非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 2|y"!JqE1
function z = zernfun(n,m,r,theta,nflag) u#fM_>ML
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. :G=fl)!fE
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N TqQB@-!
% and angular frequency M, evaluated at positions (R,THETA) on the K3&qq[8.e
% unit circle. N is a vector of positive integers (including 0), and c]<5zyl"j1
% M is a vector with the same number of elements as N. Each element wu6;.xTLl
% k of M must be a positive integer, with possible values M(k) = -N(k) DK~xrU'
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, p>N(Typ0b
% and THETA is a vector of angles. R and THETA must have the same j_[tu!~
% length. The output Z is a matrix with one column for every (N,M) 7+cO_3AB
% pair, and one row for every (R,THETA) pair. bs&43Ae
% ]cvwIc">
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3%|&I:tI
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), aK~8B_5k8
% with delta(m,0) the Kronecker delta, is chosen so that the integral ]A`n(
"%
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @bLy,Xr&
% and theta=0 to theta=2*pi) is unity. For the non-normalized }#+^{P3 ;
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. e"cXun4nS=
% 59L\|OR
% The Zernike functions are an orthogonal basis on the unit circle. rXq.DvQ
% They are used in disciplines such as astronomy, optics, and FxY}m
% optometry to describe functions on a circular domain. Hio0HL-
% 7z,C}-q
% The following table lists the first 15 Zernike functions. Y-z(zS^1
% B mb0cFQ
% n m Zernike function Normalization est9M*Fn
% -------------------------------------------------- /s?`&1v|r
% 0 0 1 1 W
i.&e
% 1 1 r * cos(theta) 2 Lb-OsKU
% 1 -1 r * sin(theta) 2 Oo~;
L,
% 2 -2 r^2 * cos(2*theta) sqrt(6) Uc>lGo1j
% 2 0 (2*r^2 - 1) sqrt(3) $wa{~'
% 2 2 r^2 * sin(2*theta) sqrt(6) {Mk6T1Bkq
% 3 -3 r^3 * cos(3*theta) sqrt(8) SulY1,
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 6|=f$a
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Rv>-4@fMJ
% 3 3 r^3 * sin(3*theta) sqrt(8) Ne!lH@ql
% 4 -4 r^4 * cos(4*theta) sqrt(10) RP|`HkP-2
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ue"~9JK.
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Nx;~@
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) IP pN@
% 4 4 r^4 * sin(4*theta) sqrt(10) {Xy5pfW
Q
% -------------------------------------------------- M3y NAN
% 372rbY
% Example 1: N~gzDQ3
% :OZrH<SW
% % Display the Zernike function Z(n=5,m=1) t?gic9
q
% x = -1:0.01:1; .{^5X)
% [X,Y] = meshgrid(x,x); 0mVNQxHI
% [theta,r] = cart2pol(X,Y); WU`
rh^
% idx = r<=1; wlvgg
% z = nan(size(X)); ~?}Emn;t
% z(idx) = zernfun(5,1,r(idx),theta(idx)); %1L,Y
% figure @mBQ?;qlK
% pcolor(x,x,z), shading interp 'LC1(V!_j
% axis square, colorbar uW{l(}0N
% title('Zernike function Z_5^1(r,\theta)') Q&;9x? e
% o|:b;\)b
% Example 2: pv&sO~!iC
% rlLMT6r.8
% % Display the first 10 Zernike functions 6 "sSo j
% x = -1:0.01:1; *fxG?}YT
% [X,Y] = meshgrid(x,x); J@'wf8Ub
% [theta,r] = cart2pol(X,Y); ITBE|b
% idx = r<=1; e T{ 4{
% z = nan(size(X)); 'H!Uh]!
% n = [0 1 1 2 2 2 3 3 3 3]; m0SlOgRsk
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; \\qZl)P_
% Nplot = [4 10 12 16 18 20 22 24 26 28]; X_h}J=33Q
% y = zernfun(n,m,r(idx),theta(idx)); cI*;k.KU
% figure('Units','normalized') 7}>E J
% for k = 1:10 {\5
% z(idx) = y(:,k); [q-h|m
% subplot(4,7,Nplot(k)) SnfYT)Ph
% pcolor(x,x,z), shading interp ]ieeP4*
% set(gca,'XTick',[],'YTick',[]) \b x$i*
% axis square "+s++@
z
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) oc`H}Wvn
% end
Otuf]B^s
% D@.6>:;il
% See also ZERNPOL, ZERNFUN2. ?a5! H*,
##*3bDf$-5
% Paul Fricker 11/13/2006 Y3b *a".X
`;C V=,M
Z9|P'R(l
% Check and prepare the inputs: 0,")C5j
% ----------------------------- QWYJ*
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~>|ziHx
error('zernfun:NMvectors','N and M must be vectors.') }}~ |!8
end }7Q% 6&IR
'=pU^Oz<}
if length(n)~=length(m) L,!?Nt\
error('zernfun:NMlength','N and M must be the same length.') L8B!u9%
end 0(HU}I
(<9u-HF#
n = n(:); fHFE){
m = m(:); ]a`$LW}
if any(mod(n-m,2)) Zy/_
E@C}u
error('zernfun:NMmultiplesof2', ... 7@Qcc t4A
'All N and M must differ by multiples of 2 (including 0).') g7H(PF?
end ktIFI`@w)
z0 3K=aZ
if any(m>n) })%{AfDRF
error('zernfun:MlessthanN', ... `c$V$/IT
'Each M must be less than or equal to its corresponding N.') 2^7`mES
end @yYkti;4-
!a\^Sk
/
if any( r>1 | r<0 ) ?J0y|
error('zernfun:Rlessthan1','All R must be between 0 and 1.') !nnC3y{G
end [/r(__.
{Sh ;(.u^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Pm7}"D'/
error('zernfun:RTHvector','R and THETA must be vectors.') E1
2uZ$X
end 9(Xn>G'iT
wCBplaojJ
r = r(:); TWTb?HP
theta = theta(:); [a(#1
length_r = length(r); ~}
~4
if length_r~=length(theta) *;FdD{+
error('zernfun:RTHlength', ... pb,d'z\S
'The number of R- and THETA-values must be equal.') -~w'Xo #
end vY3h3o
.%-8 t{dt
% Check normalization: ueNS='+m
% -------------------- ?Bmb' 3
if nargin==5 && ischar(nflag) :`sUt1Fw.
isnorm = strcmpi(nflag,'norm'); -{vD:Il=6
if ~isnorm Y]a@j!
error('zernfun:normalization','Unrecognized normalization flag.') -Y8B~@]P?
end |w=zOC;v
else Z\sDUJ
isnorm = false; P+}h$_x
end * 4
n)
|s_GlJV.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ALHIGJW:6$
% Compute the Zernike Polynomials =_^X3z0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i.#:zU%o
*qq+jsA6wH
% Determine the required powers of r: LP=)~K<
% ----------------------------------- i
XN1I
m_abs = abs(m); Hn:Crl y#
rpowers = []; ]M3yLYK/P
for j = 1:length(n) %so]L+r2!
rpowers = [rpowers m_abs(j):2:n(j)]; %iB,IEw
end j<$2hiI/?&
rpowers = unique(rpowers); jEwIn1
<VE@DBWyl~
% Pre-compute the values of r raised to the required powers, !R$`+wZ62
% and compile them in a matrix: F0#
'WfM#
% ----------------------------- w-jVC^C]
if rpowers(1)==0 ~LC-[&$
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ys7]B9/1O
rpowern = cat(2,rpowern{:}); p
ll)Y
rpowern = [ones(length_r,1) rpowern]; $cgcX
else "N#Y gSr
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); H?w6C):]
rpowern = cat(2,rpowern{:}); dr"1s-D4IQ
end |j|rS5
D_MmW
% Compute the values of the polynomials: '%;m?t%q
% -------------------------------------- naNghGQ
y = zeros(length_r,length(n)); HOi`$vX}N
for j = 1:length(n) gM]:Ma
s = 0:(n(j)-m_abs(j))/2; !x)R=Z/C
pows = n(j):-2:m_abs(j); $~kA
B8z
for k = length(s):-1:1 TqQ[_RKg2
p = (1-2*mod(s(k),2))* ... +`15le`R
prod(2:(n(j)-s(k)))/ ... OrW
prod(2:s(k))/ ... \7_y%HR
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... E{@[k%,_
prod(2:((n(j)+m_abs(j))/2-s(k))); SX#&5Ka/
idx = (pows(k)==rpowers); Ul# r
y(:,j) = y(:,j) + p*rpowern(:,idx); $VR{q6[0S?
end >mkFV@`
,: ^u-b|
if isnorm VN.Je:Ju
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ?A0)L27UE&
end x~sBzTa
end u@444Vzg
% END: Compute the Zernike Polynomials $Kd>:f=A
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AFn7uW!9Gw
mZBo~(}
% Compute the Zernike functions: @+DX.9
% ------------------------------ 3$/IC@+
idx_pos = m>0; 1Ws9WU
idx_neg = m<0; T>>c2$ x
4z)]@:`}z
z = y; afk>+4q
if any(idx_pos) !~Z"9(v'C
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;a3}~s
end 1*7@BP5
if any(idx_neg) L.IlBjD
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 1x^GWtRp
end |uDdHX8T
ULW~90
% EOF zernfun