切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11225阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 7|vB\[s  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! :>G3N+A)  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  c/c%-=  
    gUrb&#\X  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 7%(|)3"V  
    v7l4g&  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) blZiz2F  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. iSxxy1R  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of +a&-'`7g  
    %   order N and frequency M, evaluated at R.  N is a vector of =+{.I,g}g@  
    %   positive integers (including 0), and M is a vector with the %r5&CUE5?  
    %   same number of elements as N.  Each element k of M must be a sBIqee'T  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ?6    
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is F9e$2J)C  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 'f`~"@  
    %   with one column for every (N,M) pair, and one row for every Z'GO p?  
    %   element in R. 0k5Z l?  
    % h<*l=`#  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- *DX6m  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ,_T,B'a:  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to O0"i>}g4  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 )_T[thf]  
    %   for all [n,m]. RR:m <9l  
    % uNnwz%w  
    %   The radial Zernike polynomials are the radial portion of the qH6DZ|  
    %   Zernike functions, which are an orthogonal basis on the unit -8tWc]c |4  
    %   circle.  The series representation of the radial Zernike rsf A.o  
    %   polynomials is 5;V#Z@S  
    % IxCEE5+`%  
    %          (n-m)/2 Cc]s94  
    %            __ d@"eWvnlZ  
    %    m      \       s                                          n-2s *&e+z-E  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Bh*~I_Ta>  
    %    n      s=0 d{0 w4_x  
    % w;' F;j~  
    %   The following table shows the first 12 polynomials. #hd<5+$U}l  
    % 0|{U"\  
    %       n    m    Zernike polynomial    Normalization mf@YmKbp  
    %       ---------------------------------------------  | qHWM  
    %       0    0    1                        sqrt(2) V#!ypX]AB[  
    %       1    1    r                           2 44?5]C7  
    %       2    0    2*r^2 - 1                sqrt(6) h^>kjMM  
    %       2    2    r^2                      sqrt(6) 5vY h~|  
    %       3    1    3*r^3 - 2*r              sqrt(8) KLq u[{y.'  
    %       3    3    r^3                      sqrt(8) a-Cp"pKlVY  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) pP?J(0Q~  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) > Q@*o  
    %       4    4    r^4                      sqrt(10) da!N0\.1T  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Rv q_Zsm  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) c ~YD|l  
    %       5    5    r^5                      sqrt(12) S M987Y!B  
    %       --------------------------------------------- @D"#B@j  
    % 1elcP`N1  
    %   Example: 6FSw_[)  
    % wXZ.D}d  
    %       % Display three example Zernike radial polynomials M)EKS  
    %       r = 0:0.01:1; :M|c,SQK  
    %       n = [3 2 5]; gKb4n Nt  
    %       m = [1 2 1]; (L|SE4  
    %       z = zernpol(n,m,r); 2I?HBz1v  
    %       figure AXPUJ?V  
    %       plot(r,z) 9qXHdpb#g"  
    %       grid on r'&9'rir2  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') /l+x&xYD  
    % 0 nWV1)Q0=  
    %   See also ZERNFUN, ZERNFUN2. K^{`8E&A  
    S;ulJ*qv  
    % A note on the algorithm. OM!ES%c,  
    % ------------------------ %/etoK  
    % The radial Zernike polynomials are computed using the series ~8pf.^,fi  
    % representation shown in the Help section above. For many special -ZQ3^'f:0J  
    % functions, direct evaluation using the series representation can ZFW}Vnl  
    % produce poor numerical results (floating point errors), because #4na>G|  
    % the summation often involves computing small differences between V]k!]  
    % large successive terms in the series. (In such cases, the functions tO[+O=d  
    % are often evaluated using alternative methods such as recurrence ?]9uHrdsN}  
    % relations: see the Legendre functions, for example). For the Zernike 2z0HB+Y}x  
    % polynomials, however, this problem does not arise, because the h%=b"x  
    % polynomials are evaluated over the finite domain r = (0,1), and  N%r}0  
    % because the coefficients for a given polynomial are generally all lBG* P>;  
    % of similar magnitude. }lpcbm  
    % ~O1*]  
    % ZERNPOL has been written using a vectorized implementation: multiple #(aROTV5a  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 3<mv9U(  
    % values can be passed as inputs) for a vector of points R.  To achieve ~d5"<`<^o  
    % this vectorization most efficiently, the algorithm in ZERNPOL M5ZWcD.1  
    % involves pre-determining all the powers p of R that are required to "bf8[D  
    % compute the outputs, and then compiling the {R^p} into a single K7f-g]Ibdn  
    % matrix.  This avoids any redundant computation of the R^p, and )7j"OE  
    % minimizes the sizes of certain intermediate variables. BLaX p0  
    % ejr"(m(Xe  
    %   Paul Fricker 11/13/2006 GE5@XT  
    lh#GD"^(w&  
    ^G2vA8%  
    % Check and prepare the inputs: -S,dG|  
    % ----------------------------- /$eEj  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Qgx~'9   
        error('zernpol:NMvectors','N and M must be vectors.') e/Q[%y.X  
    end Q.y KbO<[  
    r`B+ KQ4  
    if length(n)~=length(m) U1q$B32  
        error('zernpol:NMlength','N and M must be the same length.') p\-.DRwT`  
    end f "&q~V4?  
    ~!&[;EM<bm  
    n = n(:); M9&tys[KX  
    m = m(:); oTa! F;I  
    length_n = length(n); q!ZmF1sU  
    zf o.S[R@  
    if any(mod(n-m,2)) 1|. 0]~0  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') |@ldXuYb  
    end aSF&^/j  
    =~0XdS/1  
    if any(m<0) I^ >zr.z A  
        error('zernpol:Mpositive','All M must be positive.') |Q I3H]T7  
    end hPk+vvXtK  
    =OHDp7GXO>  
    if any(m>n) ix#  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') KdR&OBm  
    end kW:!$MX!  
    }jk^M|Z"Oz  
    if any( r>1 | r<0 ) 4xYo2X,B  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') zp9 ?Ia  
    end Wey\GQ`"8  
    A!Yqj~  
    if ~any(size(r)==1) 3+$O#>  
        error('zernpol:Rvector','R must be a vector.') 8n:D#`K  
    end (gmB$pwS  
     mPD'"  
    r = r(:); r9t{/})A  
    length_r = length(r); W ,U'hk%  
    K5ph x  
    if nargin==4 .^NV e40O  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); jF5JpyOc  
        if ~isnorm U^YPL,m1  
            error('zernpol:normalization','Unrecognized normalization flag.') gU%GM  
        end Y~:7l5C  
    else ""a8eB 6  
        isnorm = false; <'B^z0I,  
    end 1k~jVC2VA  
    $-0u`=!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~k%\ LZ3s  
    % Compute the Zernike Polynomials 0x & ^{P~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PaZYs~EO  
    Iymz2  
    % Determine the required powers of r: #Nd+X@j  
    % ----------------------------------- d{m0uX56  
    rpowers = []; 3TtW2h>M  
    for j = 1:length(n) HkN +:  
        rpowers = [rpowers m(j):2:n(j)]; *o#`lH  
    end >6dgf`U  
    rpowers = unique(rpowers); 3OZ}&[3  
    [K KoEZ  
    % Pre-compute the values of r raised to the required powers, t(yv   
    % and compile them in a matrix: [~o3S$C&7  
    % ----------------------------- 7.t$#fzi  
    if rpowers(1)==0 ^v'Lu!\f  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,rdM{ r  
        rpowern = cat(2,rpowern{:}); OG+$F  
        rpowern = [ones(length_r,1) rpowern]; H:_`]X"  
    else 5 9vGLN!L  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); UGMdWq  
        rpowern = cat(2,rpowern{:}); *Tlv'E.M  
    end vKt_z@{{L  
    %Fv)$ :b  
    % Compute the values of the polynomials: E*l"uV  
    % -------------------------------------- 6p@ts`#  
    z = zeros(length_r,length_n); 88K*d8m  
    for j = 1:length_n g;h&Xkp  
        s = 0:(n(j)-m(j))/2; J\*d4I<(Rt  
        pows = n(j):-2:m(j); uprQy<I@  
        for k = length(s):-1:1 $3ILVT  
            p = (1-2*mod(s(k),2))* ... ;gyE5n-{  
                       prod(2:(n(j)-s(k)))/          ... fjFy$NX&>  
                       prod(2:s(k))/                 ... 5-*]PAC  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... "mf;k^sqS  
                       prod(2:((n(j)+m(j))/2-s(k))); ;'p'8lts  
            idx = (pows(k)==rpowers); 7`}z7nk  
            z(:,j) = z(:,j) + p*rpowern(:,idx); +\%zy=  
        end Xwi&uyvU&  
          #L)rz u  
        if isnorm Z7^}G=*  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 1#(1Bs6X  
        end f- <6T  
    end UU;:x"4  
    EHZSM5hu  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) !UTJ) &  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. lNb\^b  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 3o>t ~Sfi  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ^ne8~ ;Q  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, S2)S/ nf  
    %   and THETA is a vector of angles.  R and THETA must have the same }U9jsm  
    %   length.  The output Z is a matrix with one column for every P-value, Qx;A; n!lw  
    %   and one row for every (R,THETA) pair. jvQ"cs$.  
    % :!$z1u8R  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike PS6`o  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) J~q+G  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 8:xo ~Vc  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 l'QR2r7&.  
    %   for all p. F6p1 VFs  
    % .TC `\mV  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 i1\2lh$  
    %   Zernike functions (order N<=7).  In some disciplines it is p( *3U[1  
    %   traditional to label the first 36 functions using a single mode {O) &5  
    %   number P instead of separate numbers for the order N and azimuthal 1!3kAcBP  
    %   frequency M. $4 Uy3C+6  
    % mx~sxYa  
    %   Example: k 5D'RD  
    % KU,w9<~i(  
    %       % Display the first 16 Zernike functions $x;h[,y   
    %       x = -1:0.01:1; Tm\[q  
    %       [X,Y] = meshgrid(x,x); BA,6f?ktXS  
    %       [theta,r] = cart2pol(X,Y); 4-_lf(# i  
    %       idx = r<=1; x[UO1% _o-  
    %       p = 0:15; VU9P\|c@<  
    %       z = nan(size(X)); #~;8#!X  
    %       y = zernfun2(p,r(idx),theta(idx)); x-&v|w'  
    %       figure('Units','normalized') v Lv@Mo  
    %       for k = 1:length(p) t [hocl/6  
    %           z(idx) = y(:,k); "Q{~Bj~  
    %           subplot(4,4,k) `Xdxg\|  
    %           pcolor(x,x,z), shading interp A@(h!Cq  
    %           set(gca,'XTick',[],'YTick',[]) e"#D){k#  
    %           axis square 1m;*fs  
    %           title(['Z_{' num2str(p(k)) '}']) Z4ioXl  
    %       end !" %sp6Wc  
    % l-}5@D[  
    %   See also ZERNPOL, ZERNFUN. z\>X[yNpA  
    $?AA"Nz  
    %   Paul Fricker 11/13/2006 @T1+b"TC  
    ]31XX=  
    9ox|.68q  
    % Check and prepare the inputs: h;qy5KS  
    % ----------------------------- 8G&+  
    if min(size(p))~=1 GA.bRN2CI2  
        error('zernfun2:Pvector','Input P must be vector.') n~u3  
    end I0+wczW,^  
    o MkY#<Q}  
    if any(p)>35 ggc?J<Dv  
        error('zernfun2:P36', ... 3DC%I79  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... VHr7GAmU  
               '(P = 0 to 35).']) 9zYiG3 d  
    end QhQ"OVFr#  
    9+ l3 $  
    % Get the order and frequency corresonding to the function number: LG{inhbp  
    % ---------------------------------------------------------------- nDB 2>J  
    p = p(:); o Xi}@  
    n = ceil((-3+sqrt(9+8*p))/2); U!?gdX  
    m = 2*p - n.*(n+2); OP`Jc$| 6  
    nVn|$ "r  
    % Pass the inputs to the function ZERNFUN: exO#>th1  
    % ---------------------------------------- 7[v@*/W@  
    switch nargin dP7Vs a+  
        case 3 92]ZiL?k  
            z = zernfun(n,m,r,theta); m+2`"1IE[  
        case 4 ct4 [b|  
            z = zernfun(n,m,r,theta,nflag); |W*@}D  
        otherwise Fra>|;do  
            error('zernfun2:nargin','Incorrect number of inputs.') <o!&Kk9  
    end UlNfI}#X  
    M'zS7=F!:  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 VP %i1|XZJ  
    function z = zernfun(n,m,r,theta,nflag) Fu4EEi  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Z@,PZ   
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N >*= =wlOB  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 7AO3-; l]  
    %   unit circle.  N is a vector of positive integers (including 0), and {[,Wn:  
    %   M is a vector with the same number of elements as N.  Each element %x}&=zx0*1  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) !/6\m!e|1R  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, UiR,^/8ED  
    %   and THETA is a vector of angles.  R and THETA must have the same ,<$YVXe/  
    %   length.  The output Z is a matrix with one column for every (N,M) wD6!#t k  
    %   pair, and one row for every (R,THETA) pair. FL`1yD^2  
    % w3<"g&n|  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ln=>@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), | 7 m5P@X  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral sB( `[5I  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, J 0Hm)*  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized qcTmsMpj  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Z .bit_(  
    % HkdN=q  
    %   The Zernike functions are an orthogonal basis on the unit circle. ,](v?v.[4  
    %   They are used in disciplines such as astronomy, optics, and "*w)puD  
    %   optometry to describe functions on a circular domain. _,_8X7  
    % <AMb!?Obh  
    %   The following table lists the first 15 Zernike functions. 4|6&59?pnc  
    % L1 9 MP  
    %       n    m    Zernike function           Normalization 'h^-t^:<>b  
    %       -------------------------------------------------- -@ZzG uS(  
    %       0    0    1                                 1 Ht|",1yr+  
    %       1    1    r * cos(theta)                    2 #vj#! 1  
    %       1   -1    r * sin(theta)                    2 +urS5c* j  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 3}B5hht "D  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ~V2ajM1Z&O  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 5S%C~iB  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ua`6M  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) -BA"3 S  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) -DP8NTl"  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) IXZ(]&we  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) # 0GGc.  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L$1K7<i.  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 2{t)DUs  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [d4,gEx`Q\  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) PwW^y#96  
    %       -------------------------------------------------- ,`<^F:xl  
    % ':l"mkd+`  
    %   Example 1: A\".t=+7  
    % (R_CUH  
    %       % Display the Zernike function Z(n=5,m=1) e0f":Vct  
    %       x = -1:0.01:1; 61/)l0 <;  
    %       [X,Y] = meshgrid(x,x); ,b<9?PM  
    %       [theta,r] = cart2pol(X,Y); h/I@_?k+  
    %       idx = r<=1; Abj97S  
    %       z = nan(size(X)); 2GSgG.%SSM  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ?"{QK:`  
    %       figure },DyU  
    %       pcolor(x,x,z), shading interp \F 3C=M@:  
    %       axis square, colorbar lPY@{1W  
    %       title('Zernike function Z_5^1(r,\theta)') Zc-#;/b3T  
    % }{ n\tzR  
    %   Example 2: Bk@)b`WR  
    % u_N\iCYp  
    %       % Display the first 10 Zernike functions aZ`<PdA  
    %       x = -1:0.01:1; p?Ed- S  
    %       [X,Y] = meshgrid(x,x); `#u l,%  
    %       [theta,r] = cart2pol(X,Y);  ispkj'  
    %       idx = r<=1; pT4qPta,2  
    %       z = nan(size(X)); sN m,Fmuz:  
    %       n = [0  1  1  2  2  2  3  3  3  3]; CN7 k?JO<  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !w q4EV  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; @l'G[jN5  
    %       y = zernfun(n,m,r(idx),theta(idx)); "H>.':c"+3  
    %       figure('Units','normalized') {3hqp*xl  
    %       for k = 1:10 qAqoZMpI|;  
    %           z(idx) = y(:,k); eGLO!DdxZ  
    %           subplot(4,7,Nplot(k)) vQUZVq5M  
    %           pcolor(x,x,z), shading interp <eY %sFq,  
    %           set(gca,'XTick',[],'YTick',[]) re; Lg C  
    %           axis square CoU3S,;*  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) A2y6UzLYD  
    %       end 25d\!3#E  
    % Pg/T^n&  
    %   See also ZERNPOL, ZERNFUN2. 4E2yH6l  
    YMT8p\ #rp  
    %   Paul Fricker 11/13/2006 8O6_iGTBh  
    {O)YwT$`  
    %y>+1hakkX  
    % Check and prepare the inputs: wa!zv^;N*  
    % ----------------------------- wX ,h< \7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) gmY/STN   
        error('zernfun:NMvectors','N and M must be vectors.') 9`B0fv Q&  
    end 5G#$c'A{4  
    Jen%}\  
    if length(n)~=length(m) id^|\hDR  
        error('zernfun:NMlength','N and M must be the same length.') F?z<xL@  
    end |8H_-n  
    ob E:kNE9  
    n = n(:); 0#QKVZq2>  
    m = m(:); 7{pIPmJ  
    if any(mod(n-m,2)) #$FrFU;ZR  
        error('zernfun:NMmultiplesof2', ... !6H uFf  
              'All N and M must differ by multiples of 2 (including 0).') 1 tPVP  
    end  R:~(Z?  
    ocF>LR%P  
    if any(m>n) IU|kNBo  
        error('zernfun:MlessthanN', ... O~27/  
              'Each M must be less than or equal to its corresponding N.') kn}z gSO  
    end oV9z(!X/  
    >SoO4i8  
    if any( r>1 | r<0 ) ~^&R#4J  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') C/G]v*MBQ  
    end :&qhJtGo  
    o)&"Rf  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) yHNuU)Ft  
        error('zernfun:RTHvector','R and THETA must be vectors.') O$qtq(Q%  
    end ydQ!4  
    R,F gl2  
    r = r(:); ([R")~`(l2  
    theta = theta(:); _A{+H^,  
    length_r = length(r); f#$|t>  
    if length_r~=length(theta) dv~pddOs  
        error('zernfun:RTHlength', ... ;F5"}x  
              'The number of R- and THETA-values must be equal.') s\gp5MT  
    end R4{-Qv#8 q  
    jvHFFSK  
    % Check normalization: lpy:3`ti  
    % -------------------- 19Ww3P vQ;  
    if nargin==5 && ischar(nflag) i%;"[M  
        isnorm = strcmpi(nflag,'norm'); JJ ?I>S N!  
        if ~isnorm +j{Y,t{4  
            error('zernfun:normalization','Unrecognized normalization flag.') 0(y:$  
        end GqLq  gns  
    else Zw{MgoJ0Z  
        isnorm = false; =gjDCx$|  
    end CqFeF?xd8h  
    8#X_#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _?`&JF?*  
    % Compute the Zernike Polynomials khx.yRx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O9s?h3  
    ?Go!j?#a  
    % Determine the required powers of r: gEwd &J  
    % ----------------------------------- VUtXxvH  
    m_abs = abs(m); 0[xpEiDx  
    rpowers = []; ])w[   
    for j = 1:length(n) /_t|Dry015  
        rpowers = [rpowers m_abs(j):2:n(j)]; \X|sU:g  
    end tfYB_N  
    rpowers = unique(rpowers); Kqg!,Sn|  
    [AS}RV  
    % Pre-compute the values of r raised to the required powers, NHm]`R,  
    % and compile them in a matrix: (R*j|HAw`X  
    % ----------------------------- l_{8+\`!  
    if rpowers(1)==0 YoKs:e2/:  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }Fa%%}  
        rpowern = cat(2,rpowern{:}); ,Na^%A@TJ  
        rpowern = [ones(length_r,1) rpowern]; &nj&:?w  
    else DyO$P#~?  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); CnISe^h  
        rpowern = cat(2,rpowern{:}); i47j lyH  
    end <a( }kk}  
    S($Su7g%_  
    % Compute the values of the polynomials: ]:ZdV9`  
    % -------------------------------------- n,$z>  
    y = zeros(length_r,length(n)); Bv6 K$4  
    for j = 1:length(n) LWnR?Qve<  
        s = 0:(n(j)-m_abs(j))/2; -WJ?:?'  
        pows = n(j):-2:m_abs(j); ^D{lPu 3  
        for k = length(s):-1:1 ABh&X+YD  
            p = (1-2*mod(s(k),2))* ... #%lo;W~IY  
                       prod(2:(n(j)-s(k)))/              ... (R!hjw~  
                       prod(2:s(k))/                     ... IkPN?N  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... aEt/NwgiQ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); @? c2)0  
            idx = (pows(k)==rpowers); RY9V~8|M  
            y(:,j) = y(:,j) + p*rpowern(:,idx); `aC){&AP(  
        end 5PT5#[  
         9X$ma/P[  
        if isnorm YW/QC'_iC  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); PcT?<HU  
        end tDg}Ys=4K>  
    end 9$ qm>,o  
    % END: Compute the Zernike Polynomials Az;t"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r!PpUwod  
    #OO>rm$  
    % Compute the Zernike functions: PwB1]p=  
    % ------------------------------ t. ='/`!N  
    idx_pos = m>0; *)M49a*UD  
    idx_neg = m<0; v59dh (:`Z  
    ;r[@v347  
    z = y; BZ!v%4^9  
    if any(idx_pos) aJ") <_+  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); gKYfQ+  
    end %a+mk E  
    if any(idx_neg) VHJM*&5  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); f y:,_#  
    end .Z:zZ_Ev  
    ,'xYlH3s  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的