非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 d z|or9&
function z = zernfun(n,m,r,theta,nflag) {$oj.V 4
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. VG5i{1
0
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _T60;ZI+^
% and angular frequency M, evaluated at positions (R,THETA) on the )+#` CIv
% unit circle. N is a vector of positive integers (including 0), and H8=N@l
% M is a vector with the same number of elements as N. Each element /l3V3B7
% k of M must be a positive integer, with possible values M(k) = -N(k) .e#w)K
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, "69s)~
% and THETA is a vector of angles. R and THETA must have the same J4hL_iCQ
% length. The output Z is a matrix with one column for every (N,M) O2V
% pair, and one row for every (R,THETA) pair. !t"4!3
% .'6gZKXY
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 10Q ]67
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ZtNN<7
% with delta(m,0) the Kronecker delta, is chosen so that the integral :
6jbt:
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, }{Pp]*I<A
% and theta=0 to theta=2*pi) is unity. For the non-normalized 9X6h
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. G/E+L-N#`
% "Bkfoi
% The Zernike functions are an orthogonal basis on the unit circle. 9
ql~q
% They are used in disciplines such as astronomy, optics, and <)Dj9' _J
% optometry to describe functions on a circular domain. }RF(CwZr(
% \
#F
% The following table lists the first 15 Zernike functions. HZE#Ab*L
% :
$1?i)
% n m Zernike function Normalization G[ PtkPSJ
% -------------------------------------------------- #\{l"-
% 0 0 1 1 H*n-_{h"t
% 1 1 r * cos(theta) 2 =jN.1}
% 1 -1 r * sin(theta) 2 .^`{1%
% 2 -2 r^2 * cos(2*theta) sqrt(6) `v!urE/gg%
% 2 0 (2*r^2 - 1) sqrt(3) yZY \MB/
% 2 2 r^2 * sin(2*theta) sqrt(6) iQ67l\{R
% 3 -3 r^3 * cos(3*theta) sqrt(8) e+7"/icK
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) [>I<#_^~
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) >NV@R&
% 3 3 r^3 * sin(3*theta) sqrt(8) k=$TGqQY?
% 4 -4 r^4 * cos(4*theta) sqrt(10) q>_.[+6
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !/b>sN}
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) BKCiIfkZ
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b#%hY{$j
% 4 4 r^4 * sin(4*theta) sqrt(10) mthA4sz
% -------------------------------------------------- ;+R&}[9,A)
% ?FZ HrA
% Example 1: tU5zF.%
% UW={[h{.|@
% % Display the Zernike function Z(n=5,m=1) =ZznFVJ`={
% x = -1:0.01:1; /KaZHR.
% [X,Y] = meshgrid(x,x); :`#d:.@]o@
% [theta,r] = cart2pol(X,Y); y-b%T|p9
% idx = r<=1; VBlYvZ;$*
% z = nan(size(X)); n+9=1Oo"
% z(idx) = zernfun(5,1,r(idx),theta(idx)); R_cA:3qc~
% figure tKuwpT1Qc
% pcolor(x,x,z), shading interp J1U/.`Oy
% axis square, colorbar !?jrf ]
A@
% title('Zernike function Z_5^1(r,\theta)') Dj?> <@
% }-{H Y
% Example 2: O/(`S<iip
% |3b^~?S
% % Display the first 10 Zernike functions 3pROf#M
% x = -1:0.01:1; &m7]v,&
% [X,Y] = meshgrid(x,x); a5^]20Fa
% [theta,r] = cart2pol(X,Y); ~vhE|f
% idx = r<=1; %\#8{g
% z = nan(size(X)); u~:y\/Y6
% n = [0 1 1 2 2 2 3 3 3 3]; FX&~\kmV'j
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; &|1<v<I5
% Nplot = [4 10 12 16 18 20 22 24 26 28]; qA7>vi%
% y = zernfun(n,m,r(idx),theta(idx)); &ywPuTt
% figure('Units','normalized') Ta0|+IYk<
% for k = 1:10 ,-LwtePJ0
% z(idx) = y(:,k); (,\+tr8r8
% subplot(4,7,Nplot(k))
DPxM'7
% pcolor(x,x,z), shading interp Xl{P8L
% set(gca,'XTick',[],'YTick',[]) UhWNl]Z
% axis square ZQsJL\x[UK
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -Cpl?Io`r5
% end
x+:UN'"r
% \)904W5R
% See also ZERNPOL, ZERNFUN2. IPKbMlV#d
9&2O9Nz6
% Paul Fricker 11/13/2006 wssRA?9<
U$.@]F4&
T*Exs|N2P-
% Check and prepare the inputs: nnEgx;Nl0
% ----------------------------- P )"m0Lu<
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /SR*W5#s
error('zernfun:NMvectors','N and M must be vectors.') dq6m>;`
end 3S@7]Pg
6<SAa#@ey
if length(n)~=length(m) xh,qNnGGi
error('zernfun:NMlength','N and M must be the same length.') [PM2\#K
end }OR@~V{Gj
)[6U^j4
n = n(:); J?1 uKR
m = m(:); A RuA<vQ
if any(mod(n-m,2)) P6`u._mX
error('zernfun:NMmultiplesof2', ... bHYy }weZ
'All N and M must differ by multiples of 2 (including 0).') 4jMFr,
end rQs)O<jl
dr}`H,X"3
if any(m>n) {hjhL: pg
error('zernfun:MlessthanN', ... {SPq$B_VR
'Each M must be less than or equal to its corresponding N.') n1t*sk/J
end G@\1E+Ip
%6,SKg p
if any( r>1 | r<0 ) +F` S>U
error('zernfun:Rlessthan1','All R must be between 0 and 1.') #aJ(m&
end faX#**r
.Iw AK/QS
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Ecefi
pG
error('zernfun:RTHvector','R and THETA must be vectors.') @Zu5Vp J
end Qh3YJ=X&
gQg"j)
r = r(:); K~{$oD7!
theta = theta(:); ~d4 )/y
length_r = length(r); )gIKH{JYL
if length_r~=length(theta) Q7\w+ANf0
error('zernfun:RTHlength', ... wLH>:yKUU
'The number of R- and THETA-values must be equal.') A*2jENgci
end ]EBxl=C}D
)JLdO*H
% Check normalization: XGWSdPJLr
% -------------------- kQSy+q
if nargin==5 && ischar(nflag) mt{nm[D!Xp
isnorm = strcmpi(nflag,'norm'); KIf dafRL
if ~isnorm w^|*m/h|@u
error('zernfun:normalization','Unrecognized normalization flag.') /GN<\_o=q
end -q1??u
else Tod&&T'UW
isnorm = false; 4N_R:B-Vu
end HGs $*
85:=4N%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I<mV+ex
% Compute the Zernike Polynomials TH&U
j1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nu[ML
L-WT]&n_
% Determine the required powers of r: m@2QnA[4
% ----------------------------------- KNvZm;Q6
m_abs = abs(m); Uw. `7b>B
rpowers = []; =JEv,ZGT3
for j = 1:length(n) mbTEp*H
rpowers = [rpowers m_abs(j):2:n(j)]; ]Idk:et
end ]Ji.Zk
rpowers = unique(rpowers); i Dp)FQ$
/sx&=[
D
% Pre-compute the values of r raised to the required powers, wr/"yQA]
% and compile them in a matrix: |O|V-f{l
% ----------------------------- x.!V^HQSN
if rpowers(1)==0 {0wIR_dGX
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Z,
Yb&b
rpowern = cat(2,rpowern{:}); {j?FNOJn
rpowern = [ones(length_r,1) rpowern]; $oID(P
else %~H-)_d20
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?W?c1>
rpowern = cat(2,rpowern{:}); (ylTp]~mR-
end p
Z|V
3
W.f/pu
% Compute the values of the polynomials: 30#s aGV
% -------------------------------------- mZS
>O_E
y = zeros(length_r,length(n)); Eex~xiiV
for j = 1:length(n) %+W{iu[|
s = 0:(n(j)-m_abs(j))/2; \O3m9,a
pows = n(j):-2:m_abs(j); [I,Z2G,Jb
for k = length(s):-1:1 O>bC2;+s
p = (1-2*mod(s(k),2))* ... 7hD>As7`/
prod(2:(n(j)-s(k)))/ ... 2/\r)$
2i
prod(2:s(k))/ ... dk#k bG;
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s^G.]%iU
prod(2:((n(j)+m_abs(j))/2-s(k))); |}s*E_/[
idx = (pows(k)==rpowers); 'j8:vq^d
y(:,j) = y(:,j) + p*rpowern(:,idx); w7.V6S$Ga
end C\Wmq
[
EPI4!3]
if isnorm 9iIhte.
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); m<T%Rb4?@
end %op**@4/t\
end 1y@i}<9F
% END: Compute the Zernike Polynomials ,i?nWlh+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sk<3`x+
p?%y82E
% Compute the Zernike functions: ul6]!Iy
% ------------------------------ .LnGL]/
idx_pos = m>0; F3[T.sf
idx_neg = m<0; In"ZIKaC
i4Q@K,$
z = y; KEo,m
if any(idx_pos) ` xEx^P^7
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); O_muD\
end e\`&p
if any(idx_neg) ed{ -/l~j
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); fM :]&
end >-RQ]?^
4<w.8rR:A
% EOF zernfun