切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11675阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 u9]M3>  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! z(>:LX"xz  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 1Eryw~,,9i  
    function z = zernfun(n,m,r,theta,nflag) q'X#F8v  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. j1ap,<\.k  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N *$mb~k^R  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Ie8K [ >  
    %   unit circle.  N is a vector of positive integers (including 0), and u=(.}  
    %   M is a vector with the same number of elements as N.  Each element f uH3C~u7<  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 9G6auk.m.O  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 0zA:?}  
    %   and THETA is a vector of angles.  R and THETA must have the same wvr`~e  
    %   length.  The output Z is a matrix with one column for every (N,M) .wtYost v  
    %   pair, and one row for every (R,THETA) pair. Nvd(Tad  
    % PK_2  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;b_<5S  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;\T~Hc}&;  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral J%E0Wd  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, F5w=tK  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized A=*6|1w;  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Ka"1gbJ|  
    % Yg1HvSw\  
    %   The Zernike functions are an orthogonal basis on the unit circle. 8yuTT^  
    %   They are used in disciplines such as astronomy, optics, and CY!H)6k  
    %   optometry to describe functions on a circular domain. FGpV ]p  
    % =]<X6!0mR  
    %   The following table lists the first 15 Zernike functions. .O{_^~w_q  
    %  Y@b|/+  
    %       n    m    Zernike function           Normalization ~UsE"5  
    %       -------------------------------------------------- M%Q_;\?]  
    %       0    0    1                                 1 ` ^z l =  
    %       1    1    r * cos(theta)                    2 _Vr}ipx-k  
    %       1   -1    r * sin(theta)                    2 OoZv\"}!_  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) a1v?{vu\E  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "m}N hoD4  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) %V-Hy;V  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) #Jfmt~ks '  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) sWP_fb1  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ORfMp'uP=  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) YD5mJ[1t"2  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) N,ZmGzNP)  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  b|Eo\l2  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) cs]3Rp^g  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pq]>Ep  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 2y9$ k\<xV  
    %       -------------------------------------------------- AxCFZf5  
    % X>MDX.Z  
    %   Example 1: _wZr`E)  
    % : p7PiqQ  
    %       % Display the Zernike function Z(n=5,m=1) &tlU.Whk+  
    %       x = -1:0.01:1; m;u:_4  
    %       [X,Y] = meshgrid(x,x); \YH*x`  
    %       [theta,r] = cart2pol(X,Y); X@~R<  
    %       idx = r<=1; ^ pocbmg  
    %       z = nan(size(X)); \Iz-<:gA'  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ZVCa0Km  
    %       figure Z%VgAV>>  
    %       pcolor(x,x,z), shading interp NcIr; }  
    %       axis square, colorbar G-DOI  
    %       title('Zernike function Z_5^1(r,\theta)') W!a'KI'  
    % iUf?MDE  
    %   Example 2: #| m*k  
    % ^O3p:X4u  
    %       % Display the first 10 Zernike functions u4:6zU/{  
    %       x = -1:0.01:1; .gw6W0\F  
    %       [X,Y] = meshgrid(x,x); =K9-  
    %       [theta,r] = cart2pol(X,Y); zY&/lWW._  
    %       idx = r<=1; ^=w){]G  
    %       z = nan(size(X)); 3MHByT %  
    %       n = [0  1  1  2  2  2  3  3  3  3]; z s[zB#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !7Z?VEZ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ZV~9{E8  
    %       y = zernfun(n,m,r(idx),theta(idx)); 12bztlv  
    %       figure('Units','normalized') .wcKG9u  
    %       for k = 1:10 ezr'"1Ba}  
    %           z(idx) = y(:,k); 6W N(Tw  
    %           subplot(4,7,Nplot(k)) p@+D$  
    %           pcolor(x,x,z), shading interp y~rtYI  
    %           set(gca,'XTick',[],'YTick',[]) V}q=!zz  
    %           axis square = /=?l  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) W_|7hwr  
    %       end >]?!9@#IH  
    % OJ)XJL  
    %   See also ZERNPOL, ZERNFUN2. x)e(g}n  
    /#e-x|L  
    %   Paul Fricker 11/13/2006 !l1jQq_mK  
    _z& H O  
    c.;<+dYsm*  
    % Check and prepare the inputs: PKt;]T0  
    % ----------------------------- 8?$XT  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) DbH'Qs?z  
        error('zernfun:NMvectors','N and M must be vectors.') mUwGr_)wj  
    end A55F* d  
    !F# ^Peb  
    if length(n)~=length(m) #(r1b'jfP  
        error('zernfun:NMlength','N and M must be the same length.') [J43]  
    end pt9fOih[  
    ROr|  <  
    n = n(:); EZ)GW%Bm2  
    m = m(:); vOBXAF  
    if any(mod(n-m,2)) F ss@/-  
        error('zernfun:NMmultiplesof2', ... v'u}%FC  
              'All N and M must differ by multiples of 2 (including 0).') wWB^m@:4  
    end EdS7m,d  
    O|0}m  
    if any(m>n) *uvE`4V^Jg  
        error('zernfun:MlessthanN', ... MF4B 2d  
              'Each M must be less than or equal to its corresponding N.') Cg%}=  
    end 2M?L++i  
    _SQ0`=+  
    if any( r>1 | r<0 ) LKu ,H  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') (^LR9 CW  
    end ci{WyIh  
    Ct9*T`Gl  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^1z)\p1  
        error('zernfun:RTHvector','R and THETA must be vectors.') &,iPI2`O A  
    end D P+W* 87J  
     uE3xzF  
    r = r(:); qJEtB;J'  
    theta = theta(:); 8jU6N*p/  
    length_r = length(r); ZTK)N  
    if length_r~=length(theta) r[RO"Ej"  
        error('zernfun:RTHlength', ... ^uWj#  
              'The number of R- and THETA-values must be equal.') #i[V {J8.p  
    end ,HfdiGs}j  
    %1%@L7wP>  
    % Check normalization: M0"}>`1lJ  
    % -------------------- Xm[Cgt_?  
    if nargin==5 && ischar(nflag) q%8Ck)xz  
        isnorm = strcmpi(nflag,'norm'); # l-/!j  
        if ~isnorm 17B`  
            error('zernfun:normalization','Unrecognized normalization flag.') ;2iDa  
        end 'V(9ein^Q  
    else >Mk#19j[/  
        isnorm = false;  -bQi4  
    end Y EhPAQNj  
    5:X^Q.f;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n_46;lD  
    % Compute the Zernike Polynomials c"^g*i2&0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% khfWU  
    =FXq=x%9+  
    % Determine the required powers of r: '| bHu  
    % ----------------------------------- PgwNEwG  
    m_abs = abs(m); 55vI^SSA  
    rpowers = []; x_.}C%  
    for j = 1:length(n) y_N h5  
        rpowers = [rpowers m_abs(j):2:n(j)]; lyQNE3   
    end Z6_E/S  
    rpowers = unique(rpowers); x @uowx_&m  
    wTPHc:2  
    % Pre-compute the values of r raised to the required powers, r>x>aJ  
    % and compile them in a matrix: ~X%W2N2  
    % ----------------------------- =1Tn~)^O  
    if rpowers(1)==0 F`JW&r\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {xJ<)^fD8  
        rpowern = cat(2,rpowern{:}); u1_NC;  
        rpowern = [ones(length_r,1) rpowern]; &=hkB9 ;  
    else Ai.^~#%X  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); '=]|"   
        rpowern = cat(2,rpowern{:}); W3-g]#\?  
    end yu @u0vlc  
    [rtMx8T  
    % Compute the values of the polynomials: &L4>w.b"N  
    % -------------------------------------- f&L8<AS Fo  
    y = zeros(length_r,length(n));  Ts 1  
    for j = 1:length(n) 53)*i\9&  
        s = 0:(n(j)-m_abs(j))/2; PBp+(o-  
        pows = n(j):-2:m_abs(j); C9"yu&l  
        for k = length(s):-1:1 \4roM1&[  
            p = (1-2*mod(s(k),2))* ... e[*%tx H  
                       prod(2:(n(j)-s(k)))/              ... Xrd-/('2  
                       prod(2:s(k))/                     ... X(fT[A_2C  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &U0Y#11Cx  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); :`20i*  
            idx = (pows(k)==rpowers); Ur2) ];WZ  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ,NoWAmv  
        end D|E,9|=v  
         YTYCv7  
        if isnorm  o C#W  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); uEcK0>xp  
        end *d$r`.9j  
    end EawtT  
    % END: Compute the Zernike Polynomials b{hdEb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +U*:WKdI?  
    j`ybzG^  
    % Compute the Zernike functions: p 28=l5y+  
    % ------------------------------ >'|Wrz67Z  
    idx_pos = m>0; n`2LGc[rP  
    idx_neg = m<0; rWD*DmY@"  
    V"R,omh  
    z = y; YKG}4{T  
    if any(idx_pos) kCZxv"Ts  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *-.,QpgTX  
    end w>uo-88  
    if any(idx_neg) vK,.P:n  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !=rJ~s F/{  
    end (=/}i'  
    RqRyZ*n  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) wA?q/cw C  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Tg\wBhJr|  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated wzz> N@|  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive  D/]  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 4+'d">+|  
    %   and THETA is a vector of angles.  R and THETA must have the same w-?|6I}T  
    %   length.  The output Z is a matrix with one column for every P-value, |]'0z0>  
    %   and one row for every (R,THETA) pair. 2<33BBlWA  
    % J1gLT $  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike  - j_  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) A~%h*nZc%I  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) APM!xX=N  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ?QG?F9?  
    %   for all p. q_[V9  
    % 3KN>t)A#  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 :Wl`8p4]  
    %   Zernike functions (order N<=7).  In some disciplines it is ypV>*  
    %   traditional to label the first 36 functions using a single mode !R@s+5P)U  
    %   number P instead of separate numbers for the order N and azimuthal v JPX`T|  
    %   frequency M. #xBh62yIuP  
    % Zz@wbhMV  
    %   Example: B96"|v$  
    % p{S#>JTr  
    %       % Display the first 16 Zernike functions P2>Y0"bY  
    %       x = -1:0.01:1; atmTI`i  
    %       [X,Y] = meshgrid(x,x); h&j9'  
    %       [theta,r] = cart2pol(X,Y); o=ULo &9  
    %       idx = r<=1; [2Ot=t6]  
    %       p = 0:15; :]+p#l  
    %       z = nan(size(X)); OXIy0].b  
    %       y = zernfun2(p,r(idx),theta(idx)); MMS#Ci=Lj  
    %       figure('Units','normalized') Egr'IbB  
    %       for k = 1:length(p) <Pg<F[eDM  
    %           z(idx) = y(:,k); :elTqw>pn  
    %           subplot(4,4,k) ^{R.X:a  
    %           pcolor(x,x,z), shading interp U9]&~jR  
    %           set(gca,'XTick',[],'YTick',[]) Fooa~C"  
    %           axis square !y syb  
    %           title(['Z_{' num2str(p(k)) '}']) o]O  
    %       end E!zAUEVQm[  
    % qS}pv  
    %   See also ZERNPOL, ZERNFUN. #xTu {  
    d6ABgQi0  
    %   Paul Fricker 11/13/2006 ; 6*Ag#Z  
    F|&=\Q  
    ;/|3U7{c  
    % Check and prepare the inputs: IM9P5?kJ ?  
    % ----------------------------- Ye"#tCOEG  
    if min(size(p))~=1 Zg~6  
        error('zernfun2:Pvector','Input P must be vector.') "'\f?A9  
    end 0f3C; u-q-  
    A.@Af+  
    if any(p)>35 QLum=YB  
        error('zernfun2:P36', ... (D <o=Q  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ]/y69ou  
               '(P = 0 to 35).']) \r7gubD  
    end JBxizJBP  
    hD! 9[Gb  
    % Get the order and frequency corresonding to the function number: 4,P!D3SH  
    % ---------------------------------------------------------------- \B1<fF2  
    p = p(:); 7<p? E7  
    n = ceil((-3+sqrt(9+8*p))/2); 2<GN+W v[#  
    m = 2*p - n.*(n+2); H]d'#1G  
    OJ2I (8P  
    % Pass the inputs to the function ZERNFUN: ;1[Lwnm  
    % ---------------------------------------- T_1p1Sg  
    switch nargin gP 6`q  
        case 3 R4P$zB_<2  
            z = zernfun(n,m,r,theta); 3PU'd^  
        case 4 aq<QKn U  
            z = zernfun(n,m,r,theta,nflag); v'W`\MKY)  
        otherwise q26%Z)'nf  
            error('zernfun2:nargin','Incorrect number of inputs.') >h<bYk"9Q  
    end lM'yj}:~  
    cAAyyc"yJ  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) jQ[M4)>_k`  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 0;pOQF  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of eg vgi?y  
    %   order N and frequency M, evaluated at R.  N is a vector of u]%>=N(^2  
    %   positive integers (including 0), and M is a vector with the zu-1|X X  
    %   same number of elements as N.  Each element k of M must be a wBK%=7  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) [6Nw)r(a(  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is /n|`a1!  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix b+`mh  
    %   with one column for every (N,M) pair, and one row for every QC\][I>  
    %   element in R. (xhwl=MX)  
    % >HH49 cCo  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- G,J~Ed  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is (`&`vf  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Oor&1  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 }|7y.*  
    %   for all [n,m]. (~<9\ZJs  
    % ugI9rxT]Kv  
    %   The radial Zernike polynomials are the radial portion of the 30Z RKrW"~  
    %   Zernike functions, which are an orthogonal basis on the unit &@MiR8  
    %   circle.  The series representation of the radial Zernike 3h|:ew[  
    %   polynomials is $SmmrM  
    % P95A _(T=[  
    %          (n-m)/2 l[EjtN  
    %            __ HX3R@^vo  
    %    m      \       s                                          n-2s u< ,c  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r oIP<7gz  
    %    n      s=0 QQwD) WG  
    % VYZkHjj)2i  
    %   The following table shows the first 12 polynomials. 1L=6Z2*fB4  
    % u0(PWCi2  
    %       n    m    Zernike polynomial    Normalization :uD*Q/  
    %       --------------------------------------------- 0` {6~p  
    %       0    0    1                        sqrt(2) @ !:~gQ  
    %       1    1    r                           2 7.o:(P1??g  
    %       2    0    2*r^2 - 1                sqrt(6) V~uH)IMkh7  
    %       2    2    r^2                      sqrt(6) domaD"C  
    %       3    1    3*r^3 - 2*r              sqrt(8) PmGW\E[ni  
    %       3    3    r^3                      sqrt(8) .kO;9z\B  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) '>]9efJA  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) c_fx,; ;  
    %       4    4    r^4                      sqrt(10) 1px8af]  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ZO2$Aan  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) `KgWaf-  
    %       5    5    r^5                      sqrt(12) L.uX  
    %       --------------------------------------------- w< hw>e^.  
    % 9aR-kcvJIJ  
    %   Example: Qv%"iSe~J  
    % 7X$[E*kd  
    %       % Display three example Zernike radial polynomials ?_L)|:WL  
    %       r = 0:0.01:1; [`~E)B1Y  
    %       n = [3 2 5]; +%'S>g0W=  
    %       m = [1 2 1]; <J`",h  
    %       z = zernpol(n,m,r); \tj7Jy  
    %       figure "i\rhX  
    %       plot(r,z) @,<@y>m7  
    %       grid on L* Mt/  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') XA~Cc<v  
    % Vs-])Q?7J  
    %   See also ZERNFUN, ZERNFUN2. 2Qqk?;^ 1  
    !TH3oLd"  
    % A note on the algorithm. KV Vo_9S'  
    % ------------------------ iwnctI  
    % The radial Zernike polynomials are computed using the series ?v-( :OF  
    % representation shown in the Help section above. For many special lw4#xH-?  
    % functions, direct evaluation using the series representation can ?mJNzHrq;  
    % produce poor numerical results (floating point errors), because p`jkyi  
    % the summation often involves computing small differences between "F(LTppy  
    % large successive terms in the series. (In such cases, the functions W)dQ yZ>J  
    % are often evaluated using alternative methods such as recurrence ,Jy@n]x  
    % relations: see the Legendre functions, for example). For the Zernike <n4T*  
    % polynomials, however, this problem does not arise, because the v)*/E'Cr*  
    % polynomials are evaluated over the finite domain r = (0,1), and HJVi:;o  
    % because the coefficients for a given polynomial are generally all p&SxR}h  
    % of similar magnitude. W=fw*ro  
    % b]'Uv8fbF  
    % ZERNPOL has been written using a vectorized implementation: multiple #,0PLU3%  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] B>&Q]J+R  
    % values can be passed as inputs) for a vector of points R.  To achieve Ak`7f$z  
    % this vectorization most efficiently, the algorithm in ZERNPOL $^Is|]^  
    % involves pre-determining all the powers p of R that are required to 7~@9=e8G  
    % compute the outputs, and then compiling the {R^p} into a single VQ5D?^'0/  
    % matrix.  This avoids any redundant computation of the R^p, and \Kp!G1?_AY  
    % minimizes the sizes of certain intermediate variables.  2D;,'  
    % _d#1muZ?p|  
    %   Paul Fricker 11/13/2006  -a``  
    (!72Eaw:]  
    'D ,efTq  
    % Check and prepare the inputs: si:p98[w  
    % ----------------------------- "HCJ!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >wz& {9ni  
        error('zernpol:NMvectors','N and M must be vectors.') (yjx+K_[  
    end "P) f,n  
    LUGyc( h  
    if length(n)~=length(m) Zl5cHejM  
        error('zernpol:NMlength','N and M must be the same length.') I}djDtJ  
    end O)y|G%O  
    A"(XrL-pV  
    n = n(:); &cDLSnR  
    m = m(:); qPEtMvL #  
    length_n = length(n); J#h2~Hz!  
    Aofk<O!M  
    if any(mod(n-m,2)) j_::#?o!/  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') f)`_su U  
    end toD v~v  
    {}r#s>  
    if any(m<0) 5K_KZL-  
        error('zernpol:Mpositive','All M must be positive.') MKqMH,O  
    end q]%eLfC(  
    VRuY8<E  
    if any(m>n) T bMW?Su  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ETt7?,x@  
    end ;VhilWaF-  
    |mx)W}  
    if any( r>1 | r<0 ) ZY_aE  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') c/:d$o-  
    end C`qo  
    `/ W6, ]  
    if ~any(size(r)==1) ,t"?~Hl".  
        error('zernpol:Rvector','R must be a vector.') HPz9Er  
    end !*[Fw1-J  
    }BTK+Tk8  
    r = r(:); O*;$))<wX  
    length_r = length(r); xF:}a:c@H  
    e70#"~gt[  
    if nargin==4 Mnj\t3:  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 6Z09)}tZb  
        if ~isnorm !V<c:6"  
            error('zernpol:normalization','Unrecognized normalization flag.') 5k%Gj T  
        end D8Ntzsr6  
    else Z7\}x"hk  
        isnorm = false; 9T`$gAI  
    end GyirE`  
    N*J!<vY"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gLm ]*  
    % Compute the Zernike Polynomials _/FpmnaY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .<#oLM^  
    U*P&O+(1'  
    % Determine the required powers of r: 4Ss4jUj  
    % ----------------------------------- g0Rny  
    rpowers = []; 2O|jVGap5x  
    for j = 1:length(n) {RG4m{#9  
        rpowers = [rpowers m(j):2:n(j)]; ((& y:{?G  
    end ElFiR ;   
    rpowers = unique(rpowers); V/p+Xv(Zt  
    .|$:%"O&X  
    % Pre-compute the values of r raised to the required powers, ,, 8hU7P  
    % and compile them in a matrix: }PC_qQF  
    % ----------------------------- A_8UPGh8  
    if rpowers(1)==0 )$EmKOTt:  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5|nT5oS  
        rpowern = cat(2,rpowern{:}); bcM65pt_C  
        rpowern = [ones(length_r,1) rpowern]; bD2):U*Fzo  
    else *5e"suS2  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N7Kg52|  
        rpowern = cat(2,rpowern{:}); 0|Rt[qwKb@  
    end 2F}D?] A  
    0mt lM(  
    % Compute the values of the polynomials: n]%T>\gw  
    % -------------------------------------- x=S8UKUx  
    z = zeros(length_r,length_n); +'-i(]@!'  
    for j = 1:length_n Jw+k=>  
        s = 0:(n(j)-m(j))/2; =c(t;u6m-  
        pows = n(j):-2:m(j); 4!vovt{  
        for k = length(s):-1:1 ",v!geMvu  
            p = (1-2*mod(s(k),2))* ... =c-Y >  
                       prod(2:(n(j)-s(k)))/          ... \!51I./Q/  
                       prod(2:s(k))/                 ... j1 Ns|oph1  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ??]b,f4CNa  
                       prod(2:((n(j)+m(j))/2-s(k))); s%bm1$}  
            idx = (pows(k)==rpowers); MvCB|N"qy  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ' ?4 \  
        end -XJXl}M.  
         qS9z0HLE  
        if isnorm 5bj9S  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 6"o,)e/z  
        end F `4a0~?  
    end G?,b51"  
    gN/kNck  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  z,g\7F[  
    ,0aRHy_^  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 FyqsFTh_  
    q"u,r6ED  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)