非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _ft)e3Gf
function z = zernfun(n,m,r,theta,nflag) KsG>,#
Q
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Fb^Ae6/i
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N GQvJj4LJp
% and angular frequency M, evaluated at positions (R,THETA) on the EXz{Pqz
% unit circle. N is a vector of positive integers (including 0), and G^6\ OOSy
% M is a vector with the same number of elements as N. Each element `SN?4;N0
% k of M must be a positive integer, with possible values M(k) = -N(k) 8A,="YIt
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, AgU 7U/yk
% and THETA is a vector of angles. R and THETA must have the same J=OWXL!<a
% length. The output Z is a matrix with one column for every (N,M) -|/kg7IO\
% pair, and one row for every (R,THETA) pair. -gzY~a
% $1ZFkw
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike l0sBXs`3b
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *
SHQ[L4{
% with delta(m,0) the Kronecker delta, is chosen so that the integral !vQDPLBL
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &58TX[#
% and theta=0 to theta=2*pi) is unity. For the non-normalized i4p2]Nr
t
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !J%m 7A
% bpv?$j-j
% The Zernike functions are an orthogonal basis on the unit circle. NW*qw q
% They are used in disciplines such as astronomy, optics, and ;A3aUN;"I
% optometry to describe functions on a circular domain. Q=!f,
% Ze:Y"49S+>
% The following table lists the first 15 Zernike functions. @?gN
&Z)I
% ;xl_9Ht/
% n m Zernike function Normalization M)T {6w
% -------------------------------------------------- OQC.p,SO
% 0 0 1 1 P?Fm<s:
% 1 1 r * cos(theta) 2 aN}l&4d
% 1 -1 r * sin(theta) 2 FE[{*8
% 2 -2 r^2 * cos(2*theta) sqrt(6) KDW=x4*p
% 2 0 (2*r^2 - 1) sqrt(3) Ou'<9m!9
% 2 2 r^2 * sin(2*theta) sqrt(6) HXg4
T
% 3 -3 r^3 * cos(3*theta) sqrt(8) ,VTX7vaH
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ROfr
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) #]_S)_Z-
% 3 3 r^3 * sin(3*theta) sqrt(8) aDreN*n
% 4 -4 r^4 * cos(4*theta) sqrt(10) 5%Xny8
]|D
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) IY=CTFQ8lm
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) |vLlEN/S
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `;OEdeAM
% 4 4 r^4 * sin(4*theta) sqrt(10) U(t_uc5q
% -------------------------------------------------- OlJkyL8|
% c{SD=wRt,y
% Example 1: |!=KLJUA
% U if61)+!i
% % Display the Zernike function Z(n=5,m=1) :: 2pDtMS
% x = -1:0.01:1; kpU-//lk+
% [X,Y] = meshgrid(x,x); u3XQ<N{Gj
% [theta,r] = cart2pol(X,Y); $!-a)U,w$B
% idx = r<=1; k"V@9q;*
% z = nan(size(X)); V(LE4P1
% z(idx) = zernfun(5,1,r(idx),theta(idx)); w' gKE'c
% figure iOO1\9{@
% pcolor(x,x,z), shading interp @N'0:0Nb_
% axis square, colorbar ?7:?OX
% title('Zernike function Z_5^1(r,\theta)') g\n0v~T+
% dAZh# i[
% Example 2: xr<.r4
% fsxZQ=-PW
% % Display the first 10 Zernike functions ,cqZb0VP{t
% x = -1:0.01:1; U $ bLt
% [X,Y] = meshgrid(x,x); g^qbd$ }
% [theta,r] = cart2pol(X,Y); :.k)!
% idx = r<=1; |,G=k,?_p
% z = nan(size(X)); '/@]V
% n = [0 1 1 2 2 2 3 3 3 3]; J|Xu]fg0
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; k\J 6WT
% Nplot = [4 10 12 16 18 20 22 24 26 28]; >[U.P)7;
% y = zernfun(n,m,r(idx),theta(idx)); =`oQcIkz
% figure('Units','normalized') (6WSQqp
% for k = 1:10 pJK}9p=4`
% z(idx) = y(:,k); 9u->.O: p
% subplot(4,7,Nplot(k)) =?, dX
% pcolor(x,x,z), shading interp )ZI9n7
% set(gca,'XTick',[],'YTick',[]) -}W`
% axis square >cEB,@~
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @fVCGV?'
% end
.LX8ko
% hR] AUH
% See also ZERNPOL, ZERNFUN2. ^6Std
x_
]q2g[D o5
% Paul Fricker 11/13/2006 oiS>:de%tc
PI~W6a7p
qU1^ K
% Check and prepare the inputs: k$hNibpkt
% ----------------------------- $2M dxw5
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) y.LJ5K$&a
error('zernfun:NMvectors','N and M must be vectors.') ,3zF_y(*Y
end }#rdMh
l9 |x7GB
if length(n)~=length(m) $|2@of.
error('zernfun:NMlength','N and M must be the same length.') V`n;W6Q17
end y8{PAH8S
dX58nJ4u
n = n(:); jmAQ!y|W.
m = m(:); ~4Gs\U:!Q
if any(mod(n-m,2)) gyI(O>e
error('zernfun:NMmultiplesof2', ... _uR-Z_z
'All N and M must differ by multiples of 2 (including 0).') 'Gw;@[
end BE;J/
4+V+SD
if any(m>n) S!<1CFh
error('zernfun:MlessthanN', ...
1Ugyjjlz
'Each M must be less than or equal to its corresponding N.') 4[ S0~O{r
end &tULSp@J
;gh#8JkI
if any( r>1 | r<0 ) D{](5?$`|
error('zernfun:Rlessthan1','All R must be between 0 and 1.') M=!RJ%6f
end ~)zoIM \
?Q`Sx
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) \qrSJ=}t
error('zernfun:RTHvector','R and THETA must be vectors.') 9Q#eu~R
end @[qGoai
V0gk8wD
r = r(:); ">n38:?R
theta = theta(:); &~u=vuX
length_r = length(r); L29,Y=n@
if length_r~=length(theta) o|s JTY
error('zernfun:RTHlength', ... }@*Me+
'The number of R- and THETA-values must be equal.') R|%R-J]
end #nE%.k|R~
PC| U]
% Check normalization: .oJs"=h:m
% -------------------- Sd3KY9,
if nargin==5 && ischar(nflag) _u`NIpXSP
isnorm = strcmpi(nflag,'norm'); FT1h\K|a
if ~isnorm 1`tE Hu.
error('zernfun:normalization','Unrecognized normalization flag.') h SZ0 }/
end ZD9UE3-
else &=sVq^d@qe
isnorm = false; x9#>0
4s
end 6
1=?(Iw
'oZ/fUl|7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jhWNMu
% Compute the Zernike Polynomials _jw A_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8+&] q#W3
No)v&P%
% Determine the required powers of r: 7L[HtwI
% ----------------------------------- wl{Fx+<^3
m_abs = abs(m); JTw'ecFev
rpowers = []; 62B` Z5j#
for j = 1:length(n) a2dlz@)J
rpowers = [rpowers m_abs(j):2:n(j)]; IED7v
end `eIX*R
rpowers = unique(rpowers); ZDZPJp,
YC:>)
% Pre-compute the values of r raised to the required powers, ,`/J1(\nd
% and compile them in a matrix: 2&E1) ^
% ----------------------------- qy`95^
if rpowers(1)==0 Mj&f7IUO
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); K?_4|
rpowern = cat(2,rpowern{:}); IBx?MU#.
rpowern = [ones(length_r,1) rpowern]; \A\a=A[
else U9;C#9E
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _wWh7'u~G
rpowern = cat(2,rpowern{:}); ui4H(A'}
end 0@rrY
R1z\b~@"
% Compute the values of the polynomials: 9$,?Grw~
% -------------------------------------- Eb`U^*A
y = zeros(length_r,length(n)); 30Nya$$A=
for j = 1:length(n) 5=g{%X
s = 0:(n(j)-m_abs(j))/2; 4uv'l3
pows = n(j):-2:m_abs(j); (=${@=!z
for k = length(s):-1:1 im^G{3z
p = (1-2*mod(s(k),2))* ... tr2@{xb
prod(2:(n(j)-s(k)))/ ... #F5O>9hA
prod(2:s(k))/ ... jxL5L[
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &oevgG
prod(2:((n(j)+m_abs(j))/2-s(k))); $4`RJ{ZJw]
idx = (pows(k)==rpowers); WlVC0&
y(:,j) = y(:,j) + p*rpowern(:,idx); `j088<?j
end rMqWXGl`(
S%b7NK
if isnorm !!ZNemXct$
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); -OZRSjmY
end b0]y$*{j
end 2.Ym
% END: Compute the Zernike Polynomials R|h9ilc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >Qc0g(w
t&u,Od
% Compute the Zernike functions: {4&G\2<^^
% ------------------------------ F]3iL^v
idx_pos = m>0; |jW82L+!N%
idx_neg = m<0; pB{QO4qn
,,oiL
z = y; m~\BkE/[l
if any(idx_pos) :|oH11y
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i\G@ kJNnF
end 7|3Z+#|T
if any(idx_neg) ecA[
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); KYVB=14
end 5aw#!K=J'
;Gxp'y
% EOF zernfun