非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 |bM?Q$>~
function z = zernfun(n,m,r,theta,nflag) y88lkV4a
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. +gh*n,:|
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -]-?>gkN5
% and angular frequency M, evaluated at positions (R,THETA) on the R)Y*<Na
% unit circle. N is a vector of positive integers (including 0), and ?3t]9z
% M is a vector with the same number of elements as N. Each element kKHGcm^r
% k of M must be a positive integer, with possible values M(k) = -N(k) )*m#RqLQ8
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, G?e\w+}Pj@
% and THETA is a vector of angles. R and THETA must have the same qN@-H6D1=
% length. The output Z is a matrix with one column for every (N,M) *S?vw'n
% pair, and one row for every (R,THETA) pair. F<Y>
% %gbvX^E?
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike M!#[(:
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), TPi=!*$&
% with delta(m,0) the Kronecker delta, is chosen so that the integral >$/PfyY7@#
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, vUD>+*D
% and theta=0 to theta=2*pi) is unity. For the non-normalized [CAV"u)0
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. xU(yc}vw,
% ){M)0,:
% The Zernike functions are an orthogonal basis on the unit circle. ,^m;[Dl7
% They are used in disciplines such as astronomy, optics, and h;RKF\U:"
% optometry to describe functions on a circular domain. J12hjzk6@
% H vezi>M
% The following table lists the first 15 Zernike functions. |\#6?y[o
% qCUn.
mI
% n m Zernike function Normalization vq_v;$9}
% -------------------------------------------------- O@)D%*;v
% 0 0 1 1 cpJ(77e
% 1 1 r * cos(theta) 2 #-^y9B
% 1 -1 r * sin(theta) 2 .G/2CVMj
% 2 -2 r^2 * cos(2*theta) sqrt(6) /)LI1\o
% 2 0 (2*r^2 - 1) sqrt(3) +}-Ecr
% 2 2 r^2 * sin(2*theta) sqrt(6) 9i`sSi8
% 3 -3 r^3 * cos(3*theta) sqrt(8) vN8Xq+
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Ip&Q'"HYj
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) jC3)^E@:"
% 3 3 r^3 * sin(3*theta) sqrt(8) kM o7mkV
% 4 -4 r^4 * cos(4*theta) sqrt(10) r_EuLFM A
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) TQiDbgFo
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) |h{#r7H0
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !3JYG
% 4 4 r^4 * sin(4*theta) sqrt(10) TxDzGC
% -------------------------------------------------- zZ})$Ny(
% ^Ss4<
% Example 1: +u[?8D7Y
% oHvVZ
% % Display the Zernike function Z(n=5,m=1) dxwH C\"5
% x = -1:0.01:1; ??g `c=R!V
% [X,Y] = meshgrid(x,x); 18{" @<wIs
% [theta,r] = cart2pol(X,Y); /'WIgP
% idx = r<=1; A3cW8OClz
% z = nan(size(X)); O9Fg_qfuT_
% z(idx) = zernfun(5,1,r(idx),theta(idx)); lMW4SRk1C
% figure ~V?3A/]
% pcolor(x,x,z), shading interp <-%OXEG
% axis square, colorbar #nS[]UbwZ
% title('Zernike function Z_5^1(r,\theta)') 0{'%j~"
% #5a'Z+
% Example 2: { kF"<W
% A\S1{JrR
% % Display the first 10 Zernike functions dXvp-oi
% x = -1:0.01:1; ZA!yw7~
% [X,Y] = meshgrid(x,x); Or9`E(
% [theta,r] = cart2pol(X,Y); xOgUX6n
% idx = r<=1; wNt-mgir-Q
% z = nan(size(X)); yccF#zU
% n = [0 1 1 2 2 2 3 3 3 3]; DTi\ 4&41
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Dw-i!dq
% Nplot = [4 10 12 16 18 20 22 24 26 28]; #Emz9qTsce
% y = zernfun(n,m,r(idx),theta(idx)); RLtIn!2OU
% figure('Units','normalized') rh%-va9
% for k = 1:10 b( qO fek
% z(idx) = y(:,k); `E4OgO
% subplot(4,7,Nplot(k)) jh3XG
% pcolor(x,x,z), shading interp UC{Tm f
% set(gca,'XTick',[],'YTick',[]) sM0o,l(5
% axis square irRe}
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) MV.$Ay
% end sKU?"|G81G
% v?S~ =$.
% See also ZERNPOL, ZERNFUN2. LG6k
KG
;p U=>
% Paul Fricker 11/13/2006 'CkN
j^&{5s
|Vq&IfP
% Check and prepare the inputs: h~zG*B5F
% ----------------------------- |'bRVqJ
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) f} _d`?K
error('zernfun:NMvectors','N and M must be vectors.') ; Da[jFP
end rt5eN:'qY
<GthJr>1D
if length(n)~=length(m) N)rf/E0
error('zernfun:NMlength','N and M must be the same length.') 3jG
#<4;J
end ^%<t^sE
AT6:&5_`
n = n(:); G>q16nS~KP
m = m(:); m=7Z8@sX},
if any(mod(n-m,2)) O{F)|<L(G
error('zernfun:NMmultiplesof2', ... NcVsQV
'All N and M must differ by multiples of 2 (including 0).') iH#b"h{w
end 3-T}8VsiP
ag
\d4y6
if any(m>n) 3>I
error('zernfun:MlessthanN', ... :1O1I2L0
'Each M must be less than or equal to its corresponding N.') )f6:{ma
end BL&D|e
<P"4Mk7`s
if any( r>1 | r<0 ) P4~=_Hh
error('zernfun:Rlessthan1','All R must be between 0 and 1.') p>c` GDU
end 5cza0CriJ
aYyUe>
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) '\iWp?`$
error('zernfun:RTHvector','R and THETA must be vectors.') X%>Sio
end m@_m"1_;
mm5y'=#
r = r(:); @^)aUOe
theta = theta(:); i47xF7y\
length_r = length(r); G\U'_G>
if length_r~=length(theta) {ta0dS;1
error('zernfun:RTHlength', ... UOg4E
'The number of R- and THETA-values must be equal.') 22<T.c
end vFL\O
|4F3Gu
% Check normalization: {D( _"
% -------------------- dK45&JHoW^
if nargin==5 && ischar(nflag) %!>~2=Q2*
isnorm = strcmpi(nflag,'norm'); $YyN-C
if ~isnorm 2+Tu"oG;rB
error('zernfun:normalization','Unrecognized normalization flag.') nnZ|oEF
end DjX*2O
else 7fOk]Yl[
isnorm = false; 0uf'6<f R
end $:bU<
g`skmHS89
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V0Z\e
_I
% Compute the Zernike Polynomials bLfbzkNV\1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c
QjzI#
KvM}g2"
% Determine the required powers of r: $:YJ<HvG<
% ----------------------------------- \(C_t1
m_abs = abs(m); $1CAfSgKw
rpowers = []; t1)~J
for j = 1:length(n) |^ao,3h#
rpowers = [rpowers m_abs(j):2:n(j)]; oM@X)6P_
end |Q'l&Gt6
rpowers = unique(rpowers); zLs[vg.(
T|h/n\fx)a
% Pre-compute the values of r raised to the required powers, S'I{'jP5
% and compile them in a matrix: {ER%r'(4Z
% ----------------------------- 8qEK6-
if rpowers(1)==0 t^=6czk
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bIP'(B#1K
rpowern = cat(2,rpowern{:}); ;plzJ6>
rpowern = [ones(length_r,1) rpowern]; [S}o[v\
else B@,L83
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?\QEK
rpowern = cat(2,rpowern{:}); }<EA)se"
end T4\F=iw4
S)@95pb
% Compute the values of the polynomials: O1.a=O
% -------------------------------------- $?l?
y = zeros(length_r,length(n)); FZM9aA
for j = 1:length(n) dnby &-+T
s = 0:(n(j)-m_abs(j))/2; FuZ7xM,
pows = n(j):-2:m_abs(j); M~/%V NX
for k = length(s):-1:1 }Om+,!_d
p = (1-2*mod(s(k),2))* ... Z7eD+4gD
prod(2:(n(j)-s(k)))/ ... !cs+tm3
prod(2:s(k))/ ... iB Ld*B|#K
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... D3LW49
prod(2:((n(j)+m_abs(j))/2-s(k))); b@OL!?JP
idx = (pows(k)==rpowers); }ST9&wi~
y(:,j) = y(:,j) + p*rpowern(:,idx); (9N75uCa
end H4HWr6
"RG.27
if isnorm acWm+
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); GdqT4a\S
end [TPr
end U!"+~d)
% END: Compute the Zernike Polynomials 2WjQ-mM#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N/A.1W
Z6}B}5@y
% Compute the Zernike functions: `}s$cgEG
% ------------------------------ Ks.pb !r
idx_pos = m>0; T4`.rnzyRb
idx_neg = m<0; E%M~:JuKd?
yfS`g-j{~
z = y; a G^kL
if any(idx_pos) &v+8RY^F=
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); eKlh }v
end bJD2c\qoc
if any(idx_neg) 1"r6qYN!>
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~n#rATbxf
end FAVw80?5k
t)74(
% EOF zernfun