切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11496阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 \M/XM6:UG4  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Au'[|Pr r  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 JI5?, )-St  
    function z = zernfun(n,m,r,theta,nflag) waXA%u50  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3/o-\wWO  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N kc `Q- N}  
    %   and angular frequency M, evaluated at positions (R,THETA) on the nGGYKI  
    %   unit circle.  N is a vector of positive integers (including 0), and vWI9ocl`W  
    %   M is a vector with the same number of elements as N.  Each element XbYW,a@w2  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) &| el8;D  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, d$g-u8  
    %   and THETA is a vector of angles.  R and THETA must have the same %WHue  
    %   length.  The output Z is a matrix with one column for every (N,M) yL&F!+(/Ix  
    %   pair, and one row for every (R,THETA) pair. 6Km@A M]  
    % $I!vQbi  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike u*Eb4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), k2N[B(&4J  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 71nXROB  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, HgE^#qD?  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 9f;\fe  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. f&B&!&gZ  
    % +LV~%?W  
    %   The Zernike functions are an orthogonal basis on the unit circle. ^3IO.`|  
    %   They are used in disciplines such as astronomy, optics, and "#d}S)GlXM  
    %   optometry to describe functions on a circular domain. fLAOA9  
    % PMjqcdBzm  
    %   The following table lists the first 15 Zernike functions. 8vK Z;  
    % 95>(NwST4  
    %       n    m    Zernike function           Normalization &H;0N"Fn  
    %       -------------------------------------------------- e?3 S0}  
    %       0    0    1                                 1 8.Wf^j$+{  
    %       1    1    r * cos(theta)                    2 ZffK];D  
    %       1   -1    r * sin(theta)                    2 t.c XrX`k  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) #0"Fw$Pc  
    %       2    0    (2*r^2 - 1)                    sqrt(3) #A@*k}/+  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Hn0 ,LH$/  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) E"&fT!yi  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) " GkBX  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) G/\t<>O8o  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) qYZX, x  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) bcC ;i~9  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6;9SU+/  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) dGMBgj  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) * Ibl+  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) `omZ'n)  
    %       -------------------------------------------------- DY'D]*'7$  
    % BZ<Q.:)  
    %   Example 1: PYPs64kNC]  
    % ?SRG;G1  
    %       % Display the Zernike function Z(n=5,m=1) w_q{C>- cR  
    %       x = -1:0.01:1; >`Gys8T  
    %       [X,Y] = meshgrid(x,x); }Zc.rk  
    %       [theta,r] = cart2pol(X,Y); ]6Kx0mW  
    %       idx = r<=1; a,x-akZWf  
    %       z = nan(size(X)); J,%v`A~ N  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); z{Z'2,#  
    %       figure *KN'0Z@W  
    %       pcolor(x,x,z), shading interp |E&a3TQW  
    %       axis square, colorbar .&=nP?ZPC6  
    %       title('Zernike function Z_5^1(r,\theta)') x6\EU=,  
    % Zsc710_  
    %   Example 2: 7RM$%'n \  
    % PsMoH/+"  
    %       % Display the first 10 Zernike functions %WiDz0o  
    %       x = -1:0.01:1; ^.aFns{wv  
    %       [X,Y] = meshgrid(x,x); n.n;'p9t@  
    %       [theta,r] = cart2pol(X,Y); e82SG8#]  
    %       idx = r<=1; ({i}EC7{  
    %       z = nan(size(X)); zMxHJNQ\D  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Pqli3(  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 3#`_t :"A  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ~cQ./G4  
    %       y = zernfun(n,m,r(idx),theta(idx)); O@6iG  
    %       figure('Units','normalized') {Y6U%HG{{r  
    %       for k = 1:10 d5T M_ C  
    %           z(idx) = y(:,k); XdjM/hB{fD  
    %           subplot(4,7,Nplot(k)) .w/w] Eq  
    %           pcolor(x,x,z), shading interp 3&:Us| }  
    %           set(gca,'XTick',[],'YTick',[]) n*{aN}auJ  
    %           axis square _>+!&_h  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Fy37I/#)r&  
    %       end GM=r{F &  
    % s(jixAf  
    %   See also ZERNPOL, ZERNFUN2. XFKe6:  
    w$8Su:g=  
    %   Paul Fricker 11/13/2006 ?-%Q[W  
    jI %v[]V  
    }7&.FV "  
    % Check and prepare the inputs: k/o"E  
    % ----------------------------- Ndq/n21j  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) L"{qF<@V7&  
        error('zernfun:NMvectors','N and M must be vectors.') >uT,Z,7O  
    end WyciIO1  
    r0t4\d_&  
    if length(n)~=length(m) KK$t3e)  
        error('zernfun:NMlength','N and M must be the same length.') A Gu#*,K  
    end $X<O\Kna  
    "`HkAW4GZa  
    n = n(:); Ey96XJV  
    m = m(:); j}O~6A>|  
    if any(mod(n-m,2)) MIma:N_c  
        error('zernfun:NMmultiplesof2', ... `Cq&;-u  
              'All N and M must differ by multiples of 2 (including 0).') /iURP-rl  
    end d1]CN6 7{G  
    |2t g3m@  
    if any(m>n) HR'sMu3  
        error('zernfun:MlessthanN', ... 4FrP%|%E~  
              'Each M must be less than or equal to its corresponding N.') Nc;cb  
    end BV)o F2b:  
    0x BO5[w,Y  
    if any( r>1 | r<0 ) "i>?Tg^  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') S;@nPzhc  
    end `R[cM; c2  
    v2eLH:6  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) fk%W0 7x!  
        error('zernfun:RTHvector','R and THETA must be vectors.') Nl/^ga  
    end =T"R_3[NC  
    'kBg3E$y  
    r = r(:); ;IyA"C(i  
    theta = theta(:); wNc.z*+O"H  
    length_r = length(r); E$O-\)wY0  
    if length_r~=length(theta) h pf,44Kg  
        error('zernfun:RTHlength', ... @7S* ]  
              'The number of R- and THETA-values must be equal.') +/O3L=QyJ  
    end (|O9L s7N  
    \jA#RF.W  
    % Check normalization: I;xSd.-  
    % -------------------- #BtJo:  
    if nargin==5 && ischar(nflag) P=3mLz-  
        isnorm = strcmpi(nflag,'norm'); 9-:\ NH^;  
        if ~isnorm OHRkhwF.  
            error('zernfun:normalization','Unrecognized normalization flag.') hp|.hN(kS]  
        end '#<4oW\]  
    else Xz,fjKUnN  
        isnorm = false; T'6MAxEZUq  
    end j xc^OsYj  
    L5[{taZ,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?iXN..6x  
    % Compute the Zernike Polynomials KBC?SxJSJc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Gxhr0'  
    i,V,0{$  
    % Determine the required powers of r: J2 ZV\8t  
    % ----------------------------------- 76oJCNY  
    m_abs = abs(m); G0%},Q/  
    rpowers = []; 9{*$[%d1  
    for j = 1:length(n) gOy;6\/  
        rpowers = [rpowers m_abs(j):2:n(j)]; wn-1fz <d  
    end /SW*y@R2l  
    rpowers = unique(rpowers); B\54eTn  
    J7;8 S  
    % Pre-compute the values of r raised to the required powers, =\`iC6xP}  
    % and compile them in a matrix: ,ZV>"'I:  
    % ----------------------------- /\. [@]  
    if rpowers(1)==0 .Gt_~x  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 'fjouO  
        rpowern = cat(2,rpowern{:}); I+{2DY/}  
        rpowern = [ones(length_r,1) rpowern]; V O\g"Yc  
    else % * k`z#b  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @WCA 7DW!  
        rpowern = cat(2,rpowern{:}); FUVp}>#U  
    end C4aAPkcp2$  
    =u-q#<h4 ;  
    % Compute the values of the polynomials: h6b(FTC^  
    % -------------------------------------- AqiH1LAE  
    y = zeros(length_r,length(n)); F|a'^:Qs  
    for j = 1:length(n) 9-+N;g!q  
        s = 0:(n(j)-m_abs(j))/2; [XE\2Qa8e  
        pows = n(j):-2:m_abs(j); $35C1"  
        for k = length(s):-1:1 1/f{1k  
            p = (1-2*mod(s(k),2))* ... =Y-.=}jp;  
                       prod(2:(n(j)-s(k)))/              ... Y&<]:)  
                       prod(2:s(k))/                     ... NDUH10Y:[  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... D7r&z?  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); P$x9Z3d_  
            idx = (pows(k)==rpowers); j1rR3)oP  
            y(:,j) = y(:,j) + p*rpowern(:,idx); g=/!Ry=  
        end {'p < o$(S  
         IeZ9 "o h  
        if isnorm $cW t^B'  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _\.4ofK(  
        end s:k ?-u@  
    end jF-:e;-  
    % END: Compute the Zernike Polynomials <Umr2Vw-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q=6 1.lP6  
    5Gs>rq" #  
    % Compute the Zernike functions: 7YxVtN  
    % ------------------------------ YkFAu8b>  
    idx_pos = m>0; RFLfvD<  
    idx_neg = m<0; BRy3D\}  
    +%f6{&q$  
    z = y; "}"/d(  
    if any(idx_pos) +T&YYO8>5  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); boI&q>-6Re  
    end &) 64:l&  
    if any(idx_neg) '?jsH+j+  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ^TD%l8o6  
    end UEx13!iFo  
    #M||t|9iu?  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ?=LT ^Zp`  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. P z~jW):E  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated '}9 Nvr)+  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive oNIYO*[  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 8Ji`wnkXe  
    %   and THETA is a vector of angles.  R and THETA must have the same ^.R!sQ  
    %   length.  The output Z is a matrix with one column for every P-value, ZY8w1:'  
    %   and one row for every (R,THETA) pair. G pI4QzR  
    % oN[}i6^,e  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike nw\C+1F  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) R:+'"dBge  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) '#yqw%  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 4Z>gK(  
    %   for all p. (6B;  
    % mI5J] hk  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 \i/HHP[%  
    %   Zernike functions (order N<=7).  In some disciplines it is 4BUG\~eI3  
    %   traditional to label the first 36 functions using a single mode }LCm_av  
    %   number P instead of separate numbers for the order N and azimuthal !qp$Xtf+  
    %   frequency M. 9tU"+  
    % :'B(DzUR  
    %   Example: _7\`xU  
    % $cK}Tl q  
    %       % Display the first 16 Zernike functions @I-,5F|r  
    %       x = -1:0.01:1; 0VcHz$ 6  
    %       [X,Y] = meshgrid(x,x); #Lpw8b6  
    %       [theta,r] = cart2pol(X,Y); L {P'mG=4  
    %       idx = r<=1; ZM})l9_o"  
    %       p = 0:15; dVYY:1PS  
    %       z = nan(size(X)); "5L?RkFi\  
    %       y = zernfun2(p,r(idx),theta(idx)); ZT@=d$Z&t  
    %       figure('Units','normalized') (D%vN&F  
    %       for k = 1:length(p) f*<Vq:N=\  
    %           z(idx) = y(:,k); hcj]T?  
    %           subplot(4,4,k) J}&Us p  
    %           pcolor(x,x,z), shading interp 0uIY6e0E  
    %           set(gca,'XTick',[],'YTick',[]) "o+?vx-  
    %           axis square vRH^en  
    %           title(['Z_{' num2str(p(k)) '}']) r&m49N,d  
    %       end rbnAC*y8'L  
    %  :`N ZD  
    %   See also ZERNPOL, ZERNFUN. Nd]F 33|X  
    4/|x^Ky>G  
    %   Paul Fricker 11/13/2006 kBhjqI*  
    COsmVQ.  
    #lrwKHZ+  
    % Check and prepare the inputs: L~- /'+  
    % ----------------------------- 9c[X[ Qc  
    if min(size(p))~=1 Bkd$'7UT  
        error('zernfun2:Pvector','Input P must be vector.') dkz% Y]  
    end [:{ FR2*x  
    ( ne[a2%>  
    if any(p)>35 g%l ,a3"  
        error('zernfun2:P36', ... ns%gb!FBJX  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... . 2$J-<O  
               '(P = 0 to 35).']) kW)3naUf<  
    end o3dqsQE%  
    Vt(Wy  
    % Get the order and frequency corresonding to the function number: g5@JA^\vZT  
    % ---------------------------------------------------------------- 5aizWz  
    p = p(:); ?VNtT/  
    n = ceil((-3+sqrt(9+8*p))/2); sJ|pR=g)!  
    m = 2*p - n.*(n+2); c 9f"5~  
    ]B,tCBt  
    % Pass the inputs to the function ZERNFUN: ,_u7@Ix  
    % ---------------------------------------- Cu8mNB{H  
    switch nargin a$|U4Eqo  
        case 3 v1 8<~  
            z = zernfun(n,m,r,theta); ?4%H(k5A  
        case 4 WVRIq'  
            z = zernfun(n,m,r,theta,nflag); kScZ P8yw  
        otherwise c'i5,\ #X  
            error('zernfun2:nargin','Incorrect number of inputs.') g %mCg P  
    end |-x-CSN  
    i8V\x>9  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) &`I(QY  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. G1 "QX  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 3P6O]x<-?  
    %   order N and frequency M, evaluated at R.  N is a vector of ]gq)%T]  
    %   positive integers (including 0), and M is a vector with the i]r(VKX  
    %   same number of elements as N.  Each element k of M must be a 3[ [oAp  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) cF8  2wg  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Rlewp8?LB  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix .2f vRN92  
    %   with one column for every (N,M) pair, and one row for every ie6 c/5  
    %   element in R. 2'?'dfj  
    % t Ly:F*1i  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ==[=Da~  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is b]]8Vs)'  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to W<)P@_+-  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 l1 Kv`v\  
    %   for all [n,m]. '(5GR I<  
    % 49; 'K  
    %   The radial Zernike polynomials are the radial portion of the op}!1y$9P  
    %   Zernike functions, which are an orthogonal basis on the unit :/T\E\Qr  
    %   circle.  The series representation of the radial Zernike zL yI|%KH  
    %   polynomials is XYo,5-  
    % rRq60A  
    %          (n-m)/2 Bu(51wU8  
    %            __ !1)aie+p6  
    %    m      \       s                                          n-2s Q~(Gll;  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r g0grfGo2p  
    %    n      s=0 bp?5GU&Uy  
    % UTkPA2x  
    %   The following table shows the first 12 polynomials. XZIapT  
    % a!$kKOK  
    %       n    m    Zernike polynomial    Normalization N[/<xW~x?4  
    %       --------------------------------------------- }YDi/b7  
    %       0    0    1                        sqrt(2) 1tNL)x"w  
    %       1    1    r                           2 TwkT|Piw S  
    %       2    0    2*r^2 - 1                sqrt(6) <K[y~9u  
    %       2    2    r^2                      sqrt(6) U>PZ3  
    %       3    1    3*r^3 - 2*r              sqrt(8) V9oBSP'kt  
    %       3    3    r^3                      sqrt(8) sC-o'13  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) N1~bp?$1  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) OMLU ;,4  
    %       4    4    r^4                      sqrt(10) 8TP$?8l  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Yj&Sb  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) XZ%,h  
    %       5    5    r^5                      sqrt(12) [Fr](&Tx  
    %       --------------------------------------------- |owr?tC  
    % Ooz ,?wU6  
    %   Example: E'LI0fr  
    % Ljy797{f  
    %       % Display three example Zernike radial polynomials ps{4_V-3u  
    %       r = 0:0.01:1; *cb|9elF^  
    %       n = [3 2 5]; 4eHSAN"$  
    %       m = [1 2 1]; e S8(HI6{^  
    %       z = zernpol(n,m,r); _N`.1Dl%Q  
    %       figure 4zMvHe  
    %       plot(r,z) m# {'9 |  
    %       grid on g"P%sA/E+  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') sq'm)g  
    % MRLiiIrq,5  
    %   See also ZERNFUN, ZERNFUN2. cI2Ps3~"Q  
    +KTfGwKt  
    % A note on the algorithm. *$eH3nn6g  
    % ------------------------ <Q|\mUS6  
    % The radial Zernike polynomials are computed using the series /z-rBfdy^  
    % representation shown in the Help section above. For many special j[r}!;O  
    % functions, direct evaluation using the series representation can d1D f`  
    % produce poor numerical results (floating point errors), because 9mi@PW}1  
    % the summation often involves computing small differences between $Z G&d  
    % large successive terms in the series. (In such cases, the functions At.& $ t  
    % are often evaluated using alternative methods such as recurrence , /.@([C  
    % relations: see the Legendre functions, for example). For the Zernike (K[{X0T  
    % polynomials, however, this problem does not arise, because the JqzoF}WH  
    % polynomials are evaluated over the finite domain r = (0,1), and `yfZ{<  
    % because the coefficients for a given polynomial are generally all xTAfV N  
    % of similar magnitude. 2b$>1O&2  
    % 9+ 1{a.JO  
    % ZERNPOL has been written using a vectorized implementation: multiple agUdI_'~@9  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] `jE[Xt"@  
    % values can be passed as inputs) for a vector of points R.  To achieve {"wF;*U.V  
    % this vectorization most efficiently, the algorithm in ZERNPOL 5eTA]  
    % involves pre-determining all the powers p of R that are required to bg zd($)u  
    % compute the outputs, and then compiling the {R^p} into a single AIHH@z   
    % matrix.  This avoids any redundant computation of the R^p, and -N' (2'  
    % minimizes the sizes of certain intermediate variables. tYD8Y  
    % NljpkeX'  
    %   Paul Fricker 11/13/2006 Dmh$@Uu#F  
    if'=W6W  
    S F)$b  
    % Check and prepare the inputs: r)t[QoD1  
    % ----------------------------- ~-'2jb*8  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) iV{_?f1jo  
        error('zernpol:NMvectors','N and M must be vectors.') |P5dv>tb F  
    end \g34YY^L3  
    I1 ]YT  
    if length(n)~=length(m) 9~UR(Ts}l  
        error('zernpol:NMlength','N and M must be the same length.') 0!\gK <,z  
    end $wM..ee  
    _`?0w#> 0  
    n = n(:); ko}& X=  
    m = m(:); Z 8w\[AF{$  
    length_n = length(n); q2%cLbI F  
    5HbHJ.|r  
    if any(mod(n-m,2)) 3/RwCtc  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 2U./ Yfk\  
    end WDw<kX6p  
    <f7 O3 >  
    if any(m<0) s,_+5ukv  
        error('zernpol:Mpositive','All M must be positive.') 08ZvRy(Je<  
    end t!\aDkxo %  
    #eJfwc1JY  
    if any(m>n) vC,FE )'  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ?A@y4<8R|  
    end 12^uu)6Xm,  
    :-x?g2MY  
    if any( r>1 | r<0 ) NCk-[I?R  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ranem0KQ)]  
    end  hlVC+%8  
    Pim  
    if ~any(size(r)==1) g V]4R"/  
        error('zernpol:Rvector','R must be a vector.') %E%=Za  
    end 0L>3 i8'  
    EeYL~ORdi  
    r = r(:); WoXAOj%iW  
    length_r = length(r); g+o$&'\  
    8$-MUF,  
    if nargin==4 *A9v8$  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); HK[%'OQ  
        if ~isnorm ^$oa`B^2JM  
            error('zernpol:normalization','Unrecognized normalization flag.') S\Z*7j3;M  
        end 8fQ~UcT$  
    else  C6gSj1  
        isnorm = false; jZIT[HM  
    end E]q>ggeNH  
    Ls2OnL9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u/W{JPlL  
    % Compute the Zernike Polynomials \0|x<~#j'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }P2*MrkcHB  
    yl>^QMmo  
    % Determine the required powers of r: ?Z|y-4 &>  
    % ----------------------------------- }<G a e5  
    rpowers = []; "pt[Nm76)8  
    for j = 1:length(n) |e8A)xM]wC  
        rpowers = [rpowers m(j):2:n(j)]; nWelM2  
    end Z( :\Vj"  
    rpowers = unique(rpowers); z\v  
    -F`gRAr-  
    % Pre-compute the values of r raised to the required powers, p cD}SY  
    % and compile them in a matrix: !wAnsK  
    % ----------------------------- igOX0  
    if rpowers(1)==0 9ZOQNN<ex  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); B)/&xQu  
        rpowern = cat(2,rpowern{:}); -~.+3rcZ]  
        rpowern = [ones(length_r,1) rpowern]; =)y$&Ydj  
    else ;R >>,&g  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]>)}xfL &,  
        rpowern = cat(2,rpowern{:}); FBNi (D  
    end O#tmB?n*  
    ->|eMV'd  
    % Compute the values of the polynomials: =0e>'Iw2  
    % -------------------------------------- tDAX pi(  
    z = zeros(length_r,length_n); n}NUe`E_h  
    for j = 1:length_n djf8FNnn  
        s = 0:(n(j)-m(j))/2; Wr Wz+5M8  
        pows = n(j):-2:m(j); h9S f  
        for k = length(s):-1:1 qw4wg9w5p  
            p = (1-2*mod(s(k),2))* ... o ^w^dgJ  
                       prod(2:(n(j)-s(k)))/          ... L^^f.w#m  
                       prod(2:s(k))/                 ... Z+R-}<   
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... \R&ZWJKh  
                       prod(2:((n(j)+m(j))/2-s(k))); d >M0:  
            idx = (pows(k)==rpowers); 0Wd5s{S  
            z(:,j) = z(:,j) + p*rpowern(:,idx); v-$X1s  
        end \ bNDeA&l  
         2aivc,m{r  
        if isnorm [9EL[}  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); $xvwnbq#y  
        end BI2'NN\  
    end un6W|{4]  
     K0*er  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Ol'Ct'_k,"  
    H?>R#Ds-  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 v9OK <  
    !8U\GR `  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)