切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11721阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 "KSzn  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! G*JasHFs  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ]?c9;U  
    function z = zernfun(n,m,r,theta,nflag) E/OfkL*\  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. W<Ri(g-  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7fE U5@  
    %   and angular frequency M, evaluated at positions (R,THETA) on the .:r l<.  
    %   unit circle.  N is a vector of positive integers (including 0), and zPm|$d  
    %   M is a vector with the same number of elements as N.  Each element vLI'Z)\  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Xnc?oT+  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, f0M5^  
    %   and THETA is a vector of angles.  R and THETA must have the same BMi5F?Q'G  
    %   length.  The output Z is a matrix with one column for every (N,M) !KC4[;Y  
    %   pair, and one row for every (R,THETA) pair. Y+)qb);  
    % *jCHv  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (! a;}V<7  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $&Lw 2 c0  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral JIatRc?g  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, me@k~!e"z  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 1 EL#T&  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?uh%WN6nU]  
    % ,,8'29yEq  
    %   The Zernike functions are an orthogonal basis on the unit circle. U5:5$T,C  
    %   They are used in disciplines such as astronomy, optics, and {&TP&_|H  
    %   optometry to describe functions on a circular domain. YgV"*~  
    % hm, H3pN  
    %   The following table lists the first 15 Zernike functions. __%){j6  
    % XcFu:B  
    %       n    m    Zernike function           Normalization z"\<GmvB  
    %       -------------------------------------------------- 'r'+$D7  
    %       0    0    1                                 1 Sc14F Fs  
    %       1    1    r * cos(theta)                    2 q"0_Px9P  
    %       1   -1    r * sin(theta)                    2 6DVHJ+WTV  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ,8[R0wsBaz  
    %       2    0    (2*r^2 - 1)                    sqrt(3) +OaBA>Jh9  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) c8h71Cr  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) lk4U/:  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 7hlzuZob+y  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) E>c*A40=.n  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) D4jZh+_|S  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Esdv+f}4;  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) wd*V,ZN7  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) nTv^][  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |33_="  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) o*5b]XWw  
    %       -------------------------------------------------- `3^%ft~l  
    % Z{^Pnit  
    %   Example 1: o0kKf+[  
    % Bo4iX,zu  
    %       % Display the Zernike function Z(n=5,m=1) Ow 0(q^H<  
    %       x = -1:0.01:1; <YAs0  
    %       [X,Y] = meshgrid(x,x); th|'t}bWV  
    %       [theta,r] = cart2pol(X,Y); =zW`+++3  
    %       idx = r<=1; yRWZ/,9x   
    %       z = nan(size(X)); jwp?eL!7  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); x-T7 tr&(  
    %       figure 5Z>+NKQ  
    %       pcolor(x,x,z), shading interp _iH:>2p5R  
    %       axis square, colorbar :gM_v?sy  
    %       title('Zernike function Z_5^1(r,\theta)') Ask~  
    % T5eJIc3a"  
    %   Example 2: .2 }5Dc,eR  
    % g$U7bCHG  
    %       % Display the first 10 Zernike functions v*&WqVg  
    %       x = -1:0.01:1; _N"c,P0  
    %       [X,Y] = meshgrid(x,x); &;[0.:;  
    %       [theta,r] = cart2pol(X,Y); Tffdm  
    %       idx = r<=1; Of;$ VK'  
    %       z = nan(size(X)); [Qn=y/._r  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ;F:Qz^=.a  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :+<GJj_d+  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; i9^m;Y)^I  
    %       y = zernfun(n,m,r(idx),theta(idx)); }g"K\x:Z  
    %       figure('Units','normalized') oz'^.+uvE  
    %       for k = 1:10 m^;A]0h+  
    %           z(idx) = y(:,k); |?LUt@r;  
    %           subplot(4,7,Nplot(k)) ]GiDfYs7%  
    %           pcolor(x,x,z), shading interp K 5AArI  
    %           set(gca,'XTick',[],'YTick',[]) uDMyO<\  
    %           axis square Bg}(Sy  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) `aM8L  
    %       end \GCT3$  
    % G3D!ifho.#  
    %   See also ZERNPOL, ZERNFUN2. *40Z }1ng  
    txix =  
    %   Paul Fricker 11/13/2006 pW5PF)([  
    SXRND;-W8  
    84c[Z   
    % Check and prepare the inputs: }/VSIS@Z  
    % ----------------------------- -O6\!Wo=-  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) * oru;=D@8  
        error('zernfun:NMvectors','N and M must be vectors.') tVHQ$jJY%  
    end @l?2",  
    ,QHn} 3fW  
    if length(n)~=length(m) +\66; 7]s  
        error('zernfun:NMlength','N and M must be the same length.') oI9-jW  
    end &\Yd)#B/  
    x=3+@'  
    n = n(:); ^ =RSoR  
    m = m(:); D,SL_*r{  
    if any(mod(n-m,2)) 'p4b8:X  
        error('zernfun:NMmultiplesof2', ... UpqDGd7M  
              'All N and M must differ by multiples of 2 (including 0).') y0 qq7Dmu  
    end lPn&,\9@~  
    (=w ff5U  
    if any(m>n) M5l*D'GE]  
        error('zernfun:MlessthanN', ... *Bx' g| u  
              'Each M must be less than or equal to its corresponding N.') &:Sb$+z  
    end jIL$hqo  
    ;aUI3n%  
    if any( r>1 | r<0 ) UdX aC= Q  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;/ao3Q   
    end Xj;5i Vq  
    $:<G=  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 0 = - D  
        error('zernfun:RTHvector','R and THETA must be vectors.') q pFzK  
    end -O>*` O>M  
    f n'N^  
    r = r(:); 2s8(r8AI  
    theta = theta(:); Y\ G^W8  
    length_r = length(r); -cnlj  
    if length_r~=length(theta) gb@ |\n  
        error('zernfun:RTHlength', ... 8Zvh"Z?  
              'The number of R- and THETA-values must be equal.') `-)Fx<e  
    end o!M*cyq  
    1@A*Jj[R%  
    % Check normalization: parC~)b_  
    % -------------------- w\3'wD!  
    if nargin==5 && ischar(nflag) {>=#7e-]  
        isnorm = strcmpi(nflag,'norm'); YK|Y^TU^  
        if ~isnorm !YEU<9  
            error('zernfun:normalization','Unrecognized normalization flag.') &_y+hV{  
        end 7<c&)No;  
    else 1">]w2je:  
        isnorm = false; /WI HG0D  
    end Gq r(.  
    blA]z!FU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7&9'=G  
    % Compute the Zernike Polynomials UT7".1H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @X6|[r&Z  
    !T 3 Esv  
    % Determine the required powers of r: 6'N!)b^-  
    % ----------------------------------- ZW|VAn'>  
    m_abs = abs(m); |d1%N'Ll  
    rpowers = []; dc0Ro,  
    for j = 1:length(n) 84*Fal~Som  
        rpowers = [rpowers m_abs(j):2:n(j)]; Epm=&6zf  
    end v`$9;9  
    rpowers = unique(rpowers); ^y"$k  
    nNff~u)I  
    % Pre-compute the values of r raised to the required powers, W[3)B(Vq<E  
    % and compile them in a matrix: __V6TDehJ$  
    % ----------------------------- x 1"ikp}  
    if rpowers(1)==0 GX lFS#`  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); S Yvifgp  
        rpowern = cat(2,rpowern{:}); l@om2|B  
        rpowern = [ones(length_r,1) rpowern]; :1wMGk  
    else B1A5b=6G<  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -zVa[ &  
        rpowern = cat(2,rpowern{:}); 2;`"B|-T  
    end U < p kg  
    0R2 AhA#  
    % Compute the values of the polynomials: 3rZ"T  
    % -------------------------------------- 1XO*yZF  
    y = zeros(length_r,length(n)); ?%h JZm;  
    for j = 1:length(n) 8D:{05  
        s = 0:(n(j)-m_abs(j))/2; -$4%@Z  
        pows = n(j):-2:m_abs(j); f.=4p^  
        for k = length(s):-1:1 c])b?dJ*  
            p = (1-2*mod(s(k),2))* ...  G?]E6R  
                       prod(2:(n(j)-s(k)))/              ... $0Y&r]'  
                       prod(2:s(k))/                     ... "/?*F\5  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ${ ~UA 6  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); [#td  
            idx = (pows(k)==rpowers); >1tGQ cg  
            y(:,j) = y(:,j) + p*rpowern(:,idx); J7.bFW'  
        end zY|]bP[NEH  
         K`FgU 7g{  
        if isnorm Sh]x`3 ).  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); kI3-G~2  
        end .so{ RI  
    end zHB{I(q  
    % END: Compute the Zernike Polynomials Y(SgfWeK@1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y+?tUSPP  
    @X/S h:  
    % Compute the Zernike functions: Rhx7eU#&  
    % ------------------------------ !o4xI?  
    idx_pos = m>0; xM;gF2  
    idx_neg = m<0; h{sW$WA  
    %~ecrQ;  
    z = y; q'2PG@  
    if any(idx_pos) tT yu,%/m  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); $_Qo  
    end 1 qUdj[Bj  
    if any(idx_neg) 2>O2#53ls0  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); =,[46 ;q  
    end GKY:"q&h  
    Whd4-pR8  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Pz|qy,  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. F`I-G~e  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated EkSTN  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive iW"L!t#\|  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, F41!Dj7  
    %   and THETA is a vector of angles.  R and THETA must have the same }7=a,1T  
    %   length.  The output Z is a matrix with one column for every P-value, GYO\l.%V5y  
    %   and one row for every (R,THETA) pair. 0!vC0T[  
    % kw-/h+lG  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike fSqbGoIQ  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) M+hc,;6  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Msd!4TrBJ  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 YRp\#pVnZ  
    %   for all p. M@'V4oUz  
    % \aZ(@eF@@Q  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 R\.huOJh  
    %   Zernike functions (order N<=7).  In some disciplines it is Bd NuhV`0  
    %   traditional to label the first 36 functions using a single mode l(]\[}.5  
    %   number P instead of separate numbers for the order N and azimuthal b(Z%#*e  
    %   frequency M. _kY5 6  
    % 2/7=@>|  
    %   Example: =H,cwSE+%  
    % Ar<OP'C  
    %       % Display the first 16 Zernike functions K%pmE?%,8  
    %       x = -1:0.01:1; oyr2lfz*  
    %       [X,Y] = meshgrid(x,x); HJJ ^pk&  
    %       [theta,r] = cart2pol(X,Y); 0X0D8H(7Q  
    %       idx = r<=1; 3,vH:L4  
    %       p = 0:15; 4{vd6T}V!  
    %       z = nan(size(X)); +1)C&:  
    %       y = zernfun2(p,r(idx),theta(idx)); f0D Ch]  
    %       figure('Units','normalized') 40#KcbMa|  
    %       for k = 1:length(p) -8tA~;p  
    %           z(idx) = y(:,k); xapkhIW2\  
    %           subplot(4,4,k) @zJI0_Bp  
    %           pcolor(x,x,z), shading interp =O;SXzgE  
    %           set(gca,'XTick',[],'YTick',[]) I }/Oi]jA6  
    %           axis square <y.D0^68  
    %           title(['Z_{' num2str(p(k)) '}']) w@: ]]R  
    %       end ^X&9"x)4  
    % X#3<hN*v  
    %   See also ZERNPOL, ZERNFUN. z$Nk\9wm  
    ,#E5/'c`  
    %   Paul Fricker 11/13/2006 "T&uS1+=c  
    '.K,EM!-~h  
    KvD$`"L/CT  
    % Check and prepare the inputs: n21$57`4  
    % ----------------------------- xF/DYXC{8  
    if min(size(p))~=1 NZTYT\7  
        error('zernfun2:Pvector','Input P must be vector.') Yjl0Pz .q  
    end eurudl  
    kW!:bh  
    if any(p)>35 4jz]c"p-  
        error('zernfun2:P36', ... 7P`1)juA9  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... $dnHUBB  
               '(P = 0 to 35).']) u.[JYZ  
    end q],R6GcVr  
    5HbTgNI  
    % Get the order and frequency corresonding to the function number: h]Oplp4 \W  
    % ---------------------------------------------------------------- 5qr!OEF2  
    p = p(:); hX_p5a1t  
    n = ceil((-3+sqrt(9+8*p))/2); {@#L'i|  
    m = 2*p - n.*(n+2); 84!4Vz^  
    =_dd4`G&<  
    % Pass the inputs to the function ZERNFUN: vQ/\BN  
    % ---------------------------------------- ^ <VE5OM  
    switch nargin cx,A.Lc  
        case 3 Zd(d]M_x  
            z = zernfun(n,m,r,theta); S1zw'!O5  
        case 4 :'dc=C  
            z = zernfun(n,m,r,theta,nflag); 0X?fDz}jd  
        otherwise I.u,f:Fl'  
            error('zernfun2:nargin','Incorrect number of inputs.') YgiGI <U  
    end Z]S0AB.Z@  
    _cw ^5  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) i 9tJHeSm  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. >ij4z N  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of $JB:rozE  
    %   order N and frequency M, evaluated at R.  N is a vector of G`#gV"PlC  
    %   positive integers (including 0), and M is a vector with the  DiQkT R  
    %   same number of elements as N.  Each element k of M must be a e-cb?.WU?  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) pInWKj[y1  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is _*$B|%k   
    %   a vector of numbers between 0 and 1.  The output Z is a matrix -fx88  
    %   with one column for every (N,M) pair, and one row for every GLQvAHC  
    %   element in R. :J`!'{r  
    % I!7.fuO  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- A]?O& m |  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is _ 1{5~  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to OEE{JVeI  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 8}oDRN!J  
    %   for all [n,m]. z#J/*712  
    % f5b`gvCY,#  
    %   The radial Zernike polynomials are the radial portion of the a61eH )a  
    %   Zernike functions, which are an orthogonal basis on the unit :5K ~/=6x  
    %   circle.  The series representation of the radial Zernike N^yO- xk  
    %   polynomials is LEngZ~sV/  
    % Eb[H3v48,  
    %          (n-m)/2 /^33 e+j  
    %            __ lMzCDx !m  
    %    m      \       s                                          n-2s inv{dg/2  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r +Q!xEfpO;  
    %    n      s=0 y[WYH5 &DJ  
    % aho<w+l@  
    %   The following table shows the first 12 polynomials. FV6he [,  
    % 9h38`*Im;  
    %       n    m    Zernike polynomial    Normalization @ U8}sH^  
    %       --------------------------------------------- eN<pU%7  
    %       0    0    1                        sqrt(2) /-K dCp~  
    %       1    1    r                           2 ~sHZh  
    %       2    0    2*r^2 - 1                sqrt(6) "">fn(  
    %       2    2    r^2                      sqrt(6) CAFE} |  
    %       3    1    3*r^3 - 2*r              sqrt(8) BdoC6H  
    %       3    3    r^3                      sqrt(8) T3t~=b>&L  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 1yaIV+_y/  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) BQul iX&  
    %       4    4    r^4                      sqrt(10) -KwL9J4u  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 8X ?GY8W:  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 8 1K G1i)  
    %       5    5    r^5                      sqrt(12) X\^& nLa  
    %       --------------------------------------------- 0o=6A<#x  
    % y|+~>'^JR  
    %   Example: !Ir1qt8 T  
    % %AEK[W+0  
    %       % Display three example Zernike radial polynomials ptWG@"j/b  
    %       r = 0:0.01:1; \, %o>M'  
    %       n = [3 2 5]; 4'{hI;&a&  
    %       m = [1 2 1]; 2 .Eu+*UC  
    %       z = zernpol(n,m,r); itC *Z6^  
    %       figure b?2X>QJ  
    %       plot(r,z) #1jtprc  
    %       grid on d1uG[  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') emkMR{MY  
    % V:(w\'wm  
    %   See also ZERNFUN, ZERNFUN2. 1Oca@E\Z.  
    D#/%*|  
    % A note on the algorithm. f.$aFOn  
    % ------------------------ c6Yf"~TD0  
    % The radial Zernike polynomials are computed using the series =8$0$d  
    % representation shown in the Help section above. For many special PQ&Q71  
    % functions, direct evaluation using the series representation can \o62OfF!  
    % produce poor numerical results (floating point errors), because }KD7 Y  
    % the summation often involves computing small differences between 2iR:*}5  
    % large successive terms in the series. (In such cases, the functions _8x'GK tU  
    % are often evaluated using alternative methods such as recurrence iFwyh`Bcg  
    % relations: see the Legendre functions, for example). For the Zernike =!g/2;-or  
    % polynomials, however, this problem does not arise, because the f1CMR4D  
    % polynomials are evaluated over the finite domain r = (0,1), and 0[2BY]`Z.  
    % because the coefficients for a given polynomial are generally all "%}Gy>;  
    % of similar magnitude. Wlr&g xZ  
    % qr'x0r|<>  
    % ZERNPOL has been written using a vectorized implementation: multiple %TW% |"v  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] [V2omSZo  
    % values can be passed as inputs) for a vector of points R.  To achieve <wUD  
    % this vectorization most efficiently, the algorithm in ZERNPOL (DG@<K,6  
    % involves pre-determining all the powers p of R that are required to co$Hi9JE  
    % compute the outputs, and then compiling the {R^p} into a single Ere?d~8  
    % matrix.  This avoids any redundant computation of the R^p, and ?`N57'iPb  
    % minimizes the sizes of certain intermediate variables. &Hlm{FHU  
    % +#-kIaU  
    %   Paul Fricker 11/13/2006 `'[7~Ew[  
    e>?_)B4  
    C-a*EG  
    % Check and prepare the inputs: P|e:+G7  
    % ----------------------------- }&Wp3EWw  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;T5,T   
        error('zernpol:NMvectors','N and M must be vectors.') WA]%,6  
    end xfV,==uF  
    z)58\rtz  
    if length(n)~=length(m) 7x[LF ^o  
        error('zernpol:NMlength','N and M must be the same length.') dN]Zs9]  
    end ]k ::J>84  
     .6O52E  
    n = n(:); KMxNH,5  
    m = m(:); :rz9M@7  
    length_n = length(n); } * ?n?'  
    d]O_E4X*  
    if any(mod(n-m,2)) `G=ztL!gq  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') {h/OnBwG  
    end lj " Z  
    Q(~3pt  
    if any(m<0) /~o7Q$)-b  
        error('zernpol:Mpositive','All M must be positive.')  YBYBOH  
    end 8iMF8\  
    XKz;o^1a^  
    if any(m>n) _o@(wGeu#  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') g9yaNelDh)  
    end 0t#NMW  
    N5pinR5 H  
    if any( r>1 | r<0 ) ^l Hb&\X  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') _u:>1]  
    end 9">zdFC'  
    *'UhlFed  
    if ~any(size(r)==1)  /6+1{p  
        error('zernpol:Rvector','R must be a vector.') zW*}`S "  
    end B<|:K\MA  
    }1U#Ve,=_  
    r = r(:); =)(3Dp  
    length_r = length(r); xN#bzma  
    t{/hkXq]  
    if nargin==4 <Vz<{W3t  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); :7 qqjs  
        if ~isnorm vVI6m{zYV  
            error('zernpol:normalization','Unrecognized normalization flag.') eq^TA1>T  
        end >;&Gz-lm  
    else ?j1_ n,d  
        isnorm = false; N=OS\pz  
    end S304ncS|M  
    EKqi+T^=F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c u\ls^  
    % Compute the Zernike Polynomials M (+.$uz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BX@pt;$ek7  
    V -q%r  
    % Determine the required powers of r: F0@Qgk]\  
    % ----------------------------------- {F'Az1^I=  
    rpowers = []; r8IX/ ,  
    for j = 1:length(n) CD^CUbGk  
        rpowers = [rpowers m(j):2:n(j)]; q^Z~IZ8IT  
    end %oAL  
    rpowers = unique(rpowers); Wm<z?.lS  
    z )5S^{(  
    % Pre-compute the values of r raised to the required powers, )8[ym/m  
    % and compile them in a matrix: D+f'*|  
    % ----------------------------- HV ;;  
    if rpowers(1)==0 Xc\* 9XV:  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %m oJF1  
        rpowern = cat(2,rpowern{:}); V/J>GRjw  
        rpowern = [ones(length_r,1) rpowern]; 8O;Vl  
    else zu52 p4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ([Ebsj  
        rpowern = cat(2,rpowern{:}); bFSlf5*H  
    end ,*7H|de7   
    2-~a P  
    % Compute the values of the polynomials: N;<//,  
    % -------------------------------------- w TlGJ$D0  
    z = zeros(length_r,length_n);  2A*/C7  
    for j = 1:length_n .AXdo'&2i  
        s = 0:(n(j)-m(j))/2; O:1DOUYXs  
        pows = n(j):-2:m(j); YZibi  
        for k = length(s):-1:1 R8tF/dx>7  
            p = (1-2*mod(s(k),2))* ... +O'vj  
                       prod(2:(n(j)-s(k)))/          ... Qu`n&  
                       prod(2:s(k))/                 ... r:-WzH(Ms  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... .8]Y-  
                       prod(2:((n(j)+m(j))/2-s(k))); F+Z2U/'a  
            idx = (pows(k)==rpowers); Rv vh{U;t  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Id %_{),HX  
        end cS}r9ga Q  
         en>9E.?N  
        if isnorm 27>a#vCT  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); J/t!- !  
        end :7\9xH  
    end a"QU:<-v  
    +3Y!xD?=  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  l@~LV}BI  
    .mxTfP=9  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Xl%0/ o  
    Lz4eh WntO  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)