切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11240阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 dj0%?g>  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! %6Gg&Y$j!  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 C+' -TLeu  
    function z = zernfun(n,m,r,theta,nflag) (7qlp*8.s  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !H\;X`W|~D  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N l>;hQh  
    %   and angular frequency M, evaluated at positions (R,THETA) on the J$6WUz:?  
    %   unit circle.  N is a vector of positive integers (including 0), and ,P9F*;Dj  
    %   M is a vector with the same number of elements as N.  Each element 4bk`i*-O  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) *)RKU),3nL  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, [)V~U?  
    %   and THETA is a vector of angles.  R and THETA must have the same NFTv4$5d  
    %   length.  The output Z is a matrix with one column for every (N,M) #QFz /6  
    %   pair, and one row for every (R,THETA) pair. gnH {_  
    % ,ciX *F"  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike iZG-ca  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), JtO}i{A  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral )B]s.w  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, bD{tsxm[9  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized s4|tWfZ  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. __b4dv  
    % s?HK2b^;D  
    %   The Zernike functions are an orthogonal basis on the unit circle. PE5*]+lW.  
    %   They are used in disciplines such as astronomy, optics, and '1D $ ;  
    %   optometry to describe functions on a circular domain. P%:?"t+J`;  
    % lG-B) F  
    %   The following table lists the first 15 Zernike functions. *OA(v^@tx7  
    % kSV(T'#x  
    %       n    m    Zernike function           Normalization )n)AmNpq   
    %       -------------------------------------------------- wn@~80)$  
    %       0    0    1                                 1 (kR NqfX  
    %       1    1    r * cos(theta)                    2 ,marNG  
    %       1   -1    r * sin(theta)                    2 ,< g%}P/  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) E2M<I;:EA  
    %       2    0    (2*r^2 - 1)                    sqrt(3) XMS:F]HN  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) |fKT@2(  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 4^r6RS@z  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) /Pe xtj<  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) "m{i`<,  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ,Vq$>T@z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ]){ZL  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ; =n}61  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 'ge$}L}4  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A5j? Yts  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) <n,QSy#  
    %       -------------------------------------------------- 6hj[/O)E  
    % CJk"yW[,|  
    %   Example 1: (-$5YKm  
    % B>1,I'/$.  
    %       % Display the Zernike function Z(n=5,m=1) JOG- i  
    %       x = -1:0.01:1; Pd+*syOM  
    %       [X,Y] = meshgrid(x,x); SZTn=\  
    %       [theta,r] = cart2pol(X,Y); VWzQXo  
    %       idx = r<=1; R ?s;L r  
    %       z = nan(size(X)); X'b3CS4  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); NxF:s,a6  
    %       figure 3Iqvc v  
    %       pcolor(x,x,z), shading interp r^6@Zwox]  
    %       axis square, colorbar 3ibQbk  
    %       title('Zernike function Z_5^1(r,\theta)') E G+/2o+W  
    % G%k&|  
    %   Example 2: gHc1_G]  
    % 1Du5Z9AM  
    %       % Display the first 10 Zernike functions 8?8V;   
    %       x = -1:0.01:1; ;`/a. /bc  
    %       [X,Y] = meshgrid(x,x); %Mj,\J!  
    %       [theta,r] = cart2pol(X,Y); <.Zh{"$qo  
    %       idx = r<=1; i#4+l$q  
    %       z = nan(size(X)); T%oJmp?0  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Sed 8Q-m  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; /RJ]MQ\*O  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; U\Y0v.11  
    %       y = zernfun(n,m,r(idx),theta(idx)); }J6:D]Q  
    %       figure('Units','normalized') ?{aC-3VAT  
    %       for k = 1:10 ~]?s A{  
    %           z(idx) = y(:,k); [ >mH  
    %           subplot(4,7,Nplot(k)) )C"ixZ>2xQ  
    %           pcolor(x,x,z), shading interp j^#p#`m  
    %           set(gca,'XTick',[],'YTick',[]) UF^[?M =  
    %           axis square U]}FA2  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 2FaCrc/  
    %       end ilQ}{p6I  
    % S`YT"|~  
    %   See also ZERNPOL, ZERNFUN2. qpFxl  
    3 1c*^ZE.  
    %   Paul Fricker 11/13/2006 F?tWx+N<{  
    $)@D(m,ybd  
    p*5_+u  
    % Check and prepare the inputs: pYzop4  
    % ----------------------------- CyLwCS{V\  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) iS)-25M'  
        error('zernfun:NMvectors','N and M must be vectors.') 4Cu\|"5)  
    end 'm`}XGUBS  
    7w2$?k',-  
    if length(n)~=length(m) VqvjOeCbH  
        error('zernfun:NMlength','N and M must be the same length.') L7{}`O/g7  
    end ~tWh6-:|{J  
    ),vDn}>  
    n = n(:); q 8sfG;)  
    m = m(:); [uGsF0#e  
    if any(mod(n-m,2)) ~C^:SND7  
        error('zernfun:NMmultiplesof2', ... Z8Ig,  
              'All N and M must differ by multiples of 2 (including 0).') NA2={RB;  
    end .-iW T4Dn  
    7'e sJ)2  
    if any(m>n) T0dD:sN  
        error('zernfun:MlessthanN', ... /d}"s.3p  
              'Each M must be less than or equal to its corresponding N.') RHBQgD$  
    end O'IU1sU  
    (_4DZMf  
    if any( r>1 | r<0 ) _p4]\LA  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Lu6g`O:['  
    end {|>Wwa2e  
    deaB_cjdI  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) `XH0S`B  
        error('zernfun:RTHvector','R and THETA must be vectors.') b MD|  
    end "P#1=  
    >w<w*pC  
    r = r(:); v=iiS}s  
    theta = theta(:); :,JjN&  
    length_r = length(r); v[|W\y@H/3  
    if length_r~=length(theta) ^wWbW&<Tg  
        error('zernfun:RTHlength', ... Q;VuoHj!  
              'The number of R- and THETA-values must be equal.') Z6${nUX  
    end C`t @tgT  
    (eU4{X7  
    % Check normalization: 'I/_vqp@  
    % -------------------- }NyQ<,+mq&  
    if nargin==5 && ischar(nflag) h_#=f(.'j  
        isnorm = strcmpi(nflag,'norm'); WtZI1`\qe  
        if ~isnorm 8u~  
            error('zernfun:normalization','Unrecognized normalization flag.') -O\i^?lD;  
        end HdxP:s.T  
    else F^bY]\-5  
        isnorm = false; % Q6 za'25  
    end Y&yfm/Ru  
    ciODTq?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D {Ol8:  
    % Compute the Zernike Polynomials 2lsUCQI;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J6s]vV q"  
    R]X 0D.  
    % Determine the required powers of r: S j~SG  
    % ----------------------------------- "."(<c/3  
    m_abs = abs(m); rWL;pM<  
    rpowers = []; o5a=>|?p>  
    for j = 1:length(n) q 7%p3  
        rpowers = [rpowers m_abs(j):2:n(j)]; L>~Tc  
    end :K^J bQ  
    rpowers = unique(rpowers); T#-;>@a}  
    kd^H}k  
    % Pre-compute the values of r raised to the required powers, o:Kw<z,$H  
    % and compile them in a matrix: Cty#|6 k  
    % ----------------------------- Oq.ss!/z  
    if rpowers(1)==0 A_9^S!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $!>.h*np  
        rpowern = cat(2,rpowern{:}); 3U>-~-DS  
        rpowern = [ones(length_r,1) rpowern]; {V6pC  
    else To>,8E+GAb  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RX>P-vp  
        rpowern = cat(2,rpowern{:}); iv$YUM+  
    end 2.z-&lFBZ  
     eo9/  
    % Compute the values of the polynomials:  %nY\"  
    % -------------------------------------- L_!ShE  
    y = zeros(length_r,length(n)); CfU|]<  
    for j = 1:length(n) pc*)^S  
        s = 0:(n(j)-m_abs(j))/2; RA[j=RxK  
        pows = n(j):-2:m_abs(j); #3qeRl  
        for k = length(s):-1:1 j-ej7  
            p = (1-2*mod(s(k),2))* ... 7tcadXk0  
                       prod(2:(n(j)-s(k)))/              ... %BGg?&  
                       prod(2:s(k))/                     ... AChz}N$C  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;_(f(8BO   
                       prod(2:((n(j)+m_abs(j))/2-s(k))); [oTe8^@[  
            idx = (pows(k)==rpowers); g&FTX>wX  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 12n:)yQy  
        end u)0I$Tc"  
         C")genMH  
        if isnorm #; ?3k uq(  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); } jj)  
        end ?+d`_/IB  
    end d5m -f/  
    % END: Compute the Zernike Polynomials 3^y(@XFt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "O jAhKfG  
    !B3TLe h  
    % Compute the Zernike functions: )SmnLvL  
    % ------------------------------ <:&vAX L  
    idx_pos = m>0; 27eG8  
    idx_neg = m<0; ZkbE&7Z  
    rz"$zc.)  
    z = y; 4 ThFC  
    if any(idx_pos) :k/Xt$`  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); v(2N@s <%  
    end rR.It,,  
    if any(idx_neg) Xi&J%N'  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); O]u'7nO{{  
    end FRd"F$U  
    |ri)-Bk ,  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 5}#wp4U  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. CZ5\Et6r  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated W'[V$*  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ,'X"(tpu@  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 9|+6@6VY!  
    %   and THETA is a vector of angles.  R and THETA must have the same ]O x5F@  
    %   length.  The output Z is a matrix with one column for every P-value, 'X?xn@?  
    %   and one row for every (R,THETA) pair. =01X  
    % r`O Yq  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ~K;QdV=YX  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) n<ZPWlJ  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) sl]< A[jR  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 @tH9$J*Y<  
    %   for all p. gF)9a_R%p  
    % (@1:1K(   
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 @5%&wC  
    %   Zernike functions (order N<=7).  In some disciplines it is vQMBJ&  
    %   traditional to label the first 36 functions using a single mode g$nS6w|5H  
    %   number P instead of separate numbers for the order N and azimuthal kWzN {]v  
    %   frequency M. Aedf (L7\  
    % $coO~qvU  
    %   Example: & LE5' .s  
    % -JMn?]  
    %       % Display the first 16 Zernike functions NQ9v[gv  
    %       x = -1:0.01:1; Mbi]EZ  
    %       [X,Y] = meshgrid(x,x); 7zM:z,  
    %       [theta,r] = cart2pol(X,Y); v 4ot08 C  
    %       idx = r<=1; 6\4-I^=B  
    %       p = 0:15; !U^{`V jp[  
    %       z = nan(size(X)); 0t <nH%N}^  
    %       y = zernfun2(p,r(idx),theta(idx)); qkb'@f=  
    %       figure('Units','normalized') !J`lA  
    %       for k = 1:length(p) ++0)KSvw  
    %           z(idx) = y(:,k); F-yY(b]$  
    %           subplot(4,4,k) /A=w`[<  
    %           pcolor(x,x,z), shading interp AJPvwu}D  
    %           set(gca,'XTick',[],'YTick',[]) zCx4DN`  
    %           axis square /).{h'^Hq\  
    %           title(['Z_{' num2str(p(k)) '}']) u!_l/'\  
    %       end ^jdU4  
    % 7{;it uqX  
    %   See also ZERNPOL, ZERNFUN. 1vj/6L  
    ?8b19DMK6  
    %   Paul Fricker 11/13/2006 =*mT{q@  
    Ni,nQ;9  
    c`a(  
    % Check and prepare the inputs: }r,\0Wm  
    % ----------------------------- 1\.$=N  
    if min(size(p))~=1 G=zWhqieh  
        error('zernfun2:Pvector','Input P must be vector.') Z~5) )5Ye;  
    end hx;f/E Px  
    *IG$"nu  
    if any(p)>35 ?e7]U*jEU  
        error('zernfun2:P36', ... ^t;z;.g  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... r~4uIUE{  
               '(P = 0 to 35).']) J$dwy$n  
    end P15 H[<:Fz  
    d$dy6{/YD  
    % Get the order and frequency corresonding to the function number: j)A#}4jd  
    % ---------------------------------------------------------------- ep0,4!#FAO  
    p = p(:); :GHv3hn5  
    n = ceil((-3+sqrt(9+8*p))/2); Fnw:alWr  
    m = 2*p - n.*(n+2); K5""%O+  
    7>vm?a^D2&  
    % Pass the inputs to the function ZERNFUN: 8%?y)K^ D  
    % ---------------------------------------- \@LTXH.  
    switch nargin I=Y>z ^4  
        case 3 a?c&#Jl  
            z = zernfun(n,m,r,theta); qWt}8_"  
        case 4 8.E"[QktZ  
            z = zernfun(n,m,r,theta,nflag); 7s9h:/Lu  
        otherwise qUe _B  
            error('zernfun2:nargin','Incorrect number of inputs.')  6@S6E(^  
    end >DqF>w.1  
    Cy/&KWLenf  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) iCt.rr~;V  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. " qI99e  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of DL]tg [w{  
    %   order N and frequency M, evaluated at R.  N is a vector of v9$!v^U"D  
    %   positive integers (including 0), and M is a vector with the H=r-f@EOrI  
    %   same number of elements as N.  Each element k of M must be a {|;a?] ?  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ab0 Sx  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is lW bu`y  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix q2GW3t  
    %   with one column for every (N,M) pair, and one row for every a QH6akH  
    %   element in R. vDy&sgS$<  
    % }x8!{Y#cF  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- s?SspuV  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is I7f ^2  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to O 4 !$  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 %|Ps|iV  
    %   for all [n,m]. IG-\&  
    % R[WiW RfD  
    %   The radial Zernike polynomials are the radial portion of the }`"`VLh  
    %   Zernike functions, which are an orthogonal basis on the unit 4 1_gak;  
    %   circle.  The series representation of the radial Zernike jm_-f  
    %   polynomials is 7>JYwU{  
    % B.z$0=b  
    %          (n-m)/2 {Gxe%gu6K  
    %            __ R>Ra~ b  
    %    m      \       s                                          n-2s s -i|P  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r \-<BUG]=  
    %    n      s=0 %H{p&ms  
    % Bd>~F7VWs  
    %   The following table shows the first 12 polynomials. yDWIflP0;  
    % E?m~DYnU  
    %       n    m    Zernike polynomial    Normalization %!|w(Povq  
    %       --------------------------------------------- cHFi(K]|1  
    %       0    0    1                        sqrt(2) "S#F I  
    %       1    1    r                           2 S_}`'Z )  
    %       2    0    2*r^2 - 1                sqrt(6) <LX\s*M)  
    %       2    2    r^2                      sqrt(6) =x~I'|%3  
    %       3    1    3*r^3 - 2*r              sqrt(8) >rG>Bz^Pu  
    %       3    3    r^3                      sqrt(8) zF&VzNR2  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 9I/b$$?D  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ^l &lwSRVt  
    %       4    4    r^4                      sqrt(10) h8rW"8Th  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) :t?B)  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) HL)!p8UHJ  
    %       5    5    r^5                      sqrt(12) 8^mE<  
    %       --------------------------------------------- [^H2'&]  
    % E-LkP;  
    %   Example: 3? {AGJ1  
    % -(VJ,)8t2  
    %       % Display three example Zernike radial polynomials .Po"qoGy  
    %       r = 0:0.01:1;  0^;2  
    %       n = [3 2 5]; : =QX^*  
    %       m = [1 2 1]; P<<$o-a"  
    %       z = zernpol(n,m,r); =KRM`_QShg  
    %       figure  7WJ \nK  
    %       plot(r,z) bMH~vR  
    %       grid on ZsGvv]P  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') @SQsEq+A?\  
    % gLiJ&H  
    %   See also ZERNFUN, ZERNFUN2. Dc9uq5l  
    \0$+*ejz  
    % A note on the algorithm. 'H1~Zhv  
    % ------------------------ "CJVtO  
    % The radial Zernike polynomials are computed using the series dj gk7  
    % representation shown in the Help section above. For many special  tm1 =  
    % functions, direct evaluation using the series representation can r924!zdbR  
    % produce poor numerical results (floating point errors), because =C\Tl-$\f  
    % the summation often involves computing small differences between F^ q{[Z  
    % large successive terms in the series. (In such cases, the functions fHt\KP  
    % are often evaluated using alternative methods such as recurrence PK\ZRl  
    % relations: see the Legendre functions, for example). For the Zernike X1o",,N^M  
    % polynomials, however, this problem does not arise, because the ;p`1Y<d-O  
    % polynomials are evaluated over the finite domain r = (0,1), and m*0YMS>Y |  
    % because the coefficients for a given polynomial are generally all dab]>% M  
    % of similar magnitude. |}"YUk^  
    % PN* .9;5Z  
    % ZERNPOL has been written using a vectorized implementation: multiple ^'UM@dd?!  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] I8H3*DE  
    % values can be passed as inputs) for a vector of points R.  To achieve K7}.#*% ~  
    % this vectorization most efficiently, the algorithm in ZERNPOL 0cG'37[  
    % involves pre-determining all the powers p of R that are required to rxCzPF  
    % compute the outputs, and then compiling the {R^p} into a single [lmF2  
    % matrix.  This avoids any redundant computation of the R^p, and {q>%Sr]9  
    % minimizes the sizes of certain intermediate variables. !V|{(>+<  
    % (* -wiL  
    %   Paul Fricker 11/13/2006 }T5@P {3P3  
    \S}/2]* 1  
    '|}A /`  
    % Check and prepare the inputs: XM'tIE+|  
    % ----------------------------- A U~DbU0O  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i'Y8-})  
        error('zernpol:NMvectors','N and M must be vectors.') Q_mphW:[  
    end .Rr^AGA4  
    TrI+F+;  
    if length(n)~=length(m) #UGSn:D<i  
        error('zernpol:NMlength','N and M must be the same length.') mc{z  
    end KsDS!O  
    yC' y>f`H  
    n = n(:); osC?2.  
    m = m(:); Z |$#  
    length_n = length(n); $]7f1U_e  
    AXyXK??  
    if any(mod(n-m,2)) =m.Nm-g  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') l 9K`+c+t  
    end \J LGw1F  
    *-VRkS-G  
    if any(m<0) ^[<BMk  
        error('zernpol:Mpositive','All M must be positive.') W"\~O"a  
    end k4+vI1Cs  
    >Kgw2,y+  
    if any(m>n) {Jn0G;  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') <q63?Ms'  
    end 7QO/; zL  
    <G})$f'x2  
    if any( r>1 | r<0 ) Yf0 KG  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') =v2 |QuS$  
    end :{u`qi  
    qS?o22  
    if ~any(size(r)==1) :EX>Y<`]  
        error('zernpol:Rvector','R must be a vector.') &V4Zm n?UU  
    end ^*.[b  
    A?R`~*Q5  
    r = r(:); 2 6#p,P  
    length_r = length(r); Y ^^4n$  
    {FI zoR"  
    if nargin==4 P&`%VW3E  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ^'3c%&Zf3  
        if ~isnorm aZ@pfWwa:  
            error('zernpol:normalization','Unrecognized normalization flag.') ~${~To8$CW  
        end 161P%sGx2  
    else <rC%$tr  
        isnorm = false; \,R;  
    end ^s~)"2 g  
     ETZf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ly[yn{  
    % Compute the Zernike Polynomials Yp\n=#$[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *p/,Z2f  
    O_QDjxj^rZ  
    % Determine the required powers of r: \'|n.1Fr  
    % ----------------------------------- |E+.y&0;  
    rpowers = []; Q,?_;,I}  
    for j = 1:length(n) BN*:*cmUl  
        rpowers = [rpowers m(j):2:n(j)]; i'f w>-0  
    end 7FH(C`uKi  
    rpowers = unique(rpowers); S:1[CNL;  
    sx?IIFF  
    % Pre-compute the values of r raised to the required powers, 0zW*JJxV  
    % and compile them in a matrix: [,;Y5#Y[5  
    % ----------------------------- !MoAga_ j  
    if rpowers(1)==0 k>&cHCS`*  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); yaz6?,)  
        rpowern = cat(2,rpowern{:}); Pe`mZCd^  
        rpowern = [ones(length_r,1) rpowern]; m6R/,  
    else /2Izj/Q  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); fcq8aW/z_  
        rpowern = cat(2,rpowern{:}); ky2]%cw  
    end "Enb   
    ("U<@~  
    % Compute the values of the polynomials: L{/% "2>  
    % -------------------------------------- L<FXtBJ  
    z = zeros(length_r,length_n); l~Jd>9DwY  
    for j = 1:length_n E &9<JS  
        s = 0:(n(j)-m(j))/2; ixA.b#!1  
        pows = n(j):-2:m(j); Fk=SkS ky  
        for k = length(s):-1:1 /r4l7K  
            p = (1-2*mod(s(k),2))* ... /3s&??{tv  
                       prod(2:(n(j)-s(k)))/          ... Kx9u|fp5  
                       prod(2:s(k))/                 ... @i#JlZM_  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... *}2L4]  
                       prod(2:((n(j)+m(j))/2-s(k))); S]3CRJU3`  
            idx = (pows(k)==rpowers); oq7G=8gTp  
            z(:,j) = z(:,j) + p*rpowern(:,idx); <7P[)X_  
        end \'~ E%=Q  
         L[<#>/NPy  
        if isnorm }MaY:PMA  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); \2@J^O1,  
        end o`f^m   
    end :M(uP e=D  
    ?R]`M_^&u!  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  q=3>ij {v  
    Mqr]e#"o  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 qe.QF."y  
    CmB_g?K  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)