切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11678阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 /]j{P4  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! "\`Fu  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _unoDoB  
    function z = zernfun(n,m,r,theta,nflag) Pw]r&)I`y[  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. A Y<L8  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4VeT]`C^h  
    %   and angular frequency M, evaluated at positions (R,THETA) on the )p;t '*]  
    %   unit circle.  N is a vector of positive integers (including 0), and 6bjZW ~  
    %   M is a vector with the same number of elements as N.  Each element 4|5;nxkGm8  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) hWFOed4C  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, nVgvn2N/  
    %   and THETA is a vector of angles.  R and THETA must have the same q27q/q8  
    %   length.  The output Z is a matrix with one column for every (N,M) |Rx+2`6Dp  
    %   pair, and one row for every (R,THETA) pair. 2^Im~p~ByE  
    % xhho{  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike \h s7>5O^K  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), B:UPSX)A  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral :8}Qt^p  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, '~f*O0_  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized }aa]1X(u  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?6ssSjR}  
    % HGh)d` 8  
    %   The Zernike functions are an orthogonal basis on the unit circle. o%z^@Cq  
    %   They are used in disciplines such as astronomy, optics, and BdU .;_K  
    %   optometry to describe functions on a circular domain. b%"/8rK  
    % WL'!M&h  
    %   The following table lists the first 15 Zernike functions. . uGne  
    % F g):>];<9  
    %       n    m    Zernike function           Normalization FqnD"]A  
    %       -------------------------------------------------- | a i#rU  
    %       0    0    1                                 1 e?07o!7[;  
    %       1    1    r * cos(theta)                    2 b">"NvlB  
    %       1   -1    r * sin(theta)                    2 HpUJ_pZ  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Ygg(qB1q  
    %       2    0    (2*r^2 - 1)                    sqrt(3) %t1Z!xv_  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) =x(k)RTDu  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) O5+Ah%  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) rAW7Zp~KK  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) %a0q|)Nrj  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 3^q9ll7Op  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 'zMmJl}\vd  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U Lq`!1{   
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [rAi9LSO"  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /J!hKK^k  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 7OXRR)]V  
    %       -------------------------------------------------- )NZ&m$I|-  
    % ~fcC+"7q/  
    %   Example 1: ,1<6=vL  
    % m%"=sX7/9  
    %       % Display the Zernike function Z(n=5,m=1) 9M|#X1r{%{  
    %       x = -1:0.01:1; hmb=_W  
    %       [X,Y] = meshgrid(x,x); 6 9uDc  
    %       [theta,r] = cart2pol(X,Y); AtAu$"ue  
    %       idx = r<=1; l#>A.-R*`  
    %       z = nan(size(X)); Dp} $q`F[  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ^$oEM0h  
    %       figure ~Z#\f5yv@  
    %       pcolor(x,x,z), shading interp B*QLKO:)i  
    %       axis square, colorbar -I#<?=0B  
    %       title('Zernike function Z_5^1(r,\theta)') q="ymx~  
    % 'q8:1i9\[  
    %   Example 2: pg<c vok  
    % w5Ucj*A\  
    %       % Display the first 10 Zernike functions nvodP"iV  
    %       x = -1:0.01:1; !g~u'r'1  
    %       [X,Y] = meshgrid(x,x); jcxeXp|00  
    %       [theta,r] = cart2pol(X,Y); 1x+w|h  
    %       idx = r<=1; "Vwk&~B%  
    %       z = nan(size(X));  .^rs VNG  
    %       n = [0  1  1  2  2  2  3  3  3  3]; r6 pz(rCs}  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 8}Maj  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; /9-kG  
    %       y = zernfun(n,m,r(idx),theta(idx)); 7Uh/Gl  
    %       figure('Units','normalized') u H)v\Js  
    %       for k = 1:10 5VLC\QgK^  
    %           z(idx) = y(:,k); <Lq.J`|+  
    %           subplot(4,7,Nplot(k)) FJsg3D*@J  
    %           pcolor(x,x,z), shading interp {=y~O  
    %           set(gca,'XTick',[],'YTick',[]) Reg%ah|$/=  
    %           axis square +C=^,B!,  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) m&6)Vt  
    %       end iN+&7#x;/  
    % `g(r.`t^  
    %   See also ZERNPOL, ZERNFUN2. 82=>I*0Q  
    t hQ)J|1  
    %   Paul Fricker 11/13/2006 4Mj cx.21  
    k'1i quc#u  
    9m2Yrj93  
    % Check and prepare the inputs: (d=knoo7A  
    % ----------------------------- V#d8fRm  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4jz2x #T  
        error('zernfun:NMvectors','N and M must be vectors.') f}zv@6#&  
    end sfEy  
    UE%~SVi.#  
    if length(n)~=length(m) ':?MFkYC  
        error('zernfun:NMlength','N and M must be the same length.') f\M;m9{(  
    end :|E-Dx4F6H  
    t3FfPV!P"  
    n = n(:); )R9QJSe  
    m = m(:); =%G<S'2'  
    if any(mod(n-m,2)) H7R6Ljd?&S  
        error('zernfun:NMmultiplesof2', ... Bis'59?U_  
              'All N and M must differ by multiples of 2 (including 0).') g{$F;qbkO  
    end *lws7R  
    I'T@}{h  
    if any(m>n) q.g0Oz@ z  
        error('zernfun:MlessthanN', ... [(4s\c  
              'Each M must be less than or equal to its corresponding N.') aMycvYzH  
    end K\vyfYi  
    |dQ-l !  
    if any( r>1 | r<0 ) dw e$, 9  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') /qX=rlQ/n  
    end 3Zeh$DZ  
    ~^pV>>LX|  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .q7|z3@,  
        error('zernfun:RTHvector','R and THETA must be vectors.') \z>L,U  
    end ?3{:[*  
    [N4#R  
    r = r(:); j)neVPf%v  
    theta = theta(:); h1'j1uI  
    length_r = length(r); 8LM 91  
    if length_r~=length(theta) 1:r8p6  
        error('zernfun:RTHlength', ... +:&,Ts/  
              'The number of R- and THETA-values must be equal.') #.kDin~!  
    end LU=`K4  
    >SR! *3$5  
    % Check normalization: vw/L|b7G  
    % -------------------- _:0  
    if nargin==5 && ischar(nflag) L]C|&K P  
        isnorm = strcmpi(nflag,'norm'); =5jng.  
        if ~isnorm k;bdzcMkQ  
            error('zernfun:normalization','Unrecognized normalization flag.') vdLBf+Zi  
        end U94Tp A6  
    else ,xeJf6es  
        isnorm = false;  KDODUohC  
    end sD[G?X  
    gLyE,1Z}u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `Z 3p( G  
    % Compute the Zernike Polynomials "DniDA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l6wN&JHTh  
    ?'dsiA[  
    % Determine the required powers of r: vl{G;[6  
    % ----------------------------------- 0A}'@N@G)  
    m_abs = abs(m); %xq/eC7  
    rpowers = []; drr n&y  
    for j = 1:length(n) !X5~!b^*  
        rpowers = [rpowers m_abs(j):2:n(j)]; (")IU{>c6  
    end t3dvHU&Z:  
    rpowers = unique(rpowers); E9]/sFA-]  
    aOj(=s  
    % Pre-compute the values of r raised to the required powers, rX-V0  
    % and compile them in a matrix: d1"%sI  
    % ----------------------------- oY#62&wk4  
    if rpowers(1)==0 L1'#wH  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); uTemAIp $u  
        rpowern = cat(2,rpowern{:}); +EtL+Y (U  
        rpowern = [ones(length_r,1) rpowern]; phT|w H  
    else LZ97nvK  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); w;RG*rv  
        rpowern = cat(2,rpowern{:}); XpFo SW#K  
    end Dd(#   
    7(q EHZEr  
    % Compute the values of the polynomials: Hq[vh7Lux  
    % -------------------------------------- eX;Tufe*(Q  
    y = zeros(length_r,length(n)); HW{si]~q  
    for j = 1:length(n) BRTM]tRZ  
        s = 0:(n(j)-m_abs(j))/2; dKOW5\H'  
        pows = n(j):-2:m_abs(j); _;;'/rs j  
        for k = length(s):-1:1 *@XJ7G[  
            p = (1-2*mod(s(k),2))* ... )4[Yplo  
                       prod(2:(n(j)-s(k)))/              ... 0X`sQNx  
                       prod(2:s(k))/                     ... R::0.*FF  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ),G?f {`!  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); rNdeD~\  
            idx = (pows(k)==rpowers); 6vx0F?>_  
            y(:,j) = y(:,j) + p*rpowern(:,idx); J?yNZK$WqN  
        end Z*Sa%yf  
         e~Oge  
        if isnorm *u2pk>y)  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); q'07  
        end .pP{;:Avpn  
    end ?,_$;g  
    % END: Compute the Zernike Polynomials ;*3OkNxa3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dG6 G  
    i2a""zac  
    % Compute the Zernike functions: =~)J:x\F  
    % ------------------------------ .RI{\i`  
    idx_pos = m>0; U]Iypl`l  
    idx_neg = m<0; [d( @lbV0  
    X*Ibk-PUM  
    z = y; RXMzwk  
    if any(idx_pos) :# 1d;jx  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); k`LoRqF  
    end ZnX]Q+w  
    if any(idx_neg) s Zan.Kc#  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 6x1 !!X+)+  
    end Z9:erKT   
    v6gfyGCJ  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) "<c^`#CWuO  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 'z=WJV;Vs  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ' `0kW_'  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Xb0$BAP  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, I{8fTod  
    %   and THETA is a vector of angles.  R and THETA must have the same e):jQite   
    %   length.  The output Z is a matrix with one column for every P-value, \Tf$i(0q  
    %   and one row for every (R,THETA) pair. ?F{sym@i  
    % v-zi ,]W  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike )tH.P: 1~,  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2)  1 &24:&  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 3\x@G)1  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 v'R{lXE  
    %   for all p. qJjXN+/D  
    % Rne#z2Ok  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 uvN Lm]*  
    %   Zernike functions (order N<=7).  In some disciplines it is "gm[q."n<  
    %   traditional to label the first 36 functions using a single mode 4 &r5M  
    %   number P instead of separate numbers for the order N and azimuthal 4*k>M+o/C4  
    %   frequency M. "r!>p\.0O  
    % KpHt(>NR  
    %   Example: kF%EJuu  
    % h |Ofi  
    %       % Display the first 16 Zernike functions baLO~C  
    %       x = -1:0.01:1; CSKOtqKQ)  
    %       [X,Y] = meshgrid(x,x); r7Vt,{4/  
    %       [theta,r] = cart2pol(X,Y); AcZ{B<  
    %       idx = r<=1; ew13qpt)<L  
    %       p = 0:15; mS\ gh)<h  
    %       z = nan(size(X)); ldd8'2  
    %       y = zernfun2(p,r(idx),theta(idx)); i-.]onR  
    %       figure('Units','normalized') \9HpbCHr  
    %       for k = 1:length(p) NCrNlH IF  
    %           z(idx) = y(:,k); Lud[.>i  
    %           subplot(4,4,k) |`T$Iq  
    %           pcolor(x,x,z), shading interp 0V RV. Ml  
    %           set(gca,'XTick',[],'YTick',[]) BlLK6"gJT  
    %           axis square GHs,,J;  
    %           title(['Z_{' num2str(p(k)) '}']) 0W_olnZ  
    %       end k.."_ 4  
    % Yvi.l6JL  
    %   See also ZERNPOL, ZERNFUN. {[|je ]3v  
    <?2g\+{s9  
    %   Paul Fricker 11/13/2006 Ci-CY/]s  
    ?[Sac]h ys  
    |o@xWs@m  
    % Check and prepare the inputs: dguN<yS- E  
    % ----------------------------- BvnNAi  
    if min(size(p))~=1 C vOH*K'  
        error('zernfun2:Pvector','Input P must be vector.') s![Di  
    end vE~>9  
    67tB8X  
    if any(p)>35 +s j2C  
        error('zernfun2:P36', ... rq#\x{l  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 9cIKi#Bl  
               '(P = 0 to 35).']) )MWbZAI  
    end T5_/*`F  
    \H4$9lPk  
    % Get the order and frequency corresonding to the function number: ]as+gZ8  
    % ---------------------------------------------------------------- 9 df GV!Z  
    p = p(:); \S_o{0ZY}  
    n = ceil((-3+sqrt(9+8*p))/2); Yq-Vwh/  
    m = 2*p - n.*(n+2); 0woLB#v9  
    h( DmSW  
    % Pass the inputs to the function ZERNFUN: Ods~tM  
    % ---------------------------------------- wBlo2WY  
    switch nargin e9;5.m  
        case 3 p f`vH`r  
            z = zernfun(n,m,r,theta); S*NeS#!v  
        case 4 B!x7oD9  
            z = zernfun(n,m,r,theta,nflag); v ;nnr0;  
        otherwise ,Ma%"cWVC  
            error('zernfun2:nargin','Incorrect number of inputs.') AIG5a$}&  
    end ~,Kx"VK  
    Gm[XnUR7V  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) W.l#@p  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. m#^;V  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 9z+ZFIf7d  
    %   order N and frequency M, evaluated at R.  N is a vector of n^Q-K}!T/  
    %   positive integers (including 0), and M is a vector with the  V*W H  
    %   same number of elements as N.  Each element k of M must be a L=gG23U&  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Pp.] /;  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is eyy%2> b  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix JvF0s}#4  
    %   with one column for every (N,M) pair, and one row for every A&{eC C  
    %   element in R. -d[Gy- J  
    % GHQm$|3I  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Ap> H-/C  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is IeAi'  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ]f6,4[  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 drJUfsxV  
    %   for all [n,m]. v?l*jr1-2  
    % B.}j1 Bb  
    %   The radial Zernike polynomials are the radial portion of the mOJ-M@ME  
    %   Zernike functions, which are an orthogonal basis on the unit ^*F'[!. p  
    %   circle.  The series representation of the radial Zernike 7>3+]njw  
    %   polynomials is VDlP,Mm*  
    % y24/lc  
    %          (n-m)/2 HE-ErEtGB  
    %            __ zor  
    %    m      \       s                                          n-2s G@U}4' V9  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r TVK*l*  
    %    n      s=0 rnC<(f22  
    % |Ew&.fgz  
    %   The following table shows the first 12 polynomials. $PMD$c  
    % G1:"Gxja  
    %       n    m    Zernike polynomial    Normalization >fp_$bjd  
    %       --------------------------------------------- ufN`=IJ%  
    %       0    0    1                        sqrt(2) 4 ;^  
    %       1    1    r                           2 W{t- UK   
    %       2    0    2*r^2 - 1                sqrt(6) C\* 0621  
    %       2    2    r^2                      sqrt(6) 9 xFX"_J  
    %       3    1    3*r^3 - 2*r              sqrt(8) o),@I#fM  
    %       3    3    r^3                      sqrt(8) vkLyGb7r<  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) _8wT4|z5  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) /U="~{*-R  
    %       4    4    r^4                      sqrt(10) R.rE+gxO1  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) _ 3{8Zg  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 33NzQb  
    %       5    5    r^5                      sqrt(12) 5yf`3vV|3@  
    %       --------------------------------------------- 5Z[HlN|-!  
    % 9w-;d=(Q  
    %   Example: aL/7xa  
    % ZSn6JV'g  
    %       % Display three example Zernike radial polynomials Hm_&``='  
    %       r = 0:0.01:1; 3# idXc  
    %       n = [3 2 5]; q^b12@.  
    %       m = [1 2 1]; ;MW=F9U*  
    %       z = zernpol(n,m,r); Xliw(B'\a4  
    %       figure (n2=.9k!  
    %       plot(r,z) }LX.gm  
    %       grid on _ Uv3g lK  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') L F!S`|FF  
    % `'ak/%Krh  
    %   See also ZERNFUN, ZERNFUN2. 6g"qwWZp  
    sfC/Q"Zs  
    % A note on the algorithm. wfM|3GS+.  
    % ------------------------ MwWN;_#EO)  
    % The radial Zernike polynomials are computed using the series wArzMt}[  
    % representation shown in the Help section above. For many special ?aU-Y_pMe  
    % functions, direct evaluation using the series representation can hD7Lgi-N)W  
    % produce poor numerical results (floating point errors), because  bRx}ih  
    % the summation often involves computing small differences between VpB+|%@p  
    % large successive terms in the series. (In such cases, the functions IKnXtydeI}  
    % are often evaluated using alternative methods such as recurrence nk+9 J#Gs  
    % relations: see the Legendre functions, for example). For the Zernike K}Lu1:~  
    % polynomials, however, this problem does not arise, because the a7e.Z9k!  
    % polynomials are evaluated over the finite domain r = (0,1), and OZno 3Hn  
    % because the coefficients for a given polynomial are generally all gm}zF%B"  
    % of similar magnitude. zmU>  
    % 0|~3\e/QV  
    % ZERNPOL has been written using a vectorized implementation: multiple S[RVk=A1  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] G\ /L.T  
    % values can be passed as inputs) for a vector of points R.  To achieve `^ uX`M/  
    % this vectorization most efficiently, the algorithm in ZERNPOL k#<Y2FJa  
    % involves pre-determining all the powers p of R that are required to 8z* /J=n  
    % compute the outputs, and then compiling the {R^p} into a single \_|r>vQ  
    % matrix.  This avoids any redundant computation of the R^p, and kSO:xS0 _N  
    % minimizes the sizes of certain intermediate variables. $e,'<Jl  
    % * v u  
    %   Paul Fricker 11/13/2006 'h;x>r  
    \Gy+y`   
    q#.+P1"U  
    % Check and prepare the inputs: m"mU:-jk`  
    % ----------------------------- i,y7R?-K  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) r<-@.$lf  
        error('zernpol:NMvectors','N and M must be vectors.') CL"q "  
    end G0v<`/|>}  
    K?acRi  
    if length(n)~=length(m) 5w@Q %'o`I  
        error('zernpol:NMlength','N and M must be the same length.') ??=7pFm  
    end +zSdP2s  
    H?j!f$sw  
    n = n(:); Q#*Pjl  
    m = m(:); +AL(K:  
    length_n = length(n); Qb&gKQtt@  
    \k*h& :$  
    if any(mod(n-m,2)) T>pz?e^5&  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') k^r-~q+NV#  
    end N!^5<2z@eT  
    XLsOn(U\&  
    if any(m<0) #"aL M6Cfs  
        error('zernpol:Mpositive','All M must be positive.') D``>1IA]  
    end jd?NN:7  
    '.d]n(/lZd  
    if any(m>n) Com`4>0>I  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') RT+_e  
    end z+6%Ya&ls  
    P0XVR_TJf  
    if any( r>1 | r<0 ) { aq}Q|?/  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Yq0=4#_  
    end Q!"W)tD  
    sn?YD'>k  
    if ~any(size(r)==1) _=RK  
        error('zernpol:Rvector','R must be a vector.') Ba /^CS  
    end !`EhVV8u-_  
    61{IXx_  
    r = r(:); ~ 6-6aYhe  
    length_r = length(r); y<A%&  
    Vm <9/UG<  
    if nargin==4 Y]>Qu f.!  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Wx-vWWx*Q  
        if ~isnorm auT'ATW7i  
            error('zernpol:normalization','Unrecognized normalization flag.') f:|O);nM  
        end a5xmIp@6  
    else 7f\@3r  
        isnorm = false; %1jApCJ  
    end CiSl 0  
    jwd{CN%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4%L-3Ij  
    % Compute the Zernike Polynomials Zc9j_.?*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZT'Sw%U:  
    =YRN"  
    % Determine the required powers of r: hfuGCD6F`  
    % ----------------------------------- 3Ta<7tEM  
    rpowers = []; O#5ll2?  
    for j = 1:length(n) q"Z!}^{  
        rpowers = [rpowers m(j):2:n(j)]; AZTn!hrU  
    end Lv{xwHnE  
    rpowers = unique(rpowers); qm&Z_6Pw  
    {UR&Y  
    % Pre-compute the values of r raised to the required powers, ;dh8|ujh  
    % and compile them in a matrix: FTg4i\Wp  
    % ----------------------------- 2m?!!We q  
    if rpowers(1)==0 |_P-  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N3`W%ws`~  
        rpowern = cat(2,rpowern{:}); <15POB  
        rpowern = [ones(length_r,1) rpowern]; E(&GZ QE  
    else k<M~co;L  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7Z;w<b~  
        rpowern = cat(2,rpowern{:}); 0kD8wj%  
    end "k${5wk#Fl  
    -|DSfI#j  
    % Compute the values of the polynomials: u%7a&1c  
    % -------------------------------------- IFX|"3[$  
    z = zeros(length_r,length_n); }bv0~}G4  
    for j = 1:length_n ,Dz2cR6  
        s = 0:(n(j)-m(j))/2; @x@w<e%  
        pows = n(j):-2:m(j); =oF6|\]{ ;  
        for k = length(s):-1:1 rI:KZ}GZ  
            p = (1-2*mod(s(k),2))* ... LaZF=<w(  
                       prod(2:(n(j)-s(k)))/          ... [hg|bpEG  
                       prod(2:s(k))/                 ... P#H#@:/3  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ]kmOX  
                       prod(2:((n(j)+m(j))/2-s(k))); 0;)6ZU  
            idx = (pows(k)==rpowers); xae rMr  
            z(:,j) = z(:,j) + p*rpowern(:,idx); K.2M=Q  
        end ru`;cXa,  
         LIH>IpamN  
        if isnorm 4[3T%jA  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); JLAg-j2  
        end (Df<QC`0v  
    end S'-<p<;D\B  
    4C /8hsn  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  [ |n-x3h  
    1vs>2` DLa  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 GFdJFQio  
    %]0U60  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)