切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10170阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 {D[6=\ F  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! +&S 7l%-  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _Z(t**Zh6y  
    function z = zernfun(n,m,r,theta,nflag) @ZU$W9g  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. JwbZ`Z*w  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N jMn,N9Mf  
    %   and angular frequency M, evaluated at positions (R,THETA) on the SAdT#0J  
    %   unit circle.  N is a vector of positive integers (including 0), and k&ooV4#f6  
    %   M is a vector with the same number of elements as N.  Each element @$jV"Y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 9nN1f@Y  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, lQ?jdi  
    %   and THETA is a vector of angles.  R and THETA must have the same ~)f^y!PMQ  
    %   length.  The output Z is a matrix with one column for every (N,M) bg Ux&3  
    %   pair, and one row for every (R,THETA) pair. zx%WV@O9  
    % Rq}lW.<r  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Mw0>p5+ cy  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *,JE[M  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral :e7\z  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @[lMh9`  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized AtJ{d^  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. o=R(DK# U  
    % [eD0L7 1[  
    %   The Zernike functions are an orthogonal basis on the unit circle. fz^j3'!\  
    %   They are used in disciplines such as astronomy, optics, and 5;}W=x^$a  
    %   optometry to describe functions on a circular domain. 0S4BV%7F  
    % ^($'l)I  
    %   The following table lists the first 15 Zernike functions. ~uc7R/3ss  
    % d 5yEgc;z  
    %       n    m    Zernike function           Normalization D#LV&4e>.E  
    %       -------------------------------------------------- l$/pp  
    %       0    0    1                                 1 2yK">xYY@  
    %       1    1    r * cos(theta)                    2 Y]SF0:v!n  
    %       1   -1    r * sin(theta)                    2  ;v.[aq  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) VVDN3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) j"nOxs  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 83c2y;|8  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) nmU1xv_  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) lBbb7*Ljt<  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) }R}+8  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) (1'DZ xJ&u  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) LJ[zF~4#  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _P.I+!w:x  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) o^/ #i`)  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F_*']:p  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) [@Ac#  
    %       -------------------------------------------------- nW)+-Wxq  
    % uHI(-!O  
    %   Example 1: w1G(s$;C  
    % 2Xl+}M.:Y  
    %       % Display the Zernike function Z(n=5,m=1) $Er=i }`  
    %       x = -1:0.01:1; =#u4^%i)  
    %       [X,Y] = meshgrid(x,x); !ekByD  
    %       [theta,r] = cart2pol(X,Y); [8 Pt$5]^  
    %       idx = r<=1; *Y(59J2  
    %       z = nan(size(X)); Ow4_0l&  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); FC1rwXL(  
    %       figure ]u5TvI,C  
    %       pcolor(x,x,z), shading interp Em(_W5 ND{  
    %       axis square, colorbar <gwRE{6U  
    %       title('Zernike function Z_5^1(r,\theta)') !Axe}RD'  
    % W p)!G  
    %   Example 2: i pn-HUrE@  
    % `9r{z;UQ  
    %       % Display the first 10 Zernike functions U"7o;q  
    %       x = -1:0.01:1; |Ml~Pmpp  
    %       [X,Y] = meshgrid(x,x); 9F807G\4Qt  
    %       [theta,r] = cart2pol(X,Y); dq '2y  
    %       idx = r<=1; .hW>#  
    %       z = nan(size(X)); %k#+nad  
    %       n = [0  1  1  2  2  2  3  3  3  3]; q8$t4_pF  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; P7-k!p"  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Ve(<s  
    %       y = zernfun(n,m,r(idx),theta(idx)); i W6O9 ~  
    %       figure('Units','normalized') \na$Sb+  
    %       for k = 1:10 ;$iT]S  
    %           z(idx) = y(:,k); sg,\!'  
    %           subplot(4,7,Nplot(k)) Ln# o:"E  
    %           pcolor(x,x,z), shading interp 5}G_2<G  
    %           set(gca,'XTick',[],'YTick',[]) @m5J%8>k  
    %           axis square <~dfp  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) hA ){>B<;  
    %       end )3CM9P'0  
    % E.*hY+kGZ  
    %   See also ZERNPOL, ZERNFUN2. SPV+ O{  
    edMCj  
    %   Paul Fricker 11/13/2006 d7kE}{,  
    QKP #wR  
    ,?yjsJd.  
    % Check and prepare the inputs: wK2$hsque  
    % ----------------------------- :Hq%y/  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 1vo3aF  
        error('zernfun:NMvectors','N and M must be vectors.') %O9Wm_%  
    end ,&,%B|gT]  
    W$jRS  
    if length(n)~=length(m) ={xRNNUj_  
        error('zernfun:NMlength','N and M must be the same length.') D]E=0+  
    end DPf].i#  
    _qE9]mU  
    n = n(:); d[?RL&hJO  
    m = m(:); Yuv=<V  
    if any(mod(n-m,2)) igQzL*X  
        error('zernfun:NMmultiplesof2', ... "1gIR^S%9  
              'All N and M must differ by multiples of 2 (including 0).') 8d*S9p,/  
    end m u9,vH  
    V<WWtu;3  
    if any(m>n) drAJ-ii  
        error('zernfun:MlessthanN', ... DTC IVLV  
              'Each M must be less than or equal to its corresponding N.') |vd|; " `  
    end B-LV/WJ_  
    $@6q5Iz!&  
    if any( r>1 | r<0 ) x9F *$G  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') yreH/$Ou 8  
    end (^~a1@f,J  
    pbG-uH^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) j?C[ids<  
        error('zernfun:RTHvector','R and THETA must be vectors.') (tA[]ne2  
    end 7a_8007$l  
    VJ#ys _W  
    r = r(:); N=u( 3So  
    theta = theta(:); jy~hLEt7  
    length_r = length(r); cWnEp';.  
    if length_r~=length(theta) }'vQUG u8z  
        error('zernfun:RTHlength', ... 9=}#.W3.  
              'The number of R- and THETA-values must be equal.') 1;m?:|6K{  
    end \#biwX  
    ~<u\YIJ  
    % Check normalization: d0T 8Cwc b  
    % -------------------- ?6*\  M  
    if nargin==5 && ischar(nflag) 1g=T"O&=  
        isnorm = strcmpi(nflag,'norm'); b6;MTz*k>  
        if ~isnorm Ew]&~:$Ki  
            error('zernfun:normalization','Unrecognized normalization flag.') G-D}J2r=F  
        end X7*ossv  
    else WMKxGZg"  
        isnorm = false; I.t)sf,  
    end %l%ad-V  
    {6LS$3}VM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lrPIXIM  
    % Compute the Zernike Polynomials q !}~c  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L|{vkkBo  
    I5j|\ /Ht  
    % Determine the required powers of r: 6GAEQ]  
    % ----------------------------------- }`Wo(E}O  
    m_abs = abs(m); TyO]|Q5  
    rpowers = []; D Q4O  
    for j = 1:length(n) SIM> Lz  
        rpowers = [rpowers m_abs(j):2:n(j)]; F+5 5p8  
    end DQObHB8L  
    rpowers = unique(rpowers); xGOmvn^lQ  
    DQ$m@_/4w  
    % Pre-compute the values of r raised to the required powers, ~2[kCuu  
    % and compile them in a matrix: ??Urm[Y.Z  
    % ----------------------------- \Dr( /n  
    if rpowers(1)==0 v\(6uej^  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .5SYN -@  
        rpowern = cat(2,rpowern{:}); w}/+3z  
        rpowern = [ones(length_r,1) rpowern]; t0<RtIh9e  
    else ~"bBwPI  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Z9MU%*N  
        rpowern = cat(2,rpowern{:}); M!hD`5.3  
    end ~mHrgxQ-  
    q(46v`u  
    % Compute the values of the polynomials: wk?i\vm  
    % -------------------------------------- (uHyWEHt  
    y = zeros(length_r,length(n)); e~he#o[%a  
    for j = 1:length(n) C!K&d,M  
        s = 0:(n(j)-m_abs(j))/2; sWTa;Qi  
        pows = n(j):-2:m_abs(j); +u |SX/C  
        for k = length(s):-1:1 x*j eCD,  
            p = (1-2*mod(s(k),2))* ... a_VWgPVdDS  
                       prod(2:(n(j)-s(k)))/              ... s,mt%^x[  
                       prod(2:s(k))/                     ... rw 2i_,.*~  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Jzp|#*~$E  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); i u0'[  
            idx = (pows(k)==rpowers); vytO8m%U  
            y(:,j) = y(:,j) + p*rpowern(:,idx); L;Ynq<x  
        end h8k\~/iJ  
         .2|(!a9W  
        if isnorm UZ-pN_!Z:  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3k8nWT:wT  
        end i$.!8AV6  
    end av'[k<  
    % END: Compute the Zernike Polynomials -:!Wds  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~USyN'5lU7  
    S%?%06$  
    % Compute the Zernike functions: J`; 9Z  
    % ------------------------------ (bpxj3@R  
    idx_pos = m>0; M) JozD%  
    idx_neg = m<0; {QN 5QGvK  
    XE0b9q954  
    z = y; +~==qLsU  
    if any(idx_pos) (B*,|D[J@i  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;B }4pv}  
    end zt  
    if any(idx_neg) 6\UIp#X  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -U7,~z  
    end |<8Fa%!HHc  
    wSZMHIW  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) .WBp!*4  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. lG[j,MDs  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 4T~wnTH0Xg  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive s=K?-O  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, tHM0]Gb}  
    %   and THETA is a vector of angles.  R and THETA must have the same _Db&f}.`  
    %   length.  The output Z is a matrix with one column for every P-value, 5CfD/}{:#I  
    %   and one row for every (R,THETA) pair. LXth-j=]  
    % d<m.5ECC}  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike "F Etl(  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) l?xd3Z@7[  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) y M-k]_  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 0q]0+o*%  
    %   for all p. n7/&NiHxv/  
    % I%<pS ,p  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ZC^NhgX  
    %   Zernike functions (order N<=7).  In some disciplines it is Q^xk]~G$(  
    %   traditional to label the first 36 functions using a single mode "kVzN22  
    %   number P instead of separate numbers for the order N and azimuthal i{Du6j^j  
    %   frequency M. ,.|/B^jV  
    % R`Hy0;X  
    %   Example: Uaj_,qb(  
    % h$6~3^g:P  
    %       % Display the first 16 Zernike functions Czy}~;_Ay  
    %       x = -1:0.01:1; -I;\9r+  
    %       [X,Y] = meshgrid(x,x); ;Z`R!  
    %       [theta,r] = cart2pol(X,Y); b0x%#trA{  
    %       idx = r<=1; /?S^#q>m%  
    %       p = 0:15; LEX @hkh  
    %       z = nan(size(X)); )NqRu+j  
    %       y = zernfun2(p,r(idx),theta(idx)); _lm^v%J$  
    %       figure('Units','normalized') EiZa,}A  
    %       for k = 1:length(p) bg)}-]u]  
    %           z(idx) = y(:,k); p|BoEITL  
    %           subplot(4,4,k) W|s" ;EAM  
    %           pcolor(x,x,z), shading interp *=T(ncR['  
    %           set(gca,'XTick',[],'YTick',[]) NQvI=R-g  
    %           axis square 5/CF_v  
    %           title(['Z_{' num2str(p(k)) '}']) :V_UJ3xf  
    %       end > +00[T  
    % @tJic|)x  
    %   See also ZERNPOL, ZERNFUN. ":GC}VIS  
    )me`Ud  
    %   Paul Fricker 11/13/2006 G68@(<<Z  
    #nAq~@X  
    uotW[L9  
    % Check and prepare the inputs: D`Ka IqLz  
    % ----------------------------- h[<l2fy  
    if min(size(p))~=1 9^nRwo  
        error('zernfun2:Pvector','Input P must be vector.') t-<BRnxhE  
    end }WBHuVcZG  
    >6)|># Wi  
    if any(p)>35 q[/pE7FL  
        error('zernfun2:P36', ... | :id/  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... <~:2~r  
               '(P = 0 to 35).']) E\p"%  
    end e,W,NnCICj  
    d9%P[(yM^  
    % Get the order and frequency corresonding to the function number: H/={RuU  
    % ---------------------------------------------------------------- Mq'm TM  
    p = p(:); (=EDqAZg  
    n = ceil((-3+sqrt(9+8*p))/2); ;BKU _}k=  
    m = 2*p - n.*(n+2); N0JdU4'  
    :3b02}b7  
    % Pass the inputs to the function ZERNFUN: .*.eY?,V  
    % ---------------------------------------- uv^x  
    switch nargin JO90TP $  
        case 3 k]`-Y E  
            z = zernfun(n,m,r,theta); 4%I[.dBnM  
        case 4 >VX'`5r>uw  
            z = zernfun(n,m,r,theta,nflag); tCar:p4$  
        otherwise MX.?tN#F|H  
            error('zernfun2:nargin','Incorrect number of inputs.') ErQ6a%~,  
    end c& bms)Jwa  
    Wcm8,?*  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) E-FR w  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. <V Rb   
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of r@bh,U$  
    %   order N and frequency M, evaluated at R.  N is a vector of SW'eTG  
    %   positive integers (including 0), and M is a vector with the o0|Ex\  
    %   same number of elements as N.  Each element k of M must be a (Cfb8\~  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Z@f{f:Jc/"  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is {*[(j^OE  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ,sL%Ykr  
    %   with one column for every (N,M) pair, and one row for every xIC@$GP  
    %   element in R. -B&(& R  
    % C H 29kQ  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 0K26\1  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is o[i N/  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to c;fLM`{*  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 +}a(jO  
    %   for all [n,m]. fwV2b<[  
    % _vDmiIn6K  
    %   The radial Zernike polynomials are the radial portion of the Hq 3V+$  
    %   Zernike functions, which are an orthogonal basis on the unit T<? kH  
    %   circle.  The series representation of the radial Zernike TjYHoL5  
    %   polynomials is GZNN2 '  
    % }(|gC,  
    %          (n-m)/2 ) ba~7A  
    %            __ El;"7Qn  
    %    m      \       s                                          n-2s &b}g.)RI  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r l:uQ#Z)  
    %    n      s=0 (;%T]?<9#  
    % H"6x/&s.=k  
    %   The following table shows the first 12 polynomials. WKlyOK=}  
    % ZDgT"53   
    %       n    m    Zernike polynomial    Normalization ?_Z -} f  
    %       --------------------------------------------- }^ ,D~b-nB  
    %       0    0    1                        sqrt(2) E5M/XW\E6  
    %       1    1    r                           2 |D"L!+J-$  
    %       2    0    2*r^2 - 1                sqrt(6) Z?!AJY  
    %       2    2    r^2                      sqrt(6) }&e HU  
    %       3    1    3*r^3 - 2*r              sqrt(8) KvPCb%!ZP  
    %       3    3    r^3                      sqrt(8) c {%mi  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) J&,hC%]  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ZL\^J8PRK  
    %       4    4    r^4                      sqrt(10) Kw" y#Ys]  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) X )tH23  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) M K)}zjw  
    %       5    5    r^5                      sqrt(12) \&;y:4&l8  
    %       --------------------------------------------- j2UQQFh  
    % UGy3 B)  
    %   Example: i\ X3t5  
    % "g&f:[a/  
    %       % Display three example Zernike radial polynomials Y6VJr+Ap(  
    %       r = 0:0.01:1; Td'(RV  
    %       n = [3 2 5]; n+ebi>}P  
    %       m = [1 2 1]; `cXLa=B)9  
    %       z = zernpol(n,m,r); UNa "\  
    %       figure k1f<(@*`  
    %       plot(r,z) 0P9\;!Y  
    %       grid on T :d+Qz\  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') u@#%SX  
    % \2 N;V E  
    %   See also ZERNFUN, ZERNFUN2. otR7E+*3  
    v7wyQx+Q  
    % A note on the algorithm. Sl, DZ!  
    % ------------------------ @Xl(A]w%!  
    % The radial Zernike polynomials are computed using the series 'WP~-}(  
    % representation shown in the Help section above. For many special yVmp,""a  
    % functions, direct evaluation using the series representation can WX?nq'nr  
    % produce poor numerical results (floating point errors), because 1bCE~,tD  
    % the summation often involves computing small differences between \EVT*v=}/  
    % large successive terms in the series. (In such cases, the functions /-[vC$B"  
    % are often evaluated using alternative methods such as recurrence }_zN%Tf~  
    % relations: see the Legendre functions, for example). For the Zernike @gK`RmhGE5  
    % polynomials, however, this problem does not arise, because the 9d#?,:JG  
    % polynomials are evaluated over the finite domain r = (0,1), and &'W7-Z\j-  
    % because the coefficients for a given polynomial are generally all |7c],SHm  
    % of similar magnitude. zP #:Tv'  
    % K?' m#}]  
    % ZERNPOL has been written using a vectorized implementation: multiple `+n#CWZ"Y  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] C78g|n{  
    % values can be passed as inputs) for a vector of points R.  To achieve sPvs}}Z]P  
    % this vectorization most efficiently, the algorithm in ZERNPOL ;7:} iKU  
    % involves pre-determining all the powers p of R that are required to AYfOETz  
    % compute the outputs, and then compiling the {R^p} into a single <$z[pw<  
    % matrix.  This avoids any redundant computation of the R^p, and a~0 ~Y y  
    % minimizes the sizes of certain intermediate variables. l%"DeRp,/  
    % Z%3CmKdeF  
    %   Paul Fricker 11/13/2006 E b[;nk?  
    -J+1V{  
    6)uBUM;i  
    % Check and prepare the inputs: L?N&kzA  
    % ----------------------------- `D[O\ VE  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *mp:#'  
        error('zernpol:NMvectors','N and M must be vectors.') F8-GnT xa  
    end r4SwvxhG  
    ) ~=pt&+  
    if length(n)~=length(m) ]j>xQm\  
        error('zernpol:NMlength','N and M must be the same length.') {im?tZ,  
    end :k1?I'q%  
    q x)\{By  
    n = n(:); / e>%yq<9B  
    m = m(:); Q/]~`S  
    length_n = length(n); 1*hEbO  
    j;`Q82V\  
    if any(mod(n-m,2)) /ZV2f3;t  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') INbV6jZL  
    end gdf0  
    yor'"6)i  
    if any(m<0) i;^lh]u  
        error('zernpol:Mpositive','All M must be positive.') MygAmV&  
    end 5`p9Xo>)yW  
    i-v: %  
    if any(m>n) CjpGo}a/  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.')  N~$>| gn  
    end ;99oJD,  
    ; oa+Z:;f  
    if any( r>1 | r<0 ) 0o>C, `  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') $~FZJ@qa  
    end C`;igg$t_  
    rah"\f2  
    if ~any(size(r)==1) PEvY3F}_rh  
        error('zernpol:Rvector','R must be a vector.') ?m*e$!M0  
    end bfz7t!A)A  
    rq3f/_#L!O  
    r = r(:); I+kAy;2  
    length_r = length(r); Mn ,hmIz  
    _ZhQY,  
    if nargin==4 Vt}QP Nt  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ; H ;h[  
        if ~isnorm >p-UQc  
            error('zernpol:normalization','Unrecognized normalization flag.') n%F _ 3`  
        end >ZOlSLu  
    else HN5661;8  
        isnorm = false; Qz|T0\=V  
    end @)h>vg  
    cQt&%SVT]E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F M6{%}4  
    % Compute the Zernike Polynomials z<55[~3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x[{\Aw>$.  
    LH4#p%Pb%  
    % Determine the required powers of r: ?]D&D:Z?I  
    % ----------------------------------- ]6Iu\,#J  
    rpowers = []; 7/~=[#]*  
    for j = 1:length(n) bfA>kn0C  
        rpowers = [rpowers m(j):2:n(j)]; Ps@']]4>W  
    end DehjV6t  
    rpowers = unique(rpowers); B%\&Q @X  
    {FFdMdxy-  
    % Pre-compute the values of r raised to the required powers, UPGUJ>2Z  
    % and compile them in a matrix: ir}z^+  
    % ----------------------------- [>v1JN  
    if rpowers(1)==0 l-%] f]>  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); GrG'G(NQ  
        rpowern = cat(2,rpowern{:}); i5TGK#3o  
        rpowern = [ones(length_r,1) rpowern]; c~(61Sn]  
    else w|&lRo@1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hYzP6?K"  
        rpowern = cat(2,rpowern{:}); .*` ^dt  
    end x,mt}>  
    iz-z?)%  
    % Compute the values of the polynomials: ^(:~8 h  
    % -------------------------------------- tsg`c;{  
    z = zeros(length_r,length_n); ~Fh+y+g?  
    for j = 1:length_n 5.VPK 338A  
        s = 0:(n(j)-m(j))/2; m'}`+#C%)  
        pows = n(j):-2:m(j); 5?$MZaT  
        for k = length(s):-1:1 oVK:A;3T|  
            p = (1-2*mod(s(k),2))* ... 7vZO;FGtG  
                       prod(2:(n(j)-s(k)))/          ... Dazm8_x  
                       prod(2:s(k))/                 ... KE,.Evyu=  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... =.8n K y  
                       prod(2:((n(j)+m(j))/2-s(k))); ;&=jSgr8  
            idx = (pows(k)==rpowers); -OJ<Lf+"=  
            z(:,j) = z(:,j) + p*rpowern(:,idx); K[iAN;QCe%  
        end .;7V]B1o  
         q!Ek EW\n  
        if isnorm 7<WUj K|  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ~RVlc;W  
        end $CMye; yL  
    end i_N8)Z;r  
    c #{|sR5  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    8425
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  78:x{1nUM[  
    }vx 46  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 /ho7~C+H*e  
    yz,_\{}  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)