非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 c%=IL M4
function z = zernfun(n,m,r,theta,nflag) YW{C} NA
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. wE~V]bmtW
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,yd?gP-O
% and angular frequency M, evaluated at positions (R,THETA) on the ANgw"&&>(
% unit circle. N is a vector of positive integers (including 0), and i&VsW7
% M is a vector with the same number of elements as N. Each element kT;S4B
% k of M must be a positive integer, with possible values M(k) = -N(k) S#+h$UVh
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, {GC?SaK
% and THETA is a vector of angles. R and THETA must have the same r#XT3qp$d
% length. The output Z is a matrix with one column for every (N,M) @|\}.M<e*)
% pair, and one row for every (R,THETA) pair. L:FoSCN Y(
% Uw47LP
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?Wz8[u
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), R~Ne|V2
% with delta(m,0) the Kronecker delta, is chosen so that the integral ztw@Y|<2
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,T2G~^0
% and theta=0 to theta=2*pi) is unity. For the non-normalized TA{\PKA)
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. b,CaWg
% *hw\35%P`?
% The Zernike functions are an orthogonal basis on the unit circle. J>\B`E
% They are used in disciplines such as astronomy, optics, and Z,=7Tu bR#
% optometry to describe functions on a circular domain. -{ H0g]
% xXM{pd
% The following table lists the first 15 Zernike functions. [i]Ub0Dh7
% ,lyb!k8
% n m Zernike function Normalization X-wf:h?i
% -------------------------------------------------- P'`r
% 0 0 1 1 wu)w
% 1 1 r * cos(theta) 2 ^/r7@:
% 1 -1 r * sin(theta) 2 .FLy;_f+
% 2 -2 r^2 * cos(2*theta) sqrt(6) sQ
fFu
% 2 0 (2*r^2 - 1) sqrt(3) gM
_hi
% 2 2 r^2 * sin(2*theta) sqrt(6) rnF/H=I/
% 3 -3 r^3 * cos(3*theta) sqrt(8) <kCU@SK
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8)
Y*UA,<-
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Z:*76PP,
% 3 3 r^3 * sin(3*theta) sqrt(8) (2=Zm@Zpf
% 4 -4 r^4 * cos(4*theta) sqrt(10) l g-X:Z.
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L|,!?cSAT
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) +u3=dj"[
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9T1ZL5
% 4 4 r^4 * sin(4*theta) sqrt(10) :3I@(k\PY
% -------------------------------------------------- Y*14v~\'
% f\jLqZY
% Example 1: kOed ]>H
% *FM Mjz
% % Display the Zernike function Z(n=5,m=1) }b-g*dn]5
% x = -1:0.01:1; (_"*NY0
% [X,Y] = meshgrid(x,x); og
kD^
% [theta,r] = cart2pol(X,Y); w'UVKpG+
% idx = r<=1; /bi}'H+#
% z = nan(size(X)); }yz (xH
% z(idx) = zernfun(5,1,r(idx),theta(idx)); +1D+]*t_?[
% figure L>3x9
% pcolor(x,x,z), shading interp 3J5!oF{H
% axis square, colorbar w$Rro)?}7
% title('Zernike function Z_5^1(r,\theta)') 9_
dpR.
% h]TQn)X]
% Example 2: H(Z88.OM
% ;NHt7p8SE
% % Display the first 10 Zernike functions MP>dW nl
% x = -1:0.01:1; 6=fSE=]DY
% [X,Y] = meshgrid(x,x); nYX@J6!
% [theta,r] = cart2pol(X,Y); 1#ft#-g}
% idx = r<=1; ^Gqt+K%
% z = nan(size(X)); v^1pN>#%g
% n = [0 1 1 2 2 2 3 3 3 3]; 7BJzMlJ1Y
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; c5u@pvSP
% Nplot = [4 10 12 16 18 20 22 24 26 28]; kYjGj,m"
% y = zernfun(n,m,r(idx),theta(idx)); 9;B0Mq
py
% figure('Units','normalized') [_Qa9e
% for k = 1:10 vuoQz\
% z(idx) = y(:,k); J{k79v
% subplot(4,7,Nplot(k)) ;oy-#p>N%
% pcolor(x,x,z), shading interp L{8xlx`
% set(gca,'XTick',[],'YTick',[]) 28UU60
% axis square o
!vE~
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) MpF$xzh
% end )3>hhuaa
% K5xX)oV
% See also ZERNPOL, ZERNFUN2. .n~M(59
id1s3b;
% Paul Fricker 11/13/2006 /!3@]xz*
w.\&9]P3~
D?NbW @]
% Check and prepare the inputs: N19({0+i2
% ----------------------------- `|ASx8_!
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "$2y-|
error('zernfun:NMvectors','N and M must be vectors.') {o.FlX
end uA#P'?
,f[>L|?e
if length(n)~=length(m) @
<
Q|5
error('zernfun:NMlength','N and M must be the same length.') 5nKj
)RH7M
end rV T{90,
34Kw!
n = n(:); ]hFW73FV
m = m(:); F;7dt@5;
if any(mod(n-m,2)) TzNn^ir=HX
error('zernfun:NMmultiplesof2', ... H*$jc\
dC
'All N and M must differ by multiples of 2 (including 0).') QmCe>+
end Ht&:-F+dm
% a@>_
if any(m>n) V 7Ek-2M
error('zernfun:MlessthanN', ... TX&Jt%
'Each M must be less than or equal to its corresponding N.') !qM=a3
end kNobl
'|Kmq5)
if any( r>1 | r<0 ) ]Ccg`AR{
error('zernfun:Rlessthan1','All R must be between 0 and 1.') MP4z-4Y
end .K p
<w)r`D6
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) jhb6T ?}
error('zernfun:RTHvector','R and THETA must be vectors.') B4i!/@0s
end $Z\.-QE\
B(n{e53 9f
r = r(:); CTZh0x
theta = theta(:); y"H*%]
length_r = length(r); +h r@#n4A
if length_r~=length(theta) /XzH?n/{R
error('zernfun:RTHlength', ... v33dxZ'
'The number of R- and THETA-values must be equal.') ;;:-l99
end ~;#Y9>7\\'
8q,6}mV
% Check normalization: V;:j ZpG
% -------------------- tavpq.0O
if nargin==5 && ischar(nflag) G"Sd@%W(
isnorm = strcmpi(nflag,'norm'); s#)5h0t#du
if ~isnorm Zf65`K3
error('zernfun:normalization','Unrecognized normalization flag.') S|]X'f
end Zw ^kmSL"
else iX2]VRNx l
isnorm = false; +ayos[<0#
end ?MgUY)X
a{qM2P(S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a*ushB
% Compute the Zernike Polynomials =Q+=
f
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bqnNLs<N
L.jh
% Determine the required powers of r: /oR<A
% ----------------------------------- 'Pn3%&O$
m_abs = abs(m); 7:)n$,31FW
rpowers = []; 8p@Piy{p
for j = 1:length(n) TiO"xMX
rpowers = [rpowers m_abs(j):2:n(j)]; $0lD>yu
end qT`k*i?
rpowers = unique(rpowers); JSTuXW
P#XID 2;
% Pre-compute the values of r raised to the required powers, 06N}k<10O
% and compile them in a matrix: EuyXgK>g
% ----------------------------- ZRg;/sX]
if rpowers(1)==0 RWgNo#<
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :QB<?HaS'
rpowern = cat(2,rpowern{:}); Od%"B\
rpowern = [ones(length_r,1) rpowern]; PSZL2iGj9V
else yl1gx
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); or';A'k
rpowern = cat(2,rpowern{:}); H=Y{rq @
end }A7j/uy}s
f,:9N 5Z
% Compute the values of the polynomials: Db1pW=66:
% -------------------------------------- /5:bvg+
y = zeros(length_r,length(n)); i-6F:\;
for j = 1:length(n) 2|}+T6_q
s = 0:(n(j)-m_abs(j))/2; -U/c\-~fU
pows = n(j):-2:m_abs(j); fH> NJK;
for k = length(s):-1:1 \3S8 62B7
p = (1-2*mod(s(k),2))* ... <\}KT*Xp
prod(2:(n(j)-s(k)))/ ... ,~OwLWi-|X
prod(2:s(k))/ ... Ko&>C_N
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ZfgJ.<<
prod(2:((n(j)+m_abs(j))/2-s(k))); 'zGo?a
idx = (pows(k)==rpowers); m|:_]/*qE
y(:,j) = y(:,j) + p*rpowern(:,idx); &qr;IL7'
end Gch[Otq]%
@>)r}b
if isnorm vWf;
'j
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); KNLfp1!
end ek}a}.3 {
end A?t%e
% END: Compute the Zernike Polynomials R5 9S@MsuD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kZerKP
%^>ju;i^O
% Compute the Zernike functions: ktdW`R\+
% ------------------------------ ~ ArP9
K"
idx_pos = m>0; 26k LhFS
idx_neg = m<0; /O^RF }
2g>SHS@1>
z = y; Oms. e
if any(idx_pos) tGl;@V@Qj
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); O2BDL1o
end X6mqi;+
if any(idx_neg) 66I"=:
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Y5FbU
end `/ q|@B7
.b-f9qc=
% EOF zernfun