非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 U8<C4
function z = zernfun(n,m,r,theta,nflag) `9|Uu#x
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. }8`>n4
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N K4OiKYq
% and angular frequency M, evaluated at positions (R,THETA) on the j%81q
% unit circle. N is a vector of positive integers (including 0), and LQ||7>{eX
% M is a vector with the same number of elements as N. Each element `9acR>00$
% k of M must be a positive integer, with possible values M(k) = -N(k) !=6 \70lJ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, +Y>oNX1KN
% and THETA is a vector of angles. R and THETA must have the same ?5j~"
% length. The output Z is a matrix with one column for every (N,M) :_o^oi7G
% pair, and one row for every (R,THETA) pair. 0*AXd=)"*
% |vxmgX)
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]q&NO(:kbq
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Y6(=cm
% with delta(m,0) the Kronecker delta, is chosen so that the integral A5sz[k
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^szi[Cj
% and theta=0 to theta=2*pi) is unity. For the non-normalized KD--w(4
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. w`gT]Rn
% Bz>5OuOVS\
% The Zernike functions are an orthogonal basis on the unit circle. dKa2_|k'
% They are used in disciplines such as astronomy, optics, and *dsI>4%m
% optometry to describe functions on a circular domain. ff00s+
% &+yoPF
% The following table lists the first 15 Zernike functions. |ZOdfr4uW
% Au:R]7
% n m Zernike function Normalization ^S!;snhn
% -------------------------------------------------- aF>&X-2
% 0 0 1 1 F#.ph?W
% 1 1 r * cos(theta) 2 8uA!Vrp3
% 1 -1 r * sin(theta) 2 T*'WS!z
% 2 -2 r^2 * cos(2*theta) sqrt(6) g~76c.u-
% 2 0 (2*r^2 - 1) sqrt(3) z8xBq%97us
% 2 2 r^2 * sin(2*theta) sqrt(6) !w;/ J^
% 3 -3 r^3 * cos(3*theta) sqrt(8) rCb#E}
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) A>_,tt
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) K'f2S
% 3 3 r^3 * sin(3*theta) sqrt(8) YoWXHg!U
% 4 -4 r^4 * cos(4*theta) sqrt(10) Ns5P,[pBOZ
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Fe.90)
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) aDu[iaZ
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "CZv5)
% 4 4 r^4 * sin(4*theta) sqrt(10) )g KC}_h=
% -------------------------------------------------- 1pjx8*!B
% _z9~\N/@[
% Example 1: S27s Rxfr
% ,RP 9v*
% % Display the Zernike function Z(n=5,m=1) :@-.whj
% x = -1:0.01:1; kU.@HJ[@j
% [X,Y] = meshgrid(x,x); .bj:tmz
% [theta,r] = cart2pol(X,Y); &2I8!Ia
% idx = r<=1; {uJ"%
% z = nan(size(X)); Ty7)j]b"zl
% z(idx) = zernfun(5,1,r(idx),theta(idx)); l+X\>,
% figure s^Xs*T@~h
% pcolor(x,x,z), shading interp Z$zX%w
% axis square, colorbar r`<x@,
% title('Zernike function Z_5^1(r,\theta)') 0f_A"K
% xC}' "``s
% Example 2: U} w@,6
% $9:
@M.
% % Display the first 10 Zernike functions D|^N9lDaQ
% x = -1:0.01:1; m;L3c(r.
% [X,Y] = meshgrid(x,x); n~tb z"&
% [theta,r] = cart2pol(X,Y); ukRmjHbLf
% idx = r<=1; tD4-Llj6
% z = nan(size(X)); >Psq" Xj
% n = [0 1 1 2 2 2 3 3 3 3]; ($W%&(:/
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; [jrfh>v
% Nplot = [4 10 12 16 18 20 22 24 26 28]; MH0wpHz
% y = zernfun(n,m,r(idx),theta(idx)); v5U'ky:
% figure('Units','normalized') i'\-Y]?[
% for k = 1:10 .tQ(q=#
% z(idx) = y(:,k); S\!vDtD@
% subplot(4,7,Nplot(k)) VN'\c3;
% pcolor(x,x,z), shading interp KVUub'k
% set(gca,'XTick',[],'YTick',[]) < RtyW
% axis square YHMJ5IM@.
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {7;QZk(
% end MU\Pggs
% 1kR. .p<"
% See also ZERNPOL, ZERNFUN2. AWssDbh/[
%s^1 de
% Paul Fricker 11/13/2006 ;zV<63tW
3i'01z
WWo"De@
% Check and prepare the inputs: B<n[yiJ}
% ----------------------------- 5(E&jKn&
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) L
4Z+8*
error('zernfun:NMvectors','N and M must be vectors.') (U_HX2f
end ]lqZ9rO
rS8\Vf]F
if length(n)~=length(m) 62y:i
error('zernfun:NMlength','N and M must be the same length.') jzBW'8
end xq=!1>
{<-wm-]mo
n = n(:); RDjw|V
m = m(:); Z:es7<#y
if any(mod(n-m,2)) }^j8<
error('zernfun:NMmultiplesof2', ... e4tC[6 ;
'All N and M must differ by multiples of 2 (including 0).') sLXM$SMBh
end zmL
VFGnS
po,Ue>n/
if any(m>n) \7pEn
error('zernfun:MlessthanN', ... `H$=hr
'Each M must be less than or equal to its corresponding N.') z%iPk'^
end rm$dv%q
aw~h03R_Z
if any( r>1 | r<0 ) ^S?f"''y3
error('zernfun:Rlessthan1','All R must be between 0 and 1.') x%HxM~&
end Gf:dN_e6.
5`g VziS!S
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;[[6[i
error('zernfun:RTHvector','R and THETA must be vectors.') #g0N/
end 11kyrv
cMnN} '
r = r(:); C=v+e%)x@
theta = theta(:); "Z;({a$v
length_r = length(r); 5MKM;6cA&p
if length_r~=length(theta) 4;r,U{uR
error('zernfun:RTHlength', ... "@/pQoLy
'The number of R- and THETA-values must be equal.') =&qH%S6
end ~TeOl|!lE+
0a#v}w^*
% Check normalization: (E&M[hH+
% -------------------- S]~5iO_bst
if nargin==5 && ischar(nflag) q9{)nU
isnorm = strcmpi(nflag,'norm'); /!A"[Tyt
if ~isnorm !.q9:|oc
error('zernfun:normalization','Unrecognized normalization flag.') j(]O$" "
end 4z26a
else ^cSfkBh
isnorm = false; &zJ*afi)
end IYXN}M.=
WBkx!{\z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (Z[c7
% Compute the Zernike Polynomials u%E8&T8,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s/s&d pT*
-1d*zySL
% Determine the required powers of r: c00rq ~<K
% ----------------------------------- D %)L"5C
m_abs = abs(m); m)"(S
rpowers = []; B8n[ E
for j = 1:length(n) NH}o`x/
rpowers = [rpowers m_abs(j):2:n(j)]; \[.qN
end %"fO^KA.h]
rpowers = unique(rpowers); _KxR~k^
)oz2V9X{
% Pre-compute the values of r raised to the required powers, $C fp1#
% and compile them in a matrix: Kg"eS`-
% ----------------------------- J'7;+.s(
if rpowers(1)==0 VP^Yf_
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); B@0#*I
Rm
rpowern = cat(2,rpowern{:}); % XZ&(
rpowern = [ones(length_r,1) rpowern]; ztX$kX:_m
else |9IOZ>H9
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 92A9gY
rpowern = cat(2,rpowern{:}); knph549
end ~u2f`67{
alHA&YC{K
% Compute the values of the polynomials: -T{2R:\{
% -------------------------------------- j>:N0:
y = zeros(length_r,length(n)); 5;p|iT
for j = 1:length(n) |3!)
s = 0:(n(j)-m_abs(j))/2; Pmd[2/][
pows = n(j):-2:m_abs(j); j4=iHnE;
for k = length(s):-1:1 Ddg!1SF
p = (1-2*mod(s(k),2))* ... Wkjp:`(-$r
prod(2:(n(j)-s(k)))/ ... aGi`(|shW
prod(2:s(k))/ ... JJ}DYv
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... H)gc"aRe;Y
prod(2:((n(j)+m_abs(j))/2-s(k))); ZAN~TG<n
idx = (pows(k)==rpowers); % X %zK1
y(:,j) = y(:,j) + p*rpowern(:,idx); Cb+$|Kg/"b
end NW`.7'aWT
2gZp
O9
if isnorm QSa#}vCp*
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Rk#'^}
end Y:,C_^$w;
end GWPBP-)0
% END: Compute the Zernike Polynomials c!7WRHJE_a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1 Ga3[g
}8aqSD<:
% Compute the Zernike functions: zb!1o0, J
% ------------------------------ _0'X!1"
idx_pos = m>0; un-%p#
idx_neg = m<0; uyB 2
&,jUaC5I
z = y; 2z;3NUL$n
if any(idx_pos) 7]T(=gg /
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ux(~+<k
end MkJBKS
if any(idx_neg) =d^hiR!GN
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); GU2TQx{V
end tJ >>cFx
,-E'059
% EOF zernfun