切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11688阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 4WNWn#M  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! V8c&2rNa  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 U@DIO/C,m`  
    function z = zernfun(n,m,r,theta,nflag) %I?uO( @  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. `Fnt#F}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N iku) otUc  
    %   and angular frequency M, evaluated at positions (R,THETA) on the R{u/r%  
    %   unit circle.  N is a vector of positive integers (including 0), and r;SA1n#  
    %   M is a vector with the same number of elements as N.  Each element 'f]\@&Np  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) D&$%JT'3  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, QF Vy2 q  
    %   and THETA is a vector of angles.  R and THETA must have the same  {|a=  
    %   length.  The output Z is a matrix with one column for every (N,M) Wu?4oF  
    %   pair, and one row for every (R,THETA) pair. 6o!+E@V b  
    % 8Y_wS&eB  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike LL4yafh  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), J1KV?aR  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 7:<co  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +<7`Gn(n3  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ;(5b5PA  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~{/"fTif  
    % oYI7 .w  
    %   The Zernike functions are an orthogonal basis on the unit circle. rK7m(  
    %   They are used in disciplines such as astronomy, optics, and 5Z@OgR  
    %   optometry to describe functions on a circular domain. AQ7w5}g+V  
    % V]&0"HX2r!  
    %   The following table lists the first 15 Zernike functions. -YPUrU[)  
    % EPkmBru ^  
    %       n    m    Zernike function           Normalization ef*Vs  
    %       -------------------------------------------------- o)GLh^g_I'  
    %       0    0    1                                 1 PS7ta?V QC  
    %       1    1    r * cos(theta)                    2 W^v3pH-y#  
    %       1   -1    r * sin(theta)                    2 "Y-_83  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Y|stxeOC  
    %       2    0    (2*r^2 - 1)                    sqrt(3) #0GvL=}k  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Rf9;jwU  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) dn!#c=  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) sba+J:#w  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @|BaZq,g  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) u?,M`w0'  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) $q%r}Cdg  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) VB=$D|Ll  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) z3>ldT  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _!2bZ:emG  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) W:VRLT>w>  
    %       -------------------------------------------------- Vz[tgb]-  
    % c%tb6@C  
    %   Example 1: Okxuhzn>"  
    % X"lPXoCN  
    %       % Display the Zernike function Z(n=5,m=1) U|yXJ.Z3  
    %       x = -1:0.01:1; ~?E.U,R  
    %       [X,Y] = meshgrid(x,x); 9 M>.9~  
    %       [theta,r] = cart2pol(X,Y); dPvRbwH<  
    %       idx = r<=1; O1xK\ogv  
    %       z = nan(size(X)); v{tw;Z#  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); g4z*6L,u  
    %       figure 7\.{O$Q  
    %       pcolor(x,x,z), shading interp ^6g^ Q*"  
    %       axis square, colorbar J;8M. _  
    %       title('Zernike function Z_5^1(r,\theta)') :Q]P=-Y8  
    % pg0Sq9qCN  
    %   Example 2: dA 03,s  
    % IPHZ~'M  
    %       % Display the first 10 Zernike functions xNAX)v3Z  
    %       x = -1:0.01:1; Q^trKw~XNy  
    %       [X,Y] = meshgrid(x,x); '/O >#1  
    %       [theta,r] = cart2pol(X,Y); L/*D5k%J  
    %       idx = r<=1; /hF@Xh%hY  
    %       z = nan(size(X)); w&F.LiX^  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ;8Qx~:c  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; }%) ]b*3  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; [8%R*}  
    %       y = zernfun(n,m,r(idx),theta(idx)); <b>g^ `}?D  
    %       figure('Units','normalized') HAKB@h)  
    %       for k = 1:10 8@rddk  
    %           z(idx) = y(:,k); t nvCtuaR  
    %           subplot(4,7,Nplot(k)) !a9`]c  
    %           pcolor(x,x,z), shading interp >a%C'H.A9  
    %           set(gca,'XTick',[],'YTick',[]) ag02=}Q'r  
    %           axis square tXXnHEz  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) nY M2Vxi0+  
    %       end ka=EOiX.  
    % yor6h@F1  
    %   See also ZERNPOL, ZERNFUN2. Q  h~  
    9Ib#A  
    %   Paul Fricker 11/13/2006 dQljG.PiK  
    i U"2uLgb  
    v{r,Wy3  
    % Check and prepare the inputs: 0]k-0#JM  
    % ----------------------------- 2e?a"Vss  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) M4}b l h#  
        error('zernfun:NMvectors','N and M must be vectors.') r}nz )=\Cj  
    end Ci9]#)"c  
    8{4SaT.-Rm  
    if length(n)~=length(m) )`5=6i  
        error('zernfun:NMlength','N and M must be the same length.') GtLn h~)  
    end !-AK@`i.  
    F<0GX!p4u  
    n = n(:); ^!A@:}t>  
    m = m(:); nq%GLUH   
    if any(mod(n-m,2)) Q@(tyW+8U@  
        error('zernfun:NMmultiplesof2', ... sD=iHO Am  
              'All N and M must differ by multiples of 2 (including 0).') 5c ($~EFr  
    end $97EeE:{M  
    9M;k(B!  
    if any(m>n) :meq4!g{1  
        error('zernfun:MlessthanN', ... S; Fj9\2)I  
              'Each M must be less than or equal to its corresponding N.') S;tv4JY  
    end rO[ Zx'a  
    wl5+VC*l0  
    if any( r>1 | r<0 ) l1UN.l'p  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') <wTD}.n  
    end sjj,q?  
    #-7w |  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Y^2]*e%  
        error('zernfun:RTHvector','R and THETA must be vectors.') Z/oP?2/Afh  
    end w%?6s3   
    dV7~C@k6k8  
    r = r(:); $:IEpV{  
    theta = theta(:); !n3J6%b9y/  
    length_r = length(r); ,V`[;~49  
    if length_r~=length(theta) St|B9V?eEB  
        error('zernfun:RTHlength', ... M32Z3<  
              'The number of R- and THETA-values must be equal.') |Ye%HpTTv  
    end >5MHn@  
     2p;N|V  
    % Check normalization: w$$vR   
    % -------------------- ^3lEfI<pBm  
    if nargin==5 && ischar(nflag) |PutTcjQ  
        isnorm = strcmpi(nflag,'norm'); N VBWF  
        if ~isnorm s#>``E!  
            error('zernfun:normalization','Unrecognized normalization flag.')  aX}:O  
        end V9/PkuT  
    else ; %mYsQ  
        isnorm = false; {GhM,-%e  
    end q3e^vMK"  
    ICm/9Onh&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !g7bkA  
    % Compute the Zernike Polynomials J_N`D+m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XAb-K?)   
    |m>{< :  
    % Determine the required powers of r: l~'NqmXe  
    % ----------------------------------- ~9JLqN"  
    m_abs = abs(m); Rdl^-\BV  
    rpowers = []; &pN/+,0E  
    for j = 1:length(n) ~@ML>z 7  
        rpowers = [rpowers m_abs(j):2:n(j)]; (4"Azo*~![  
    end hx:"'m5  
    rpowers = unique(rpowers); hWAZP=H  
    Q|Go7MQZ@k  
    % Pre-compute the values of r raised to the required powers, [fIElH<  
    % and compile them in a matrix: ;To][J  
    % ----------------------------- J`[He$7)  
    if rpowers(1)==0 2>h.K/pC  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); R6E.C!EI  
        rpowern = cat(2,rpowern{:}); dZ{yNh.]  
        rpowern = [ones(length_r,1) rpowern]; j7v?NY  
    else G21cJi*  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7#9yAS+x(  
        rpowern = cat(2,rpowern{:}); 69JC!du  
    end H-'~c \)  
    .!yw@kg  
    % Compute the values of the polynomials: 0})mCVBY  
    % -------------------------------------- #9 u2LK  
    y = zeros(length_r,length(n)); 3}V -'!  
    for j = 1:length(n) Uv%?z0F<C  
        s = 0:(n(j)-m_abs(j))/2; xy Pz_9  
        pows = n(j):-2:m_abs(j);  HV\l86}  
        for k = length(s):-1:1 65AG# O5R  
            p = (1-2*mod(s(k),2))* ... D>m!R[!o  
                       prod(2:(n(j)-s(k)))/              ... N3?@CM^hHw  
                       prod(2:s(k))/                     ... +5oK91o[y  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... oa:30@HSb  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Qv/Kbw N{  
            idx = (pows(k)==rpowers); \zv?r :1t  
            y(:,j) = y(:,j) + p*rpowern(:,idx); @ !m+s~~]h  
        end p}9bZKyf  
         \%$z!]S>  
        if isnorm HRF;qR9v  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); +"F9yb  
        end WJF#+)P:Y  
    end qgk6 \&K[  
    % END: Compute the Zernike Polynomials L>{p>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WbH#@]+DN  
    mrId`<L5l{  
    % Compute the Zernike functions: OM 4, Sevk  
    % ------------------------------ :8jaW?~  
    idx_pos = m>0; 7FvtWE*  
    idx_neg = m<0; FCPi U3  
    x/^,{RrPk  
    z = y; ?JI:>3e  
    if any(idx_pos) gbL!8Z1h  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); j/PNi@  
    end 3PgiV%]  
    if any(idx_neg) 0 V3`rK  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); =#K$b *#  
    end  g1B[RSWv  
    5&N55? G6  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) DU=rsePWE  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. )[d>?%vfd  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated %YbcI|i]<0  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive {B,r  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, WZ]f \S  
    %   and THETA is a vector of angles.  R and THETA must have the same 2!E@Gbhm5  
    %   length.  The output Z is a matrix with one column for every P-value, csNB  \  
    %   and one row for every (R,THETA) pair. ubZcpqm?Q  
    % AHl1{* [  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike }Rx`uRx\  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 8O_0x)X  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) /Xo8 kC  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ">D7wX,.>  
    %   for all p. %}0B7_6B+@  
    % \C eP.,<  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 H(WRm1i"G  
    %   Zernike functions (order N<=7).  In some disciplines it is hEv}g  
    %   traditional to label the first 36 functions using a single mode b w2KD7  
    %   number P instead of separate numbers for the order N and azimuthal Fy8$'oc  
    %   frequency M. cTQ]0<9:e  
    %  a }m>  
    %   Example: kvo V?<!  
    % x{.+i'  
    %       % Display the first 16 Zernike functions |A0)-sVZ  
    %       x = -1:0.01:1; *sbZ{{]e  
    %       [X,Y] = meshgrid(x,x); t/`~(0F  
    %       [theta,r] = cart2pol(X,Y); !0k'fYCa  
    %       idx = r<=1; W$bQS!7y  
    %       p = 0:15; X:1&Pdi  
    %       z = nan(size(X)); ZI>')T<@j"  
    %       y = zernfun2(p,r(idx),theta(idx)); yl'@p 5n  
    %       figure('Units','normalized') &3t[p=  
    %       for k = 1:length(p) TC$)::C1  
    %           z(idx) = y(:,k); (Sd8S`xO  
    %           subplot(4,4,k) 1#m'u5L  
    %           pcolor(x,x,z), shading interp UBZ37P  
    %           set(gca,'XTick',[],'YTick',[]) |*5803h  
    %           axis square N(W;\>P  
    %           title(['Z_{' num2str(p(k)) '}']) qVDf98  
    %       end ccPTJ/%$  
    % CfMCc:8mL  
    %   See also ZERNPOL, ZERNFUN. Zl4X,9Wt  
    `z)q/;}fC  
    %   Paul Fricker 11/13/2006 k(bDj[0q^  
    ^KRe(  
    B2/d%B  
    % Check and prepare the inputs: yJRqX]MLA  
    % ----------------------------- <jwQ&fm)/R  
    if min(size(p))~=1 AIU=56+I\  
        error('zernfun2:Pvector','Input P must be vector.') gFQ\zOlY8a  
    end (O@fgBM  
    :{Mr~Co*  
    if any(p)>35 N3rq8Rk  
        error('zernfun2:P36', ... h%*@82DKK  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ](2\w9i%  
               '(P = 0 to 35).']) HkL`- c0  
    end  'K7m!y  
    c`E0sgp  
    % Get the order and frequency corresonding to the function number: |@*3 nb8  
    % ---------------------------------------------------------------- rQb=/@-  
    p = p(:); 618k-  
    n = ceil((-3+sqrt(9+8*p))/2); 0` y*7.Ip  
    m = 2*p - n.*(n+2); yRyUOTK  
     Ww&r  
    % Pass the inputs to the function ZERNFUN: z9qF<m  
    % ----------------------------------------  gmW-#.  
    switch nargin V=cJdF  
        case 3 uK;&L?WB  
            z = zernfun(n,m,r,theta); 6a!b20IZh  
        case 4 pg9 feIW1  
            z = zernfun(n,m,r,theta,nflag); L}M%z9K` h  
        otherwise WM8])}<L  
            error('zernfun2:nargin','Incorrect number of inputs.') ][TA7pDPV  
    end q*'-G]tH=  
    RE%25t|  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) [O@U@bD9  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. +k{l]-)1  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of <0btwsv}  
    %   order N and frequency M, evaluated at R.  N is a vector of E0*62OI~O  
    %   positive integers (including 0), and M is a vector with the k!0vpps  
    %   same number of elements as N.  Each element k of M must be a #9rCF 3P  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 8'-E>+L   
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is pqDlg  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix t3<HE_B|  
    %   with one column for every (N,M) pair, and one row for every j*_>/gi  
    %   element in R. ,X)/ T!ff  
    % d04fj/B  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- WiqkC#N  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is _+ERX[i  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to CuFlI?~8 z  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 =6d'/D#J  
    %   for all [n,m]. (YY!e2  
    % l{8t;!2t  
    %   The radial Zernike polynomials are the radial portion of the #SR )tU  
    %   Zernike functions, which are an orthogonal basis on the unit FvyC$vip  
    %   circle.  The series representation of the radial Zernike %*^s%NI  
    %   polynomials is 4hWFgk  
    % c?}{>ig/)  
    %          (n-m)/2 7b*9 Th*a  
    %            __ p?#xd!tc2N  
    %    m      \       s                                          n-2s 1[]V @P^  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Mi<}q@]e  
    %    n      s=0 S #C;"se  
    % ')Qb,#/,%  
    %   The following table shows the first 12 polynomials. 5|g#>sx>`q  
    % asJt 6C  
    %       n    m    Zernike polynomial    Normalization (G 9Ku 8Y  
    %       --------------------------------------------- q9B5>Ye)  
    %       0    0    1                        sqrt(2) |k<5yj4?  
    %       1    1    r                           2 ch)#NHZ9F  
    %       2    0    2*r^2 - 1                sqrt(6) b4CXif  
    %       2    2    r^2                      sqrt(6) <ahcE1h  
    %       3    1    3*r^3 - 2*r              sqrt(8) LDbo=w  
    %       3    3    r^3                      sqrt(8) 7 aN}l QM  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) )AXa.y  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ,A9{x\1!  
    %       4    4    r^4                      sqrt(10) t]6 4=  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) S~\u]j^%y  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) +K61-Div  
    %       5    5    r^5                      sqrt(12) / jN &VpDG  
    %       --------------------------------------------- mU;\,96#  
    % `r+`vJ$  
    %   Example: e$4l[&kH_  
    % kjRL|qx`a;  
    %       % Display three example Zernike radial polynomials 24I~{Qy  
    %       r = 0:0.01:1; @\Yu?_a  
    %       n = [3 2 5]; T;pe7"  
    %       m = [1 2 1]; k7=mxXF  
    %       z = zernpol(n,m,r); .xg, j{%(  
    %       figure j12khp?  
    %       plot(r,z) dUP8[y  
    %       grid on }>?"bcJ  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 4Dv42fO  
    % 4fau 9bW  
    %   See also ZERNFUN, ZERNFUN2. 0[!38  
    FQw@ @  
    % A note on the algorithm. Am)XbN')1  
    % ------------------------ +$D~?sk  
    % The radial Zernike polynomials are computed using the series 2@a]x(  
    % representation shown in the Help section above. For many special oT[8Iu  
    % functions, direct evaluation using the series representation can T0lbMp  
    % produce poor numerical results (floating point errors), because ~ MW_=6U  
    % the summation often involves computing small differences between r&D&xsbQ  
    % large successive terms in the series. (In such cases, the functions :\,3=suWq  
    % are often evaluated using alternative methods such as recurrence LE@`TPg$R  
    % relations: see the Legendre functions, for example). For the Zernike xyRZ v]K1  
    % polynomials, however, this problem does not arise, because the ]F1ZeAh5  
    % polynomials are evaluated over the finite domain r = (0,1), and $jNp-5+Q;  
    % because the coefficients for a given polynomial are generally all |d=MX>i|G  
    % of similar magnitude. )Tj\ym-Vl  
    % 3&7$N#v  
    % ZERNPOL has been written using a vectorized implementation: multiple P:2 0i*QU  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] a[Oi  
    % values can be passed as inputs) for a vector of points R.  To achieve C]DvoJmBs  
    % this vectorization most efficiently, the algorithm in ZERNPOL 2z[A&s_  
    % involves pre-determining all the powers p of R that are required to Auf2JH~  
    % compute the outputs, and then compiling the {R^p} into a single s(M8 Y  
    % matrix.  This avoids any redundant computation of the R^p, and \!,qXfTMB  
    % minimizes the sizes of certain intermediate variables. a%)-iL X8&  
    % y1+~IjY  
    %   Paul Fricker 11/13/2006 2?nhkast#=  
    %2TjG  
    |\S p IFH1  
    % Check and prepare the inputs: PV/S zfvIq  
    % ----------------------------- +)l6%QKcW  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) G9P)Y#WB  
        error('zernpol:NMvectors','N and M must be vectors.') FT.;}!"l  
    end m@^!?/as  
    4^Ghn  
    if length(n)~=length(m) h`,!p  
        error('zernpol:NMlength','N and M must be the same length.') :Vx5%4J  
    end 4]3(Vyh`  
    -P|st;?#  
    n = n(:); (lR9x6yf  
    m = m(:); G!3d!$t  
    length_n = length(n); 2^C>orKQ0  
    [p# }=&d  
    if any(mod(n-m,2)) T?'Vb  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') and)>$)|  
    end #Jqa_$\.  
    ESt@%7.F  
    if any(m<0) GV T[)jS  
        error('zernpol:Mpositive','All M must be positive.') "iY=1F"\R  
    end }Pn]j7u!  
    { |[n>k   
    if any(m>n) V,qc[*_3  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') (5(TbyWwD  
    end 1y($h<  
    KWH l+p L  
    if any( r>1 | r<0 ) xf]_@T;  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.')  +*aZ9g  
    end ;VAHgIpx;  
    oWo/QNw9  
    if ~any(size(r)==1) U%nLo[k  
        error('zernpol:Rvector','R must be a vector.') 3/q) %Z^=  
    end xLmgr72D  
    Dw6mSsC/  
    r = r(:); :v>Nz7SB  
    length_r = length(r); <|MF\D'  
    cq,0?2R`t  
    if nargin==4 r1)@ 7Nt  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); CFU'- #b  
        if ~isnorm e7^B3FOx  
            error('zernpol:normalization','Unrecognized normalization flag.') aX$Q}mgb  
        end MQ{.%  
    else wfXm(RYM  
        isnorm = false; ;9rS[$^$O  
    end byTTLs,}d  
    `oq][|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M#7w54~b?M  
    % Compute the Zernike Polynomials ',Q|g^rF]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #{BHH;J+  
    LnZC)cL P/  
    % Determine the required powers of r: U$,W/G}m  
    % ----------------------------------- }; ;Thfd  
    rpowers = []; yxx'g+D*  
    for j = 1:length(n) y]e[fZ`L  
        rpowers = [rpowers m(j):2:n(j)]; 2aR<xcSg  
    end e 1$<,.>  
    rpowers = unique(rpowers); L H8iHB  
    ' M'k$G@Z  
    % Pre-compute the values of r raised to the required powers, 7(S66  
    % and compile them in a matrix: iUua!uC  
    % ----------------------------- $ rU"Krf67  
    if rpowers(1)==0 `, lry7]  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Jb (CH4|7  
        rpowern = cat(2,rpowern{:}); W#.+C6/  
        rpowern = [ones(length_r,1) rpowern]; G)G 257K"~  
    else x<fF1];  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Sd |=*X  
        rpowern = cat(2,rpowern{:}); "h'+!2mf  
    end Sbp].3^j  
    !Enq2  
    % Compute the values of the polynomials: H-|%\9&{S  
    % -------------------------------------- 4Nun-(q  
    z = zeros(length_r,length_n); 0Kytg\p}  
    for j = 1:length_n 7H l>UX,|  
        s = 0:(n(j)-m(j))/2; -/'_XR@1  
        pows = n(j):-2:m(j); T{:~v+I=  
        for k = length(s):-1:1 MoX~ZewWR  
            p = (1-2*mod(s(k),2))* ... lPaTkZw  
                       prod(2:(n(j)-s(k)))/          ... psFY=^69o  
                       prod(2:s(k))/                 ...  nLD1j  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 9-3, DxZ}  
                       prod(2:((n(j)+m(j))/2-s(k))); =G,wR'M  
            idx = (pows(k)==rpowers); R ~ZcTY[8  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 9>6DA^  
        end u$38"&cmA  
         )p^" J|  
        if isnorm 2t,N9@u=UN  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); m0Geq.  
        end Q_r}cL/A  
    end <%iRa$i5  
    A+w'quXn  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  r=&,2meo  
    *I)J%#  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 0|RofL&o  
    p"#\E0GM  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)