非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 /lDW5;d
function z = zernfun(n,m,r,theta,nflag) y!GjC]/
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. YFOK%7K
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N N!m-gymmF
% and angular frequency M, evaluated at positions (R,THETA) on the IJO`"da
% unit circle. N is a vector of positive integers (including 0), and j#y_#
% M is a vector with the same number of elements as N. Each element
' ^gF
% k of M must be a positive integer, with possible values M(k) = -N(k) ~\DC
)
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, |ap{+ xh
% and THETA is a vector of angles. R and THETA must have the same O:Bfbna
% length. The output Z is a matrix with one column for every (N,M) N:[m,U9a
% pair, and one row for every (R,THETA) pair. `zRgP#
% K+Al8L?K_
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike U*,8,C
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -\\}K\*MJ
% with delta(m,0) the Kronecker delta, is chosen so that the integral v>.nL(VLjP
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, fG;)wQJ
% and theta=0 to theta=2*pi) is unity. For the non-normalized d
/&aC#'B
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. JT&CJ&#[h
% 75wQH*
% The Zernike functions are an orthogonal basis on the unit circle. -% PUY(
% They are used in disciplines such as astronomy, optics, and kmNY
;b6Y$
% optometry to describe functions on a circular domain. Y}'C'PR
% m,aJ(8G
% The following table lists the first 15 Zernike functions. \bqNjlu
% |M`B
% n m Zernike function Normalization Yi&;4vC
% -------------------------------------------------- TbU\qcm]]
% 0 0 1 1 Bo.x
% 1 1 r * cos(theta) 2 \`jFy[(Pa'
% 1 -1 r * sin(theta) 2 [yL%+I
% 2 -2 r^2 * cos(2*theta) sqrt(6) #B"ki{Se*
% 2 0 (2*r^2 - 1) sqrt(3) jii2gtu'U
% 2 2 r^2 * sin(2*theta) sqrt(6) rw8O<No4.o
% 3 -3 r^3 * cos(3*theta) sqrt(8) t*zve,?}
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) cQzd0X
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) jpZX5_o
% 3 3 r^3 * sin(3*theta) sqrt(8) aoz+g,1
//
% 4 -4 r^4 * cos(4*theta) sqrt(10) ;gy_Q f2U
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kf_s.Dedw
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) \% !]qv
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X<K[`
=I
% 4 4 r^4 * sin(4*theta) sqrt(10) kI]i,v#F
% -------------------------------------------------- _a8^AG
% IE: x&q`3
% Example 1: *58<.L|
% o DPs xw
% % Display the Zernike function Z(n=5,m=1) %;^[WT`,
% x = -1:0.01:1;
zN#$eyt
% [X,Y] = meshgrid(x,x); N'Ywn}!js
% [theta,r] = cart2pol(X,Y); a3 6n}R4Q
% idx = r<=1; LTS3[=AB
% z = nan(size(X)); 99G/(Z}
% z(idx) = zernfun(5,1,r(idx),theta(idx)); fW!~*Q
% figure y&t&'l/m
% pcolor(x,x,z), shading interp \r^=W=
% axis square, colorbar P9:7_Vc
% title('Zernike function Z_5^1(r,\theta)') hUSr1jlA
% #p&iH9c_
% Example 2: *W y0hnr;]
% l6Ze6X I
% % Display the first 10 Zernike functions })T}e7>T
% x = -1:0.01:1; ($7>\"+Tl
% [X,Y] = meshgrid(x,x); 5oGnPF
% [theta,r] = cart2pol(X,Y); ipjl[
% idx = r<=1; [esjR`u
% z = nan(size(X)); 3Fo,F
% n = [0 1 1 2 2 2 3 3 3 3]; H&[ CSc
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; TGdD7n&Ehh
% Nplot = [4 10 12 16 18 20 22 24 26 28]; !-2nIY!
% y = zernfun(n,m,r(idx),theta(idx)); [X#bDO<t
% figure('Units','normalized') +>KWYPH
% for k = 1:10 g}{Rk>k
% z(idx) = y(:,k); ,(N&%
% subplot(4,7,Nplot(k)) 3T# zxu
% pcolor(x,x,z), shading interp 8UwL%"?YB
% set(gca,'XTick',[],'YTick',[]) :(} {uG
% axis square ]d_Id]Qa+
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -kq=W_
% end j,/OzVm9
% tQ5gmj
% See also ZERNPOL, ZERNFUN2. .MhZ=sn
$V]D7kDph*
% Paul Fricker 11/13/2006 9Wb9g/L
@NlnZfMu
[Rs5hO
% Check and prepare the inputs: } !pC}m
% ----------------------------- /(BQzCP9O;
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g (ZeGNV8
error('zernfun:NMvectors','N and M must be vectors.') W>wIcUP<<
end ?q7VB
c;Hf +n
if length(n)~=length(m) *^=`HE89S
error('zernfun:NMlength','N and M must be the same length.') 64#~ p)
end 6?+bi\6
[ k^6#TQcn
n = n(:);
&e7yX
m = m(:); r|fJ~0z
if any(mod(n-m,2)) pJ6bX4QnDX
error('zernfun:NMmultiplesof2', ... 2!~j(_TA
'All N and M must differ by multiples of 2 (including 0).') &1F)/$,v
end 09_3`K.*
i:&Y{iPQp
if any(m>n) 8n?P'iM
error('zernfun:MlessthanN', ... n/pM[gI
'Each M must be less than or equal to its corresponding N.') C;oP"K]4=
end r444s8Y
(toGU
if any( r>1 | r<0 ) PD|I3qv~
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ``1#^ `
end -/~^S]
qe"5&