非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 nGgc~E$j
function z = zernfun(n,m,r,theta,nflag) .FRF<_`^
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 2Wf qgR[3
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 6="&K_Q7
% and angular frequency M, evaluated at positions (R,THETA) on the at]Q4
% unit circle. N is a vector of positive integers (including 0), and o (NyOC
% M is a vector with the same number of elements as N. Each element ?s} E<Kr
% k of M must be a positive integer, with possible values M(k) = -N(k) |aJ6363f.
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Ic!83-
% and THETA is a vector of angles. R and THETA must have the same Qf(e'e
% length. The output Z is a matrix with one column for every (N,M) 0BE^qe
% pair, and one row for every (R,THETA) pair. <OfzE5
% BXw,Rz }
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )K3
vzX
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <qY>d,+E'
% with delta(m,0) the Kronecker delta, is chosen so that the integral #%tL8/K*
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, [4rMUS7-m"
% and theta=0 to theta=2*pi) is unity. For the non-normalized ;]x5;b9`
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Qs X 59d
% 0-f-
% The Zernike functions are an orthogonal basis on the unit circle. (gB=!1/|G
% They are used in disciplines such as astronomy, optics, and $%8n,FJ[
% optometry to describe functions on a circular domain. K"$ky,tU
% .3&OFM
% The following table lists the first 15 Zernike functions. >*xzSd?\
% U%\2drM&]
% n m Zernike function Normalization iquGLwJ
% -------------------------------------------------- *tPY
% 0 0 1 1 { F8,^+b|
% 1 1 r * cos(theta) 2 6ng g*kE<
% 1 -1 r * sin(theta) 2 XPTB,1g+f
% 2 -2 r^2 * cos(2*theta) sqrt(6) rqJj!{<B
% 2 0 (2*r^2 - 1) sqrt(3) jk}PucV
% 2 2 r^2 * sin(2*theta) sqrt(6) <qt%MM [Y
% 3 -3 r^3 * cos(3*theta) sqrt(8) &B7KWvAy
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 4\es@2 q
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) O G}&%NgH
% 3 3 r^3 * sin(3*theta) sqrt(8) bA,D]
% 4 -4 r^4 * cos(4*theta) sqrt(10) \>7-<7+I6
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N6%q%7F.:
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) *OcptmY<
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) l= S_#
% 4 4 r^4 * sin(4*theta) sqrt(10) ?7a[|-
% -------------------------------------------------- s>I}-=.(Q
% qrYeh`Mv
% Example 1: ?=rh= #
% +t{FF!mL
% % Display the Zernike function Z(n=5,m=1) -~ Q3T9+
% x = -1:0.01:1; '#6DI"vJ
% [X,Y] = meshgrid(x,x); [~S0b
% [theta,r] = cart2pol(X,Y); !W^II>Y
% idx = r<=1; x%&V!L
% z = nan(size(X)); -v@^6bQVp
% z(idx) = zernfun(5,1,r(idx),theta(idx)); j,jUg}b
% figure n//a;m
% pcolor(x,x,z), shading interp O v6=|]cW
% axis square, colorbar 8;3FTF
% title('Zernike function Z_5^1(r,\theta)') r'?&VS-Cj
% -H]O&u3'c
% Example 2: qChPT :a
% 9z}kkYk
% % Display the first 10 Zernike functions R!CUR~F
% x = -1:0.01:1; -E"o)1Pj6C
% [X,Y] = meshgrid(x,x); li^E$9oWC
% [theta,r] = cart2pol(X,Y); w2GY,,R
% idx = r<=1; HjD= .Q
% z = nan(size(X)); 6}2Lt[>O
% n = [0 1 1 2 2 2 3 3 3 3]; zv@o-R$l
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; / KM+PeO
% Nplot = [4 10 12 16 18 20 22 24 26 28]; :+$_(*Z
% y = zernfun(n,m,r(idx),theta(idx)); v)EJ|2`
% figure('Units','normalized') E;0"1
P|S
% for k = 1:10 C?k4<B7V
% z(idx) = y(:,k); 7lu;lAAP
% subplot(4,7,Nplot(k)) u}_q'=<\
% pcolor(x,x,z), shading interp
a 8TE
% set(gca,'XTick',[],'YTick',[]) [MG:Ym).2`
% axis square n2~rrQ
\/p
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) NunT2JP.
% end X3vrD{uNU
% 1|CO>)*D
% See also ZERNPOL, ZERNFUN2. qm@hD>W+
up6LO7drW/
% Paul Fricker 11/13/2006 s!Vtwp9
9UX-)!
$2 0*&4y^
% Check and prepare the inputs: UQy+&;#5
% ----------------------------- $[e*0!e
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) J u7AxTf~
error('zernfun:NMvectors','N and M must be vectors.') e2v,#3Q\
end ZN^Q!v
'|.u*M,b
if length(n)~=length(m) r38CPdE;}
error('zernfun:NMlength','N and M must be the same length.') %'
Fc%3
end fpUX
@b
~mU#u\r(*
n = n(:); klKt^h-
m = m(:); SBA;p7^"
if any(mod(n-m,2)) DpAuI w7|
error('zernfun:NMmultiplesof2', ... %* 8QLI
'All N and M must differ by multiples of 2 (including 0).') #PGExN3e
end EP
@=i
mz''-1YY$
if any(m>n) ~W4<M:R
error('zernfun:MlessthanN', ... R?k1)n
'Each M must be less than or equal to its corresponding N.') F-t-d1w6
end SU^/qF%8
<W1!n$V ]
if any( r>1 | r<0 ) 3ul
error('zernfun:Rlessthan1','All R must be between 0 and 1.') azSS:=A
end f|EWu
Sc(2c.HO*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Ty5\zxC|
error('zernfun:RTHvector','R and THETA must be vectors.') y}|zH
end @/~41\=e
h&XyMm9C
r = r(:); 'RhMzPmY>
theta = theta(:); }x+{=%~N
length_r = length(r); h^4oy^9
if length_r~=length(theta) OTzh=Z^r
error('zernfun:RTHlength', ... LY"/ Q
'The number of R- and THETA-values must be equal.') {.sF&(e
end vwg\qKqSM
)g-*fSa
% Check normalization: ky*-_
% -------------------- 2>mDT
if nargin==5 && ischar(nflag) "8N]1q:$4
isnorm = strcmpi(nflag,'norm'); hFKYRZtP.8
if ~isnorm r$+9grm<
error('zernfun:normalization','Unrecognized normalization flag.')
YEGXhn5E
end m{' q(w}
else GXwV>)!x
isnorm = false; n'&WIf3
end {It4=I)M
StE4n0V
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }[1I_)
% Compute the Zernike Polynomials P5Fm<f8\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :f`1
}/6jom9U?
% Determine the required powers of r: 6(wpf^br2
% ----------------------------------- yjr!8L:m
m_abs = abs(m); D[<8(~VP
rpowers = []; 7Y_S%B:F
for j = 1:length(n) Qv8Z64#
rpowers = [rpowers m_abs(j):2:n(j)]; K@hv[4
end upWq=_
rpowers = unique(rpowers); =U?"#
FG'1;x!
% Pre-compute the values of r raised to the required powers, yNO5h]o
% and compile them in a matrix: Yx,
% ----------------------------- e-Eoe_k
if rpowers(1)==0 @o8\`G
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D:f0Wv
rpowern = cat(2,rpowern{:}); a7Z PV1k
rpowern = [ones(length_r,1) rpowern]; :.@gd7T
else W8\K_M}
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !Y5O3^I=u
rpowern = cat(2,rpowern{:}); R#gip
end G|.>p<q
&K}!R$[,:P
% Compute the values of the polynomials: s`&8tP
% -------------------------------------- #b:8-Lt:M
y = zeros(length_r,length(n)); fAJQ8nb{@]
for j = 1:length(n) a(bgPkPP
s = 0:(n(j)-m_abs(j))/2; NoV2<m$
pows = n(j):-2:m_abs(j); @ %kCe>r
for k = length(s):-1:1 .aF+>#V=Q
p = (1-2*mod(s(k),2))* ... d!8`}L:=M
prod(2:(n(j)-s(k)))/ ... UnGG%
prod(2:s(k))/ ... R}BHRmSQ
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... faThXq8B
prod(2:((n(j)+m_abs(j))/2-s(k))); \9!W^i[+
idx = (pows(k)==rpowers); m"NZ; *d '
y(:,j) = y(:,j) + p*rpowern(:,idx); 9"oc.ue.2D
end OLlNCb#t
<kt,aMw[*
if isnorm {3'z}q
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); kE=}.
end F+|zCEc
end GYZzWN}U
% END: Compute the Zernike Polynomials !|hv49!H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2BEF8o]Np
In5'(UHW:
% Compute the Zernike functions: }_Jr[iaB
% ------------------------------ byoDGUv
idx_pos = m>0; q B5cF_
idx_neg = m<0; cOq^}Ohan
\_qiUvPf\
z = y; \2@OS6LUe
if any(idx_pos) Y;4nIWe
JL
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); x)h5W+$
end `A])4q$
if any(idx_neg) 8" XbW7 ^o
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); (@>X!]{$
end =EgiV<6vcH
tUH#%
% EOF zernfun