切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11253阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 YC_5YY(k  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Sn4[3JV$l  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 +aF}oA&X[  
    function z = zernfun(n,m,r,theta,nflag) O=SkAsim  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. %AOja+  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N MX4]Vpv  
    %   and angular frequency M, evaluated at positions (R,THETA) on the PP:(EN1  
    %   unit circle.  N is a vector of positive integers (including 0), and r]3'74j:  
    %   M is a vector with the same number of elements as N.  Each element E*L iM5+I  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) N]KxAttt  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, _k8A$s<d  
    %   and THETA is a vector of angles.  R and THETA must have the same lEHzyh}2k  
    %   length.  The output Z is a matrix with one column for every (N,M) [7_56\G4  
    %   pair, and one row for every (R,THETA) pair. yV_4?nh  
    % p!k7C&]E  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike lds- T  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 54 >-  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral vad12WrG<  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >.dWjb6t  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized \J+*  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. "4vy lHIo  
    % *@d&5  
    %   The Zernike functions are an orthogonal basis on the unit circle. 3~nnCR[R  
    %   They are used in disciplines such as astronomy, optics, and *tm0R>?!  
    %   optometry to describe functions on a circular domain. Y0 D}g3`  
    % PJcwH6m  
    %   The following table lists the first 15 Zernike functions. \(t@1]&jw  
    % %tG*C,l]  
    %       n    m    Zernike function           Normalization Gmf B  
    %       -------------------------------------------------- el:9wq  
    %       0    0    1                                 1 8]&i-VFof  
    %       1    1    r * cos(theta)                    2 +}f9   
    %       1   -1    r * sin(theta)                    2 r5!/[_l  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) @+atBmt  
    %       2    0    (2*r^2 - 1)                    sqrt(3) fN'HE#W1Xa  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) nLV9<M Zm  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) !Hys3AP  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) WVY\&|)$  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) R(n^)^?  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Bz5-ITX   
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) i1S>yV^l  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2h[85\4  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [HCAmnb  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) keB&Bjd&  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) .BFYY13H  
    %       -------------------------------------------------- K_K5'2dE  
    % e["2QIOe  
    %   Example 1: /z BxJT0  
    % F<!)4>2@  
    %       % Display the Zernike function Z(n=5,m=1) NJNJjdD>  
    %       x = -1:0.01:1; -?(E_^ng  
    %       [X,Y] = meshgrid(x,x); 61xs%kxb..  
    %       [theta,r] = cart2pol(X,Y); bQ~j=\[r  
    %       idx = r<=1; +[5.WC7J  
    %       z = nan(size(X)); -eX5z  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); da (km+  
    %       figure !qX_I db\  
    %       pcolor(x,x,z), shading interp ~#kT _*sw)  
    %       axis square, colorbar UKM2AZ0lb  
    %       title('Zernike function Z_5^1(r,\theta)') uL[.ND2._&  
    % 5 Kkdo!z  
    %   Example 2: ve\X3"p#  
    % WJ_IuX51'  
    %       % Display the first 10 Zernike functions _6wFba@>/n  
    %       x = -1:0.01:1; w: >5=mfk  
    %       [X,Y] = meshgrid(x,x); -%L6#4m4o  
    %       [theta,r] = cart2pol(X,Y); 1 5A*7|  
    %       idx = r<=1; }!6\|;Qsz,  
    %       z = nan(size(X)); a{[x4d,z  
    %       n = [0  1  1  2  2  2  3  3  3  3]; g55`A`5%C  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; _cu:aktf2  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; TC<@e<-%Sq  
    %       y = zernfun(n,m,r(idx),theta(idx)); 1AU#%wIEP  
    %       figure('Units','normalized') R+Y4|  
    %       for k = 1:10 `3:.??7N  
    %           z(idx) = y(:,k); >Jp:O 7  
    %           subplot(4,7,Nplot(k)) x:nKfY5  
    %           pcolor(x,x,z), shading interp =9j8cC5y  
    %           set(gca,'XTick',[],'YTick',[]) P{u0ftyX}  
    %           axis square d 9q(xZ5  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) v'e[GB 0  
    %       end EOm:!D\  
    % VO"("7L  
    %   See also ZERNPOL, ZERNFUN2. C*`mM'#  
    w+N> h;j  
    %   Paul Fricker 11/13/2006 3"O>&Q0c  
    ]8T!qS(UJd  
    ;$z$@@WC  
    % Check and prepare the inputs: )HvnoUO0  
    % ----------------------------- "I QlVi  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) kcQ'$<Mz<  
        error('zernfun:NMvectors','N and M must be vectors.') O9r>E3-q  
    end 95z]9UL  
    {Lm~r+ U  
    if length(n)~=length(m) qM.bF&&Go  
        error('zernfun:NMlength','N and M must be the same length.') lv]hTH 4T  
    end <A# l 35  
    3"P }n  
    n = n(:); ?2oHZ%G  
    m = m(:); .B\5OI,]  
    if any(mod(n-m,2)) P><o,s"v  
        error('zernfun:NMmultiplesof2', ... PTEHP   
              'All N and M must differ by multiples of 2 (including 0).') _vZ"4L+Iw+  
    end W16,Alf:  
    LU9A#  
    if any(m>n) l \sU  
        error('zernfun:MlessthanN', ... !=N"vD*  
              'Each M must be less than or equal to its corresponding N.') CjiVnWSz<  
    end u{*SX k  
    YJo["Q  
    if any( r>1 | r<0 ) phgm0D7  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') $ mI0Bk  
    end }oNhl^JC  
    2/0v B>  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) L>YU,I\o  
        error('zernfun:RTHvector','R and THETA must be vectors.') oIefw:FE,a  
    end rp0ZvEX  
    |gU(s  
    r = r(:); }6@pJ G  
    theta = theta(:); K=,F#kn  
    length_r = length(r); IEzaK  
    if length_r~=length(theta) ,JEF GI{  
        error('zernfun:RTHlength', ... ;dzL}@we  
              'The number of R- and THETA-values must be equal.') sxt-Vs7+6  
    end ka3u&3"  
    u5Ftu?t  
    % Check normalization: r3\cp0P;s  
    % -------------------- sx`O8t  
    if nargin==5 && ischar(nflag) QI3Nc8t_2  
        isnorm = strcmpi(nflag,'norm'); |0%+wB  
        if ~isnorm P<f5*L#HD  
            error('zernfun:normalization','Unrecognized normalization flag.') ^/U|2'$'>E  
        end 1Y]TA3:  
    else G rk@dZI  
        isnorm = false; jb^N|zb  
    end \xS&v7b  
    48*Do}l]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k0Uyf~p~  
    % Compute the Zernike Polynomials - h9?1vc7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d{E}6)1=  
    7__Q1 > o  
    % Determine the required powers of r: 7IjQi=#:  
    % ----------------------------------- 7Ddaf>  
    m_abs = abs(m); mljh|[  
    rpowers = []; 1Q. \s_2  
    for j = 1:length(n) P [k$vD  
        rpowers = [rpowers m_abs(j):2:n(j)]; uIDuGrt  
    end KFFSv{m[  
    rpowers = unique(rpowers); kVy\b E0o  
    H(&4[%;MP  
    % Pre-compute the values of r raised to the required powers, \} ^E`b  
    % and compile them in a matrix: :"!9_p(,,  
    % ----------------------------- >z.<u|r2  
    if rpowers(1)==0 /*c\qXA5  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 1M}&ZH  
        rpowern = cat(2,rpowern{:}); 1 %,a =,v  
        rpowern = [ones(length_r,1) rpowern]; txPIG/  
    else -P]sRl3O;  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); h@LHRMO  
        rpowern = cat(2,rpowern{:}); F<(i.o(  
    end *>+,(1Fz  
    = hN !;7G  
    % Compute the values of the polynomials: Qx'`PNU9\  
    % -------------------------------------- /0eYMG+K=  
    y = zeros(length_r,length(n)); J:kmqk!  
    for j = 1:length(n) @, Wvvh  
        s = 0:(n(j)-m_abs(j))/2; T0]*{k(FR  
        pows = n(j):-2:m_abs(j); w&x!,yd;  
        for k = length(s):-1:1 dS5a  
            p = (1-2*mod(s(k),2))* ... <!pvqNApg  
                       prod(2:(n(j)-s(k)))/              ... HX6Ma{vBk  
                       prod(2:s(k))/                     ... Y}vr>\  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... gB4U*D0[e~  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 4NdN< #Lr  
            idx = (pows(k)==rpowers); 5T:i9h  
            y(:,j) = y(:,j) + p*rpowern(:,idx); bHI<B)=`  
        end u@4V7;L  
         kWrp1`  
        if isnorm q]\g,a  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); c~v~2DM  
        end gc?#pP  
    end (k|_J42[  
    % END: Compute the Zernike Polynomials <Engi!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UA yC.$!  
    >(snII  
    % Compute the Zernike functions: &RTX6%'KY  
    % ------------------------------ 51QRM32Y  
    idx_pos = m>0; $/7pYl\n  
    idx_neg = m<0; pm6>_Kz  
    A.5i"Ci[ie  
    z = y; 3ux0 Jr2yT  
    if any(idx_pos) \{EpduwZ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); "XT"|KF|D  
    end R+7oRXsu  
    if any(idx_neg) > z^#  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {b@KYR9K  
    end {N#KkYH{"  
    A mwa)  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) h?$T!D>  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ~I(Hc.Q  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated M1%Dg'}G  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive J=dJs k   
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 5H9r=a  
    %   and THETA is a vector of angles.  R and THETA must have the same g(| 6~}|o+  
    %   length.  The output Z is a matrix with one column for every P-value, 8x[YZ@iM-  
    %   and one row for every (R,THETA) pair. {vE(l'  
    % 1lpwZ"  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike L.=w?%:H=  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) )$Z=t-q  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) @EoZI~  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 E~kG2x{a  
    %   for all p. ^xZ e2@  
    % >dM8aJzC  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 c~o+WI Ym  
    %   Zernike functions (order N<=7).  In some disciplines it is rP(eva  
    %   traditional to label the first 36 functions using a single mode @K:N,@yq  
    %   number P instead of separate numbers for the order N and azimuthal cGwf!hA  
    %   frequency M. H-p;6C<  
    % <s@-:;9~  
    %   Example: 3! ~K^Z]  
    % [qoXMuC|P  
    %       % Display the first 16 Zernike functions [+Y{%U  
    %       x = -1:0.01:1; zW8*EE+,  
    %       [X,Y] = meshgrid(x,x); 1R. 4:Dn_  
    %       [theta,r] = cart2pol(X,Y); 9Ok9bC'?8@  
    %       idx = r<=1; 9*:gr#(5  
    %       p = 0:15; cc44R|Kr$$  
    %       z = nan(size(X)); |0z;K:5s  
    %       y = zernfun2(p,r(idx),theta(idx)); !SKV!xH9  
    %       figure('Units','normalized') =KT7nl  
    %       for k = 1:length(p) UgN28YrW  
    %           z(idx) = y(:,k); x^*1gv $o  
    %           subplot(4,4,k) j:bgR8 %e  
    %           pcolor(x,x,z), shading interp } 17.~  
    %           set(gca,'XTick',[],'YTick',[]) NS C/@._  
    %           axis square dC1V-x10ju  
    %           title(['Z_{' num2str(p(k)) '}']) RL[E X5U  
    %       end !JBae2Z  
    % LC0d/hM  
    %   See also ZERNPOL, ZERNFUN. @d&/?^dp6  
    RB?V7uX  
    %   Paul Fricker 11/13/2006 Bg8#qv  
    ejXMKPE;  
    aTzDew  
    % Check and prepare the inputs: gLsU:aeCT  
    % ----------------------------- HvxJj+X9  
    if min(size(p))~=1 tU/k-W3X  
        error('zernfun2:Pvector','Input P must be vector.') $t-n'Qh^2  
    end ~ np,_yI  
    rNl.7O9b  
    if any(p)>35 26n^Dy>}  
        error('zernfun2:P36', ... /VHi >  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 19q{6X`x  
               '(P = 0 to 35).'])  H@uE>  
    end [/RM=4Nh5  
    5HS~op2n/  
    % Get the order and frequency corresonding to the function number: 0D~ C 5}/4  
    % ---------------------------------------------------------------- =i HiPvP0  
    p = p(:); W@\ (nfD2  
    n = ceil((-3+sqrt(9+8*p))/2); Jg$xO@.  
    m = 2*p - n.*(n+2); q|)Q9+6$+  
    n +1y  
    % Pass the inputs to the function ZERNFUN: X%9*O[6{  
    % ---------------------------------------- <a le$[  
    switch nargin rgcWRt  
        case 3 H g5++.Bp  
            z = zernfun(n,m,r,theta); (ozb%a#B  
        case 4 u2(eaP8d  
            z = zernfun(n,m,r,theta,nflag); }vt%R.u  
        otherwise zX7q:Pt  
            error('zernfun2:nargin','Incorrect number of inputs.') nkeI60  
    end N6Z{BLZ  
    s4T}Bs r  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) gmSQcN)  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. uL?vG6% ^1  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of YT yX`Y#  
    %   order N and frequency M, evaluated at R.  N is a vector of K6pR8z*?  
    %   positive integers (including 0), and M is a vector with the 5@u~3jPd  
    %   same number of elements as N.  Each element k of M must be a %kU'hzLg  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Q*O<@   
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is CHaE;olo  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix *i<\iMoW  
    %   with one column for every (N,M) pair, and one row for every {)K](S ~  
    %   element in R. 5^)_B;.f  
    % rj  H`  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- M1u{A^d.Z  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is <`g3(?   
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to i</J@0}y  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 @Z\~  
    %   for all [n,m]. mrZ`Lm#>pS  
    % :%-,Fxl4  
    %   The radial Zernike polynomials are the radial portion of the (a{ZJI8_  
    %   Zernike functions, which are an orthogonal basis on the unit zX5G;,_  
    %   circle.  The series representation of the radial Zernike b1!@v+  
    %   polynomials is RazBc.o<  
    % g*-2* \  
    %          (n-m)/2 :%tuNJjj  
    %            __ _ 6:ww/  
    %    m      \       s                                          n-2s jM__{z  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Q~ 0Dfo w?  
    %    n      s=0 QB 77:E  
    % d5U; $q{o  
    %   The following table shows the first 12 polynomials. T{ -2fp8r[  
    % i7eI=f-Q  
    %       n    m    Zernike polynomial    Normalization J_  V,XO  
    %       --------------------------------------------- |Cf mcz(56  
    %       0    0    1                        sqrt(2)  *W^=XbG  
    %       1    1    r                           2 W(@>?$&  
    %       2    0    2*r^2 - 1                sqrt(6) ]C *10S`  
    %       2    2    r^2                      sqrt(6) =s[ &;B`s  
    %       3    1    3*r^3 - 2*r              sqrt(8)  Tb#  
    %       3    3    r^3                      sqrt(8) %D^bah f  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) v.`+I-\.z)  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) KU2$5[~j  
    %       4    4    r^4                      sqrt(10) 3Xdn62[&  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) #AncOo  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) g@E&uyM  
    %       5    5    r^5                      sqrt(12) !Z/$}xxj  
    %       --------------------------------------------- sb'p-Mj  
    % aIu2>  
    %   Example: *ro.mQ_  
    % 0$2={s4ze  
    %       % Display three example Zernike radial polynomials ahp1!=Z-=  
    %       r = 0:0.01:1; z~.9@[LG]  
    %       n = [3 2 5]; ;c)! @GoA  
    %       m = [1 2 1]; fq Y1ggL  
    %       z = zernpol(n,m,r); 7!- \L7<  
    %       figure v&2+'7]w r  
    %       plot(r,z) #`j][F@N  
    %       grid on .&(8(C  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') L<)Z>@fR  
    % Uh\]?G[G  
    %   See also ZERNFUN, ZERNFUN2. U_*3>Q  
    lJj&kVHb  
    % A note on the algorithm. 1NGyaI  
    % ------------------------ -kc(u1!  
    % The radial Zernike polynomials are computed using the series tw86:kYEz  
    % representation shown in the Help section above. For many special tDU}rI8?  
    % functions, direct evaluation using the series representation can k5s?lWH  
    % produce poor numerical results (floating point errors), because 6!RikEAh  
    % the summation often involves computing small differences between 2[BA( B  
    % large successive terms in the series. (In such cases, the functions (txt8q  
    % are often evaluated using alternative methods such as recurrence &(0N.=R  
    % relations: see the Legendre functions, for example). For the Zernike s7|3zqi  
    % polynomials, however, this problem does not arise, because the ;o%:7 &  
    % polynomials are evaluated over the finite domain r = (0,1), and ) MBS  
    % because the coefficients for a given polynomial are generally all j]HE>  
    % of similar magnitude. Zsk?QS FE  
    % CK Mv7  
    % ZERNPOL has been written using a vectorized implementation: multiple pVz pN8!  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] (uT^Nn9L=  
    % values can be passed as inputs) for a vector of points R.  To achieve CKN8z  
    % this vectorization most efficiently, the algorithm in ZERNPOL q]+)c2M  
    % involves pre-determining all the powers p of R that are required to zP|*(*  
    % compute the outputs, and then compiling the {R^p} into a single :f]!O@.~  
    % matrix.  This avoids any redundant computation of the R^p, and um}N%5GAa  
    % minimizes the sizes of certain intermediate variables. &%}6q]e  
    % wXcMt>3  
    %   Paul Fricker 11/13/2006 &@"w-M  
    )BB%4=u@~.  
    xBt<Yt"  
    % Check and prepare the inputs: 776 nWw)  
    % ----------------------------- cUNGo%Y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) iBS0rT_  
        error('zernpol:NMvectors','N and M must be vectors.') L77EbP`P  
    end }JH`' &3  
    @[0jFjK  
    if length(n)~=length(m) VlV)$z_  
        error('zernpol:NMlength','N and M must be the same length.') WRY~fM  
    end gTuX *7w  
    6yp+h  
    n = n(:); v2(U(Tt  
    m = m(:); &R0OeRToUb  
    length_n = length(n); *<?XTs<  
    rQ &S<  
    if any(mod(n-m,2)) RAdvIIQp:  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') KKV)DExv?  
    end wYa0hNd  
    ?U$}Rsk{#  
    if any(m<0) 0|GpZuGO9  
        error('zernpol:Mpositive','All M must be positive.') oq243\?Y  
    end U* 4{"  
    q?1yE@th  
    if any(m>n) IF& PGo  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') B6(h7~0(<  
    end GPMrs)J*!  
    17|@f  
    if any( r>1 | r<0 ) `)LIVi"(D  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ?C FS}v  
    end CN-4-  
    $e>/?Ss  
    if ~any(size(r)==1) |}%(6<  
        error('zernpol:Rvector','R must be a vector.') >QA/Mi~R  
    end p[_Yi0U  
    m\1VF\  
    r = r(:); Th_Q owk  
    length_r = length(r); HUK" OH  
    OA!R5sOz"  
    if nargin==4 <r0.ppgY  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); <&KLo>B^  
        if ~isnorm r+SEw ;  
            error('zernpol:normalization','Unrecognized normalization flag.') 5DmCxg  
        end >pN;J)H  
    else ?VUgwP_=  
        isnorm = false; ip<15;Z  
    end Ri9Kr  
    5XI;<^n2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &3jBE --  
    % Compute the Zernike Polynomials -*rHB&e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l t&$8jh  
    /A0 [_  
    % Determine the required powers of r: };i&a%I|  
    % ----------------------------------- MJy;GzJ O  
    rpowers = []; |*Of^IkG0  
    for j = 1:length(n) j!6elzg  
        rpowers = [rpowers m(j):2:n(j)]; Fecx';_1`  
    end \I'f3  
    rpowers = unique(rpowers); UwZu:[T6H  
    (s5<  
    % Pre-compute the values of r raised to the required powers, ]z+*?cc  
    % and compile them in a matrix: _{[k[]  
    % ----------------------------- pk;ffq@  
    if rpowers(1)==0 f37ji  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,Le&I9*%  
        rpowern = cat(2,rpowern{:}); -J-3_9I  
        rpowern = [ones(length_r,1) rpowern]; hN Z4v/  
    else aJEbAs}  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _)OA$  
        rpowern = cat(2,rpowern{:}); Y')O>C0~  
    end (y-x01H  
    cWgbd^J  
    % Compute the values of the polynomials: YgO aZqN  
    % -------------------------------------- -iY9GN89c  
    z = zeros(length_r,length_n); sI^@A=.@  
    for j = 1:length_n #>7')G  
        s = 0:(n(j)-m(j))/2; IlcNT_ 5a8  
        pows = n(j):-2:m(j); oq=?i%'>  
        for k = length(s):-1:1 P%.`c?olbs  
            p = (1-2*mod(s(k),2))* ... <QYCo1_  
                       prod(2:(n(j)-s(k)))/          ... omXBnzT  
                       prod(2:s(k))/                 ... #H'sZv  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... = 4BLc  
                       prod(2:((n(j)+m(j))/2-s(k))); 6V.awg,  
            idx = (pows(k)==rpowers); *37LN  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 7 JxE |G  
        end L@)b%Q@a  
         +^/Nil  
        if isnorm } l:mN  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); kHt!S9r  
        end f?/|;Zo4  
    end 7$g*N6)Q  
    *,O :>Z5I  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  FSYjp{z5  
    d_W nK{  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 gGiV1jN _  
    zfr(dQ  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)