非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ],R rk]1
function z = zernfun(n,m,r,theta,nflag) yyxGVfr
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1eI>Yy>}
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ^Qz8`1`;Z
% and angular frequency M, evaluated at positions (R,THETA) on the 'R8VCj
% unit circle. N is a vector of positive integers (including 0), and NZYtA7
% M is a vector with the same number of elements as N. Each element 3(%hHM7DM
% k of M must be a positive integer, with possible values M(k) = -N(k) sxJKu
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, \\
M2_mT
% and THETA is a vector of angles. R and THETA must have the same ?qYw9XQYL
% length. The output Z is a matrix with one column for every (N,M) j,eeQ KH
% pair, and one row for every (R,THETA) pair. Ta?#o
% Y&`Vs(
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ~|@ aV:k
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;Avd$&::
% with delta(m,0) the Kronecker delta, is chosen so that the integral O:Bfbna
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N:[m,U9a
% and theta=0 to theta=2*pi) is unity. For the non-normalized `zRgP#
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. K+Al8L?K_
% "cRc~4%K
% The Zernike functions are an orthogonal basis on the unit circle. J7t5B}}
% They are used in disciplines such as astronomy, optics, and F%bv
vw*(
% optometry to describe functions on a circular domain. v>.nL(VLjP
% LslQZ]3MY
% The following table lists the first 15 Zernike functions. g}|a-
% "R+
x
% n m Zernike function Normalization xZPSoxu
% -------------------------------------------------- `23&vGk}
% 0 0 1 1 6 +^V
% 1 1 r * cos(theta) 2 z|F>+6l"Y7
% 1 -1 r * sin(theta) 2 e"hm|'
% 2 -2 r^2 * cos(2*theta) sqrt(6) jJ?MT#v
% 2 0 (2*r^2 - 1) sqrt(3) nVw]0Yl
% 2 2 r^2 * sin(2*theta) sqrt(6) wKe^5|Rr
% 3 -3 r^3 * cos(3*theta) sqrt(8) UP 1Y3
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) &D[dDUdHs
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) a+szA};
% 3 3 r^3 * sin(3*theta) sqrt(8) yEtI5Qk
% 4 -4 r^4 * cos(4*theta) sqrt(10) m7z/@b[
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rw8O<No4.o
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) t*zve,?}
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) cQzd0X
% 4 4 r^4 * sin(4*theta) sqrt(10) |OF<=GGO+
% -------------------------------------------------- aoz+g,1
//
% @5\OM#WT~&
% Example 1: Q{b Z D*
% B~- VGT2o
% % Display the Zernike function Z(n=5,m=1) -]~U_J]
% x = -1:0.01:1; ;5ugnVXu
% [X,Y] = meshgrid(x,x); 5&v'aiWK
% [theta,r] = cart2pol(X,Y); )NRY9\H
% idx = r<=1; {}N* e"<O
% z = nan(size(X)); })g|r9=
% z(idx) = zernfun(5,1,r(idx),theta(idx)); jWiZ!dtUZ
% figure (<s7X$(]e
% pcolor(x,x,z), shading interp V%dMaX>^i
% axis square, colorbar huWUd)Po%
% title('Zernike function Z_5^1(r,\theta)') +VDwDJ)lG
% d"Y9go"Z
% Example 2: -WE pBt7*
% m/=,O_
% % Display the first 10 Zernike functions (k6=o';y
% x = -1:0.01:1; 4o9#B:N]J
% [X,Y] = meshgrid(x,x); 35) ]R`f
% [theta,r] = cart2pol(X,Y); Hlp!6\gukp
% idx = r<=1; eT[,k[#q
% z = nan(size(X)); s!nFc{
% n = [0 1 1 2 2 2 3 3 3 3]; :m_0WT
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ,[,+ _A
% Nplot = [4 10 12 16 18 20 22 24 26 28]; J*U,kyYF
% y = zernfun(n,m,r(idx),theta(idx)); 3%{XJV
% figure('Units','normalized') }h5pM`|1
% for k = 1:10 zOLt)2-<
% z(idx) = y(:,k); PDREwBX
% subplot(4,7,Nplot(k)) /XEcA5C<
% pcolor(x,x,z), shading interp W>K2d
% set(gca,'XTick',[],'YTick',[]) I"#jSazk
% axis square W:4]-i?2
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Ag }hyIl
% end Tcz67&c |W
% ppN96-]^0
% See also ZERNPOL, ZERNFUN2. 1m|Oi%i4
8UwL%"?YB
% Paul Fricker 11/13/2006 FgE6j;
PQWo<Uet
!lm^(SSv
% Check and prepare the inputs: g v&xC 6>
% ----------------------------- D2E~c? V
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #E5Sc\,
error('zernfun:NMvectors','N and M must be vectors.') @Rig@
end ]]d9\fw
G2ZF`WQ
if length(n)~=length(m) &?9p\oY[
error('zernfun:NMlength','N and M must be the same length.') `XP]y=
end %g5weiFM
(+4gq6b
n = n(:); {{ R/:-6?@
m = m(:); %.pX!jL
if any(mod(n-m,2)) 9j49#wG0"B
error('zernfun:NMmultiplesof2', ... wHWd~K_q
'All N and M must differ by multiples of 2 (including 0).') 2fO ~%!.G
end zbddn4bW9
E$ q/4
if any(m>n) '-D-H}%;}M
error('zernfun:MlessthanN', ... =9i:R!,W
'Each M must be less than or equal to its corresponding N.') `R!0uRu
end ,'= Y
]r$S{<
if any( r>1 | r<0 ) _{_LTy%[
error('zernfun:Rlessthan1','All R must be between 0 and 1.') UB|Nx(V s
end (jPN+yQ
KG'4;Z5J
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) x7L$x=8s
error('zernfun:RTHvector','R and THETA must be vectors.') 4Yt:PN2
end +VdYT6{p
tU!"CX
r = r(:); xh#ef=Bw
theta = theta(:); q_g'4VZv
length_r = length(r); pHsp]a
if length_r~=length(theta) |5V#&e\ES
error('zernfun:RTHlength', ... +&O[}%W
'The number of R- and THETA-values must be equal.') "}\z7^.W>
end }{ pNasAU
Um9!<G=;
% Check normalization: !
D'U:)
% -------------------- RB\>$D
if nargin==5 && ischar(nflag) yT-m9$^v
isnorm = strcmpi(nflag,'norm'); KB&t31aq
if ~isnorm xaoaZ3Ko
error('zernfun:normalization','Unrecognized normalization flag.') _q)`Y:2
end _Eq:Qbw#
else /!eC;qp;[
isnorm = false; 67 }y/C]<
end Fng":28o
I:]s/r7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b&*^\hY9b
% Compute the Zernike Polynomials A0oC*/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }dAb}0XK.
5A7!Xd
% Determine the required powers of r: %ia/i :
% ----------------------------------- [LL"86D
m_abs = abs(m); y`mE sj
rpowers = []; QD+dP nZu
for j = 1:length(n) d7It}7@9
rpowers = [rpowers m_abs(j):2:n(j)];
fhL dM
end &%fy
rpowers = unique(rpowers); kzLj1Ix2
_Y|k \|'
% Pre-compute the values of r raised to the required powers, e|):%6#
% and compile them in a matrix: +TpM7QaL
% ----------------------------- Fu )V2[TY
if rpowers(1)==0 @-kzSm
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); G&/}P$
rpowern = cat(2,rpowern{:}); +_Fsiu_b
rpowern = [ones(length_r,1) rpowern]; q}ZZqYk
else (FH4\ 't)
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9D(M>'Bh
rpowern = cat(2,rpowern{:}); OrPIvP<w@
end ?5$\8gZ
| (v/>t
% Compute the values of the polynomials: gO*cX&
% -------------------------------------- 89`AF1
y = zeros(length_r,length(n)); ^5 F-7R8Q
for j = 1:length(n) 8BE OE<
s = 0:(n(j)-m_abs(j))/2; 0Ny0#;P
pows = n(j):-2:m_abs(j); u<!!%C~+=
for k = length(s):-1:1 }s}b]v
p = (1-2*mod(s(k),2))* ... ]v rpr%K
prod(2:(n(j)-s(k)))/ ... 7#MBT-ih
prod(2:s(k))/ ... "LaNXZ9
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... y"cK@sOo
prod(2:((n(j)+m_abs(j))/2-s(k))); gLl?e8[F
idx = (pows(k)==rpowers); 0AJ6g@t[
y(:,j) = y(:,j) + p*rpowern(:,idx); u\^<V)
end m ~fqZK
7g
if isnorm u5V<f;
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); `r_qvrC
end T"kaOy
end b1nw,(hLY
% END: Compute the Zernike Polynomials ;L(W'+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nP 2 rN_:4
>^|\wy
% Compute the Zernike functions: JF: QQ\
% ------------------------------ ^w8H=UkP!+
idx_pos = m>0; :Q+rEjw+
idx_neg = m<0; `q7I;w+g
F mh;d*IT
z = y; nLto=tNUO
if any(idx_pos) <g>_#fz"K
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); FLEf(
end Bwb3@vNA
if any(idx_neg) $aE%W? \
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); bxkp9o
end n3isLNvIp
%3fHitCikc
% EOF zernfun