切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11115阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 zk8 )!Af  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! hvw9i7#  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 /sKL|]i=  
    function z = zernfun(n,m,r,theta,nflag) &R72$H9C8i  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. [MTd<@  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N |RiJ>/ MK\  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 1VX3pkUET  
    %   unit circle.  N is a vector of positive integers (including 0), and xPm. TPj  
    %   M is a vector with the same number of elements as N.  Each element ,&t+D-s<f  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) EMmgX*iu@  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, *DF3juf~  
    %   and THETA is a vector of angles.  R and THETA must have the same Y P2VSK2Q  
    %   length.  The output Z is a matrix with one column for every (N,M) lYx_8x2  
    %   pair, and one row for every (R,THETA) pair. 03 @a G  
    % RPz[3y  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike \HeJc:^  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), d/7fJ8y8  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Pp8S\%z~h  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +vh|m5"7I7  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized i 9) G t  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. OpUfK4U)  
    % #aP#r4$  
    %   The Zernike functions are an orthogonal basis on the unit circle. }\"EI<$s  
    %   They are used in disciplines such as astronomy, optics, and 7*5B  
    %   optometry to describe functions on a circular domain. jdxHWkQ   
    %  q#K{~:  
    %   The following table lists the first 15 Zernike functions. _\WR3Q!V  
    % A WR :~{  
    %       n    m    Zernike function           Normalization >f]/VaMH{  
    %       -------------------------------------------------- AjVC{\Ik  
    %       0    0    1                                 1 <XdnVe1  
    %       1    1    r * cos(theta)                    2 ,-pE/3|(  
    %       1   -1    r * sin(theta)                    2 Mg2+H+C~:  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) |p|Zv H  
    %       2    0    (2*r^2 - 1)                    sqrt(3) )(}[S:`  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) boo361L  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) e HphM;C  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) F5o8@ Ib]:  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ; vH2r~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) C(N' =-;Kl  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) V"/.An|  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `a83RX_\  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) yZleots1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |a(KVo  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ]>n{~4a  
    %       -------------------------------------------------- 02J/=AC5  
    % -$d?e%}#  
    %   Example 1: O<m46mwM  
    % 1W USp;JMl  
    %       % Display the Zernike function Z(n=5,m=1) h3MdQlJ&  
    %       x = -1:0.01:1; TDh)}Ms  
    %       [X,Y] = meshgrid(x,x); "Lp.*o  
    %       [theta,r] = cart2pol(X,Y); 'n &p5%  
    %       idx = r<=1; t>bzo6cj  
    %       z = nan(size(X)); iQG!-.aX  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); x93@[B*%  
    %       figure .n 9.y8C  
    %       pcolor(x,x,z), shading interp ;d?BVe?  
    %       axis square, colorbar 'P.y?  
    %       title('Zernike function Z_5^1(r,\theta)') >q}3#TvP@  
    % i).%GMv*r  
    %   Example 2: y,D9O/VP  
    % X`8<;l  
    %       % Display the first 10 Zernike functions '}OdF*L  
    %       x = -1:0.01:1; '@n"'vks(\  
    %       [X,Y] = meshgrid(x,x); )UR$VL  
    %       [theta,r] = cart2pol(X,Y); omfX2Oa2  
    %       idx = r<=1; FnGKt\  
    %       z = nan(size(X)); uo:RNokjJ  
    %       n = [0  1  1  2  2  2  3  3  3  3]; e@'x7Zzh  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; |IAx!Z-P  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ,ri&zbB  
    %       y = zernfun(n,m,r(idx),theta(idx)); ?^&ih:"  
    %       figure('Units','normalized') ^ D0"m>3r  
    %       for k = 1:10 gwj?.7N*k  
    %           z(idx) = y(:,k); </I%VHP,[f  
    %           subplot(4,7,Nplot(k)) UylIxd  
    %           pcolor(x,x,z), shading interp m$8siF{<q  
    %           set(gca,'XTick',[],'YTick',[]) s< tG  
    %           axis square )]>t(  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) v^9eTeFO  
    %       end Es=G' au  
    % *bK=<{d1P  
    %   See also ZERNPOL, ZERNFUN2. }?m0bM  
    rz|T2K  
    %   Paul Fricker 11/13/2006 d?oXz|;H(  
    pSx5ume95"  
    5gz^3R|`f  
    % Check and prepare the inputs: bJ2-lU% ;2  
    % ----------------------------- xF_u:}7`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h,[L6-n  
        error('zernfun:NMvectors','N and M must be vectors.') xU;SRB   
    end Ar%*NxX  
    XT^=v6^H  
    if length(n)~=length(m) eD*764tG  
        error('zernfun:NMlength','N and M must be the same length.') 5<Kt"5Z%7  
    end ^#5'` #t  
    !.h{/37]  
    n = n(:); r\m{;Z#LJm  
    m = m(:); < F5VJ  
    if any(mod(n-m,2)) &v:zS$m>  
        error('zernfun:NMmultiplesof2', ... <:-4GJH=  
              'All N and M must differ by multiples of 2 (including 0).') )Kx.v'  
    end .-$3I|}X=  
    6*,55,y  
    if any(m>n) ?y|&Mz'XJ(  
        error('zernfun:MlessthanN', ... C:1(<1K  
              'Each M must be less than or equal to its corresponding N.') @3n!5XM{EE  
    end N[@~q~v  
    DY`0 `T  
    if any( r>1 | r<0 ) U&"L9o`2  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') +v/y{8Fu  
    end ;(K/O?nrJ  
    uGAQt9$>_  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) TTG=7x:3  
        error('zernfun:RTHvector','R and THETA must be vectors.') f@sC~A. 9\  
    end - ~z@W3\  
    7sVM[lr<  
    r = r(:); 1F.._5_"]  
    theta = theta(:); kR+}7G+  
    length_r = length(r); z ,;XWv?  
    if length_r~=length(theta) 'e:4  
        error('zernfun:RTHlength', ... }w)}=WmD  
              'The number of R- and THETA-values must be equal.') KXMf2)pa  
    end **P P  
    L#`X ]E  
    % Check normalization: @<DRFP  
    % -------------------- vU *: M8k  
    if nargin==5 && ischar(nflag) 6$#,$aO  
        isnorm = strcmpi(nflag,'norm'); .i\ FK@2  
        if ~isnorm c Lyf[z)W  
            error('zernfun:normalization','Unrecognized normalization flag.') $.C\H,H  
        end / 0$ !.  
    else c RI2$|  
        isnorm = false; f['I4 /o  
    end @o[ZJ4>*  
     LcLHX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kRggVRM  
    % Compute the Zernike Polynomials N5 sR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #Q2s3 "X[  
    U ]pE{ ^\w  
    % Determine the required powers of r: Xf ^_y(?  
    % ----------------------------------- /%&5Iq\:vA  
    m_abs = abs(m); 8Z}%,G*n  
    rpowers = []; g)f& mQ)  
    for j = 1:length(n) dLqBu~*  
        rpowers = [rpowers m_abs(j):2:n(j)]; +M.BMS2A<l  
    end L%[>z'Zp  
    rpowers = unique(rpowers); RH,x);J|  
    ~ !ei]UP  
    % Pre-compute the values of r raised to the required powers, 1.%|Er 4  
    % and compile them in a matrix: m p_7$#{l  
    % ----------------------------- lDBAei3iB  
    if rpowers(1)==0 'Rnzu0<lF  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); = 1veO0  
        rpowern = cat(2,rpowern{:}); Ot.v%D`e 5  
        rpowern = [ones(length_r,1) rpowern]; xd `MEOY  
    else UNSXr`9  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); L5UZ@R,  
        rpowern = cat(2,rpowern{:}); RKrNmD*rk*  
    end I>rTqOK  
    U8aVI  
    % Compute the values of the polynomials: 1q=Q/L4P  
    % -------------------------------------- ;E{jn4B'  
    y = zeros(length_r,length(n)); cK[=IE5  
    for j = 1:length(n) 7oZPb  
        s = 0:(n(j)-m_abs(j))/2; /0>'ZzjV,  
        pows = n(j):-2:m_abs(j); XD8Cf!  
        for k = length(s):-1:1 ?(zCv9Pg  
            p = (1-2*mod(s(k),2))* ... =84EX<B  
                       prod(2:(n(j)-s(k)))/              ... >/RFff]Fh0  
                       prod(2:s(k))/                     ... /\Cf*cJ  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... He8]Eb  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); kE6/d,  
            idx = (pows(k)==rpowers); erv94acq  
            y(:,j) = y(:,j) + p*rpowern(:,idx); VJ h]j (  
        end pC,Z=+:  
         Rkg)yme!N  
        if isnorm @}PXBU   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Fa`%MR1  
        end \{Q_\s&)  
    end Y8%l)g  
    % END: Compute the Zernike Polynomials `uLr^G=;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c ?<)!9:  
    ;t9!< L  
    % Compute the Zernike functions: L[:A Ue  
    % ------------------------------ :G98uX t  
    idx_pos = m>0; A ?tna6W:  
    idx_neg = m<0; g :B4zlKG  
    gP|-A`y  
    z = y; s% rmfIp"  
    if any(idx_pos) AMB{Fssz  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); myVa5m!7Q  
    end 0datzEns`  
    if any(idx_neg) #?\(l%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ml|FdQ  
    end t@R n#(~"  
    UsA fZg8  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) x'?p?u~[  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. wjH1Ombt  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated yK&  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 7*M-?  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, I YtiX  
    %   and THETA is a vector of angles.  R and THETA must have the same N3lz-vP-  
    %   length.  The output Z is a matrix with one column for every P-value, Y j bp:  
    %   and one row for every (R,THETA) pair. Hn(Eut7%  
    % 0#=xUk#LP`  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 7@g0>1Fz  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 8PVjNS/  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) pl[@U<8aw  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 D/"velV  
    %   for all p. S,5>/'fy0  
    % |ssl0/nk  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 LauGT* z!  
    %   Zernike functions (order N<=7).  In some disciplines it is u23_*W\  
    %   traditional to label the first 36 functions using a single mode zx$1.IM"4  
    %   number P instead of separate numbers for the order N and azimuthal j[R.UB3J  
    %   frequency M. V'>Plb.A  
    % dG0zA D  
    %   Example: cK\ u  
    % i5Sya]FN  
    %       % Display the first 16 Zernike functions o o'7  
    %       x = -1:0.01:1; djnES,^%9  
    %       [X,Y] = meshgrid(x,x); WvArppANo  
    %       [theta,r] = cart2pol(X,Y); #Ff8_xhP2  
    %       idx = r<=1; ?B e}{Qqlg  
    %       p = 0:15; opm_|0  
    %       z = nan(size(X)); &b^~0Z  
    %       y = zernfun2(p,r(idx),theta(idx)); (K8Ob3zN_  
    %       figure('Units','normalized') <'UGYY\wg0  
    %       for k = 1:length(p) :2M&C+f[  
    %           z(idx) = y(:,k); K^@9\cl^  
    %           subplot(4,4,k) })70S8k  
    %           pcolor(x,x,z), shading interp YU8]W%  
    %           set(gca,'XTick',[],'YTick',[]) ilK*Xo  
    %           axis square N>*+Wg$Ne  
    %           title(['Z_{' num2str(p(k)) '}']) XKws_  
    %       end Pf,@U'f|  
    % b+:J?MR;}  
    %   See also ZERNPOL, ZERNFUN. /RqWrpzx@  
    H I_uR$m  
    %   Paul Fricker 11/13/2006 = &pLlG  
    JrY*K|YdW  
    rq!*unJ  
    % Check and prepare the inputs: NZ i3U  
    % ----------------------------- $Z;/Sh  
    if min(size(p))~=1 2IM 31 .  
        error('zernfun2:Pvector','Input P must be vector.') :8oJG8WH  
    end %c\k LSe  
    w$9LcN  
    if any(p)>35 3 1-p/  
        error('zernfun2:P36', ... p$|7T31 *  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... t>?tWSNf  
               '(P = 0 to 35).']) MaHP):~  
    end Ky%lu^  
    51y"#\7  
    % Get the order and frequency corresonding to the function number: #I453  
    % ---------------------------------------------------------------- wz69Yw7  
    p = p(:); !YjxCx  
    n = ceil((-3+sqrt(9+8*p))/2); VSDua.  
    m = 2*p - n.*(n+2); O HpV%8`  
    EI 35&7(  
    % Pass the inputs to the function ZERNFUN: 4RtAwB  
    % ---------------------------------------- ML\>TDt  
    switch nargin T{3nIF  
        case 3 7g"u)L&32  
            z = zernfun(n,m,r,theta); kq5X<'MM9N  
        case 4 ]r|oNGD)G  
            z = zernfun(n,m,r,theta,nflag); \298SH(!7  
        otherwise /IRXk[  
            error('zernfun2:nargin','Incorrect number of inputs.') W!? h2[  
    end U3V5Jo r#  
    <OGG(dI  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) PT6]qS'1  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. nlNk  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of .N qXdari  
    %   order N and frequency M, evaluated at R.  N is a vector of vNv!fkl  
    %   positive integers (including 0), and M is a vector with the Y"MHs0O5>  
    %   same number of elements as N.  Each element k of M must be a z6Ob X  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) a^p#M  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is  @;bBc  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ;Nj9,Va(t  
    %   with one column for every (N,M) pair, and one row for every 8 XB[CbO  
    %   element in R. t+8e?="  
    % V9<`?[Usv  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- T^1 Z_|A  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 'f-r 6'_ZX  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to r\;fyeH  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 K"0IWA  
    %   for all [n,m]. (jc& Fk  
    % {p84fR1P  
    %   The radial Zernike polynomials are the radial portion of the XnQR(r)pR2  
    %   Zernike functions, which are an orthogonal basis on the unit ;XurH%Mg  
    %   circle.  The series representation of the radial Zernike Kgu8E:nL  
    %   polynomials is CBEf;I g  
    % XVN`J]XHk  
    %          (n-m)/2 !5o j~H  
    %            __ }xk(aM_  
    %    m      \       s                                          n-2s __g k:a>oQ  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r }uZs)UQ|$  
    %    n      s=0 RSp wU;o6z  
    % >[fu&r1  
    %   The following table shows the first 12 polynomials. [k6I#v<&  
    % nF,F#V8l  
    %       n    m    Zernike polynomial    Normalization SMX]JZmH  
    %       --------------------------------------------- Y_JQPup  
    %       0    0    1                        sqrt(2) e7RgA1  
    %       1    1    r                           2 c1yRy|  
    %       2    0    2*r^2 - 1                sqrt(6) <&3P\aM>  
    %       2    2    r^2                      sqrt(6) $a M5jH<  
    %       3    1    3*r^3 - 2*r              sqrt(8) 6Wu*zY_+  
    %       3    3    r^3                      sqrt(8) JLoF!MK}  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) <q'l7 S  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) zt(lV  
    %       4    4    r^4                      sqrt(10) /;*_[g5*i  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ,CfslhO{j  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 51jgx,-|$  
    %       5    5    r^5                      sqrt(12) ^+_rv  
    %       --------------------------------------------- ,vR?iNd:q[  
    % K~TwyB-h  
    %   Example: !D#"+&&G8  
    % h_%q`y,  
    %       % Display three example Zernike radial polynomials 1M]=Nv  
    %       r = 0:0.01:1; SYCL\b   
    %       n = [3 2 5]; V?uT5.B2  
    %       m = [1 2 1]; 4S<M9A}  
    %       z = zernpol(n,m,r); W [ l  
    %       figure >JyS@j}  
    %       plot(r,z) 7D6`1 &  
    %       grid on K^u,B3  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') K-0=#6?y4  
    % u 272)@R  
    %   See also ZERNFUN, ZERNFUN2. !g@K y$  
    7Sx|n}a-3  
    % A note on the algorithm. =;rLv7(a  
    % ------------------------ 0:$ }~T9T  
    % The radial Zernike polynomials are computed using the series tT}b_r7h(1  
    % representation shown in the Help section above. For many special :o s8"  
    % functions, direct evaluation using the series representation can B9maz"lJ  
    % produce poor numerical results (floating point errors), because >JpBX+]5m  
    % the summation often involves computing small differences between ;c!> =  
    % large successive terms in the series. (In such cases, the functions bA^uzE  
    % are often evaluated using alternative methods such as recurrence a:BW*Hy{\  
    % relations: see the Legendre functions, for example). For the Zernike |P >"a`  
    % polynomials, however, this problem does not arise, because the OQ-) 4Uk}  
    % polynomials are evaluated over the finite domain r = (0,1), and m$T5lKn}U?  
    % because the coefficients for a given polynomial are generally all fN&,.UB^p  
    % of similar magnitude. yw^Pok5.  
    % $n\Pw  
    % ZERNPOL has been written using a vectorized implementation: multiple J(7#yg%5  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] daE.y_9y  
    % values can be passed as inputs) for a vector of points R.  To achieve 3s6obw$ki  
    % this vectorization most efficiently, the algorithm in ZERNPOL 7%*#M#(T  
    % involves pre-determining all the powers p of R that are required to 9@ k8$@  
    % compute the outputs, and then compiling the {R^p} into a single 9&lemz  
    % matrix.  This avoids any redundant computation of the R^p, and )~ ( *q  
    % minimizes the sizes of certain intermediate variables. /ZvP.VW&  
    % ,aP6ct  
    %   Paul Fricker 11/13/2006 B7%K}|Qg  
    1d5%(:@  
    Sdu\4;(  
    % Check and prepare the inputs: 8y LcTA$T  
    % ----------------------------- d_9 C m@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) gv*b`cl  
        error('zernpol:NMvectors','N and M must be vectors.') )w7vE\n3  
    end q$:1Xkl  
    TM)INo^  
    if length(n)~=length(m) AO-5>r  
        error('zernpol:NMlength','N and M must be the same length.') F s/CW\  
    end +kL7"  
    W A/dt2D|  
    n = n(:); Hjm> I'9  
    m = m(:); ^ZwZze:2  
    length_n = length(n); 5YY5t^T  
    sxNf"C=-.  
    if any(mod(n-m,2)) Y2`sL,'h  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') r2-iISxg+  
    end dyQ7@K.E  
    gIB3DuUo  
    if any(m<0) ?;XO1cs  
        error('zernpol:Mpositive','All M must be positive.') |E8sw a  
    end %2QGbnt_*  
    m Q2i$ 0u  
    if any(m>n) DQG%`-J  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ]LvP)0=  
    end 6.@.k  
    =o#Z?Bn5  
    if any( r>1 | r<0 ) E7X6RB b  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') cYSn   
    end F2N"aQ&  
    'O<b'}-A  
    if ~any(size(r)==1) G5}_NS/  
        error('zernpol:Rvector','R must be a vector.') kckRHbeU  
    end S?688  
    8eXe b|?J  
    r = r(:); lC5zqyG  
    length_r = length(r); Z(MZbzY7Hq  
    R"cQyG4  
    if nargin==4 zluq2r  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 9UM)"I&k  
        if ~isnorm t&?jJ7 (&8  
            error('zernpol:normalization','Unrecognized normalization flag.') L=lSW7R  
        end ;Q{D]4  
    else FL mD?nw  
        isnorm = false; W@R7CQE@  
    end UC`h o%OBF  
    \K$\-]N+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :8yebOs   
    % Compute the Zernike Polynomials M5I`i{Gw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F_@B ` ,  
    x6cG'3&T  
    % Determine the required powers of r: }qWnn>h9xv  
    % ----------------------------------- U$y 9f  
    rpowers = []; bxE~tsM"@Y  
    for j = 1:length(n) P zJ(Q  
        rpowers = [rpowers m(j):2:n(j)]; Ii0\Skb  
    end O=%Ht-kOc  
    rpowers = unique(rpowers); mV}bQ^*?Z  
    SdnnXEB7  
    % Pre-compute the values of r raised to the required powers, , z\Qd07u  
    % and compile them in a matrix: @b(@`yz.a  
    % ----------------------------- ilL%  
    if rpowers(1)==0 h0F=5| B  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); gS FZ>v*6  
        rpowern = cat(2,rpowern{:}); =z. hJu  
        rpowern = [ones(length_r,1) rpowern]; ?`+VWa[,e  
    else ? dJd7+A  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); "`M~=RiI  
        rpowern = cat(2,rpowern{:}); -r *|N.5c  
    end `:&RB4Z  
    U$2Em0HO}  
    % Compute the values of the polynomials: 5( <O?#P  
    % -------------------------------------- "L.k m  
    z = zeros(length_r,length_n); C@a I*+@-"  
    for j = 1:length_n > TYDkEs0  
        s = 0:(n(j)-m(j))/2; Sh#N5kgD  
        pows = n(j):-2:m(j); HzM\<YD  
        for k = length(s):-1:1 eg;r38   
            p = (1-2*mod(s(k),2))* ... 4q .;\n  
                       prod(2:(n(j)-s(k)))/          ... f r~Eb'8  
                       prod(2:s(k))/                 ... 0(i3RPIj\  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... >vD}gGBe  
                       prod(2:((n(j)+m(j))/2-s(k))); c#x~x  
            idx = (pows(k)==rpowers); 0er| QC  
            z(:,j) = z(:,j) + p*rpowern(:,idx); j&Hui>~  
        end 82FEl~,^E  
         e6p3!)@P1  
        if isnorm k (AE%eA  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); faOiNR7;h  
        end GP+=b:C{E  
    end KTYjC\\G  
    $7YZ;=~B  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  3 ?gfDJfE  
    B}y#AVSA  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 1*#hIuoj'  
    @d5t%V\  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)