切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10439阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 >v_5xd9  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! O|&TL9:  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 <,X+`m&  
    function z = zernfun(n,m,r,theta,nflag) YaVc9du7  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. x$5nLS2.  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )47j8jL  
    %   and angular frequency M, evaluated at positions (R,THETA) on the LJNie*  
    %   unit circle.  N is a vector of positive integers (including 0), and gj egzKU  
    %   M is a vector with the same number of elements as N.  Each element mf]( 3ZL  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) rI^~9Rz  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ^z%o];  
    %   and THETA is a vector of angles.  R and THETA must have the same e7bT%h9i  
    %   length.  The output Z is a matrix with one column for every (N,M) >H1|c%w  
    %   pair, and one row for every (R,THETA) pair. af?\kBm  
    % _/]:=_bf_z  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4'{hI;&a&  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), rGn5Q V  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral _czbUl  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, QK3j_'F=E  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized nhQ44qRgQ  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 61+pryW%g  
    % Y0L5W;iM  
    %   The Zernike functions are an orthogonal basis on the unit circle. _5U%'\5s  
    %   They are used in disciplines such as astronomy, optics, and @1/}-.(n  
    %   optometry to describe functions on a circular domain. L=$?q/=-  
    % y800(z  
    %   The following table lists the first 15 Zernike functions. .i3lG( YG  
    % <(bCz>o|  
    %       n    m    Zernike function           Normalization *t?~)o7  
    %       -------------------------------------------------- "x.6W!  
    %       0    0    1                                 1 Y( V3P nH  
    %       1    1    r * cos(theta)                    2 yYG3/Z3u5  
    %       1   -1    r * sin(theta)                    2 zh{@? k  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) uzVG q!'H  
    %       2    0    (2*r^2 - 1)                    sqrt(3) |`k1zc)9  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 38*'8=Y#>  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 0?6 If+AC  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) {7K'<ti  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \=EY@ *=  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 3I;xU(rv  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) w]W`R.  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 38w.sceaT  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 0279g   
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (pT(&/\8  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) /jjW/ lr  
    %       -------------------------------------------------- xq Q~|  
    %  \8>  
    %   Example 1: 2|0Qk&  
    % }DDVGs[  
    %       % Display the Zernike function Z(n=5,m=1) R8=I)I-8  
    %       x = -1:0.01:1; SLQ\Y%F  
    %       [X,Y] = meshgrid(x,x); )p/=u@8_f  
    %       [theta,r] = cart2pol(X,Y); P|e:+G7  
    %       idx = r<=1; }&Wp3EWw  
    %       z = nan(size(X)); ;T5,T   
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); J$6-c' 8  
    %       figure H)`CncB  
    %       pcolor(x,x,z), shading interp |<j,Tr1[  
    %       axis square, colorbar H9Y2n 0  
    %       title('Zernike function Z_5^1(r,\theta)') VjA wn}eO  
    % v+!y;N;Q  
    %   Example 2: ]k ::J>84  
    %  .6O52E  
    %       % Display the first 10 Zernike functions >-_:*/66!  
    %       x = -1:0.01:1; ?q d,>  
    %       [X,Y] = meshgrid(x,x); Ie G7@  
    %       [theta,r] = cart2pol(X,Y); 4 |zdXS  
    %       idx = r<=1; )K>Eniou  
    %       z = nan(size(X)); laUu"cS  
    %       n = [0  1  1  2  2  2  3  3  3  3]; =_$XP   
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; =~GE?}.o  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; rxs~y{ Xi  
    %       y = zernfun(n,m,r(idx),theta(idx)); `y8 ?=  
    %       figure('Units','normalized') *3A3>Rwu  
    %       for k = 1:10 bx hPjAL  
    %           z(idx) = y(:,k); )z2|"Lp  
    %           subplot(4,7,Nplot(k)) G$?|S@I,  
    %           pcolor(x,x,z), shading interp Veb+^&  
    %           set(gca,'XTick',[],'YTick',[]) d] b~)!VW  
    %           axis square pY+.SuM  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 'GEBxNH:  
    %       end M!eoe5  
    % x4CtSGG85f  
    %   See also ZERNPOL, ZERNFUN2. -Z:]<;qU  
    'i@,~[Z4  
    %   Paul Fricker 11/13/2006 F^ I\X  
    ^=eq .(>  
    Wmzq  
    % Check and prepare the inputs: q+YuVQ-fx  
    % ----------------------------- E S#rs="  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) AddGB^7yl  
        error('zernfun:NMvectors','N and M must be vectors.') %v5)s(Yu  
    end XXa(305  
    iP<k1#k  
    if length(n)~=length(m) cvZni#o2)  
        error('zernfun:NMlength','N and M must be the same length.') *ZGX-+{  
    end `^v4zWDK  
    NJn&>/vM  
    n = n(:); 6BDt.bG  
    m = m(:); u~" siH  
    if any(mod(n-m,2)) k4S} #!  
        error('zernfun:NMmultiplesof2', ... W[@i;f^g  
              'All N and M must differ by multiples of 2 (including 0).') Gs+\D0o!  
    end 1*Sr5N[=  
    1|o$X  
    if any(m>n) r8IX/ ,  
        error('zernfun:MlessthanN', ... M,crz  
              'Each M must be less than or equal to its corresponding N.') ,VPbUo@  
    end \.c]kG>k-  
    /nc~T3j  
    if any( r>1 | r<0 ) RS'} nY}  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') |r5e{  
    end q\a[S*  
    }KK2WJp#M  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) XR|"dbZW.0  
        error('zernfun:RTHvector','R and THETA must be vectors.') }ppVR$7]0  
    end I^WIa"u_  
    UQ5BH%EPb  
    r = r(:); %PzQ\c  
    theta = theta(:); rFhW^fP/  
    length_r = length(r); o>2e !7  
    if length_r~=length(theta) _)Qy4[S=d  
        error('zernfun:RTHlength', ... -<_7\09  
              'The number of R- and THETA-values must be equal.') ?8Et[tFg  
    end L59bu/LfL  
    g]za"U|g  
    % Check normalization: \@i=)dA  
    % -------------------- \3r3{X _<`  
    if nargin==5 && ischar(nflag) "LOnDa7E^  
        isnorm = strcmpi(nflag,'norm'); 4RhR[  
        if ~isnorm z+jh ;!i  
            error('zernfun:normalization','Unrecognized normalization flag.') 4GVNw!V  
        end z/S,+!|z  
    else prZ55MS.  
        isnorm = false; WE")xhV6  
    end ?L=A2C\_-  
    ^OF5F8Tf/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  JX{KYU  
    % Compute the Zernike Polynomials ~wTX >qV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GJX4KA8J  
    a'uU,Eb}#w  
    % Determine the required powers of r: kBbl+1{H  
    % ----------------------------------- .!i0_Rv5x  
    m_abs = abs(m); [G a~%m  
    rpowers = []; sMH#BCC  
    for j = 1:length(n) ,<sm,!^<r  
        rpowers = [rpowers m_abs(j):2:n(j)]; " \:ced  
    end h4Ia>^@  
    rpowers = unique(rpowers); =O,JAR"ug  
    AliRpxxd  
    % Pre-compute the values of r raised to the required powers, ^/*KNnAWp  
    % and compile them in a matrix: 71O3O7  
    % ----------------------------- }kE87x'  
    if rpowers(1)==0 =2,0Wo]$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); `@|w>8bMz{  
        rpowern = cat(2,rpowern{:}); kg3ppt  
        rpowern = [ones(length_r,1) rpowern];  5@ foxI  
    else < A?<N?%o  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); J3G7zu8  
        rpowern = cat(2,rpowern{:}); Wt J{  
    end t8& q9$  
    t[EfOQ  
    % Compute the values of the polynomials: Wr>(#*r7q  
    % -------------------------------------- =Y9\DeIZ  
    y = zeros(length_r,length(n)); YUscz!rM  
    for j = 1:length(n) H] k'?;  
        s = 0:(n(j)-m_abs(j))/2; [T`}yb@  
        pows = n(j):-2:m_abs(j); S5_t1wqBJ  
        for k = length(s):-1:1 u g\w\b  
            p = (1-2*mod(s(k),2))* ... 5 lTD]d  
                       prod(2:(n(j)-s(k)))/              ... #dc1pfL!y{  
                       prod(2:s(k))/                     ... gDCOLDM  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... o9Sn*p-.  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); &aPl`"j  
            idx = (pows(k)==rpowers); MdC<4^|  
            y(:,j) = y(:,j) + p*rpowern(:,idx); xhw-2dl*H  
        end cS|VJWgTZ  
         ,+._;[k  
        if isnorm bU`=*  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2yKz-"E  
        end 5j{Np,K  
    end e"Rm_t  
    % END: Compute the Zernike Polynomials @u) 'yS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vG Vd  
    F Z!J  
    % Compute the Zernike functions: Ftv8@l  
    % ------------------------------ sG,+  
    idx_pos = m>0; mJC3@V s  
    idx_neg = m<0; rg5]&<Vq8  
    )NT5yF,m  
    z = y; 8$vK5Dnn8  
    if any(idx_pos) o>c ^aRZ{  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); d TGA5c  
    end KWhZ +i`  
    if any(idx_neg) T&xt` |  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); }Qrab#v  
    end k\N4@UK  
    (][LQ6Pc  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Ip?]K*sq  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. rt4Z;  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated lBA+zZ  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 9z ?7{2C  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, .L;@=Yg )  
    %   and THETA is a vector of angles.  R and THETA must have the same ;sPzOS9  
    %   length.  The output Z is a matrix with one column for every P-value, *'R#4@wmP  
    %   and one row for every (R,THETA) pair. M>l^%`  
    % H?yE3 w  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 2 x 4=  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) `v nJ4*  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) *'ZN:5%H  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 o-eKAkh  
    %   for all p. Hl7:*]l7b  
    % [-w@.^:]X  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 V#83!  
    %   Zernike functions (order N<=7).  In some disciplines it is {CUk1+  
    %   traditional to label the first 36 functions using a single mode $.K?N@(W  
    %   number P instead of separate numbers for the order N and azimuthal Lz4eh WntO  
    %   frequency M. u oVNK  
    % HGDV O Jq  
    %   Example: .36^[Jsz":  
    %  Mm= Mz  
    %       % Display the first 16 Zernike functions tRfm+hqRZ  
    %       x = -1:0.01:1; 4]XI"-M^D  
    %       [X,Y] = meshgrid(x,x); :q+N&j'3  
    %       [theta,r] = cart2pol(X,Y); >nn Y:7m  
    %       idx = r<=1; j"7 JLe*  
    %       p = 0:15; X K>&$<5{  
    %       z = nan(size(X)); G'#41>q+  
    %       y = zernfun2(p,r(idx),theta(idx)); jO'|mGUM  
    %       figure('Units','normalized') K5"sj|d&  
    %       for k = 1:length(p) G<qIY&D'  
    %           z(idx) = y(:,k); hW 2.8f$  
    %           subplot(4,4,k) Fhj8lVvk  
    %           pcolor(x,x,z), shading interp -{g~TUz  
    %           set(gca,'XTick',[],'YTick',[]) n:#TOU1ix<  
    %           axis square jqcz\n d  
    %           title(['Z_{' num2str(p(k)) '}']) cFZCf8:zB  
    %       end [CN$ScK,  
    % ,M6ZZ* ,e  
    %   See also ZERNPOL, ZERNFUN. ($!KzxF3  
    %mI~ =^za  
    %   Paul Fricker 11/13/2006 *\XH+/]+  
    m],Ud\  
    )0CQP  
    % Check and prepare the inputs: .v`b[4M4  
    % ----------------------------- xJ(:m<z  
    if min(size(p))~=1 Z<z;L<tJ 9  
        error('zernfun2:Pvector','Input P must be vector.') WeT* C  
    end .;I29yk\XS  
    _sMs}?^  
    if any(p)>35 dcq#TBo8  
        error('zernfun2:P36', ... lZ+!H=`  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... E5G{B'%j  
               '(P = 0 to 35).']) 2(#Ks's?  
    end >bm|%Ou"  
    Tz-X o  
    % Get the order and frequency corresonding to the function number: {aDFK;qG.  
    % ---------------------------------------------------------------- ;j} yB  
    p = p(:); VcgBLkIF  
    n = ceil((-3+sqrt(9+8*p))/2); :@. ;  
    m = 2*p - n.*(n+2);  '3 ,\@4  
    <Gb %uny  
    % Pass the inputs to the function ZERNFUN: oRY!\ADR  
    % ---------------------------------------- Q GPw2Q  
    switch nargin 'Cg{_z.~c  
        case 3 f}fsoDoQ=  
            z = zernfun(n,m,r,theta); Je7RrCz  
        case 4 |!*Xl) ]  
            z = zernfun(n,m,r,theta,nflag); :Ml7G  
        otherwise <n0{7#PDqw  
            error('zernfun2:nargin','Incorrect number of inputs.') f} K`Jm_}?  
    end =,/D/v$m'2  
    ^gR+S  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) zK5bO= 0j  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Q< *8<Oo4g  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of H~fdbR  
    %   order N and frequency M, evaluated at R.  N is a vector of N}Vn;29  
    %   positive integers (including 0), and M is a vector with the y\PxR708  
    %   same number of elements as N.  Each element k of M must be a :L$4*8@`+  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) =!0I_L/  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is c@du2ICUc  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix XD%wj  
    %   with one column for every (N,M) pair, and one row for every *gqSWQ  
    %   element in R. 3Sh+u>w  
    % $99R|^  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- A"l{?;~  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is k W-81  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 8l)  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 .iv3q?8.b  
    %   for all [n,m]. f&I7,"v  
    % v5$s#f<   
    %   The radial Zernike polynomials are the radial portion of the <^><3U`  
    %   Zernike functions, which are an orthogonal basis on the unit .[j%sGdKl  
    %   circle.  The series representation of the radial Zernike bhg}-dto  
    %   polynomials is b1^cD6sT+  
    % |4>:M\h  
    %          (n-m)/2 8T5k-HwE  
    %            __ S@}4-\  
    %    m      \       s                                          n-2s z +VV}:Q  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r n[" 9|  
    %    n      s=0 _l&ucA  
    % /1.rz{wpb  
    %   The following table shows the first 12 polynomials. OyVm(%Z   
    % P Jo  
    %       n    m    Zernike polynomial    Normalization kC$I2[t!  
    %       --------------------------------------------- Ft-6m%  
    %       0    0    1                        sqrt(2) C0m\SNR  
    %       1    1    r                           2 TOT PzB  
    %       2    0    2*r^2 - 1                sqrt(6) ~j& ?/{7I  
    %       2    2    r^2                      sqrt(6) *\ECf .7jz  
    %       3    1    3*r^3 - 2*r              sqrt(8) MCy~@)-IN  
    %       3    3    r^3                      sqrt(8) <Dm Tj$  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) S+T|a:]\7  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) -2*>`,Uu  
    %       4    4    r^4                      sqrt(10) JAP (|  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) uqZ3Hyb  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Bc ^4 T1  
    %       5    5    r^5                      sqrt(12) "tR}j,=S:D  
    %       --------------------------------------------- 9g@NcJ]  
    % d*-Xuv  
    %   Example: h~UJCn zS  
    % n|KKby.$  
    %       % Display three example Zernike radial polynomials 5gK~('9'?1  
    %       r = 0:0.01:1; Y5%;p33uFG  
    %       n = [3 2 5]; *cNk>y  
    %       m = [1 2 1]; 'JZ_  
    %       z = zernpol(n,m,r); e'~ Q@_D  
    %       figure B,y3] g6u  
    %       plot(r,z) YFvgz.>QE  
    %       grid on vLn> 4SK  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ScJu_A f  
    % hqW$k w  
    %   See also ZERNFUN, ZERNFUN2. r)B3es&&  
    /'&v4C^y>  
    % A note on the algorithm. h48 bb.p2  
    % ------------------------ fM:80bn L+  
    % The radial Zernike polynomials are computed using the series WZ* &@|w  
    % representation shown in the Help section above. For many special 4ftj>O  
    % functions, direct evaluation using the series representation can 2"M_sL  
    % produce poor numerical results (floating point errors), because :,YLx9i>  
    % the summation often involves computing small differences between r@|ZlM@O  
    % large successive terms in the series. (In such cases, the functions az bUc4M  
    % are often evaluated using alternative methods such as recurrence /Ynt<S9"  
    % relations: see the Legendre functions, for example). For the Zernike OqEHM%j  
    % polynomials, however, this problem does not arise, because the 8IOj[&%0  
    % polynomials are evaluated over the finite domain r = (0,1), and l?/gW D^  
    % because the coefficients for a given polynomial are generally all .v l="<  
    % of similar magnitude. h/=-tr  
    % n/-N;'2J  
    % ZERNPOL has been written using a vectorized implementation: multiple _IKQ36=  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] a71}y;W  
    % values can be passed as inputs) for a vector of points R.  To achieve )"~=7)~<^  
    % this vectorization most efficiently, the algorithm in ZERNPOL 4K #^dJnC  
    % involves pre-determining all the powers p of R that are required to (WMLNv  
    % compute the outputs, and then compiling the {R^p} into a single _z%\'(l+  
    % matrix.  This avoids any redundant computation of the R^p, and 9OZ>y0)K~  
    % minimizes the sizes of certain intermediate variables. Gx|Dql  
    % Z@nmjji  
    %   Paul Fricker 11/13/2006 \S5V}!_  
    O 3}P07  
    HnK/A0jM  
    % Check and prepare the inputs: 2K~tDNv7  
    % ----------------------------- 44|03Ty  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) + 1f{_v  
        error('zernpol:NMvectors','N and M must be vectors.') 4^BLSK~(  
    end -W6V,+of  
    5W5pRd>Q  
    if length(n)~=length(m) C=EhY+5  
        error('zernpol:NMlength','N and M must be the same length.') Xr)g  
    end 04[)qPPS  
    M Hn&; A]  
    n = n(:); 1W7 iip,  
    m = m(:); yEnKUo[  
    length_n = length(n); ^EUQ449<p  
    t5A[o7BS  
    if any(mod(n-m,2)) M'vXyb%$1  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') jaNH](V  
    end yOM -;h  
    ;pCG9  
    if any(m<0) 9XY|V<}  
        error('zernpol:Mpositive','All M must be positive.') =mAGD*NKu  
    end E.Pje@d  
    {AtfK>D  
    if any(m>n) @US '{hO1p  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') tUn&z?7bF  
    end B1HQz@^  
    )/ n29]  
    if any( r>1 | r<0 ) 739l%u }<  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') P@-R5GK  
    end _i#@t7  
    Q0_M-^~WT  
    if ~any(size(r)==1) c|3h|  
        error('zernpol:Rvector','R must be a vector.') 5auL<Pq   
    end ?|gGsm+  
    $)Jc-V 6E  
    r = r(:); }.w#X   
    length_r = length(r); ^JiaR)#r  
    EgCp:L{  
    if nargin==4 2>`m<&y  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); OcLg3.:L  
        if ~isnorm )m oo?Q  
            error('zernpol:normalization','Unrecognized normalization flag.') +q 4W0  
        end ~4}*Dhsh  
    else B/:>{2cm  
        isnorm = false; lu<Np9/5<  
    end gE-lM/w  
    IZzhJK M1V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zvWO4\  
    % Compute the Zernike Polynomials s= 3EBh  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B6^w{eXN  
    aEV|>K=6Y'  
    % Determine the required powers of r: /5a$@%  
    % ----------------------------------- cob9hj#&7  
    rpowers = []; Z 5{*? 2  
    for j = 1:length(n) fbi H   
        rpowers = [rpowers m(j):2:n(j)]; zDKLo 3:  
    end O1l4gduN|i  
    rpowers = unique(rpowers); ,dGFX]P  
    l;"ub^AH  
    % Pre-compute the values of r raised to the required powers, W ??;4  
    % and compile them in a matrix: }A)^XZ/  
    % ----------------------------- }7f 1(#{7  
    if rpowers(1)==0 v3iDh8.__  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,APGPE}I[  
        rpowern = cat(2,rpowern{:}); z{7,.S u  
        rpowern = [ones(length_r,1) rpowern]; 7"h=MB_  
    else UEx(~>  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >' BU*  
        rpowern = cat(2,rpowern{:}); i2`.#YJ&v  
    end 6i*p +S?U"  
    !nZI? z;  
    % Compute the values of the polynomials: /zDSlj<c  
    % -------------------------------------- N9fUlXhR  
    z = zeros(length_r,length_n); vV\/pu8  
    for j = 1:length_n N6-2*ES  
        s = 0:(n(j)-m(j))/2; u|:UFz^p  
        pows = n(j):-2:m(j); VO\S>kw  
        for k = length(s):-1:1 SF78 s:_!_  
            p = (1-2*mod(s(k),2))* ... #8WR{  
                       prod(2:(n(j)-s(k)))/          ... A3<P li  
                       prod(2:s(k))/                 ... kV]%Q3t  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Vj9`[1}1Z  
                       prod(2:((n(j)+m(j))/2-s(k))); U?+30{hb  
            idx = (pows(k)==rpowers); ; HR\R  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ;m M\, {Z  
        end $u0+29T2O  
         ;dpS@;v  
        if isnorm U)T/.L{0i  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 7csl1|U  
        end yE!7`c.[u  
    end J$eZLj  
    '/ ]fZ|  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    8426
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  lkJ#$Ik&  
    ,OFr]74\  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Am^O{`r41  
    dM;WG;8e  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)