切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10745阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 tFj[>_d7  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 0'm$hU}  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 1K&_t  
    function z = zernfun(n,m,r,theta,nflag) @gc|Z]CV  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 'c[|\M!u  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ?^X e^1(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the E\_Wpk  
    %   unit circle.  N is a vector of positive integers (including 0), and O>vbAIu  
    %   M is a vector with the same number of elements as N.  Each element M= ]]kJ:I  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 7>@g)%",  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 0`H)c) pP  
    %   and THETA is a vector of angles.  R and THETA must have the same >du _/*8:  
    %   length.  The output Z is a matrix with one column for every (N,M) iHYvH   
    %   pair, and one row for every (R,THETA) pair. Id(wY$C&>  
    % vG2&qjY1  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4tGP- L  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0b3z(x!O  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral <jjn'*44f  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, R3dt-v  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized I k[{,p  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. s/+k[9l2  
    % Fv!KLw@  
    %   The Zernike functions are an orthogonal basis on the unit circle. ^q@6((O  
    %   They are used in disciplines such as astronomy, optics, and Fcp8RBq  
    %   optometry to describe functions on a circular domain. IncHY?ud<  
    % Cg]Iz< <bE  
    %   The following table lists the first 15 Zernike functions. e/J|wM9Ak  
    % lFZ}.  
    %       n    m    Zernike function           Normalization KD(}-zUs  
    %       -------------------------------------------------- xRiWg/Z~  
    %       0    0    1                                 1 %=PGvu  
    %       1    1    r * cos(theta)                    2 =7l'3z8  
    %       1   -1    r * sin(theta)                    2 h ycdk1SN  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) k6(9Rw8bCk  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 5h!ZoB)n  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) OZCbMeB{+J  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]A.tauSW  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) p]^?4  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 3[T<pAZ  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) m1\+~*i  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) i,R+C.6{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sfUKH;xC  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) iH;IXv,b3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M[}aQWT$v  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ? 3'O  
    %       -------------------------------------------------- EWZ?q$  
    % C%LXGMt  
    %   Example 1: wVMR&R<t  
    % jjTb:Z=.'  
    %       % Display the Zernike function Z(n=5,m=1) F-&=N {+  
    %       x = -1:0.01:1; MEled:i  
    %       [X,Y] = meshgrid(x,x); 0^G5 zQlj  
    %       [theta,r] = cart2pol(X,Y); O)EA2`)E  
    %       idx = r<=1; 8~6H\.0Q  
    %       z = nan(size(X)); (;(P3h  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); g UAx8=h  
    %       figure ~ MZEAY9  
    %       pcolor(x,x,z), shading interp #ts;s\!  
    %       axis square, colorbar P-25]-  
    %       title('Zernike function Z_5^1(r,\theta)') fa:V8xa  
    % 7#G8qh<  
    %   Example 2: K4`)srd  
    % lij>u  
    %       % Display the first 10 Zernike functions []#>r k~  
    %       x = -1:0.01:1; ?ZS/`P0}[  
    %       [X,Y] = meshgrid(x,x); M7x*LiKc2  
    %       [theta,r] = cart2pol(X,Y); jVxX! V  
    %       idx = r<=1; %+F%C=GqI  
    %       z = nan(size(X)); %c`P`~sp  
    %       n = [0  1  1  2  2  2  3  3  3  3]; m&&Y=2  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; =IC cN|  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; W5c?f,  
    %       y = zernfun(n,m,r(idx),theta(idx)); $sa5aUg }  
    %       figure('Units','normalized') a|5^4 J \%  
    %       for k = 1:10 %jc"s\  
    %           z(idx) = y(:,k); hP$v,"$  
    %           subplot(4,7,Nplot(k)) ,fR/C  
    %           pcolor(x,x,z), shading interp ]A%S&q  
    %           set(gca,'XTick',[],'YTick',[]) &'{?Y;A  
    %           axis square QY}1i .f  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) A-GU:B  
    %       end 90rY:!e  
    % $(A LxC  
    %   See also ZERNPOL, ZERNFUN2. rV[/G#V>{  
    >x0)  
    %   Paul Fricker 11/13/2006 S`?L\R.:  
    m_;<7W&p]  
    CG397Y^  
    % Check and prepare the inputs: YZllfw$9  
    % ----------------------------- \fjr`t]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LF?MO1!M  
        error('zernfun:NMvectors','N and M must be vectors.') <{"Jy)Uf  
    end 5U[bn=n  
    wrJ:jTh  
    if length(n)~=length(m) 8RE"xJMff  
        error('zernfun:NMlength','N and M must be the same length.') N |nZf5{  
    end \]$TBN dJ4  
    4w<4\zT_U}  
    n = n(:); j7u\.xu9  
    m = m(:); QgB%\mO=  
    if any(mod(n-m,2)) XxeyGs^%9  
        error('zernfun:NMmultiplesof2', ... 1*vt\,G  
              'All N and M must differ by multiples of 2 (including 0).') Du7DMo=l  
    end x |0@T?  
    *s[bq;$  
    if any(m>n) Ph Ep3o&"  
        error('zernfun:MlessthanN', ... _4lhwKYU  
              'Each M must be less than or equal to its corresponding N.') "(cMCBVYdA  
    end oD?c]}3  
    _1EWmHZ?  
    if any( r>1 | r<0 ) Pko2fJt1  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ckCb)r_  
    end DwBKqhu  
    ]Ac&h aAP  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) yD\[`!sWk  
        error('zernfun:RTHvector','R and THETA must be vectors.') ^`< %Pk  
    end =, WW#tD  
    !^m,v19Ds<  
    r = r(:); +w(>UBy-  
    theta = theta(:); ![}q9aeT  
    length_r = length(r); ^}\!Sn  
    if length_r~=length(theta) p^/6Rb"e  
        error('zernfun:RTHlength', ... ;VlA~tv  
              'The number of R- and THETA-values must be equal.') lemE/(`a_  
    end [L4s.l_#  
    JrhDqyk*  
    % Check normalization: Y-vLEIX=  
    % -------------------- =bDy :yY}  
    if nargin==5 && ischar(nflag) ` fm^#Nw  
        isnorm = strcmpi(nflag,'norm'); :^92B?q  
        if ~isnorm k6|wiSyu  
            error('zernfun:normalization','Unrecognized normalization flag.') 8O='Q-& 8  
        end u U;]/  
    else 8/oO}SLF  
        isnorm = false; XZ1oV?Z4  
    end :3$$PdZ  
    "T0s7LWp  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t.YY?5 l  
    % Compute the Zernike Polynomials @Fs2J_v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~wl 4  
    ,4`=gKn  
    % Determine the required powers of r: M+lj g&fy  
    % ----------------------------------- fRT4,;  
    m_abs = abs(m); y?4%eD  
    rpowers = []; ']cRSj.  
    for j = 1:length(n) .*_uXQ  
        rpowers = [rpowers m_abs(j):2:n(j)]; <f+ 9wuZ  
    end PW)Gd +y  
    rpowers = unique(rpowers); d> OLnG> F  
    6Rcl HU  
    % Pre-compute the values of r raised to the required powers, "S ~(|G  
    % and compile them in a matrix: D <SLv,Y  
    % ----------------------------- K[/sVaPZ  
    if rpowers(1)==0 0S}ogU[k  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @}[yC['  
        rpowern = cat(2,rpowern{:}); `of` uB  
        rpowern = [ones(length_r,1) rpowern]; -YD+x PD  
    else "z/)> ?Wn  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /CW 0N@  
        rpowern = cat(2,rpowern{:}); (|kcSnF0  
    end |2'u@<(Z/  
    d=~-8]%\  
    % Compute the values of the polynomials: F\lnG  
    % -------------------------------------- 34e> R?J  
    y = zeros(length_r,length(n)); L2GUrf  
    for j = 1:length(n) M}c gVMW  
        s = 0:(n(j)-m_abs(j))/2; qY^@^)b[  
        pows = n(j):-2:m_abs(j); Mb0l*'ZF  
        for k = length(s):-1:1 piv/QP-X  
            p = (1-2*mod(s(k),2))* ... v0|[w2Q2  
                       prod(2:(n(j)-s(k)))/              ... 2qQG  
                       prod(2:s(k))/                     ... ^xZo .P  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... npD`9ff  
                       prod(2:((n(j)+m_abs(j))/2-s(k)));  |)'6U3  
            idx = (pows(k)==rpowers); R<-u`uX nP  
            y(:,j) = y(:,j) + p*rpowern(:,idx); #MwNyZ  
        end 4x;vn8 yh  
         @s[Vtw%f  
        if isnorm Q+ tUxa+  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 9PZY](/  
        end Y  c]  
    end .>A`FqV$~+  
    % END: Compute the Zernike Polynomials k_$9cVA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]u\K}n6[q  
    1>wQ&{  
    % Compute the Zernike functions: gs?=yNL  
    % ------------------------------ iJH;OV;P  
    idx_pos = m>0; ZBX,4kxK7  
    idx_neg = m<0; sb^%eUU])  
    BEfp3|Stb  
    z = y; V_.n G;  
    if any(idx_pos) Ta 0Ln  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); s'Op|`&X  
    end h9J%NH  
    if any(idx_neg) -kZOve|5  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ;uK">L[u'  
    end k 6)ThIG  
    :j=/>d],%  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 9N?BWv }  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. `z?6.+C  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated kS@6'5U  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive +d=cI  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, E$w2S Q  
    %   and THETA is a vector of angles.  R and THETA must have the same X=Th  
    %   length.  The output Z is a matrix with one column for every P-value, \@ j YY~  
    %   and one row for every (R,THETA) pair. Gx.iZOOH/  
    % =@UgCu>=  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike YH%aPsi  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) j!oD9&W4~  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) w&F/P]1  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 8D[,z 7n  
    %   for all p. }/{G  
    % HRPNZ!B  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 fT&>L  
    %   Zernike functions (order N<=7).  In some disciplines it is ELlTR/NW  
    %   traditional to label the first 36 functions using a single mode XKTX~:  
    %   number P instead of separate numbers for the order N and azimuthal { 4(E @  
    %   frequency M. b<N962 q$q  
    % Lh"!Z  
    %   Example: Gl+Ql?|  
    % <o\2-fWvY  
    %       % Display the first 16 Zernike functions qq)Dh'5*e,  
    %       x = -1:0.01:1; h)vRvfcmY  
    %       [X,Y] = meshgrid(x,x); xq.HR_\  
    %       [theta,r] = cart2pol(X,Y); ~|7jz;$V  
    %       idx = r<=1; KG5h$eM'  
    %       p = 0:15; cnrS.s=  
    %       z = nan(size(X)); >*5+{~k~4  
    %       y = zernfun2(p,r(idx),theta(idx)); quvdm68  
    %       figure('Units','normalized') RH=Tu6i  
    %       for k = 1:length(p) ) ag8]   
    %           z(idx) = y(:,k); ) Apg  
    %           subplot(4,4,k) @y#QHJ.j  
    %           pcolor(x,x,z), shading interp .7!n%Ks  
    %           set(gca,'XTick',[],'YTick',[]) ^YpA@`n  
    %           axis square ?-"%%#  
    %           title(['Z_{' num2str(p(k)) '}']) C#y[UM5\k;  
    %       end LHt{y3l]  
    % eTV%+  
    %   See also ZERNPOL, ZERNFUN. r dc} e"v  
    /Ww_fY  
    %   Paul Fricker 11/13/2006 jf_0IE  
    nmLn]U=  
    /p=9"?  
    % Check and prepare the inputs: I^5T9}>Q  
    % ----------------------------- gD[Fkq$]  
    if min(size(p))~=1 e@-"B9~   
        error('zernfun2:Pvector','Input P must be vector.') *acN/Ca1  
    end $7#N@7  
    Mbt}G|;8H7  
    if any(p)>35 NbD"O8dL~E  
        error('zernfun2:P36', ... t5%\`Yo?  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 1-Fz#v7p  
               '(P = 0 to 35).']) 31w9$H N  
    end 0]F'k8yLN  
    q;))3aQe  
    % Get the order and frequency corresonding to the function number: ?D].Za^km  
    % ---------------------------------------------------------------- 7VF^&6  
    p = p(:); N@M(Iw  
    n = ceil((-3+sqrt(9+8*p))/2); g[rxK n\Z  
    m = 2*p - n.*(n+2); 6~ *w~U  
    :J3ZTyjb  
    % Pass the inputs to the function ZERNFUN: X[frL)k]  
    % ---------------------------------------- KPGX/l  
    switch nargin $II[b-X?S  
        case 3 kKFSCl/g  
            z = zernfun(n,m,r,theta); hSgfp  
        case 4 o@?3i+%}8  
            z = zernfun(n,m,r,theta,nflag); X(-e-:B4;  
        otherwise G;n'c7BV  
            error('zernfun2:nargin','Incorrect number of inputs.') ~zklrBn&  
    end ;CU<\  
    _)J;PbK~  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) [sC]<2 r  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. pV#~$e  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 8&6h()  
    %   order N and frequency M, evaluated at R.  N is a vector of \*}JdEHB  
    %   positive integers (including 0), and M is a vector with the v;S7i>\  
    %   same number of elements as N.  Each element k of M must be a kL.JrbM"  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) SRl:+!@.  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is i|X ;n  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix t[B\'f!  
    %   with one column for every (N,M) pair, and one row for every Y{X79Rd  
    %   element in R. NymS8hxR  
    % [>P@3t(/  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- AL/q6PWi  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 'CT 8vt;  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to =,0E]M Z  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 >9{Gdq[gyr  
    %   for all [n,m]. rn l~i  
    % >]q{vKCAP  
    %   The radial Zernike polynomials are the radial portion of the _B` '1tNx  
    %   Zernike functions, which are an orthogonal basis on the unit X>w(^L*>  
    %   circle.  The series representation of the radial Zernike a3i4eGT-  
    %   polynomials is >Vr+\c  
    % ]/!#:  
    %          (n-m)/2 ?5e:w?&g@  
    %            __ SxLu<  
    %    m      \       s                                          n-2s +K4d(!Sb  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r "d'D:>z]%  
    %    n      s=0 1 dT1DcZ  
    % !/G2vF"  
    %   The following table shows the first 12 polynomials. dxkq*  
    % ANEW^\  
    %       n    m    Zernike polynomial    Normalization  4I7}  
    %       --------------------------------------------- B&&:A4  
    %       0    0    1                        sqrt(2) *.wX9g9\  
    %       1    1    r                           2 n7`R+4/s  
    %       2    0    2*r^2 - 1                sqrt(6) K!6k<  
    %       2    2    r^2                      sqrt(6) / %}Xiqlrd  
    %       3    1    3*r^3 - 2*r              sqrt(8) S[rz=[7{  
    %       3    3    r^3                      sqrt(8) !T/ ^zc;G  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) K1Ms  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Al="ss&2  
    %       4    4    r^4                      sqrt(10) yTWP1  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) PSz|I8 c  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) P.WEu<$  
    %       5    5    r^5                      sqrt(12) LutP&Ebt8  
    %       --------------------------------------------- Uk=jQfA*J  
    % sf4NKe2*  
    %   Example: 8%]o6'd4  
    % d^sS{m\  
    %       % Display three example Zernike radial polynomials iJE  $3  
    %       r = 0:0.01:1; W'x/Kg,w-  
    %       n = [3 2 5]; )%lPa|7s  
    %       m = [1 2 1]; iE$qq ~%  
    %       z = zernpol(n,m,r); n>?o=_|uR  
    %       figure lAU`7uE  
    %       plot(r,z) jovI8Dw >  
    %       grid on 2Z 4Ekq0@  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') B2Qt tcJ  
    % SW|{)L,  
    %   See also ZERNFUN, ZERNFUN2. 1e.V%!Xk  
    n}(/>?/  
    % A note on the algorithm. m[6?v;w  
    % ------------------------ VWqmqR%  
    % The radial Zernike polynomials are computed using the series <eP`Lu"  
    % representation shown in the Help section above. For many special `,|"rn#S  
    % functions, direct evaluation using the series representation can "w.gP8`  
    % produce poor numerical results (floating point errors), because e ?FjN 9  
    % the summation often involves computing small differences between 4Cs |F7R  
    % large successive terms in the series. (In such cases, the functions H1iewsfzH  
    % are often evaluated using alternative methods such as recurrence +6tj w 6  
    % relations: see the Legendre functions, for example). For the Zernike ygoA/*s  
    % polynomials, however, this problem does not arise, because the C&Rv$<qc  
    % polynomials are evaluated over the finite domain r = (0,1), and +~b@W{  
    % because the coefficients for a given polynomial are generally all *;7~aM  
    % of similar magnitude. b_2bg>|;  
    % c \cPmj@  
    % ZERNPOL has been written using a vectorized implementation: multiple ha+)ZF  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] g{wOq{7V  
    % values can be passed as inputs) for a vector of points R.  To achieve #!="b8F  
    % this vectorization most efficiently, the algorithm in ZERNPOL JB.f7-  
    % involves pre-determining all the powers p of R that are required to SPfz/ q{  
    % compute the outputs, and then compiling the {R^p} into a single +?r,Nn  
    % matrix.  This avoids any redundant computation of the R^p, and ZoJ_I >uv  
    % minimizes the sizes of certain intermediate variables. 7]se!k,  
    % *9J >3   
    %   Paul Fricker 11/13/2006 IiW*'0H:/  
    g{{DC )>  
    j4pxu/2  
    % Check and prepare the inputs: XFJGL!wWm[  
    % ----------------------------- /BEE.`6yI5  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3%gn:.9N  
        error('zernpol:NMvectors','N and M must be vectors.') GH ] c  
    end u7  s-  
    |6@s6]%X}  
    if length(n)~=length(m) M&auA  
        error('zernpol:NMlength','N and M must be the same length.') %l{0z<  
    end +S/OMkC  
    "m2g"x a\7  
    n = n(:); .d mUh-  
    m = m(:); yR?S]   
    length_n = length(n);  S9\_ODv  
    YU >NGC]}d  
    if any(mod(n-m,2)) Cn6<I{`\  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') cg`bbZ  
    end D@.+B`bA  
    B?M&j  
    if any(m<0) Q8d-yJs&  
        error('zernpol:Mpositive','All M must be positive.') JTg:3<L  
    end 3i\<#{  
    Z'hHXSXM  
    if any(m>n) )?d(7d-l  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') rnNB!T   
    end ,u.G6"<  
    Bh<DqN  
    if any( r>1 | r<0 ) e'nhP  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') y}5:CZ  
    end NgI n\) =0  
    ]*/%5ZOI&  
    if ~any(size(r)==1) Go;fQ yG  
        error('zernpol:Rvector','R must be a vector.') Ec2?'*s   
    end ~;)H |R5kV  
    /Py1Q  
    r = r(:); rJz`v/:|P  
    length_r = length(r); r2b_$  
    UO~Xzx!e  
    if nargin==4 @O]v.<8  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 58]C``u@Y  
        if ~isnorm LZ'Y3 *  
            error('zernpol:normalization','Unrecognized normalization flag.') Q}zd!*  
        end ~7;AV(\%e  
    else H@|h Nn$@  
        isnorm = false; PNgdWf3  
    end *@+E82D  
    m7 $t$/g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W]B75  
    % Compute the Zernike Polynomials \bXusLI!l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &m5FYm\  
    FTJvkcc?m  
    % Determine the required powers of r: &=>|? m8  
    % ----------------------------------- pB;8yz=  
    rpowers = []; YP4lizs.  
    for j = 1:length(n) L9} %tEP  
        rpowers = [rpowers m(j):2:n(j)]; F-TDS<[S?  
    end +eUWf{(_  
    rpowers = unique(rpowers); a[ Y\5Ojm  
    l $:?82{  
    % Pre-compute the values of r raised to the required powers, K| w\KX0  
    % and compile them in a matrix: d_] sV4[  
    % ----------------------------- OAiSE`  
    if rpowers(1)==0 ,^n5UA`PK  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !+o`,KTYp  
        rpowern = cat(2,rpowern{:}); [sc4ULS &  
        rpowern = [ones(length_r,1) rpowern]; JIOeDuw+  
    else @9AK!I8f  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Dkyw3*LCn%  
        rpowern = cat(2,rpowern{:}); . UaLP  
    end |!6<L_31%  
    :ceT8-PBRx  
    % Compute the values of the polynomials: Y'U]!c9  
    % -------------------------------------- (dnaT-M3  
    z = zeros(length_r,length_n); ]_js-+w6  
    for j = 1:length_n w f""=;  
        s = 0:(n(j)-m(j))/2; x%J.$o[<_  
        pows = n(j):-2:m(j); EC8Fapy  
        for k = length(s):-1:1 U$m[{r2M  
            p = (1-2*mod(s(k),2))* ... |T+YC[T#v  
                       prod(2:(n(j)-s(k)))/          ... [~5<['G  
                       prod(2:s(k))/                 ... N2.(0 G  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... f=cj5T:[  
                       prod(2:((n(j)+m(j))/2-s(k))); =IEei{  
            idx = (pows(k)==rpowers); [,TK"  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 'z$!9ufY,  
        end LUKt!I0l  
         4S\St <  
        if isnorm Vg^,Ky,  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); f7v|N)  
        end %pUA$oUt  
    end g!I0UAm  
    }!^`%\ %\  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    851
    光币
    831
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  LseS8F/q  
    O"m(C[+ [  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ~s -"u *>  
    0%;y'd**Ck  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)