切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11665阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Rs;,_  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Fs:l"5~>1  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 =KT7ZSTV  
    function z = zernfun(n,m,r,theta,nflag) :[(X!eP  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. y>8!qVX  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \@OKB<ra  
    %   and angular frequency M, evaluated at positions (R,THETA) on the SVXey?A;CJ  
    %   unit circle.  N is a vector of positive integers (including 0), and _a*Wk  
    %   M is a vector with the same number of elements as N.  Each element OY~5o&Oa  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 7+T\  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ?Pmj}f  
    %   and THETA is a vector of angles.  R and THETA must have the same  wSV[nK  
    %   length.  The output Z is a matrix with one column for every (N,M) lKIHBi  
    %   pair, and one row for every (R,THETA) pair. |#5JI #,vX  
    % l W&glU(  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3 ;.{ O%bX  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Q;r 0#"  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral */\dH<  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, v-G(bw3  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 9FV#@uA}D  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. /q='~t  
    % aDza"Ln  
    %   The Zernike functions are an orthogonal basis on the unit circle. e%'9oAz  
    %   They are used in disciplines such as astronomy, optics, and Bb:jy!jq_  
    %   optometry to describe functions on a circular domain. ;5y4v  
    % -oF4mi8S  
    %   The following table lists the first 15 Zernike functions. 0?,EteR  
    % `34[w=Zm  
    %       n    m    Zernike function           Normalization =#%e'\)a  
    %       -------------------------------------------------- (a7IxW  
    %       0    0    1                                 1 L?KEe>;r  
    %       1    1    r * cos(theta)                    2 y L&n)   
    %       1   -1    r * sin(theta)                    2 8agd{bxU  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) F w{8MQ2  
    %       2    0    (2*r^2 - 1)                    sqrt(3) {!oO>t  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) d:sUh  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) BzWmV .5  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) wZrdr4j  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) (nda!^f_s  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) (2qo9j"j/Y  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10)  mH?^3T  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o'Tqqrr  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) !2&h=;i~V  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?wwY8e?S  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?Cu#(  
    %       -------------------------------------------------- vgE5(fJh  
    % PVEEKKJP]J  
    %   Example 1: >b*Pd *f  
    % $a5K  
    %       % Display the Zernike function Z(n=5,m=1) )sNtw Sl^  
    %       x = -1:0.01:1; J)g(Nw,O  
    %       [X,Y] = meshgrid(x,x); Ii|<:BW  
    %       [theta,r] = cart2pol(X,Y); <j,7Z>Rk\x  
    %       idx = r<=1; %8{' XJ!  
    %       z = nan(size(X)); $g|g}>Sc  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); /h2`?~k+  
    %       figure kt;X|`V{5z  
    %       pcolor(x,x,z), shading interp )SDGj;j+  
    %       axis square, colorbar )XO2DY1/&  
    %       title('Zernike function Z_5^1(r,\theta)') $h_@`j  
    % g>f(5  
    %   Example 2: VCc4nn#  
    % Mu:*(P/  
    %       % Display the first 10 Zernike functions G0*$&G0nb  
    %       x = -1:0.01:1; >) S a#w;  
    %       [X,Y] = meshgrid(x,x); D]oS R7h  
    %       [theta,r] = cart2pol(X,Y); Y}f%/vus  
    %       idx = r<=1; ]m}>/2oSs  
    %       z = nan(size(X)); ^jCkM29eu  
    %       n = [0  1  1  2  2  2  3  3  3  3]; l_f"}l  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; tU)+q?Mw  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 80+" x3r  
    %       y = zernfun(n,m,r(idx),theta(idx)); PiH#9X B  
    %       figure('Units','normalized') 3rR(>}:[V  
    %       for k = 1:10 *4(.=k  
    %           z(idx) = y(:,k); =~HX/]zF  
    %           subplot(4,7,Nplot(k)) VJ1 `&  
    %           pcolor(x,x,z), shading interp hR{Fn L  
    %           set(gca,'XTick',[],'YTick',[]) LQ{4r1,u]  
    %           axis square }l[t0C t  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) g" M1HxlV  
    %       end a<\m` Es=  
    % Z)?"pBv'  
    %   See also ZERNPOL, ZERNFUN2. 3d,|26I7f  
    "ht2X w  
    %   Paul Fricker 11/13/2006 2'@0|k,yC  
     %gf8'Q  
    m X2Qf8  
    % Check and prepare the inputs: {=R=\Y?r&  
    % ----------------------------- 8H{@0_M  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LTa9' q0  
        error('zernfun:NMvectors','N and M must be vectors.') % mI q,  
    end ^rxXAc[  
    6SidH_&C  
    if length(n)~=length(m) @7BH`b$)!  
        error('zernfun:NMlength','N and M must be the same length.') @P@t/  
    end K, 35*  
    'rCwPsI&4  
    n = n(:); Crey}A/N  
    m = m(:); )T2Sw z/  
    if any(mod(n-m,2)) N:&Gv'`  
        error('zernfun:NMmultiplesof2', ... H ($=k-+5  
              'All N and M must differ by multiples of 2 (including 0).') n$~RgCf  
    end ?.~@lE  
    ^,`yt^^A  
    if any(m>n) 8taaBM`:  
        error('zernfun:MlessthanN', ... mirMDJsl%  
              'Each M must be less than or equal to its corresponding N.') l5@k8tnz  
    end ?EtK/6dJZt  
    Y#rao:I  
    if any( r>1 | r<0 ) ;>YJ}:r"\  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 61wGIN2,  
    end A).wjd(_,  
    US Q{o  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) < Gu s9^_  
        error('zernfun:RTHvector','R and THETA must be vectors.') O"{NHNG\oT  
    end 7, O_'T &  
    xEZvCwsb  
    r = r(:); ,>e<mphM  
    theta = theta(:); &0N 3 p  
    length_r = length(r); t/y0gr tm6  
    if length_r~=length(theta) M'[J0*ip  
        error('zernfun:RTHlength', ... ThFI=K  
              'The number of R- and THETA-values must be equal.') Q+#, VuM  
    end 6rR}qV,+{  
    L-$GQGk{  
    % Check normalization: L]9*^al  
    % -------------------- <ZCjQkka>r  
    if nargin==5 && ischar(nflag) :x16N|z  
        isnorm = strcmpi(nflag,'norm'); M(5lSu  
        if ~isnorm  H'2pmwk  
            error('zernfun:normalization','Unrecognized normalization flag.') * 78TT \q<  
        end J/)Q{*`_  
    else [,l BY-Kz+  
        isnorm = false; zvSfW# *  
    end Knn$<!>  
    H!7/U_AH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'S&5zwrH  
    % Compute the Zernike Polynomials c!6.D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UXe@c@3  
    QDLtilf :  
    % Determine the required powers of r: P PmE.%_  
    % ----------------------------------- S{&;  
    m_abs = abs(m); EK[~lIXg  
    rpowers = []; 7TlOF  
    for j = 1:length(n) a^|mF# z  
        rpowers = [rpowers m_abs(j):2:n(j)]; 9D-PmSnv  
    end ALPZc:  
    rpowers = unique(rpowers); ~kF^0-JZY  
    j].XVn,  
    % Pre-compute the values of r raised to the required powers, Lw2EA 5  
    % and compile them in a matrix: 8BBuYY {  
    % ----------------------------- y1@{(CDp"  
    if rpowers(1)==0 _sx]`3/86  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2gukK8R$  
        rpowern = cat(2,rpowern{:}); o5A@U0c_  
        rpowern = [ones(length_r,1) rpowern]; ,uK }$l  
    else %n T!u!#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  ig jr=e  
        rpowern = cat(2,rpowern{:}); ?3"lI,!0  
    end A"d=,?yE  
    }eSaF@.  
    % Compute the values of the polynomials: #sN]6  
    % -------------------------------------- _-^a8F>/19  
    y = zeros(length_r,length(n)); -=@d2LY  
    for j = 1:length(n) tVFl`Xr   
        s = 0:(n(j)-m_abs(j))/2; g \&Z_  
        pows = n(j):-2:m_abs(j); K#tT \  
        for k = length(s):-1:1 0.=dOz r  
            p = (1-2*mod(s(k),2))* ... RMDzPda.  
                       prod(2:(n(j)-s(k)))/              ... ={B%qq  
                       prod(2:s(k))/                     ... d3<7t  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5{L~e>oS9  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); KZ>cfv-&a  
            idx = (pows(k)==rpowers); >-0Rq[)  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 4*P#3 B'@V  
        end yxik`vmH  
         nD{o8;  
        if isnorm Jx!#y A;  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); W2&o'(P\  
        end *%E4 ,(T  
    end _h6SW2:z!E  
    % END: Compute the Zernike Polynomials e ^2n58  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jEVDz  
    oIrO%v:'!  
    % Compute the Zernike functions: =;ClOy9  
    % ------------------------------ Q V)>+6\  
    idx_pos = m>0; _Dr9 w&;<  
    idx_neg = m<0; u0zF::  
    O`K2mt\%  
    z = y; ,)@njC?J  
    if any(idx_pos) w;W# 'pE  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); kOdXbw9v  
    end %<8`(Uu5  
    if any(idx_neg) iO+,U}&  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \2)D  
    end Swa0TiT(  
    %;_94!(hC  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) >Q $ph=  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. )Zf1%h~0r  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ls7eypKR  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive @<NuuYQ&  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 0FSNIPx  
    %   and THETA is a vector of angles.  R and THETA must have the same 6_,JW{#"  
    %   length.  The output Z is a matrix with one column for every P-value, wXjidOd $  
    %   and one row for every (R,THETA) pair. <Pzy'9  
    % 'X<4";$mU  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike WP2=1"X63  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) $Nd,6w*`  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) &AN1xcx\  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Nv=78O1  
    %   for all p. FA%_jM  
    % Mg #yl\v  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 #u}%r{T  
    %   Zernike functions (order N<=7).  In some disciplines it is 1U% /~  
    %   traditional to label the first 36 functions using a single mode jp_|pC'  
    %   number P instead of separate numbers for the order N and azimuthal fIl;qGz85  
    %   frequency M. GLgf%A`5/_  
    % aaP_^m O  
    %   Example: ;z.L^V0  
    % K+pVRDRcs  
    %       % Display the first 16 Zernike functions P q$0ih  
    %       x = -1:0.01:1; dgL>7X=7  
    %       [X,Y] = meshgrid(x,x); 9w$m\nV  
    %       [theta,r] = cart2pol(X,Y); I)tiXcJw  
    %       idx = r<=1; @/F61Ut  
    %       p = 0:15; |>yWkq   
    %       z = nan(size(X)); !$A/.;0$  
    %       y = zernfun2(p,r(idx),theta(idx)); M?!@L:b[  
    %       figure('Units','normalized') }x?F53I)  
    %       for k = 1:length(p) Wl |5EY  
    %           z(idx) = y(:,k);  =*&[K^  
    %           subplot(4,4,k) W%4=x>J-  
    %           pcolor(x,x,z), shading interp p}^5ru  
    %           set(gca,'XTick',[],'YTick',[]) yVII<ImqIH  
    %           axis square TP"cEfs x  
    %           title(['Z_{' num2str(p(k)) '}']) yL*]_  
    %       end <XIIT-b[  
    % <q8@a0e@  
    %   See also ZERNPOL, ZERNFUN. |RFBhB/u  
    MC* Hl`C  
    %   Paul Fricker 11/13/2006 <%HRs>4  
    ,;_+o]  
    0?<#!  
    % Check and prepare the inputs: < cvh1~>(  
    % ----------------------------- l-Z( ]  
    if min(size(p))~=1 _p^ "l2%D/  
        error('zernfun2:Pvector','Input P must be vector.') H_X^)\oJ  
    end <.Ws; HN}  
    ?@ F2Kv  
    if any(p)>35 Y3Fj3NwS  
        error('zernfun2:P36', ... |5bLV^mv]i  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... >#w;67he2  
               '(P = 0 to 35).']) !R=@Nr>  
    end $@>0;i ::  
    #;$]M4  
    % Get the order and frequency corresonding to the function number: j{@6y  
    % ---------------------------------------------------------------- TxX=(7V  
    p = p(:); ){*+s RBW  
    n = ceil((-3+sqrt(9+8*p))/2); u= NLR\  
    m = 2*p - n.*(n+2); &EfQ%r}C  
    $"r9U|6kk  
    % Pass the inputs to the function ZERNFUN: @1MnJP  
    % ---------------------------------------- Upe}9xf  
    switch nargin qhEv6Yxfw6  
        case 3 0f^{Rp6  
            z = zernfun(n,m,r,theta); iRzFA!wH  
        case 4 |_V(^b}  
            z = zernfun(n,m,r,theta,nflag); A*EOn1hN  
        otherwise Jsz!ro  
            error('zernfun2:nargin','Incorrect number of inputs.') rO'DT{Yt  
    end # z|Q $  
    UFG_ZoD+  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) o~Se[p  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. m`/Nl<  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of S<tw5!tJ  
    %   order N and frequency M, evaluated at R.  N is a vector of ?sf<cFF  
    %   positive integers (including 0), and M is a vector with the KdkA@>L!;  
    %   same number of elements as N.  Each element k of M must be a lW+mH=  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) $[ {5+*  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is VdLoi\-/L  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix }LzBo\  
    %   with one column for every (N,M) pair, and one row for every W>K^55'  
    %   element in R. (_T{Z>C/J  
    % apvcWF%  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- <ql,@*Y  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is r|Ui1f5  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 0MG>77  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 I;(3)^QH#  
    %   for all [n,m]. f7Gn$E|/r;  
    % p/.8})c1r  
    %   The radial Zernike polynomials are the radial portion of the =Zd(<&B K  
    %   Zernike functions, which are an orthogonal basis on the unit |>.Q U3  
    %   circle.  The series representation of the radial Zernike yvAO"43  
    %   polynomials is x:Y9z_)O  
    % (WM3(US|  
    %          (n-m)/2 C]`uC^6g  
    %            __ fab'\|Y   
    %    m      \       s                                          n-2s *FlPGBjJ  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ,,H"?VO  
    %    n      s=0 :E:e ^$p  
    % XzUGlrp:Y#  
    %   The following table shows the first 12 polynomials. __=H"UhWv  
    % k3~9;Z  
    %       n    m    Zernike polynomial    Normalization 2hh8G5IaQ  
    %       --------------------------------------------- 8bIP"!=*W  
    %       0    0    1                        sqrt(2) {o=?@$6C  
    %       1    1    r                           2 |Splbs k  
    %       2    0    2*r^2 - 1                sqrt(6) +v Bi7#&  
    %       2    2    r^2                      sqrt(6) 5/meH[R\M  
    %       3    1    3*r^3 - 2*r              sqrt(8) ]%Q!%uTh  
    %       3    3    r^3                      sqrt(8) TT$A o  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) _plK(g-1J%  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) sX>u.  
    %       4    4    r^4                      sqrt(10) odRiCiMH  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ,_[x|8m  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) $.G 7Vt  
    %       5    5    r^5                      sqrt(12) K_7pr~D]@r  
    %       --------------------------------------------- F3tps jQ  
    % _( W@FS  
    %   Example: &#r+a'  
    % 8{ zX=  
    %       % Display three example Zernike radial polynomials 6{Wo5O{!\  
    %       r = 0:0.01:1; -YRIe<}E -  
    %       n = [3 2 5]; )2}R1K>  
    %       m = [1 2 1]; rIyH/=;  
    %       z = zernpol(n,m,r); 5!-TLwl`j\  
    %       figure bJ^JK  
    %       plot(r,z) $] 6u#5  
    %       grid on Z8$}Rpo  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Q&9 yrx.  
    % $a(-r-_Fi]  
    %   See also ZERNFUN, ZERNFUN2. BZR{}Aj4pa  
    .~z'm$s1o  
    % A note on the algorithm. E$8JrL  
    % ------------------------ ]hl*6  
    % The radial Zernike polynomials are computed using the series la!]Y-s)'4  
    % representation shown in the Help section above. For many special 6Q.S  
    % functions, direct evaluation using the series representation can *S$v SDJCW  
    % produce poor numerical results (floating point errors), because IwYeKN6s  
    % the summation often involves computing small differences between |Uh8b %  
    % large successive terms in the series. (In such cases, the functions |s8N  
    % are often evaluated using alternative methods such as recurrence &|v)   
    % relations: see the Legendre functions, for example). For the Zernike 4{VO:(geZ  
    % polynomials, however, this problem does not arise, because the >{#JIG.  
    % polynomials are evaluated over the finite domain r = (0,1), and .RD<]BxJ  
    % because the coefficients for a given polynomial are generally all 4l D$'`  
    % of similar magnitude. b#j:)PA0C  
    % tbrU>KCBD  
    % ZERNPOL has been written using a vectorized implementation: multiple ) SV.|  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] bO~y=Pa \  
    % values can be passed as inputs) for a vector of points R.  To achieve aDlp>p^E>  
    % this vectorization most efficiently, the algorithm in ZERNPOL nt.LiM/L  
    % involves pre-determining all the powers p of R that are required to AGBV7Kk  
    % compute the outputs, and then compiling the {R^p} into a single )G[byBa  
    % matrix.  This avoids any redundant computation of the R^p, and =BJLj0=N  
    % minimizes the sizes of certain intermediate variables. i FI74COam  
    % XLh)$rZ  
    %   Paul Fricker 11/13/2006 Y&|Z*s+ +}  
    j,IRUx13f  
    n<?U6~F&~  
    % Check and prepare the inputs: ]5%0EE64  
    % ----------------------------- KK|w30\f  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) spK8^sh  
        error('zernpol:NMvectors','N and M must be vectors.') A5l Cc b  
    end eJDZ| $  
    st'T._  
    if length(n)~=length(m) h my%X`%j  
        error('zernpol:NMlength','N and M must be the same length.') r]B8\5|<d  
    end =8FvkNr  
    ep>!jMhJa  
    n = n(:); ^FCXcn9  
    m = m(:); Ky3mz w|  
    length_n = length(n); qGk+4 yC  
    ^2+Ex+  
    if any(mod(n-m,2)) ,H7X_KbFD4  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 2.qPMqH  
    end C6+ 5G-Z  
    P^Hgm  
    if any(m<0) Q*M#e  
        error('zernpol:Mpositive','All M must be positive.') T,38Pu@r  
    end ,EqQU|  
    JsaXI:%1  
    if any(m>n) I8#2+$Be+@  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') |x[I!I7.F  
    end 3:nhZN/95T  
    ?0qVyK_1  
    if any( r>1 | r<0 ) @N'n>8Wn  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') _[:6.oNjIe  
    end *,u3Wm|7  
    R'c*CLaiE  
    if ~any(size(r)==1) iFIGJS  
        error('zernpol:Rvector','R must be a vector.') 7lC$UQx8  
    end %-hSa~20  
    {X,%GI  
    r = r(:); #*A'<Zm  
    length_r = length(r); $<*) 5|6  
    X4!93  
    if nargin==4 D]]e6gF$e  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); lZzW- %K  
        if ~isnorm y4\X~5kU  
            error('zernpol:normalization','Unrecognized normalization flag.') $q!A1Fgk0  
        end e=]SIR()`  
    else HG"ZN)~  
        isnorm = false; .G/Rh92  
    end M1jT+  
    '1u?-2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aIgexi,  
    % Compute the Zernike Polynomials }i9:k kfq2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N2:Hdu :  
    y_PA9#v7  
    % Determine the required powers of r: cXXZ'y>FP  
    % ----------------------------------- G1|1Z5r  
    rpowers = []; ?XKX&ws  
    for j = 1:length(n) T CT8OU|  
        rpowers = [rpowers m(j):2:n(j)]; pl8b&bLzi  
    end |n_N.Z  
    rpowers = unique(rpowers); {lK2yi  
    gUiO66#x  
    % Pre-compute the values of r raised to the required powers, C-pR$WM:HN  
    % and compile them in a matrix: ~[H8R|j "  
    % ----------------------------- 7i5B=y7b  
    if rpowers(1)==0 5(~Lr3v0  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); XtCIUC{r,  
        rpowern = cat(2,rpowern{:}); (bm^R-SbB  
        rpowern = [ones(length_r,1) rpowern]; @$slGY  
    else $S>'0mL  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); DG&'x;K"$  
        rpowern = cat(2,rpowern{:}); 7_~sa{1R.  
    end %/dOV[/  
    3ynkf77cn  
    % Compute the values of the polynomials: w_"d&eYdg0  
    % -------------------------------------- ?NBae\6r  
    z = zeros(length_r,length_n); $f@YQN=  
    for j = 1:length_n Ry95a%&/s  
        s = 0:(n(j)-m(j))/2; wx-\@{E  
        pows = n(j):-2:m(j); la;*>  
        for k = length(s):-1:1 loA/d  
            p = (1-2*mod(s(k),2))* ... QN*|_H@h  
                       prod(2:(n(j)-s(k)))/          ... e5mu-  
                       prod(2:s(k))/                 ... !'_7MM  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 628iN%[-  
                       prod(2:((n(j)+m(j))/2-s(k))); i]n2\v AG  
            idx = (pows(k)==rpowers); re*Zs}(N\  
            z(:,j) = z(:,j) + p*rpowern(:,idx); stG +4w  
        end %P}H3;2  
         ~q`f@I  
        if isnorm DE.].FD'  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); G#[A'tbKk  
        end V u")%(ix  
    end s.4+5rE  
     hh4R  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  rmzzbLTu  
    *V hEl7  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ]?+i6 [6U  
    3as=EYm  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)