非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 >1:s.[&
function z = zernfun(n,m,r,theta,nflag) M x j
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 'dM &~LSQ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 6,M>' s,N
% and angular frequency M, evaluated at positions (R,THETA) on the VpMpZ9oM<
% unit circle. N is a vector of positive integers (including 0), and *JGm
% M is a vector with the same number of elements as N. Each element b_ Sh#d&
% k of M must be a positive integer, with possible values M(k) = -N(k) >JS\H6
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, n"Ec %n
% and THETA is a vector of angles. R and THETA must have the same ba|x?kz
% length. The output Z is a matrix with one column for every (N,M) K,tmh1
% pair, and one row for every (R,THETA) pair. %*OKhrM
% 4?M=?K0
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 94I8~Jj4
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), &w:"e'FG`
% with delta(m,0) the Kronecker delta, is chosen so that the integral ^ef:cS$;
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, mn\e(WoX
% and theta=0 to theta=2*pi) is unity. For the non-normalized * b>W
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. z;1tJ
% {>OuxVl??k
% The Zernike functions are an orthogonal basis on the unit circle. VY<v?Of
i-
% They are used in disciplines such as astronomy, optics, and liFNJd`|o+
% optometry to describe functions on a circular domain. aW %ulZ
% ~ $#DB@b
% The following table lists the first 15 Zernike functions. hd9fD[5
% wM (!9Ws3
% n m Zernike function Normalization -Qo`UL.}
% -------------------------------------------------- UY
j
% 0 0 1 1 a}#[mw@m=
% 1 1 r * cos(theta) 2 \A:m<::
% 1 -1 r * sin(theta) 2 O<S*bN>BF
% 2 -2 r^2 * cos(2*theta) sqrt(6) 2tCep
% 2 0 (2*r^2 - 1) sqrt(3) 2f`u?T
% 2 2 r^2 * sin(2*theta) sqrt(6) 4PTHUyX
% 3 -3 r^3 * cos(3*theta) sqrt(8) ,!kqEIp%
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ^C>i(j&
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) aMuc]Wy#
% 3 3 r^3 * sin(3*theta) sqrt(8) 65N;PH59D
% 4 -4 r^4 * cos(4*theta) sqrt(10) Rb<aCX
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =Xm
[
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 2uS&A
\
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;z#D%#Ztq
% 4 4 r^4 * sin(4*theta) sqrt(10) xBG&ZM4"^f
% -------------------------------------------------- f'Wc_L)
% 56u'XMB?
% Example 1: =r+u!~%@''
% wED~^[]f
% % Display the Zernike function Z(n=5,m=1) W>dS@;E
% x = -1:0.01:1; Slq=;TDp
% [X,Y] = meshgrid(x,x); Y {Klwn
% [theta,r] = cart2pol(X,Y); a~OCo
% idx = r<=1; ")ow,r^"
% z = nan(size(X)); Sl^HMO
% z(idx) = zernfun(5,1,r(idx),theta(idx)); c G?RisSZ
% figure s?=f,I
% pcolor(x,x,z), shading interp KmZUDU%R
% axis square, colorbar [[JwHM8H&
% title('Zernike function Z_5^1(r,\theta)') 8_U*_I7(
% 9XF+?
x
% Example 2: !-x^b.${B
% eN>=x40
% % Display the first 10 Zernike functions #1z}~1-
% x = -1:0.01:1; {#=q[jVi%1
% [X,Y] = meshgrid(x,x); -#3B>VY
% [theta,r] = cart2pol(X,Y); Mz40([{
% idx = r<=1; A[XEbfDO
% z = nan(size(X)); tAP~
% n = [0 1 1 2 2 2 3 3 3 3]; /,2Em>
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; W3{k{~
% Nplot = [4 10 12 16 18 20 22 24 26 28]; !K'kkn,h
% y = zernfun(n,m,r(idx),theta(idx)); &kXf)xc<~
% figure('Units','normalized') !s\-i6S>
% for k = 1:10 vwZ2kk!|i
% z(idx) = y(:,k); ;.!AX|v
% subplot(4,7,Nplot(k)) qQ/j+
% pcolor(x,x,z), shading interp $4 >K2
% set(gca,'XTick',[],'YTick',[]) +?*,J=/
% axis square zjM+F{P8
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5Tb93Q@c
% end `P)atQ
% 8NPt[*
% See also ZERNPOL, ZERNFUN2. #`);UAf
cQu1WgQ
G
% Paul Fricker 11/13/2006 Th`IpxV
P
et0yH
/0!6;PC<
% Check and prepare the inputs: _tb)F"4V
% ----------------------------- fph*|T&R
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) d;:+Xd`
error('zernfun:NMvectors','N and M must be vectors.') vxZvK0b620
end 7>wSbAR<
d#vq+wR
if length(n)~=length(m) _&.CI6
error('zernfun:NMlength','N and M must be the same length.') tE9%;8;H
end _yJd@
Q6RBZucv
n = n(:); j*q]-$ 2E
m = m(:); #";(&|7
if any(mod(n-m,2)) K
S,X$)9
error('zernfun:NMmultiplesof2', ... 2y,NT|jp
'All N and M must differ by multiples of 2 (including 0).') 7zgU>$i
end '?v.O}
hR[Qdu6r
if any(m>n) 9-Qub+0o
error('zernfun:MlessthanN', ... W _yVVr
'Each M must be less than or equal to its corresponding N.') ]EE}ax%#aq
end Av_1cvR:
"DjD"?/b
if any( r>1 | r<0 ) Tr(w~et
error('zernfun:Rlessthan1','All R must be between 0 and 1.') *
"~^k^_b}
end %=]~5a9
1$q SbQ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ds4ERe /
error('zernfun:RTHvector','R and THETA must be vectors.') 71@V|$Dy
end Hp8)-eT
x!tCK47Yq
r = r(:); <lB^>Hfu
theta = theta(:); T,!?+#
length_r = length(r); {&4+W=0
n
if length_r~=length(theta) hJkIFyQ{j
error('zernfun:RTHlength', ... P,j)m\|
'The number of R- and THETA-values must be equal.') A>b o Xcr
end :jT1=PfL
Hb#8?{
% Check normalization: wg<DV!GZ
% -------------------- ]Yp;8#:1
if nargin==5 && ischar(nflag) V'mQ{[{R
isnorm = strcmpi(nflag,'norm'); t1 OnA#]/_
if ~isnorm #:v|/2
error('zernfun:normalization','Unrecognized normalization flag.') E-MEMran4
end
=BMON{K
else ss-{l+Z5
isnorm = false; qYl%v
end 2x"&8Bg3
ido'<;4>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W+cmn )8
% Compute the Zernike Polynomials }~:`9PV)Z%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MIsjTKE
^}a..@|%W
% Determine the required powers of r: ^$FHI_
% ----------------------------------- =d!3_IZ
m_abs = abs(m); !.?2zp~
rpowers = []; w+fsw@dK&
for j = 1:length(n) VWj]X7v
rpowers = [rpowers m_abs(j):2:n(j)]; XPBKQm_}
end Z_zN:BJ8L
rpowers = unique(rpowers); 0/6f9A
}:])1!a
% Pre-compute the values of r raised to the required powers, MD1n+FgTu
% and compile them in a matrix: }G]6Rip3
% ----------------------------- U6t>UE6k
if rpowers(1)==0 Ovxs+mQ
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4[44Eku\
rpowern = cat(2,rpowern{:}); Kyq/'9`
rpowern = [ones(length_r,1) rpowern]; [6`8^-}?
else @!=q.4b
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jL8.*pfv
rpowern = cat(2,rpowern{:}); XT9]+b8(M
end % r`hW\4{
A_tdtN<
% Compute the values of the polynomials: \uQ yp*P1s
% -------------------------------------- p9 <XaJ}
y = zeros(length_r,length(n)); 8d?r )/~
for j = 1:length(n) 6ey{+8
s = 0:(n(j)-m_abs(j))/2; --6C>iY[&u
pows = n(j):-2:m_abs(j); !i,Eo-[Z
for k = length(s):-1:1 z\Hg@J
p = (1-2*mod(s(k),2))* ... }^+E S^~
prod(2:(n(j)-s(k)))/ ... 7hQXGY,q
prod(2:s(k))/ ... 2Nrb}LH
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...
P(a!I{A(
prod(2:((n(j)+m_abs(j))/2-s(k))); h 6Ovl
idx = (pows(k)==rpowers); 0/5
a3-3{
y(:,j) = y(:,j) + p*rpowern(:,idx); 2w_[c.
end R.@ I}>
Hb55RilC
if isnorm hfE5[
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); "
R!,5HQF;
end uH="l.u
end ^SM>bJ1Z_
% END: Compute the Zernike Polynomials NX%"_W/W
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $ @g\wz
1Bp?HyCR
% Compute the Zernike functions: fUx;_GX?
% ------------------------------ .;}vp*
idx_pos = m>0; NXo$rf:
idx_neg = m<0; 0`UI^Y~Q
QiC}hj$
z = y; ##!idcC
if any(idx_pos) o5LyBUJ
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;}1O\nngR
end uE] HU
if any(idx_neg) xl2;DFiYt
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Oxsx\f_
end |`eHUtjH
1i3;P/
% EOF zernfun