非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 b^R_8x
function z = zernfun(n,m,r,theta,nflag) l5FKw;=K}:
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. )QW
p[bV
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N {y`n_
% and angular frequency M, evaluated at positions (R,THETA) on the guk{3<d:Jy
% unit circle. N is a vector of positive integers (including 0), and gt\*9P
% M is a vector with the same number of elements as N. Each element cCv@fks
% k of M must be a positive integer, with possible values M(k) = -N(k) W.nr&yiQ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, mWTV)z57
% and THETA is a vector of angles. R and THETA must have the same UO4z~
% length. The output Z is a matrix with one column for every (N,M) #k|f%!-Vo
% pair, and one row for every (R,THETA) pair.
?)2; W
% 5%]O'h
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike En{<
OMg
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), go?}M]c%7
% with delta(m,0) the Kronecker delta, is chosen so that the integral ;4k/h/o1#
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, hxkwT
% and theta=0 to theta=2*pi) is unity. For the non-normalized #L+ZHs~
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 85vyt/.,k
% ?X@uR5?{
% The Zernike functions are an orthogonal basis on the unit circle. mbXW$E-&R2
% They are used in disciplines such as astronomy, optics, and !@[@&.
% optometry to describe functions on a circular domain. `{H!V~42
% nG~^-c+
% The following table lists the first 15 Zernike functions. t/J|<Ooj?
% d@ef+-
% n m Zernike function Normalization K>_~|ZN1C8
% -------------------------------------------------- |Ge!;v
% 0 0 1 1 FJ2~SKWT
% 1 1 r * cos(theta) 2 r#B{j$Rw
% 1 -1 r * sin(theta) 2 #{5h6IC
% 2 -2 r^2 * cos(2*theta) sqrt(6) gg@Ew4L&
% 2 0 (2*r^2 - 1) sqrt(3) (l}nwyh5
% 2 2 r^2 * sin(2*theta) sqrt(6) FL[w\&fp
% 3 -3 r^3 * cos(3*theta) sqrt(8) Dop,_94G
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) og`g]Z<I
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) grE'ySX0
% 3 3 r^3 * sin(3*theta) sqrt(8) ^C~t)U
% 4 -4 r^4 * cos(4*theta) sqrt(10) x,Z:12H0
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,'byJlw_pv
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) %Mf3OtPiJW
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V(M7d>N5G
% 4 4 r^4 * sin(4*theta) sqrt(10) 22R
,
% -------------------------------------------------- wDKA1i%G
% $fwj8S7$
% Example 1: naM=oSB(
% emG1Wyl
% % Display the Zernike function Z(n=5,m=1) e#^vA$d
% x = -1:0.01:1; m6o o-muAr
% [X,Y] = meshgrid(x,x); B3Ws)nF"
% [theta,r] = cart2pol(X,Y); o"g<Vz
% idx = r<=1; OySn[4`(i
% z = nan(size(X)); qv8B$}F U
% z(idx) = zernfun(5,1,r(idx),theta(idx)); gM&4Ur
% figure lh-zE5;
% pcolor(x,x,z), shading interp J :l%
% axis square, colorbar :8Ugz ~i
% title('Zernike function Z_5^1(r,\theta)') R]N"P:wf@
% u(~( +1W
% Example 2: F@1Eg
% !-tVt
D
% % Display the first 10 Zernike functions ^t P|8k
% x = -1:0.01:1; 9j<