非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 p6>Svcc
function z = zernfun(n,m,r,theta,nflag) g+vva"
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4xjP iHd<
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N nP$Ky1y G
% and angular frequency M, evaluated at positions (R,THETA) on the Yvw(tj5_5
% unit circle. N is a vector of positive integers (including 0), and EE&K0<?T|:
% M is a vector with the same number of elements as N. Each element jnO9j_CY
% k of M must be a positive integer, with possible values M(k) = -N(k) !Xf5e*1IS
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, .sha&
% and THETA is a vector of angles. R and THETA must have the same KX ,S
% length. The output Z is a matrix with one column for every (N,M) f-vCm 5f
% pair, and one row for every (R,THETA) pair. PUT=C1,OFR
% ?+@n3]`0
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike h7G"G"
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *+Ek0M
% with delta(m,0) the Kronecker delta, is chosen so that the integral <wN}X#M
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, /M1ob: m
% and theta=0 to theta=2*pi) is unity. For the non-normalized 4tRYw0f47
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. JVvs-bK5
% t3 8m'J :>
% The Zernike functions are an orthogonal basis on the unit circle. X5zDpi|Dq
% They are used in disciplines such as astronomy, optics, and 6Zm# bFQ
% optometry to describe functions on a circular domain. AifWf2$S
% yj 3cyLXw
% The following table lists the first 15 Zernike functions. Yb|c\[ %
% ]sf7{lVT
% n m Zernike function Normalization ?GKb7Oj
% -------------------------------------------------- W <9T0sZ
% 0 0 1 1 6M @[B|Q(
% 1 1 r * cos(theta) 2 [M]
% 1 -1 r * sin(theta) 2 {f/~1G[M
% 2 -2 r^2 * cos(2*theta) sqrt(6) I667Gz$j5
% 2 0 (2*r^2 - 1) sqrt(3) > kGGR
% 2 2 r^2 * sin(2*theta) sqrt(6) JFcLv=U
% 3 -3 r^3 * cos(3*theta) sqrt(8) u%&`}g
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Vz~{UHH6
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 6a(yp3
% 3 3 r^3 * sin(3*theta) sqrt(8) `06;
% 4 -4 r^4 * cos(4*theta) sqrt(10) M'?,] an
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pnl{&<$C%C
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) !`Fxa4i>
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g/ T
% 4 4 r^4 * sin(4*theta) sqrt(10) orzZ{87
% -------------------------------------------------- !,wIQy_e4
% s 1A.+
% Example 1: T,,WoPU8t
% ^cOUQ33
% % Display the Zernike function Z(n=5,m=1) t6bV?nc
% x = -1:0.01:1; dU&a{$ku[
% [X,Y] = meshgrid(x,x); : %lTU
% [theta,r] = cart2pol(X,Y); gh/EU/~d
% idx = r<=1; F+YZE[h%
% z = nan(size(X)); ~qiJR`Jj
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ity & v9
% figure 6dq(T_eG
% pcolor(x,x,z), shading interp 0.`/X66;V
% axis square, colorbar {%rA1g
% title('Zernike function Z_5^1(r,\theta)') 9'fQHwsJ
% wL+s8#{
% Example 2: Q:2>}QgX}
% D$w6V
% % Display the first 10 Zernike functions nHM~
% x = -1:0.01:1; k :(SCHf
% [X,Y] = meshgrid(x,x); #3i3G(mQ
% [theta,r] = cart2pol(X,Y); "3X2VFwoJ
% idx = r<=1; 2,DXc30I
% z = nan(size(X)); .p<:II:6
% n = [0 1 1 2 2 2 3 3 3 3]; [T8WThs
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; u(z$fG:g
% Nplot = [4 10 12 16 18 20 22 24 26 28]; L7n D|
% y = zernfun(n,m,r(idx),theta(idx)); ;,hwZZA
% figure('Units','normalized') F|'>NL-=
% for k = 1:10 kjTduZ/3"
% z(idx) = y(:,k); }z eO]"`
% subplot(4,7,Nplot(k)) v"y-0$M
% pcolor(x,x,z), shading interp %^?fMeI|Y
% set(gca,'XTick',[],'YTick',[]) TJ10s%,V
% axis square rJ`!: f
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) wg9t)1k{e
% end vNyf64)
% m]'#t)B_m
% See also ZERNPOL, ZERNFUN2. 7BE>RE=)
C'>|J9~Gz
% Paul Fricker 11/13/2006 ;;!yC
GA$V0YQX
OSRp0G20k\
% Check and prepare the inputs: Y4J3-wK5
% ----------------------------- h=W:^@G
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h1j!IG
error('zernfun:NMvectors','N and M must be vectors.') ,1y@Z 5wy
end 1auIR/=-
W\>fh&!)
if length(n)~=length(m) Lm iOhx
error('zernfun:NMlength','N and M must be the same length.') 35h8O,Y
end [8Y:65
:N:yLd} &
n = n(:); S(k3 `;K
m = m(:); =rMUov h
if any(mod(n-m,2)) pd:WEI
,
error('zernfun:NMmultiplesof2', ... piJu+tUy
'All N and M must differ by multiples of 2 (including 0).') r )Ma3FL0;
end G0CW}e@)
[u
=+3b
if any(m>n) 8+~
>E
error('zernfun:MlessthanN', ... 6gL#C&
'Each M must be less than or equal to its corresponding N.') S.mG?zbw
end #Vnkvvv
5GI,o|[s6
if any( r>1 | r<0 ) pI1-cV,`
error('zernfun:Rlessthan1','All R must be between 0 and 1.') x!?u^
end $POu\TO
WltQ63u
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) qFicBpB
error('zernfun:RTHvector','R and THETA must be vectors.') HCIU!4rH
end ]tim,7s
`}D,5^9]
r = r(:); c/:b.>W
theta = theta(:); ])[[ V!1
length_r = length(r); Z]A{ d[
if length_r~=length(theta) 0%32=k7O[
error('zernfun:RTHlength', ... 46}g7skD
'The number of R- and THETA-values must be equal.') ^6jV_QM#
end AgWa{.`f:
H[NSqu.s
% Check normalization: /Y/UM3/
% -------------------- ](Xb_xMf
if nargin==5 && ischar(nflag) j:Xq1f6a
isnorm = strcmpi(nflag,'norm'); eln)BW#
if ~isnorm w_ akn t T
error('zernfun:normalization','Unrecognized normalization flag.') m~w[~flgZ
end b10cuy|a/X
else w0[6t#$F
isnorm = false; N,<uf@LQ
end ({ +!`}GY
9#23FK
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1m'k|Ka
% Compute the Zernike Polynomials 6{@w="VT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+Te\H
T tfo^ksw
% Determine the required powers of r: 2VPdw@"~}
% ----------------------------------- ud63f`W]4
m_abs = abs(m); 0B[="rTS7#
rpowers = []; ~jWn4
\
for j = 1:length(n) R]JT&p|w.1
rpowers = [rpowers m_abs(j):2:n(j)]; vRznw&^E
end pg6cF
rpowers = unique(rpowers); :>rkG?NfL
g6yB6vk
% Pre-compute the values of r raised to the required powers, ?Lx24*5%
% and compile them in a matrix: kF3k7,.8&
% ----------------------------- e-~N"
if rpowers(1)==0 dydc}n
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~]nRV *^
rpowern = cat(2,rpowern{:}); .nO\kg oK
rpowern = [ones(length_r,1) rpowern]; biL s+\C
else *~2,/D
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Tg7an&#
rpowern = cat(2,rpowern{:}); $ux,9H'[
end q'+)t7!
#9=Vg
% Compute the values of the polynomials: pXtl
6K%
% -------------------------------------- #./fY;:cj
y = zeros(length_r,length(n)); 4aug{}h("
for j = 1:length(n) G5{T5#
s = 0:(n(j)-m_abs(j))/2; J;S
(>c
pows = n(j):-2:m_abs(j); Z3%}ajPu[
for k = length(s):-1:1 l(yZO$
p = (1-2*mod(s(k),2))* ... J.3u^~zy
prod(2:(n(j)-s(k)))/ ... _PPy44r2
prod(2:s(k))/ ... [RS|gem`
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... B[qzUD*P_n
prod(2:((n(j)+m_abs(j))/2-s(k))); Lk|hQ
idx = (pows(k)==rpowers); .4S.>~^7
y(:,j) = y(:,j) + p*rpowern(:,idx); 2Zm0qJ
end ;[(oaK@+n
O],T,Z?z
if isnorm 9U7nKJ+iby
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2v :]tj
end 3W V"U
end GL&y@6
% END: Compute the Zernike Polynomials Z~GL5]S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <xup'n^7C
-Mip,EO
% Compute the Zernike functions: 4d"r^y'
% ------------------------------ /pm]BC
idx_pos = m>0; \TIT:1
idx_neg = m<0; }#3V+X
5CuuG<0
z = y; y~(h>gi,x
if any(idx_pos) 2{D{sa
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ky8_UnaO
end rUTcpGH
if any(idx_neg) mD/9J5:
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 02Y]`CXj
end Y21g{$~Q{
w?3p';C
% EOF zernfun