非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 b/<mRQ{
function z = zernfun(n,m,r,theta,nflag) p<5!02yQ\
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. %{C)1*M7
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N OCnFEX"
% and angular frequency M, evaluated at positions (R,THETA) on the =yqHC<8:
% unit circle. N is a vector of positive integers (including 0), and >uy%-aXiVa
% M is a vector with the same number of elements as N. Each element 7>n"}8i
% k of M must be a positive integer, with possible values M(k) = -N(k) &U"X$aFc
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, c+2%rh1
% and THETA is a vector of angles. R and THETA must have the same L.B~ax.|Z
% length. The output Z is a matrix with one column for every (N,M) ~R.dPUr
% pair, and one row for every (R,THETA) pair. Ld(NhB'7
% %0XvJF)s
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Zw$
OKU
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *)> do
L
% with delta(m,0) the Kronecker delta, is chosen so that the integral 5v9Vk`3'
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, `,Orf ZMb
% and theta=0 to theta=2*pi) is unity. For the non-normalized .Yx_:h=u
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. J%Mnjk^_\S
% HY)ESU
!
% The Zernike functions are an orthogonal basis on the unit circle. ^%#grX#
% They are used in disciplines such as astronomy, optics, and \%5MAQS
% optometry to describe functions on a circular domain. sLns3&n2
% 2P9J'
L
% The following table lists the first 15 Zernike functions. #w>~u2W
% )q3"t2-
% n m Zernike function Normalization 3z[$4L'.
% -------------------------------------------------- :a3xvN-l
% 0 0 1 1 k+1gQru{d
% 1 1 r * cos(theta) 2 @-"R$HOT
% 1 -1 r * sin(theta) 2 =|SdVv
% 2 -2 r^2 * cos(2*theta) sqrt(6) usOx=^?=
% 2 0 (2*r^2 - 1) sqrt(3) !>g:Si"
% 2 2 r^2 * sin(2*theta) sqrt(6) '4u v3)P
% 3 -3 r^3 * cos(3*theta) sqrt(8) pn\V+Rg'
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) IR$(_9z
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) OW`STp!
% 3 3 r^3 * sin(3*theta) sqrt(8) js <Ww$zFW
% 4 -4 r^4 * cos(4*theta) sqrt(10) SUE
~rb
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q~Ea8UT.#
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ZK!A#Jm{
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -]XP2}#d
% 4 4 r^4 * sin(4*theta) sqrt(10) &88oB6$D^q
% -------------------------------------------------- zY%. Rq-
% &mkpJF/
% Example 1: :"'nK6>
% Z'M`}3O
% % Display the Zernike function Z(n=5,m=1) *<