切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11657阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ;x7SY;0*  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ^wHO!$  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 i a|F  
    function z = zernfun(n,m,r,theta,nflag) Vy?w,E0^:  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. jC@^/rMh  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N b6i0_fOO  
    %   and angular frequency M, evaluated at positions (R,THETA) on the *oPSkEA{  
    %   unit circle.  N is a vector of positive integers (including 0), and vxm`[s|QC  
    %   M is a vector with the same number of elements as N.  Each element '=ZE*nGC  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) -g>27EI5  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, >i.+v[)#  
    %   and THETA is a vector of angles.  R and THETA must have the same BAPi<U'D  
    %   length.  The output Z is a matrix with one column for every (N,M) }6KL   
    %   pair, and one row for every (R,THETA) pair. 3646.i[D  
    % ;L`'xFo>>  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Md~mI8  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Z4e?zY  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral RDZq(rKc  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, e 9:l  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized EbW7Av  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (&B & V  
    % x|Ei_hI-  
    %   The Zernike functions are an orthogonal basis on the unit circle. J^W.TM&q$,  
    %   They are used in disciplines such as astronomy, optics, and E*ic9Za8`h  
    %   optometry to describe functions on a circular domain. IKU -  
    % ?e@Ff"Y@e  
    %   The following table lists the first 15 Zernike functions. RsY<j& f  
    % -8o8l z  
    %       n    m    Zernike function           Normalization x88$#N>Q5  
    %       -------------------------------------------------- ucn aj|  
    %       0    0    1                                 1 lH6t  d  
    %       1    1    r * cos(theta)                    2 (;n|>l?*  
    %       1   -1    r * sin(theta)                    2 mA4v  4z  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) [W2p}4(  
    %       2    0    (2*r^2 - 1)                    sqrt(3) !At_^hSqz  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Qj=l OhM  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) *n*OVI8L  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) tQ)8HVKF  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) kgQEg)A]!x  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) `KL`^UqR  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) V`%m~#Me  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /Ly%-py-$  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) "qF&%&#r'  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kxdLJ_  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) #e#8I7P  
    %       -------------------------------------------------- '*T7tl  
    % qvt~wJf<  
    %   Example 1: Ri,UHI4 W  
    % C*KRu`t  
    %       % Display the Zernike function Z(n=5,m=1) lfGiw^  
    %       x = -1:0.01:1; 'UB<;6wy  
    %       [X,Y] = meshgrid(x,x); 1xx-}AIH#  
    %       [theta,r] = cart2pol(X,Y); LHa cHv  
    %       idx = r<=1; XJQ[aU"[]N  
    %       z = nan(size(X)); X{ Nif G  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); e8[ *=&  
    %       figure h?TE$&CL?  
    %       pcolor(x,x,z), shading interp u'N'<(\k  
    %       axis square, colorbar sFGXW  
    %       title('Zernike function Z_5^1(r,\theta)') 'rg$%M*(  
    % qH-dT,`"{  
    %   Example 2: n,0}K+}  
    % 1 t#Tp$  
    %       % Display the first 10 Zernike functions *</;:?  
    %       x = -1:0.01:1; W=|B3}C?  
    %       [X,Y] = meshgrid(x,x); |mK d5[$  
    %       [theta,r] = cart2pol(X,Y); RuHJk\T+  
    %       idx = r<=1; G U!XD!!&  
    %       z = nan(size(X)); 8n'C@#{WV  
    %       n = [0  1  1  2  2  2  3  3  3  3]; "+rX* ~  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; YY.;J3C  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; <}UqtD F 0  
    %       y = zernfun(n,m,r(idx),theta(idx)); O}D]G%,m  
    %       figure('Units','normalized') J|I|3h<T  
    %       for k = 1:10 p?!] sO1l  
    %           z(idx) = y(:,k); W9u (  
    %           subplot(4,7,Nplot(k)) ;[6u79;I  
    %           pcolor(x,x,z), shading interp *+J&ebSTN  
    %           set(gca,'XTick',[],'YTick',[]) H_$"]iQ  
    %           axis square ^&,{  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) KDY~9?}TM  
    %       end N.VzA 6 C  
    % `yVJ `} hm  
    %   See also ZERNPOL, ZERNFUN2. *|4~ 0w  
    bG5c~  
    %   Paul Fricker 11/13/2006 AQFx>:in  
    }X AoMp  
    ly{ ~X  
    % Check and prepare the inputs: xR%CS`0R  
    % ----------------------------- yP"_j&ef7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *{tJ3<t(1  
        error('zernfun:NMvectors','N and M must be vectors.') =g&0CFF<  
    end Ya>cGaLq  
    *M8 4Dry`y  
    if length(n)~=length(m) #S1)n[  
        error('zernfun:NMlength','N and M must be the same length.') k1%Ek#5  
    end ZLO _5#<  
    M r@M~ -  
    n = n(:); +}:c+Z<  
    m = m(:); $i3/||T,9  
    if any(mod(n-m,2)) vF*H5\ m<a  
        error('zernfun:NMmultiplesof2', ... 5v?6J#]2  
              'All N and M must differ by multiples of 2 (including 0).') *rqih_j0  
    end [y:6vC   
    n'R 8nn6^  
    if any(m>n) 5:AAqMa  
        error('zernfun:MlessthanN', ... #ocT4  
              'Each M must be less than or equal to its corresponding N.') ,@2O_O`:  
    end cW3;5  
    O,DA{> *m  
    if any( r>1 | r<0 ) qg'm<[  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') =si<OB  
    end "3!4 hiU9  
    Bg34YmZ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]P 2M  
        error('zernfun:RTHvector','R and THETA must be vectors.') {wd.aUB  
    end <;acWT?(  
    ?X eRL<n  
    r = r(:); Z &PwNr/  
    theta = theta(:); T%ha2X=  
    length_r = length(r); t<$yxD/R  
    if length_r~=length(theta) 5#iv[c  
        error('zernfun:RTHlength', ... 9@ ^/ON\O  
              'The number of R- and THETA-values must be equal.') c !5OK4+Z  
    end  ) .#,1  
    ^&.F!  
    % Check normalization: kH{axMNc  
    % -------------------- LtC kDnXk  
    if nargin==5 && ischar(nflag) 6g<JPc  
        isnorm = strcmpi(nflag,'norm'); :yw0-]/DD  
        if ~isnorm y/Nvts2!C  
            error('zernfun:normalization','Unrecognized normalization flag.') ? Bk"3{hl  
        end ogPxj KSI  
    else psYfz)1;  
        isnorm = false; ;;UvK v  
    end #opFUX-  
    8)sqj=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g*8sh  
    % Compute the Zernike Polynomials CjIkRa@!x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Kw'A%7^e  
    WT!%FQ9  
    % Determine the required powers of r: /(vT49(]  
    % ----------------------------------- r$*k-c9Bf  
    m_abs = abs(m); ydBoZ3}  
    rpowers = []; 2< ^B]N  
    for j = 1:length(n) <m9IZI Y<  
        rpowers = [rpowers m_abs(j):2:n(j)]; D<nTo&m_  
    end U4Qc$&j>  
    rpowers = unique(rpowers); "< [D1E\  
    "bC8/^  
    % Pre-compute the values of r raised to the required powers, O^ f[ ugs  
    % and compile them in a matrix: 2)mKcUL-  
    % ----------------------------- $yOfqr  
    if rpowers(1)==0 cC>.`1:  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^W'\8L  
        rpowern = cat(2,rpowern{:}); oz@yF)/Sm  
        rpowern = [ones(length_r,1) rpowern]; QK//bV)  
    else &oNy~l o  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /I: d<A  
        rpowern = cat(2,rpowern{:}); #B>Hq~ vrC  
    end '0w'||#1  
     V18w  
    % Compute the values of the polynomials: tt#M4n@  
    % -------------------------------------- T w/CJg  
    y = zeros(length_r,length(n)); ()XL}~I{!A  
    for j = 1:length(n) UPLr[ >Q#  
        s = 0:(n(j)-m_abs(j))/2; d4gl V`%.  
        pows = n(j):-2:m_abs(j); Z@j0J[s  
        for k = length(s):-1:1 {5_*tV<I  
            p = (1-2*mod(s(k),2))* ... K2)),_,@5+  
                       prod(2:(n(j)-s(k)))/              ... G4ZeO:r  
                       prod(2:s(k))/                     ... l6a,:*_  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {8b6A~/  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); B*,9{g0m/  
            idx = (pows(k)==rpowers); %vyjn&13  
            y(:,j) = y(:,j) + p*rpowern(:,idx); c1e7h l  
        end 5AQ $xm4  
         nwW `Q>+#U  
        if isnorm ^d-`?zb  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ;J2=6np  
        end 7nfQ=?XNK  
    end Ma wio5  
    % END: Compute the Zernike Polynomials 3 u-j`7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T4._S:~  
    K*p^Gs,  
    % Compute the Zernike functions: %vn rLt$  
    % ------------------------------ Hd6Qy {,*-  
    idx_pos = m>0; A*E$_N  
    idx_neg = m<0; Jg |/*Or  
    q'{E $V)E  
    z = y; RIb< 7  
    if any(idx_pos) wGAN"K:e  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Ewu 7tq Z  
    end Ow mI*`  
    if any(idx_neg) SIzW3y[  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); CP/`ON  
    end aCy2 .Qn  
    W<k) '|  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) \O72PC+  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Kx$?IxZ  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated z`m-Ca>6  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive My Af~&Y+  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 4s.wQ2m  
    %   and THETA is a vector of angles.  R and THETA must have the same Xy=|qu  
    %   length.  The output Z is a matrix with one column for every P-value, =i\~][-  
    %   and one row for every (R,THETA) pair. p*n$iroy_{  
    % yz,ak+wp  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike % UY=VE\F  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) phEM1",4T  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) s XRiUDP`  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 XR]]g+Z  
    %   for all p. sw8Ic\vT  
    % ,HYz-sK.  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 %\%1EZQ%  
    %   Zernike functions (order N<=7).  In some disciplines it is auaFP-$`f  
    %   traditional to label the first 36 functions using a single mode %nVnK6[sox  
    %   number P instead of separate numbers for the order N and azimuthal E^T/Qu  
    %   frequency M. o7&Z4(V  
    % H Viu7kue`  
    %   Example: :KMo'pL  
    % rOS fDv  
    %       % Display the first 16 Zernike functions 3zMmpeq  
    %       x = -1:0.01:1; qS+'#Sn  
    %       [X,Y] = meshgrid(x,x); fh:=ja?bM3  
    %       [theta,r] = cart2pol(X,Y); L&q~5 9  
    %       idx = r<=1; ;@ %~eIlu  
    %       p = 0:15; 31<hn+pE &  
    %       z = nan(size(X)); R qOEQ*k  
    %       y = zernfun2(p,r(idx),theta(idx)); yV=hi?f-[V  
    %       figure('Units','normalized') _Ev"/ %  
    %       for k = 1:length(p) ZO W{rv]  
    %           z(idx) = y(:,k); -P@o>#Em  
    %           subplot(4,4,k) cD-\fRBGK  
    %           pcolor(x,x,z), shading interp pcoJ\&&W  
    %           set(gca,'XTick',[],'YTick',[]) Jel%1'Dc^  
    %           axis square (;V]3CtU*  
    %           title(['Z_{' num2str(p(k)) '}']) DZ(e^vq  
    %       end ex&&7$CXc  
    % L)HuQVc g  
    %   See also ZERNPOL, ZERNFUN. 3sHC1 +  
    0ot=BlMu  
    %   Paul Fricker 11/13/2006 E':y3T@."  
    C  `k^So)  
    ukzXQe;l1  
    % Check and prepare the inputs: >x (^g~i  
    % ----------------------------- h&;\   
    if min(size(p))~=1 H2p1gb#  
        error('zernfun2:Pvector','Input P must be vector.') S!up2OseW  
    end gXc&uR0S  
    `{ou4H\  
    if any(p)>35 sW@4r/F>:D  
        error('zernfun2:P36', ... (*^_ wq-;  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... '?wv::t  
               '(P = 0 to 35).']) /N{xFt/?  
    end }NiJDs  
    71w  
    % Get the order and frequency corresonding to the function number: T[~ak"M  
    % ---------------------------------------------------------------- 2Q-kD?PO,  
    p = p(:); G{YJ(6etZ  
    n = ceil((-3+sqrt(9+8*p))/2); z^ KrR  
    m = 2*p - n.*(n+2); a~:'OW:Q  
    D@7\Fg  
    % Pass the inputs to the function ZERNFUN: g>T'R Vb  
    % ---------------------------------------- D{PO!WzW  
    switch nargin po\QMe  
        case 3 c R[DT04  
            z = zernfun(n,m,r,theta); CIYTs,u#  
        case 4 8{epy  
            z = zernfun(n,m,r,theta,nflag); {*yhiE,  
        otherwise wNcf7/ky  
            error('zernfun2:nargin','Incorrect number of inputs.') 3#^xxEu  
    end 0_,V}  
    Cp_"PvTmT  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) YDz:;Sp\  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. xBl}=M?Qu  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of {[NBTT9&  
    %   order N and frequency M, evaluated at R.  N is a vector of ,K,n{3]  
    %   positive integers (including 0), and M is a vector with the @0-<|,^]  
    %   same number of elements as N.  Each element k of M must be a )Uo)3FAn  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) #e{l:!uS\  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is "N D1$l  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix <vhlT#p   
    %   with one column for every (N,M) pair, and one row for every G# .z((Rj  
    %   element in R. 9p9:nx\  
    % D)K/zh)  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- #zZQ@+5zw  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is H+;>>|+:~  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to yAW%y  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 3K_J"B*7  
    %   for all [n,m]. m!tB;:6  
    % C8e{9CF  
    %   The radial Zernike polynomials are the radial portion of the OU/PB  
    %   Zernike functions, which are an orthogonal basis on the unit o/)]z  
    %   circle.  The series representation of the radial Zernike }BzV<8F  
    %   polynomials is 3.xsCcmP  
    % ?2E@)7  
    %          (n-m)/2 K.JKE"j)d  
    %            __ k-*H=km  
    %    m      \       s                                          n-2s \L<Hy)l  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r a>ZV'~zTf  
    %    n      s=0 #JWW ;M6F  
    % 1I<fp $ h  
    %   The following table shows the first 12 polynomials. l _dWS9  
    % W{*U#:Jx1  
    %       n    m    Zernike polynomial    Normalization qa.nm4"6+  
    %       --------------------------------------------- -V%"i,t  
    %       0    0    1                        sqrt(2) 9NBFG~)|l[  
    %       1    1    r                           2 5.q2<a :  
    %       2    0    2*r^2 - 1                sqrt(6) ^"(C Zvq  
    %       2    2    r^2                      sqrt(6) a{GPAzO+  
    %       3    1    3*r^3 - 2*r              sqrt(8) 9!NL<}]{  
    %       3    3    r^3                      sqrt(8) h'|{@X  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) AU OL?st  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) U_K"JOZ  
    %       4    4    r^4                      sqrt(10) 9i;%(b{  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) RpOGY{[)[  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) P\pHos  
    %       5    5    r^5                      sqrt(12) +? E~F  
    %       --------------------------------------------- Y[R veF  
    % wa\Yc,R  
    %   Example: sn+g#v9e  
    % hs!a'E  
    %       % Display three example Zernike radial polynomials anxg D?<+B  
    %       r = 0:0.01:1; G%jgr"]\z  
    %       n = [3 2 5]; TwH%P2)x  
    %       m = [1 2 1]; A,Wwt [Qw  
    %       z = zernpol(n,m,r); !ow:P8K?  
    %       figure %@k@tD6  
    %       plot(r,z) ]bLI!2Kr  
    %       grid on 3CL/9C>  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 3LN+gXmU  
    % Qz=F nR  
    %   See also ZERNFUN, ZERNFUN2. ($pNOG H  
    DvB!- |ek  
    % A note on the algorithm.  sC1Mwx  
    % ------------------------ PV$)k>H-  
    % The radial Zernike polynomials are computed using the series zkt`7Pg;J  
    % representation shown in the Help section above. For many special Z$LWZg  
    % functions, direct evaluation using the series representation can m!Cvd9X=  
    % produce poor numerical results (floating point errors), because $P&{DOiKS  
    % the summation often involves computing small differences between = .a}  
    % large successive terms in the series. (In such cases, the functions n("Xa#mY[  
    % are often evaluated using alternative methods such as recurrence LeRyS]  
    % relations: see the Legendre functions, for example). For the Zernike I! eu|_cF  
    % polynomials, however, this problem does not arise, because the c!*yxzs\  
    % polynomials are evaluated over the finite domain r = (0,1), and KSDz3qe  
    % because the coefficients for a given polynomial are generally all &W+lwEu  
    % of similar magnitude. kl%%b"h'  
    % gB|>[6  
    % ZERNPOL has been written using a vectorized implementation: multiple Kh&W\\K  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] w"ZngrwBl  
    % values can be passed as inputs) for a vector of points R.  To achieve m#1 >y}  
    % this vectorization most efficiently, the algorithm in ZERNPOL 0)F.Y,L  
    % involves pre-determining all the powers p of R that are required to H1>~,zc>E  
    % compute the outputs, and then compiling the {R^p} into a single _/V <iv  
    % matrix.  This avoids any redundant computation of the R^p, and 9^ ;Cz>6s  
    % minimizes the sizes of certain intermediate variables. #N Qpr  
    % QTr) r;Tro  
    %   Paul Fricker 11/13/2006 kb3>q($  
    PL} Wu=  
    f#mNx  
    % Check and prepare the inputs: nVB.sab  
    % ----------------------------- v z6No%8X  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) J;HYGu:  
        error('zernpol:NMvectors','N and M must be vectors.') X})5XYvA*  
    end S:B$c>  
    ;QO3^P}  
    if length(n)~=length(m) c"KN;9c,  
        error('zernpol:NMlength','N and M must be the same length.') |BGB60}]f  
    end <<'%2q5  
    abMB-  
    n = n(:); +pUG6.j%  
    m = m(:); +MZsL7%  
    length_n = length(n); n8 UG{. =  
    aa2 vk)~  
    if any(mod(n-m,2)) i4T=4q  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 5 EhOvt8  
    end La>fvm  
    ^_\S)P2c  
    if any(m<0) TOT#l6yqdd  
        error('zernpol:Mpositive','All M must be positive.') u ,R R|/@  
    end [nc-~T+Mo  
    ,3XlX(P  
    if any(m>n) OQ(w]G0LP  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') { 9:vq|  
    end =[JstiT?E  
    3d>8~ANi=%  
    if any( r>1 | r<0 ) wqxChTbs  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') YCl&}/.pA  
    end Mi~x(W@}3  
    'p FK+j  
    if ~any(size(r)==1) 2# 72B  
        error('zernpol:Rvector','R must be a vector.') jOUM+QO  
    end Qm_IU!b  
    L"KKW c  
    r = r(:); Y`NwE  
    length_r = length(r); V8n z@  
    Ab #}BHI  
    if nargin==4 gmqA 5W~y  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); aD^jlt  
        if ~isnorm ^'%Q>FVb  
            error('zernpol:normalization','Unrecognized normalization flag.') &|-jU+r}B  
        end ZH)Jq^^RI  
    else C/?x`2'  
        isnorm = false; qnb#~=x^  
    end 2P/ Sq  
    &=*sN`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u>ZH-nw O  
    % Compute the Zernike Polynomials 8vkCmV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Etn uEU  
    15z(hzU?#  
    % Determine the required powers of r: S awf]/  
    % ----------------------------------- lY&Sx{-  
    rpowers = []; 6t\0Ui  
    for j = 1:length(n) {uDH-b(R  
        rpowers = [rpowers m(j):2:n(j)]; D\^mh{q(  
    end ' hDs.Wnu  
    rpowers = unique(rpowers); +iqzj-e&e[  
    HV&i! M@T  
    % Pre-compute the values of r raised to the required powers, gy1R.SN  
    % and compile them in a matrix: Or#KF6+ut  
    % ----------------------------- mEmgr(W  
    if rpowers(1)==0 w~C\5 i  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =pZ$oTR  
        rpowern = cat(2,rpowern{:}); KV8Ok  
        rpowern = [ones(length_r,1) rpowern]; @;G%7&ps  
    else XXw>h4hl  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j.!5&^;u4  
        rpowern = cat(2,rpowern{:}); e ?7y$H-  
    end eZ]>;5  
    e45)t}'  
    % Compute the values of the polynomials: m*wDJEKo  
    % -------------------------------------- KVevvy)W  
    z = zeros(length_r,length_n); Quwq_.DU  
    for j = 1:length_n /PVx  
        s = 0:(n(j)-m(j))/2; Kv)Kn8df  
        pows = n(j):-2:m(j); :N !s@6  
        for k = length(s):-1:1 b0sj0w/  
            p = (1-2*mod(s(k),2))* ... :-_"[:t 5Z  
                       prod(2:(n(j)-s(k)))/          ... 7z_ZD0PxPc  
                       prod(2:s(k))/                 ... $O&N  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... m 7S`u  
                       prod(2:((n(j)+m(j))/2-s(k))); U2r[.Ru  
            idx = (pows(k)==rpowers); NFyV02.  
            z(:,j) = z(:,j) + p*rpowern(:,idx); DS+BX`i%#p  
        end j u&v4]  
         6i;q=N$'  
        if isnorm ~W-l|-eogz  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); `z`=!1  
        end K8/jfm  
    end 'C=(?H)M  
    ![!,i\x  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  )3V1aC  
    .eorwj]yb  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 >5TXLOYZ  
    *.VNyay  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)