非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _P*<T6\J>
function z = zernfun(n,m,r,theta,nflag) uM<6][^`
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. QcDWVM'v
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N aPMqJ#fIr
% and angular frequency M, evaluated at positions (R,THETA) on the ZNvnVW<
% unit circle. N is a vector of positive integers (including 0), and 0cm+:
% M is a vector with the same number of elements as N. Each element p x1{=~V/
% k of M must be a positive integer, with possible values M(k) = -N(k) ;/8oP ;X2
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, r&t)%R@q
% and THETA is a vector of angles. R and THETA must have the same Q}MS $[y
% length. The output Z is a matrix with one column for every (N,M) j7)Xm,wI8
% pair, and one row for every (R,THETA) pair. S@a#,,\[
% v8xNtUxN
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike N{<=s]I%x
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), &[hq !v
% with delta(m,0) the Kronecker delta, is chosen so that the integral R~],5_|
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N3Jfp3_b@
% and theta=0 to theta=2*pi) is unity. For the non-normalized <([1(SY2e
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. FaNH+LPe
% Y(4#b`k3
% The Zernike functions are an orthogonal basis on the unit circle. :+SpZ>
% They are used in disciplines such as astronomy, optics, and >}*iQq
% optometry to describe functions on a circular domain. {{?[b^
% |?!Ew# w
% The following table lists the first 15 Zernike functions. FN&.PdRT
% {yy^DlHb
% n m Zernike function Normalization IZ;%lV7t
% -------------------------------------------------- EQkv&k5X
% 0 0 1 1 .`OdnLGy
% 1 1 r * cos(theta) 2 Zq--m/
% 1 -1 r * sin(theta) 2 MU^7(s="
% 2 -2 r^2 * cos(2*theta) sqrt(6) 9LkP*$2"M<
% 2 0 (2*r^2 - 1) sqrt(3) UpgY}pf}
% 2 2 r^2 * sin(2*theta) sqrt(6) wyk4v}
% 3 -3 r^3 * cos(3*theta) sqrt(8) c%aY6dQG&%
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8)
DdTTWp/
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) hN6j5.x%
% 3 3 r^3 * sin(3*theta) sqrt(8) {@u;F2?
% 4 -4 r^4 * cos(4*theta) sqrt(10) xFpMn}CD
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) n:GK0wu.s
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 9IKFrCO9,
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )jK"\'cK
% 4 4 r^4 * sin(4*theta) sqrt(10) {ZH9W
% -------------------------------------------------- &P%3'c}G
%
L[d7@
% Example 1: W^W^5-'"D,
% `/'Hq9$F<"
% % Display the Zernike function Z(n=5,m=1) zA&lJD$0
% x = -1:0.01:1; 1.0S>+^JE
% [X,Y] = meshgrid(x,x); {|%N
% [theta,r] = cart2pol(X,Y); ?L$
Dk5-W
% idx = r<=1; Vc3tKuMsiX
% z = nan(size(X)); *f:^6h
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 2B7X~t>8a
% figure Z@=1-l
% pcolor(x,x,z), shading interp }!\ZJo a
% axis square, colorbar cjU*
% title('Zernike function Z_5^1(r,\theta)') =Uta5$\a)
% tt`j!!
% Example 2: yAoJ?<4^W
% @8TD^ub
% % Display the first 10 Zernike functions 8kw`=wSH>
% x = -1:0.01:1; M SU|T
% [X,Y] = meshgrid(x,x); k~u$&a
% [theta,r] = cart2pol(X,Y); #J]u3*Tn|
% idx = r<=1; 0hXI1@8]`
% z = nan(size(X)); e%&2tf4
% n = [0 1 1 2 2 2 3 3 3 3]; cs7TAX
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; A('=P}I^
% Nplot = [4 10 12 16 18 20 22 24 26 28]; nsqs*$
% y = zernfun(n,m,r(idx),theta(idx)); _PrK6M@"L
% figure('Units','normalized') &AmTXW
% for k = 1:10 Ql>DS~a
% z(idx) = y(:,k); sn&y;Vc[$
% subplot(4,7,Nplot(k)) "#2z
'J
% pcolor(x,x,z), shading interp zg&<HJO
% set(gca,'XTick',[],'YTick',[]) o+SD(KVn-
% axis square ja}_u}:
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) A1:<-TF6^p
% end D0tmNV@
% ;BqYhi
% See also ZERNPOL, ZERNFUN2. OS6 l*S('
V<AT"vU[
% Paul Fricker 11/13/2006 ua*k{0[
[Z|R-{"
gvO}u 2.:
% Check and prepare the inputs: U[=VW0
% ----------------------------- (Bd8@}\u_
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) bE.,)GY
error('zernfun:NMvectors','N and M must be vectors.') *,~d!Fc
end v'7,(.E
m
UpLD+-j
if length(n)~=length(m) q-gN0"z^6$
error('zernfun:NMlength','N and M must be the same length.') \5 IB/*
end $*^Ms>Pa_
|ul25/B
B
n = n(:); d0~F|j\#
m = m(:); .v%H%z~Rl#
if any(mod(n-m,2)) 0'`>20Y
error('zernfun:NMmultiplesof2', ... Cfu]umZLn
'All N and M must differ by multiples of 2 (including 0).') >S3iP?V7
end `uy)][j-
6wx;grt'Z
if any(m>n) *z;4.
OX
error('zernfun:MlessthanN', ... -`gqA%#+
'Each M must be less than or equal to its corresponding N.') D ::),,
end Juj"cjob
`;4P?!WG
if any( r>1 | r<0 ) abkl)X>k
error('zernfun:Rlessthan1','All R must be between 0 and 1.') e.jrX;;$!&
end Mib(J+Il
Lt0JUUa0
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #N_C|v/
error('zernfun:RTHvector','R and THETA must be vectors.') 2`I"
QU
end "S.5_@?
&U ]L@]x
r = r(:); x?Doe`/6?
theta = theta(:); f/RzE
length_r = length(r); 72R|zR
if length_r~=length(theta) hIu;\dfwk
error('zernfun:RTHlength', ... A;n3""
'The number of R- and THETA-values must be equal.') 7N,E%$QL
end I}Uj"m`>
;<d("Yz:@Z
% Check normalization: ?47q0C
% -------------------- ra=U,
if nargin==5 && ischar(nflag) Cqy84!Z<
isnorm = strcmpi(nflag,'norm'); % 1ZJi}~
if ~isnorm U|.kAI*
error('zernfun:normalization','Unrecognized normalization flag.') 1@sy:{
d`
end Y3+DTR0|'
else +<7~yZ[Z8
isnorm = false; u8L%R[#o
end ?U.+SQ
hAtf)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9HrT>{@
% Compute the Zernike Polynomials FIhq>L.q4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HpY-7QTPJ~
S[(Tpk2_
% Determine the required powers of r: U;u@\E@2
% ----------------------------------- UZ7Zzc#g
m_abs = abs(m); Jt5\
rpowers = []; @dei}!e
for j = 1:length(n) 5H#f;L\k
rpowers = [rpowers m_abs(j):2:n(j)]; ;"46H'>!
end }A,9`
rpowers = unique(rpowers); N,fEta6
!qk+>6~A,
% Pre-compute the values of r raised to the required powers, jsB%RvX
% and compile them in a matrix: w%F~4|F
% ----------------------------- a)w
*
if rpowers(1)==0 *P2_l
Q=
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); I^S
gWC
rpowern = cat(2,rpowern{:}); tb36c<U-
rpowern = [ones(length_r,1) rpowern]; @=JOAo
else j=b?WNK
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ScOiOz:Ha
rpowern = cat(2,rpowern{:}); -P#PyZEH&I
end z6
T3vw
vpnQ s#8O
% Compute the values of the polynomials: hZ@frbuowk
% -------------------------------------- L~9Q7 6w
y = zeros(length_r,length(n)); ;PM(q<@\
for j = 1:length(n) W;%$7&+0
s = 0:(n(j)-m_abs(j))/2; ,5}%_
pows = n(j):-2:m_abs(j); ZNWo:N8;
for k = length(s):-1:1 j#4 Iu&YJ
p = (1-2*mod(s(k),2))* ... ZcJa:
prod(2:(n(j)-s(k)))/ ... b>g&Pf#N!
prod(2:s(k))/ ... |Z6M?n
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... LFvO[&
prod(2:((n(j)+m_abs(j))/2-s(k))); 8i$quHd&x
idx = (pows(k)==rpowers); *i LlBE
y(:,j) = y(:,j) + p*rpowern(:,idx); VPOzt7:
end u}_,4J
/`6Y-8e2
if isnorm 2S%[YR>>
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >Sc)?[H
end b0X<)1O
end rdj_3Utv
% END: Compute the Zernike Polynomials WXq=FZ-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }-` N^
`Xs3^FJt
% Compute the Zernike functions: .M(')$\U
% ------------------------------ gR5
EK$
idx_pos = m>0; ZVu_E.4.
idx_neg = m<0; 4)Jtc2z7Z\
au=A+
z = y; wPr9N}rf
if any(idx_pos) #BPJRNXd
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); T'i^yd}*v
end 8Dy5g
if any(idx_neg) '%Fg+cZN\
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \NZ(Xk
end # <?igtUO
OdKfU^
% EOF zernfun