非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 HNN,1MN
function z = zernfun(n,m,r,theta,nflag) +e_NpC
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. TJ9JIxnS
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N WP-?C<Iw
% and angular frequency M, evaluated at positions (R,THETA) on the BeZr5I"`}
% unit circle. N is a vector of positive integers (including 0), and i-Ck:-J
% M is a vector with the same number of elements as N. Each element '&@'V5}C{
% k of M must be a positive integer, with possible values M(k) = -N(k) v <1d3G=G
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1,
=$3]% b}
% and THETA is a vector of angles. R and THETA must have the same v^2q\A-?
% length. The output Z is a matrix with one column for every (N,M) *( ~7H6
% pair, and one row for every (R,THETA) pair. R}lS@ w1
% ''P.~~ezr5
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &~oBJar
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 6|gC##T
% with delta(m,0) the Kronecker delta, is chosen so that the integral Yt79W
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, }$5S @,
% and theta=0 to theta=2*pi) is unity. For the non-normalized Ft)7Wx"
S
% polynomials, max(Znm(r=1,theta))=1 for all [n,m].
B|E4(,]^
% c?oNKqPzg
% The Zernike functions are an orthogonal basis on the unit circle. #7/;d=
% They are used in disciplines such as astronomy, optics, and C5mq@$6
% optometry to describe functions on a circular domain. jyRSe^x
% P)x&9OHV
% The following table lists the first 15 Zernike functions. -Z)j"J
% 4PG]L`J{
% n m Zernike function Normalization GZ.Xx
% -------------------------------------------------- A?[06R5E#
% 0 0 1 1 `l+{jrRb<
% 1 1 r * cos(theta) 2 KEF"`VTB@
% 1 -1 r * sin(theta) 2 3>FeTf#:
% 2 -2 r^2 * cos(2*theta) sqrt(6) ? pq#|PI)
% 2 0 (2*r^2 - 1) sqrt(3) #&zNYzI
% 2 2 r^2 * sin(2*theta) sqrt(6) /KDKA)
% 3 -3 r^3 * cos(3*theta) sqrt(8) vAZc.=+ >
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) =\mAvVe
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) .OI&Zm-
% 3 3 r^3 * sin(3*theta) sqrt(8) 1fwjW0t
% 4 -4 r^4 * cos(4*theta) sqrt(10) G3O`r8oZcJ
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <u>l#weG,
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) e7X#C)
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Cx(|ZD^
% 4 4 r^4 * sin(4*theta) sqrt(10) 82ay("ZY
% -------------------------------------------------- ()K,~
% 67Z@Hg
% Example 1: +>BLox6
% -Lh\]
% % Display the Zernike function Z(n=5,m=1) vsc)EM ]
% x = -1:0.01:1; Y*0 AS|r!
% [X,Y] = meshgrid(x,x); c^ $_epc*
% [theta,r] = cart2pol(X,Y); +u+|9@
% idx = r<=1; m$b5Vqq
% z = nan(size(X)); c:QZ(8d]L
% z(idx) = zernfun(5,1,r(idx),theta(idx)); g\]2?vY.
% figure :E
]Ys
% pcolor(x,x,z), shading interp *d%"/l^0
% axis square, colorbar -Zs.4@GH
% title('Zernike function Z_5^1(r,\theta)') UQZ<sp4v;
% M\4pTcz{
% Example 2: AAbI+L0m{
% Cu*+E%P9`
% % Display the first 10 Zernike functions _}8hEv
% x = -1:0.01:1; Cq mtO?vne
% [X,Y] = meshgrid(x,x); (C{l4
% [theta,r] = cart2pol(X,Y); ?\|QDJXY
% idx = r<=1; )UBU|uYR\
% z = nan(size(X)); zx<:1nF,]
% n = [0 1 1 2 2 2 3 3 3 3]; [6+iR
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 5Ii`|?vg
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ybsQ[9_36
% y = zernfun(n,m,r(idx),theta(idx)); z$#q'+$
% figure('Units','normalized') GWb=X cx
% for k = 1:10
UZJ^e$N
% z(idx) = y(:,k); $;GH
-+
% subplot(4,7,Nplot(k)) |qUi9#NUo
% pcolor(x,x,z), shading interp wm1`<r^M.
% set(gca,'XTick',[],'YTick',[]) Y~ku?/"6T
% axis square ]O}TK^%
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) "cJ))v-'
% end >9-$E?Mt
% Vr/UY79
% See also ZERNPOL, ZERNFUN2. 9i9'Rd`g
is?#wrV=K
% Paul Fricker 11/13/2006 v)+E!"R3.
h2k"iO}
80(Olf@PE
% Check and prepare the inputs: [)efh9P*
% ----------------------------- FM{^ND9x
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 18*M
error('zernfun:NMvectors','N and M must be vectors.') pl#2JA8
end }%^N9AA8
z@za9U`6i
if length(n)~=length(m) !TNp|U!
error('zernfun:NMlength','N and M must be the same length.') AW{"9f4
end G5Mo IC
=()Vrk|uK
n = n(:); }4Q~<2
m = m(:); |DUWB;
if any(mod(n-m,2)) c{"=p8F_
error('zernfun:NMmultiplesof2', ... 8Pb~`E/
'All N and M must differ by multiples of 2 (including 0).') sej$$m R
end /)+V(Jlu
qdW"g$fW
if any(m>n) (
* &E~g
error('zernfun:MlessthanN', ... =1MVF
'Each M must be less than or equal to its corresponding N.') <cof
end gWK[%.Jnw
qV$\E=%fhM
if any( r>1 | r<0 ) M6nQ17\{
error('zernfun:Rlessthan1','All R must be between 0 and 1.') +,g3Xqs}X
end {>v5~G
PTS
dW~3
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) F<V.OFt
error('zernfun:RTHvector','R and THETA must be vectors.') s(.H"_a
end 0jJ:WPR
}srmG|@:
r = r(:); gJ=y7yX
theta = theta(:); 'w$jVX/
length_r = length(r); MlKSjKl" !
if length_r~=length(theta) -P6Z[V%
error('zernfun:RTHlength', ... rv?4S`Z,x$
'The number of R- and THETA-values must be equal.') 969Y[XQ
end 1
ORA6
;% <[*T:*'
% Check normalization:
M*gbA5
% -------------------- JGHQzC
if nargin==5 && ischar(nflag) ?-v]+<$ Y
isnorm = strcmpi(nflag,'norm'); m[}@\y
if ~isnorm WGwIc7
error('zernfun:normalization','Unrecognized normalization flag.') btR~LJb
end Q"vhl2RX
else 8a8CY,n{
isnorm = false; ,{C
hHnJ%#
end cjp~I/U
\\ZCi`O
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `B$rr4_
% Compute the Zernike Polynomials 8=MNzcA }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wJc`^gj
j 06mky
% Determine the required powers of r: elGwS\sw
% ----------------------------------- : Tcvj5
m_abs = abs(m); R wTzS;
rpowers = []; (V x2*Aw]
for j = 1:length(n) *S<d`mp[
rpowers = [rpowers m_abs(j):2:n(j)]; ^)p+)5l
end 8l l}"
rpowers = unique(rpowers); /O}lSXo6E
6Z l#$>P
% Pre-compute the values of r raised to the required powers, Q?2GwN
% and compile them in a matrix: 3GL,=q
% ----------------------------- ]!X[[w)
if rpowers(1)==0
m:D0O]2
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [G",Yky
rpowern = cat(2,rpowern{:}); .% 79(r^
rpowern = [ones(length_r,1) rpowern]; -A,UqEt
else c6T[2Ig
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); az1#:Go
rpowern = cat(2,rpowern{:}); ]++,7Z\AU
end ~l8w]R3A
r"9hpZH
% Compute the values of the polynomials: [XhG7Ly
% -------------------------------------- Yosfk\D
y = zeros(length_r,length(n)); YU`}T<;bg
for j = 1:length(n) u]*f^/6Q
s = 0:(n(j)-m_abs(j))/2; =o:1Rc7J
pows = n(j):-2:m_abs(j); c'INmc
I|
for k = length(s):-1:1 BJgHel+N
p = (1-2*mod(s(k),2))* ... Urz9S3#\
prod(2:(n(j)-s(k)))/ ... qjsEyro$-
prod(2:s(k))/ ... w\RYxu?
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `&:>?Y/X2
prod(2:((n(j)+m_abs(j))/2-s(k))); Iw4[D#o
idx = (pows(k)==rpowers); VXnWY8\
y(:,j) = y(:,j) + p*rpowern(:,idx); R; ui
4wg6
end '=`af>Nc
DYF(O-hJK
if isnorm OFxCV`>ce
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Pm]lr|Q{I
end yAFt|<
end q`3HHq
% END: Compute the Zernike Polynomials +NJIi@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V aoqI
Zu*7t<W
% Compute the Zernike functions: ]XASim:A
% ------------------------------ R7 rO7M!
idx_pos = m>0; "rrw~
idx_neg = m<0; ]K'OH&
t`Rbn{
z = y; h$XoR0
if any(idx_pos) DX^8w?t
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); nvCp-Z$
end yIC
C8M
if any(idx_neg) *'*,mfk[
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); `An p;el
end @?jbah#
$:yIe.F
% EOF zernfun