非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 k&JB,d-mJ%
function z = zernfun(n,m,r,theta,nflag) [K 5#4k
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. A=N &(k
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N n,,hE_
% and angular frequency M, evaluated at positions (R,THETA) on the ;i;2cq
% unit circle. N is a vector of positive integers (including 0), and ?WVp,vP
% M is a vector with the same number of elements as N. Each element wl^7.IR
% k of M must be a positive integer, with possible values M(k) = -N(k) mBAI";L3
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, fRcs@yZnS
% and THETA is a vector of angles. R and THETA must have the same $*k(h|XfwW
% length. The output Z is a matrix with one column for every (N,M) dSdP]50M
% pair, and one row for every (R,THETA) pair. v@xbur\L
% _1>Xk_
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +, IMN)?;z
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3bWYRW
% with delta(m,0) the Kronecker delta, is chosen so that the integral -'!K("
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3y#U|&]{
% and theta=0 to theta=2*pi) is unity. For the non-normalized yW=I*f
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !sTOo
% vk:k ~
% The Zernike functions are an orthogonal basis on the unit circle. OV~]-5gau
% They are used in disciplines such as astronomy, optics, and N}|<P[LW
% optometry to describe functions on a circular domain. rofGD9f
% A'zXbp:%
% The following table lists the first 15 Zernike functions. pxGDzU
% OuZPgN
% n m Zernike function Normalization S]"U(JmW\
% -------------------------------------------------- k vuSE
% 0 0 1 1 \Fh#CI
% 1 1 r * cos(theta) 2 ce&Q}_
% 1 -1 r * sin(theta) 2 R>C^duos.
% 2 -2 r^2 * cos(2*theta) sqrt(6) o[A y2"e?
% 2 0 (2*r^2 - 1) sqrt(3) z~m{'O`
% 2 2 r^2 * sin(2*theta) sqrt(6) l* ap$1'
% 3 -3 r^3 * cos(3*theta) sqrt(8) tz^2?wO
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) nO\c4#ce
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) <<SUIY@X
% 3 3 r^3 * sin(3*theta) sqrt(8) $~;h}I
% 4 -4 r^4 * cos(4*theta) sqrt(10) NMy+=GZu^
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xj!G9x<!
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) uY_vX\;67z
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M+|J;caX
% 4 4 r^4 * sin(4*theta) sqrt(10) Nn/f*GDvK
% -------------------------------------------------- yIq.
m=
% .#OD=wkN0
% Example 1: m)1+D"z
% mVs<XnA47
% % Display the Zernike function Z(n=5,m=1) ,N1I\f
% x = -1:0.01:1; !
^ DQX=1
% [X,Y] = meshgrid(x,x); xHpB/P ~
% [theta,r] = cart2pol(X,Y); ahUc;S:v#
% idx = r<=1; <i$ud&D
% z = nan(size(X)); qlU"v)Mx
% z(idx) = zernfun(5,1,r(idx),theta(idx)); {CaTu5\
% figure SDbR(oV
% pcolor(x,x,z), shading interp [Yyb)Qf
% axis square, colorbar \RF{ITV$kD
% title('Zernike function Z_5^1(r,\theta)') Lu.C+zgQ
% AE@N:a
% Example 2: uD0<|At/
% dI%#cf1
% % Display the first 10 Zernike functions w9aLTLv-
% x = -1:0.01:1; |y%M";MI
% [X,Y] = meshgrid(x,x); #,5v#|u|7
% [theta,r] = cart2pol(X,Y); dRGgiQO
% idx = r<=1; oro^'#ki
% z = nan(size(X)); s[n*fV']A
% n = [0 1 1 2 2 2 3 3 3 3]; 2FxrjA
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; DX b=Ku
% Nplot = [4 10 12 16 18 20 22 24 26 28]; X4$86
% y = zernfun(n,m,r(idx),theta(idx)); ?l/+*/AR;
% figure('Units','normalized') (/[wM>q:r
% for k = 1:10 O/ih9,
% z(idx) = y(:,k); tj1M1s|a
% subplot(4,7,Nplot(k)) gLzQM3{X9
% pcolor(x,x,z), shading interp N]dsGvX
% set(gca,'XTick',[],'YTick',[]) W }
% axis square 3$n O@rOS
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6 mml96(
% end EG#mNpxE
% JU`5K}H<
% See also ZERNPOL, ZERNFUN2. \\(3gB.Gd
x@Ze%$'
% Paul Fricker 11/13/2006 $gPR3*0
wgcKeTD9
q_b,3Tp
% Check and prepare the inputs: n:P++^ j
% ----------------------------- 9k*1_
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) qZB}}pM#
error('zernfun:NMvectors','N and M must be vectors.') ><DXT nt'x
end 1=Y pNXX
TD^w|U.
if length(n)~=length(m) N#&/d nV
error('zernfun:NMlength','N and M must be the same length.') g+pj1ycw/
end slH3c:j\
2 e9lk$
n = n(:); ud$*/ )/
m = m(:); @E
!`:/k
if any(mod(n-m,2)) &<$YR~g5j$
error('zernfun:NMmultiplesof2', ... 3cB=9Y{<
'All N and M must differ by multiples of 2 (including 0).') e"^n^_9
end w(cl,W/w
bPMkBm
if any(m>n) %$ ^eY'-'
error('zernfun:MlessthanN', ... VI(2/**
'Each M must be less than or equal to its corresponding N.') LQDU8[-
end 9
lH00n+'
+<$b6^>!$
if any( r>1 | r<0 ) `Qxdb1>mjY
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Nu4PY@m]C
end )9~-^V0A^>
z$b'y;k
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +et)!2N
error('zernfun:RTHvector','R and THETA must be vectors.') Xd@_:ds
end 9^2l<4^Z
`CqF&b
r = r(:); v?<Tkw ^F
theta = theta(:); 5hg
^K^ZZ
length_r = length(r); R$M>[Kjn
if length_r~=length(theta) qt,;Yxx#^
error('zernfun:RTHlength', ... }:xj%?ki
'The number of R- and THETA-values must be equal.') q7aH=dhw
end 2|:x_rcj
%WO4uOi:@
% Check normalization: DEN (pA\
% -------------------- g?>V4WF
if nargin==5 && ischar(nflag) 5o2vj8::
isnorm = strcmpi(nflag,'norm'); aF5=k:k
if ~isnorm O]-s(8Oo3
error('zernfun:normalization','Unrecognized normalization flag.') WX}pBmU
end DU lvlQW
else ;Vlt4,s)
isnorm = false; y#?AW`|
end $I4:g.gKpG
vfpK|=[7o
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h:~
8WV|
% Compute the Zernike Polynomials Mx_O'D
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
?8TIPz J
:Lh`Q"a
% Determine the required powers of r: -;W`0k^
% ----------------------------------- ;T\'|[bY
m_abs = abs(m); qN@0k>11?
rpowers = []; L3|~
i&k
for j = 1:length(n) [;, Xp/
rpowers = [rpowers m_abs(j):2:n(j)]; Vm]u-R`{
end zTb,h
rpowers = unique(rpowers); bY!1t}ALh
|>!tqgq
% Pre-compute the values of r raised to the required powers, mm9xO%
% and compile them in a matrix: @78%6KZ`i
% ----------------------------- 0.!!rq,
if rpowers(1)==0 Eq/oq\(/6
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); hVf;{p
&
rpowern = cat(2,rpowern{:}); D{G~7P\.
rpowern = [ones(length_r,1) rpowern]; @; 0t+
else VB&`g<
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); o8!uvl}:9
rpowern = cat(2,rpowern{:});
7>!Rg~M
end LY1dEZ-)A
R~! md
% Compute the values of the polynomials: b5t:">wC
% -------------------------------------- CCp&+LRvR
y = zeros(length_r,length(n)); _h0hl]rf
for j = 1:length(n) Rr"D)|Y;C(
s = 0:(n(j)-m_abs(j))/2; N5jJ,iz
pows = n(j):-2:m_abs(j); G*'1[Bu
for k = length(s):-1:1 #{x4s?
p = (1-2*mod(s(k),2))* ... vD3j(d
prod(2:(n(j)-s(k)))/ ... u7}C):@H
prod(2:s(k))/ ... /@feY?glc
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~%d* #Yxq
prod(2:((n(j)+m_abs(j))/2-s(k))); mz?1J4rt
idx = (pows(k)==rpowers); @8"cT-
y(:,j) = y(:,j) + p*rpowern(:,idx); -I*NS6
end Wj"GS!5
e%EE|
if isnorm 3w$Ib}7
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $ i;_yTht
end ) ={
H
end ,Uu#41ZOKL
% END: Compute the Zernike Polynomials /6yH ,{(a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >@uF ye$
= @n `5g
% Compute the Zernike functions: FC
}r~syqA
% ------------------------------ (ioJ G-2u
idx_pos = m>0; _&}z+(Ug
idx_neg = m<0; mt*/%>@7R
WYY&MHp
z = y; U~s-'-C/
if any(idx_pos) {bMOT*X=A
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); yR4++yk
end o6c>sh
if any(idx_neg) 0p[-M`D
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); IfzZ\x
.
end =At)?A9[
^_!2-QY.~
% EOF zernfun