgJ5FRQ
^*4#ZvpG2
z = y; 6P}?+ Gc
if any(idx_pos) \!30t1EZ
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8_w6% md
end GD)paTwO<
if any(idx_neg) >~Gy+-
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ;dMr2y`6
end 8+dsTX`|S
-?:8sv*X
% EOF zernfun