非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Exc9`
7%.
function z = zernfun(n,m,r,theta,nflag) G
8g<>d{j
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. L?WFmn
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N e=B|==E10M
% and angular frequency M, evaluated at positions (R,THETA) on the 8 ~J(](QA
% unit circle. N is a vector of positive integers (including 0), and j g8fU
% M is a vector with the same number of elements as N. Each element VGpWg rmHk
% k of M must be a positive integer, with possible values M(k) = -N(k) M%2+y5
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, _qw?@478
% and THETA is a vector of angles. R and THETA must have the same { g/0x,-Z
% length. The output Z is a matrix with one column for every (N,M) -*
WXMzr
% pair, and one row for every (R,THETA) pair. &jslyQ#
% }BZ"S-hZ
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ji>o!
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :6vm+5!
% with delta(m,0) the Kronecker delta, is chosen so that the integral l49*<nkmq
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <<+\X:,
% and theta=0 to theta=2*pi) is unity. For the non-normalized /OLFcxEWh
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >8WP0Qx/
% IC1NKn<k
% The Zernike functions are an orthogonal basis on the unit circle. VF?<{F
% They are used in disciplines such as astronomy, optics, and ow_W%I=6
% optometry to describe functions on a circular domain. {^CY..3
A
% lij.N)E
% The following table lists the first 15 Zernike functions. -likj#Z
% DW5Y@;[
% n m Zernike function Normalization 5nT"rA
% -------------------------------------------------- LBM ^9W
% 0 0 1 1 5-aj2>=7
% 1 1 r * cos(theta) 2 lQ" p !
% 1 -1 r * sin(theta) 2 nqI@Y)
% 2 -2 r^2 * cos(2*theta) sqrt(6) i;/5Y'KZ
% 2 0 (2*r^2 - 1) sqrt(3) Y9uC&/_C
% 2 2 r^2 * sin(2*theta) sqrt(6) gQ'zW
% 3 -3 r^3 * cos(3*theta) sqrt(8) 9 7GV2]-M
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) &O9 |#YUq
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 8$6Y{$&C
% 3 3 r^3 * sin(3*theta) sqrt(8) jcuB
% 4 -4 r^4 * cos(4*theta) sqrt(10) %E#s\B,w
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sz:g,}~h
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) mZSD(
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Sdt`i
% 4 4 r^4 * sin(4*theta) sqrt(10) A
mNW0.}
% -------------------------------------------------- ,l!Ta"
% [fAV5U
% Example 1: wQ^EYKD
% tnH2sHby
% % Display the Zernike function Z(n=5,m=1) "P7nNa
% x = -1:0.01:1; L^}_~PO N5
% [X,Y] = meshgrid(x,x); ad*m%9Y1Q
% [theta,r] = cart2pol(X,Y); _I@9HC 4
% idx = r<=1; <0b)YJb4M
% z = nan(size(X)); Y$Zx,
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ,?>s>bHV
% figure llcb~
% pcolor(x,x,z), shading interp % tS,}ze
% axis square, colorbar K#6P}tf
% title('Zernike function Z_5^1(r,\theta)') /N =b\-]
% \-h%O
jf4
% Example 2: 8(pp2r lR
% K^1o DP
% % Display the first 10 Zernike functions
gbF+WE
% x = -1:0.01:1; \.MR""@y`{
% [X,Y] = meshgrid(x,x); r_
I5.gK
% [theta,r] = cart2pol(X,Y); ?zh9d%R
% idx = r<=1; @.$| w>>T
% z = nan(size(X)); /rWd=~[MO
% n = [0 1 1 2 2 2 3 3 3 3]; ojaws+(& y
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Q6PHpaj
% Nplot = [4 10 12 16 18 20 22 24 26 28]; '(U-(wTC'/
% y = zernfun(n,m,r(idx),theta(idx)); X <f8,n
% figure('Units','normalized') q!.byrod
% for k = 1:10 .+PI}[g
% z(idx) = y(:,k); .nrMfl_
% subplot(4,7,Nplot(k)) \UPjf]&
% pcolor(x,x,z), shading interp VCV"S>aVf
% set(gca,'XTick',[],'YTick',[]) 6wBx;y
|
% axis square S0zD"T
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @$ne{2J3
% end g%sluT[#
% 8EW_V$>R
% See also ZERNPOL, ZERNFUN2. @:+8?qcP
uxXBEq;
% Paul Fricker 11/13/2006 azCf
BF\XEm?!
'~5LY!H(pT
% Check and prepare the inputs: m8A#~i .
% ----------------------------- 94h]~GqNi
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -.1y(k^4E
error('zernfun:NMvectors','N and M must be vectors.') gwLf '
end 7I&&bWB
kjIAep0rT
if length(n)~=length(m) uZNTHD
error('zernfun:NMlength','N and M must be the same length.') v\c>b:AofD
end %'bM){
~-ia+A6GIV
n = n(:); <CS(c|7
m = m(:); 5 h-@|t
if any(mod(n-m,2)) ,|3MG",@@h
error('zernfun:NMmultiplesof2', ... `95r0t0hh\
'All N and M must differ by multiples of 2 (including 0).') &-;4.op
end PRx8I
.
+9M^7/}H
if any(m>n) K*%9)hq
error('zernfun:MlessthanN', ... t_o['F
'Each M must be less than or equal to its corresponding N.') SEo'(-5
end sZjQ3*<-r
x3hB5p$q
if any( r>1 | r<0 ) 52%2R]G!
error('zernfun:Rlessthan1','All R must be between 0 and 1.') QX!-B
end U bXh,QEG*
Dt}JG6 S
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) |t^E~HLm,
error('zernfun:RTHvector','R and THETA must be vectors.') caU0\VS
end %aHB"vi6
VrHv)lUr
r = r(:); >tYm+coS
theta = theta(:); y`VyQWW
length_r = length(r); Jb0`42
if length_r~=length(theta) 7r7YNn/?
error('zernfun:RTHlength', ... b+%f+zz*h
'The number of R- and THETA-values must be equal.') y=fx%~<>
8
end RmI]1S_=
uW=k K0E
% Check normalization: ^hG-~z<
% -------------------- )Lk639r
if nargin==5 && ischar(nflag) ERUz3mjA/
isnorm = strcmpi(nflag,'norm'); c?tBi9'Y]
if ~isnorm n&L+wqJ
error('zernfun:normalization','Unrecognized normalization flag.') lsJSYJG&
end |ax3sAg
else h:W;^\J:-
isnorm = false; 9Z|jxy
end s(5Y
[glLre^
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u7Y
WnD
% Compute the Zernike Polynomials ?h3Y)5x T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,g%0`SO
$ZUdT
% Determine the required powers of r: J28M@cn
% ----------------------------------- QCD.YFM
m_abs = abs(m); iNWw;_|1
rpowers = []; 7TgOK
for j = 1:length(n) K`yRr`pW
rpowers = [rpowers m_abs(j):2:n(j)]; $~~Jw]
end Ar%%}Gx/
rpowers = unique(rpowers); <C_jF
Lco~,OE
% Pre-compute the values of r raised to the required powers, Ye\rB\-
% and compile them in a matrix: rxVanDb=W
% ----------------------------- cpe+XvBuK
if rpowers(1)==0 4~ q5,^kgB
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]jtK I4
rpowern = cat(2,rpowern{:}); e{h<g>7
rpowern = [ones(length_r,1) rpowern]; NiNM{[3oS
else =qoWCmg"&
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7G:s2432
rpowern = cat(2,rpowern{:}); "$~':) V"
end dWM'fg
d:_t-ZZo
% Compute the values of the polynomials: sz5MH!/PJ
% -------------------------------------- OPetj.C/a
y = zeros(length_r,length(n)); aB*Bz]5;E
for j = 1:length(n) }HL]yDO
s = 0:(n(j)-m_abs(j))/2; m- %E-nr
pows = n(j):-2:m_abs(j); <>n0arAn
for k = length(s):-1:1 a Fc1|.Nm
p = (1-2*mod(s(k),2))* ... $CxKuB(
prod(2:(n(j)-s(k)))/ ... 5 z~1Dw
prod(2:s(k))/ ... d)"3K6s|5
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... -<c=US
prod(2:((n(j)+m_abs(j))/2-s(k))); j>*S5y.{
idx = (pows(k)==rpowers); 4qN{n#{+]
y(:,j) = y(:,j) + p*rpowern(:,idx); K#l:wH_
end @:;)~V
d4m=0G`
if isnorm `Y+J-EQ
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); )) Zf|86N
end z(o,m3@v
end IW)()*8;/
% END: Compute the Zernike Polynomials +y,T4^{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E_gD:PPU5
D_?K"E=fw
% Compute the Zernike functions: pny11C
% ------------------------------ `^91%f
idx_pos = m>0; V@\gS"Tu
idx_neg = m<0; Xk:OL,c
w _u\p a
z = y; NnO~dRx{
if any(idx_pos) 8{Q<N%Jnu
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); B6=ebM`q
end Bm.afsM;
if any(idx_neg) Q.bXM?V)
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); i}b${no
end h-g+g#*
sD<a+Lw}x
% EOF zernfun