非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 m(47s
function z = zernfun(n,m,r,theta,nflag) 8X7{vN_3K
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. pGWA\}'
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Rp.W,)i
% and angular frequency M, evaluated at positions (R,THETA) on the f_6`tq m%
% unit circle. N is a vector of positive integers (including 0), and ]]uHM}l
% M is a vector with the same number of elements as N. Each element [ygF0-3ND
% k of M must be a positive integer, with possible values M(k) = -N(k) w2"]Pl
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, TZB+lj1
% and THETA is a vector of angles. R and THETA must have the same 1'KishHK=
% length. The output Z is a matrix with one column for every (N,M) :Jxh2
% pair, and one row for every (R,THETA) pair. Z=$T1|
% 2qj{n+
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike LtKB v4
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), x8N|($1
% with delta(m,0) the Kronecker delta, is chosen so that the integral %w"nDu2Gcv
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >|udWd^$3
% and theta=0 to theta=2*pi) is unity. For the non-normalized >SI<rR[~%
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >1|g5
% \7 a4uc
% The Zernike functions are an orthogonal basis on the unit circle. <+]f`c*Z
% They are used in disciplines such as astronomy, optics, and i g71/'D
% optometry to describe functions on a circular domain. Kn}ub+
"J
% ^^?q$1k6r*
% The following table lists the first 15 Zernike functions. Np,2j KF(
% cvo[s, p
% n m Zernike function Normalization =nxKttmU0
% -------------------------------------------------- Z`_.x
&Y
% 0 0 1 1 {BV4h%P]:
% 1 1 r * cos(theta) 2 {=JF=8@A
% 1 -1 r * sin(theta) 2 Ill[]O
% 2 -2 r^2 * cos(2*theta) sqrt(6) fC<m^%*zgA
% 2 0 (2*r^2 - 1) sqrt(3) Fwfo2
% 2 2 r^2 * sin(2*theta) sqrt(6) v[ ,Src
% 3 -3 r^3 * cos(3*theta) sqrt(8) X;GfPw.m
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) i@$*Csj\9*
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) F:T GsV#
% 3 3 r^3 * sin(3*theta) sqrt(8) #@//7Bf%
% 4 -4 r^4 * cos(4*theta) sqrt(10) t&RruwN_;
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $|<m9CW
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) !{%G0(Dv
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]T<^{jG
% 4 4 r^4 * sin(4*theta) sqrt(10) Qi=*1QAkr
% -------------------------------------------------- S*t%RZ~a
% AFm1t2,+;
% Example 1: hC<14
% b:MG@Hxc
% % Display the Zernike function Z(n=5,m=1) ]7/gJ>g,
% x = -1:0.01:1; NGTe4Crx
% [X,Y] = meshgrid(x,x); AtHS@p
% [theta,r] = cart2pol(X,Y); cyF4iG'M,y
% idx = r<=1; La,QB3K/
% z = nan(size(X)); yYTVXs`fVj
% z(idx) = zernfun(5,1,r(idx),theta(idx)); l5O=VqCj
% figure R}{GwbF_\
% pcolor(x,x,z), shading interp 8Qrpa o
% axis square, colorbar (6qsKX
% title('Zernike function Z_5^1(r,\theta)') nX5C<Ky
% HOPqxI(k
% Example 2: ZF{~ih*^u
% ?[= U%sPu=
% % Display the first 10 Zernike functions kX;$}7n
% x = -1:0.01:1; )"u:ytK{
% [X,Y] = meshgrid(x,x); ]0~qi@
% [theta,r] = cart2pol(X,Y); |f' 8p8J
% idx = r<=1; S@}4-\
% z = nan(size(X)); z+VV}:Q
% n = [0 1 1 2 2 2 3 3 3 3]; n["
9|
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; _l&ucA
% Nplot = [4 10 12 16 18 20 22 24 26 28]; /1.rz{wpb
% y = zernfun(n,m,r(idx),theta(idx)); OyVm(%Z
% figure('Units','normalized') P Jo
% for k = 1:10 kC$I2[ t!
% z(idx) = y(:,k); Ft-6m%
% subplot(4,7,Nplot(k)) C0m\SNR
% pcolor(x,x,z), shading interp BQNp$]5s
% set(gca,'XTick',[],'YTick',[]) 77aX-e*=E
% axis square 1f//wk|
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 3%
vis\~^
% end #A<"4#}
% J r*"V`
% See also ZERNPOL, ZERNFUN2. X"/~4\tJ"
;z>p8N
% Paul Fricker 11/13/2006 jD9lz-Y@
^gg!Me
z`#_F}v,m/
% Check and prepare the inputs: X;EJ&g/
% ----------------------------- +/N1_
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) z7=fDe
-
error('zernfun:NMvectors','N and M must be vectors.') 80&D""
end ,wK 1=7
J/kH%_ >Ir
if length(n)~=length(m) o#{#r@,i
error('zernfun:NMlength','N and M must be the same length.') I'InZ0J2
end A,<@m2
HdCk!Fv
n = n(:); &?T ${*~
m = m(:); wn84?$BGd
if any(mod(n-m,2)) 0k1MKzi Q
error('zernfun:NMmultiplesof2', ... fPz=KoN
'All N and M must differ by multiples of 2 (including 0).') |- OHve4A
end !: |nI77|
AbY;H
if any(m>n) !-(J-45
error('zernfun:MlessthanN', ... ^5x4 q
'Each M must be less than or equal to its corresponding N.') JQT4N[rEE
end l1RlYl5
0/Q5d,'Y[2
if any( r>1 | r<0 ) wAz,vq=x
error('zernfun:Rlessthan1','All R must be between 0 and 1.') `A{'s %$?!
end Z;J`5=TS
viV-e$s`.
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 3-
)kwy6L
error('zernfun:RTHvector','R and THETA must be vectors.') ]h8/M7k
end
N|N/)
X[{\3Av
r = r(:); Pz
{Ig
theta = theta(:); rCrr"O#j
length_r = length(r); %zQ2:iT5@=
if length_r~=length(theta) %kW3hQ<$
error('zernfun:RTHlength', ... Y_lCcu#OA
'The number of R- and THETA-values must be equal.') UJwq n"Q^
end Y[,U_GX/R
jl@K!=q
% Check normalization: 4Q&mC"
% -------------------- y`+<X{V5L
if nargin==5 && ischar(nflag) V*uEJ6T
isnorm = strcmpi(nflag,'norm'); b,vL8*
if ~isnorm O3}P07
error('zernfun:normalization','Unrecognized normalization flag.') !vrnoFVu
end 1eF@_Y^a!
else 44|03Ty
isnorm = false; +1f{_v
end 4^BLSK~(
-W6V,+of
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yh$ ~*UV
% Compute the Zernike Polynomials oHRbAE^
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {5.?'vMp
)#mW7m9M#
% Determine the required powers of r: 10TSc
j
% ----------------------------------- 4SBLu%=s%
m_abs = abs(m); :n`0)g[(
rpowers = []; (ai72#nFtb
for j = 1:length(n) cnYYs d{
rpowers = [rpowers m_abs(j):2:n(j)]; E =
^-Z
end "mG!L$
rpowers = unique(rpowers); 8ZzU^x
-KA4Inn]5
% Pre-compute the values of r raised to the required powers, `F@f?*s:
% and compile them in a matrix: roL]v\tr
% ----------------------------- ]X4RnV55Q
if rpowers(1)==0 \O,j}O'
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); su%Z{f)#
rpowern = cat(2,rpowern{:}); ~.!?5(AH8z
rpowern = [ones(length_r,1) rpowern]; 5
u"nxT
else ),)Q{~&`
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 0-lPhnrp
rpowern = cat(2,rpowern{:}); 8Q)y%7{6
end Mof)2Hbd:
B##C{^5A`
% Compute the values of the polynomials: ^M"HSewo
% -------------------------------------- 8L@UB6b\
y = zeros(length_r,length(n)); 64;oB_
for j = 1:length(n) #SK#k<&P
s = 0:(n(j)-m_abs(j))/2; Ds;Rb6WcnY
pows = n(j):-2:m_abs(j); Yoj~|qL
for k = length(s):-1:1 )lE3GDAPgZ
p = (1-2*mod(s(k),2))* ... d+1L5}Jn
prod(2:(n(j)-s(k)))/ ... U8Cw7u2
prod(2:s(k))/ ... GF9ZL
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... av7q>NEZ!1
prod(2:((n(j)+m_abs(j))/2-s(k))); %y!
idx = (pows(k)==rpowers); 'aLPTVM^
y(:,j) = y(:,j) + p*rpowern(:,idx); e=YO.HT
end a [0N,t
H@Kl
if isnorm xu0;a
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); dawVE
O
end
alWx=+d
end CvgPIrl
% END: Compute the Zernike Polynomials F<H`8*q9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bEEJV F0
cob9hj#&7
% Compute the Zernike functions: Z5{*? 2
% ------------------------------ eimA *0Cq
idx_pos = m>0; ?Aj\1y4L1
idx_neg = m<0; O1l4gduN|i
,dGFX]P
z = y; l;"ub^AH
if any(idx_pos) W ??;4
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); }A)^XZ/
end }7f 1(#{7
if any(idx_neg) v3iDh8.__
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,APGPE}I[
end z{7,.S
u
7"h=MB_
% EOF zernfun