非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Q3$DX,8?
function z = zernfun(n,m,r,theta,nflag) v$JW7CKA
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. z?VjlA(X
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z 5P4 H
% and angular frequency M, evaluated at positions (R,THETA) on the P|lDW|}D@
% unit circle. N is a vector of positive integers (including 0), and /[/{m ]
% M is a vector with the same number of elements as N. Each element .!lLj1?p
% k of M must be a positive integer, with possible values M(k) = -N(k) XhWo~zh"
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 1=9GV+`n
% and THETA is a vector of angles. R and THETA must have the same CK|AXz+EN
% length. The output Z is a matrix with one column for every (N,M) cH:&S=>h
% pair, and one row for every (R,THETA) pair. -`z%<)!Y
% O}2/w2n
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +R;LHRS%
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $T66%wX
% with delta(m,0) the Kronecker delta, is chosen so that the integral v_v>gPl,
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8cMX=P
% and theta=0 to theta=2*pi) is unity. For the non-normalized pStbj`Eq
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. N'l2$8
% 2
w!
0$
% The Zernike functions are an orthogonal basis on the unit circle. vpdPW %B
% They are used in disciplines such as astronomy, optics, and #D?w,<_8,
% optometry to describe functions on a circular domain. QuI!`/N)z
% rFm?Bu
% The following table lists the first 15 Zernike functions. hgDFhbHtd6
% @8aV*zjB
% n m Zernike function Normalization h -091N
% -------------------------------------------------- S5Pn6'w
% 0 0 1 1 7zU~X,
% 1 1 r * cos(theta) 2 vo)W
ziHh
% 1 -1 r * sin(theta) 2 {-]K!tWda
% 2 -2 r^2 * cos(2*theta) sqrt(6) saQo]6#
% 2 0 (2*r^2 - 1) sqrt(3) <HS{A$]
% 2 2 r^2 * sin(2*theta) sqrt(6) Vu4LC&q
% 3 -3 r^3 * cos(3*theta) sqrt(8) =,qY\@fq
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) E KN<KnU%
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ZJhI|wRwD
% 3 3 r^3 * sin(3*theta) sqrt(8) e.XD5~Ax
% 4 -4 r^4 * cos(4*theta) sqrt(10) /|h+,]<
>
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pX!T; Re;
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) #SI]^T|
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {,T=Siy
% 4 4 r^4 * sin(4*theta) sqrt(10) {9j0k`A
% -------------------------------------------------- gQu!(7WLI
% [ z/G
% Example 1: >Lo'H}[pF
% 4@mJEi{
% % Display the Zernike function Z(n=5,m=1) I1dOMu9
% x = -1:0.01:1; -=UvOzw
% [X,Y] = meshgrid(x,x); t%k`)p7O
% [theta,r] = cart2pol(X,Y); yiH;fK +x
% idx = r<=1; rTJqw@]#WH
% z = nan(size(X)); yOXEP
% z(idx) = zernfun(5,1,r(idx),theta(idx)); j
b'M
% figure };Df ><
% pcolor(x,x,z), shading interp Pd
`~#!
% axis square, colorbar !mwMSkkq
% title('Zernike function Z_5^1(r,\theta)') 8 K)GH:a
% 0 A8G8^T
% Example 2: IC$"\7
@
% m@L>6;*
% % Display the first 10 Zernike functions )MoHY
% x = -1:0.01:1; /1.Z=@ 7
% [X,Y] = meshgrid(x,x); Y=<zR9f`
% [theta,r] = cart2pol(X,Y); z
3Z8vq
% idx = r<=1; opzlh@R
3
% z = nan(size(X)); ]z=dRq
% n = [0 1 1 2 2 2 3 3 3 3]; V@gG
x
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; f= }!c*l"
% Nplot = [4 10 12 16 18 20 22 24 26 28]; JL u$UR4
% y = zernfun(n,m,r(idx),theta(idx)); dPV<:uO
% figure('Units','normalized') 0Am\02R.C,
% for k = 1:10 43,*.1;sz
% z(idx) = y(:,k); J5Q.v;
% subplot(4,7,Nplot(k)) qM3(OvCt
% pcolor(x,x,z), shading interp |A0U3$S=
% set(gca,'XTick',[],'YTick',[]) <9$Pl%:
% axis square ]S@DVXH
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) wsAb8U C_
% end BPOT!-
% Y$|KY/)H)
% See also ZERNPOL, ZERNFUN2. 3(*vZ
m|]"e@SF2
% Paul Fricker 11/13/2006 dV*9bDkM/
h*Mi/\
(58r9WhS
% Check and prepare the inputs: 3fYfj
% ----------------------------- }h3[QUVf%
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) or7l}X
error('zernfun:NMvectors','N and M must be vectors.') Y10
end ~0Zy$L/D
:Z83*SPc
if length(n)~=length(m) !<X/_+G\
error('zernfun:NMlength','N and M must be the same length.') tv]9n8v
end
7(o:J
0/%RrE
n = n(:); 9c0
m = m(:); &,,:pL[
if any(mod(n-m,2)) fX1Ib$v
error('zernfun:NMmultiplesof2', ... _tQM<~Y]u\
'All N and M must differ by multiples of 2 (including 0).') /7.//klN
end y^
st
T^
Dj0D.}`~
if any(m>n) yVpru8+eD
error('zernfun:MlessthanN', ... d5=&