切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10612阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 17lc5#^L  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! r#c+{yY  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ue#Y h  
    )qx,>PL  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 e025m}%SU  
    i3 n0W1~  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) `"<} B"s  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. idf~"a  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of (f  0p   
    %   order N and frequency M, evaluated at R.  N is a vector of bS+by'Ea1W  
    %   positive integers (including 0), and M is a vector with the : qKxm(  
    %   same number of elements as N.  Each element k of M must be a \Om< FH}  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) I =t{ u;  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is xrK%3nA4s"  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix tndtwM*B'  
    %   with one column for every (N,M) pair, and one row for every I T)rhi:  
    %   element in R. KbY5 qou  
    % :o}J u}t  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- N.|Zh+!  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 7B$iM,}.b  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to E lt=/,v`!  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 >Rw[x  
    %   for all [n,m]. "$? f&*  
    % Y" s1z<?  
    %   The radial Zernike polynomials are the radial portion of the r[zxb0YA  
    %   Zernike functions, which are an orthogonal basis on the unit \d0R&vFHQ  
    %   circle.  The series representation of the radial Zernike $up.< qzj  
    %   polynomials is D 5]sf>~  
    % 9d4PH  
    %          (n-m)/2 ;/W;M> ^  
    %            __ }Lx?RU+@=  
    %    m      \       s                                          n-2s 9}FWO&LiB  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ~O~c^fLH(B  
    %    n      s=0 2B7X~t>8a  
    % Z@=1-l  
    %   The following table shows the first 12 polynomials. }!\ZJoa  
    % cjU*  
    %       n    m    Zernike polynomial    Normalization =Uta5$\a)  
    %       --------------------------------------------- hbhh m  
    %       0    0    1                        sqrt(2) 8? 4j-  
    %       1    1    r                           2 K+D`U6&  
    %       2    0    2*r^2 - 1                sqrt(6) 5Cd>p<  
    %       2    2    r^2                      sqrt(6) k~u$&a  
    %       3    1    3*r^3 - 2*r              sqrt(8) I_J;/!l=  
    %       3    3    r^3                      sqrt(8) ?5nF` [rx  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ZD] ^Y}  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ,V3P.ni]  
    %       4    4    r^4                      sqrt(10) ^0 R.U+?+  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) k+2~=#  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) |b{XnD_g  
    %       5    5    r^5                      sqrt(12) z!5^UD8"W  
    %       --------------------------------------------- vBUx )l  
    % {Q[{H'Oa  
    %   Example: u=feR0|8  
    % a3 <D1"  
    %       % Display three example Zernike radial polynomials  4G&E?  
    %       r = 0:0.01:1; 5C/W_H+9iK  
    %       n = [3 2 5]; <8p53*a  
    %       m = [1 2 1]; , gk49z9  
    %       z = zernpol(n,m,r); Y25S:XHk9  
    %       figure [K;J#0V+&L  
    %       plot(r,z) gk\IivPb  
    %       grid on {%xwoMVc+  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') o&1ewE(O]  
    % HcA;'L?Dw  
    %   See also ZERNFUN, ZERNFUN2. )_OKw?Zi  
    ]'=]=o~4  
    % A note on the algorithm. 1`N q K  
    % ------------------------ dJM)~Ay-  
    % The radial Zernike polynomials are computed using the series Zf |%t  
    % representation shown in the Help section above. For many special ~`c?&YixU  
    % functions, direct evaluation using the series representation can xSZgQF~  
    % produce poor numerical results (floating point errors), because v!T%xUb0  
    % the summation often involves computing small differences between ;1&%Wj"d  
    % large successive terms in the series. (In such cases, the functions =vMFCp;mv  
    % are often evaluated using alternative methods such as recurrence &Vfdq6Y]  
    % relations: see the Legendre functions, for example). For the Zernike LFob1HH*8  
    % polynomials, however, this problem does not arise, because the mOr>*uR  
    % polynomials are evaluated over the finite domain r = (0,1), and kD S  
    % because the coefficients for a given polynomial are generally all hm>JBc:n-  
    % of similar magnitude. Z9mY*}:U~  
    % C3Q[L}X\  
    % ZERNPOL has been written using a vectorized implementation: multiple .{x-A{l  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] m'k.R j  
    % values can be passed as inputs) for a vector of points R.  To achieve tvynl;Y/  
    % this vectorization most efficiently, the algorithm in ZERNPOL  XeDiiI  
    % involves pre-determining all the powers p of R that are required to NS @j`6/U  
    % compute the outputs, and then compiling the {R^p} into a single PI(;t9]b  
    % matrix.  This avoids any redundant computation of the R^p, and =4uL1[0'  
    % minimizes the sizes of certain intermediate variables. BpZE  
    % +0\BI<aG  
    %   Paul Fricker 11/13/2006 R)d1]k8  
    LO<R<zz  
    +uKh]RP  
    % Check and prepare the inputs: RUUV"y  
    % ----------------------------- fEE[h uG  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) NL 3ri7n  
        error('zernpol:NMvectors','N and M must be vectors.') f4)fa yAVp  
    end ya3A^&:  
    H=[eO  
    if length(n)~=length(m) w~hO)1c],:  
        error('zernpol:NMlength','N and M must be the same length.') =.O8G=;DOA  
    end m07= _4  
    `z%f@/:fG  
    n = n(:); 0]=|3-n  
    m = m(:); wl H6  
    length_n = length(n); =#dW^ ?p  
    13wO6tS k  
    if any(mod(n-m,2)) M_*"g>Z  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') XQ]noaU  
    end ?U.+SQ  
    hAtf)  
    if any(m<0) J7q^4M+o:  
        error('zernpol:Mpositive','All M must be positive.') L,c@Z@  
    end x9q?^\x  
    U/9xO"b{.  
    if any(m>n) Aon 3G  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') p;cNmMm  
    end O4J <u-E$  
    p A7&  
    if any( r>1 | r<0 ) >Q#h,x~vu  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 7p*PDoM6`  
    end ?aOx b  
    <5(P4cm9  
    if ~any(size(r)==1) l Os91+.%  
        error('zernpol:Rvector','R must be a vector.') 2#LTd{  
    end dPZrX{ c  
    4\ R2\  
    r = r(:); <]<P<  
    length_r = length(r); nR'!Ui  
    ci*rem  
    if nargin==4 DCr&%)Ll  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); KSkT6_<  
        if ~isnorm j=b?WNK  
            error('zernpol:normalization','Unrecognized normalization flag.') ScOiOz:Ha  
        end vOIK6-   
    else J=?`~?Vbo  
        isnorm = false; :}(Aq;}X  
    end .kKU MyW(  
    EQ< qN<uW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% APY^A6^:j  
    % Compute the Zernike Polynomials 2$ m#)*\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VwJ A  
    ?5'EP|<  
    % Determine the required powers of r: 'w//d $+G_  
    % ----------------------------------- SQ&nQzL  
    rpowers = []; $>^DkrOd  
    for j = 1:length(n) NMJX `  
        rpowers = [rpowers m(j):2:n(j)]; +I~`Ob  
    end LB9D6,*t  
    rpowers = unique(rpowers); [0vgA#6I  
    4z6i{n-k  
    % Pre-compute the values of r raised to the required powers, _mSDz=!Z3  
    % and compile them in a matrix: RE)!b  
    % ----------------------------- E%Tpby}^'  
    if rpowers(1)==0 Z[9) hGh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -_@zyF<G  
        rpowern = cat(2,rpowern{:}); uBpnfIe  
        rpowern = [ones(length_r,1) rpowern]; DpD19)ouy  
    else Hwb+@'o  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 80J87\)  
        rpowern = cat(2,rpowern{:}); 3an9Rb V  
    end G-7!|&  
    v=m!$~  
    % Compute the values of the polynomials: ]'IZbx:  
    % -------------------------------------- /wAx#[c[  
    z = zeros(length_r,length_n); ky4 ;7RK  
    for j = 1:length_n f6/<lSoW  
        s = 0:(n(j)-m(j))/2; hSAdD!  
        pows = n(j):-2:m(j); {L6@d1u  
        for k = length(s):-1:1 xA7>";sla[  
            p = (1-2*mod(s(k),2))* ... /;5U-<qf  
                       prod(2:(n(j)-s(k)))/          ... 0FN;^hP5|  
                       prod(2:s(k))/                 ... JRgrg &#  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ...  6chcpP0  
                       prod(2:((n(j)+m(j))/2-s(k))); da[=d*I.  
            idx = (pows(k)==rpowers); WZ@hP'Zc  
            z(:,j) = z(:,j) + p*rpowern(:,idx); DsJ ikg(J  
        end nm#ISueh  
         ) wZ;}O  
        if isnorm y<9' 3\  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); D;1?IeS  
        end @ra^0  
    end hw 5NHZ I'  
    I8x,8}o>V  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) }/bxe0px  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. FG:t2ea  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated H*H~~yQ  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive BQ:hUF3  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, p3,m),  
    %   and THETA is a vector of angles.  R and THETA must have the same )Fsc0_  
    %   length.  The output Z is a matrix with one column for every P-value, ^j!2I&h1  
    %   and one row for every (R,THETA) pair. MvKr~  
    % Zxw cqN  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ;x|7"lE  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) fsjCu!  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 5i@WBa  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 %y{'p:  
    %   for all p. b!<\#[ A4  
    % 5La' I7q  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ^`S.Mw.  
    %   Zernike functions (order N<=7).  In some disciplines it is r!<)CT}D  
    %   traditional to label the first 36 functions using a single mode J))U YJO  
    %   number P instead of separate numbers for the order N and azimuthal -Hh.8(!XoO  
    %   frequency M. $5wf{iZY.Q  
    % ["_+~*  
    %   Example: ],~H3u=s3  
    % ;Rf@S$  
    %       % Display the first 16 Zernike functions Xaw ~Hh)  
    %       x = -1:0.01:1; ,p>@:C/M  
    %       [X,Y] = meshgrid(x,x); Bwc_N.w?3  
    %       [theta,r] = cart2pol(X,Y); ym8pB7E7%  
    %       idx = r<=1; i7b^b>B|e  
    %       p = 0:15; b OolBKV  
    %       z = nan(size(X)); 9vckQCLM  
    %       y = zernfun2(p,r(idx),theta(idx)); z*)kK  
    %       figure('Units','normalized') x~JOg57up  
    %       for k = 1:length(p) der\"?_.  
    %           z(idx) = y(:,k); l*w*e.ezQ  
    %           subplot(4,4,k) BR-4L2[  
    %           pcolor(x,x,z), shading interp nN2huNTf:  
    %           set(gca,'XTick',[],'YTick',[]) 8AJ#].q0F  
    %           axis square FL {$9o\@  
    %           title(['Z_{' num2str(p(k)) '}']) @R_ON"h  
    %       end g/ 4ipcG;N  
    % CjGQ  
    %   See also ZERNPOL, ZERNFUN. af'gk&%  
    mpNS}n6  
    %   Paul Fricker 11/13/2006 ^GS\(egt  
     u]OYu  
    %i.Prckrb  
    % Check and prepare the inputs: aH dQi,=z  
    % ----------------------------- Qd/x{a8  
    if min(size(p))~=1 X4<Y5?&0  
        error('zernfun2:Pvector','Input P must be vector.') N/zP!%L  
    end sp&gw XPG  
    W]5Hc|!^^  
    if any(p)>35 q+BG  
        error('zernfun2:P36', ... }tO>&$ Z6f  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... CiV^bYi  
               '(P = 0 to 35).']) Ro_jfM  
    end uD?Rs`  
    F1t+D)KA>  
    % Get the order and frequency corresonding to the function number: Oye6IT"  
    % ---------------------------------------------------------------- X"sJiFS  
    p = p(:); J@OK"%12  
    n = ceil((-3+sqrt(9+8*p))/2); _\gCdNrD  
    m = 2*p - n.*(n+2); ]=p^32  
    cua( w  
    % Pass the inputs to the function ZERNFUN: lPD&Doa  
    % ---------------------------------------- a2[rY  
    switch nargin \mL]xE-  
        case 3 =Qf{  
            z = zernfun(n,m,r,theta); lL&U ioo}D  
        case 4 pekNBq Wm  
            z = zernfun(n,m,r,theta,nflag); z+{xW7  
        otherwise ];'7~",Y  
            error('zernfun2:nargin','Incorrect number of inputs.') tXuf!  
    end 1aZGt2;  
    9o4h~Imu  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 %E"v@  
    function z = zernfun(n,m,r,theta,nflag) \._|_+HiW  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. gm%cAme  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :[CEHRc7x  
    %   and angular frequency M, evaluated at positions (R,THETA) on the *U}ztH-+/  
    %   unit circle.  N is a vector of positive integers (including 0), and VkO*+"cGv  
    %   M is a vector with the same number of elements as N.  Each element (L1F ],Au  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) $}'(%\7"  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, . :>e"D  
    %   and THETA is a vector of angles.  R and THETA must have the same &po!X )  
    %   length.  The output Z is a matrix with one column for every (N,M) Pf/8tXs}  
    %   pair, and one row for every (R,THETA) pair. O"/Sv'|H#  
    % 1 +Ue m  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike CZ'm|^S  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), c%bzrYQvA;  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral >t<\zC|~w  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 7A) E4f'  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized T:Ovh.$  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. hsT&c|  
    % -SfU.XlZl  
    %   The Zernike functions are an orthogonal basis on the unit circle. "vT$?IoEV  
    %   They are used in disciplines such as astronomy, optics, and ,<'>j a C  
    %   optometry to describe functions on a circular domain. aj,o<J  
    % !A1~{G2VL_  
    %   The following table lists the first 15 Zernike functions. FE]UqB  
    % ;TS%e[lFhQ  
    %       n    m    Zernike function           Normalization mU~&oU  
    %       -------------------------------------------------- 0AdxV?6z  
    %       0    0    1                                 1 GKjtX?~1  
    %       1    1    r * cos(theta)                    2 6Ol9P56j  
    %       1   -1    r * sin(theta)                    2 x(xi%?G  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 4P"bOt5izR  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 15q^&l[Q  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) jd,i=P%  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ZHa>8x;Mjl  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) kY!zBk  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 0?( uqjD:  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ~#jiX6<I  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) D7T|K :F)  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "bDj 00nwh  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) "M!m-]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >;' 0ymG.`  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) zTj ie  
    %       -------------------------------------------------- eU@Mv5&6  
    % ""XAUxo  
    %   Example 1: u '/)l}  
    % $+_1F`  
    %       % Display the Zernike function Z(n=5,m=1) 11YJ W-V  
    %       x = -1:0.01:1; >X eXd{$  
    %       [X,Y] = meshgrid(x,x); C}pm>(F~  
    %       [theta,r] = cart2pol(X,Y); * 4Ldh}S!  
    %       idx = r<=1; R y#C#0  
    %       z = nan(size(X)); _@!vF,Wcf  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); N0-J=2  
    %       figure JO0o@M5H  
    %       pcolor(x,x,z), shading interp TH'8^wf  
    %       axis square, colorbar VXWV Pj#  
    %       title('Zernike function Z_5^1(r,\theta)') Q}OloA(+  
    % .=TXi<8Brw  
    %   Example 2: !C05;x8{  
    % \U]K!K=  
    %       % Display the first 10 Zernike functions @$n $f  
    %       x = -1:0.01:1; kx?Yin8K  
    %       [X,Y] = meshgrid(x,x); kj[box N  
    %       [theta,r] = cart2pol(X,Y); 0bM_EC  
    %       idx = r<=1; iiMS3ueF  
    %       z = nan(size(X)); ^@O 7d1&y  
    %       n = [0  1  1  2  2  2  3  3  3  3]; {yWL|:#K  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; G^#>HE|  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; HXSryjF?  
    %       y = zernfun(n,m,r(idx),theta(idx)); v N\[2r%S  
    %       figure('Units','normalized') l^nvwm`f#:  
    %       for k = 1:10 #gO[di0WhC  
    %           z(idx) = y(:,k); k|?[EWIi^  
    %           subplot(4,7,Nplot(k)) 9N'fU),I  
    %           pcolor(x,x,z), shading interp h!%y,4IBR  
    %           set(gca,'XTick',[],'YTick',[]) XLCqB|8`V  
    %           axis square 4S ~kNp$  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) n}IGxum8`  
    %       end >Ti%Th,  
    % 7Tdx*1 U  
    %   See also ZERNPOL, ZERNFUN2. y zp#  
    &RARK8 ^  
    %   Paul Fricker 11/13/2006 8I RKCuV  
    qz]qG=wmL  
    jaodcT0  
    % Check and prepare the inputs: eG!ma`v  
    % ----------------------------- } SW p~3P  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) IiqqdU]  
        error('zernfun:NMvectors','N and M must be vectors.') BLt58LYGX  
    end UtTlJb{-j  
    1L4-;HYJm  
    if length(n)~=length(m) b)Da6fp  
        error('zernfun:NMlength','N and M must be the same length.') #<b\BqYG  
    end g:)iEw>a  
    */aQ+%>jf  
    n = n(:); G&^8)S@1  
    m = m(:); (9I(e^@]  
    if any(mod(n-m,2)) u1M8nb  
        error('zernfun:NMmultiplesof2', ... (~N?kh:  
              'All N and M must differ by multiples of 2 (including 0).') TG$ #aX\'  
    end 2e%\aP`D2  
    ZBpcC0 z  
    if any(m>n) 1bQO:n):~  
        error('zernfun:MlessthanN', ... <hCO-r#  
              'Each M must be less than or equal to its corresponding N.') ,4t6Cq!  
    end 6CHb\k  
    Y?J/KW3  
    if any( r>1 | r<0 ) GJcxqgk$  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 1m"WrTen  
    end rIcgf1v70  
    T^|k`  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Ut\:jV=f  
        error('zernfun:RTHvector','R and THETA must be vectors.') ub~ t}  
    end o}:x-Y  
    sk39[9  
    r = r(:);  FNH)wk  
    theta = theta(:); igA?E56?  
    length_r = length(r); L5I!YP#v  
    if length_r~=length(theta) Pb?vi<ug+  
        error('zernfun:RTHlength', ... 4;Ucas6  
              'The number of R- and THETA-values must be equal.') {Z8GG  
    end XN Uw  
    tdxzs_V,-  
    % Check normalization: Rk g8  
    % -------------------- 9n\>Yieu  
    if nargin==5 && ischar(nflag) &"K_R(kN  
        isnorm = strcmpi(nflag,'norm'); a($7J6]M  
        if ~isnorm {guOAT- w  
            error('zernfun:normalization','Unrecognized normalization flag.') W%>T{}4  
        end V 9$T=[  
    else MZQDFuvDxZ  
        isnorm = false; _LwF:19Il  
    end P1rjF:x[*  
    zO"De~[9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s,#We} bv  
    % Compute the Zernike Polynomials ' 4i8&p`/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r'{N_|:vv  
    <L4$f(2  
    % Determine the required powers of r: G3^<l0?S  
    % ----------------------------------- yZNG>1 N  
    m_abs = abs(m); b-VtQ%Q  
    rpowers = []; <{k{Coy  
    for j = 1:length(n) E5rV}>(Y  
        rpowers = [rpowers m_abs(j):2:n(j)]; |D-[M_T5  
    end )S+fc=  
    rpowers = unique(rpowers); ph5{i2U0  
    ]$L5}pE3  
    % Pre-compute the values of r raised to the required powers, M;y*`<x  
    % and compile them in a matrix: ZtO$kK%q;  
    % ----------------------------- ?HPAX  
    if rpowers(1)==0 ZN)EbTpc\a  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?lD)J?j  
        rpowern = cat(2,rpowern{:}); 46NuT]6/4  
        rpowern = [ones(length_r,1) rpowern]; [yN+(^ i  
    else \_,p@r]Q  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -V{"Lzrfug  
        rpowern = cat(2,rpowern{:}); a-|pSe*rx  
    end [A =0fg5  
    ]P wS3:x  
    % Compute the values of the polynomials: Wj,s/Yr:  
    % -------------------------------------- Sk+XBX(}  
    y = zeros(length_r,length(n)); M;<!C%K>  
    for j = 1:length(n) 7u&l]NC?y  
        s = 0:(n(j)-m_abs(j))/2; b/a\{  
        pows = n(j):-2:m_abs(j); _x(hlHFk  
        for k = length(s):-1:1 4@fv%LOQo  
            p = (1-2*mod(s(k),2))* ... *KDTBd  
                       prod(2:(n(j)-s(k)))/              ... %:`v.AG  
                       prod(2:s(k))/                     ... BM?!?  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... F\+AA  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); EP@u4F  
            idx = (pows(k)==rpowers); W !j-/ql  
            y(:,j) = y(:,j) + p*rpowern(:,idx); \;N+PE  
        end %z@ Z^Jv  
         &J2 UAmB  
        if isnorm *nU5PSs  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); })^eaLBR4  
        end VB*c1i  
    end )  M0(vog  
    % END: Compute the Zernike Polynomials GalSqtbmDt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^L $`)Ja  
    w;ZT-Fti  
    % Compute the Zernike functions: k"cMAu.  
    % ------------------------------ +'g O%^{l  
    idx_pos = m>0; ,zx{RDI  
    idx_neg = m<0; <rgK}&q  
    6 agG*x  
    z = y; *d=}HO/  
    if any(idx_pos) HL"c yxe  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 9Zl4NV&B  
    end |x1OWm1:<  
    if any(idx_neg) 0>CG2SRn  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); J8S$YRZ_  
    end $7AsMlq[(  
    KDEyVYO:  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的