非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Z~:)hwF
function z = zernfun(n,m,r,theta,nflag) B:>:$LIL
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 2)EqqX[D
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N VgPlIIHh5
% and angular frequency M, evaluated at positions (R,THETA) on the /&6{}n
% unit circle. N is a vector of positive integers (including 0), and jV%
VN
% M is a vector with the same number of elements as N. Each element :k9T`Aa]
% k of M must be a positive integer, with possible values M(k) = -N(k) l!1_~!{y
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, `.@udfog^0
% and THETA is a vector of angles. R and THETA must have the same yp~z-aRa
% length. The output Z is a matrix with one column for every (N,M) ^"Bhp:o2
% pair, and one row for every (R,THETA) pair. S @[]znH
% gj|5"'g%
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $YJ 1P
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?0)K[Kd'Y
% with delta(m,0) the Kronecker delta, is chosen so that the integral gY+d[3N
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $H*8H`
% and theta=0 to theta=2*pi) is unity. For the non-normalized 6+=_p$crMx
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >4g!ic~O
% %XR(K@V
% The Zernike functions are an orthogonal basis on the unit circle. h<L_ =)lH
% They are used in disciplines such as astronomy, optics, and S6bW
r0XR
% optometry to describe functions on a circular domain. hUpour
|b
% "]3o933D
% The following table lists the first 15 Zernike functions. qt:B]#j@
% we}xGb.u
% n m Zernike function Normalization .QY>@b\
% -------------------------------------------------- H~*N:$C
% 0 0 1 1 M|nLD+d~8
% 1 1 r * cos(theta) 2 X$xf@|<a
% 1 -1 r * sin(theta) 2 o^@#pU <
% 2 -2 r^2 * cos(2*theta) sqrt(6) pZ Uy (
% 2 0 (2*r^2 - 1) sqrt(3) #ChTel
% 2 2 r^2 * sin(2*theta) sqrt(6) IFW(nB(
% 3 -3 r^3 * cos(3*theta) sqrt(8) Zl[EpXlZ
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) PU%Zay
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) I484cR2.
% 3 3 r^3 * sin(3*theta) sqrt(8) <\nM5-wR
% 4 -4 r^4 * cos(4*theta) sqrt(10) 42e [OG-
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^/%o
I;O{
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ]prw=rD
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rHk(@T.]
% 4 4 r^4 * sin(4*theta) sqrt(10) e'~Qe_
% -------------------------------------------------- H/t0#
% H-t$A, [
% Example 1: YdV.+v(30
% I!b"Rv=Nf-
% % Display the Zernike function Z(n=5,m=1) TFldYKd/l
% x = -1:0.01:1; {^
BZ#)m|
% [X,Y] = meshgrid(x,x); R;,5LS&*a
% [theta,r] = cart2pol(X,Y); gHgqElr(
% idx = r<=1; N9ipw r'P
% z = nan(size(X)); b+Sj\3fX
% z(idx) = zernfun(5,1,r(idx),theta(idx)); &pY$\
% figure <IU
% pcolor(x,x,z), shading interp (]k Q9}8
% axis square, colorbar @Y,t]
% title('Zernike function Z_5^1(r,\theta)') [cFD\"gJAr
% ((?"2 }1r
% Example 2: A|Ft:_Y
% 0rX%z$D+@
% % Display the first 10 Zernike functions ;=0-B&+v
% x = -1:0.01:1; l _2Xao$
% [X,Y] = meshgrid(x,x); m,+E5^
% [theta,r] = cart2pol(X,Y); t.&JPTK-H
% idx = r<=1; Cm5L99Y
% z = nan(size(X)); Ww~C[8q
% n = [0 1 1 2 2 2 3 3 3 3]; W rT_7
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; @@a#DjE%/
% Nplot = [4 10 12 16 18 20 22 24 26 28]; "4KyJ;RA*
% y = zernfun(n,m,r(idx),theta(idx)); EId>%0s5
% figure('Units','normalized') 1A93ol=
% for k = 1:10 p Dg!Cs
% z(idx) = y(:,k); X'.lh#&
% subplot(4,7,Nplot(k)) DZ`,QWuA
% pcolor(x,x,z), shading interp Za,o
% set(gca,'XTick',[],'YTick',[]) Ur[ai6LNG
% axis square vWW Q/^
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) I+Y Z+
% end ;
p+C0!B2
% \7UeV:3Ojn
% See also ZERNPOL, ZERNFUN2. @Nm{H
j0F&
W Kk
% Paul Fricker 11/13/2006 J;V#a=I
K7$Q.
@6[aLF]F
% Check and prepare the inputs: 7u1o>a%9
% ----------------------------- 'e>'JZR
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8u*Q^-fpo0
error('zernfun:NMvectors','N and M must be vectors.') sj+ )
end 3]NKAPY
:3se/4y}
if length(n)~=length(m) <,*w$
error('zernfun:NMlength','N and M must be the same length.') ~urk
Uz
end "<L9-vb
uI)z4Z
n = n(:); !!6@r|.
m = m(:); ?r$&O*;
if any(mod(n-m,2)) ?<OE|nb&
error('zernfun:NMmultiplesof2', ... Nog{w
'All N and M must differ by multiples of 2 (including 0).') AHa]=ka>
end AgDXpaq
C:!&g~{cKi
if any(m>n) Q>z(!'dw
error('zernfun:MlessthanN', ... .<K9Zyi
'Each M must be less than or equal to its corresponding N.') fTy{`}>
end V+u0J"/8
qP/McH?
if any( r>1 | r<0 ) qe uc^+P;
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ?Rh[S
end m9 'bDyyK
3! KyO)8
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) HT_nxe`E
error('zernfun:RTHvector','R and THETA must be vectors.') r-hb]!t
end JFRbWQ0
4{$ L]toP
r = r(:); uE#"wm'J
theta = theta(:); kCZ'p
length_r = length(r); #E/|WT
if length_r~=length(theta) Q9g^'a
error('zernfun:RTHlength', ... efyGjfoO
'The number of R- and THETA-values must be equal.') 9:!V":8q
end w!UIz[ajI
*Xu?(Jd
% Check normalization: _bCIVf`
% -------------------- V4*/t#L/
if nargin==5 && ischar(nflag) o~x49%X<c
isnorm = strcmpi(nflag,'norm'); :9|CpC`.
if ~isnorm `:gXQmt
error('zernfun:normalization','Unrecognized normalization flag.') LD;!
s
end X-yS9E
else @Bsvk9}
isnorm = false; GSGaYq
end 5N#Sic M
;3=RM\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ad<ZdO*h
% Compute the Zernike Polynomials +W|VCz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "6WE6zq
F@xKL;'N74
% Determine the required powers of r: 1?y
QjW,
% ----------------------------------- #!jwn^yq
m_abs = abs(m); iT~ gt/K
rpowers = []; %G,d&%f
for j = 1:length(n) uF@DJX}>
rpowers = [rpowers m_abs(j):2:n(j)]; d`xDv$QZ
end Zu ![v0
rpowers = unique(rpowers); |zp}u (N
70A* !v
% Pre-compute the values of r raised to the required powers, Cyp%E5b7
% and compile them in a matrix: gGbJk&E
% ----------------------------- [58qC:
if rpowers(1)==0 P7qzZ
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Mgux(5`;
rpowern = cat(2,rpowern{:}); Z"9D1Uk
rpowern = [ones(length_r,1) rpowern]; qc/)l~]?g{
else <xD6}h/
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); $btk48a 7
rpowern = cat(2,rpowern{:}); rVb61$
end xtd1>|
Wl{}>F`W[
% Compute the values of the polynomials: r4pR[G._
% -------------------------------------- CuYSvW
y = zeros(length_r,length(n)); ?,UO$#Xm
for j = 1:length(n) NY%=6><t!
s = 0:(n(j)-m_abs(j))/2; <)$JA
pows = n(j):-2:m_abs(j); Nj}-"R\u
for k = length(s):-1:1 pq*4yaTT'
p = (1-2*mod(s(k),2))* ... LE+#%>z>
prod(2:(n(j)-s(k)))/ ... }\.Z{h:t
?
prod(2:s(k))/ ... 'dd[=vzK
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... a_Z[@W
prod(2:((n(j)+m_abs(j))/2-s(k))); NU%W9jQYS
idx = (pows(k)==rpowers); +{&++^(}a
y(:,j) = y(:,j) + p*rpowern(:,idx); .10$n*
end O.'\GM
x|A{|oFC
if isnorm 6$\'dkufQ
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); j<-YK4.t
end &&|c-mD+*
end @<=<?T>1
% END: Compute the Zernike Polynomials )uH#+IU
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F)uS2
=.6JvX<d1*
% Compute the Zernike functions: hdy
N
% ------------------------------ j%Z%_{6Ds*
idx_pos = m>0; !WQ S.&
idx_neg = m<0; 8i?:aN[.1b
+IbQVU~/
z = y;
mI3
\n
if any(idx_pos) 7\Wq :<JL
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); @x/D8HK2
end kTS#>uS
if any(idx_neg) 3W"l}.&ZJ"
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); *ta?7uSiT
end P~ODd(
f]]UNS$AYQ
% EOF zernfun