切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10946阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ;?lM|kK  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! mV(x&`Cx  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 j6HbJ#]  
    function z = zernfun(n,m,r,theta,nflag) # +]! u%n  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. {]Iu">*  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <r`Jn49  
    %   and angular frequency M, evaluated at positions (R,THETA) on the # %y{mn  
    %   unit circle.  N is a vector of positive integers (including 0), and l<: E+lU  
    %   M is a vector with the same number of elements as N.  Each element RF2XJJ  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) RTY4%6]O  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, <T/L.>p4  
    %   and THETA is a vector of angles.  R and THETA must have the same BXv)zE=j  
    %   length.  The output Z is a matrix with one column for every (N,M) 0fK|}mmZA  
    %   pair, and one row for every (R,THETA) pair. : 8<^rP  
    % {=4:Tgw  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ye7&y4v+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), KR(ftG'  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ']Xx#U N  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, MNmQ%R4jRN  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized QGj5\{E_  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 64>[pZF8  
    % "wC5hj]  
    %   The Zernike functions are an orthogonal basis on the unit circle. 8Xzx ;-&4  
    %   They are used in disciplines such as astronomy, optics, and I3$vw7}5Y  
    %   optometry to describe functions on a circular domain. lFV|GJ  
    % qTMz6D!Q  
    %   The following table lists the first 15 Zernike functions.  +5mkMZ  
    % |+~2sbM  
    %       n    m    Zernike function           Normalization 64X#:t+  
    %       -------------------------------------------------- 2^M+s\p  
    %       0    0    1                                 1 :|Nbk58  
    %       1    1    r * cos(theta)                    2 ^Jc0c)*  
    %       1   -1    r * sin(theta)                    2 h#ot)m|I  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 3 v$4LY  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 2=M!lB *  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) V\hct$ 7Vm  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) s? #lhI  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) L^s;kkB  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) +`3ZH9  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) EoCwS  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) IE f^.Z  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ( +hI   
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) G.e\#_RR?  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vkgL"([_  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) $*-L8An?  
    %       -------------------------------------------------- oXkhj,{y5  
    % EC#10.  
    %   Example 1: .Q)"F /  
    % @il}0  
    %       % Display the Zernike function Z(n=5,m=1) O^% ace1  
    %       x = -1:0.01:1; .WE0T|qDX  
    %       [X,Y] = meshgrid(x,x); N<(`+ ?  
    %       [theta,r] = cart2pol(X,Y); 8E%*o  
    %       idx = r<=1; :/l   
    %       z = nan(size(X)); e' VXyf  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); vJUB;hD  
    %       figure M?u)H&kEl  
    %       pcolor(x,x,z), shading interp :+!b8[?Z  
    %       axis square, colorbar ra2q. H  
    %       title('Zernike function Z_5^1(r,\theta)') Oh4WYDyT  
    % CnYX\^Ow  
    %   Example 2: *60)Vo.=  
    % RR=l&uT  
    %       % Display the first 10 Zernike functions QLG,r^  
    %       x = -1:0.01:1; \c}r6xOr  
    %       [X,Y] = meshgrid(x,x); ksp':2d}  
    %       [theta,r] = cart2pol(X,Y);  B4ze$#  
    %       idx = r<=1; L1i> %5:g  
    %       z = nan(size(X)); _Z2)e*(  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ,[#f}|s_  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; iNSJOS  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; eqCB2u"Jq  
    %       y = zernfun(n,m,r(idx),theta(idx)); jQ}| ]pj+  
    %       figure('Units','normalized') c'R|Wyf  
    %       for k = 1:10 xII!2.  
    %           z(idx) = y(:,k); tH(#nx8  
    %           subplot(4,7,Nplot(k)) '~J6 mojE  
    %           pcolor(x,x,z), shading interp Su#1yw>  
    %           set(gca,'XTick',[],'YTick',[]) rzLl M  
    %           axis square nQ~L.V  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) U$ bM:d  
    %       end :tG5~sK  
    % 4*X$Jle|  
    %   See also ZERNPOL, ZERNFUN2. N2J!7uoQ  
    `,[c??h  
    %   Paul Fricker 11/13/2006 +Ti@M1A&  
    /]&1XT?  
    6suc:rp";  
    % Check and prepare the inputs: #u@!O%MJ  
    % ----------------------------- iX p8u**  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) {*9i}w|2  
        error('zernfun:NMvectors','N and M must be vectors.') v^ G5 N)F  
    end b\Ub<pE  
    t+ ]+Gn  
    if length(n)~=length(m) 5Ncd1  
        error('zernfun:NMlength','N and M must be the same length.') m(Ynl=c  
    end ^5}3FvW  
    -X \v B  
    n = n(:); OQvJdjST  
    m = m(:); r1]^#&V;MC  
    if any(mod(n-m,2)) "o^zOU  
        error('zernfun:NMmultiplesof2', ... Rim}DfO/  
              'All N and M must differ by multiples of 2 (including 0).') } _z~:{Y  
    end QNFrkel  
    ' M!_k+e  
    if any(m>n) }=FQKqtC  
        error('zernfun:MlessthanN', ... ?M2@[w8_  
              'Each M must be less than or equal to its corresponding N.') qFk(UazN  
    end 5hMiCod  
    [&:oS35O  
    if any( r>1 | r<0 ) CjGI}t  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') +qec>ALAg  
    end x;Q2/YZ#  
    ~@;7}Aag  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) \Y$NGB=2[  
        error('zernfun:RTHvector','R and THETA must be vectors.') 9HP--Z=  
    end VK#zmEiB  
    v5o%y:~  
    r = r(:); aXagiz\;  
    theta = theta(:); e|P60cd /  
    length_r = length(r); PdZSXP4;k  
    if length_r~=length(theta) L  z  
        error('zernfun:RTHlength', ... tG-MC&;=  
              'The number of R- and THETA-values must be equal.') JiR|+6"7  
    end 1Rh&04O>VL  
    plq\D.C  
    % Check normalization: '4rgIs3=x"  
    % -------------------- LmE-&  
    if nargin==5 && ischar(nflag) sBwgl9  
        isnorm = strcmpi(nflag,'norm'); nj  
        if ~isnorm D[mYrWHpn  
            error('zernfun:normalization','Unrecognized normalization flag.') q'q{M-U<  
        end I f(_$>  
    else By9/tB  
        isnorm = false; ilP&ctn6+c  
    end .z"[z^/uF  
    ?0x;L/d])  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oS4ag  
    % Compute the Zernike Polynomials tdm /U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R)=<q]Ms  
    w'!gLta  
    % Determine the required powers of r: Sa0\9 3oa  
    % ----------------------------------- yT4|eHl  
    m_abs = abs(m); !`gg$9  
    rpowers = []; ! [X<>  
    for j = 1:length(n) oaHBz_pg  
        rpowers = [rpowers m_abs(j):2:n(j)]; `W9_LROD  
    end I zT%Kq  
    rpowers = unique(rpowers); So:89T  
    *sTQ9 Kr  
    % Pre-compute the values of r raised to the required powers, `PL!>oa(8  
    % and compile them in a matrix: &Lw| t_y  
    % ----------------------------- @;0Ep 0[  
    if rpowers(1)==0 3-05y!vbcE  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8c9_=8vw  
        rpowern = cat(2,rpowern{:}); :MVD83?4  
        rpowern = [ones(length_r,1) rpowern]; O  tr@jgw  
    else 8HzEH-J   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); eXYR/j<8  
        rpowern = cat(2,rpowern{:}); &}]Wbk4:  
    end R?W8l5CIk  
    ;8@A7`^  
    % Compute the values of the polynomials: Ii)TCSt9U?  
    % -------------------------------------- VioVtP0  
    y = zeros(length_r,length(n)); i[<O@Rb  
    for j = 1:length(n) wcO+P7g  
        s = 0:(n(j)-m_abs(j))/2; 'BC-'Ot  
        pows = n(j):-2:m_abs(j); *VH1(E`hl  
        for k = length(s):-1:1 =<g\B?s]  
            p = (1-2*mod(s(k),2))* ... ()r DM@  
                       prod(2:(n(j)-s(k)))/              ... mUjA9[@   
                       prod(2:s(k))/                     ... NS1[-ng  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... U5klVl  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); \rpu=*gt  
            idx = (pows(k)==rpowers); l$FHL2?Cp  
            y(:,j) = y(:,j) + p*rpowern(:,idx);  >4Lb+]  
        end 6jn<YR E-  
         43eGfp'  
        if isnorm yS?1JWUC>  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); cX*^PSM  
        end ~&pk</Dl  
    end  -x7L8Wj  
    % END: Compute the Zernike Polynomials W46sKD;\^W  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %>f:m!.  
    Rk'Dd4"m ,  
    % Compute the Zernike functions: ''Hq-Ng  
    % ------------------------------ yCz? V[49  
    idx_pos = m>0; th]9@7UE,  
    idx_neg = m<0; 3y@'p(}Az  
    8Hhe&B  
    z = y; eq"~by[Uq  
    if any(idx_pos) 4U((dx*m  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); x*YJ :t  
    end C}Khh`8@5.  
    if any(idx_neg) A81kb  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); X \h]N  
    end ,xGlWH wrY  
    DzYno -]A]  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) c=ZX7U  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. JK_sl>v.7  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated n&@\[,B  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive utQ_!3u  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, g6N{Z e Wg  
    %   and THETA is a vector of angles.  R and THETA must have the same 7)[4|I  
    %   length.  The output Z is a matrix with one column for every P-value, w{0UA6+  
    %   and one row for every (R,THETA) pair. ?bbguwo~F  
    % Y2Tg>_:t   
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike  |,.glL  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 0`_Gj{:L  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ?p/i}28=y  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 E9 |i:  
    %   for all p. ];IUiS1  
    % ]92@&J0w  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 n2$*Z6.G  
    %   Zernike functions (order N<=7).  In some disciplines it is k{9s>l~'  
    %   traditional to label the first 36 functions using a single mode \5J/ ?  
    %   number P instead of separate numbers for the order N and azimuthal rNZN}g  
    %   frequency M. KaOS!e'  
    % [ h%ci3  
    %   Example: +HNQ2YZ  
    % N>VA`+aFR  
    %       % Display the first 16 Zernike functions VN*^pAzlF  
    %       x = -1:0.01:1; MvObx'+  
    %       [X,Y] = meshgrid(x,x); o-/Xa[yC  
    %       [theta,r] = cart2pol(X,Y); c>I^SY(r%  
    %       idx = r<=1; 3pm;?6i6  
    %       p = 0:15; BjJ+~R  
    %       z = nan(size(X)); ca-|G'q  
    %       y = zernfun2(p,r(idx),theta(idx)); 2TY|)ltsF  
    %       figure('Units','normalized') (0^u  
    %       for k = 1:length(p) 7ej"q  
    %           z(idx) = y(:,k); l 4(-yWC$H  
    %           subplot(4,4,k) z$;z&X$j  
    %           pcolor(x,x,z), shading interp Xa+ u>1"2"  
    %           set(gca,'XTick',[],'YTick',[]) .|cQ0:B[  
    %           axis square ?-J\~AXL  
    %           title(['Z_{' num2str(p(k)) '}']) Haiuf)a  
    %       end '@rGX+"  
    % y1f&+y9e  
    %   See also ZERNPOL, ZERNFUN. OZ0q6"  
    wn5CaP(]8  
    %   Paul Fricker 11/13/2006 {R]4N]l>  
    2,'m]`;GNr  
    =3Y?U*d  
    % Check and prepare the inputs: l[.RnM[v  
    % ----------------------------- 03[(dRK>=  
    if min(size(p))~=1 YWjw`,EA(  
        error('zernfun2:Pvector','Input P must be vector.') G[)QGZ}8b  
    end D.4=4"qMi  
    uQ. m[y  
    if any(p)>35 7>v1w:cC]  
        error('zernfun2:P36', ... PWx2<t<;9  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ,H\EPmNHK  
               '(P = 0 to 35).']) _G,`s7Q,w  
    end EnZrnoGM  
    }JoCk{<31  
    % Get the order and frequency corresonding to the function number: r( :"BQ  
    % ---------------------------------------------------------------- (?D47^F &  
    p = p(:); \A Y7%>  
    n = ceil((-3+sqrt(9+8*p))/2); h )fi9  
    m = 2*p - n.*(n+2); {088j?[hzk  
    "\U$aaF  
    % Pass the inputs to the function ZERNFUN: ~~]L!P  
    % ---------------------------------------- MW6d-  
    switch nargin SX$v&L<  
        case 3 rhsSV3iM  
            z = zernfun(n,m,r,theta); bncIxxe  
        case 4 a3sXl+$D@  
            z = zernfun(n,m,r,theta,nflag); d7qHUx'=z  
        otherwise 2D,9$ 0k_]  
            error('zernfun2:nargin','Incorrect number of inputs.') [0w @0?[  
    end `)/G5 fB  
    ?`3` azfM  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) _ko16wfg  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ri<E[8\  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of K1AI:$H  
    %   order N and frequency M, evaluated at R.  N is a vector of %+ynrg-  
    %   positive integers (including 0), and M is a vector with the s+8 v7ZJ  
    %   same number of elements as N.  Each element k of M must be a prV:Kq;O  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) DBI[OG9  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is mx y>  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix iP6$;Y{ZA  
    %   with one column for every (N,M) pair, and one row for every /pt%*;H  
    %   element in R. *tC]Z&5  
    % W9D]s~bO;  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 2;VggPpT  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is o$8v8="p  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to C0|<+3uND=  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ! ~u;CMR  
    %   for all [n,m]. NguJ[  
    % ~pWbD~aeg  
    %   The radial Zernike polynomials are the radial portion of the (p08jR '5  
    %   Zernike functions, which are an orthogonal basis on the unit &`[y]E'  
    %   circle.  The series representation of the radial Zernike i Tg?JoE2  
    %   polynomials is FIG3P))  
    % ?>SC:{(  
    %          (n-m)/2 \$n?J(N  
    %            __ =\GuIH2  
    %    m      \       s                                          n-2s NHG+l)y:  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r uDJi2,|n  
    %    n      s=0 tt2`N3Eu\  
    % 9tvLj5~  
    %   The following table shows the first 12 polynomials. ua# sW  
    % &^KmfT5C  
    %       n    m    Zernike polynomial    Normalization f0]8/)  
    %       --------------------------------------------- n8n(<  
    %       0    0    1                        sqrt(2) ~( 54-9&  
    %       1    1    r                           2 v<c~ '?YzO  
    %       2    0    2*r^2 - 1                sqrt(6) ?kEcYD  
    %       2    2    r^2                      sqrt(6) FTZ][  
    %       3    1    3*r^3 - 2*r              sqrt(8) {h5 S=b  
    %       3    3    r^3                      sqrt(8) {_t i*#  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) !_P;4E  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ;gfY_MXnF  
    %       4    4    r^4                      sqrt(10) i>#[*.|P  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) }<6xZy  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) o-"/1zLg4  
    %       5    5    r^5                      sqrt(12) gmkD'CX*A  
    %       --------------------------------------------- eJFGgJRIvF  
    % 6UOV,`:m+  
    %   Example: H-$)@  
    % 3)ac  
    %       % Display three example Zernike radial polynomials 8@S7_x  
    %       r = 0:0.01:1; HL-zuZa`Ju  
    %       n = [3 2 5]; @|kBc.(]  
    %       m = [1 2 1]; bkk1_X  
    %       z = zernpol(n,m,r); vX|ZPn#  
    %       figure ug*#rpb  
    %       plot(r,z) ,b!!h]t  
    %       grid on 'wB6-  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') d1$3~Xl]  
    % 7DaMuh~<  
    %   See also ZERNFUN, ZERNFUN2. PI@/jh  
    6z3 Yq{1  
    % A note on the algorithm. 9fp@d  
    % ------------------------ mGR}hsQpn  
    % The radial Zernike polynomials are computed using the series P[{qp8(g  
    % representation shown in the Help section above. For many special )vVt{g  
    % functions, direct evaluation using the series representation can vM@2C'  
    % produce poor numerical results (floating point errors), because wG6@. ;3  
    % the summation often involves computing small differences between ;O` \rP5w  
    % large successive terms in the series. (In such cases, the functions P9h]B u  
    % are often evaluated using alternative methods such as recurrence m:|jv|f  
    % relations: see the Legendre functions, for example). For the Zernike YYfX@`\  
    % polynomials, however, this problem does not arise, because the *opf~B_e  
    % polynomials are evaluated over the finite domain r = (0,1), and t}r`~AEa!  
    % because the coefficients for a given polynomial are generally all h#a;(F4_7  
    % of similar magnitude. *{/ ww9fT  
    % M =Pn8<h~  
    % ZERNPOL has been written using a vectorized implementation: multiple 0IU>KGJ-0s  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] \z>Re$:  
    % values can be passed as inputs) for a vector of points R.  To achieve b=[gK|fu  
    % this vectorization most efficiently, the algorithm in ZERNPOL #>~<rcE(  
    % involves pre-determining all the powers p of R that are required to ? tre)  
    % compute the outputs, and then compiling the {R^p} into a single -WiOs;2~/  
    % matrix.  This avoids any redundant computation of the R^p, and #Hm*<s.  
    % minimizes the sizes of certain intermediate variables. <s/n8#i=H  
    % P&PPX#%  
    %   Paul Fricker 11/13/2006 zs#s"e:jeR  
    ie4keVlXc  
    O 1T JJ8  
    % Check and prepare the inputs: +oKp>-  
    % ----------------------------- 1n}q6oa=  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) WmU5YZ(mAq  
        error('zernpol:NMvectors','N and M must be vectors.') -<rQOPH%  
    end >s#[dr\ww  
    h%'4V<V  
    if length(n)~=length(m) 2uonT,W  
        error('zernpol:NMlength','N and M must be the same length.') =@%;6`AVcp  
    end N[e QT  
    &' ,A2iG  
    n = n(:); 9[qEJ$--  
    m = m(:); jwsl"zL  
    length_n = length(n); ,>"rcd  
    Gok8:,  
    if any(mod(n-m,2)) QoZ7l]^  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') K:PzR,nn  
    end 08)X:@ w?  
    jG($:>3a@  
    if any(m<0) @**@W[EM  
        error('zernpol:Mpositive','All M must be positive.') fQ>=\*b9x^  
    end 5~(.:RX:q  
    Cj~45)r  
    if any(m>n) f8]Qn8  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Hx;ij?  
    end 2+KOUd&jS  
    !N5+.E0j  
    if any( r>1 | r<0 ) BcJ]bIbKb  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') en\shc{R]`  
    end Fv!zS.)`  
    (qn ;MN6<  
    if ~any(size(r)==1) U?/UW;k[  
        error('zernpol:Rvector','R must be a vector.') emZ^d/A  
    end >dH5n$Gb  
    piIr .]  
    r = r(:); j.C)KwelBS  
    length_r = length(r); .Z=4,m>  
    8o' a  
    if nargin==4 GKPC9;{W  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); x+~IXi>Ig  
        if ~isnorm ]W,K}~!   
            error('zernpol:normalization','Unrecognized normalization flag.') _n9+(X3  
        end y/' ^r?  
    else ~50b$];y  
        isnorm = false; At5:X*vD  
    end o`^GUY}  
    q/w U7P\%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~$g$31/  
    % Compute the Zernike Polynomials ]7WBoC8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8+^?<FKa  
    <0[{Tn  
    % Determine the required powers of r: GH%'YY3|  
    % ----------------------------------- xl5n(~g)p  
    rpowers = []; @\gTi;u/x  
    for j = 1:length(n) x' Z<  
        rpowers = [rpowers m(j):2:n(j)]; nJ/wtw  
    end z1\G,mJK  
    rpowers = unique(rpowers); %qA +z Pf  
    [BS3y`c  
    % Pre-compute the values of r raised to the required powers, g*UI~rp  
    % and compile them in a matrix: j!r 4p,  
    % ----------------------------- OCy\aCp  
    if rpowers(1)==0 f.Y9gkt3d  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @Z$`c{V<  
        rpowern = cat(2,rpowern{:}); 6T6 S9A*nT  
        rpowern = [ones(length_r,1) rpowern]; AYHfe#!  
    else <j1l&H|ux,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2A3;#v  
        rpowern = cat(2,rpowern{:}); O[RmQ8ll  
    end a!"81*&4#  
    Y""-U3;T~  
    % Compute the values of the polynomials: w>I>9O}(`  
    % -------------------------------------- 7e&R6j  
    z = zeros(length_r,length_n); :"ZH  
    for j = 1:length_n ]d"4G7mu`l  
        s = 0:(n(j)-m(j))/2; oRM EC7!A0  
        pows = n(j):-2:m(j); I`h9P2~  
        for k = length(s):-1:1 m{={a5GD  
            p = (1-2*mod(s(k),2))* ... ]ABpOrg  
                       prod(2:(n(j)-s(k)))/          ... GE$spx  
                       prod(2:s(k))/                 ... 9GS<d.#Nvc  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... s~$kzEtjjU  
                       prod(2:((n(j)+m(j))/2-s(k))); SsjO1F  
            idx = (pows(k)==rpowers); ,hK0F3?H>  
            z(:,j) = z(:,j) + p*rpowern(:,idx); }~lF Rf  
        end HMNjQ 1y  
         8WWRKP1V  
        if isnorm z602(mxGg  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); J'.:l}g!1  
        end 5EIhCbA  
    end p7(xk6W  
    7Z>u|L($m  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  L$@RSKYp  
    6EX:qp^`  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 IA8kq =W  
    f=/S]o4/3  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)