切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11669阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 dD%m=x  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! v%^H9aK_  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Sy_M!`B  
    function z = zernfun(n,m,r,theta,nflag) n|.;g!QDA  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. JY,+eD  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !IS ,[  
    %   and angular frequency M, evaluated at positions (R,THETA) on the uRIr,U^  
    %   unit circle.  N is a vector of positive integers (including 0), and =3'wHl  
    %   M is a vector with the same number of elements as N.  Each element G r)+O  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) K5$ y  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, z,tax`O  
    %   and THETA is a vector of angles.  R and THETA must have the same XV&3h>5  
    %   length.  The output Z is a matrix with one column for every (N,M) |8B[yr.b  
    %   pair, and one row for every (R,THETA) pair. ^RyrUb  
    % 1X5\VY>S`h  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike *K;~V  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), fCKcv |  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral >&R|t_ypw  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #?9o A4Q  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ":Q^/;D}U  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. o,-@vp  
    % ,<BTv;4p  
    %   The Zernike functions are an orthogonal basis on the unit circle. P1kd6]s  
    %   They are used in disciplines such as astronomy, optics, and w%ForDB>P  
    %   optometry to describe functions on a circular domain. ~BC5no  
    % OQq7|dZu  
    %   The following table lists the first 15 Zernike functions. <Wd$6  
    % l},%g%}iMU  
    %       n    m    Zernike function           Normalization }7V/(K  
    %       -------------------------------------------------- Buo1o&&  
    %       0    0    1                                 1 {9)f~EbM!  
    %       1    1    r * cos(theta)                    2 xiI!_0'  
    %       1   -1    r * sin(theta)                    2 jHd~yCq  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) G`pI{_-e  
    %       2    0    (2*r^2 - 1)                    sqrt(3) (n< xoV[e  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) =<g\B?s]  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ()r DM@  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) mUjA9[@   
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) NS1[-ng  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) U5klVl  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) \rpu=*gt  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) l$FHL2?Cp  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5)  >4Lb+]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) * .e^s3q$  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Y/ `fPgE  
    %       -------------------------------------------------- lBCM; #P  
    % olqHa5qn  
    %   Example 1: 7 MfpZgC  
    %  -x7L8Wj  
    %       % Display the Zernike function Z(n=5,m=1) W46sKD;\^W  
    %       x = -1:0.01:1; %>f:m!.  
    %       [X,Y] = meshgrid(x,x); Rk'Dd4"m ,  
    %       [theta,r] = cart2pol(X,Y); ''Hq-Ng  
    %       idx = r<=1; yCz? V[49  
    %       z = nan(size(X)); th]9@7UE,  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 3y@'p(}Az  
    %       figure 8Hhe&B  
    %       pcolor(x,x,z), shading interp eq"~by[Uq  
    %       axis square, colorbar 4U((dx*m  
    %       title('Zernike function Z_5^1(r,\theta)') x*YJ :t  
    % C}Khh`8@5.  
    %   Example 2: A81kb  
    % X \h]N  
    %       % Display the first 10 Zernike functions ,xGlWH wrY  
    %       x = -1:0.01:1; DzYno -]A]  
    %       [X,Y] = meshgrid(x,x); -X |G  
    %       [theta,r] = cart2pol(X,Y); '?-GZ0oM  
    %       idx = r<=1; Dr;@)  
    %       z = nan(size(X)); z_zr3XR9  
    %       n = [0  1  1  2  2  2  3  3  3  3]; E_xpq  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; -i58FJ`B  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; +%FG ti$[  
    %       y = zernfun(n,m,r(idx),theta(idx)); 5!?><{k=%  
    %       figure('Units','normalized') t?/#:J*_7  
    %       for k = 1:10 %1#5 7-  
    %           z(idx) = y(:,k); {&/q\UQ  
    %           subplot(4,7,Nplot(k)) u~G,=n  
    %           pcolor(x,x,z), shading interp TfJB;  
    %           set(gca,'XTick',[],'YTick',[]) Z!#zr@'k  
    %           axis square 'j}%ec1  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^*iZN =\  
    %       end #fa~^]EM]  
    % 5H<rI?  
    %   See also ZERNPOL, ZERNFUN2. 4Jw0m#UN1  
    ;X\!*Loe  
    %   Paul Fricker 11/13/2006 ;VvqKyUh7`  
    IH{g-#U  
    ]e+S~me  
    % Check and prepare the inputs: {4#'`Eejj  
    % ----------------------------- 4).q+{#k  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "5vFa7y  
        error('zernfun:NMvectors','N and M must be vectors.') x5{ zGv.j  
    end s7=]!7QGS!  
    27;*6/>,  
    if length(n)~=length(m) Ua( !:5q?  
        error('zernfun:NMlength','N and M must be the same length.') xGz$M@f  
    end bGDV9su  
    Y(<>[8S m  
    n = n(:); [ h%ci3  
    m = m(:); 8on2 BC2  
    if any(mod(n-m,2)) ji">} -  
        error('zernfun:NMmultiplesof2', ... [_${N,1  
              'All N and M must differ by multiples of 2 (including 0).') OrHnz981K  
    end Nk]r2^.z[  
    eRD s?n3F  
    if any(m>n) 1C:lXx$|  
        error('zernfun:MlessthanN', ... cp[k[7XGD  
              'Each M must be less than or equal to its corresponding N.') 1J^{h5?lU  
    end ]_j{b)t  
    J5IQ  
    if any( r>1 | r<0 ) "M2HiV  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') {ImZ><xe/  
    end DN!:Rm uc  
    I lvjS^j  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) g3j@o/Y  
        error('zernfun:RTHvector','R and THETA must be vectors.') kyz_r6  
    end a&|aK+^8;  
    )j!22tlL  
    r = r(:); _aq3G9C_  
    theta = theta(:); KUZ'$oKg  
    length_r = length(r); jF{zcYU  
    if length_r~=length(theta) $--W,ov5j  
        error('zernfun:RTHlength', ... "w=.2A:q  
              'The number of R- and THETA-values must be equal.') KI#),~n S  
    end D@&0 P&  
    i9uJ%nd:  
    % Check normalization: K5'@$Km  
    % -------------------- < JA5.6<=  
    if nargin==5 && ischar(nflag)  H 2\KI(  
        isnorm = strcmpi(nflag,'norm'); =((#kDrN  
        if ~isnorm E[^66(KR  
            error('zernfun:normalization','Unrecognized normalization flag.') ;E(%s=i  
        end StA5h+[m  
    else *tO7A$LDT  
        isnorm = false; oj[Wzeg%  
    end 4w\cS&X~C  
    ^HQg$}=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mRFcZ.7  
    % Compute the Zernike Polynomials u\.7#D>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~M2w&g;1  
    ;)~loa1\  
    % Determine the required powers of r: %jim] ]<S[  
    % ----------------------------------- Mo0+"`   
    m_abs = abs(m); Jah~h44&  
    rpowers = []; *EvnN:  
    for j = 1:length(n) 5L%A5C&|  
        rpowers = [rpowers m_abs(j):2:n(j)]; +m]$P,yMt  
    end +t})tDPXw  
    rpowers = unique(rpowers); >y &9!G  
    mn)kd  
    % Pre-compute the values of r raised to the required powers, C1Slx !}  
    % and compile them in a matrix: vn9_tL&  
    % ----------------------------- ZV$qv=X  
    if rpowers(1)==0 c7E=1*C<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *O+G}_}  
        rpowern = cat(2,rpowern{:}); M9[Fx= qY  
        rpowern = [ones(length_r,1) rpowern]; ;gu_/[P  
    else Yu>VW\Fb  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +x\b- '  
        rpowern = cat(2,rpowern{:}); 8.ll]3))  
    end Yw vX SA  
    ;|5m;x/a  
    % Compute the values of the polynomials: HE,# pj(D  
    % -------------------------------------- ,nD:W  
    y = zeros(length_r,length(n)); rp (nGiI  
    for j = 1:length(n) oDXUa5x  
        s = 0:(n(j)-m_abs(j))/2; _ko16wfg  
        pows = n(j):-2:m_abs(j); dd@qk`Zl&A  
        for k = length(s):-1:1 .;8T*  
            p = (1-2*mod(s(k),2))* ... b7^VWX%  
                       prod(2:(n(j)-s(k)))/              ... |X,T>{V?y  
                       prod(2:s(k))/                     ... S~.:B2=5K  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... J*vy-[w  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); R_e{H^pY^  
            idx = (pows(k)==rpowers); <O>1Y09C/  
            y(:,j) = y(:,j) + p*rpowern(:,idx); yZE"t[q#O  
        end ]L@VpHEj  
         C0eP/d  
        if isnorm k4FxdX  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); V\^3I7F  
        end eQbDs_  
    end Xt %;]1n  
    % END: Compute the Zernike Polynomials XbsEO>_Z'A  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vr+O)/P})  
    ^Qt4}V=  
    % Compute the Zernike functions: 7{e0^V,\k  
    % ------------------------------ hqd}L~o:  
    idx_pos = m>0; E5(\/;[*`  
    idx_neg = m<0; y w)q3zC  
    j'Z}; 3y  
    z = y; B`3RyM"J@  
    if any(idx_pos) (vMC.y5  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); G%_6" s  
    end #Cks&[!c  
    if any(idx_neg) B#9rqC  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 2 UU5\ jV6  
    end 5-3`@ (/  
    x2(!r3a  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 28J ; 9  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. WlVp|s{TYP  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated \' (_r  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive (jv!q@@2C.  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 9t:P1  
    %   and THETA is a vector of angles.  R and THETA must have the same GInU7y904  
    %   length.  The output Z is a matrix with one column for every P-value, ~= qJSb  
    %   and one row for every (R,THETA) pair. G?e"A0,  
    % 8q*MhH>6I  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike d:jD  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 02OL-bv}HS  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) -7\Rl3c  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 R?@F%J;tx  
    %   for all p. ov>Rvy  
    % EooQLZ  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 rV.04m,  
    %   Zernike functions (order N<=7).  In some disciplines it is VU6nu4   
    %   traditional to label the first 36 functions using a single mode 6) {jHnk)  
    %   number P instead of separate numbers for the order N and azimuthal 7 \)OWp  
    %   frequency M. #Bq.'?c'~  
    % a-w=LpVM  
    %   Example: kNqSBzg  
    % aN9#ATE  
    %       % Display the first 16 Zernike functions >Hb>wlYR  
    %       x = -1:0.01:1; l1BbL5#1Q>  
    %       [X,Y] = meshgrid(x,x); $@k[Xh  
    %       [theta,r] = cart2pol(X,Y); JRQ{Q"`)  
    %       idx = r<=1; :l<)p;\  
    %       p = 0:15; NMq#D$T  
    %       z = nan(size(X)); Z@ AHe`A  
    %       y = zernfun2(p,r(idx),theta(idx)); (`h$+p^-y  
    %       figure('Units','normalized') ~xI1@^ r  
    %       for k = 1:length(p) F ^& Rg  
    %           z(idx) = y(:,k); nk.m G ny  
    %           subplot(4,4,k) '6U~|d  
    %           pcolor(x,x,z), shading interp `;Qw/xl_N  
    %           set(gca,'XTick',[],'YTick',[]) |tL57Wu93  
    %           axis square X :2%U  
    %           title(['Z_{' num2str(p(k)) '}']) +76{S_CZ  
    %       end 242dT/j  
    % P&PPX#%  
    %   See also ZERNPOL, ZERNFUN. zs#s"e:jeR  
    ie4keVlXc  
    %   Paul Fricker 11/13/2006 O 1T JJ8  
    +oKp>-  
    1n}q6oa=  
    % Check and prepare the inputs: aRFLh  
    % ----------------------------- UUb n7&  
    if min(size(p))~=1 %JmRJpCvR  
        error('zernfun2:Pvector','Input P must be vector.') +-_71rJc.  
    end m# #( uSh  
    x:'M\c7  
    if any(p)>35 /7WN,a  
        error('zernfun2:P36', ... s|iph~W!L  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... V=yRE  
               '(P = 0 to 35).']) JNhHQvi\  
    end 6{h+(|.(  
    +Kc1a;  
    % Get the order and frequency corresonding to the function number: Wn;B~  
    % ---------------------------------------------------------------- c2M-/ x-:  
    p = p(:); {v&c5B~,\  
    n = ceil((-3+sqrt(9+8*p))/2); @\-i3EhR  
    m = 2*p - n.*(n+2); zh5'oE&[yC  
    l5sBDiir%  
    % Pass the inputs to the function ZERNFUN: =gI;%M\'  
    % ---------------------------------------- QmQsNcF~z  
    switch nargin 3w&fN3 1  
        case 3 $Pa7B]A,Ae  
            z = zernfun(n,m,r,theta); ;8WgbR)ZLU  
        case 4 5rG&Z5  
            z = zernfun(n,m,r,theta,nflag); qk}(E#.>F\  
        otherwise kOfq6[JC  
            error('zernfun2:nargin','Incorrect number of inputs.') HI}$Z =C  
    end Qd~M;L O"i  
    C;m7 ~R  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) C N9lK29F)  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. At5:X*vD  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of u3{gX{so  
    %   order N and frequency M, evaluated at R.  N is a vector of 1_JxDT,=>  
    %   positive integers (including 0), and M is a vector with the + -e8MvP  
    %   same number of elements as N.  Each element k of M must be a X]'Hz@$N  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) wk { 9  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is M1._{Jw5  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix !\{&^,y  
    %   with one column for every (N,M) pair, and one row for every bDdJh}Vz  
    %   element in R. /EY ^ui  
    % Y.$InQ gL  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- x?Wt\<|h!  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 3#>;h  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to c"ukV_6~J  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 >M.?qs4  
    %   for all [n,m]. 5ug?'TOj'  
    % 'BT}'qN  
    %   The radial Zernike polynomials are the radial portion of the @Z$`c{V<  
    %   Zernike functions, which are an orthogonal basis on the unit 6T6 S9A*nT  
    %   circle.  The series representation of the radial Zernike AYHfe#!  
    %   polynomials is <j1l&H|ux,  
    % 2A3;#v  
    %          (n-m)/2 Uo{h. .7?  
    %            __ yjvH)t/!.  
    %    m      \       s                                          n-2s l ' ]d&  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 9GnNL I{  
    %    n      s=0 l*[.  
    % b6D}GuW  
    %   The following table shows the first 12 polynomials. =J.)xDx*  
    % OwIW;8Z  
    %       n    m    Zernike polynomial    Normalization %UJ!(_  
    %       --------------------------------------------- G'XlsyaWrb  
    %       0    0    1                        sqrt(2) t1HUp dHY  
    %       1    1    r                           2 Kq/W-VyGh  
    %       2    0    2*r^2 - 1                sqrt(6) ~CRr)(M  
    %       2    2    r^2                      sqrt(6) bAeN>~WvY  
    %       3    1    3*r^3 - 2*r              sqrt(8) 8F0+\40  
    %       3    3    r^3                      sqrt(8) qF6YH  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) :W5*fE(i  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ] *{QVn(  
    %       4    4    r^4                      sqrt(10) <!:,(V>F(C  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ogv86d  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) gf+Kr02~  
    %       5    5    r^5                      sqrt(12) GY4 :9Lub7  
    %       --------------------------------------------- W|=?-  
    % HzB&+c? Z  
    %   Example: /:>f$k4~h  
    % rtDm<aUh  
    %       % Display three example Zernike radial polynomials @f0~a  
    %       r = 0:0.01:1; z Q NL){  
    %       n = [3 2 5]; ]}9cOb%I  
    %       m = [1 2 1]; Cog Lo&.  
    %       z = zernpol(n,m,r); ,_`\c7@  
    %       figure 0CY_nn#3  
    %       plot(r,z) P0$q{ j  
    %       grid on sSOI5W3A  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') D8_m_M| P  
    % ~fsAPIQ  
    %   See also ZERNFUN, ZERNFUN2. >q <,FY!A  
    _jef{j  
    % A note on the algorithm. wd*i~A3+?  
    % ------------------------ T4T_32`XR  
    % The radial Zernike polynomials are computed using the series ?)Lktn9%  
    % representation shown in the Help section above. For many special ,oDZ:";  
    % functions, direct evaluation using the series representation can r6]r+!63"  
    % produce poor numerical results (floating point errors), because mKZ?H$E%%  
    % the summation often involves computing small differences between n4)G g~PE  
    % large successive terms in the series. (In such cases, the functions yuswWc '  
    % are often evaluated using alternative methods such as recurrence 8E/$nRfO d  
    % relations: see the Legendre functions, for example). For the Zernike wpY%"x#-+=  
    % polynomials, however, this problem does not arise, because the N##T1 Qm)  
    % polynomials are evaluated over the finite domain r = (0,1), and 7&NRE"?G  
    % because the coefficients for a given polynomial are generally all z>k6T4(  
    % of similar magnitude. @Th.=  
    % -!">SY\  
    % ZERNPOL has been written using a vectorized implementation: multiple {#q<0l  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] r0QjCFSF=  
    % values can be passed as inputs) for a vector of points R.  To achieve >U"f1q*$  
    % this vectorization most efficiently, the algorithm in ZERNPOL -9-%_=6  
    % involves pre-determining all the powers p of R that are required to !`,6E`Y#  
    % compute the outputs, and then compiling the {R^p} into a single ,{itnKJC  
    % matrix.  This avoids any redundant computation of the R^p, and dT,X8 "  
    % minimizes the sizes of certain intermediate variables. JU<<,0  
    % s;}';#  
    %   Paul Fricker 11/13/2006 {exF" ap  
    P%pB]d.qpi  
    +Qu~UK\   
    % Check and prepare the inputs: B/E1nBobC  
    % ----------------------------- wx(| $2{h  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) GfQMdLy\Z  
        error('zernpol:NMvectors','N and M must be vectors.') "rc}mq  
    end Pc? d@tm  
    @Qruc\_  
    if length(n)~=length(m) RNoS7[&  
        error('zernpol:NMlength','N and M must be the same length.') -sO EL{  
    end :@_CQc*yB  
    H|F>BjXn5  
    n = n(:); |\?-k  
    m = m(:); S_c#{4n  
    length_n = length(n); +ls *04  
    ReKnvF~  
    if any(mod(n-m,2)) } 5OlX  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') S?hM  
    end }'kk}2ej`  
    #k)G1Y[c  
    if any(m<0) ?xK9  
        error('zernpol:Mpositive','All M must be positive.') :BMUc-[  
    end 4x8mJ4[H^  
    rVQ:7\=Z  
    if any(m>n) {+ [rJ_  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') `{F8#    
    end Gpe h#Q4x  
    X@x: F|/P  
    if any( r>1 | r<0 ) X /5tZ@  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 3zWY%(8t4?  
    end ?Dd2k%o  
    zCO5 `%14  
    if ~any(size(r)==1) w'M0Rd]  
        error('zernpol:Rvector','R must be a vector.') c)@M7UK[  
    end jE2ziK  
    b^Rg_,s  
    r = r(:); }qV4]*+{  
    length_r = length(r); .vQ2w  
    ]3 0 7 .  
    if nargin==4 L$@RSKYp  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); e yTYg  
        if ~isnorm XFK$p^qu  
            error('zernpol:normalization','Unrecognized normalization flag.') \FVR'A1  
        end 9Od Kh\F (  
    else v~uwQ&AH  
        isnorm = false; Ku,Efr  
    end !3yR?Xem}  
    ` mCcD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dP)8T  
    % Compute the Zernike Polynomials gvA&F |4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C6'[Tn  
     PJk Mn  
    % Determine the required powers of r:  J|6aa  
    % ----------------------------------- A.WJ#1i}E  
    rpowers = []; rK=[&k  
    for j = 1:length(n) f_raICO{R  
        rpowers = [rpowers m(j):2:n(j)]; +#&2*nY  
    end D\* raQ`n  
    rpowers = unique(rpowers); ?1PY]KNaK  
    u =rY  
    % Pre-compute the values of r raised to the required powers, Yl-09)7s  
    % and compile them in a matrix: ;'gzR C  
    % ----------------------------- fVf.u'.8  
    if rpowers(1)==0 @ULr)&9  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); hCr7%`  
        rpowern = cat(2,rpowern{:}); =9pFb!KX  
        rpowern = [ones(length_r,1) rpowern]; S'3l<sY  
    else 0dIJgKanGP  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;2dhue  
        rpowern = cat(2,rpowern{:}); ?`FI!3j  
    end {'d?vm!r  
    Lk3@E u)  
    % Compute the values of the polynomials: 9^ mrsj  
    % -------------------------------------- A|y&\~<A  
    z = zeros(length_r,length_n); ,C=Fgxw(  
    for j = 1:length_n ,qvz:a  
        s = 0:(n(j)-m(j))/2; {Lq uOC1  
        pows = n(j):-2:m(j); d>vGx  
        for k = length(s):-1:1 ~=0zZTG  
            p = (1-2*mod(s(k),2))* ... KbwWrf>  
                       prod(2:(n(j)-s(k)))/          ... NaVZ)  
                       prod(2:s(k))/                 ... zyCl`r[}  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ^8V]g1]fiG  
                       prod(2:((n(j)+m(j))/2-s(k))); { Ja#pt  
            idx = (pows(k)==rpowers); 7qzI]  
            z(:,j) = z(:,j) + p*rpowern(:,idx); p( Qm\g<  
        end )*s.AFu]7x  
         W*U\79H  
        if isnorm vkBngsS  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ?"sk"{  
        end 2!" N9Adt  
    end \W1?Qc1]  
    u.!Pda  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  BeplS  
    +n%WmRf6!  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 OZ7MpQ  
    II[qWs>RG[  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)