非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 8X,6U_>#a
function z = zernfun(n,m,r,theta,nflag) G$>?UQ[
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5`.CzQVb
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ~o!-[
% and angular frequency M, evaluated at positions (R,THETA) on the Q-w# !<L.
% unit circle. N is a vector of positive integers (including 0), and XL n9NBT4K
% M is a vector with the same number of elements as N. Each element .J75bX5
% k of M must be a positive integer, with possible values M(k) = -N(k) ~A=zjkm
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, i\6CE|
% and THETA is a vector of angles. R and THETA must have the same }*6BaB
% length. The output Z is a matrix with one column for every (N,M) PyQ.B*JJ
% pair, and one row for every (R,THETA) pair. op}!1y$9P
% *DPX4P
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike *SNdU^!
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), h9Far8}
% with delta(m,0) the Kronecker delta, is chosen so that the integral TN0KS]^A3
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~</FF'Xz
% and theta=0 to theta=2*pi) is unity. For the non-normalized N]+6<
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. vUpAW[[
% Ocdy;|&
% The Zernike functions are an orthogonal basis on the unit circle. }/a%-07R
% They are used in disciplines such as astronomy, optics, and 5.6tVr
% optometry to describe functions on a circular domain. yNns6
% %)lp]Y33
% The following table lists the first 15 Zernike functions. [7@g*!+d
% 3NpB1lgh&:
% n m Zernike function Normalization ^o3,YH
% -------------------------------------------------- =npE?wK
% 0 0 1 1 <T_3s\
% 1 1 r * cos(theta) 2 e#Cv*i_<
% 1 -1 r * sin(theta) 2 z+"$G
% 2 -2 r^2 * cos(2*theta) sqrt(6) 072C!F
% 2 0 (2*r^2 - 1) sqrt(3) }emUpju<C
% 2 2 r^2 * sin(2*theta) sqrt(6) {fXkbMO|
% 3 -3 r^3 * cos(3*theta) sqrt(8) vXDs/,`r
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) <VxA&bb7c
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ^~H}N$W"-q
% 3 3 r^3 * sin(3*theta) sqrt(8) KOy{?
% 4 -4 r^4 * cos(4*theta) sqrt(10) i|^Q{3?o#
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6iU&9Z<%
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) #%E`~&[
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~tp]a]yV
% 4 4 r^4 * sin(4*theta) sqrt(10) K}l3t2uk
% -------------------------------------------------- >G5aFk
% ~~/,2^
% Example 1: ]M5~p^ RB
% :TQp,CEa
% % Display the Zernike function Z(n=5,m=1) ;\RVC7
% x = -1:0.01:1; TWRP|i!i
% [X,Y] = meshgrid(x,x); H+[?{+"#@l
% [theta,r] = cart2pol(X,Y); 60+ zoL'
% idx = r<=1; B(W~]i
% z = nan(size(X)); Av.tr&ZNb
% z(idx) = zernfun(5,1,r(idx),theta(idx)); lCU clD
% figure 3:WqUb\QK
% pcolor(x,x,z), shading interp ['mpxtG
% axis square, colorbar V+`kB3GV
% title('Zernike function Z_5^1(r,\theta)') x4q}xwH
% P =X]'m_B
% Example 2: tRoSq;VrS
% d {!P
c<
% % Display the first 10 Zernike functions O=o}uB-*6
% x = -1:0.01:1; W> pe-
% [X,Y] = meshgrid(x,x); W3.[d->X
% [theta,r] = cart2pol(X,Y); O\=Z;}<N
% idx = r<=1; {lds?AuK
% z = nan(size(X)); Orq/38:4G
% n = [0 1 1 2 2 2 3 3 3 3]; _5p$#U`
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Vh\_Ko\V5
% Nplot = [4 10 12 16 18 20 22 24 26 28]; wo`.sB&T
% y = zernfun(n,m,r(idx),theta(idx)); [K4cxqlfk
% figure('Units','normalized') x/s:/YN'
% for k = 1:10 OWvblEBF
% z(idx) = y(:,k); ^OY$
W
% subplot(4,7,Nplot(k)) :4{
`c.S
% pcolor(x,x,z), shading interp >eGg 1
% set(gca,'XTick',[],'YTick',[]) [edF'7La
% axis square )O[8 D
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) u2#q7}
% end qR@ESJ_
% Dge#e
% See also ZERNPOL, ZERNFUN2. |P5dv>tb
F
!`{?qQ[=
% Paul Fricker 11/13/2006 N?@^BZ
9~UR(Ts}l
Km5_P##
% Check and prepare the inputs: ,Q"'q0hM=
% ----------------------------- #ZZe*B!s_
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) e i=
4u'
error('zernfun:NMvectors','N and M must be vectors.') FF8jW1
end :BxO6@>Xc
s@L ;3WdO
if length(n)~=length(m) )q<VZ|V
error('zernfun:NMlength','N and M must be the same length.') Y(,RJ&7
end B!&5*f}*
I=L["]
n = n(:); \92M\S
m = m(:); t!\aDkxo %
if any(mod(n-m,2)) #eJfwc1JY
error('zernfun:NMmultiplesof2', ... vC,FE
)'
'All N and M must differ by multiples of 2 (including 0).') #4AU&UM+i
end 6/;YS[jX
6[t<g=
if any(m>n) NCk-[I?R
error('zernfun:MlessthanN', ... ranem0KQ)]
'Each M must be less than or equal to its corresponding N.') ]>~.U~
end "==c
f,ro1Nke
if any( r>1 | r<0 ) 1:eWZ]B5"
error('zernfun:Rlessthan1','All R must be between 0 and 1.') j}Tv/O,f
end z_'^=9m
Oem1=QpaC
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) l4RqQ+[KA;
error('zernfun:RTHvector','R and THETA must be vectors.') @JSWqi>
end T.#_v#oM
>"/TiQt
r = r(:); 0s`6d;
theta = theta(:); k)knyEUi
length_r = length(r); t3$ cX_
if length_r~=length(theta) S*Ea" vBA
error('zernfun:RTHlength', ... 6O/ L~Z*t
'The number of R- and THETA-values must be equal.') cs2-jbRn
end `6rLd>=R
7O)ATb#up
% Check normalization: ~T}D#}
% -------------------- #Shy^58$
if nargin==5 && ischar(nflag) 7Ydqg&
isnorm = strcmpi(nflag,'norm'); g(P7CX+y
if ~isnorm m !:F/?B
error('zernfun:normalization','Unrecognized normalization flag.') 9?Bh8%$
end UW":&`i
else Z(:\Vj"
isnorm = false; 3~`\FuHHe
end +Vg(2Xt
=F[M>o
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% og$dv
23
% Compute the Zernike Polynomials uhq6dhhR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0084`&Ki
f.ua,,P.
% Determine the required powers of r:
h6~xz0,u
% ----------------------------------- 0of:tZU
m_abs = abs(m); UVXruH
rpowers = []; 70avr)OM
for j = 1:length(n) pYCMJK-H
rpowers = [rpowers m_abs(j):2:n(j)]; a/E(GQ,,
end ="T}mc
rpowers = unique(rpowers); uEPm[oyX
fe4/[S{a
% Pre-compute the values of r raised to the required powers, a\-5tYo`u
% and compile them in a matrix: fCa
lR7!
% ----------------------------- [GyPwb-
if rpowers(1)==0 +4t
\j<T
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =YYqgNz+\w
rpowern = cat(2,rpowern{:}); )cN=/i
rpowern = [ones(length_r,1) rpowern]; ~i-n_7 +
else
H|s Iw:
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %.[AZ>
rpowern = cat(2,rpowern{:}); !h&h;m/c
end 5UL5C:3R9
!/2kJOSp
% Compute the values of the polynomials: L_Z`UhD3{
% -------------------------------------- TbMlYf]It
y = zeros(length_r,length(n)); Q-_;.xy#4
for j = 1:length(n) {w>ofyqfp&
s = 0:(n(j)-m_abs(j))/2; 6mZpyt
pows = n(j):-2:m_abs(j); 6#d+BBKIc
for k = length(s):-1:1 k="wEZ;Q
p = (1-2*mod(s(k),2))* ... }8.$)&O$^
prod(2:(n(j)-s(k)))/ ... Pw|/PfG
prod(2:s(k))/ ... a6T!)g
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 9MRe?
prod(2:((n(j)+m_abs(j))/2-s(k))); Xa8_kv_
idx = (pows(k)==rpowers); N}bZdE9F
y(:,j) = y(:,j) + p*rpowern(:,idx); vO{[P#L}
end Gd&G*x
'@^<c#h]=
if isnorm DKQQZ`PF
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); UL8"{-`_\
end ^YPw'cZZ&
end c_?!V
% END: Compute the Zernike Polynomials tV.96P;)/9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ky7-6$
K!jau|FS
% Compute the Zernike functions: M>Ws}Y
% ------------------------------ XK
l3B=h
idx_pos = m>0; 9LEUj
idx_neg = m<0; @(st![i+
=>C3IR/
z = y; UJX5}36
if any(idx_pos) xI=[=;L
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); p t{/|P
end 9NC6q-2
if any(idx_neg) cMt
, 80
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4s&koH(x
end ]kkH|b$[T
;S>ml
% EOF zernfun