非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 i D6f/|g
function z = zernfun(n,m,r,theta,nflag) (`W_ -PI
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. LtIR)EtB]
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [&_7w\m
% and angular frequency M, evaluated at positions (R,THETA) on the Rz sgPk
% unit circle. N is a vector of positive integers (including 0), and [Lck55V+Q
% M is a vector with the same number of elements as N. Each element #'DrgZ)W
% k of M must be a positive integer, with possible values M(k) = -N(k) UB5CvM28
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, +8<|P&fH
% and THETA is a vector of angles. R and THETA must have the same X8}m
%
% length. The output Z is a matrix with one column for every (N,M) s ;3k#-w
% pair, and one row for every (R,THETA) pair. lN(|EI
% 7aF'E1e'3
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike s3(mkdXv
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), a&^HvXO(>(
% with delta(m,0) the Kronecker delta, is chosen so that the integral [b2KBww\
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, .<m${yU{3
% and theta=0 to theta=2*pi) is unity. For the non-normalized /M,C%.-
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -_*ux!
% lEZODc+%Y
% The Zernike functions are an orthogonal basis on the unit circle. O/XG}G.x|
% They are used in disciplines such as astronomy, optics, and (vR9vOpJ
% optometry to describe functions on a circular domain. _i3?;Fds
% |wxAdPe
% The following table lists the first 15 Zernike functions. H{)DI(,Y^P
% c
-sc*.&
% n m Zernike function Normalization N8[ &1
% -------------------------------------------------- }WowgY
% 0 0 1 1 Wg!<V6}
% 1 1 r * cos(theta) 2 J-UqH3({Z,
% 1 -1 r * sin(theta) 2 )r0XQa]@$
% 2 -2 r^2 * cos(2*theta) sqrt(6) 1Yk!R9.
% 2 0 (2*r^2 - 1) sqrt(3) Y>J$OA:
% 2 2 r^2 * sin(2*theta) sqrt(6) <)qJI'u|
% 3 -3 r^3 * cos(3*theta) sqrt(8) 0?$jC-@k:
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) e 2"<3
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) N9dx^+\
% 3 3 r^3 * sin(3*theta) sqrt(8) JT,[;
% 4 -4 r^4 * cos(4*theta) sqrt(10) qjm6\ii:)
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \ u*R6z
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) whW%c8
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #+"1">l
% 4 4 r^4 * sin(4*theta) sqrt(10) + L\Dh.Ir
% -------------------------------------------------- Qi= pP/Y
% 5i0vli/L
% Example 1: wbpz,
% kEYkd@{
% % Display the Zernike function Z(n=5,m=1) (v,g=BS,
% x = -1:0.01:1; (y^svXU}a
% [X,Y] = meshgrid(x,x); 1 u~Xk?
% [theta,r] = cart2pol(X,Y); ip+?k<]z
% idx = r<=1; "d; T1
% z = nan(size(X)); qNuBK6E#4
% z(idx) = zernfun(5,1,r(idx),theta(idx)); mgd)wZNV
% figure \H4$9lPk
% pcolor(x,x,z), shading interp 3/{,}F$
% axis square, colorbar R:5uZAx
% title('Zernike function Z_5^1(r,\theta)') f-BPT2U+
% u2E}DhV
% Example 2: ?mp}_x#=
% A4tb>OM
% % Display the first 10 Zernike functions D[
v2#2
% x = -1:0.01:1; Yq-Vwh/
% [X,Y] = meshgrid(x,x); MqAN~<l [
% [theta,r] = cart2pol(X,Y); HkQ rij6
% idx = r<=1; ?:Sqh1-z
% z = nan(size(X)); =c;.cW
% n = [0 1 1 2 2 2 3 3 3 3]; cK1 Fv6V#
% m = [0 -1 1 -2 0 2 -3 -1 1 3];
|W\U9n
% Nplot = [4 10 12 16 18 20 22 24 26 28]; M:*)l(
% y = zernfun(n,m,r(idx),theta(idx)); wZg~k\_lF
% figure('Units','normalized') @@z5v bs'{
% for k = 1:10 nIqNhJ+
% z(idx) = y(:,k); pf`vH`r
% subplot(4,7,Nplot(k)) n`X}&(O
% pcolor(x,x,z), shading interp ce<88dL
% set(gca,'XTick',[],'YTick',[]) Zs|m_O G
% axis square B%I<6E[D
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) B'-n
^';
% end SUb:0GUa
% E#~J"9k98
% See also ZERNPOL, ZERNFUN2. Ez+8B|0P
T0X+\&W
% Paul Fricker 11/13/2006 <xlyk/
Y#zHw<<E
$EnBigb!
% Check and prepare the inputs: C/!7E:
% ----------------------------- bMB@${i}
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) uC|bC#;
error('zernfun:NMvectors','N and M must be vectors.') f+%s.[;A
end #2dH2k\F
f~?kx41dq
if length(n)~=length(m) xz-?sD/xe
error('zernfun:NMlength','N and M must be the same length.') HP,{/ $i:
end QT4&Ix,4T1
f_z]kA
+H
n = n(:); }2''}-Nc
m = m(:); ";Q}Gs}
if any(mod(n-m,2)) }BWT21'-Y
error('zernfun:NMmultiplesof2', ... H}cq|hodn
'All N and M must differ by multiples of 2 (including 0).') IOY<'t+
end PQrc#dfc|
k !V@Q!>,
if any(m>n) eWr2UXv$
error('zernfun:MlessthanN', ... r<[G~n
'Each M must be less than or equal to its corresponding N.') BUUc9&f3o
end ^g=j`f[T
ap<r)<u
if any( r>1 | r<0 ) =C-
b#4Q
error('zernfun:Rlessthan1','All R must be between 0 and 1.') '3=@UBs
end LaYd7Oyf]
$"g'C8
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) pHKc9VC
error('zernfun:RTHvector','R and THETA must be vectors.') MxqIB(5k
end |`' WEe2
#'97mg
r = r(:); ZU;nXqjc
theta = theta(:); [$@EQ]tt/
length_r = length(r); GO3KKuQ=
if length_r~=length(theta) $lg{J$
h8
error('zernfun:RTHlength', ... qb$M.-\ne
'The number of R- and THETA-values must be equal.') h\4enu9[RL
end *-&+;|mM
CQs,G8\/
% Check normalization: Q[9W{l+
% --------------------
= Atyy
if nargin==5 && ischar(nflag) eMtQa;Lc9o
isnorm = strcmpi(nflag,'norm'); x$z>.4
if ~isnorm _adW>-wQ!d
error('zernfun:normalization','Unrecognized normalization flag.')
825 QS`
end a>&dAo}
else 2>g!+p Ox
isnorm = false; s=Xg6 D
end %zN~%mJG
Q"K`~QF"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;P^}2i[q>[
% Compute the Zernike Polynomials k{ulu
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }"STc&1
W$J@|i
% Determine the required powers of r: eC@b-q
% ----------------------------------- T2 TWb
m_abs = abs(m); sY* qf=
rpowers = []; ,WE2MAjhT
for j = 1:length(n) }?*$AVs2q
rpowers = [rpowers m_abs(j):2:n(j)]; x,c\q$8yH
end ~<"{u-q#K
rpowers = unique(rpowers); !?z"d
1aezlDc*
% Pre-compute the values of r raised to the required powers, U.1&'U*
% and compile them in a matrix: P&Wf.qr{:
% ----------------------------- 2]E i4%jo
if rpowers(1)==0 |`d-;pk!%
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); xu@+b~C\
rpowern = cat(2,rpowern{:}); %?J-0
rpowern = [ones(length_r,1) rpowern]; 2+yti,s+/
else dB8 e
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); F#z1 sl'
rpowern = cat(2,rpowern{:}); n`D-?]*
end $\L=RU!c}
T3t
w.yh
% Compute the values of the polynomials: s6!! ty;Y
% -------------------------------------- C|RC9b
y = zeros(length_r,length(n)); u6
4{w,
for j = 1:length(n) EJ(z]M`f
s = 0:(n(j)-m_abs(j))/2; #<vzQ\~Y
pows = n(j):-2:m_abs(j); IO"q4(&;P4
for k = length(s):-1:1 V]/$ dJ
p = (1-2*mod(s(k),2))* ... :M.]- +(
prod(2:(n(j)-s(k)))/ ... @Py?.H
prod(2:s(k))/ ... G4%dah 5
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... %1rN6A!%
prod(2:((n(j)+m_abs(j))/2-s(k))); <FwAV=}6p
idx = (pows(k)==rpowers); h5lngw
y(:,j) = y(:,j) + p*rpowern(:,idx); PQ"v
end o`nJJ:Cxq-
C\*0621
if isnorm 1~S''[
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); fo e)_
end nMOXy\&mI
end ;oOv~YB7H
% END: Compute the Zernike Polynomials Mlo:\ST|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ooj^Z%9P
ootkf=
% Compute the Zernike functions: 7TA&u'
% ------------------------------ *rC%nmJwk!
idx_pos = m>0; ,<;.'r
idx_neg = m<0; ew,g'$drD
3A3WD+[L
z = y; @4>?Y=#
if any(idx_pos) _3{8Zg
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); A s8IjGNs{
end 9L>ep&u)^
if any(idx_neg) u+ 8wBb5!
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); k"+/DK,:
end ^geY Ay
US&:UzI.
% EOF zernfun