切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10444阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 L F Z  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 193Q  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 (#LV*&K%IC  
    function z = zernfun(n,m,r,theta,nflag) }T4"#'`  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. H:y.7  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N f>-OwL($P  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Fgt/A#`fz  
    %   unit circle.  N is a vector of positive integers (including 0), and 2/qfK+a  
    %   M is a vector with the same number of elements as N.  Each element )#IiHBF  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) J3y5R1?EP  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, m0XK?;\V  
    %   and THETA is a vector of angles.  R and THETA must have the same mi%d([)%<  
    %   length.  The output Z is a matrix with one column for every (N,M) '1^\^)&q  
    %   pair, and one row for every (R,THETA) pair. C03ehjT<  
    % 8WfF: R;  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :}e*3={4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m:II<tv  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral .2[>SI  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, OUnt?[U\  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized >L?/Ph%d  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {$oZR" MP  
    % %+Mi~k*A'  
    %   The Zernike functions are an orthogonal basis on the unit circle. BLuILE:$  
    %   They are used in disciplines such as astronomy, optics, and m"X0Owx  
    %   optometry to describe functions on a circular domain. +cQ4u4  
    % {cq; SH  
    %   The following table lists the first 15 Zernike functions. i2)rDek3]T  
    % WTSY:kvcCY  
    %       n    m    Zernike function           Normalization n]6xrsE  
    %       -------------------------------------------------- }!lLA4XRr  
    %       0    0    1                                 1 tJbOn$]2"  
    %       1    1    r * cos(theta)                    2 9I+;waLlB  
    %       1   -1    r * sin(theta)                    2 !`)-seTm  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) l4|bpR Cp  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Yg<o 9x$  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) N[){yaj  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) W>bhSKV%  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 9k&lq$  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Xr6lYO_R  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 3yZtyXRPn  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Y}(v[QGV  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) p_!Y:\a5  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) z,I7 PY& G  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 573wK~9oMh  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) &CCB;Oi%  
    %       -------------------------------------------------- >p}d:t/  
    % e7>)Z  
    %   Example 1:  ORp6  
    % #:DDx5%x<b  
    %       % Display the Zernike function Z(n=5,m=1) ?b^VEp.;}  
    %       x = -1:0.01:1; y%v<Cp@R  
    %       [X,Y] = meshgrid(x,x); UI_|VU>J  
    %       [theta,r] = cart2pol(X,Y); J<>z}L{  
    %       idx = r<=1; $/Zsy6q:  
    %       z = nan(size(X)); hc`9Y  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); rcOpOoU|  
    %       figure I8 8y9sW  
    %       pcolor(x,x,z), shading interp V[rNJf1z  
    %       axis square, colorbar i8Yl1nF  
    %       title('Zernike function Z_5^1(r,\theta)') nxA]EFS  
    % ~pX&>v\T  
    %   Example 2: A WMR0I  
    % !b7]n-1zs  
    %       % Display the first 10 Zernike functions R^f~aLl  
    %       x = -1:0.01:1; cx1U6A+  
    %       [X,Y] = meshgrid(x,x); p! zC  
    %       [theta,r] = cart2pol(X,Y); B.'@~$  
    %       idx = r<=1; pvDr&n9  
    %       z = nan(size(X)); V`pTl3  
    %       n = [0  1  1  2  2  2  3  3  3  3]; &z 1A-O v  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; RR75ke[Hs  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; /49PF:$?  
    %       y = zernfun(n,m,r(idx),theta(idx)); 9c=Y+=<  
    %       figure('Units','normalized') !})/x~~e  
    %       for k = 1:10 7$8z}2  
    %           z(idx) = y(:,k); * jT r  
    %           subplot(4,7,Nplot(k)) JihI1C  
    %           pcolor(x,x,z), shading interp f8lBxK  
    %           set(gca,'XTick',[],'YTick',[]) Ty*ec%U9F  
    %           axis square ]BO{Q+?d2  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #fk)Y1  
    %       end "of(,p   
    % -l`@pklQ  
    %   See also ZERNPOL, ZERNFUN2. 5#80`/w^U  
    oZA|IF8U0  
    %   Paul Fricker 11/13/2006 G"5Nj3v d  
    5l=B,%s  
    6pLB`1[v  
    % Check and prepare the inputs: -=Q_E^'  
    % ----------------------------- XG<^j}H{}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) )gmDxD ^C  
        error('zernfun:NMvectors','N and M must be vectors.') !6@xX08z  
    end v|?hc'Fj  
    PJAE~|a  
    if length(n)~=length(m) [{}9"zB$x0  
        error('zernfun:NMlength','N and M must be the same length.') ,b-wo  
    end U4 m[@wF  
    J.$<Lnt>u  
    n = n(:); bsuUl*l)  
    m = m(:); kZU8s'C  
    if any(mod(n-m,2)) Wey-nsk  
        error('zernfun:NMmultiplesof2', ... pnxjuDN7}x  
              'All N and M must differ by multiples of 2 (including 0).') >-s}1*^=oD  
    end Gqk"%irZ  
    @7u4v%,wB  
    if any(m>n) N5}vy$t_P  
        error('zernfun:MlessthanN', ... YUT"A{L  
              'Each M must be less than or equal to its corresponding N.') IywovN Tr  
    end 7v?tSob:b  
    S4qh8c  
    if any( r>1 | r<0 ) 7@fd[  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') CV]PCq!  
    end )@]-bPnv  
    E;VBoN [  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) fOE:~3Q  
        error('zernfun:RTHvector','R and THETA must be vectors.') ~e 6yaX8S  
    end +A~lPXAXW  
     7z<!2  
    r = r(:); pqMv YF  
    theta = theta(:); }td+F&l($V  
    length_r = length(r); 4=o3 ZRV  
    if length_r~=length(theta) iUS379wM}  
        error('zernfun:RTHlength', ... n\,TW&3  
              'The number of R- and THETA-values must be equal.') 2Mu-c:1  
    end .7ahz8v  
    F|xXMpC.f  
    % Check normalization: rJ\A)O+Mq(  
    % -------------------- f910drg7  
    if nargin==5 && ischar(nflag) _N/]&|.. !  
        isnorm = strcmpi(nflag,'norm'); "{z9 L+  
        if ~isnorm 1G.+)*:3  
            error('zernfun:normalization','Unrecognized normalization flag.') 5CU< ?  
        end 45kMIh~~X  
    else B susXW$  
        isnorm = false; ^3=8*Xr  
    end oYJ&BPuA'  
    k\ I$ve"*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ry~3YYEMI0  
    % Compute the Zernike Polynomials Cf`UMQ a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;Ic3th%u  
    !PUhdW  
    % Determine the required powers of r: ei\X/Z*q%P  
    % ----------------------------------- 8^dGI9N  
    m_abs = abs(m); ,Yi =s;E  
    rpowers = []; m G?a)P  
    for j = 1:length(n) {H])Fob  
        rpowers = [rpowers m_abs(j):2:n(j)]; ZmmuP/~2K  
    end :\4O9f*5+  
    rpowers = unique(rpowers); ~@'|R%jJ  
    {/Q pEd>3+  
    % Pre-compute the values of r raised to the required powers, ZN1QTb  
    % and compile them in a matrix: cLR8U1k'  
    % ----------------------------- UwE^ij  
    if rpowers(1)==0 uUc[s"\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); f{3FoN= z  
        rpowern = cat(2,rpowern{:}); }PED#Uv  
        rpowern = [ones(length_r,1) rpowern]; ARQ1H0_B  
    else 6\::Ku4_2  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); PU -~7h+$  
        rpowern = cat(2,rpowern{:}); q8kt_&Ij  
    end ; H:qDBH  
    +S/8{2%?DG  
    % Compute the values of the polynomials: cst=ms  
    % -------------------------------------- c$e~O-OVD?  
    y = zeros(length_r,length(n)); wV5<sH__  
    for j = 1:length(n) ,(c="L4[  
        s = 0:(n(j)-m_abs(j))/2; A)`M*(~  
        pows = n(j):-2:m_abs(j); xFpJ#S&  
        for k = length(s):-1:1 .-WCB  
            p = (1-2*mod(s(k),2))* ... $mlsFBd  
                       prod(2:(n(j)-s(k)))/              ... 4 Qw;r  
                       prod(2:s(k))/                     ... Q7}w Y  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... OcSLRN?t  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 58v5Z$%--  
            idx = (pows(k)==rpowers); R0/~) P  
            y(:,j) = y(:,j) + p*rpowern(:,idx); \[D"W{9l  
        end 0hNc#x6  
         b%)a5H(  
        if isnorm M2oKLRt)L  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Pc4sReo'  
        end rcyH2)Y/e  
    end D~mGv1t"  
    % END: Compute the Zernike Polynomials O]~p)E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~&yaIuW<  
    DD~8:\QD  
    % Compute the Zernike functions: .0a$E`V=D  
    % ------------------------------ r;Dl  
    idx_pos = m>0; a\%g_Q){  
    idx_neg = m<0; fqF1 - %  
    pkxW19h*0  
    z = y; ?ii a  
    if any(idx_pos) 9k *'5(D4S  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); h[lh01z  
    end "arbUX~d  
    if any(idx_neg) ](a<b@p  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ^T<<F}@q  
    end *sw$OnVb  
    h,#AY[Q  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) '7E?|B0],  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. K}wUM^  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated a"ht\v}1  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 2} T" |56  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, R_ Z H+@O  
    %   and THETA is a vector of angles.  R and THETA must have the same D vK}UAj=  
    %   length.  The output Z is a matrix with one column for every P-value, ND I|;   
    %   and one row for every (R,THETA) pair. .IG(Y!cB  
    % g@S"!9[;U  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike py,z7_Nuh  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) JM!o(zbt  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 9 s>JdAw?  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 p~M^' k=d  
    %   for all p. OP>'<FK   
    % BGUP-_&  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 O-mP{  
    %   Zernike functions (order N<=7).  In some disciplines it is WAob"`8]  
    %   traditional to label the first 36 functions using a single mode ,c7 8O8|  
    %   number P instead of separate numbers for the order N and azimuthal XRaq\a`=:  
    %   frequency M. ^TDHPBlG  
    % sYp@.?Tz  
    %   Example: R[Pyrs!H  
    % a|66[  
    %       % Display the first 16 Zernike functions tTP"*Bb  
    %       x = -1:0.01:1; n*'|7#;  
    %       [X,Y] = meshgrid(x,x); ^OYar(  
    %       [theta,r] = cart2pol(X,Y); Pirc49c  
    %       idx = r<=1; QZzi4[-as  
    %       p = 0:15; zf6k%  
    %       z = nan(size(X)); b^FB[tZ\x  
    %       y = zernfun2(p,r(idx),theta(idx)); CFn!P;.!  
    %       figure('Units','normalized') U?H!:?,C  
    %       for k = 1:length(p) S^~GI$  
    %           z(idx) = y(:,k); IEO5QV:u:  
    %           subplot(4,4,k) =cg0o_q8  
    %           pcolor(x,x,z), shading interp 72Ft?;R  
    %           set(gca,'XTick',[],'YTick',[]) ^TnBtIU-B  
    %           axis square DmPp&  
    %           title(['Z_{' num2str(p(k)) '}']) ULAAY$o@5  
    %       end _kgw+NA&-H  
    % XG*Luc-v  
    %   See also ZERNPOL, ZERNFUN. 8g&uCv/Uk  
    .3!=]=  
    %   Paul Fricker 11/13/2006 @e+QGd;}  
    p]IF=~b  
    vB KBMnSd  
    % Check and prepare the inputs: mmEr2\L  
    % ----------------------------- vMDV%E S1t  
    if min(size(p))~=1 vJ }^ p }  
        error('zernfun2:Pvector','Input P must be vector.') X8p-VCkV  
    end Xb3z<r   
    G' Jsk4:c  
    if any(p)>35 {_l@ws  
        error('zernfun2:P36', ... X> =`{JS1  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... B&`#`]  
               '(P = 0 to 35).']) KR%DpQ&{'  
    end (wnkdI{  
    M-"%4^8_  
    % Get the order and frequency corresonding to the function number: j8L!miv6  
    % ---------------------------------------------------------------- XeKIue@_  
    p = p(:); ]xfu @''  
    n = ceil((-3+sqrt(9+8*p))/2); {Jwh .bJ  
    m = 2*p - n.*(n+2); U,~\}$<I  
    z45ImItH  
    % Pass the inputs to the function ZERNFUN: ON\_9\kv  
    % ---------------------------------------- -6(C ^X%  
    switch nargin ( n|PLi  
        case 3 @|idlIey  
            z = zernfun(n,m,r,theta); +r"{$'{^  
        case 4 }RDGk+x7|  
            z = zernfun(n,m,r,theta,nflag); j0~]o})@i  
        otherwise  w:#yu  
            error('zernfun2:nargin','Incorrect number of inputs.') f3[gA Y  
    end :q<8:,rP  
    V^As@P8,'(  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 6*J`2U9Q  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Zui2O-L?V  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 3&^4%S{/  
    %   order N and frequency M, evaluated at R.  N is a vector of R'`q0MoN1  
    %   positive integers (including 0), and M is a vector with the /GD4GWv :  
    %   same number of elements as N.  Each element k of M must be a u^8:/~8K  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) >7[. {Y  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 4Z12Z@A#7  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix B"ZW.jMaI  
    %   with one column for every (N,M) pair, and one row for every ]d=SkOq  
    %   element in R. lTBPq?4{  
    % f 0A0uU8y  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- p%pM3<p  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is O0`sg90,C  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to mtSOygd  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 =i O K($  
    %   for all [n,m]. .'k]]2%ILp  
    % $hZb<Xz  
    %   The radial Zernike polynomials are the radial portion of the _w0t+=&  
    %   Zernike functions, which are an orthogonal basis on the unit +P:xB0Tm D  
    %   circle.  The series representation of the radial Zernike kclClB:PS  
    %   polynomials is Ab ,n^  
    % 2oyTS*2u_&  
    %          (n-m)/2 FR&4i" +  
    %            __ bw\fKZ  
    %    m      \       s                                          n-2s ZG:#r\a  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r %xF j;U?  
    %    n      s=0 ?^t"tY  
    % /`McKYIP  
    %   The following table shows the first 12 polynomials. >{?~cNO&  
    % 4=!SG4~o  
    %       n    m    Zernike polynomial    Normalization (N{Rda*8  
    %       --------------------------------------------- e=ZwhRP  
    %       0    0    1                        sqrt(2) 5G"LuA  
    %       1    1    r                           2 [!H2i p-  
    %       2    0    2*r^2 - 1                sqrt(6) F9@,T8I  
    %       2    2    r^2                      sqrt(6) {\3k(NdEX  
    %       3    1    3*r^3 - 2*r              sqrt(8) nm5zX,  
    %       3    3    r^3                      sqrt(8) *y<Ru:D  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) r!:W-Y%&#  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Whp;wAz  
    %       4    4    r^4                      sqrt(10) |W4 \  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) feU]a5%XZ  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) H<T9$7Yr%r  
    %       5    5    r^5                      sqrt(12) 5{/CqUIl  
    %       --------------------------------------------- D#Fe\8!l  
    % db#QA#^S  
    %   Example: =2!AK[KxX  
    % U  ?'$E\  
    %       % Display three example Zernike radial polynomials XN65bq  
    %       r = 0:0.01:1; B w?Kb@  
    %       n = [3 2 5]; :?W {vV  
    %       m = [1 2 1]; f0H 5 )DJf  
    %       z = zernpol(n,m,r); pn3f{fQ  
    %       figure ] AkHNgW  
    %       plot(r,z) ^T*^L=L_(  
    %       grid on C$Pe<C#  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 2c:H0O 0o  
    % {];4  
    %   See also ZERNFUN, ZERNFUN2. .I\)1kjX  
    m| 8%%E}d  
    % A note on the algorithm. 4bXAA9"  
    % ------------------------ b*$/(2"m  
    % The radial Zernike polynomials are computed using the series (}E-+:vFU  
    % representation shown in the Help section above. For many special \|^fG9M~  
    % functions, direct evaluation using the series representation can 7 +A-S9P)  
    % produce poor numerical results (floating point errors), because w20E]4"  
    % the summation often involves computing small differences between wXw pKm  
    % large successive terms in the series. (In such cases, the functions l*]9   
    % are often evaluated using alternative methods such as recurrence gEC*JbA.3  
    % relations: see the Legendre functions, for example). For the Zernike 3&i8C,u]/O  
    % polynomials, however, this problem does not arise, because the 2_Me 4  
    % polynomials are evaluated over the finite domain r = (0,1), and rx`G* k{X  
    % because the coefficients for a given polynomial are generally all {6MLbL{  
    % of similar magnitude. nsR^TD;  
    % $tvGS6p>  
    % ZERNPOL has been written using a vectorized implementation: multiple XgY( Vv  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M]  yH_L<n  
    % values can be passed as inputs) for a vector of points R.  To achieve _J^q|  
    % this vectorization most efficiently, the algorithm in ZERNPOL K0B J  
    % involves pre-determining all the powers p of R that are required to k 1;,eB  
    % compute the outputs, and then compiling the {R^p} into a single <jd S0YT  
    % matrix.  This avoids any redundant computation of the R^p, and *;A I0  
    % minimizes the sizes of certain intermediate variables. e  iS~*@  
    % ^$3 ~;/|  
    %   Paul Fricker 11/13/2006 L8-  
    [{3WHS.  
    ]P/eg$u'I  
    % Check and prepare the inputs: G#V5E)Dx  
    % ----------------------------- 5wXe^G  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,Ie~zZE&  
        error('zernpol:NMvectors','N and M must be vectors.') 4eb<SNi  
    end g*8LdH 6mq  
    U!m-{7s$  
    if length(n)~=length(m) 4f,D3e%T|  
        error('zernpol:NMlength','N and M must be the same length.') !fdni}f)  
    end c)Ft#vzg&e  
    -eAo3  
    n = n(:); 2,|*KN*e`W  
    m = m(:); n0:+D R  
    length_n = length(n); [;B_ENV  
    )f#@`lf[<  
    if any(mod(n-m,2)) &8t?OpB =h  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') (zkh`8L  
    end [o&Vr\.$  
    WH :+HNl1d  
    if any(m<0) p-V#nPb  
        error('zernpol:Mpositive','All M must be positive.') F=   
    end : 4$Ex2  
    U@[P.y~J  
    if any(m>n) G-oC A1UdN  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') }]sI?&xB  
    end nut;ohIh  
    xXO& -v{  
    if any( r>1 | r<0 ) G\h8j*o  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') "hz(A.THi  
    end l/OG 79qq  
    v}dt**l  
    if ~any(size(r)==1) ~Av]LW  
        error('zernpol:Rvector','R must be a vector.') +Cx~4zEq  
    end g=; rM8W  
    mm%w0dOb"  
    r = r(:); b0LjNO@<  
    length_r = length(r); "%ag^v9  
    *sf9(%j  
    if nargin==4 lj%8(Xu  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); i2b\` 805  
        if ~isnorm Faa:h#  
            error('zernpol:normalization','Unrecognized normalization flag.') T,(IdVlJ  
        end P&| =  
    else 0<{/T*AU:  
        isnorm = false; EH3jzE3N  
    end (d993~|h  
    x[nv+n ,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +YT/od1t7  
    % Compute the Zernike Polynomials jLvI!q   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KtY~Y  
    En6fmEn&;o  
    % Determine the required powers of r: O|,+@qtH  
    % ----------------------------------- wd*T"V3  
    rpowers = []; 'DsfKR^ s  
    for j = 1:length(n) s5|LD'o!  
        rpowers = [rpowers m(j):2:n(j)]; [gzU / :  
    end f]$ g9H  
    rpowers = unique(rpowers); ?-<t-3%hyV  
    ^'QcP5Fv  
    % Pre-compute the values of r raised to the required powers, $qQ6u!  
    % and compile them in a matrix: (#c5Q&  
    % ----------------------------- 0x# 6L  
    if rpowers(1)==0 ] >ipC,v  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &:]_a?|*S  
        rpowern = cat(2,rpowern{:}); i[3$Wi$  
        rpowern = [ones(length_r,1) rpowern]; y(.WK8  
    else ;~~Oc  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); d;lp^K M  
        rpowern = cat(2,rpowern{:}); TOMvJ>bF  
    end b{s E#m%r  
    1I3u~J3]/  
    % Compute the values of the polynomials: yF0,}  
    % -------------------------------------- Si]Z`_  
    z = zeros(length_r,length_n); ieBW 0eMi  
    for j = 1:length_n [%l+ C~m  
        s = 0:(n(j)-m(j))/2; Q k-y 0  
        pows = n(j):-2:m(j); Zz?+,-$_*&  
        for k = length(s):-1:1 m_rRe\  
            p = (1-2*mod(s(k),2))* ... ' 1P_*  
                       prod(2:(n(j)-s(k)))/          ... QH\*l~;B\  
                       prod(2:s(k))/                 ... ~w]1QHA'f  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... fY%Sw7ql<  
                       prod(2:((n(j)+m(j))/2-s(k))); ]v_xEH}T  
            idx = (pows(k)==rpowers); \TMRS(  
            z(:,j) = z(:,j) + p*rpowern(:,idx); R<UjhCvx.  
        end [&3"kb  
         w5|@vB/pj  
        if isnorm PY z | d  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); K&|zWpb  
        end w4L\@y 3  
    end m(OBk;S~   
    )1x333.[c  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    8426
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  LNb![Rq  
    [ b W=>M  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 cmeyCyV*  
    }M9al@"  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)