切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11680阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 {` ByZB  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! MS`XhFPS.  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 8Vy/n^3)  
    function z = zernfun(n,m,r,theta,nflag) f?TS#jG4}  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. xwj{4fzpk{  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +U iJWO  
    %   and angular frequency M, evaluated at positions (R,THETA) on the </b_Rar  
    %   unit circle.  N is a vector of positive integers (including 0), and z'*{V\  
    %   M is a vector with the same number of elements as N.  Each element PbfgWGr  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) kG5Uc8 3#G  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, X<H{  
    %   and THETA is a vector of angles.  R and THETA must have the same FD5OO;$  
    %   length.  The output Z is a matrix with one column for every (N,M) {{AZW   
    %   pair, and one row for every (R,THETA) pair. (wvU;u  
    % C=bQ2t=Z  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 39d$B'"<1  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), C}ASVywc,1  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral h+S]C#X,}  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, "N)InPR-  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized RY1-Zjlb<  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. NN5G '|i  
    % 9m<%+ S5&  
    %   The Zernike functions are an orthogonal basis on the unit circle. i(*fv(z  
    %   They are used in disciplines such as astronomy, optics, and N,.awA{  
    %   optometry to describe functions on a circular domain. ,!X:wY}dW  
    % DR]4Tcz#  
    %   The following table lists the first 15 Zernike functions. vQj{yJ\l1  
    % Gyrc~m[$  
    %       n    m    Zernike function           Normalization ,c 0]r;u!  
    %       -------------------------------------------------- HBs 6:[q  
    %       0    0    1                                 1 B1]FB|0's  
    %       1    1    r * cos(theta)                    2 1^ iLs  
    %       1   -1    r * sin(theta)                    2 ",' Zr<T  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]:m4~0^#-(  
    %       2    0    (2*r^2 - 1)                    sqrt(3) DiZ;FHnaG?  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Z-yoJZi  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) g4{0  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 0_,un^  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 1:_}`x=hM  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 4q(,uk&R[  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) uo*lW2&U  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M:L-j{?y_  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ,b?G]WQrHs  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tK `A_hC  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ~#)9Kl7<X  
    %       -------------------------------------------------- 9$}> O]  
    % b@sq}8YD|z  
    %   Example 1: +UX} "m~W  
    % ~}SQLYy7Z  
    %       % Display the Zernike function Z(n=5,m=1) 9>ZX@1]m_  
    %       x = -1:0.01:1; #-{ljjMQI  
    %       [X,Y] = meshgrid(x,x); SRU#Y8Xv|  
    %       [theta,r] = cart2pol(X,Y); XhN?E-WywQ  
    %       idx = r<=1; ]BTISaL-R  
    %       z = nan(size(X)); R;uP^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ?,C'\8'  
    %       figure " Lh XR  
    %       pcolor(x,x,z), shading interp ^K 9jJS9K  
    %       axis square, colorbar Ye^xV,U@  
    %       title('Zernike function Z_5^1(r,\theta)') @&9< )1F  
    % 3M'Y'Szm  
    %   Example 2: [|YJg]i-  
    % 1{ ehnH  
    %       % Display the first 10 Zernike functions 4 XGEw9`3  
    %       x = -1:0.01:1; Nov An+  
    %       [X,Y] = meshgrid(x,x); 8^R~qpg%  
    %       [theta,r] = cart2pol(X,Y); n@S|^cH  
    %       idx = r<=1; &yqk96z  
    %       z = nan(size(X)); Ie8SPNY-H  
    %       n = [0  1  1  2  2  2  3  3  3  3]; |>-0q~  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 6+C]rEY/o  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; F$9+WS`c  
    %       y = zernfun(n,m,r(idx),theta(idx)); u!b0 <E  
    %       figure('Units','normalized') n:Dr< q .  
    %       for k = 1:10 tMo=q7ig  
    %           z(idx) = y(:,k); a`Q-5* \;z  
    %           subplot(4,7,Nplot(k)) 6c}nP[6|  
    %           pcolor(x,x,z), shading interp '[bw7T  
    %           set(gca,'XTick',[],'YTick',[]) 5 L-6@@/  
    %           axis square y@Td]6|f  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) [kPl7[OL  
    %       end w2K>k/v{-  
    % '%a:L^a?  
    %   See also ZERNPOL, ZERNFUN2. 1z@ ncqe  
    59?$9}ob  
    %   Paul Fricker 11/13/2006 Yof ]  
    "<"s&ws;k  
    ff aMF~+  
    % Check and prepare the inputs: ;3Q3!+%j  
    % ----------------------------- cQ0+kX<  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5)gC<  
        error('zernfun:NMvectors','N and M must be vectors.') W@~a#~1O  
    end V<d`.9*}  
    nNRc@9Lt  
    if length(n)~=length(m) kQrby\F(<  
        error('zernfun:NMlength','N and M must be the same length.') "b`3   
    end vnX~OVz2  
    mrlhj8W?!  
    n = n(:); xJFxrG'c  
    m = m(:); CR-2>,*a9  
    if any(mod(n-m,2)) }jg,[jw_"X  
        error('zernfun:NMmultiplesof2', ... Qaiqx"x3  
              'All N and M must differ by multiples of 2 (including 0).') *bi;mQ  
    end T`Xz*\}Zb  
    kB-<17  
    if any(m>n) i"{znKz vD  
        error('zernfun:MlessthanN', ... q]y{ 4"=5  
              'Each M must be less than or equal to its corresponding N.') >a: 6umY  
    end hP jL  
    AQ,%5MeqJ  
    if any( r>1 | r<0 )  Lvn+EM  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') =8 DS~J{  
    end U#4>GO;A  
    nB%[\LtZ?  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $u,`bX  
        error('zernfun:RTHvector','R and THETA must be vectors.') Kq:vTz&<  
    end '^.3}N{Fo  
    *(nu0  
    r = r(:); CbT ;#0  
    theta = theta(:); s18A  
    length_r = length(r); bWMb@zm  
    if length_r~=length(theta) Qs_]U  
        error('zernfun:RTHlength', ... L#/<y{  
              'The number of R- and THETA-values must be equal.') gE6{R+sp  
    end #LG<o3An  
    A)nE+ec1  
    % Check normalization: !GoHCe[10  
    % -------------------- {)- 3g~  
    if nargin==5 && ischar(nflag) ABhQ7 x|  
        isnorm = strcmpi(nflag,'norm'); GUsJF;;V  
        if ~isnorm z HvW@A'F  
            error('zernfun:normalization','Unrecognized normalization flag.') /ASpAl[J  
        end (}CA?/  
    else ZZW%6-B  
        isnorm = false; YU1z\pK  
    end #M:Vwn JX  
    2O0</^Z%E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +kOXa^K  
    % Compute the Zernike Polynomials Aj@t*3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .vpx@_;]9  
    {uiL91j.  
    % Determine the required powers of r: ;vgaFc]  
    % ----------------------------------- ^L's45&_  
    m_abs = abs(m); [S[@ Q[zP@  
    rpowers = []; X1%_a.=VF  
    for j = 1:length(n) D}bCMN <  
        rpowers = [rpowers m_abs(j):2:n(j)]; 8' +I8J0l  
    end qApf\o3[0  
    rpowers = unique(rpowers); us^J! s7  
    4% 2MY\  
    % Pre-compute the values of r raised to the required powers, :"Kr-Hm`  
    % and compile them in a matrix: ~ "WN4  
    % ----------------------------- q]m$%>  
    if rpowers(1)==0  lmB+S  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); x]|-2t  
        rpowern = cat(2,rpowern{:}); @86I|cY  
        rpowern = [ones(length_r,1) rpowern]; 5<|X++y}8)  
    else Us8nOr>5  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _U%2J4T2  
        rpowern = cat(2,rpowern{:}); (Bu-o((N@0  
    end AM4 :xz  
    rNX]tp{j  
    % Compute the values of the polynomials: )dI  `yf  
    % -------------------------------------- XE : JL_  
    y = zeros(length_r,length(n)); hdxq@%Vs  
    for j = 1:length(n)  x5W. 3*  
        s = 0:(n(j)-m_abs(j))/2; o$,e#q)8  
        pows = n(j):-2:m_abs(j); rs:a^W5t  
        for k = length(s):-1:1 IVSd,AR7yY  
            p = (1-2*mod(s(k),2))* ... [!b=A:@  
                       prod(2:(n(j)-s(k)))/              ... {us"=JJVN  
                       prod(2:s(k))/                     ... R8fB 8 )  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =BBDh`$R  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); |j7{zsH  
            idx = (pows(k)==rpowers); |ea}+N  
            y(:,j) = y(:,j) + p*rpowern(:,idx); k54Vh=p  
        end 47 9yG/+\  
         of?'FrU  
        if isnorm VY'1 $  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <5l!xzvw  
        end qX!P:M  
    end ,$; pLjo6  
    % END: Compute the Zernike Polynomials %n>*jFC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y%)@)$sK  
    @wOX</_g  
    % Compute the Zernike functions: $qh?$a  
    % ------------------------------ p*" H&xA@  
    idx_pos = m>0; H6]z98  
    idx_neg = m<0; nn6&`$(Q~  
    63y&MaqSJ  
    z = y; =9#cf-?  
    if any(idx_pos) =aE!y5  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); &\/p5RX  
    end \Dr?}D  
    if any(idx_neg) W&8)yog.  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); o<8=@ ^T  
    end @If ^5s;z  
    U<mFwJ C]  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Foc) u~  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. DKxzk~sOM  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ^&6'FE  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive sM$gfFx  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, _MC\\u/C/  
    %   and THETA is a vector of angles.  R and THETA must have the same NRgNW1#  
    %   length.  The output Z is a matrix with one column for every P-value, # ^~[\8v>  
    %   and one row for every (R,THETA) pair. O4i5 fVy{  
    % WGeTL`}dh  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike m?Qr)F_M  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) L#^'9v}Hb  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) !R.*Vn[  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 k9pOY]_Y  
    %   for all p. 46cd5SLK  
    % 4PzCm k  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 V)8d1S  
    %   Zernike functions (order N<=7).  In some disciplines it is amY\1quD|  
    %   traditional to label the first 36 functions using a single mode OPsg3pW!]  
    %   number P instead of separate numbers for the order N and azimuthal kxp, ZP  
    %   frequency M. J` J^C  
    % B5Y 3GWhrx  
    %   Example: Dtw1q-  
    % 5VG[FY6Pl  
    %       % Display the first 16 Zernike functions &hb:~>  
    %       x = -1:0.01:1; %8a886;2  
    %       [X,Y] = meshgrid(x,x); !$i*u-%4  
    %       [theta,r] = cart2pol(X,Y); !K~:crUV|S  
    %       idx = r<=1;  8~>5k  
    %       p = 0:15; \Gk4J<  
    %       z = nan(size(X)); Gcs eq  
    %       y = zernfun2(p,r(idx),theta(idx)); |/R)FT#i  
    %       figure('Units','normalized') _z$lg]q  
    %       for k = 1:length(p) RN3-:Zd_X  
    %           z(idx) = y(:,k); W+C@(}pt  
    %           subplot(4,4,k) ,c;u]  
    %           pcolor(x,x,z), shading interp F.0CJ7s  
    %           set(gca,'XTick',[],'YTick',[]) q{?ku!cL  
    %           axis square 6:v$g  
    %           title(['Z_{' num2str(p(k)) '}']) jeM/8~^4-  
    %       end ^gK8 u]>  
    % 9{;cp?\)M  
    %   See also ZERNPOL, ZERNFUN. lo%:$2*'p  
    5zqlK-$  
    %   Paul Fricker 11/13/2006 j JxV)AIY  
    ;;2Yfn'`9  
    _ZnVQ,zY  
    % Check and prepare the inputs: $~[k?D  
    % ----------------------------- oP$l(k  
    if min(size(p))~=1 $cxulcay=  
        error('zernfun2:Pvector','Input P must be vector.') f"=1_*eH  
    end fJb<<6C  
    B|~tW21  
    if any(p)>35 B4yC"55  
        error('zernfun2:P36', ... }CiB+  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... /WlpRf%  
               '(P = 0 to 35).']) 0 s-IW  
    end @o[C Xrz  
    G8y:f%I!b  
    % Get the order and frequency corresonding to the function number: uK:?6>H  
    % ---------------------------------------------------------------- Yy$GfjJtL]  
    p = p(:); y7;i4::A\  
    n = ceil((-3+sqrt(9+8*p))/2); .KA){_jBp  
    m = 2*p - n.*(n+2); D]H@Sx  
    SxHj3,`#C  
    % Pass the inputs to the function ZERNFUN: 1mLd_ ]F'F  
    % ---------------------------------------- FJ|6R(T_  
    switch nargin IA\CBwiLj  
        case 3 D;pfogK @  
            z = zernfun(n,m,r,theta); S1iF1X(+?X  
        case 4 /kl41gx  
            z = zernfun(n,m,r,theta,nflag); /AJ#ngXz  
        otherwise ewNzRH,b  
            error('zernfun2:nargin','Incorrect number of inputs.') l (EDe  
    end "k)}qI{  
    ~nQv yM!$  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 6qW/Td|g  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. }:5_vH0  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of OLThi[Yn  
    %   order N and frequency M, evaluated at R.  N is a vector of q .[hwm  
    %   positive integers (including 0), and M is a vector with the IFrq\H0  
    %   same number of elements as N.  Each element k of M must be a ::k>V\;  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) [D8u.8q  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is gnW]5#c@  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix sFd"VRAV~E  
    %   with one column for every (N,M) pair, and one row for every X2X.&^  
    %   element in R. ~FnB!Mh}?  
    % {s=n "*Qp)  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- o5!"dxR  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 5Ocd2T'  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to v9<7=D&x  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Y<~N x~w{  
    %   for all [n,m]. j"FX ?|4  
    % q|*}>=NX  
    %   The radial Zernike polynomials are the radial portion of the 8Iz-YG~%3  
    %   Zernike functions, which are an orthogonal basis on the unit t<_Jx<{2  
    %   circle.  The series representation of the radial Zernike ^tWt"GgC  
    %   polynomials is K"p$ga{  
    % f.V1  
    %          (n-m)/2 >(v%"04|e  
    %            __ >d.o1<  
    %    m      \       s                                          n-2s ~VNN  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 4'&j<Ah[#  
    %    n      s=0 <ej Wl%4  
    % S >E|A %  
    %   The following table shows the first 12 polynomials. JfJUOaL  
    % 4)'8fi  
    %       n    m    Zernike polynomial    Normalization @,Je*5$o"  
    %       --------------------------------------------- (~YFm"S  
    %       0    0    1                        sqrt(2) .rfufx9Sw  
    %       1    1    r                           2 r"yA=d'c  
    %       2    0    2*r^2 - 1                sqrt(6) x?hdC)#DWI  
    %       2    2    r^2                      sqrt(6) 6kW<i,A -  
    %       3    1    3*r^3 - 2*r              sqrt(8) ^P5+ _P  
    %       3    3    r^3                      sqrt(8) Va^AEuzF  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) O]ZP- WG  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 'qGKS:8  
    %       4    4    r^4                      sqrt(10) I y?_2m  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Au+SCj  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 8.Q;o+NU  
    %       5    5    r^5                      sqrt(12) NGl/F{<  
    %       --------------------------------------------- $=>(7 =l_  
    % /:]`TlAb,  
    %   Example: '4gi*8Y  
    % {@T8i ^EI  
    %       % Display three example Zernike radial polynomials ("2ukHc  
    %       r = 0:0.01:1; r 5!ie!5gE  
    %       n = [3 2 5]; yo)a_rY  
    %       m = [1 2 1]; v 4@=>L  
    %       z = zernpol(n,m,r); IR*g>q  
    %       figure ,|gX?[o  
    %       plot(r,z) 1WGcv O)<  
    %       grid on EJ$-  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ML6V,V/e  
    % K6#9HF'2I  
    %   See also ZERNFUN, ZERNFUN2. z^s40707x  
    I }AO_rtb  
    % A note on the algorithm. x+j5vzhG)  
    % ------------------------ R[eQ}7;+  
    % The radial Zernike polynomials are computed using the series \3P.GS{l  
    % representation shown in the Help section above. For many special {}Y QB'}  
    % functions, direct evaluation using the series representation can <8U qV.&  
    % produce poor numerical results (floating point errors), because ld~8g,  
    % the summation often involves computing small differences between :e-&,K  
    % large successive terms in the series. (In such cases, the functions eySV -f{  
    % are often evaluated using alternative methods such as recurrence hZ0p /Bdv  
    % relations: see the Legendre functions, for example). For the Zernike K`!q1 g`  
    % polynomials, however, this problem does not arise, because the >|<8QomD  
    % polynomials are evaluated over the finite domain r = (0,1), and 3 y!yz3E  
    % because the coefficients for a given polynomial are generally all [@Hv,  
    % of similar magnitude. /0(2PVf y  
    % ]h0Fv-[A  
    % ZERNPOL has been written using a vectorized implementation: multiple K&(}5`H0=  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] IY@)  
    % values can be passed as inputs) for a vector of points R.  To achieve &KfRZ`9H  
    % this vectorization most efficiently, the algorithm in ZERNPOL $y !k)"k  
    % involves pre-determining all the powers p of R that are required to JTcK\t8  
    % compute the outputs, and then compiling the {R^p} into a single >G`=8Ku  
    % matrix.  This avoids any redundant computation of the R^p, and 6d~[My  
    % minimizes the sizes of certain intermediate variables. S>~QuCMY  
    % ZyE2=w7n  
    %   Paul Fricker 11/13/2006 Fs q=u-= :  
    8i!~w 7z  
    L@*0wx`fU  
    % Check and prepare the inputs: yteJHaq  
    % ----------------------------- Hu$]V*rAG  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8fpaY{]  
        error('zernpol:NMvectors','N and M must be vectors.') du2q6"  
    end Ro+/=*ql~  
    {e,m<mAi  
    if length(n)~=length(m) !ndc <],  
        error('zernpol:NMlength','N and M must be the same length.') x{u7#s1|/  
    end -a`EL]NX  
    mk JS_6  
    n = n(:); ~8'4/wh+8  
    m = m(:); OZ?4"1$.t  
    length_n = length(n); J-g#zs  
    m ys5B}  
    if any(mod(n-m,2)) A(y^1Nm  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') n8"S;:Zm  
    end CFJ F}aW  
    kq6K<e4jO  
    if any(m<0) v'`9^3(-  
        error('zernpol:Mpositive','All M must be positive.') ZVotIQ/Q'  
    end 2Up1 FFRx  
    3=9yR* *  
    if any(m>n)  5#JGNxO  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') O~F/pJN`  
    end SJ1 1LF3)  
    |Ia3bV W  
    if any( r>1 | r<0 ) 4VE7%.z+  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') -d\O{{%>.z  
    end <Vp7G%"'W  
    3=xb%Upw  
    if ~any(size(r)==1) T*>n a8W  
        error('zernpol:Rvector','R must be a vector.') Sc "J5^  
    end ToIvyeFr  
     "m3:HS  
    r = r(:); 2U,O e9  
    length_r = length(r); o uKID_ '  
    )5P*O5kQ -  
    if nargin==4 @L|X('i  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); (x9d7$2  
        if ~isnorm 7G}vQO  
            error('zernpol:normalization','Unrecognized normalization flag.') E)|_7x<u  
        end pYV$sDlD  
    else yvo~'k#c  
        isnorm = false; 0 3L"W^gc  
    end uf,4GPo,  
    <by}/lF0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XtfO;`   
    % Compute the Zernike Polynomials }*l V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TEOV>Tt  
    GP ;c$pC  
    % Determine the required powers of r: GqhnE>  
    % ----------------------------------- yG58?5\9  
    rpowers = []; kNfqdCF{P  
    for j = 1:length(n) ITh1|yP  
        rpowers = [rpowers m(j):2:n(j)]; P%>? O :a  
    end [6qa"Ie  
    rpowers = unique(rpowers); HbF.doXK  
    _)Uw-vhQiT  
    % Pre-compute the values of r raised to the required powers, BM{GSX  
    % and compile them in a matrix: YMP:T?vMVh  
    % ----------------------------- (5?5? <  
    if rpowers(1)==0 [@[!esC  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ''!pvxA  
        rpowern = cat(2,rpowern{:}); 9BB<. p  
        rpowern = [ones(length_r,1) rpowern]; WMBntB   
    else { 'Hi_b3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); dC@aQi6{6  
        rpowern = cat(2,rpowern{:}); ]@1YgV  
    end DR/qe0D  
    1&c>v3 $2  
    % Compute the values of the polynomials: IjN3 jU  
    % -------------------------------------- _lb ^  
    z = zeros(length_r,length_n); -yeQQ4b  
    for j = 1:length_n R|H9AM ~E  
        s = 0:(n(j)-m(j))/2; evPr~_  
        pows = n(j):-2:m(j); wo7.y["$  
        for k = length(s):-1:1 AY:3o3M  
            p = (1-2*mod(s(k),2))* ... K|];fd U  
                       prod(2:(n(j)-s(k)))/          ... !*u5HVn  
                       prod(2:s(k))/                 ... )F&@ M;2p'  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... rq9{m(  
                       prod(2:((n(j)+m(j))/2-s(k))); hN c;, 13  
            idx = (pows(k)==rpowers); 1Nw&Z0MI  
            z(:,j) = z(:,j) + p*rpowern(:,idx); +V1EqC*  
        end H ~1laV  
         N+l~r]: &  
        if isnorm @``kt*+K+  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); }uWJ  
        end (w]w 2&Y D  
    end MQE=8\  
    nul?5{z@  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  4aV3x&6X  
    6,@M0CX  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 yLDHJ}R  
     fx;5j;  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)