非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ;#< 0<
function z = zernfun(n,m,r,theta,nflag) ?(_08O
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. SNk=b6`9
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z6MO^_m2
% and angular frequency M, evaluated at positions (R,THETA) on the J\=*#*rJ1
% unit circle. N is a vector of positive integers (including 0), and 5'u<iSmBo
% M is a vector with the same number of elements as N. Each element ="l/ klYV
% k of M must be a positive integer, with possible values M(k) = -N(k) )MT}+ai
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, {Ou1KDy#)
% and THETA is a vector of angles. R and THETA must have the same &s!@29DXR
% length. The output Z is a matrix with one column for every (N,M) +G>\-tjSD
% pair, and one row for every (R,THETA) pair. "qy,*{~
% S~G]~gt
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike t\O16O7S
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), &q*Aj17
% with delta(m,0) the Kronecker delta, is chosen so that the integral QIFgQ0{
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, rEz^
% and theta=0 to theta=2*pi) is unity. For the non-normalized k$:|-_(w
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. p0eX{xm
% FW DNpr
% The Zernike functions are an orthogonal basis on the unit circle. {R{=+2K!|k
% They are used in disciplines such as astronomy, optics, and a(ZcmYzXU
% optometry to describe functions on a circular domain. +:/%3}`
% 2y1Sne=<Kb
% The following table lists the first 15 Zernike functions. DzRFMYBR
% pEz_qy[#
% n m Zernike function Normalization %E;'ln4h&,
% -------------------------------------------------- cPQiUU~W@
% 0 0 1 1 \o3gKoL%
% 1 1 r * cos(theta) 2 +&H4m=D-#a
% 1 -1 r * sin(theta) 2 '$+ogBS
% 2 -2 r^2 * cos(2*theta) sqrt(6) 1X1dG#:
% 2 0 (2*r^2 - 1) sqrt(3) hOK8(U0
% 2 2 r^2 * sin(2*theta) sqrt(6) 4s
oJ.j8
% 3 -3 r^3 * cos(3*theta) sqrt(8) E=O\0!F|b
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) [()koU#w.
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) uCB=u[]y4
% 3 3 r^3 * sin(3*theta) sqrt(8) &5!8F(7
% 4 -4 r^4 * cos(4*theta) sqrt(10) j_j]"ew)
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >y+B
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) tfWS)y7
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) dlnX_+((KC
% 4 4 r^4 * sin(4*theta) sqrt(10) b|(:[nB
% -------------------------------------------------- 8H`[*|{'
% llDkJ)\
% Example 1: `XDl_E+>l
% uhq8
% % Display the Zernike function Z(n=5,m=1) w&.aQGR#
% x = -1:0.01:1; 7a}k
% [X,Y] = meshgrid(x,x); F((4U"
% [theta,r] = cart2pol(X,Y); x.4m|f0;
% idx = r<=1; y8xE
6i
% z = nan(size(X)); cm+P]8o%{
% z(idx) = zernfun(5,1,r(idx),theta(idx)); \z ) %$#I
% figure K:WDl;8(d
% pcolor(x,x,z), shading interp `@yp+8
% axis square, colorbar ue>D7\8
% title('Zernike function Z_5^1(r,\theta)') :rP=t ,
% \GU<43J2uo
% Example 2: f%8C!W]Dm
% $<OD31T
% % Display the first 10 Zernike functions o{[qZc_%
% x = -1:0.01:1; l%=;
% [X,Y] = meshgrid(x,x); >@Kx>cg+
% [theta,r] = cart2pol(X,Y); &xExyz~`
% idx = r<=1; tT._VK]o&R
% z = nan(size(X)); /zox$p$?h
% n = [0 1 1 2 2 2 3 3 3 3]; vw@S>GlGg
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; qcRs$-J
% Nplot = [4 10 12 16 18 20 22 24 26 28]; :~SyL !
% y = zernfun(n,m,r(idx),theta(idx)); c[s4EUG
% figure('Units','normalized') [_:nHZb
% for k = 1:10 3iU=c&P
% z(idx) = y(:,k); U%/+B]6jP
% subplot(4,7,Nplot(k)) &9>vl*
% pcolor(x,x,z), shading interp CNx8]
_2
% set(gca,'XTick',[],'YTick',[]) &,)&%Sg[
% axis square &6k3*dq
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) fTX;.M/%
% end 6E}qL8'5x
% o,wUc"CE
% See also ZERNPOL, ZERNFUN2. q0\6F^;M
,iwp,=h=
% Paul Fricker 11/13/2006 /<BI46B\
OB}Ib]
EEL,^3KR
% Check and prepare the inputs: (Awm9|.{+
% ----------------------------- I*^Ta{j[
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) D3K8F@d
error('zernfun:NMvectors','N and M must be vectors.') Xlt|nX~#;
end i{qgn%#}Y
(uidNq
if length(n)~=length(m) 8a"%0d#
error('zernfun:NMlength','N and M must be the same length.') S`]k>'
l
end '4<1 1(U
S5EK~#-L[
n = n(:); ijU*|8n{>
m = m(:); K~EmD9
if any(mod(n-m,2)) 2b8L\$1q
error('zernfun:NMmultiplesof2', ... SZCze"`[
'All N and M must differ by multiples of 2 (including 0).') rQ snhv
end @=f\<"$vt
j*m%*_kO
if any(m>n) -`6+UkOV[x
error('zernfun:MlessthanN', ... ( &x['IR
'Each M must be less than or equal to its corresponding N.') 6;5Ss?ep
end "5$B>S(Q
Ny)X+2Ae
if any( r>1 | r<0 ) Z;)%%V%o
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 1[-tD0{H
end ZqO^f*F>h
zT-_5uZQ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) KJZ4AWH`
error('zernfun:RTHvector','R and THETA must be vectors.') 7"D.L-H
end BTrn0
)dd@\n$6
r = r(:); %ULr8)R;
theta = theta(:); mpJ#:}n
length_r = length(r); d m%8K6|
if length_r~=length(theta) ^pk7"l4Xm
error('zernfun:RTHlength', ... Aq7osU1B
'The number of R- and THETA-values must be equal.') ufT`"i
end X!g#T9kG
Jxm.cC5z.
% Check normalization: @U}1EC{A
% -------------------- Pk)1WK7E
if nargin==5 && ischar(nflag) GWip-wI
isnorm = strcmpi(nflag,'norm'); u\JNr}bL
if ~isnorm 8}| (0mC
error('zernfun:normalization','Unrecognized normalization flag.') W
`}Rf\g
end =_u4=4
else JqiP>4Uwm^
isnorm = false; VyGJ=[ ]
end *-p}z@8
8)I^ t81
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 45>?o
% Compute the Zernike Polynomials !%0 *z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L*JjG sTH
lHX72s|V
% Determine the required powers of r: kMd.h[X~
% ----------------------------------- H7:] ]j1
m_abs = abs(m); 4HA<P6L
rpowers = []; B^9j@3Ux
for j = 1:length(n) ?6Y?a2 |
rpowers = [rpowers m_abs(j):2:n(j)]; rw
#$lP
end |Xy6PN8
rpowers = unique(rpowers); 5XBH$&Td
V "h
+L7T
% Pre-compute the values of r raised to the required powers, J/*`7Pd
% and compile them in a matrix: CeC6hGR5
% ----------------------------- E?0%Z&1h
if rpowers(1)==0 0"bcdG<}
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?5
7Sk+
rpowern = cat(2,rpowern{:}); ,nm*q#R,0
rpowern = [ones(length_r,1) rpowern]; ~Jz6O U*z
else "#\;H$+
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ySDH"|0
rpowern = cat(2,rpowern{:}); _a T5jR=
end :6\qpex
9qG6Pb
% Compute the values of the polynomials: *!7O~yQ
% -------------------------------------- ~R92cH>L
y = zeros(length_r,length(n)); dlTt_.
for j = 1:length(n) \P`hq^;
s = 0:(n(j)-m_abs(j))/2; .0]<k,JZZ
pows = n(j):-2:m_abs(j); k+pr \d ~
for k = length(s):-1:1 W:L
AP
R
p = (1-2*mod(s(k),2))* ... Q$@I"V&G.
prod(2:(n(j)-s(k)))/ ...
yO~Ig
`w
prod(2:s(k))/ ... hQDXlFHT
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... jtc]>]6i
prod(2:((n(j)+m_abs(j))/2-s(k))); @6T/Tdz
idx = (pows(k)==rpowers); !d0kV,F:
y(:,j) = y(:,j) + p*rpowern(:,idx); ;MdlwQ$`
end FQ5U$x.[P
Z>5b;8
if isnorm E09:E
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :&9s,l
end }S<2A7)el
end
7E~;xn;
% END: Compute the Zernike Polynomials N5b!.B x-w
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ._{H~R|
VS8Rx.?
% Compute the Zernike functions: &FN.:_E
% ------------------------------ -C?ZB}`
idx_pos = m>0; ?+}_1x`
idx_neg = m<0; YglmX"fLf
2!=f hN
z = y; E#N|wq
if any(idx_pos) l]l'4@1
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); QE`bSI
end .jWC$SVR
if any(idx_neg) n]o<S+z
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); L>4"(
end 68WO~*
vuY~_
% EOF zernfun