非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 JJO"\^,;~
function z = zernfun(n,m,r,theta,nflag) {QJ`.6Kt
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0eIR)#j*
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %vzpp\t
% and angular frequency M, evaluated at positions (R,THETA) on the D':A-E
% unit circle. N is a vector of positive integers (including 0), and ~A( Pa-
% M is a vector with the same number of elements as N. Each element ^.7xu/T
% k of M must be a positive integer, with possible values M(k) = -N(k) ]5CFL$_Q{
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, umYdr'p!v
% and THETA is a vector of angles. R and THETA must have the same c0~'5Mlp
% length. The output Z is a matrix with one column for every (N,M) VI{1SIhfa
% pair, and one row for every (R,THETA) pair. P'';F}NwfX
% 6ZJQ '9f
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike qKXn=J/0tA
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), I-I5^s
% with delta(m,0) the Kronecker delta, is chosen so that the integral ([A;~ p;n
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, _\zfXHp
% and theta=0 to theta=2*pi) is unity. For the non-normalized !LA#c'
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. lRq!|.C
% mbK$Wp#
% The Zernike functions are an orthogonal basis on the unit circle. LgYzGlJp
% They are used in disciplines such as astronomy, optics, and UgJHSl
% optometry to describe functions on a circular domain. t!$/r]XM h
% 'AU!xG6OQ
% The following table lists the first 15 Zernike functions. 8h=XQf6k0
% BH1To&ol
% n m Zernike function Normalization {zcjTJ=Zt8
% -------------------------------------------------- #;)7~69
% 0 0 1 1 Qy%/+9L
% 1 1 r * cos(theta) 2 ;DOz92X94
% 1 -1 r * sin(theta) 2 VrG |/2
% 2 -2 r^2 * cos(2*theta) sqrt(6) :1I,:L
% 2 0 (2*r^2 - 1) sqrt(3) K`sm
% 2 2 r^2 * sin(2*theta) sqrt(6) +(
d2hSIF
% 3 -3 r^3 * cos(3*theta) sqrt(8) !~#31kL&
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) l%O-c}X
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ueOvBFgZ
% 3 3 r^3 * sin(3*theta) sqrt(8) _e
W*
% 4 -4 r^4 * cos(4*theta) sqrt(10) ? "gy`oCv
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) r_",E=e
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) )_ y{^kn3^
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $i hIHl6'
% 4 4 r^4 * sin(4*theta) sqrt(10) R.7"ZG
% -------------------------------------------------- L r,$98Dy
% >_".
% Example 1: 0qv)'[O
% l #Tm`br
% % Display the Zernike function Z(n=5,m=1) KRQ/wuv
% x = -1:0.01:1; )8_0 d)
% [X,Y] = meshgrid(x,x); ,DjZDw
% [theta,r] = cart2pol(X,Y); 0WFZx
Ad"
% idx = r<=1; n.)-aRu[
% z = nan(size(X)); E_z@\z MB
% z(idx) = zernfun(5,1,r(idx),theta(idx)); B sAglem
% figure q&.!*rPD
% pcolor(x,x,z), shading interp F^f]*MhT"
% axis square, colorbar ETIf x)B-
% title('Zernike function Z_5^1(r,\theta)') mMR[(
% !dGgLU_
% Example 2: ` mi!"pm w
% la-+`
% % Display the first 10 Zernike functions tP UQ"S
% x = -1:0.01:1; >&TktQO_T
% [X,Y] = meshgrid(x,x); }5gQZ'ys'
% [theta,r] = cart2pol(X,Y); -%A6eRShk
% idx = r<=1; ,/KHKLY7
% z = nan(size(X)); z<ek?0?yS
% n = [0 1 1 2 2 2 3 3 3 3]; CNwhH)*
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; FR&RIFy
% Nplot = [4 10 12 16 18 20 22 24 26 28]; `4o;Lz~
% y = zernfun(n,m,r(idx),theta(idx)); Vo\d&}Q
% figure('Units','normalized') * PZ=$>r
% for k = 1:10 ZE9*i}r
% z(idx) = y(:,k); yP@=x!$
% subplot(4,7,Nplot(k)) _tjH=Ff$
% pcolor(x,x,z), shading interp /xmd]XM=_
% set(gca,'XTick',[],'YTick',[]) o)$sZ{` ="
% axis square i|<*EXB"
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) $6_J`7
% end 3K'3Xp@A
% GV9"8MZ6
% See also ZERNPOL, ZERNFUN2. 2`z+_DA
1F=x~FMvY
% Paul Fricker 11/13/2006 r"n)I$
3RD Q{&J:
9(C
Ke,
% Check and prepare the inputs: {3;4=R3
% ----------------------------- 71~V*
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Mfgd;FsX#
error('zernfun:NMvectors','N and M must be vectors.') m?csake.Me
end XhS<GF%
@a~K#Bvlm
if length(n)~=length(m) R(:q^?
error('zernfun:NMlength','N and M must be the same length.') F2u{Wzr_@
end 1.uyu
-Oo$\=d
n = n(:); {{O1C~
m = m(:); {U4%aoBd8
if any(mod(n-m,2)) /q> "">
error('zernfun:NMmultiplesof2', ... 0$UE|yDs>
'All N and M must differ by multiples of 2 (including 0).') JeO(sj$e
end =.uE(L`]NA
v(afaN
if any(m>n) rR7}SEa
error('zernfun:MlessthanN', ... <mpkkCl,
'Each M must be less than or equal to its corresponding N.') D3_,2
end A5z`3T;1
eX=W+&lj
if any( r>1 | r<0 ) DukCXyB*l
error('zernfun:Rlessthan1','All R must be between 0 and 1.') S]<Hx_[}
end 4WNWn#M
;}r#08I
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) O|8p #
error('zernfun:RTHvector','R and THETA must be vectors.') z- ()7WY
end O*30|[
$FD0MrB_+
r = r(:); M[X& Q
theta = theta(:); ua2SW(C@
length_r = length(r); x1TB
(^aX
if length_r~=length(theta) S3 &L
error('zernfun:RTHlength', ... E*CY/F I_
'The number of R- and THETA-values must be equal.') \s,ZE6dQ
end wp} PQw:
.~Td/o7
% Check normalization: r;9F@/
% -------------------- ba
,2.|
if nargin==5 && ischar(nflag) &u.t5m7(
isnorm = strcmpi(nflag,'norm'); :V8 \^
if ~isnorm q),yY]5
error('zernfun:normalization','Unrecognized normalization flag.') H1N%uk=kV
end r=u>TA$
else M[SWMVN{
isnorm = false; aj1Zi3h
end ^f@EDG8
hMDy;oQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j134iVF%
% Compute the Zernike Polynomials |E|d"_Ma
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _%Jqyc"-
uP<tP:
% Determine the required powers of r: ,zO!`|I
% ----------------------------------- b1_HDC(
m_abs = abs(m); 8nNRn[oS
rpowers = []; ?oP<sGp
for j = 1:length(n) iFpJ/L
rpowers = [rpowers m_abs(j):2:n(j)]; D/{hLp{
end (oxe'\
rpowers = unique(rpowers); .I<#i9Le
]H%y7kH8
% Pre-compute the values of r raised to the required powers, EE-jU<>|
% and compile them in a matrix: R0AVAUG
% ----------------------------- :IvKxOv
if rpowers(1)==0 BlMc<k
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); dy`K5lC@
rpowern = cat(2,rpowern{:}); >}Fe9Y.o
rpowern = [ones(length_r,1) rpowern]; g"^<LX-
else oF8#gn_
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); m&cVda/
rpowern = cat(2,rpowern{:}); HvLvSy1U
end d%8hWlffz
rISg`-
% Compute the values of the polynomials: 6]1cy&SG
% -------------------------------------- UTC|8
y = zeros(length_r,length(n)); 1ti+
Q0~
for j = 1:length(n) CM|?;PBuv
s = 0:(n(j)-m_abs(j))/2; >+LFu?y
pows = n(j):-2:m_abs(j); IXc"gO
for k = length(s):-1:1 :>+}|(v
p = (1-2*mod(s(k),2))* ... aOIE9wO
prod(2:(n(j)-s(k)))/ ... }\?UmuolQ
prod(2:s(k))/ ... @Ge\odfF:
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... *#\da]"{
prod(2:((n(j)+m_abs(j))/2-s(k))); tUaDwIu#
idx = (pows(k)==rpowers); 5R"iF+p4
y(:,j) = y(:,j) + p*rpowern(:,idx); 2M1}`H\
end ;Hk{bz(
R9xhO!
if isnorm __O@w.
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); DSf
end P;GRk6
end D;*P'%_Z
% END: Compute the Zernike Polynomials mW-4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gE;r;#Jt4
qp;eBa
% Compute the Zernike functions: SoC3)iqv/
% ------------------------------ FX}kH ]
idx_pos = m>0; K8,Q^!5]"
idx_neg = m<0; bh
V.uBH
Hwiw:lPq`E
z = y; ,}?x!3
if any(idx_pos) '~{bq'7`m
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); V'alzw7#
end JB[n]|
if any(idx_neg) dX^ ^
@7
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); I5Vp%mCY
end 8725ET
t
- >_rSjnM{
% EOF zernfun