非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 'Nfg%)-N
function z = zernfun(n,m,r,theta,nflag) ~aA+L-s|
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Haq23K
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N f4!^0%l
% and angular frequency M, evaluated at positions (R,THETA) on the *zz/U
(9D
% unit circle. N is a vector of positive integers (including 0), and 2z )h,<D
% M is a vector with the same number of elements as N. Each element g&_0)(a\
% k of M must be a positive integer, with possible values M(k) = -N(k) 6"&&s
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, -#rFCfPy^
% and THETA is a vector of angles. R and THETA must have the same EMs$~CL4
% length. The output Z is a matrix with one column for every (N,M) g\ <Lb
% pair, and one row for every (R,THETA) pair. LoBKR
c2t
% tC|5;'m.2
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike jWP(7}U
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %[NefA(
% with delta(m,0) the Kronecker delta, is chosen so that the integral `pII-dSC%
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >A2&
Mjo
% and theta=0 to theta=2*pi) is unity. For the non-normalized hrEKmRmF-
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. <@;e N&
% e[Q(OV5(R
% The Zernike functions are an orthogonal basis on the unit circle. [0)iY%^
% They are used in disciplines such as astronomy, optics, and %pTbJaM\U
% optometry to describe functions on a circular domain. 5
0~L(<
% Y;-" Z
% The following table lists the first 15 Zernike functions. RsTpjY*Xb
% *dUnP{6 g
% n m Zernike function Normalization Nm\I_wjX
% -------------------------------------------------- QI`Z[caF
% 0 0 1 1 6
D!,vu
% 1 1 r * cos(theta) 2 #n~/~*:i92
% 1 -1 r * sin(theta) 2 9H.E15B
% 2 -2 r^2 * cos(2*theta) sqrt(6) li/O&@g`
% 2 0 (2*r^2 - 1) sqrt(3) 9J2%9,^
% 2 2 r^2 * sin(2*theta) sqrt(6) G=~T)e
% 3 -3 r^3 * cos(3*theta) sqrt(8) ;'=!Fv
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) (CuaBHR
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 6pr}A
% 3 3 r^3 * sin(3*theta) sqrt(8) {d^&$~
% 4 -4 r^4 * cos(4*theta) sqrt(10) D5AKOM!`
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) p?Yovckm
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) XPWK"t01
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tw*qlb FHv
% 4 4 r^4 * sin(4*theta) sqrt(10) 0 w@~ynW[
% -------------------------------------------------- kw=+"U
% QdDdrR^&
% Example 1: m[Zz(tL
% Ev$?c9*>
% % Display the Zernike function Z(n=5,m=1) L$(W*
PG}
% x = -1:0.01:1; IybMO5Mwn
% [X,Y] = meshgrid(x,x); n:k~\-&WJ
% [theta,r] = cart2pol(X,Y); OmKT}D~ 4
% idx = r<=1; ~!)_3o
% z = nan(size(X)); RQ/X{<lQ)
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Q&n
% figure *h-nI=
% pcolor(x,x,z), shading interp Y\ 9uR!0
% axis square, colorbar 7NJ1cQ-}t
% title('Zernike function Z_5^1(r,\theta)') f}XUxIQ-<
% G]q6Ika
% Example 2: E;-R<X5n
% UXIq>[2Z1
% % Display the first 10 Zernike functions _CI! 7%
% x = -1:0.01:1; oSy[/Y44a
% [X,Y] = meshgrid(x,x); :/Sx\Nz78
% [theta,r] = cart2pol(X,Y); -V4@BKI8
% idx = r<=1; >rYP}k
% z = nan(size(X)); UyK|KL
% n = [0 1 1 2 2 2 3 3 3 3]; w6#hsRq[C
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; B8B^@
% Nplot = [4 10 12 16 18 20 22 24 26 28]; $!KV]]
% y = zernfun(n,m,r(idx),theta(idx)); v*3ezf\
% figure('Units','normalized') _W?}%;
% for k = 1:10 K*CO%:,-
% z(idx) = y(:,k); P8;|>OLZ)
% subplot(4,7,Nplot(k)) C/
;f)k<
% pcolor(x,x,z), shading interp Dc BTW+
% set(gca,'XTick',[],'YTick',[]) SjG=H%
% axis square =I7#Vtd^K<
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +J+]P\:
% end m=j7 vb
% })T_D\2M
% See also ZERNPOL, ZERNFUN2. B6=8cf"i
C Q3;NY=o
% Paul Fricker 11/13/2006 ]j_S2lt
U Y)YhXW
fn;7Nf7{
% Check and prepare the inputs: PtmdUHvD
% ----------------------------- htMpL
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) gpE5ua&
error('zernfun:NMvectors','N and M must be vectors.') Pme`UcE3H
end lR;<6
xE4T\%-K
if length(n)~=length(m) p,ZubRJ"
error('zernfun:NMlength','N and M must be the same length.') 1Qf5H!5vx
end t{84ioJ"$
^qV*W1|0
n = n(:); ~Bj-n6 QDE
m = m(:); ;:"~utL7
if any(mod(n-m,2)) f9OVylm
error('zernfun:NMmultiplesof2', ... c67O/ B(
'All N and M must differ by multiples of 2 (including 0).') ,'82;oP4
end "o[\Aec:
i3#]_ p{
if any(m>n) 4S03W
error('zernfun:MlessthanN', ... #4d0/28b
'Each M must be less than or equal to its corresponding N.') !BK^5,4?--
end C"hc.A&4
VWbgusxJ
if any( r>1 | r<0 ) HykJ}ezX4
error('zernfun:Rlessthan1','All R must be between 0 and 1.') /mqEc9sq,
end nQ/(*d
q(a6@6f"kD
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;k!Ej-(
error('zernfun:RTHvector','R and THETA must be vectors.') b4,yLVi<T
end 7xWX:2l*?
NIV&)`w
r = r(:); #pOW2 Uj8\
theta = theta(:); -,zNFC:6g
length_r = length(r); e2/[`k=7-
if length_r~=length(theta) w3,QT}W vY
error('zernfun:RTHlength', ... 6=|Q>[K
'The number of R- and THETA-values must be equal.') _K/h/!\n
end Kd^
._
3MkF
% Check normalization: ^"*r'
% -------------------- ~#) DJ
if nargin==5 && ischar(nflag) N2q'$o
isnorm = strcmpi(nflag,'norm'); dL[mX .j"
if ~isnorm #?8'Z/1)
error('zernfun:normalization','Unrecognized normalization flag.') Pm"
,7
end 5n?fZ?6(
else Lo9+#ITyx
isnorm = false; 5TzMv3;in2
end =]etw
=Z%&jul
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5k<HO _]
% Compute the Zernike Polynomials Y }e$5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Uv5E$Y"e10
0 ,Bd,<3
% Determine the required powers of r: qItj`F)d
% ----------------------------------- 8G(wYlxi
m_abs = abs(m); `[CXxp
rpowers = []; OG}0{?
for j = 1:length(n) ~TurYvf
rpowers = [rpowers m_abs(j):2:n(j)]; !k%Vw18
end %
sT=>\
rpowers = unique(rpowers); 5RZAs63t
u3ce\
% Pre-compute the values of r raised to the required powers, s)&"ga
% and compile them in a matrix: u9k##a4.E
% ----------------------------- E~{-RZNK
if rpowers(1)==0 *i)GoQoB
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [,G]#<G?q
rpowern = cat(2,rpowern{:}); .B>|>W O
rpowern = [ones(length_r,1) rpowern]; 6t*=.b,N
else fZXd<Fg+
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >Li
~Og@
rpowern = cat(2,rpowern{:}); !"p,9
end /m9t2,KB
sveFxI
% Compute the values of the polynomials: 85Ms*[g
% -------------------------------------- /kNr5s
y = zeros(length_r,length(n)); M.H4ud
for j = 1:length(n) DH m$gk
s = 0:(n(j)-m_abs(j))/2; a08B8
pows = n(j):-2:m_abs(j); sm\/wlbE
for k = length(s):-1:1 :i?Z1x1`
p = (1-2*mod(s(k),2))* ... OJ]{FI
prod(2:(n(j)-s(k)))/ ... 4!iS"QH?;^
prod(2:s(k))/ ... q;Qpd]H
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... !)_5 z<
prod(2:((n(j)+m_abs(j))/2-s(k))); 9lOUE
idx = (pows(k)==rpowers); }2DeqY
y(:,j) = y(:,j) + p*rpowern(:,idx); \h_hd%'G
end 6U# C
9 Q].cDe[
if isnorm [yjC@docH
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); b@5&<V;r2
end uodO^5"-
end p72+:I
% END: Compute the Zernike Polynomials QT^(
oog=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <1_?.gSi
-7;RPHJs
% Compute the Zernike functions: lL%7lO
% ------------------------------ 2yeq2v
idx_pos = m>0; m0/J3
idx_neg = m<0; {`l]RIig
r|0C G^:C
z = y; iHQFieZ.E
if any(idx_pos) _VR4|)1g
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (}]74Lc
end Gs*ea'T)
if any(idx_neg) ^k u~m5v
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _%<7!|"
end j>0S3P,
yf_<o
% EOF zernfun