非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 /sKL|]i=
function z = zernfun(n,m,r,theta,nflag) &R72$H9C8i
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. [MTd<@
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N |RiJ>/MK\
% and angular frequency M, evaluated at positions (R,THETA) on the 1VX3pkUET
% unit circle. N is a vector of positive integers (including 0), and xPm. TPj
% M is a vector with the same number of elements as N. Each element ,&t+D-s<f
% k of M must be a positive integer, with possible values M(k) = -N(k) EMmgX*iu@
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, *DF3juf~
% and THETA is a vector of angles. R and THETA must have the same YP2VSK2Q
% length. The output Z is a matrix with one column for every (N,M) lYx_8x2
% pair, and one row for every (R,THETA) pair. 03 @aG
% RPz[3y
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike \HeJc:^
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), d/7fJ8y8
% with delta(m,0) the Kronecker delta, is chosen so that the integral Pp8S\%z~h
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +vh|m5"7I7
% and theta=0 to theta=2*pi) is unity. For the non-normalized i
9)
Gt
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. OpUfK4U)
% #aP#r4$
% The Zernike functions are an orthogonal basis on the unit circle. }\"EI<$s
% They are used in disciplines such as astronomy, optics, and 7*5B
% optometry to describe functions on a circular domain. jdxHWkQ
% q#K{~:
% The following table lists the first 15 Zernike functions. _\WR3Q!V
% AWR :~{
% n m Zernike function Normalization >f]/VaMH{
% -------------------------------------------------- AjVC{\Ik
% 0 0 1 1 <XdnVe1
% 1 1 r * cos(theta) 2 ,-pE/3|(
% 1 -1 r * sin(theta) 2 Mg2+H+C~:
% 2 -2 r^2 * cos(2*theta) sqrt(6) |p|Zv H
% 2 0 (2*r^2 - 1) sqrt(3) )(}[S:`
% 2 2 r^2 * sin(2*theta) sqrt(6) boo361L
% 3 -3 r^3 * cos(3*theta) sqrt(8) eHphM;C
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) F5o8@ Ib]:
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ;vH2r~
% 3 3 r^3 * sin(3*theta) sqrt(8) C(N'=-;Kl
% 4 -4 r^4 * cos(4*theta) sqrt(10) V"/.An|
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `a83RX_\
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) yZleots1
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |a(KVo
% 4 4 r^4 * sin(4*theta) sqrt(10) ]>n{~4a
% -------------------------------------------------- 02J/=AC5
% -$d?e%}#
% Example 1: O<m46mwM
% 1WUSp;JMl
% % Display the Zernike function Z(n=5,m=1) h3MdQlJ&
% x = -1:0.01:1; TDh)}Ms
% [X,Y] = meshgrid(x,x); "Lp.*o
% [theta,r] = cart2pol(X,Y); 'n &p5%
% idx = r<=1; t>bzo6cj
% z = nan(size(X)); iQG!-.aX
% z(idx) = zernfun(5,1,r(idx),theta(idx)); x93@[B*%
% figure .n 9.y8C
% pcolor(x,x,z), shading interp ;d?BVe?
% axis square, colorbar 'P.y?
% title('Zernike function Z_5^1(r,\theta)') >q}3#TvP@
% i).%GMv*r
% Example 2: y,D9O/VP
% X`8<;l
% % Display the first 10 Zernike functions '}OdF*L
% x = -1:0.01:1; '@n"'vks(\
% [X,Y] = meshgrid(x,x); )UR$VL
% [theta,r] = cart2pol(X,Y); omfX2Oa2
% idx = r<=1; FnGKt\
% z = nan(size(X)); uo:RNokjJ
% n = [0 1 1 2 2 2 3 3 3 3]; e@'x7Zzh
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; |IAx!Z-P
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ,ri&zbB
% y = zernfun(n,m,r(idx),theta(idx)); ?^&ih:"
% figure('Units','normalized') ^ D0"m>3r
% for k = 1:10 gwj?.7N*k
% z(idx) = y(:,k); </I%VHP,[f
% subplot(4,7,Nplot(k)) UylIxd
% pcolor(x,x,z), shading interp m$8siF{<q
% set(gca,'XTick',[],'YTick',[]) s< tG
% axis square )]>t(
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) v^9eTeFO
% end Es=G' au
% *bK=<{d1P
% See also ZERNPOL, ZERNFUN2. }?m0bM
rz|T2K
% Paul Fricker 11/13/2006 d?oXz| ;H(
pSx5ume95"
5gz ^3R|`f
% Check and prepare the inputs: bJ2-lU% ;2
% ----------------------------- xF_u:}7`
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h,[L6-n
error('zernfun:NMvectors','N and M must be vectors.') xU;SRB
end Ar%*NxX
XT^=v6^H
if length(n)~=length(m) eD*764tG
error('zernfun:NMlength','N and M must be the same length.') 5<Kt"5Z%7
end ^#5'` #t
!.h{/37]
n = n(:); r\m{;Z#LJm
m = m(:); < F5VJ
if any(mod(n-m,2)) &v:zS$m>
error('zernfun:NMmultiplesof2', ... <:-4GJH=
'All N and M must differ by multiples of 2 (including 0).') )Kx.v'
end .-$3I|}X=
6*,55,y
if any(m>n) ?y|&Mz'XJ(
error('zernfun:MlessthanN', ... C:1(<1K
'Each M must be less than or equal to its corresponding N.') @3n!5XM{EE
end N[@~q~v
DY`0 `T
if any( r>1 | r<0 ) U&"L9o`2
error('zernfun:Rlessthan1','All R must be between 0 and 1.') +v/y{8Fu
end ;(K/O?nrJ
uGAQt9$>_
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) TTG=7x:3
error('zernfun:RTHvector','R and THETA must be vectors.') f@sC~A. 9\
end -~z@W3\
7sVM[lr<
r = r(:); 1F.._5_"]
theta = theta(:); kR+}7G+
length_r = length(r); z,;XWv?
if length_r~=length(theta) 'e:4
error('zernfun:RTHlength', ... }w)}=WmD
'The number of R- and THETA-values must be equal.') KXMf2)pa
end **P P
L#`X
]E
% Check normalization: @<DRFP
% -------------------- vU *: M8k
if nargin==5 && ischar(nflag) 6$#,$a O
isnorm = strcmpi(nflag,'norm'); .i\FK@2
if ~isnorm cLyf[z)W
error('zernfun:normalization','Unrecognized normalization flag.') $.C\H,H
end /
0$!.
else cRI2$|
isnorm = false; f['I4 /o
end @o[ZJ4>*
LcLHX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kRggVRM
% Compute the Zernike Polynomials N5 sR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #Q2s3"X[
U]pE{^\w
% Determine the required powers of r: Xf ^_y(?
% ----------------------------------- /%&5Iq\:vA
m_abs = abs(m); 8Z}%,G*n
rpowers = []; g)f& mQ)
for j = 1:length(n) dLqBu~*
rpowers = [rpowers m_abs(j):2:n(j)]; +M.BMS2A<l
end L%[>z'Zp
rpowers = unique(rpowers); RH,x);J|
~!ei]UP
% Pre-compute the values of r raised to the required powers, 1.%|Er 4
% and compile them in a matrix: m p_7$#{l
% ----------------------------- lDBAei3iB
if rpowers(1)==0 'Rnzu0<lF
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =
1veO0
rpowern = cat(2,rpowern{:}); Ot.v%D`e 5
rpowern = [ones(length_r,1) rpowern]; xd `MEOY
else UNSXr`9
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); L5UZ@R,
rpowern = cat(2,rpowern{:}); RKrNmD*rk*
end I>rTqOK
U8aVI
% Compute the values of the polynomials: 1q=Q/L4P
% -------------------------------------- ;E{jn4B'
y = zeros(length_r,length(n)); cK[=IE5
for j = 1:length(n) 7oZ Pb
s = 0:(n(j)-m_abs(j))/2; /0>'ZzjV,
pows = n(j):-2:m_abs(j);
XD8Cf!
for k = length(s):-1:1 ?(zCv9Pg
p = (1-2*mod(s(k),2))* ... =84EX<B
prod(2:(n(j)-s(k)))/ ... >/RFff]Fh0
prod(2:s(k))/ ... /\Cf*cJ
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... He8]Eb
prod(2:((n(j)+m_abs(j))/2-s(k))); kE6/d,
idx = (pows(k)==rpowers); erv94acq
y(:,j) = y(:,j) + p*rpowern(:,idx); VJ
h]j(
end pC,Z=+:
Rkg)yme!N
if isnorm @}PXBU
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Fa`%MR1
end \{Q_\s&)
end Y8%l)g
% END: Compute the Zernike Polynomials `uLr^G=;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c?<)!9:
;t9!<L
% Compute the Zernike functions: L[:AU e
% ------------------------------ :G98uX t
idx_pos = m>0; A
?tna6W:
idx_neg = m<0; g :B4zlKG
gP|-A`y
z = y; s%rmfIp"
if any(idx_pos) AMB{Fssz
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); myVa5m!7Q
end 0datzEns`
if any(idx_neg) #?\(l%
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ml|FdQ
end t@R n#(~"
UsA fZg8
% EOF zernfun