切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11263阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 $ !v}xY  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! aXe{U}eow  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 L\YKdUL  
    function z = zernfun(n,m,r,theta,nflag) `mzb(b E  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~Rs#|JWB2V  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ;hwzYXWF  
    %   and angular frequency M, evaluated at positions (R,THETA) on the bni) Qw  
    %   unit circle.  N is a vector of positive integers (including 0), and <FUon  
    %   M is a vector with the same number of elements as N.  Each element iU5P$7.p  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) }taLk@T  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ocF>LR%P  
    %   and THETA is a vector of angles.  R and THETA must have the same IU|kNBo  
    %   length.  The output Z is a matrix with one column for every (N,M) O~27/  
    %   pair, and one row for every (R,THETA) pair. G}VDEC  
    %  `?|Rc  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :\b|dvI<  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), rfs(#  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral :?=Q39O9  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |O-`5_z$r  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized o'Wz*oY))\  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7X}TB\N1  
    % BFWi(58q  
    %   The Zernike functions are an orthogonal basis on the unit circle. wiJRCH  
    %   They are used in disciplines such as astronomy, optics, and Vr/Bu4V"  
    %   optometry to describe functions on a circular domain. _({@B`N}  
    % ZQAO"huk]  
    %   The following table lists the first 15 Zernike functions. R_1qn  
    % H_w%'v&  
    %       n    m    Zernike function           Normalization <~{du ?4n  
    %       -------------------------------------------------- SO;N~D1Z6  
    %       0    0    1                                 1 :"QfF@Z{  
    %       1    1    r * cos(theta)                    2 *0y{ ~@  
    %       1   -1    r * sin(theta)                    2 S8" f]5s  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ~~nqU pK?v  
    %       2    0    (2*r^2 - 1)                    sqrt(3) nBz`q+V  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 0C$8g Y*  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8)  l{$[}<  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) $.rzc]s  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) #DFp[\)1  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ~$<UE}qp  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) I[0!S IqY  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rp's  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) "AC^ rz~U  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m%QSapV  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) <*(^{a. O  
    %       -------------------------------------------------- ])w[   
    % T95t"g?p  
    %   Example 1: lpgd#vr  
    % G.\l qYrXU  
    %       % Display the Zernike function Z(n=5,m=1) hmC*^"C>U=  
    %       x = -1:0.01:1; =\};it{u  
    %       [X,Y] = meshgrid(x,x); ?9mkRd}c  
    %       [theta,r] = cart2pol(X,Y); kn"q:aD  
    %       idx = r<=1; !eI2 r   
    %       z = nan(size(X)); f>polxB%N  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 7 oQ[FdRn*  
    %       figure a.2L*>p  
    %       pcolor(x,x,z), shading interp S($Su7g%_  
    %       axis square, colorbar mr:CuqJ  
    %       title('Zernike function Z_5^1(r,\theta)') Jr;jRe`4c  
    % J00VTb`  
    %   Example 2: i-" p)2d=#  
    % x,n,Qlb  
    %       % Display the first 10 Zernike functions BU|#e5  
    %       x = -1:0.01:1; CGbwmPx  
    %       [X,Y] = meshgrid(x,x); 3g~'5Ao  
    %       [theta,r] = cart2pol(X,Y); LR(-<"  
    %       idx = r<=1; E"~2./+rd  
    %       z = nan(size(X)); #,d I$gY  
    %       n = [0  1  1  2  2  2  3  3  3  3]; =u[k1s?  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; KNLnn;l  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; eE GfM0  
    %       y = zernfun(n,m,r(idx),theta(idx)); X;oa[!k  
    %       figure('Units','normalized') {)8>jxQN  
    %       for k = 1:10 V)(R]BK{  
    %           z(idx) = y(:,k); FRu]kZv2  
    %           subplot(4,7,Nplot(k)) r SkUSe6  
    %           pcolor(x,x,z), shading interp kF"@Ngv.  
    %           set(gca,'XTick',[],'YTick',[]) _Q[$CcDEE  
    %           axis square Gh.[dF?  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @.Ic z  
    %       end 9h4({EE2t  
    % h:Gu`+D>W  
    %   See also ZERNPOL, ZERNFUN2. ).^}AFta  
    5,-U.B}  
    %   Paul Fricker 11/13/2006 ",7Q   
    %h?x!,q Y  
    PYbVy<xc  
    % Check and prepare the inputs: 0j"8@<  
    % ----------------------------- }XO K,Hw  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ez|oN,  
        error('zernfun:NMvectors','N and M must be vectors.') Ms~{9?  
    end (8.Z..PH  
    Sz- J y:j  
    if length(n)~=length(m) ( +pLA"xq  
        error('zernfun:NMlength','N and M must be the same length.') NS%WeAf  
    end ?qCK7 $ j  
    Dn&D!B  
    n = n(:); &e 6CJ  
    m = m(:); g35DV6  
    if any(mod(n-m,2)) M`rl!Ci#  
        error('zernfun:NMmultiplesof2', ... %?e& WLS  
              'All N and M must differ by multiples of 2 (including 0).') \b%kf99  
    end fF b_J`'ue  
    ]gYz 4OT  
    if any(m>n) CC#;c1t  
        error('zernfun:MlessthanN', ... ^*P%=>zO  
              'Each M must be less than or equal to its corresponding N.') N"nd*?  
    end o.0ci+z@  
    ZI=%JU(  
    if any( r>1 | r<0 ) *h}XWBC1q  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6d_'4B  
    end O3I8k\`  
    ek#O3Oz  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ZosP(Tdq  
        error('zernfun:RTHvector','R and THETA must be vectors.') E\Rhz]G(  
    end =EHUR'  
    W[Ls|<Q  
    r = r(:); &*+'>UEe5  
    theta = theta(:); O^oWG&Y;v  
    length_r = length(r); TWA-.>c  
    if length_r~=length(theta) V5UF3'3;}  
        error('zernfun:RTHlength', ... _f$^%?^  
              'The number of R- and THETA-values must be equal.') _d5QbTe  
    end i\,-oO  
    N@t|7~  
    % Check normalization: etTn_v  
    % -------------------- u6AA4(  
    if nargin==5 && ischar(nflag) -[cTx[Z,  
        isnorm = strcmpi(nflag,'norm'); Qk:Y2mL  
        if ~isnorm o,_? ^'@  
            error('zernfun:normalization','Unrecognized normalization flag.') e 9;~P}  
        end gt@m?w(  
    else uG,5BV.M  
        isnorm = false; f|\onHI)>  
    end f&Gt|  
    3kybLOG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vSEuk}pk  
    % Compute the Zernike Polynomials 17%Mw@+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aDU<wxnSvO  
    sB7# ~p A  
    % Determine the required powers of r: h1de[q)  
    % ----------------------------------- 9Z4nAc  
    m_abs = abs(m); >T^;MS  
    rpowers = []; Fld=5B^}  
    for j = 1:length(n) 6 (]Dh;gC  
        rpowers = [rpowers m_abs(j):2:n(j)]; A^USBv+9`  
    end `sn^ysp  
    rpowers = unique(rpowers); '=b/6@&  
    5IE#\FITO|  
    % Pre-compute the values of r raised to the required powers, Ayxkv)%:@)  
    % and compile them in a matrix: nT7%j{e=L  
    % ----------------------------- y [}.yyye  
    if rpowers(1)==0 H?yK~bGQ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -|$@-fY;  
        rpowern = cat(2,rpowern{:}); ! >FYK}c7  
        rpowern = [ones(length_r,1) rpowern]; (A9Fhun  
    else J')o|5S1N  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ag [ZW  
        rpowern = cat(2,rpowern{:}); ?9 <:QE;I>  
    end (ZUHvvL  
    -r`.#c4  
    % Compute the values of the polynomials: gb[5&> (#  
    % -------------------------------------- 6m}Ev95  
    y = zeros(length_r,length(n)); {$0mwAOH "  
    for j = 1:length(n) Ag-(5:  
        s = 0:(n(j)-m_abs(j))/2; igCZ|Ru\  
        pows = n(j):-2:m_abs(j); fDv2JdiU  
        for k = length(s):-1:1 <FV1Wz  
            p = (1-2*mod(s(k),2))* ... .s?L^Z^  
                       prod(2:(n(j)-s(k)))/              ... &* M!lxDN  
                       prod(2:s(k))/                     ...  dm\F  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]E5o1eeg  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); }|h# \$w  
            idx = (pows(k)==rpowers); KLST\ Ln:  
            y(:,j) = y(:,j) + p*rpowern(:,idx); YL!P0o13r  
        end (nQ^  
         xG~P+n7t5$  
        if isnorm l!D}3jD  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5'OrHk;u  
        end c[0}AG J  
    end qU \w=  
    % END: Compute the Zernike Polynomials q }3`|'3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x[ SDl(<@;  
    (~p< P+  
    % Compute the Zernike functions: R$R *'l  
    % ------------------------------ IPS4C[v  
    idx_pos = m>0; G<L;4nA)  
    idx_neg = m<0; {5Q!Y&N.%  
    S,88*F(<^q  
    z = y; ?qb}?&1  
    if any(idx_pos) P\E<9*V  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Yj&F;_~   
    end u+9hL4  
    if any(idx_neg) ahusta  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Ki;*u_4{  
    end O %\*@4zM  
    NDN7[7E  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 0 j^Kgx  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 0- B5`=yU  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated d9k0F OR1  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive R|'ybW'Y  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, !hm]fh_j  
    %   and THETA is a vector of angles.  R and THETA must have the same [CY9^N  
    %   length.  The output Z is a matrix with one column for every P-value, ~]sc^[  
    %   and one row for every (R,THETA) pair. P?%s #I:  
    % ___~D dq  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 2_>N/Z4T  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ~?l | [  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Jx:Y-$  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Kf3"Wf^q   
    %   for all p. =0 #O U  
    % Lw1Yvtn  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 G0Iw-vf  
    %   Zernike functions (order N<=7).  In some disciplines it is wH*-(*N "  
    %   traditional to label the first 36 functions using a single mode d z|or9&  
    %   number P instead of separate numbers for the order N and azimuthal BT !^~S%w  
    %   frequency M. 1Yq!~8  
    % b 1c y$I  
    %   Example: ?4YGT  
    % ;[ZEDF5H  
    %       % Display the first 16 Zernike functions @@f"%2ZR[  
    %       x = -1:0.01:1; yWmJ~/*lG  
    %       [X,Y] = meshgrid(x,x); "69s) ~  
    %       [theta,r] = cart2pol(X,Y); Zpt\p7WQ  
    %       idx = r<=1; w?L6!)oiz  
    %       p = 0:15; XPc^Tq  
    %       z = nan(size(X)); q])K,)  
    %       y = zernfun2(p,r(idx),theta(idx)); 9X6h  
    %       figure('Units','normalized') 1C+13LE$U  
    %       for k = 1:length(p) rSY!vkLE\  
    %           z(idx) = y(:,k); hE{K=Tz$  
    %           subplot(4,4,k) `bq<$e  
    %           pcolor(x,x,z), shading interp z^B,:5Tt  
    %           set(gca,'XTick',[],'YTick',[]) Q0sI(V#  
    %           axis square  ^^sE:  
    %           title(['Z_{' num2str(p(k)) '}']) L(6d&t'|-R  
    %       end [jQp~&nY  
    % "S[450%  
    %   See also ZERNPOL, ZERNFUN. WCZjXDiwJ  
    RNk\.}m  
    %   Paul Fricker 11/13/2006 >58YjLXb  
    K-)] 1BG  
    xK[ou'  
    % Check and prepare the inputs: K8|r&`X0  
    % ----------------------------- /xBb[44z8  
    if min(size(p))~=1 Wu/]MBM  
        error('zernfun2:Pvector','Input P must be vector.') $S6`}3  
    end dl)Y'DI  
    Qp5VP@t  
    if any(p)>35 -m zIT4  
        error('zernfun2:P36', ... XX TL..  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... {lzWrUGO  
               '(P = 0 to 35).']) ?>:g?.+  
    end Wtd/=gmiI  
     4\N ;2N  
    % Get the order and frequency corresonding to the function number: y-b%T|p9  
    % ---------------------------------------------------------------- ) w5SUb  
    p = p(:); C3f' {}  
    n = ceil((-3+sqrt(9+8*p))/2); Tk[ $5u*,  
    m = 2*p - n.*(n+2); EWhK0Vej=  
    nc29j_Id  
    % Pass the inputs to the function ZERNFUN: oCv.Ln1;Z  
    % ---------------------------------------- x8B}ZIbT9  
    switch nargin r|8d 4  
        case 3 n38p!oS  
            z = zernfun(n,m,r,theta); @i_FTN  
        case 4 7aRi5  
            z = zernfun(n,m,r,theta,nflag); _.Nbt(mz  
        otherwise x_}:D *aI  
            error('zernfun2:nargin','Incorrect number of inputs.') &BLJT9Frx  
    end gs[uD5oo<  
    k"%~"9  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) oulVg];  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 'F3f+YD  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of #Y`~(K47  
    %   order N and frequency M, evaluated at R.  N is a vector of 7IH@oMvE  
    %   positive integers (including 0), and M is a vector with the 6<SAa#@ey  
    %   same number of elements as N.  Each element k of M must be a ~$cV: O7  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) [PM 2\#K  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 6I4\q.^qw  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix #U4F0BdA  
    %   with one column for every (N,M) pair, and one row for every :{v#'U/^  
    %   element in R. F#Ryu~,"  
    % 8I?Wt W  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ]NY~2jmX  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is z+wA rPxc  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to $y&E(J  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 qvsd5PeCO  
    %   for all [n,m]. . B9iLI  
    % Jb@V}Ul$  
    %   The radial Zernike polynomials are the radial portion of the X*XZb F"=  
    %   Zernike functions, which are an orthogonal basis on the unit ]L $\ #  
    %   circle.  The series representation of the radial Zernike |Nn)m  
    %   polynomials is py!|\00}  
    % o3^l~iT  
    %          (n-m)/2 Pb4X\9^  
    %            __ 0B/,/KX  
    %    m      \       s                                          n-2s wLH>:yKUU  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r A*2jENgci  
    %    n      s=0 ]EBxl=C}D  
    % )JLdO*H  
    %   The following table shows the first 12 polynomials. XGWSdPJLr  
    % W=><)miQ@  
    %       n    m    Zernike polynomial    Normalization y/cvQY0pU  
    %       --------------------------------------------- SCHP L.n  
    %       0    0    1                        sqrt(2) k8[n+^  
    %       1    1    r                           2 C.yQ=\U2  
    %       2    0    2*r^2 - 1                sqrt(6) +H-6eP  
    %       2    2    r^2                      sqrt(6) xd?f2=dd~h  
    %       3    1    3*r^3 - 2*r              sqrt(8) dI(@ZV{  
    %       3    3    r^3                      sqrt(8) L-WT]&n_  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) m@2QnA[ 4  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) '(f*2eE:  
    %       4    4    r^4                      sqrt(10) ,+DG2u  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) O7m(o:t x3  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) U0y%u  
    %       5    5    r^5                      sqrt(12) QL&ZjSN  
    %       --------------------------------------------- -`kW&I0  
    % X ::JV7hu  
    %   Example: wedbx00o  
    % t7Iv?5]N  
    %       % Display three example Zernike radial polynomials IqaT?+O\?r  
    %       r = 0:0.01:1; v!6  c0a  
    %       n = [3 2 5]; w !-gJmX>  
    %       m = [1 2 1]; 5oW!YJg  
    %       z = zernpol(n,m,r); \5:i;AE  
    %       figure pYZmz  
    %       plot(r,z) KE5kOU;  
    %       grid on a`E#F] Z  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') +US!YU  
    % !Y0Vid  
    %   See also ZERNFUN, ZERNFUN2. (l~AV9!m:  
    !*d I|k  
    % A note on the algorithm. TOB-aAO  
    % ------------------------ mI-]/:  
    % The radial Zernike polynomials are computed using the series _~l5u8{^6  
    % representation shown in the Help section above. For many special X1x#6 oi  
    % functions, direct evaluation using the series representation can np"\19^  
    % produce poor numerical results (floating point errors), because BQE|8g'&T  
    % the summation often involves computing small differences between NqazpB*  
    % large successive terms in the series. (In such cases, the functions jKAEm  
    % are often evaluated using alternative methods such as recurrence jjRi*^d9  
    % relations: see the Legendre functions, for example). For the Zernike B dj!ia;H  
    % polynomials, however, this problem does not arise, because the dC3o9  
    % polynomials are evaluated over the finite domain r = (0,1), and h,u, ^ r  
    % because the coefficients for a given polynomial are generally all UJAv`yjG  
    % of similar magnitude. Db}j?ik/  
    % Xv5wJlc!d  
    % ZERNPOL has been written using a vectorized implementation: multiple >reU#j  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] \R9(x]nZ%  
    % values can be passed as inputs) for a vector of points R.  To achieve K,;E5  
    % this vectorization most efficiently, the algorithm in ZERNPOL B:yGS*.tu  
    % involves pre-determining all the powers p of R that are required to TTX5EDCrC  
    % compute the outputs, and then compiling the {R^p} into a single hc(#{]].  
    % matrix.  This avoids any redundant computation of the R^p, and  j|DsG,  
    % minimizes the sizes of certain intermediate variables. #?aPisV X>  
    % *MFIV02[N  
    %   Paul Fricker 11/13/2006 FBe;1OU  
    #_ ;lf1x!  
    zlSNfgO  
    % Check and prepare the inputs: B?gOHG*vd>  
    % ----------------------------- lBLARz&c#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) k<nZ+! M  
        error('zernpol:NMvectors','N and M must be vectors.') ~|D Ut   
    end wtLO!=B  
    I3{PZhU.  
    if length(n)~=length(m) Fh&G;aEq  
        error('zernpol:NMlength','N and M must be the same length.') y4 #>X  
    end K^)Eb(4  
    `!3SF|x&  
    n = n(:); aB2F C$z  
    m = m(:); 6m/r+?'  
    length_n = length(n); ;LKkbT 5  
    V# }!-Xj  
    if any(mod(n-m,2)) u OmtyX  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') eH'av}  
    end +5g_KS  
    z3{G9Np  
    if any(m<0) q"CVcLi9  
        error('zernpol:Mpositive','All M must be positive.') q5J5>  
    end Y!aSs3c  
    pGP7nw_g  
    if any(m>n) ;>U2|>5V  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') WH#1 zv  
    end bI7Vwyz  
    !]A  
    if any( r>1 | r<0 ) &)# ihK_  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') jodIv=C  
    end TM__I\+Q  
    L81ZbNU?$  
    if ~any(size(r)==1) ;RZ )  
        error('zernpol:Rvector','R must be a vector.') 58}U^IW  
    end XFVE>/H  
    \S `:y?[Y  
    r = r(:); x xHY+(m  
    length_r = length(r); Z\bmW%av  
    w8")w*9Lmg  
    if nargin==4 XAD- 'i  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); #ZUI)9My@  
        if ~isnorm *?@?f&E/  
            error('zernpol:normalization','Unrecognized normalization flag.') NR$3%0 nC6  
        end <`8n^m*  
    else p%up)]?0  
        isnorm = false; ]#i igPZ7  
    end nmee 'oEw  
    x /(^7#u,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y,qI@n<  
    % Compute the Zernike Polynomials np|Sy;:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yt+L0wzzB  
    r5S[-`s;  
    % Determine the required powers of r: )NW)R*m~D  
    % ----------------------------------- j.[.1G*("  
    rpowers = []; x;O[c3I  
    for j = 1:length(n) L8@f-Kk  
        rpowers = [rpowers m(j):2:n(j)]; z#9aP&8Q  
    end (q/e1L-S  
    rpowers = unique(rpowers); ~p6 V,Q  
    %_H<:uGO%  
    % Pre-compute the values of r raised to the required powers, ?d\N(s9F  
    % and compile them in a matrix: +zqn<<9  
    % ----------------------------- ~f2z]JLr:  
    if rpowers(1)==0 3oj' ytxN  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4!{KWL`A  
        rpowern = cat(2,rpowern{:}); -u+vJ6EY  
        rpowern = [ones(length_r,1) rpowern]; djl*H  
    else I.(, hFx;  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3GYw+%Z]  
        rpowern = cat(2,rpowern{:}); dZl5Ic  
    end 1/B>XkCJ  
    5+4IN5o]=  
    % Compute the values of the polynomials: @f>-^  
    % -------------------------------------- G`D`Af/B  
    z = zeros(length_r,length_n); JJ-( Sl  
    for j = 1:length_n n t;m+by  
        s = 0:(n(j)-m(j))/2; V;VHv=9`o  
        pows = n(j):-2:m(j); *uRBzO}  
        for k = length(s):-1:1 ]"As1"  
            p = (1-2*mod(s(k),2))* ... KJUH(]>F  
                       prod(2:(n(j)-s(k)))/          ... dA}-]  
                       prod(2:s(k))/                 ... H064BM  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 'T;P;:!\  
                       prod(2:((n(j)+m(j))/2-s(k))); ,$L4dF3  
            idx = (pows(k)==rpowers); s*KhF'fN  
            z(:,j) = z(:,j) + p*rpowern(:,idx); kOrZv,qFG[  
        end ah$b [\#C  
         3PWL@>zi  
        if isnorm IVnHf_PzF  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); IZ-1c1   
        end Jl8H|<g~/  
    end / y40(l?  
    G^|:N[>B  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  aSQ#k;T[  
    Vv=. -&'  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 sBg.u  
    xdt- ;w|  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)