切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11219阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ZDR@VYi+~  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! M %!;5  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 EE!}$qOR  
    function z = zernfun(n,m,r,theta,nflag) K}R+~<bIY  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. i U$ ~H  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Fr8GGN~/  
    %   and angular frequency M, evaluated at positions (R,THETA) on the b]+F/@h~]  
    %   unit circle.  N is a vector of positive integers (including 0), and F`nQS&y  
    %   M is a vector with the same number of elements as N.  Each element Mn.,?IF`K  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ~-BF7f 6C  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, a[O6xA%  
    %   and THETA is a vector of angles.  R and THETA must have the same neDXzMxF  
    %   length.  The output Z is a matrix with one column for every (N,M) ~t`s&t'c|  
    %   pair, and one row for every (R,THETA) pair. _6ZjF>f  
    % 7w/IHML  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;hX(/T  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), H,!xTy"Wh  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 7z{wYCw  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <=q} Nd\  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized _95296  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g\JJkXjD#  
    % `a& kD|Yh  
    %   The Zernike functions are an orthogonal basis on the unit circle. zN4OrG 0  
    %   They are used in disciplines such as astronomy, optics, and Zh<;r;2  
    %   optometry to describe functions on a circular domain. @^W`Yg)C  
    % Pd*[i7zhC  
    %   The following table lists the first 15 Zernike functions. Z',!LK!  
    % 0CrsZtX  
    %       n    m    Zernike function           Normalization _/s"VYFZ  
    %       -------------------------------------------------- /~[Lr   
    %       0    0    1                                 1 TC\+>LXiZ  
    %       1    1    r * cos(theta)                    2 bmfM_oz  
    %       1   -1    r * sin(theta)                    2 IU%|K~_n  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) SiratkP9n7  
    %       2    0    (2*r^2 - 1)                    sqrt(3) yw3"jdcl  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) y/lF1{}5  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ,fVD`RR(W?  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 11[lc2  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) :S+K\  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) \*xB<mq  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) o\IMYT  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) x*Lt]]A  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) -u2i"I730  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) B`5<sW  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) jVj5; }  
    %       -------------------------------------------------- `Lf'/q   
    % !'7fOP-J]  
    %   Example 1: ;;Q^/rkC  
    % {4Of.  
    %       % Display the Zernike function Z(n=5,m=1) {meX2Z4  
    %       x = -1:0.01:1; 0B NLTRv  
    %       [X,Y] = meshgrid(x,x); NO"PO @&Wk  
    %       [theta,r] = cart2pol(X,Y); *eVq(R9?T  
    %       idx = r<=1; EdJL&*  
    %       z = nan(size(X)); *z=_sD?1  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); p\6cpf  
    %       figure ^PksXfk  
    %       pcolor(x,x,z), shading interp ;?-AFd\i  
    %       axis square, colorbar XpQOl  
    %       title('Zernike function Z_5^1(r,\theta)') tT$OnZu&  
    % ]n22+]D  
    %   Example 2: }I"C4'(a  
    % (C2 XFg_  
    %       % Display the first 10 Zernike functions <AHpk5Sn{  
    %       x = -1:0.01:1; W? iA P  
    %       [X,Y] = meshgrid(x,x); i=8iK#2 h  
    %       [theta,r] = cart2pol(X,Y); v<qh;2  
    %       idx = r<=1; sGvbL-S-f:  
    %       z = nan(size(X)); pJpapA2l*6  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Zo9<96I&  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !liV Y]  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; PxHFH pL  
    %       y = zernfun(n,m,r(idx),theta(idx)); vh9* >[i  
    %       figure('Units','normalized') W L$^B@gXQ  
    %       for k = 1:10 XC4Z,,ah"  
    %           z(idx) = y(:,k); K~x,so  
    %           subplot(4,7,Nplot(k)) \u3\TJ  
    %           pcolor(x,x,z), shading interp )&DAbB!O  
    %           set(gca,'XTick',[],'YTick',[]) l.[pnLD  
    %           axis square KaGUpHw  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /'O8RUjN  
    %       end XX;4A  
    % Tt[zSlIMx  
    %   See also ZERNPOL, ZERNFUN2. h$>F}n j  
    )^h6'h`  
    %   Paul Fricker 11/13/2006 ?mQ^"9^XS  
    G4&s_ M$  
    ZO}Og&%  
    % Check and prepare the inputs: _`$LdqgE  
    % ----------------------------- e5 =d Ev  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) uFd$*`jS  
        error('zernfun:NMvectors','N and M must be vectors.') ^6 6!f 5^W  
    end gwZ<$6  
    NzRvbj]  
    if length(n)~=length(m) x^f<G 6z  
        error('zernfun:NMlength','N and M must be the same length.') ajbe7#}  
    end HDyf]2N*N  
    od;-D~  
    n = n(:); K,f:X g!:  
    m = m(:); mgxIxusR  
    if any(mod(n-m,2)) w7nt $L5  
        error('zernfun:NMmultiplesof2', ... `h}eP[jA  
              'All N and M must differ by multiples of 2 (including 0).') ? @V R%z  
    end $o6/dEKQ  
    $o"nTl  
    if any(m>n) ^}3^|jF  
        error('zernfun:MlessthanN', ... ,m=F H?5  
              'Each M must be less than or equal to its corresponding N.') *2X6;~  
    end TyxIlI4"  
    gmTBT#{6yH  
    if any( r>1 | r<0 ) }ze+ tf  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 61\u{@o$  
    end 1I Yip\:lS  
    #GsOE#*>T  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) l,wlxh$}(  
        error('zernfun:RTHvector','R and THETA must be vectors.') p< R:[rz  
    end Hg+<GML  
    mDD.D3RS  
    r = r(:); ~KK 9aV{  
    theta = theta(:); V>$( N/1  
    length_r = length(r); [f6uwp  
    if length_r~=length(theta) <+8'H:wz  
        error('zernfun:RTHlength', ... ,'NasL8?We  
              'The number of R- and THETA-values must be equal.')  >DL  
    end 2:+8]b3i  
    |@ mz@  
    % Check normalization: npP C;KD  
    % -------------------- *0WVrM06?  
    if nargin==5 && ischar(nflag) Z:b?^u4.  
        isnorm = strcmpi(nflag,'norm'); OhF55,[  
        if ~isnorm 3CUQQ_  
            error('zernfun:normalization','Unrecognized normalization flag.') Z[vx0[av&  
        end M,Gy.ivz  
    else #J5BHY~  
        isnorm = false; -15e  
    end \u=d`}E  
    $Dg-;I  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r}U6LE?>  
    % Compute the Zernike Polynomials %wD#[<BGn>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D(cD8fn,J  
    ?y>N&\pt2  
    % Determine the required powers of r: 68%aDs  
    % ----------------------------------- IrwQ~z3I  
    m_abs = abs(m); c '|*{%<e2  
    rpowers = []; _h%Jf{nu  
    for j = 1:length(n) .X g.,kW  
        rpowers = [rpowers m_abs(j):2:n(j)]; HC0juT OiO  
    end (qcFGM22U  
    rpowers = unique(rpowers); zI88IM7/  
    wG3L+[,  
    % Pre-compute the values of r raised to the required powers, E4#{&sRT  
    % and compile them in a matrix: aRd~T6I  
    % ----------------------------- bC&A@.g{  
    if rpowers(1)==0 b[%@3}E  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); T2{e 1 =Z7  
        rpowern = cat(2,rpowern{:}); FT).$h~+4  
        rpowern = [ones(length_r,1) rpowern]; S)CsH1Q  
    else "+DA)K  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); B=Hd:P|  
        rpowern = cat(2,rpowern{:}); h*%p%t<  
    end /E>;O47a  
    VPN 9 Ql=  
    % Compute the values of the polynomials: >}k*!J|  
    % -------------------------------------- " <bjS  
    y = zeros(length_r,length(n)); h'ik3mLH  
    for j = 1:length(n) +'H[4g`  
        s = 0:(n(j)-m_abs(j))/2; H4i}gdR  
        pows = n(j):-2:m_abs(j); Km2~nkQ  
        for k = length(s):-1:1 N=mvr&arP  
            p = (1-2*mod(s(k),2))* ... pEB3 qGA  
                       prod(2:(n(j)-s(k)))/              ... tpI/I bq  
                       prod(2:s(k))/                     ... ]dycesc'  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... N2h5@*1Y  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); }OkzP)(  
            idx = (pows(k)==rpowers); YznL+TD  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 32GI+NN  
        end %PW-E($o<  
         b[vE!lJEq  
        if isnorm -]EL|_;  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1q}32^>+o  
        end a[ULSYEi  
    end R P{pEd  
    % END: Compute the Zernike Polynomials QPy h.9:N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E2hsSqsu=  
    vbJ<|#|r-  
    % Compute the Zernike functions: eDd& vf  
    % ------------------------------ +=WBH'  
    idx_pos = m>0; NT6jwK.?)?  
    idx_neg = m<0; cMK|t;" 3  
    ueg%yvO  
    z = y; =i~ = |K!  
    if any(idx_pos) -J]?M  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); W83d$4\d  
    end 4DIU7#GG  
    if any(idx_neg) HoBx0N9\2  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); <?7CwW  
    end tbQY&TO1  
    GEPWb[Oa  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) df{?E):  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. x. t< @y~  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated qJ" (:~  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive zDg*ds\  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, R/u0,  
    %   and THETA is a vector of angles.  R and THETA must have the same hn.(pI1  
    %   length.  The output Z is a matrix with one column for every P-value, Iq|h1ie m+  
    %   and one row for every (R,THETA) pair. {UH45#Ua  
    % ?`TQ!m6y  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ]xf89[;0  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) :F d1k Jm  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) QXI~Toddj  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 [KUkv  
    %   for all p. t{,$?}  
    % 1uo |a  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 58?WO}  
    %   Zernike functions (order N<=7).  In some disciplines it is 7L+Wj }m  
    %   traditional to label the first 36 functions using a single mode w !kk(QMV  
    %   number P instead of separate numbers for the order N and azimuthal HubG>]  
    %   frequency M. Ov" wcJ  
    % (,"%fc7<i  
    %   Example: .(&6gB  
    % Qfeu3AT  
    %       % Display the first 16 Zernike functions [\F:NLjiUy  
    %       x = -1:0.01:1; ,T;sWl  
    %       [X,Y] = meshgrid(x,x); dLQp"vs$  
    %       [theta,r] = cart2pol(X,Y); Zn1((J7  
    %       idx = r<=1; ^PdD-tY<  
    %       p = 0:15; ,%Pn.E* r;  
    %       z = nan(size(X)); &tkPZ*}#1  
    %       y = zernfun2(p,r(idx),theta(idx)); 06NiH-0O  
    %       figure('Units','normalized') +;H=_~b  
    %       for k = 1:length(p) uA`e  
    %           z(idx) = y(:,k); `B?+1Gv  
    %           subplot(4,4,k) H94_ae  
    %           pcolor(x,x,z), shading interp <S_0=U  
    %           set(gca,'XTick',[],'YTick',[]) Q3r]T.].h  
    %           axis square 4Zjd g`  
    %           title(['Z_{' num2str(p(k)) '}']) "-fyX!  
    %       end [p\xk{7Y  
    % ]Y & 2&  
    %   See also ZERNPOL, ZERNFUN. Y&VypZ"G>  
    AU*]D@H  
    %   Paul Fricker 11/13/2006 dyqk[$(  
    HH*,Oe   
    :wzbD,/M  
    % Check and prepare the inputs: YTgT2w  
    % ----------------------------- =PU@'OG  
    if min(size(p))~=1 (3 ,7  
        error('zernfun2:Pvector','Input P must be vector.') $sL+k 'dY  
    end `U?S 9m  
    aorL,l  
    if any(p)>35 c5CxR#O  
        error('zernfun2:P36', ... <q MX,h2  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... cLp9|y0r  
               '(P = 0 to 35).']) GNG.N)q#C  
    end Q2|6WE  
    ?h7[^sxJ  
    % Get the order and frequency corresonding to the function number: )W@  
    % ---------------------------------------------------------------- VQ~eg wJL  
    p = p(:); x ZAg  
    n = ceil((-3+sqrt(9+8*p))/2); a$"Z\F:x  
    m = 2*p - n.*(n+2); PVKq&Q?  
    PHsM)V+  
    % Pass the inputs to the function ZERNFUN: 11J:>A5zt  
    % ---------------------------------------- DL_M#c`<  
    switch nargin 4!glgEE*  
        case 3 Y\H4.$V  
            z = zernfun(n,m,r,theta); EU5(s*A  
        case 4 =0@o(#gM  
            z = zernfun(n,m,r,theta,nflag); }Ny~.EV5^  
        otherwise IxP$ lx  
            error('zernfun2:nargin','Incorrect number of inputs.') (_q&QI0{  
    end QK~>KgVi  
    @S012} xH  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Bq:: 5,v  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. c_2kHT  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 1n ZE9;o  
    %   order N and frequency M, evaluated at R.  N is a vector of ffQ&1T<  
    %   positive integers (including 0), and M is a vector with the RA62Z&W3  
    %   same number of elements as N.  Each element k of M must be a HPWjNwM  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) p4zV<qZ>e  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Boa?Ghg  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix r(=3yd/G$  
    %   with one column for every (N,M) pair, and one row for every "Zicac@N  
    %   element in R. K[|d7e  
    % v3jx2Z  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- -Kf'02  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Neb%D8/Kn  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 4VL]v9  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 kA:cz$ )  
    %   for all [n,m]. 5h(] S[Zf3  
    % Ib4 8`  
    %   The radial Zernike polynomials are the radial portion of the u RNc9  
    %   Zernike functions, which are an orthogonal basis on the unit k@R)_,2HH  
    %   circle.  The series representation of the radial Zernike Y-,1&$&  
    %   polynomials is :!EOg4%i  
    % kjW`k?'s  
    %          (n-m)/2 ZGOI8M]@  
    %            __ mk~Lkwl  
    %    m      \       s                                          n-2s Ec]cCLB  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r @{n2R3)k B  
    %    n      s=0 xF{<-b  
    % j&?NE1D>I  
    %   The following table shows the first 12 polynomials. *o[*,1Pw  
    % K`1\3J)  
    %       n    m    Zernike polynomial    Normalization yyHr. C  
    %       --------------------------------------------- ffyKAZ{]po  
    %       0    0    1                        sqrt(2) (iiyptJ  
    %       1    1    r                           2 F;&'C$%  
    %       2    0    2*r^2 - 1                sqrt(6) gasl%&  
    %       2    2    r^2                      sqrt(6) !$+J7\& 7p  
    %       3    1    3*r^3 - 2*r              sqrt(8) N|1k6g=0  
    %       3    3    r^3                      sqrt(8) {/ _.]Vh  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) (sn|`k3I  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 3C8'@-U  
    %       4    4    r^4                      sqrt(10) !-4pr[C  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) sOW-GWSE<  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) /$x6//0If  
    %       5    5    r^5                      sqrt(12) c>3W1"  
    %       --------------------------------------------- D058=}^HE  
    % S?=2GY  
    %   Example: UeT"v?zP  
    % _B|g)Rdv  
    %       % Display three example Zernike radial polynomials @*l}2W  
    %       r = 0:0.01:1; U07n7`2w  
    %       n = [3 2 5]; .|{*.YE  
    %       m = [1 2 1]; ,[^P  
    %       z = zernpol(n,m,r); 1}!f.cWV(  
    %       figure BZx#@356N  
    %       plot(r,z) 58MBG&a%  
    %       grid on *Qg/W? "m  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') I\DT(9 'E  
    % VxfFk4  
    %   See also ZERNFUN, ZERNFUN2. ?(U> )SvF  
    `&>!a  
    % A note on the algorithm. eA_1?j]E3  
    % ------------------------ !H,R$3~  
    % The radial Zernike polynomials are computed using the series Ty]CdyL$  
    % representation shown in the Help section above. For many special `pN]Ykt  
    % functions, direct evaluation using the series representation can h_d!G+-]  
    % produce poor numerical results (floating point errors), because q^dI!93n|  
    % the summation often involves computing small differences between ipKkz  
    % large successive terms in the series. (In such cases, the functions poHDA=# 3  
    % are often evaluated using alternative methods such as recurrence /sdkQ{J!.  
    % relations: see the Legendre functions, for example). For the Zernike F{f "xM  
    % polynomials, however, this problem does not arise, because the  ;nv4lxm  
    % polynomials are evaluated over the finite domain r = (0,1), and |g 4!Yd  
    % because the coefficients for a given polynomial are generally all >1mCjP  
    % of similar magnitude. }kXF*cVg  
    % T0RgCU IV  
    % ZERNPOL has been written using a vectorized implementation: multiple ;Z.}~d6>!  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] %r~TMU2"  
    % values can be passed as inputs) for a vector of points R.  To achieve ~&4,w9b)j  
    % this vectorization most efficiently, the algorithm in ZERNPOL z6FG^  
    % involves pre-determining all the powers p of R that are required to o*I-~k  
    % compute the outputs, and then compiling the {R^p} into a single [?Aq#av  
    % matrix.  This avoids any redundant computation of the R^p, and T?7 ZF+yo6  
    % minimizes the sizes of certain intermediate variables. kRE^G*?  
    % xb_35'$M  
    %   Paul Fricker 11/13/2006 6z=:x+m  
    I%*o7"  
    lcIX l&  
    % Check and prepare the inputs: Fz)z&WT  
    % ----------------------------- 4U>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) D@d/O  
        error('zernpol:NMvectors','N and M must be vectors.') a50{gb#  
    end |n~,$  
    R4QXX7h!  
    if length(n)~=length(m) ;U}lh~e11  
        error('zernpol:NMlength','N and M must be the same length.') XRj<2U 5  
    end -@L*i|A  
    U4zyhj  
    n = n(:); O&\;BF5:R  
    m = m(:); "2qp-'^[c  
    length_n = length(n); Sjj &n S  
    WZ"x\K-;  
    if any(mod(n-m,2)) {b+!0[  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') |{Z?a^- NJ  
    end A*~zdZ p  
    /_w oCLwQ#  
    if any(m<0) |7UR_(}KC  
        error('zernpol:Mpositive','All M must be positive.') ]X4A)%i  
    end Scs \nF2  
    eSywWSdf0  
    if any(m>n) .azdAq'r&\  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') w]F(o  
    end =JNoC01D  
    )UZ 's>O  
    if any( r>1 | r<0 ) Gv6EJV1i  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') eA#J7=eC  
    end d^WVWk K  
    ^B> 4:+^  
    if ~any(size(r)==1) d5+ (@HSR  
        error('zernpol:Rvector','R must be a vector.') 86@"BNnTh  
    end m[Px|A5{  
    +@AN+!(  
    r = r(:); I6'U[)%  
    length_r = length(r); i@Q)`>4  
    KS1Z&~4  
    if nargin==4 !2tZ@ p|  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ~%k<N/B  
        if ~isnorm {Qg"1+hhM  
            error('zernpol:normalization','Unrecognized normalization flag.') &T}~h^/t  
        end 7oh6G  
    else Zz,E4+'Rm  
        isnorm = false; \qi=Us|=  
    end >j_,3{eJ  
    *ukugg.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]f-< s,@  
    % Compute the Zernike Polynomials r2qxi'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^zO%O653  
    t!AHTtI  
    % Determine the required powers of r: b qEwi[`  
    % ----------------------------------- g  O,X  
    rpowers = []; \zR{D}aS  
    for j = 1:length(n) 6#K1LY5}  
        rpowers = [rpowers m(j):2:n(j)]; ke2'?,f  
    end DL_2%&k/  
    rpowers = unique(rpowers); |u<qbl  
    j$n[; \]n  
    % Pre-compute the values of r raised to the required powers, FG38)/  
    % and compile them in a matrix: \NDSpT<Z  
    % ----------------------------- <hkg~4EKc  
    if rpowers(1)==0 a RC >pK.  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); oXK`=.\  
        rpowern = cat(2,rpowern{:}); Se%FqI  
        rpowern = [ones(length_r,1) rpowern]; /J<?2T9G  
    else ~}i &gd|(  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;mu9;ixZ  
        rpowern = cat(2,rpowern{:}); 1K"``EvNB  
    end Gc<Jx|Q7  
    5 b( [1*  
    % Compute the values of the polynomials: 3YR6@*!f/  
    % -------------------------------------- =oV8 !d%]  
    z = zeros(length_r,length_n); /KO!s,Nk  
    for j = 1:length_n iXqc$!lTH  
        s = 0:(n(j)-m(j))/2; 6,7Fl=<  
        pows = n(j):-2:m(j); -:Nowb  
        for k = length(s):-1:1 8G?'F${`  
            p = (1-2*mod(s(k),2))* ... XD<7d")I  
                       prod(2:(n(j)-s(k)))/          ... Ge8&_7  
                       prod(2:s(k))/                 ... ]m{;yOQdsC  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... {W62%>v  
                       prod(2:((n(j)+m(j))/2-s(k))); x;# OM  
            idx = (pows(k)==rpowers); -ytSS:|%\  
            z(:,j) = z(:,j) + p*rpowern(:,idx); /x"gpKwsB  
        end qN1(mxa.?  
         gz;().{  
        if isnorm :=UiEDN@  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); #?k$0|60  
        end lNs 'jaD  
    end JR<#el  
    ?<YtlqL  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  *yKsgH  
    0&=2+=[c  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 /_@S*=T5  
    6[$kEKOY=  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)