切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11712阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 FV!  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ,`S"nq  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 u2@:[:Ao  
    function z = zernfun(n,m,r,theta,nflag) xpRQ"6  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. #e{l:!uS\  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F3;UH%L1  
    %   and angular frequency M, evaluated at positions (R,THETA) on the vqJiMa j@Z  
    %   unit circle.  N is a vector of positive integers (including 0), and cQA;Y!Q #  
    %   M is a vector with the same number of elements as N.  Each element D)K/zh)  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ikw_t?  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :>\i  
    %   and THETA is a vector of angles.  R and THETA must have the same I[c/) N  
    %   length.  The output Z is a matrix with one column for every (N,M) P!0uAkt9C  
    %   pair, and one row for every (R,THETA) pair. 6zaO$  
    % z|<6y~5,  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Fnzv&  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), rMdOE&5G  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral wHEt;rc(  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Kj;Q;Ii  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized #JWW ;M6F  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~]O~a}]g(  
    % W{*U#:Jx1  
    %   The Zernike functions are an orthogonal basis on the unit circle. qa.nm4"6+  
    %   They are used in disciplines such as astronomy, optics, and T9}G:6  
    %   optometry to describe functions on a circular domain. 4703\ HK  
    %  |'aGj  
    %   The following table lists the first 15 Zernike functions. [h {zT)[  
    % .-awl1 W  
    %       n    m    Zernike function           Normalization N>/!e787OU  
    %       -------------------------------------------------- =e$<[ "  
    %       0    0    1                                 1 K7 -AVMY  
    %       1    1    r * cos(theta)                    2 6c$ so  
    %       1   -1    r * sin(theta)                    2 8iGS=M  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) RXxi7^ U  
    %       2    0    (2*r^2 - 1)                    sqrt(3) @@-n/9>vs  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) - 0R5g3^*/  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) "v@Y[QI  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8)  z"Miy  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) W8z4<o[$  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) A<fKO <d  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Tty_P,  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ti$G2dBO  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) NvW`x   
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) r'/&{?Je/  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) YcOPqvQ  
    %       -------------------------------------------------- =PYfk6j9  
    % )S@e&a|  
    %   Example 1: \@&oK2f  
    % JZI)jIh  
    %       % Display the Zernike function Z(n=5,m=1)  DA]<30 w  
    %       x = -1:0.01:1; Q6)Wh6Cm  
    %       [X,Y] = meshgrid(x,x); gB|>[6  
    %       [theta,r] = cart2pol(X,Y); -@L7! ,j  
    %       idx = r<=1; >9dzl#  
    %       z = nan(size(X)); ~tx|C3A`d  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); H1>~,zc>E  
    %       figure K)b@,/5  
    %       pcolor(x,x,z), shading interp A0X'|4I  
    %       axis square, colorbar 7.)kG}q]  
    %       title('Zernike function Z_5^1(r,\theta)') D+#OB|&Dn  
    % 3r^Ls[ey  
    %   Example 2: C0C2]xx{  
    % QiH>!Ssw  
    %       % Display the first 10 Zernike functions vT@*o=I  
    %       x = -1:0.01:1; !ZNirvk  
    %       [X,Y] = meshgrid(x,x); #dA9v7  
    %       [theta,r] = cart2pol(X,Y); <<'%2q5  
    %       idx = r<=1; `vjn,2S}  
    %       z = nan(size(X)); E? lK(C  
    %       n = [0  1  1  2  2  2  3  3  3  3]; {E=BFs  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; i4T=4q  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; `PY=B$?{4  
    %       y = zernfun(n,m,r(idx),theta(idx)); |\.:h":!0~  
    %       figure('Units','normalized') HuT4OGBFpC  
    %       for k = 1:10 Cv[_N%3[  
    %           z(idx) = y(:,k); AQ%B&Q(V1  
    %           subplot(4,7,Nplot(k)) GFGW'}w-  
    %           pcolor(x,x,z), shading interp hGU  m7  
    %           set(gca,'XTick',[],'YTick',[]) 1;v,rs M  
    %           axis square F8H4R7 8>;  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G&Fe2&5!w  
    %       end h;Hg/jv  
    % MO^Q 8v  
    %   See also ZERNPOL, ZERNFUN2. &x?m5%^l  
    p40;@gUug  
    %   Paul Fricker 11/13/2006 >:Y"DX-  
    &]"Z x0t5%  
    [][ze2+b  
    % Check and prepare the inputs: Ec9%RAxl  
    % ----------------------------- >sjvE4s  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !C(U9p. 0  
        error('zernfun:NMvectors','N and M must be vectors.') F/SYmNp  
    end q2 b>Z6!5  
    >,x&L[3  
    if length(n)~=length(m) j/t)=c  
        error('zernfun:NMlength','N and M must be the same length.') K 0e*K=UM  
    end ).)^\  
    qTrM*/m:]L  
    n = n(:); ToK=`0#LNK  
    m = m(:); 1B#iJZ}  
    if any(mod(n-m,2)) DHg)]FQ/  
        error('zernfun:NMmultiplesof2', ... A vww @$  
              'All N and M must differ by multiples of 2 (including 0).') wP7 E8'  
    end wpWZn[j  
    `_()|;!y  
    if any(m>n) q`VkA \  
        error('zernfun:MlessthanN', ... I5*<J n  
              'Each M must be less than or equal to its corresponding N.') uZTbJ3$$  
    end : HM~!7e  
    KVevvy)W  
    if any( r>1 | r<0 ) 63(XCO  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') C|V5@O?;&  
    end P~#LbUP(  
    d\R "?Sg  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) K]1| #`n  
        error('zernfun:RTHvector','R and THETA must be vectors.') Z;z,dw  
    end JXjH}C  
    Q/@ pcU  
    r = r(:); O=vD6@QI  
    theta = theta(:); PM i.)%++  
    length_r = length(r); /2''EF';  
    if length_r~=length(theta) 'C=(?H)M  
        error('zernfun:RTHlength', ... @Gw.U>"!C  
              'The number of R- and THETA-values must be equal.') w`EC6ZN  
    end >;]S+^dXY  
    DR @yd,  
    % Check normalization: D9H%jDv  
    % -------------------- ex#-,;T  
    if nargin==5 && ischar(nflag) ^;K"Y'f$  
        isnorm = strcmpi(nflag,'norm'); P1z:L  
        if ~isnorm &lID6{79Z  
            error('zernfun:normalization','Unrecognized normalization flag.') H ?eG5  
        end V*r/0|vd  
    else L{GlDoFk  
        isnorm = false; (/^?$~m"  
    end ~$ Po3]{s  
    M;W&#Fz%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y<*\D_J  
    % Compute the Zernike Polynomials [0 rH/{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #S] O|$&*  
    Xg l %2'  
    % Determine the required powers of r: +vH#xc\'  
    % ----------------------------------- &> _aY #  
    m_abs = abs(m); 9ei<ou_s  
    rpowers = []; ;dtA-EfOZ  
    for j = 1:length(n) Lctp=X4  
        rpowers = [rpowers m_abs(j):2:n(j)]; mKE' l'9A_  
    end Unansk  
    rpowers = unique(rpowers); 's5H_ah  
    mI\[L2x  
    % Pre-compute the values of r raised to the required powers, rLY I\  
    % and compile them in a matrix: GY5JPl  
    % ----------------------------- ' R2*3<  
    if rpowers(1)==0 1H\5E~X   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); uhv_'Q  
        rpowern = cat(2,rpowern{:}); /cVZ/"  
        rpowern = [ones(length_r,1) rpowern]; gv&Hu$ ca  
    else Y9 Bk$$#\  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  z).&0K  
        rpowern = cat(2,rpowern{:}); \F\xZ.r  
    end R&:Qy7"  
    z_#HJ}R=  
    % Compute the values of the polynomials: DjiI*HLNR  
    % -------------------------------------- >) Bv>HM  
    y = zeros(length_r,length(n)); ![eY%2;<  
    for j = 1:length(n) a<]vHC7  
        s = 0:(n(j)-m_abs(j))/2; wzmQRn;s  
        pows = n(j):-2:m_abs(j); E$A=*-u  
        for k = length(s):-1:1 Q'hs,t1<  
            p = (1-2*mod(s(k),2))* ... '*Tt$0#o  
                       prod(2:(n(j)-s(k)))/              ... -G#m'W&  
                       prod(2:s(k))/                     ... {lUaN0O:  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <u1`o`|-  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); t0?t Xe.B  
            idx = (pows(k)==rpowers); RE-y5.kE^  
            y(:,j) = y(:,j) + p*rpowern(:,idx); {qU;>;(  
        end ^ 4p$@5zH  
         yn20*ix{  
        if isnorm cxFyN ;7  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); d+5v[x~'  
        end ;#8xRLW  
    end YY$Z-u(  
    % END: Compute the Zernike Polynomials h2= wC.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]US!3R^  
    +tG'  
    % Compute the Zernike functions: 7j(gW  
    % ------------------------------ W[e2J&G  
    idx_pos = m>0; h&!$ `)   
    idx_neg = m<0; ~fzuz'"^  
    pX$ X8z%  
    z = y; ,% .)mf  
    if any(idx_pos) [A] +Azc  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); jR+k x:+  
    end 0,8RA_Ca}  
    if any(idx_neg) 9%0^fhrJ  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); M~y}0Ik  
    end G c ,  
    ; 0M"T[c  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) zH#urF6<  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. C AN1~  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated O3#eQs  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive (rq(y$N  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, j6L(U~%  
    %   and THETA is a vector of angles.  R and THETA must have the same 1qm*#4x  
    %   length.  The output Z is a matrix with one column for every P-value, c'5ls7?}O{  
    %   and one row for every (R,THETA) pair. dx$+,R~y  
    % !;${2Q  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike [N<rPHT  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) $e{}SQ;fW  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) :sA UV79M  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 #%V+- b(  
    %   for all p. lnF{5zc  
    % tX,x%(  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 +/" \.wYv  
    %   Zernike functions (order N<=7).  In some disciplines it is 2zuQeFsK  
    %   traditional to label the first 36 functions using a single mode I<+:Ho=6  
    %   number P instead of separate numbers for the order N and azimuthal rFp>A`TJ  
    %   frequency M. k^zU;  
    % O]Y   z7  
    %   Example: H?V b   
    % U~M!T#\s  
    %       % Display the first 16 Zernike functions ViG>gMGv  
    %       x = -1:0.01:1; agQD d8oX  
    %       [X,Y] = meshgrid(x,x); e0<O6  
    %       [theta,r] = cart2pol(X,Y); vUDMl Z  
    %       idx = r<=1; o7eWL/1  
    %       p = 0:15; 6& 6|R3  
    %       z = nan(size(X)); py'xB i6}v  
    %       y = zernfun2(p,r(idx),theta(idx)); sk AF6n  
    %       figure('Units','normalized') tJ&tNSjTi  
    %       for k = 1:length(p) h 9}x6t,  
    %           z(idx) = y(:,k); IaU%L6Q]  
    %           subplot(4,4,k) 77ztDQDtM  
    %           pcolor(x,x,z), shading interp |IS$Om  
    %           set(gca,'XTick',[],'YTick',[]) IFhS(3 YK[  
    %           axis square )ybF@emc  
    %           title(['Z_{' num2str(p(k)) '}']) > `0mn|+  
    %       end 8pZOgh  
    % *%E\mu,,c  
    %   See also ZERNPOL, ZERNFUN. s'$2 }K  
    syI|gANT/r  
    %   Paul Fricker 11/13/2006 V)vik  
    [+!&iN  
    $g/h=w@  
    % Check and prepare the inputs: n=|% H'U  
    % ----------------------------- .8T0OQ4  
    if min(size(p))~=1 vo%"(!  
        error('zernfun2:Pvector','Input P must be vector.') "\ =Phqw   
    end U]@?[+I0]  
    3rjKwh7  
    if any(p)>35 g4952u  
        error('zernfun2:P36', ... 0%4OmLBT  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... f8`dJ5i  
               '(P = 0 to 35).']) {^1''  
    end .J O1kt  
    %l6E0[   
    % Get the order and frequency corresonding to the function number: ;mvVo-r*q  
    % ---------------------------------------------------------------- iRbe$v&N  
    p = p(:); P{yb%@I~J  
    n = ceil((-3+sqrt(9+8*p))/2); N"suR}9%  
    m = 2*p - n.*(n+2); ,>8w|951'  
    e<[ ] W4"A  
    % Pass the inputs to the function ZERNFUN: N_Kdi%q  
    % ---------------------------------------- x0:BxRx*  
    switch nargin DfP-(Lm)  
        case 3 C+[)^ 2M{  
            z = zernfun(n,m,r,theta); -;J6S  
        case 4 #V%98|"  
            z = zernfun(n,m,r,theta,nflag); M.r7^9P  
        otherwise G$%F`R[  
            error('zernfun2:nargin','Incorrect number of inputs.') )%3T1 D/  
    end .T3 m%n  
    /jGV[_Q=P  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) V 3cKbk7~  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. \r[u>7I  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of %S}uCqcAK  
    %   order N and frequency M, evaluated at R.  N is a vector of dK4rrO  
    %   positive integers (including 0), and M is a vector with the ZcQu9XDIt  
    %   same number of elements as N.  Each element k of M must be a e)g &q'O  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) $ VP1(C  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is G7Sw\wW  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix u0 t lf  
    %   with one column for every (N,M) pair, and one row for every &Xqxuy ]J  
    %   element in R. ng"=vmu  
    % xI{4<m/0N  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Z,A$h>Z  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is \`2'W1O  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to =I@t%Y  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 "+- 'o+  
    %   for all [n,m]. 0)332}Oh  
    % D3X4@sM  
    %   The radial Zernike polynomials are the radial portion of the ExS5RV@v'  
    %   Zernike functions, which are an orthogonal basis on the unit MK=oGzK  
    %   circle.  The series representation of the radial Zernike Y \-W`  
    %   polynomials is \7r0]& _  
    % ]VRa4ZB{u  
    %          (n-m)/2 t?4H9~iH  
    %            __ 'z(Y9%+a  
    %    m      \       s                                          n-2s '|[V}K5m/f  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r d-D,Gx]>$  
    %    n      s=0 ZH_$Q$9  
    % d +D~NA[M  
    %   The following table shows the first 12 polynomials. t]$n~!  
    % w={q@. g%  
    %       n    m    Zernike polynomial    Normalization hul,Yd) Z  
    %       --------------------------------------------- %^IQ<   
    %       0    0    1                        sqrt(2) $nO~A7  
    %       1    1    r                           2 &q-&%~E@  
    %       2    0    2*r^2 - 1                sqrt(6) \9)5b8  
    %       2    2    r^2                      sqrt(6) kGYpJg9=  
    %       3    1    3*r^3 - 2*r              sqrt(8)  ES~b f  
    %       3    3    r^3                      sqrt(8) d_yvG.#C  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) P}v ;d]  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) pAE (i7  
    %       4    4    r^4                      sqrt(10) $[>{s9E  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) gjDNl/r/  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) eiKY az  
    %       5    5    r^5                      sqrt(12) A@}5'LzL  
    %       --------------------------------------------- (,U|H`  
    % :y-;V  
    %   Example: An. A1y  
    % D$hQ-K  
    %       % Display three example Zernike radial polynomials )D+BvJ Y"  
    %       r = 0:0.01:1; J3eud}w  
    %       n = [3 2 5]; >n"0>[:4  
    %       m = [1 2 1]; oy^-?+   
    %       z = zernpol(n,m,r); XV]N}~h o`  
    %       figure z &EDW 5I  
    %       plot(r,z) Q,3kaR@O  
    %       grid on tvI<Why\p  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') k&$ov  
    % QLY;@-jF$  
    %   See also ZERNFUN, ZERNFUN2. ?Y4 +3`\x  
    Cn~VJ,l g  
    % A note on the algorithm. 4 Ej->T.  
    % ------------------------ \3JCFor/  
    % The radial Zernike polynomials are computed using the series 3FiK/8mu  
    % representation shown in the Help section above. For many special  d$$5&a  
    % functions, direct evaluation using the series representation can {=GmXd%D  
    % produce poor numerical results (floating point errors), because D6bYg `  
    % the summation often involves computing small differences between syl7i>P  
    % large successive terms in the series. (In such cases, the functions w-K A~  
    % are often evaluated using alternative methods such as recurrence X:i?gRy"  
    % relations: see the Legendre functions, for example). For the Zernike l U/Xi  
    % polynomials, however, this problem does not arise, because the cGV%=N^BE<  
    % polynomials are evaluated over the finite domain r = (0,1), and )> ZT{eF  
    % because the coefficients for a given polynomial are generally all `etw[#~N  
    % of similar magnitude. clvg5{^q[  
    % poQ_r <I  
    % ZERNPOL has been written using a vectorized implementation: multiple )g@+ MR  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] eK7A8\;e  
    % values can be passed as inputs) for a vector of points R.  To achieve ~0PzRS^o  
    % this vectorization most efficiently, the algorithm in ZERNPOL _Raf7W  
    % involves pre-determining all the powers p of R that are required to ~@'wqGTp  
    % compute the outputs, and then compiling the {R^p} into a single kY]"3a  
    % matrix.  This avoids any redundant computation of the R^p, and -}6ew@GE  
    % minimizes the sizes of certain intermediate variables. KU8,8:yY  
    % 0F)v9EK(W4  
    %   Paul Fricker 11/13/2006 yQhO-jT  
    0nt@}\j  
    !<];N0nt#  
    % Check and prepare the inputs: (_pw\zk>  
    % ----------------------------- (HRj0,/^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [<XYU,{R  
        error('zernpol:NMvectors','N and M must be vectors.') _^_3>}y5op  
    end O\<zQ2m  
    %"{P?V<-V  
    if length(n)~=length(m) 9QU\J0c/  
        error('zernpol:NMlength','N and M must be the same length.') ZxtO.U2  
    end mu\1hKq;B  
    Zn9u&!T&  
    n = n(:); kZ5#a)U<  
    m = m(:); iy~h|YK;  
    length_n = length(n); sK#) k\w>  
    c0o]O[  
    if any(mod(n-m,2)) }ktIG|GC  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 6k hBT'n  
    end XZ%[;[  
    >az~0PeEL  
    if any(m<0) RI*n]HNgy+  
        error('zernpol:Mpositive','All M must be positive.') i8?oe%9l  
    end ChK-L6  
    5Y+YN1  
    if any(m>n) 1@Jp3wW  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ,P9F*;Dj  
    end *6yY>LW  
    O7 ;=g!j  
    if any( r>1 | r<0 ) )h@PRDI_  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') o9}\vN0F  
    end }.o.*N  
    L;0 NR(b!  
    if ~any(size(r)==1) tU?BR<q  
        error('zernpol:Rvector','R must be a vector.') bD{tsxm[9  
    end 4~Qnhv7  
    ;i[JCNiS\  
    r = r(:); z%E(o%l8  
    length_r = length(r); XncX2E4E  
    *+*W# de.  
    if nargin==4 z-MQGq xR  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); rCF=m]1zxT  
        if ~isnorm (2eS:1+'8  
            error('zernpol:normalization','Unrecognized normalization flag.') Fj`k3~tUw  
        end E2M<I;:EA  
    else \lG)J0  
        isnorm = false; q;[HUyY,  
    end x_~_/&X5  
    UJ,vE}=_{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f+9WGNpw  
    % Compute the Zernike Polynomials pyV`O[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'o)Y!VYnJF  
    IoL P*D  
    % Determine the required powers of r: H<|}p Z  
    % ----------------------------------- bVz<8b6h'-  
    rpowers = []; &wlD`0v  
    for j = 1:length(n) ^ oav-R&  
        rpowers = [rpowers m(j):2:n(j)]; <cOjtq,0  
    end D SX%SE)  
    rpowers = unique(rpowers); v@]SddP,?  
    ?5CE<[  
    % Pre-compute the values of r raised to the required powers, .tKBmq0xo"  
    % and compile them in a matrix: &OJ?Za@p@)  
    % ----------------------------- 1Du5Z9AM  
    if rpowers(1)==0 E{[Y8U1n  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %Mj,\J!  
        rpowern = cat(2,rpowern{:}); x"sbm  
        rpowern = [ones(length_r,1) rpowern]; T%oJmp?0  
    else H ~3.F  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `Kg!aN  
        rpowern = cat(2,rpowern{:}); ^;ZpK@Luk  
    end 9<0yz?b':  
    c $r"q :\  
    % Compute the values of the polynomials: SrH::-{  
    % -------------------------------------- x%`YV):*  
    z = zeros(length_r,length_n); V|@bITJ?7  
    for j = 1:length_n 0^tY|(b3/M  
        s = 0:(n(j)-m(j))/2; D N)o|p  
        pows = n(j):-2:m(j); `Y.~eE  
        for k = length(s):-1:1 q6rkp f,Tl  
            p = (1-2*mod(s(k),2))* ... S'^ q  
                       prod(2:(n(j)-s(k)))/          ... |hj!NhBe  
                       prod(2:s(k))/                 ... ,\iXZ5"R  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 'm`}XGUBS  
                       prod(2:((n(j)+m(j))/2-s(k))); ,9d]-CuP;  
            idx = (pows(k)==rpowers); cH*")oD  
            z(:,j) = z(:,j) + p*rpowern(:,idx); &xB*Shp,B  
        end Q*I8RAfd  
         D'u7"^=  
        if isnorm ,vmn{gz  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); O$r/ {{I.  
        end FS=yc.Q_  
    end `B"sy8}x  
    RHBQgD$  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  BR2Gb~#T  
    (>v'0 RA  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 T D _@0Rd  
    "D(Lp*3hj&  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)