切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10920阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 toBHkiuD  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 2QyV%wz  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 p6>Svcc  
    function z = zernfun(n,m,r,theta,nflag) g+vva"  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4xjPiHd<  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N nP$Ky1y G  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Yvw(t j5_5  
    %   unit circle.  N is a vector of positive integers (including 0), and EE&K0<?T|:  
    %   M is a vector with the same number of elements as N.  Each element jnO9j_CY  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) !Xf5e*1IS  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, .sha&  
    %   and THETA is a vector of angles.  R and THETA must have the same KX,S  
    %   length.  The output Z is a matrix with one column for every (N,M) f-vCm 5f  
    %   pair, and one row for every (R,THETA) pair. PUT=C1,OFR  
    % ?+@n3]`0  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike h7G"G"  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *+Ek0M  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral <wN}X#M  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, /M1ob:m  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 4tRYw0f47  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. JVvs-bK5  
    % t3 8m'J :>  
    %   The Zernike functions are an orthogonal basis on the unit circle. X5zDpi|Dq  
    %   They are used in disciplines such as astronomy, optics, and 6Zm# bFQ  
    %   optometry to describe functions on a circular domain. AifWf2$S  
    % yj 3cyLXw  
    %   The following table lists the first 15 Zernike functions. Yb|c\[ %  
    % ]sf7{lVT  
    %       n    m    Zernike function           Normalization ?GKb7Oj  
    %       -------------------------------------------------- W <9T0sZ  
    %       0    0    1                                 1 6M @[B|Q(  
    %       1    1    r * cos(theta)                    2 [M]  
    %       1   -1    r * sin(theta)                    2 {f/~1G[M  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) I667Gz$j5  
    %       2    0    (2*r^2 - 1)                    sqrt(3) > kG GR  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) JFcLv=U  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) u%&`}g  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Vz~{UHH6  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 6 a(yp3  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ` 06;   
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) M'?,] an  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pnl{&<$C%C  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) !`Fxa4i>  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g/ T   
    %       4    4    r^4 * sin(4*theta)             sqrt(10) orzZ{87  
    %       -------------------------------------------------- !,wIQy_e4  
    % s 1 A.+  
    %   Example 1: T,,WoPU8t  
    % ^cOUQ33  
    %       % Display the Zernike function Z(n=5,m=1) t6bV?nc  
    %       x = -1:0.01:1; dU&a{ $ku[  
    %       [X,Y] = meshgrid(x,x); :%l TU  
    %       [theta,r] = cart2pol(X,Y); gh/EU/~d  
    %       idx = r<=1; F+YZE[h%  
    %       z = nan(size(X)); ~qiJR`Jj  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ity & v 9  
    %       figure 6dq(T_eG  
    %       pcolor(x,x,z), shading interp 0.`/X66;V  
    %       axis square, colorbar {% rA1g  
    %       title('Zernike function Z_5^1(r,\theta)') 9'fQHwsJ  
    % wL+s8#{  
    %   Example 2: Q:2>}QgX}  
    % D$w6V  
    %       % Display the first 10 Zernike functions nHM~  
    %       x = -1:0.01:1; k :(SCHf  
    %       [X,Y] = meshgrid(x,x); #3i3G(mQ  
    %       [theta,r] = cart2pol(X,Y); "3X2VFwoJ  
    %       idx = r<=1; 2,DXc30I  
    %       z = nan(size(X)); .p<:II:6  
    %       n = [0  1  1  2  2  2  3  3  3  3]; [T8WThs  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; u(z$fG:g  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; L7n D|  
    %       y = zernfun(n,m,r(idx),theta(idx)); ;,hwZZA  
    %       figure('Units','normalized') F|'>NL-=  
    %       for k = 1:10 kjTduZ/3 "  
    %           z(idx) = y(:,k); }zeO]"`  
    %           subplot(4,7,Nplot(k)) v"y-0$M  
    %           pcolor(x,x,z), shading interp %^?fMeI|Y  
    %           set(gca,'XTick',[],'YTick',[]) TJ10s%,V  
    %           axis square rJ`!:f  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) wg9t)1k{e  
    %       end vNyf64)  
    % m]'#t)B_m  
    %   See also ZERNPOL, ZERNFUN2. 7BE>RE=)  
    C'>|J9~Gz  
    %   Paul Fricker 11/13/2006 ;;!yC  
    GA$V0YQX  
    OSRp0G20k\  
    % Check and prepare the inputs: Y4J3-wK5  
    % ----------------------------- h=W:^@G  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h1j!IG  
        error('zernfun:NMvectors','N and M must be vectors.') ,1y@Z 5wy  
    end 1auIR/=-  
    W\>fh&!)  
    if length(n)~=length(m) Lm iOhx  
        error('zernfun:NMlength','N and M must be the same length.') 35h 8O,Y  
    end [8Y:65  
    :N:yLd} &  
    n = n(:); S(k3 `;K  
    m = m(:); =rMUov h  
    if any(mod(n-m,2)) pd:WEI ,  
        error('zernfun:NMmultiplesof2', ... piJu+tUy  
              'All N and M must differ by multiples of 2 (including 0).') r)Ma3FL0;  
    end G0CW}e@)  
    [u =+3b  
    if any(m>n) 8+~ >E  
        error('zernfun:MlessthanN', ... 6gL #C&  
              'Each M must be less than or equal to its corresponding N.') S.mG?zbw  
    end #Vnkvvv  
    5GI,o|[s6  
    if any( r>1 | r<0 ) pI1-cV,`  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') x!?u^  
    end $POu\TO  
    WltQ63u  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) qFicBpB  
        error('zernfun:RTHvector','R and THETA must be vectors.') HCIU!4rH  
    end ]tim,7s  
    `}D,5^9]  
    r = r(:); c/:b.>W  
    theta = theta(:); ])[[ V!1  
    length_r = length(r); Z]A{ d[  
    if length_r~=length(theta) 0%32=k7O[  
        error('zernfun:RTHlength', ... 46}g7skD  
              'The number of R- and THETA-values must be equal.') ^6jV_QM#  
    end AgWa{.`f:  
    H[NSqu.s  
    % Check normalization: /Y/UM3/  
    % -------------------- ](Xb _xMf  
    if nargin==5 && ischar(nflag) j:Xq1f6a  
        isnorm = strcmpi(nflag,'norm'); eln)BW#  
        if ~isnorm w_aknt T  
            error('zernfun:normalization','Unrecognized normalization flag.') m~w[~flgZ  
        end b10cuy|a/X  
    else w0[6t#$F  
        isnorm = false; N,<uf@LQ  
    end ({ +!`}GY  
    9# 23FK  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1m'k|Ka  
    % Compute the Zernike Polynomials 6{@w="VT  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +Te\H  
    T tfo^ksw  
    % Determine the required powers of r: 2VPdw@"~}  
    % ----------------------------------- ud63f` W]4  
    m_abs = abs(m); 0B[="rTS7#  
    rpowers = []; ~jWn4 \  
    for j = 1:length(n) R]JT&p|w.1  
        rpowers = [rpowers m_abs(j):2:n(j)]; vRznw&^E  
    end pg6cF  
    rpowers = unique(rpowers); :>rkG?NfL  
    g6y B6vk  
    % Pre-compute the values of r raised to the required powers, ?L x24*5%  
    % and compile them in a matrix: kF3k7,.8&  
    % ----------------------------- e- ~N"  
    if rpowers(1)==0 dydc}n  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~]nRV *^  
        rpowern = cat(2,rpowern{:}); .nO\kgoK  
        rpowern = [ones(length_r,1) rpowern]; biLs+\C  
    else *~2,/D  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Tg7an&#  
        rpowern = cat(2,rpowern{:}); $ux,9H'[  
    end q'+)t7!  
    #9=Vg  
    % Compute the values of the polynomials: pXtl 6K%  
    % -------------------------------------- #./fY;:cj  
    y = zeros(length_r,length(n)); 4aug{}h("  
    for j = 1:length(n) G5{T5#  
        s = 0:(n(j)-m_abs(j))/2; J; S (>c  
        pows = n(j):-2:m_abs(j); Z3%}ajPu[  
        for k = length(s):-1:1 l(yZO$  
            p = (1-2*mod(s(k),2))* ... J.3u^~zy  
                       prod(2:(n(j)-s(k)))/              ... _PPy44r2  
                       prod(2:s(k))/                     ... [RS|gem`  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... B[qzUD*P_n  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Lk|hQ  
            idx = (pows(k)==rpowers); .4S.>~^7  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 2Zm0qJ  
        end ;[(oaK@+n  
         O],T,Z?z  
        if isnorm 9U7nKJ+iby  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2v:]tj  
        end 3W V"U  
    end GL&y@6  
    % END: Compute the Zernike Polynomials Z~GL5]S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <xup'n^7C  
    -Mi p,EO  
    % Compute the Zernike functions: 4d"r^y'  
    % ------------------------------ /pm]BC  
    idx_pos = m>0; \TIT:1  
    idx_neg = m<0; }#3V+X  
    5CuuG<0  
    z = y; y~(h>gi,x  
    if any(idx_pos) 2{D{sa  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ky8_UnaO  
    end rUTcpGH  
    if any(idx_neg) mD/9J5:  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 02Y]`CXj  
    end Y21g{$~Q{  
    w?3p';C  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) LuNc, n%  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. i3dkYevs?  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated -] LY,M  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive B#exHf8  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, AmvEf  
    %   and THETA is a vector of angles.  R and THETA must have the same )}g(b=  
    %   length.  The output Z is a matrix with one column for every P-value, )5rb&M}  
    %   and one row for every (R,THETA) pair. %fc !2E9|  
    % c7<wZ  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike oOnop-z7  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) C](f>)Dz /  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) F7 5#*  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 mGtdO/C#B  
    %   for all p. I*o()  
    % \jh'9\  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ? 8)'oMD  
    %   Zernike functions (order N<=7).  In some disciplines it is Hek*R?M|  
    %   traditional to label the first 36 functions using a single mode !-ok"k0,u  
    %   number P instead of separate numbers for the order N and azimuthal eS{!)j_^  
    %   frequency M. yu;+o3WlK  
    % b v G/|U  
    %   Example: cq5jPZ}  
    % ^b/ Z)3  
    %       % Display the first 16 Zernike functions YO#M/%^j  
    %       x = -1:0.01:1; r/4``shg  
    %       [X,Y] = meshgrid(x,x); WM Fb4SUR  
    %       [theta,r] = cart2pol(X,Y); !_"@^?,q  
    %       idx = r<=1; H]P. x!I  
    %       p = 0:15; * ;-*x6  
    %       z = nan(size(X)); M.Y~1c4f  
    %       y = zernfun2(p,r(idx),theta(idx)); 3?[dE<  
    %       figure('Units','normalized') Y}x>t* I  
    %       for k = 1:length(p) cU RkP`  
    %           z(idx) = y(:,k); bmJ5MF]_fG  
    %           subplot(4,4,k) ;QWIsVz  
    %           pcolor(x,x,z), shading interp MPCBT!o4Z  
    %           set(gca,'XTick',[],'YTick',[]) 3Iua*#<m,  
    %           axis square (gEBOol  
    %           title(['Z_{' num2str(p(k)) '}']) c(J!~7  
    %       end M V<^!W  
    % N+++4;  
    %   See also ZERNPOL, ZERNFUN. ^2+yHw  
    E4xj?m^(y=  
    %   Paul Fricker 11/13/2006 .|hf\1_J  
    Hv!U| L  
    Mc=$/ o  
    % Check and prepare the inputs: LyZ.l*h%=m  
    % ----------------------------- S-Wzour,  
    if min(size(p))~=1 b$4"i XSQ  
        error('zernfun2:Pvector','Input P must be vector.') $g/SWq  
    end FR$:"  
    Cf TfL3(J  
    if any(p)>35 !5.8]v  
        error('zernfun2:P36', ... 8?J&`e/  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... E'G4Y-  
               '(P = 0 to 35).']) ?!;7:VIE  
    end mlixIW2  
    A$<.a'&T!  
    % Get the order and frequency corresonding to the function number: 9zZr^{lUl  
    % ---------------------------------------------------------------- lH-/L(h2  
    p = p(:); ?6yjy<D)$e  
    n = ceil((-3+sqrt(9+8*p))/2); lm!.W5-l  
    m = 2*p - n.*(n+2); rv &<{@AS~  
    >CrA;\l  
    % Pass the inputs to the function ZERNFUN: c0PIc^R(@  
    % ---------------------------------------- , 0imiv  
    switch nargin ,#Iu 7di  
        case 3 GYJ80k|  
            z = zernfun(n,m,r,theta); UADFnwR[R  
        case 4 jNTjSX  
            z = zernfun(n,m,r,theta,nflag); Q 7   
        otherwise fhar&\;S  
            error('zernfun2:nargin','Incorrect number of inputs.') DAS/43\  
    end wN`jE0 {  
    e91aK  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) >*]Hq.&8  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 4xk|F'6K  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Ey_" ~OB  
    %   order N and frequency M, evaluated at R.  N is a vector of g}f`,r9  
    %   positive integers (including 0), and M is a vector with the *FC=X)_&W  
    %   same number of elements as N.  Each element k of M must be a L%BNz3:Dt  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) k40* e\  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 2r!s*b\Ix  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix <0H"|:W>I]  
    %   with one column for every (N,M) pair, and one row for every AmaT0tzJC  
    %   element in R. 8)O[Aq::  
    % xgpi-l  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- vI2^tX 9  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is crqpV F]1]  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to :|_'fNd+!  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 \Kl+ 5%L  
    %   for all [n,m]. cV 5CaaL  
    % ~p1j`r;  
    %   The radial Zernike polynomials are the radial portion of the dls ss\c^M  
    %   Zernike functions, which are an orthogonal basis on the unit ]vgB4~4#LP  
    %   circle.  The series representation of the radial Zernike *RXbc~ H  
    %   polynomials is LJ*q1 ;<E  
    % JQV%fTHS  
    %          (n-m)/2 vWRju*Z&  
    %            __ IIg^FZ*]_  
    %    m      \       s                                          n-2s O$IEn/%+  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r l% ?T2Fm3>  
    %    n      s=0 OlAs'TE^  
    % ,=tD8@a<  
    %   The following table shows the first 12 polynomials. Yj)#k)x  
    % ? i( %  
    %       n    m    Zernike polynomial    Normalization l7W 6qNB  
    %       --------------------------------------------- y$@ZN~8  
    %       0    0    1                        sqrt(2) )#.<]&P}  
    %       1    1    r                           2 U4gF(Q  
    %       2    0    2*r^2 - 1                sqrt(6) hv8P4"i v  
    %       2    2    r^2                      sqrt(6) Fb^:V4<T  
    %       3    1    3*r^3 - 2*r              sqrt(8) hJDi7P  
    %       3    3    r^3                      sqrt(8) x*?x=^I{  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Pm lx8@D  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) T'4z=Z]w  
    %       4    4    r^4                      sqrt(10) Hj:r[/  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) T(e!_VY|m  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) c}y [[EX  
    %       5    5    r^5                      sqrt(12) FP;Ccl"s  
    %       --------------------------------------------- &m|wH4\  
    % }&n<uUDH  
    %   Example: lD"(MQV@0  
    % hg+X(0  
    %       % Display three example Zernike radial polynomials }"=AG  
    %       r = 0:0.01:1; *tgnYa[l  
    %       n = [3 2 5]; 3~}uqaGt  
    %       m = [1 2 1]; *Txl+zTY  
    %       z = zernpol(n,m,r); VwOW=4`6  
    %       figure dZi(&s  
    %       plot(r,z) Au4yBm u  
    %       grid on J]&y$?C  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') G`\f  
    % 0TGLM#{  
    %   See also ZERNFUN, ZERNFUN2. XVKfl3'%  
    E_8\f_%wK  
    % A note on the algorithm. 6`v7c!7  
    % ------------------------ 1_\;- !t  
    % The radial Zernike polynomials are computed using the series 4g : >[q  
    % representation shown in the Help section above. For many special CAcS~ "  
    % functions, direct evaluation using the series representation can e'0{?B  
    % produce poor numerical results (floating point errors), because e XfZ5(na  
    % the summation often involves computing small differences between 5dB'&8DX  
    % large successive terms in the series. (In such cases, the functions ai nG6Y<O`  
    % are often evaluated using alternative methods such as recurrence %n hm  
    % relations: see the Legendre functions, for example). For the Zernike 5m9*85Ib  
    % polynomials, however, this problem does not arise, because the _io+YzS  
    % polynomials are evaluated over the finite domain r = (0,1), and (*oL+ef-C  
    % because the coefficients for a given polynomial are generally all iMs5zf <M  
    % of similar magnitude. =$nB/K,8AX  
    % h"_~7 jq"  
    % ZERNPOL has been written using a vectorized implementation: multiple 9(6I<]#  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] w:?oTuw  
    % values can be passed as inputs) for a vector of points R.  To achieve \hhmVt@@  
    % this vectorization most efficiently, the algorithm in ZERNPOL >y[oP!-|P  
    % involves pre-determining all the powers p of R that are required to L{(QpgHZ  
    % compute the outputs, and then compiling the {R^p} into a single ?r?jl;A&  
    % matrix.  This avoids any redundant computation of the R^p, and tQ H+)*  
    % minimizes the sizes of certain intermediate variables. ^4,a8`  
    % (cN}Epi(D  
    %   Paul Fricker 11/13/2006 iVG-_RsKK  
    hi0R.V&  
    _>9.v%5cs(  
    % Check and prepare the inputs: | fSe>uVZ  
    % ----------------------------- L2, 1Kt7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |37 g ~  
        error('zernpol:NMvectors','N and M must be vectors.') Nkp)Ax&  
    end wc!onZX5  
     w~ [b*$  
    if length(n)~=length(m) xA9:*>+>  
        error('zernpol:NMlength','N and M must be the same length.')  b^p"|L  
    end h=(DX5:A  
    5g9; +}X;  
    n = n(:); # g_Bx  
    m = m(:); /w]!wM  
    length_n = length(n); lKlU-4  
    NMww>80  
    if any(mod(n-m,2)) 7c~u=U"  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') FIbp"~  
    end 3"G>>nC&  
    de>v  
    if any(m<0) CE"JS-S?  
        error('zernpol:Mpositive','All M must be positive.') Ma+$g1$  
    end |]aE<`D  
    M?[h0{^K  
    if any(m>n) m+#iR}*1L  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') zkO<-w  
    end xCYE B}o9r  
    i:Zm*+Gi  
    if any( r>1 | r<0 ) F35#dIs`&  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') $*kxTiG!7  
    end %zSuK8kxV  
    8 O67  
    if ~any(size(r)==1) ;q:jl~  
        error('zernpol:Rvector','R must be a vector.') J]q%gcM  
    end Y}[c^$S  
    %~jkB.\* )  
    r = r(:); l2&`J_"  
    length_r = length(r); SL,p36N  
    MdXchO-Lyc  
    if nargin==4 4WE6fJ2X  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); -CRra EXf8  
        if ~isnorm #rY sj-2  
            error('zernpol:normalization','Unrecognized normalization flag.') ]>+PnP35G  
        end JXw^/Y$  
    else gl]E_%tH  
        isnorm = false; aDehqP6vf  
    end yB3;  
    NHl|x4Zpw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A.D{.a  
    % Compute the Zernike Polynomials !wWJ^Oz=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E"L2&.  
    EaWS. eK  
    % Determine the required powers of r: z.CywME<)t  
    % ----------------------------------- cW{1 Pz^_  
    rpowers = []; e5OsI Vtjr  
    for j = 1:length(n) qVdwfT{1J  
        rpowers = [rpowers m(j):2:n(j)]; 0v]?6wX  
    end z.6$W^  
    rpowers = unique(rpowers); |Xw/E)jA  
    _ ib"b#  
    % Pre-compute the values of r raised to the required powers, %J8|zKT5t  
    % and compile them in a matrix: <&!v1yR  
    % ----------------------------- jr)7kP@  
    if rpowers(1)==0 r)T:7zy  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <HRBMSR+  
        rpowern = cat(2,rpowern{:}); <BW[1h1k5_  
        rpowern = [ones(length_r,1) rpowern]; ;P;((2_X9  
    else 9m-)Xdoy  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9<vWcq*4  
        rpowern = cat(2,rpowern{:}); TI !a)X  
    end 0Hs|*:Y1D  
    6O@J7P  
    % Compute the values of the polynomials: IQ!\w-  
    % --------------------------------------  `juLQH  
    z = zeros(length_r,length_n); rS0DSGDq  
    for j = 1:length_n x)UwV  
        s = 0:(n(j)-m(j))/2; siTX_`0  
        pows = n(j):-2:m(j); Pub0IIs  
        for k = length(s):-1:1 h!#:$|Q  
            p = (1-2*mod(s(k),2))* ... <jS~ WI@  
                       prod(2:(n(j)-s(k)))/          ... U;n*j3wT  
                       prod(2:s(k))/                 ... vfNAs>Xg"  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... fGv#s X  
                       prod(2:((n(j)+m(j))/2-s(k))); .0G6flD   
            idx = (pows(k)==rpowers); ~Xlrvb}LP  
            z(:,j) = z(:,j) + p*rpowern(:,idx); !;Jmg  
        end j&UMjI9[  
         [I:KpAd/  
        if isnorm g}f9dB,F  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); {T'GQz+R"  
        end m'-|{c  
    end F3oQ^;xB  
    !m(4F(!"h  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  saK;[&I*  
    .;Y x*]  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。  Q9y*:  
    hH4o;0rqJ  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)