非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 qVfOf\x.e
function z = zernfun(n,m,r,theta,nflag) 5J,vH[E
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. n3(HA
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N PF.HYtZqK
% and angular frequency M, evaluated at positions (R,THETA) on the +mJAIjH
% unit circle. N is a vector of positive integers (including 0), and KnuqU2<
{
% M is a vector with the same number of elements as N. Each element mU!c;O
% k of M must be a positive integer, with possible values M(k) = -N(k) >a<;)K^1
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, iY="M _kQ_
% and THETA is a vector of angles. R and THETA must have the same 8:f(PN
% length. The output Z is a matrix with one column for every (N,M) u%FA.
% pair, and one row for every (R,THETA) pair. zIu1oF4[
% fA8 ,wy|>
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike V{][{5SR
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gY%-0@g
% with delta(m,0) the Kronecker delta, is chosen so that the integral QZX+E
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, b{A#P?
% and theta=0 to theta=2*pi) is unity. For the non-normalized mwt3EV5
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. :0J;^@
% rB4]TQ`c
% The Zernike functions are an orthogonal basis on the unit circle. J&Ah52
% They are used in disciplines such as astronomy, optics, and LVSJK.B
% optometry to describe functions on a circular domain. '`S,d[~
% j:0z/gHp$
% The following table lists the first 15 Zernike functions. |q?A8@\u
% @ Fu|et
% n m Zernike function Normalization |.YL2\
% -------------------------------------------------- 37VSE@Z+
% 0 0 1 1 Z',pQ{rD
% 1 1 r * cos(theta) 2 #soWX_>
% 1 -1 r * sin(theta) 2 +S$x}b'5q
% 2 -2 r^2 * cos(2*theta) sqrt(6) TV} H
% 2 0 (2*r^2 - 1) sqrt(3) L!\I>a5C0G
% 2 2 r^2 * sin(2*theta) sqrt(6) 8{AzB8xp
% 3 -3 r^3 * cos(3*theta) sqrt(8) ).\%a
h
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) =cxjb,r
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) "_lSw3
% 3 3 r^3 * sin(3*theta) sqrt(8) Kg56.$
% 4 -4 r^4 * cos(4*theta) sqrt(10) HJDM\j*5
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,a}+Jj{
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 8q_nOGd
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D_g+O"];P
% 4 4 r^4 * sin(4*theta) sqrt(10) ~x2azY2DP
% -------------------------------------------------- J=
T!
% b^0=X!bg
% Example 1: d+8Sypv^4*
% 8/k*"^3
% % Display the Zernike function Z(n=5,m=1) m}rUc29cS,
% x = -1:0.01:1; 6]M(ElV1H
% [X,Y] = meshgrid(x,x); l2i[wc"9
% [theta,r] = cart2pol(X,Y); W 5-=,t
% idx = r<=1; |Gz(q4
% z = nan(size(X)); ,#nyEE
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Mp}U>+8
% figure WOh?/F[@u
% pcolor(x,x,z), shading interp -GH>12YP
% axis square, colorbar *&XOzaVU
% title('Zernike function Z_5^1(r,\theta)') m)V%l0
% t~3!| @3i
% Example 2: P9BShC5
% 5LR
k)@t
% % Display the first 10 Zernike functions l4RZ!K*X_"
% x = -1:0.01:1; O|d"0P
% [X,Y] = meshgrid(x,x); W2'u]1bs
% [theta,r] = cart2pol(X,Y); idEhxvAo
% idx = r<=1; U<K)'l6#2n
% z = nan(size(X)); J.$N<.
% n = [0 1 1 2 2 2 3 3 3 3]; vkp_v1F%+
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ",Mr+;;:[
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ;O+=
6>W
% y = zernfun(n,m,r(idx),theta(idx)); N:_.z~>%
% figure('Units','normalized') uWkW T.>$
% for k = 1:10 7*.nd
% z(idx) = y(:,k); ,?S1e#
% subplot(4,7,Nplot(k)) 3VaL%+T$,
% pcolor(x,x,z), shading interp z#m ~}
% set(gca,'XTick',[],'YTick',[]) \I( g70
% axis square KSz;D+L\
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) &sJ -&7YZ
% end *lc|iq\
% wNtC5
% See also ZERNPOL, ZERNFUN2. T,r?% G{XE
7_HFQT1.N
% Paul Fricker 11/13/2006 {OIB/
{u~JR(C:
R.(PZC vS
% Check and prepare the inputs: %vUY|3G
% ----------------------------- }p5_JXBV
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) r'8qZJgm
error('zernfun:NMvectors','N and M must be vectors.') ~bf4_5
end c^3,e/H
0fu*}v"
if length(n)~=length(m) Ogv9_X8
error('zernfun:NMlength','N and M must be the same length.') {^8?fJ/L
end 5/8=Do](
$O3.ex V
n = n(:); Np7+g`nG
m = m(:); `3g5n:"g\
if any(mod(n-m,2)) z;DNl#|!L
error('zernfun:NMmultiplesof2', ... Wz%H?m:g#
'All N and M must differ by multiples of 2 (including 0).') |P@N}P@
end ,<k%'a!B
9A~w2z\G
if any(m>n) zX lcu_rc
error('zernfun:MlessthanN', ... -^+fZBU;
'Each M must be less than or equal to its corresponding N.') rU+3~|m
end 0 30LT$&!
u8.F_'` z
if any( r>1 | r<0 ) fqjBor}
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 1oe,>\\
end ZLP/&`>8
90#* el
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @Bds0t
error('zernfun:RTHvector','R and THETA must be vectors.') \HXq~Y
end pT{is.RM
By waD?
r = r(:); EHN(K-
theta = theta(:); }yVx"e)
length_r = length(r); & .0A%
if length_r~=length(theta) Z_[ P7P
error('zernfun:RTHlength', ... T*:w1*:
'The number of R- and THETA-values must be equal.') 9 ,:#Q<UM
end `JO>g=,4
? X6M8`
% Check normalization: rY6x):sC
% -------------------- R2v9gz;W
if nargin==5 && ischar(nflag) >TMd1?,
isnorm = strcmpi(nflag,'norm'); ;plBo%EBV
if ~isnorm Z#.1p'3qm1
error('zernfun:normalization','Unrecognized normalization flag.') ^D<CoxG
end dP?prT
else d(|q&b:
isnorm = false; E*O($tS
end !m^;wkrY
1Y87_o'd
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sC.b'1P
% Compute the Zernike Polynomials n&Ckfo_D
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MA,*$BgZ
(>vyWd]
% Determine the required powers of r: hw,nA2w\
% ----------------------------------- Tf~eH!~0
m_abs = abs(m); ,VS(4
rpowers = []; >ei~:z]R
for j = 1:length(n) Lo3N)~5
rpowers = [rpowers m_abs(j):2:n(j)]; XVkw/l
end yI1:L
-
rpowers = unique(rpowers); 'y\Je7
U|]cB
% Pre-compute the values of r raised to the required powers, T:u>7?8o
% and compile them in a matrix: vP x/&x
% ----------------------------- TKM^
if rpowers(1)==0 tPQ|znB|
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 1l$2T
y+
=
rpowern = cat(2,rpowern{:}); sEFQ8S
rpowern = [ones(length_r,1) rpowern]; Wk\(jaL%
else I%u 2 ce
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); '{cSWa|
#
rpowern = cat(2,rpowern{:}); ]o8]b7-
end O`c+y
][wb4$2
% Compute the values of the polynomials: 5afD;0D5TI
% -------------------------------------- /1MmOB
y = zeros(length_r,length(n)); ^#d\HI
for j = 1:length(n) 9T;4aP>6j#
s = 0:(n(j)-m_abs(j))/2; UB.1xcI
pows = n(j):-2:m_abs(j); \rFS^#
for k = length(s):-1:1 \= v.$u"c
p = (1-2*mod(s(k),2))* ... 3Rc*vVnI
prod(2:(n(j)-s(k)))/ ... N$6e KJ]
prod(2:s(k))/ ... hE|P|0U,n
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... sqrLys_S
prod(2:((n(j)+m_abs(j))/2-s(k))); x=t(#R m
idx = (pows(k)==rpowers); g3z/yj
y(:,j) = y(:,j) + p*rpowern(:,idx); J-hJqR*;K
end 6@s!J8!
Ea&|kO|
if isnorm mY.v:
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ^1najUpQ_n
end ~ubvdQEW
end !BsQJ_H
% END: Compute the Zernike Polynomials =0pt-FQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %"0, o$
u#,8bw?1
% Compute the Zernike functions: iM@$uD$_Q2
% ------------------------------ umIGI
idx_pos = m>0; 9B!Sv/)y!r
idx_neg = m<0; ;cXw;$&D
LH5Z@*0#
z = y; 5tYo! f
if any(idx_pos) S MWXP
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ob\-OMNs@
end A`n>9|R
if any(idx_neg) t>[W]%op
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); S@/{34,
end _~z
oMdT!
( zWBrCX
% EOF zernfun