非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 p6[ (81
function z = zernfun(n,m,r,theta,nflag) S>t>6&A
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. "+h/-2rA
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N I$j|Rq
% and angular frequency M, evaluated at positions (R,THETA) on the xS+rHC
% unit circle. N is a vector of positive integers (including 0), and 5[R?iSGL1
% M is a vector with the same number of elements as N. Each element (0C&z/
% k of M must be a positive integer, with possible values M(k) = -N(k) "b%FmM
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Y[G9Vok
VX
% and THETA is a vector of angles. R and THETA must have the same 8zmv
5trt
% length. The output Z is a matrix with one column for every (N,M) n)RM+g
% pair, and one row for every (R,THETA) pair. KB[QZ`"%!
% 0>@[o8
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike GY-M.|%
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), n9]
~
% with delta(m,0) the Kronecker delta, is chosen so that the integral (h,Ws-O
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, DsQ/aG9c%
% and theta=0 to theta=2*pi) is unity. For the non-normalized BX3lPv
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 88o:NJ}_
% $E.XOpl&I
% The Zernike functions are an orthogonal basis on the unit circle. ~gdd cTp
% They are used in disciplines such as astronomy, optics, and GV6mzD@<
% optometry to describe functions on a circular domain. e{!vNJ0`
% _B$"e[:yX
% The following table lists the first 15 Zernike functions. =x
H~ww (D
% U
~1SF
% n m Zernike function Normalization '{VM>Q
% -------------------------------------------------- ,Rz}=j
% 0 0 1 1 8R4qU!M
% 1 1 r * cos(theta) 2 #{,h@g}W
% 1 -1 r * sin(theta) 2 'C~9]Y].
% 2 -2 r^2 * cos(2*theta) sqrt(6) mHs:t{q
% 2 0 (2*r^2 - 1) sqrt(3) GAp!nix6h
% 2 2 r^2 * sin(2*theta) sqrt(6) 6?o>{e7n^
% 3 -3 r^3 * cos(3*theta) sqrt(8) Z*eoA
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) VGZ6
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) aYVDp{_
% 3 3 r^3 * sin(3*theta) sqrt(8) RIjM(P
% 4 -4 r^4 * cos(4*theta) sqrt(10) ]>8)|]O6n
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )4uq
iA6
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 9L"?wv
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [Vp\$;\nT
% 4 4 r^4 * sin(4*theta) sqrt(10) !<r8~A3!(
% -------------------------------------------------- ^'W%X
% oEIqA
% Example 1: V(..8}LlD
% %6i=lyH-
% % Display the Zernike function Z(n=5,m=1) sN]Z
#7
% x = -1:0.01:1; P(;Mb{
% [X,Y] = meshgrid(x,x); C3.=GRg~l
% [theta,r] = cart2pol(X,Y); bl.EIyG>
% idx = r<=1; M/B/b<['
% z = nan(size(X)); ?Ib}
% z(idx) = zernfun(5,1,r(idx),theta(idx)); DL4iXULNY
% figure #r}uin*jD
% pcolor(x,x,z), shading interp %wW'!p-<
% axis square, colorbar f3n~{a,[
% title('Zernike function Z_5^1(r,\theta)') or.\)(m#(
% z2~87fv+
% Example 2: bNs[O22
% ? s4oDi|:
% % Display the first 10 Zernike functions cL7C2wB`
% x = -1:0.01:1; ; )|nkI
% [X,Y] = meshgrid(x,x); 8\_*1h40s
% [theta,r] = cart2pol(X,Y); jY+Do:#/wO
% idx = r<=1; FmI;lVF0j
% z = nan(size(X)); q+%!<]7X
% n = [0 1 1 2 2 2 3 3 3 3]; sam[s4@eQ
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; WZK
:.y
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 7d9Z/J@>
% y = zernfun(n,m,r(idx),theta(idx)); |j#
^@R
% figure('Units','normalized') -0DZ::
% for k = 1:10 hBy*09Sv
% z(idx) = y(:,k); iNLDl~uU
% subplot(4,7,Nplot(k)) ?*+1~m>
% pcolor(x,x,z), shading interp
mn`5pha
% set(gca,'XTick',[],'YTick',[]) fTgbF{?xh
% axis square eJaUmK:
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5rN7':(H!%
% end mu>] 9ZW
% a7*COh
% See also ZERNPOL, ZERNFUN2. zq=&4afOE
vX.]hp5~
% Paul Fricker 11/13/2006 8!4[#y<
D aDUK?
.hne)K%={y
% Check and prepare the inputs: Ql8^]gbp+
% ----------------------------- nX 8B;*p6b
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) r0u J$/!
error('zernfun:NMvectors','N and M must be vectors.') ,!H\^Vfl
end +C5#$5];
eI?HwP{m
if length(n)~=length(m) ?FDJqJM
error('zernfun:NMlength','N and M must be the same length.') WL/5 oj
end 3P`WPph
^XNw$@&',
n = n(:); Z9f/-|r5
m = m(:); Y{j7Q4{
if any(mod(n-m,2)) e# <4/FR
error('zernfun:NMmultiplesof2', ... %2YN,a4
'All N and M must differ by multiples of 2 (including 0).') IywiCMjH
end PJ;.31u
cdDY]"k
if any(m>n) K4Y'B
o4
error('zernfun:MlessthanN', ... )*W=GY*
'Each M must be less than or equal to its corresponding N.') bq: [Nj
end p9Z].5Pd"
$r):d
if any( r>1 | r<0 ) ?(>k,[n
error('zernfun:Rlessthan1','All R must be between 0 and 1.') HoL~j( {
end (H2ylMpQt
~f .y:Sbb
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) nfa_8
error('zernfun:RTHvector','R and THETA must be vectors.') 1]Lhk?4t
end y,V6h*x2
]2PQ X4t0
r = r(:); V07VwVD
theta = theta(:); wePI*."]
length_r = length(r); R~$hWu}}
if length_r~=length(theta) Ej{+U
error('zernfun:RTHlength', ... ]d^k4 d
'The number of R- and THETA-values must be equal.') !*5_pGe
end W
w^7^q&
*h:D|4oJ(
% Check normalization: 7oD
y7nV4
% -------------------- *|^,DGfQ6
if nargin==5 && ischar(nflag) ;*nh=w
isnorm = strcmpi(nflag,'norm'); f&f`J/(
if ~isnorm .(JE-upJ"
error('zernfun:normalization','Unrecognized normalization flag.') ygMd$0:MN
end "~_$T@^k>
else 3Fgz)*Gu]
isnorm = false; JV&Zwbu
end )=y.^@UT@
vUqe.?5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ed=n``P~}
% Compute the Zernike Polynomials iQu^|,tHEM
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fjcr<&{:
J0Jr
BXCh
% Determine the required powers of r: b$dBV}0 L
% ----------------------------------- xUQdVrFU
m_abs = abs(m); /9P^{OZ;y
rpowers = []; ::v;)VdX+*
for j = 1:length(n) 'y< t/qo
rpowers = [rpowers m_abs(j):2:n(j)]; 7,f:Qi@g
end !;TR2Zcn
rpowers = unique(rpowers);
ccRlql(
=Y/}b\9`T
% Pre-compute the values of r raised to the required powers, JR])xPI`
% and compile them in a matrix: s%5Uj}
% ----------------------------- K4_~ruhr
if rpowers(1)==0 XMomFW_@
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); MST:.x ;
rpowern = cat(2,rpowern{:}); 15o9CaQw4"
rpowern = [ones(length_r,1) rpowern]; Sw yaYK
else h]<GTWj
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); S> .q5
rpowern = cat(2,rpowern{:}); 6BUBk>A`
end VIb;96$Or
Tc9&mKVE%(
% Compute the values of the polynomials: >ze>Xr'm5=
% -------------------------------------- 1]"D%U=
y = zeros(length_r,length(n)); )uANmThOz
for j = 1:length(n) pi|\0lH6W
s = 0:(n(j)-m_abs(j))/2; W&HF?w}s
pows = n(j):-2:m_abs(j); ,<7"K&
for k = length(s):-1:1 f+{c1fb>s
p = (1-2*mod(s(k),2))* ... qi(&8in
prod(2:(n(j)-s(k)))/ ... 2=jd;2~
prod(2:s(k))/ ... -)p@BtMS
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >s;oOo+5
prod(2:((n(j)+m_abs(j))/2-s(k))); 4 U3C~J
idx = (pows(k)==rpowers); rH[5~U
y(:,j) = y(:,j) + p*rpowern(:,idx); u9esdOv
end $Vo/CZW7
Lc58lV=
if isnorm lt }r}HM+
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); NKRaQr
end SL6mNn9c
end _TtX`b_Z
% END: Compute the Zernike Polynomials V+Y|4Y&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% " ]aQ Hh]f
N<p5p0
% Compute the Zernike functions: s>LA3kT
% ------------------------------ fx]\)0n
idx_pos = m>0; -0{T
idx_neg = m<0; P]|J?$1K
QIR4<]/
z = y; t8L<x
if any(idx_pos) Mr$# e
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); <ED8"~_
end jVLY!7Z4
if any(idx_neg) lF0K=L
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); qXXYF>Z-
end D-'i G%)kA
JQ~y- lt
% EOF zernfun