切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11703阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Vr %ef:uVV  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ^1_[UG  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 \ a(ce?C  
    function z = zernfun(n,m,r,theta,nflag) iy]?j$B$  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @_#\qGY  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N rcY &n^:  
    %   and angular frequency M, evaluated at positions (R,THETA) on the <l5m\A  
    %   unit circle.  N is a vector of positive integers (including 0), and &%t&[Se_~  
    %   M is a vector with the same number of elements as N.  Each element Nv6"c<(L=  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) MHye!T6fO\  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, u3pFH(  
    %   and THETA is a vector of angles.  R and THETA must have the same IvI..#EzG  
    %   length.  The output Z is a matrix with one column for every (N,M) %:;g|PC  
    %   pair, and one row for every (R,THETA) pair. !H9^j6|  
    % $ b53~  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike YgS,5::SU  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), DL!%Np?`  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral =]/<Kd}A.  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, /4+(eI7  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized !=a]Awr\  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. K' <[kh:cl  
    % b`^Q ':^A  
    %   The Zernike functions are an orthogonal basis on the unit circle. uI%7jA~@  
    %   They are used in disciplines such as astronomy, optics, and Zzz94`  
    %   optometry to describe functions on a circular domain. Z,Us<du  
    % 7v0AG:  
    %   The following table lists the first 15 Zernike functions. j:/Z_v'  
    % u*,>$(-u  
    %       n    m    Zernike function           Normalization $ &KkZ  
    %       -------------------------------------------------- \[^! ys  
    %       0    0    1                                 1 N#t`ZC&m'  
    %       1    1    r * cos(theta)                    2 s;* UP   
    %       1   -1    r * sin(theta)                    2 ;DR5?N/a  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) P t/]Z<VL  
    %       2    0    (2*r^2 - 1)                    sqrt(3) AYN dV(  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) FoH1O+e  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) mZPvG  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 0\B{~1(^  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 9n;6zVV%`  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) BzO,(bd!PI  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) \hBzP^*"n  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ; D/6e6  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) N2duhI6  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Vp|?R65S*  
    %       4    4    r^4 * sin(4*theta)             sqrt(10)  [)~1Lu  
    %       -------------------------------------------------- ?h%Jb^#9  
    % 5I^;v;F  
    %   Example 1: 3JBXGT0gJ  
    % ar}-~~h 5  
    %       % Display the Zernike function Z(n=5,m=1) NMf#0Nz-  
    %       x = -1:0.01:1; U,;796h  
    %       [X,Y] = meshgrid(x,x); \]5I atli  
    %       [theta,r] = cart2pol(X,Y); $j<KXR  
    %       idx = r<=1; m_@XoS yxI  
    %       z = nan(size(X)); 0H_uxkB~  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 0`-b57lF&  
    %       figure 9!W$S[ABRB  
    %       pcolor(x,x,z), shading interp $/;K<*O$  
    %       axis square, colorbar &r4|WM/ec  
    %       title('Zernike function Z_5^1(r,\theta)') 9q_{_%G%  
    % $[,4Ib_|  
    %   Example 2: 4"(rZWv  
    % ; teM^zyI  
    %       % Display the first 10 Zernike functions GJr mK  
    %       x = -1:0.01:1; -`* 'p i  
    %       [X,Y] = meshgrid(x,x); iRlZWgj4^  
    %       [theta,r] = cart2pol(X,Y); X~D[CwA|`  
    %       idx = r<=1; <<A#4!f  
    %       z = nan(size(X)); U$& '>%#  
    %       n = [0  1  1  2  2  2  3  3  3  3]; e(|Z<6  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 83t/ \x,Q  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; P~=yTW  
    %       y = zernfun(n,m,r(idx),theta(idx)); /:(A9b-B  
    %       figure('Units','normalized') 7H< IO`  
    %       for k = 1:10 .O5V;&,  
    %           z(idx) = y(:,k); -9,~b9$  
    %           subplot(4,7,Nplot(k)) s_VcC_A  
    %           pcolor(x,x,z), shading interp AguE)I&m  
    %           set(gca,'XTick',[],'YTick',[]) vJ^~J2#5  
    %           axis square }P.Z}n;Uj  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) A`Y^qXFb`  
    %       end PDuBf&/e  
    % D_czUM  
    %   See also ZERNPOL, ZERNFUN2. SM4`Hys;p  
    w3);ZQ|  
    %   Paul Fricker 11/13/2006 4dPTrBQ?  
    1*dN. v:5  
    %gAT\R_f  
    % Check and prepare the inputs: NGl 8*Af   
    % ----------------------------- k)S1Zs~G  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3J &R os  
        error('zernfun:NMvectors','N and M must be vectors.') DlE,aYB  
    end I@/ G#3Zr  
    pQ:^ ziwa3  
    if length(n)~=length(m) .G!xcQ`?  
        error('zernfun:NMlength','N and M must be the same length.') S, AxrQc  
    end "}*D,[C5e  
    {eaR,d~X  
    n = n(:); f/#Id]B  
    m = m(:); ?1JY6v]h4  
    if any(mod(n-m,2)) D4 8e30  
        error('zernfun:NMmultiplesof2', ... 4i)5=H  
              'All N and M must differ by multiples of 2 (including 0).') s!/lQo5/  
    end CMW4Zqau*  
    n*wQgC'vw  
    if any(m>n) EpMxq7*  
        error('zernfun:MlessthanN', ... 9Sxr9FLW~  
              'Each M must be less than or equal to its corresponding N.') :)lG}c  
    end xBTx`+%WS  
    nJN-U+)u  
    if any( r>1 | r<0 ) W{"sB:E  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') \~E?;q!  
    end $e7%>*?m  
    _) x{TnK  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) P|$n   
        error('zernfun:RTHvector','R and THETA must be vectors.') U`qC.s(L  
    end g&xj(SMj-$  
    nwKp8mfP  
    r = r(:); *O~y6|U?  
    theta = theta(:); <.n,:ir  
    length_r = length(r); OA&'T*)-A6  
    if length_r~=length(theta) F~ 5,-atDM  
        error('zernfun:RTHlength', ... vu*e*b$}  
              'The number of R- and THETA-values must be equal.') x:MwM?  
    end 5 :IDl1f5  
    F%|P#CaB  
    % Check normalization: vF$( Y/  
    % -------------------- Gg'!(]v  
    if nargin==5 && ischar(nflag) h8`On/Ur_8  
        isnorm = strcmpi(nflag,'norm'); rwLKY .J]  
        if ~isnorm {wz)^A sy  
            error('zernfun:normalization','Unrecognized normalization flag.') );d07\V  
        end agx8 *x  
    else IAH"vHM  
        isnorm = false; qKfUm:7Q_  
    end {q)d  
    %@Gy<t,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bQautRW  
    % Compute the Zernike Polynomials U*=E(l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =\%ER/  
    gD 6S%O  
    % Determine the required powers of r: t8-Nli*O  
    % ----------------------------------- ),p0V  
    m_abs = abs(m); #("M4}~  
    rpowers = []; RBrb7D{  
    for j = 1:length(n) /&Oo)OB;  
        rpowers = [rpowers m_abs(j):2:n(j)]; O] PM L`  
    end (uvQ/!  
    rpowers = unique(rpowers); c1k[)O~  
    (2# Xa,pb  
    % Pre-compute the values of r raised to the required powers, ]M*`Y[5"  
    % and compile them in a matrix: 5VTVx1P[8  
    % ----------------------------- LsWD^JE.  
    if rpowers(1)==0 W9%v#;2  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); e&z@yy$  
        rpowern = cat(2,rpowern{:}); \.mVLLtG  
        rpowern = [ones(length_r,1) rpowern]; Pb'(Y  
    else BwWSztJ+B  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); w&L~+ Z<  
        rpowern = cat(2,rpowern{:}); dBd7#V:}yV  
    end 4}m9,  
    3LETzsJ  
    % Compute the values of the polynomials: v ^h:E  
    % -------------------------------------- g9" wX?*  
    y = zeros(length_r,length(n)); [ *Dj:A)V^  
    for j = 1:length(n) \lQ3j8 U  
        s = 0:(n(j)-m_abs(j))/2; !ddyJJ^a  
        pows = n(j):-2:m_abs(j); 3UUdJh<~  
        for k = length(s):-1:1 k 3m_L-  
            p = (1-2*mod(s(k),2))* ... rgVRF44X{  
                       prod(2:(n(j)-s(k)))/              ... 3Tu]-.  
                       prod(2:s(k))/                     ... `CVkjLiy  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... e El)wZ,A  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); MMFg{8  
            idx = (pows(k)==rpowers); b~vV++ou_  
            y(:,j) = y(:,j) + p*rpowern(:,idx); pZ>yBY?R8>  
        end .3C::~:  
         \+V"JIStUj  
        if isnorm  !vf:mMo  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); CKn2ZL  
        end "HJ^>%ia  
    end |qMG@  
    % END: Compute the Zernike Polynomials Bn]=T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i=#`7pt%'a  
    B$2b =\  
    % Compute the Zernike functions: vT Eq T  
    % ------------------------------ C}) Dvh  
    idx_pos = m>0; ,)[9RgsE  
    idx_neg = m<0; ,5$G0  
    U}jGr=tu  
    z = y; 9\.0v{&v  
    if any(idx_pos) T]wI)  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); SQ,-45@W  
    end (O+d6oT=Z2  
    if any(idx_neg) $L= Dky7  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _+B y=B.'  
    end ^Q`5+  
    "/6#Z>y  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ,<L4tp+y0  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. <CVX[R]U  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated mj'~-$5T  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 5&s6(?,Eu  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1,  <)TIj6  
    %   and THETA is a vector of angles.  R and THETA must have the same +=J $:/&U  
    %   length.  The output Z is a matrix with one column for every P-value, x4v:67_^  
    %   and one row for every (R,THETA) pair. @}4>:\es  
    % w3(G!:  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike i$] :Y`3h  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) :<P4=P P  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) I]eeV+U8W  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 E'\gd7t ;  
    %   for all p. Fl.?*KBz  
    % !d()'N  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 YxM\qy {Vr  
    %   Zernike functions (order N<=7).  In some disciplines it is 1!^BcrG.  
    %   traditional to label the first 36 functions using a single mode 6 EqN>.  
    %   number P instead of separate numbers for the order N and azimuthal fSbLkd 9  
    %   frequency M. &$|~",  
    % 2B$dT=G  
    %   Example: ?-c|c_|$  
    % @2"3RmYLo  
    %       % Display the first 16 Zernike functions TQO|C?  
    %       x = -1:0.01:1; x,^-a  
    %       [X,Y] = meshgrid(x,x);  s;bGg  
    %       [theta,r] = cart2pol(X,Y); UUfM 7gq  
    %       idx = r<=1; g5|&6+t.  
    %       p = 0:15; ^4`x:6m  
    %       z = nan(size(X)); TI3xt-/  
    %       y = zernfun2(p,r(idx),theta(idx)); 75;RAKGi  
    %       figure('Units','normalized') lknj/i5L  
    %       for k = 1:length(p) cV>?*9z0  
    %           z(idx) = y(:,k); H'3 pHb  
    %           subplot(4,4,k) 3Y#  
    %           pcolor(x,x,z), shading interp H&ek"nP_  
    %           set(gca,'XTick',[],'YTick',[]) 'G65zz  
    %           axis square !X7z y9  
    %           title(['Z_{' num2str(p(k)) '}']) Kv* 1=HES  
    %       end wm#(\dj  
    % #"6l+}  
    %   See also ZERNPOL, ZERNFUN. )*}\fmOv{  
    EC$F|T0f  
    %   Paul Fricker 11/13/2006 &]a(5  
    iWeUsS%zpV  
    b&!}SZ  
    % Check and prepare the inputs: ^?fsJ  
    % ----------------------------- yI8 O#  
    if min(size(p))~=1 vVtkB$]L  
        error('zernfun2:Pvector','Input P must be vector.') ,9G'1%z,  
    end Ydsnu  
    Bs0~P 4^  
    if any(p)>35 B> E4,"  
        error('zernfun2:P36', ... }2LG9B%  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 3q/"4D  
               '(P = 0 to 35).']) O=U,x-Wl  
    end ]u|FcwWc3  
    sB:e:PK  
    % Get the order and frequency corresonding to the function number: \68bXY.  
    % ---------------------------------------------------------------- MMjewGxe  
    p = p(:); P}AwE,&Q  
    n = ceil((-3+sqrt(9+8*p))/2); H8"RdKwg?  
    m = 2*p - n.*(n+2); 2 Ax(q&`9  
    w$$pTk|&n  
    % Pass the inputs to the function ZERNFUN: a?Fz&BE  
    % ---------------------------------------- JT}"CuC  
    switch nargin }6LcimQyK  
        case 3 )X#$G?|Hn  
            z = zernfun(n,m,r,theta); o&q:b9T  
        case 4 c)Q-yPMl)  
            z = zernfun(n,m,r,theta,nflag); M GC=L .  
        otherwise ^Mm%`B7W  
            error('zernfun2:nargin','Incorrect number of inputs.') =Cf@!wZ^  
    end w`boQ_Ir  
    6@0? ~  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) NB3+kf,  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. BThrv$D}  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of #( 4)ps.  
    %   order N and frequency M, evaluated at R.  N is a vector of Y]&2E/oc  
    %   positive integers (including 0), and M is a vector with the l;z+E_sQ  
    %   same number of elements as N.  Each element k of M must be a J'#o6Ud  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) vG}\Amx+  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 1N]-WCxQ  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix vEt=enQ  
    %   with one column for every (N,M) pair, and one row for every N^`S'FVA  
    %   element in R. yYJ +vs  
    % R,!a X"]|  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- A@.ruG$  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is $\oe}`#o  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to H5FWk  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ODCN~7-@  
    %   for all [n,m]. NCkrf]*F-  
    % bA"*^"^  
    %   The radial Zernike polynomials are the radial portion of the :d<F7`k H  
    %   Zernike functions, which are an orthogonal basis on the unit >4lA+1JYk  
    %   circle.  The series representation of the radial Zernike ,mp^t2  
    %   polynomials is <ihJp^kgQ  
    % ^7kYG7/  
    %          (n-m)/2 's8LrO(=  
    %            __ YTe8C9eO  
    %    m      \       s                                          n-2s pkIJbI{aS  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r O[}2  
    %    n      s=0 Em<J{`k6  
    % pR:cnkVF  
    %   The following table shows the first 12 polynomials. Qmv8T ^+  
    % 7B gA+Fz  
    %       n    m    Zernike polynomial    Normalization SsL>K*t5  
    %       --------------------------------------------- _rUsb4r  
    %       0    0    1                        sqrt(2) ltl(S Ii  
    %       1    1    r                           2 I} ]s(  
    %       2    0    2*r^2 - 1                sqrt(6) a^L'-(  
    %       2    2    r^2                      sqrt(6) vdulrnGqL  
    %       3    1    3*r^3 - 2*r              sqrt(8) xtS0D^  
    %       3    3    r^3                      sqrt(8) =-uk7uZM  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) b\"2O4K,)  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) wqn }t]  
    %       4    4    r^4                      sqrt(10) KDAZG+u+  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) m,]h7xx  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Q0_|?]v  
    %       5    5    r^5                      sqrt(12) K@=_&A!  
    %       --------------------------------------------- (@*#Pn|A  
    % 74Il]i1=  
    %   Example: J@9E20$  
    % %lK]m`(  
    %       % Display three example Zernike radial polynomials (Bfy   
    %       r = 0:0.01:1; ~u80v h'  
    %       n = [3 2 5]; HuL9' M  
    %       m = [1 2 1]; (/_Z^m9   
    %       z = zernpol(n,m,r); u/ 74E0$S  
    %       figure r`=!4vY2  
    %       plot(r,z) "IsDL^)A9  
    %       grid on O7Awti-X  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') cW, 6 MAQo  
    % b"#|0d0  
    %   See also ZERNFUN, ZERNFUN2. Qte'f+  
    D\G P+Ota  
    % A note on the algorithm. Y]1b3 9O  
    % ------------------------ A?OaP  
    % The radial Zernike polynomials are computed using the series $zV[- d  
    % representation shown in the Help section above. For many special DadlCEZv  
    % functions, direct evaluation using the series representation can #%tN2cFDN  
    % produce poor numerical results (floating point errors), because (A8X|Y  
    % the summation often involves computing small differences between }q@Jh*  
    % large successive terms in the series. (In such cases, the functions yn5yQ;  
    % are often evaluated using alternative methods such as recurrence 2f@gR9T  
    % relations: see the Legendre functions, for example). For the Zernike v.I>B3bEg  
    % polynomials, however, this problem does not arise, because the {wp"zaa  
    % polynomials are evaluated over the finite domain r = (0,1), and E%C02sI  
    % because the coefficients for a given polynomial are generally all E MKv)5MH  
    % of similar magnitude. liq9P,(  
    % s5ddGiZnBT  
    % ZERNPOL has been written using a vectorized implementation: multiple (f|3(u'e?  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] $q;dsW,8  
    % values can be passed as inputs) for a vector of points R.  To achieve 9ozUg,+Z|J  
    % this vectorization most efficiently, the algorithm in ZERNPOL s4c2  
    % involves pre-determining all the powers p of R that are required to Rm!Iv&{  
    % compute the outputs, and then compiling the {R^p} into a single e|ngnkf(G  
    % matrix.  This avoids any redundant computation of the R^p, and kC)ye"r  
    % minimizes the sizes of certain intermediate variables. g&V1<n\b+  
    % eu|cQ^>  
    %   Paul Fricker 11/13/2006 ]\<^rEU  
    M7;P)da  
    !'^gqaF+  
    % Check and prepare the inputs: }-R|f_2Hp  
    % ----------------------------- H-o>| C  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 1Lb+ &  
        error('zernpol:NMvectors','N and M must be vectors.') aJ1<X8  
    end N&t+*kF_  
    dRXF5Ox5K}  
    if length(n)~=length(m) 3Vl?;~ :5  
        error('zernpol:NMlength','N and M must be the same length.') SXA_P{j&a  
    end e" f/  
    QvH=<$  
    n = n(:); fWywegh  
    m = m(:); ^?H3:CS  
    length_n = length(n); ?_9A`LC*  
    u<l[S  
    if any(mod(n-m,2)) + AyrKs?h  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') -*u7MFq_  
    end 2\M^ _x$N  
    }Q?, O  
    if any(m<0) @exeHcW61  
        error('zernpol:Mpositive','All M must be positive.') X rVF %  
    end ee.#Vhz  
    $Aw"?&d"  
    if any(m>n) emo@&6*  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') !A )2<<4  
    end  3%G>TB  
    ?[}r& f  
    if any( r>1 | r<0 ) <T[ wZ[l  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 1>1&NQ#}  
    end 25RFi24>D  
    oZkjg3  
    if ~any(size(r)==1) fWKI~/eUY|  
        error('zernpol:Rvector','R must be a vector.') RHdcRojF  
    end ua%$r[  
    +pcpb)VL  
    r = r(:); RjY(MSc  
    length_r = length(r); @-9I<)Z/2  
    ykv,>nSXLL  
    if nargin==4 o.ntzN  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); oz(V a!  
        if ~isnorm 9gFema{U  
            error('zernpol:normalization','Unrecognized normalization flag.') 5J^S-K^r  
        end < `r+ZyM  
    else d|!FI/  
        isnorm = false; "&s9;_9  
    end B zmmE2~*  
     x w8 e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G=R`O1-3  
    % Compute the Zernike Polynomials roDE?7x1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\OvOkr  
    Em?Z  
    % Determine the required powers of r: ~)X yrKw  
    % ----------------------------------- 3":vjDq$  
    rpowers = []; #)&kF+  
    for j = 1:length(n) Cku#[?G  
        rpowers = [rpowers m(j):2:n(j)]; 6;WfsG5  
    end $9!2c/  
    rpowers = unique(rpowers); [ZC{eg+D  
    [&e|:1  
    % Pre-compute the values of r raised to the required powers, uURm6mVt9:  
    % and compile them in a matrix: V(hM@ztN  
    % ----------------------------- $l05VZ  
    if rpowers(1)==0 Ah5`Cnv  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]}t6V]`Q  
        rpowern = cat(2,rpowern{:}); ~:`5Y"Av:  
        rpowern = [ones(length_r,1) rpowern]; Y.XNA]|  
    else 37OU  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^U"$uJz!c  
        rpowern = cat(2,rpowern{:}); vGe];  
    end lyY\P6 X  
    77KB-l2  
    % Compute the values of the polynomials: T?vM\o%i3  
    % -------------------------------------- . V5Pr}"y  
    z = zeros(length_r,length_n); )ry7a .39b  
    for j = 1:length_n aQjs5RbP~  
        s = 0:(n(j)-m(j))/2; ;gS)o#v0  
        pows = n(j):-2:m(j); d 8YP<"V&  
        for k = length(s):-1:1 +rAmy  
            p = (1-2*mod(s(k),2))* ... eh\_;2P  
                       prod(2:(n(j)-s(k)))/          ... +,7nsWV  
                       prod(2:s(k))/                 ... oeV. K.  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... b 6kDkE  
                       prod(2:((n(j)+m(j))/2-s(k))); t zn1|  
            idx = (pows(k)==rpowers); Qt-7jmZw1  
            z(:,j) = z(:,j) + p*rpowern(:,idx); /e/%mo  
        end 3K;V3pJ].  
         Y~E 8z  
        if isnorm J,iS<lV_  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); tx` Z?K[  
        end /b&ka&|t  
    end ,7HlYPec  
    {5 V@O_*{  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ` Nv1sA#C  
    R"{P#U,HNO  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 BxiR0snf0q  
    ( m7qc  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)