非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 zRu`[b3u<
function z = zernfun(n,m,r,theta,nflag) tTH%YtG
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. u`@f~QP0
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gN(hv.nQ
% and angular frequency M, evaluated at positions (R,THETA) on the 1RbYPX
% unit circle. N is a vector of positive integers (including 0), and (OB8vTRXP
% M is a vector with the same number of elements as N. Each element ]5fM?: <l
% k of M must be a positive integer, with possible values M(k) = -N(k) }yw;L(3
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, +
nS/jW
% and THETA is a vector of angles. R and THETA must have the same XL^N5
% length. The output Z is a matrix with one column for every (N,M) F5+_p@!i
% pair, and one row for every (R,THETA) pair. %wW5)Y I
% ]Rh(=bg
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike q}$=bR1+
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), JF%=Bc $C
% with delta(m,0) the Kronecker delta, is chosen so that the integral (Fzh1#
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, lM^!^6=v0l
% and theta=0 to theta=2*pi) is unity. For the non-normalized HY;?z`=
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. bU ]N^og^
% [IFRwQ^%_O
% The Zernike functions are an orthogonal basis on the unit circle. *t{c}Y&@
% They are used in disciplines such as astronomy, optics, and 2?iOB6
% optometry to describe functions on a circular domain. WV1 Z
% xsDa!
% The following table lists the first 15 Zernike functions. -!,]Y10
% 8$ZSF92C
% n m Zernike function Normalization WWW#s gM%
% -------------------------------------------------- 3D{4vMmX
% 0 0 1 1 Ln2C#Uf
% 1 1 r * cos(theta) 2 i i@1!o
% 1 -1 r * sin(theta) 2 v\(m"|4(i
% 2 -2 r^2 * cos(2*theta) sqrt(6) k(z<Bm
% 2 0 (2*r^2 - 1) sqrt(3) Z,!Xxv;4
% 2 2 r^2 * sin(2*theta) sqrt(6) 1 {x~iZa
% 3 -3 r^3 * cos(3*theta) sqrt(8) 8='21@wrN
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) t"/"Ge#a
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) )_*a7N!
% 3 3 r^3 * sin(3*theta) sqrt(8) M
|?p3%
% 4 -4 r^4 * cos(4*theta) sqrt(10) uuYH6bw*d
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2~WFLD
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) I"32[?0
(;
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xPMyG);
% 4 4 r^4 * sin(4*theta) sqrt(10) P^3m:bE]
% -------------------------------------------------- ]Wd`GI
% I49l2>
% Example 1: `JWYPsWk
% e9@fQ
% % Display the Zernike function Z(n=5,m=1) YD46Z~$
% x = -1:0.01:1; L\Fu']l
% [X,Y] = meshgrid(x,x); E)Qh]:<2v
% [theta,r] = cart2pol(X,Y); b^,Mw8KsO
% idx = r<=1; =HV-8C]
% z = nan(size(X)); f:[d]J|
% z(idx) = zernfun(5,1,r(idx),theta(idx)); s>@#9psm
% figure U++~3e@l
% pcolor(x,x,z), shading interp I0w@S7
% axis square, colorbar rw8J:?0x
% title('Zernike function Z_5^1(r,\theta)') j&[.2PW\
% J4[x,(iq(
% Example 2: m-'(27
% ?Tc)f_a
% % Display the first 10 Zernike functions foz5D9sQ
% x = -1:0.01:1; Z0"&
% [X,Y] = meshgrid(x,x); $}^\=p}X
% [theta,r] = cart2pol(X,Y); MeI2i
% idx = r<=1; NB+$ym
% z = nan(size(X)); \'??
% n = [0 1 1 2 2 2 3 3 3 3]; 7"n1it[RJ8
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; #OD@q;
% Nplot = [4 10 12 16 18 20 22 24 26 28]; n-y^7'v
% y = zernfun(n,m,r(idx),theta(idx)); VX!Y`y^a
% figure('Units','normalized') F8S~wW=\w
% for k = 1:10 *{.&R9#7U'
% z(idx) = y(:,k); y4/>Ol]
% subplot(4,7,Nplot(k)) PUE'Rr(Q
% pcolor(x,x,z), shading interp (I7&8$Zl
% set(gca,'XTick',[],'YTick',[]) 9xK4!~5V
% axis square mI7rx`4H
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Fp5NRM*-!
% end iM/*&O}
% ayH%
qp
% See also ZERNPOL, ZERNFUN2. 5:l*Ib:s7
uXQ7eXX
% Paul Fricker 11/13/2006 yZ;k@t_WRD
kJurUDo
XWUvP
% Check and prepare the inputs: v?YdLR
% ----------------------------- cXb
@H#
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _H4$$
error('zernfun:NMvectors','N and M must be vectors.') Q(=Vk~v
end .*EOVo9S
"[Qb'9/Jc
if length(n)~=length(m) .7pGx*WH^Y
error('zernfun:NMlength','N and M must be the same length.') SRt$4EL21
end FVsu8z u
*xX(!t'
n = n(:); FXOT+9bg
m = m(:); Gut J_2f^9
if any(mod(n-m,2)) I~p8#<4#b
error('zernfun:NMmultiplesof2', ... 9n>$}UI\
'All N and M must differ by multiples of 2 (including 0).') T6h;Y
end t$]&,ucW#
`ICcaRIN8I
if any(m>n) lFp!XZ!
error('zernfun:MlessthanN', ... ASzzBR;?_
'Each M must be less than or equal to its corresponding N.') $6:XsrV\a
end a%7"_{s1
?%\mQmjas
if any( r>1 | r<0 ) %~#!NX
error('zernfun:Rlessthan1','All R must be between 0 and 1.') N,j>;x3xT
end #&^ZQs<
<a8#0ojm
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?%cn'=>ZI
error('zernfun:RTHvector','R and THETA must be vectors.') j+_S$T8w
end n0rerI[R
G 2%
r = r(:); awj+#^
theta = theta(:); 8- dRdQu]
length_r = length(r); [c&2i`C
if length_r~=length(theta) ]j& FbP)3
error('zernfun:RTHlength', ... 5TXg;v#Z
'The number of R- and THETA-values must be equal.') -W|*fKN`3
end $.oOG"u0]
{E!$ xY8
% Check normalization: ]s*5[=uc2
% -------------------- 2}^+]5
if nargin==5 && ischar(nflag) b7,
isnorm = strcmpi(nflag,'norm'); \e?.hmq
if ~isnorm g~~m'^
error('zernfun:normalization','Unrecognized normalization flag.') )-0[ra]
end -L@]I$Yo
else d32@M~vD
isnorm = false; 90Xt_$_}s
end ]UK`?J=t2g
h6g=$8E
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "Jb3&qdU
% Compute the Zernike Polynomials %lXbCE:[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WI,40&<
q&u$0XmV
% Determine the required powers of r: ? ouV
% ----------------------------------- (FM4 ^#6
m_abs = abs(m); ,/~[S
rpowers = []; YV*b~6{d
for j = 1:length(n) pPoH5CzcK
rpowers = [rpowers m_abs(j):2:n(j)]; .j:i&j(
end [!^cd%l
rpowers = unique(rpowers); W&<g} N+
2bWUa~%B
% Pre-compute the values of r raised to the required powers, 3f_i1|>)'
% and compile them in a matrix: LRWOBD
% ----------------------------- ,,S9$@R
if rpowers(1)==0 }.'Z=yy
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Zotz?jVVr
rpowern = cat(2,rpowern{:}); ?p(kh^ z
rpowern = [ones(length_r,1) rpowern]; d& hD[v
else 0[.3Es:_
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?RDO] I>
rpowern = cat(2,rpowern{:}); ]22C)<
end Hfke
a~WqUL
% Compute the values of the polynomials: S0F@#mSQ?
% -------------------------------------- )B81i!
q
y = zeros(length_r,length(n)); QW2?n`Fa9-
for j = 1:length(n) k,T_e6(
s = 0:(n(j)-m_abs(j))/2; w5,6$#
pows = n(j):-2:m_abs(j); ?gLAWz
for k = length(s):-1:1 *MI)]S
p = (1-2*mod(s(k),2))* ... ~]4kkm7Y
prod(2:(n(j)-s(k)))/ ... .vK.XFZ8R
prod(2:s(k))/ ... QeL{Wa-2F
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... WJAYM2
6\
prod(2:((n(j)+m_abs(j))/2-s(k))); 3g;T?E
idx = (pows(k)==rpowers); P 4QkY#v
y(:,j) = y(:,j) + p*rpowern(:,idx); tR<L`?4
end L%f;J/
b7!UZu]IEv
if isnorm m*gj|1k
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); C,.-Q"juH
end ms7SoYbSu
end ?s%v 3T
% END: Compute the Zernike Polynomials ' X}7]y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AQe!Sqg'
?NlSeh
% Compute the Zernike functions: K}Na3}m
% ------------------------------ U%q:^S%#eG
idx_pos = m>0; ~Zmi(Ra
idx_neg = m<0; M\dO({o
_#FIay\ahB
z = y; N#UXP5C(
if any(idx_pos) rCE;'? Y
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (`pNXQ0n
end ".E5t@ }?m
if any(idx_neg) ?gN9kd)
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Mb/L~gd"
end gH'_ymT=
3
/1[gn8V691
% EOF zernfun