非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 2!Bd2
function z = zernfun(n,m,r,theta,nflag) DD44"w_9
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. N4*G{g
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N a" H WGY
% and angular frequency M, evaluated at positions (R,THETA) on the z5bo_Eq
% unit circle. N is a vector of positive integers (including 0), and /CTc7.OYt
% M is a vector with the same number of elements as N. Each element (5Sivw*mP
% k of M must be a positive integer, with possible values M(k) = -N(k) R1Ye<R!Q
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Z`&4SH=j
% and THETA is a vector of angles. R and THETA must have the same kPjd_8z2n
% length. The output Z is a matrix with one column for every (N,M) p!/[K6u
% pair, and one row for every (R,THETA) pair. <A9y9|>o
% 8?Z4-6!{V,
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike H_?o-L?+
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), B>Wu;a.:L
% with delta(m,0) the Kronecker delta, is chosen so that the integral 6{qIU}!
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ]m#5`zGK1|
% and theta=0 to theta=2*pi) is unity. For the non-normalized -TZ p
FT"
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2Dd|~{%
% *UW=Mdt
% The Zernike functions are an orthogonal basis on the unit circle. ~r{5`;c
% They are used in disciplines such as astronomy, optics, and ?`[NFqv_]
% optometry to describe functions on a circular domain. Bb{!Yh].:A
% T}3v(6ew4
% The following table lists the first 15 Zernike functions. P_u|-~|\
% Kq.:G%
% n m Zernike function Normalization rfw-^`&{
% -------------------------------------------------- Db"DG(
% 0 0 1 1 kbPE "urR
% 1 1 r * cos(theta) 2 U=8@@yE
% 1 -1 r * sin(theta) 2 B-d(@7,1
% 2 -2 r^2 * cos(2*theta) sqrt(6) RwVaZJe)l
% 2 0 (2*r^2 - 1) sqrt(3) na^sBq?\
% 2 2 r^2 * sin(2*theta) sqrt(6) {J5JYdK
% 3 -3 r^3 * cos(3*theta) sqrt(8) {7MjP+\
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) t\v+ogbk)
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) +}Av-47`h
% 3 3 r^3 * sin(3*theta) sqrt(8) ,_ag;pt9)
% 4 -4 r^4 * cos(4*theta) sqrt(10) \Ey~3&x9f
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7FO'{Qq
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) IHC1G1KW=A
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S-#q~X!yJ
% 4 4 r^4 * sin(4*theta) sqrt(10) E|:!Q8"%w
% -------------------------------------------------- Z X~
_g@
% 6x=YQwn~
% Example 1: LEEC W_:
% H.G!A6bd
% % Display the Zernike function Z(n=5,m=1) #%@MGrsK
% x = -1:0.01:1; -6sW6;Q
% [X,Y] = meshgrid(x,x); $<p8TtI=YQ
% [theta,r] = cart2pol(X,Y); nY $tp
% idx = r<=1; UofTll)
% z = nan(size(X)); (Vg}Hh?p
% z(idx) = zernfun(5,1,r(idx),theta(idx)); (c v!Y=]
% figure yg]2erR
% pcolor(x,x,z), shading interp >"3>fche
% axis square, colorbar *5,c Rz
% title('Zernike function Z_5^1(r,\theta)') j<"nO(
% %i)B*9k
% Example 2: 2i|B=D(
% 9N[EZhW
% % Display the first 10 Zernike functions c-j_IN Gm
% x = -1:0.01:1; +rWZ|&r%
% [X,Y] = meshgrid(x,x); +CM7C%U
% [theta,r] = cart2pol(X,Y); DG;y6#|p
% idx = r<=1; fRTo.u
% z = nan(size(X)); bl/,*Wx:4.
% n = [0 1 1 2 2 2 3 3 3 3]; /NF# +bx
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; dV 8iwI
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ;1DdjE Tr
% y = zernfun(n,m,r(idx),theta(idx)); ;HOPABWz)
% figure('Units','normalized') HI&kP+,y
% for k = 1:10 -Cid3~mX3
% z(idx) = y(:,k); Kud'pZ{P
% subplot(4,7,Nplot(k)) 2k#t
.-
% pcolor(x,x,z), shading interp *Dr5O 9Y
% set(gca,'XTick',[],'YTick',[]) "Mmf6hu
% axis square cjULX+h
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #G3N(wV3
% end i[semo\E
% #f'DEo<b
% See also ZERNPOL, ZERNFUN2. TOI4?D]
AW5iV3
% Paul Fricker 11/13/2006 ]B9 ^3x[:
+?`b=6e(`
!d9AG|
% Check and prepare the inputs: 'PdmI<eXQ
% ----------------------------- 4}KU>9YRA
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) TF+
l5fv
error('zernfun:NMvectors','N and M must be vectors.') "r.2]R3
end ^&c$[~W
iz}sM>^
if length(n)~=length(m) L&Qi@D0P
error('zernfun:NMlength','N and M must be the same length.') %Ny) ?B
end lj &>cScC
{,O`rW_eS
n = n(:); [~Hg}-c
m = m(:); gp|1?L54
if any(mod(n-m,2)) B94
&elu
error('zernfun:NMmultiplesof2', ... :h";c"
'All N and M must differ by multiples of 2 (including 0).') zREJ#r
end 9EF~l9`'U
F'J [y"~_
if any(m>n) E1>/R
error('zernfun:MlessthanN', ... F!KV\?eM$
'Each M must be less than or equal to its corresponding N.') w.kCBDL
end OKwOugi0
"2HY5AE
if any( r>1 | r<0 ) q"aPJ0ni'
error('zernfun:Rlessthan1','All R must be between 0 and 1.') +AQDD4bu
end Gm=>!.p
Sw!
j=`O
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) w4MwD?i]R
error('zernfun:RTHvector','R and THETA must be vectors.') ehO:')XF
end -a) T6:e
Q2~5"
r = r(:); ?=|kC*$/G
theta = theta(:); Ht=$] Px
length_r = length(r); gAE!aKy
if length_r~=length(theta) + Oobb-v
error('zernfun:RTHlength', ... k7 bl'zic
'The number of R- and THETA-values must be equal.') ,@Z_{,b
end {tzxA_
Mz|L-62
% Check normalization: !
sYf<
% -------------------- Q(\ wx
if nargin==5 && ischar(nflag) 2Ug.:![
isnorm = strcmpi(nflag,'norm'); VbxAd 2')
if ~isnorm >riq98Us/
error('zernfun:normalization','Unrecognized normalization flag.') V;[p438o
end +0#JnqH"
else ch,| 1}bi
isnorm = false; ?f2G?Y
end {
R*Y=Ie
X!0kK8v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R#6H'TVE
% Compute the Zernike Polynomials _.f@Y`4d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 41;)-(1
.98.G4J>
% Determine the required powers of r: Lpm?#g uR
% ----------------------------------- *h,3}\
m_abs = abs(m); #Go(tS~o
rpowers = []; B82,.?
for j = 1:length(n) !`C?nY
rpowers = [rpowers m_abs(j):2:n(j)]; h;n\*[fDc
end +L6" vkz
rpowers = unique(rpowers); a@SUi~+3
)q(:eoLDm
% Pre-compute the values of r raised to the required powers, ?N#[<kd
% and compile them in a matrix: Es:6
% ----------------------------- U(3(ZqP
if rpowers(1)==0 +v1-.z
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9qeZb%r&
rpowern = cat(2,rpowern{:}); 4hNwKe"Ki
rpowern = [ones(length_r,1) rpowern]; /W9
&Ke
else %AgA -pBp
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9UmBm#"
rpowern = cat(2,rpowern{:}); ;vUxO<cKFq
end z+6QZQk
D%
@KRcp^b
% Compute the values of the polynomials: _sm;HH7'*
% -------------------------------------- yam}x*O\xn
y = zeros(length_r,length(n)); $F1_^A[
for j = 1:length(n) : ~'Z(-a
s = 0:(n(j)-m_abs(j))/2; #`58F .
pows = n(j):-2:m_abs(j); x)\V lR
for k = length(s):-1:1 g =x"cs/[
p = (1-2*mod(s(k),2))* ... SEU\}Ni{
prod(2:(n(j)-s(k)))/ ... Xv*}1PZH
prod(2:s(k))/ ... (.
H]|
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {tmKCG
prod(2:((n(j)+m_abs(j))/2-s(k))); =f4<({9
idx = (pows(k)==rpowers); |<2
*v-a
y(:,j) = y(:,j) + p*rpowern(:,idx); %ph"PR/t?
end r+TK5|ke
e7's)C>/'
if isnorm _y-B";Vmm
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ~%KM3Vap
end EJ8I[(
end rV U:VL`2
% END: Compute the Zernike Polynomials w#<^RKk
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kyK'
1(#RN9
% Compute the Zernike functions: CnQg *+
% ------------------------------ U%n,XOJ
idx_pos = m>0; p~FQcW'a~
idx_neg = m<0; 9[,s4sxH
p}f-c
z = y; qTS@D
if any(idx_pos) 5Fr;
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Y@ObwKcG
end m6eFXP1U
if any(idx_neg) "kU>~~y,
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); (`F|nG=X
end ?Oqzd$-
1ThwvF%Qo
% EOF zernfun