切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11366阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 g=I8@m  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! _h}kp\sps  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  jWrj?DV,2N  
    +8RgF   
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Hhcpp7cr'  
    85LAY aw  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) &"&Z #llb  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. >=:&D)m"  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of }$SavB#SBP  
    %   order N and frequency M, evaluated at R.  N is a vector of 4|riKo)  
    %   positive integers (including 0), and M is a vector with the 1w@(5 ^V  
    %   same number of elements as N.  Each element k of M must be a 7%Gwc?[x  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) RP[{4 Q8  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is e2s]{obf  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix +6HVhoxU#  
    %   with one column for every (N,M) pair, and one row for every .HS"}A T  
    %   element in R. RJ  8+h  
    % Z}mLLf E  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 3x{ t(  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ,':fu  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 6Ypc`  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 r`W)0oxD  
    %   for all [n,m]. n.!#P|  
    % $q6BP'7  
    %   The radial Zernike polynomials are the radial portion of the 8i>ZY  
    %   Zernike functions, which are an orthogonal basis on the unit ]O+Ma}dxz:  
    %   circle.  The series representation of the radial Zernike Ta ?_5  
    %   polynomials is $WyD^|~SF  
    % 1+szG1U=  
    %          (n-m)/2 \?[v{WP)  
    %            __ O#:$^#j&  
    %    m      \       s                                          n-2s 4>F'oqFF  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r xST8|H  
    %    n      s=0 6& e3Nt  
    % \KMToN&2  
    %   The following table shows the first 12 polynomials. adCU61t  
    % `q}I"iS  
    %       n    m    Zernike polynomial    Normalization _<k\FU r  
    %       --------------------------------------------- F, W~,y  
    %       0    0    1                        sqrt(2) v- T$:cL  
    %       1    1    r                           2 z>58dA@f  
    %       2    0    2*r^2 - 1                sqrt(6) R "n 5  
    %       2    2    r^2                      sqrt(6) &]"  
    %       3    1    3*r^3 - 2*r              sqrt(8) nzd2zY>V  
    %       3    3    r^3                      sqrt(8) X 0WJBEE  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) U 9_9l7&r  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) _ "?.!  
    %       4    4    r^4                      sqrt(10) D>/0v8  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) qkt0**\  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) -G}[AkmS  
    %       5    5    r^5                      sqrt(12) m+`fn;*  
    %       --------------------------------------------- u$DHVRrF<  
    % zL$@`Eh-KP  
    %   Example: D^yRaP*|7  
    % V=R 3)GC  
    %       % Display three example Zernike radial polynomials K-bD<X  
    %       r = 0:0.01:1; R<\F:9  
    %       n = [3 2 5]; C7rNV0.Fq  
    %       m = [1 2 1]; S>h;K`  
    %       z = zernpol(n,m,r); nxUJN1b!N  
    %       figure mw_~*Nc'9  
    %       plot(r,z) ^T*?>%`  
    %       grid on /qMG=Z  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') .z]Wyx&/U  
    % g[1gF&  
    %   See also ZERNFUN, ZERNFUN2. S|SV$_ (  
    [$qyF|/K`n  
    % A note on the algorithm. SX<` {x&L  
    % ------------------------ 'qZW,],5  
    % The radial Zernike polynomials are computed using the series &~8oQC-eF  
    % representation shown in the Help section above. For many special *,e:]!*  
    % functions, direct evaluation using the series representation can kE:nsXI )  
    % produce poor numerical results (floating point errors), because DK$X2B"cV  
    % the summation often involves computing small differences between (\\eo  
    % large successive terms in the series. (In such cases, the functions kDEPs$^  
    % are often evaluated using alternative methods such as recurrence I;e=0!9U  
    % relations: see the Legendre functions, for example). For the Zernike PH1p2Je  
    % polynomials, however, this problem does not arise, because the fKeT,U`W  
    % polynomials are evaluated over the finite domain r = (0,1), and 0 t Fkd  
    % because the coefficients for a given polynomial are generally all  O{QA  
    % of similar magnitude. 7op`s5i  
    % 1,6}_MA  
    % ZERNPOL has been written using a vectorized implementation: multiple #yI mKEYX  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] k3u "A_"c  
    % values can be passed as inputs) for a vector of points R.  To achieve J3e96t~u  
    % this vectorization most efficiently, the algorithm in ZERNPOL GC>e26\:  
    % involves pre-determining all the powers p of R that are required to FG%X~L<d,)  
    % compute the outputs, and then compiling the {R^p} into a single wb]%m1H`:  
    % matrix.  This avoids any redundant computation of the R^p, and _Tf4WFu2  
    % minimizes the sizes of certain intermediate variables. BUWqI dg  
    % <oR a3Gi(%  
    %   Paul Fricker 11/13/2006 /35R u}c  
    0rOfrTNOz%  
    igIRSN}h  
    % Check and prepare the inputs: RTE8Uq36  
    % ----------------------------- Sm)Ha:[4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) M.x=<:upp  
        error('zernpol:NMvectors','N and M must be vectors.') @Fluc,Il  
    end Zo|.1pN  
    `);AW(Q  
    if length(n)~=length(m) ]Y%Vio  
        error('zernpol:NMlength','N and M must be the same length.') !j:9`XD|  
    end "Om=N@?  
    6N",- c  
    n = n(:); *C5R}9O5  
    m = m(:); +aJ>rR  
    length_n = length(n); u])b,9&En  
    brW :C? }  
    if any(mod(n-m,2)) 19HM])Zw\  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 2[Z,J%:0  
    end )Hpa}FGT  
    7({]x*o*%  
    if any(m<0) VXYK?Qc'  
        error('zernpol:Mpositive','All M must be positive.') uehDIl0\[b  
    end _oHNkKQ  
    G`n_YH084  
    if any(m>n) .}q&5v  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') W yB3ls~  
    end Jl5c [F  
    G+%zn|  
    if any( r>1 | r<0 ) ]!I7Y.w6  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') pnjXf.g"O  
    end T?x[C4wf+  
    +_; l|uhT;  
    if ~any(size(r)==1) v-#Q7T  
        error('zernpol:Rvector','R must be a vector.') SSPHhAeH8  
    end ^5H >pat  
    ,{BaePMp  
    r = r(:); qyF{f8pzq  
    length_r = length(r); :[O 8  
    6kNrYom  
    if nargin==4 <J`0mVOX  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); \MbB#  
        if ~isnorm [3(7  4  
            error('zernpol:normalization','Unrecognized normalization flag.') fDT%!  
        end %/|9@er  
    else AyNI$Q6Z  
        isnorm = false; 4Uphfzv3D  
    end )6q,>whI]  
    !ePr5On  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qv]}$WU  
    % Compute the Zernike Polynomials 9;r)#3Q[^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~R22?g.  
    vhpNpgz  
    % Determine the required powers of r: ;\]b T;#  
    % ----------------------------------- Yzh"1|O  
    rpowers = []; |C!oxhu<  
    for j = 1:length(n) EB2w0a5  
        rpowers = [rpowers m(j):2:n(j)]; +z9Q-d%O  
    end MUTj-1H6)  
    rpowers = unique(rpowers); K('hC)1  
    yf[~Yl>Ogw  
    % Pre-compute the values of r raised to the required powers, *M:B\ D  
    % and compile them in a matrix: .}OR  
    % ----------------------------- L1cI`9  
    if rpowers(1)==0 +89*)pk   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ` :o4'CG  
        rpowern = cat(2,rpowern{:}); 6LalW5I  
        rpowern = [ones(length_r,1) rpowern]; -(  
    else T)H{  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {so `/EWa  
        rpowern = cat(2,rpowern{:}); NYrQ$N"  
    end IF44F3(V4  
    /H8g(  
    % Compute the values of the polynomials: =<?+#-;p  
    % -------------------------------------- 9~p[  
    z = zeros(length_r,length_n); j`~Ms>  
    for j = 1:length_n M luVx'  
        s = 0:(n(j)-m(j))/2; Tk5W'p|6f  
        pows = n(j):-2:m(j); l)Crc-:}4j  
        for k = length(s):-1:1 V:VO[e<e  
            p = (1-2*mod(s(k),2))* ... thifRd$4  
                       prod(2:(n(j)-s(k)))/          ... {]%0lf:  
                       prod(2:s(k))/                 ... gk"$,\DI  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... [n \2  
                       prod(2:((n(j)+m(j))/2-s(k))); S7/eS)SQR  
            idx = (pows(k)==rpowers); 4\Tl\SZ?  
            z(:,j) = z(:,j) + p*rpowern(:,idx); XCU7x i$d  
        end _$ +^q-  
         0=AVW`J  
        if isnorm 9f&C  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); KX'{[7}m'  
        end 6)Y.7XR  
    end n:yTeZ=-s4  
    &6ZD136  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) \=:~ki=@B  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. SqEgn}m$  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated M%2+y5  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive _qw?@478  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, h*w%jdQ6  
    %   and THETA is a vector of angles.  R and THETA must have the same DAcQz4T`  
    %   length.  The output Z is a matrix with one column for every P-value, mID"^NOi#  
    %   and one row for every (R,THETA) pair. ]yK7PH-{L  
    % gW)3e1a  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ]:Ns f|C0  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) NQ(1   
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 5|o6v1bM  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 +a^nlW9g  
    %   for all p. `*_mP<Ag  
    % |wiqGzAr{  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 yku5SEJ\  
    %   Zernike functions (order N<=7).  In some disciplines it is Y }$/e  
    %   traditional to label the first 36 functions using a single mode nD`w/0hT<  
    %   number P instead of separate numbers for the order N and azimuthal JtEo'As:[  
    %   frequency M. Jk7|{W\OA  
    % = \'}g?  
    %   Example: IsZHe lg  
    % Ta(Y:*Ri  
    %       % Display the first 16 Zernike functions jL%x7?*U0  
    %       x = -1:0.01:1; YwDbPX  
    %       [X,Y] = meshgrid(x,x); V^3L3|k  
    %       [theta,r] = cart2pol(X,Y); rH_\ d?b  
    %       idx = r<=1; \;qW 3~  
    %       p = 0:15; kYG/@7f/  
    %       z = nan(size(X)); + +M$#Er&  
    %       y = zernfun2(p,r(idx),theta(idx)); Fl kcU `j  
    %       figure('Units','normalized') tzZ`2pSh  
    %       for k = 1:length(p) wy0tgy(' |  
    %           z(idx) = y(:,k); kCR_tn 4  
    %           subplot(4,4,k) *=]&&<  
    %           pcolor(x,x,z), shading interp ^@3sT,M,S  
    %           set(gca,'XTick',[],'YTick',[]) 'p> Ra/4  
    %           axis square +jS|2d  
    %           title(['Z_{' num2str(p(k)) '}']) q8/MMKCbX  
    %       end =G7m)!  
    % r^FhTzA=1  
    %   See also ZERNPOL, ZERNFUN. AgS 7J(^&3  
    =Je[c,&j$?  
    %   Paul Fricker 11/13/2006 ';3{T:I  
    +x0!*3q  
    _FpTFfB  
    % Check and prepare the inputs: U>]$a71  
    % ----------------------------- JMrEFk  
    if min(size(p))~=1 0AZ")<^~7  
        error('zernfun2:Pvector','Input P must be vector.') Z/k:~%|E  
    end c6h.iBJ'  
    ii T"5`KY  
    if any(p)>35 ,{M^-3C  
        error('zernfun2:P36', ... 2oVSn"  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... em,u(#)&  
               '(P = 0 to 35).'])  6:b! F  
    end `uOT+B%R  
    1S{D6#bE  
    % Get the order and frequency corresonding to the function number: 5gYRwuf  
    % ---------------------------------------------------------------- 'u*D A|HC  
    p = p(:); yv t.  
    n = ceil((-3+sqrt(9+8*p))/2); %j.0G`x9 +  
    m = 2*p - n.*(n+2); B3We|oe!  
    */sS`/Lx  
    % Pass the inputs to the function ZERNFUN: b$N 2z  
    % ---------------------------------------- X{5vXT\/y  
    switch nargin eD,.~Y#?=  
        case 3 01wX`"I  
            z = zernfun(n,m,r,theta); cG[l!Z  
        case 4 Of*Pw[vD  
            z = zernfun(n,m,r,theta,nflag); _ TiuY  
        otherwise R%{<mno/_  
            error('zernfun2:nargin','Incorrect number of inputs.') ~xkeuU  
    end CAfGH!l!  
    t<#TJ>Le  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 GzhYY"iif#  
    function z = zernfun(n,m,r,theta,nflag) LhA*F[6$M  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. gZN8!#h}B  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N e%svrJ2   
    %   and angular frequency M, evaluated at positions (R,THETA) on the c/D+|X*  
    %   unit circle.  N is a vector of positive integers (including 0), and c23oCfB>  
    %   M is a vector with the same number of elements as N.  Each element j_K4;k#r  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ^]H5h]U '  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ). <-X^@  
    %   and THETA is a vector of angles.  R and THETA must have the same 6Y^23W F  
    %   length.  The output Z is a matrix with one column for every (N,M) abuh`H#  
    %   pair, and one row for every (R,THETA) pair. zNs55e.rx  
    % aRj9E}  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike bWH&P/>  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), yQ U{ zY  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Z-^LKe  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Pr3qo4t.L  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized =#;3Q~:Jl^  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. urbp#G/>  
    % U_M$#i{_  
    %   The Zernike functions are an orthogonal basis on the unit circle. )F}F_Y  
    %   They are used in disciplines such as astronomy, optics, and N:S/SZI  
    %   optometry to describe functions on a circular domain. =b%MXT  
    % Yrb{ByO&  
    %   The following table lists the first 15 Zernike functions.  DGRXd#  
    % *QpMF/<?  
    %       n    m    Zernike function           Normalization r /YMLQ  
    %       -------------------------------------------------- `nUXDmdwzO  
    %       0    0    1                                 1 vq0Vq(V=  
    %       1    1    r * cos(theta)                    2 bfFeBBi  
    %       1   -1    r * sin(theta)                    2 R_ B7EP  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) @ju@WY45$^  
    %       2    0    (2*r^2 - 1)                    sqrt(3) r A`V}>Xj  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 8*W#DH!  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) iJ-23_D  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8)  ]3x?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @'w"R/,n-@  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) B\=L3eL<D  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) hW%TM3l}  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y0Fb_"}  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Dl<bnx;0  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) l}a)ZeR1  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) -?H#LUk  
    %       -------------------------------------------------- 2V"B:X\  
    % Q! o'}nA  
    %   Example 1: oL!EYbFD'Z  
    %  .t{MIC  
    %       % Display the Zernike function Z(n=5,m=1) 9{'N{  
    %       x = -1:0.01:1; D60aH!ft  
    %       [X,Y] = meshgrid(x,x); 1 8|m)(W  
    %       [theta,r] = cart2pol(X,Y); Tre]"2l  
    %       idx = r<=1; EOIN^4V"  
    %       z = nan(size(X)); q]\:P.x!>  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); viW!,QQ(S  
    %       figure <5-[{Q/2z  
    %       pcolor(x,x,z), shading interp -Y1e8H ='  
    %       axis square, colorbar ^?-:'<4q$  
    %       title('Zernike function Z_5^1(r,\theta)') 9/{(%XwX  
    % SAH-p*.  
    %   Example 2: &c`nR<  
    % !Xh=k36  
    %       % Display the first 10 Zernike functions L(/e&J@><  
    %       x = -1:0.01:1; Y4OPEo5o  
    %       [X,Y] = meshgrid(x,x); qt"G[9;  
    %       [theta,r] = cart2pol(X,Y); NiNM{[3oS  
    %       idx = r<=1; =qoWCmg"&  
    %       z = nan(size(X)); T%x}Y#U'`  
    %       n = [0  1  1  2  2  2  3  3  3  3]; zE336  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :I"2V  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; h(<,fg1  
    %       y = zernfun(n,m,r(idx),theta(idx)); Um }  
    %       figure('Units','normalized') ob+b<HFv  
    %       for k = 1:10 qPWP&k  
    %           z(idx) = y(:,k); FG PB:  
    %           subplot(4,7,Nplot(k)) [8.c8-lZ^  
    %           pcolor(x,x,z), shading interp 6}Vf\j~  
    %           set(gca,'XTick',[],'YTick',[]) kj|6iG  
    %           axis square rR$h*  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *]. 7dec/  
    %       end 4ae`pAu  
    % ,oORW/0iS  
    %   See also ZERNPOL, ZERNFUN2. Z_PNI#h*  
    CHdX;'`*  
    %   Paul Fricker 11/13/2006 8&;UO{  
    }elc `jj  
    @v$Y7mw3D  
    % Check and prepare the inputs: qsF<!'m7`  
    % ----------------------------- ZWii)0'PV  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~{*7"o/  
        error('zernfun:NMvectors','N and M must be vectors.') +ylTGSZS  
    end !ds"9w  
    n?oW< &  
    if length(n)~=length(m) E0BMv/r8b  
        error('zernfun:NMlength','N and M must be the same length.') fs|)l$Rd  
    end ,368d9,rDz  
    BmBj7  
    n = n(:); Nw:GCf-L  
    m = m(:); anuL1f XO  
    if any(mod(n-m,2))  ^le<}  
        error('zernfun:NMmultiplesof2', ... xpNH?#&  
              'All N and M must differ by multiples of 2 (including 0).') h~A/y!s  
    end >@BnV{ d  
    cy*?&~;  
    if any(m>n) jy7\+i  
        error('zernfun:MlessthanN', ... a! (4Ch  
              'Each M must be less than or equal to its corresponding N.') 'z );  
    end ]~844J p  
    +_7*iJtD5  
    if any( r>1 | r<0 ) C#QpQg2  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') XoXM ^*Vk  
    end TH)"wNa  
    $JSL-NkE  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) d; [C6d  
        error('zernfun:RTHvector','R and THETA must be vectors.') zh4# A <e  
    end D>|H 2  
    |HU@ >  
    r = r(:); J`^ag'  
    theta = theta(:); =Xm@YVf&ZD  
    length_r = length(r); liEPCWl&  
    if length_r~=length(theta) U6=..K!q  
        error('zernfun:RTHlength', ... `id 9j  
              'The number of R- and THETA-values must be equal.') }{M#EP8q+  
    end fz;iOjr>  
    | H!28h  
    % Check normalization: :s=NUw_^  
    % -------------------- z|fmrwkN'$  
    if nargin==5 && ischar(nflag) k")R[)92b?  
        isnorm = strcmpi(nflag,'norm'); %lL.[8r|  
        if ~isnorm ODZ5IO}v  
            error('zernfun:normalization','Unrecognized normalization flag.') JROM_>mC  
        end IOTR/anu  
    else ckV`OaRw4  
        isnorm = false; P D4Tz!F  
    end 0YaA`  
    sfLMk E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9Kr+\F  
    % Compute the Zernike Polynomials 'AzDP;6qFI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U0=]  
    nJbtS#`G4  
    % Determine the required powers of r: r/& sub"X  
    % ----------------------------------- uC.K<jD%  
    m_abs = abs(m); ekI2icD  
    rpowers = []; D@G\7 KH@  
    for j = 1:length(n) @95FN)TXZY  
        rpowers = [rpowers m_abs(j):2:n(j)]; #u2J;9P  
    end %R1tJ(/  
    rpowers = unique(rpowers); L93l0eEt  
    =,%CLS,6w  
    % Pre-compute the values of r raised to the required powers, C?ulj9=Z  
    % and compile them in a matrix: vesJEaw7  
    % ----------------------------- & +4gSr  
    if rpowers(1)==0 ;_8#f%Y#R  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); P-`M  
        rpowern = cat(2,rpowern{:}); CQwL|$)]Y  
        rpowern = [ones(length_r,1) rpowern]; 5'0xz.)!  
    else 9Kg21-?  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [FK<96.nt  
        rpowern = cat(2,rpowern{:}); ~jK{ ,$:=  
    end )=\# UE+W  
    Y^36>1.:  
    % Compute the values of the polynomials: ]DZE%  
    % -------------------------------------- U;bK!&Z  
    y = zeros(length_r,length(n)); 6}75iIKi  
    for j = 1:length(n) <$6QDfa#  
        s = 0:(n(j)-m_abs(j))/2; 9k9_mjLZ  
        pows = n(j):-2:m_abs(j); sBu=e7  
        for k = length(s):-1:1 "~=mG--I  
            p = (1-2*mod(s(k),2))* ... c<uN"/gi*  
                       prod(2:(n(j)-s(k)))/              ... RbCPmiZcH  
                       prod(2:s(k))/                     ... [(o7$i29|%  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... h tx;8:  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 7uT:b!^f[  
            idx = (pows(k)==rpowers); Wqc)Fv70m  
            y(:,j) = y(:,j) + p*rpowern(:,idx); D6CS8 ~"  
        end 7~9S 9  
         O_cbP59Y.  
        if isnorm :`E8Z:-R  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); bfA=3S"0  
        end DjI3?NN  
    end ;^ La"m  
    % END: Compute the Zernike Polynomials Vm5c+;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]BtbWKJBqe  
    Z-8Yd6 4  
    % Compute the Zernike functions: qP2ekI:y  
    % ------------------------------ BJgW,huLy  
    idx_pos = m>0; vy_D>tp  
    idx_neg = m<0; ET_W-  
    4&xZ]QC)O5  
    z = y; baJxU:Y=p  
    if any(idx_pos) @S|jC2^+h  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Rop'e8Q  
    end 8 %%f%y  
    if any(idx_neg) TlI<1/fP}  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Rp*R:3 C  
    end YFE&r  
    zrR`ecC(b  
    % EOF zernfun
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的