非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Av' GB
function z = zernfun(n,m,r,theta,nflag) G 2!xPHz
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. jPZaD>!
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cWyW~Ek
% and angular frequency M, evaluated at positions (R,THETA) on the ^vilgg~
% unit circle. N is a vector of positive integers (including 0), and !> }.~[M
% M is a vector with the same number of elements as N. Each element r.ZF_^y}+
% k of M must be a positive integer, with possible values M(k) = -N(k) 0tg8~H3yy
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, e]=lKxFh&l
% and THETA is a vector of angles. R and THETA must have the same !V2/A1?
% length. The output Z is a matrix with one column for every (N,M) mtz#}qD66
% pair, and one row for every (R,THETA) pair. YH&bD16c3
% Xce0~\_A
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike qt%D'
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), N-
H^lqD
% with delta(m,0) the Kronecker delta, is chosen so that the integral 29CINC
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 91>fqe
% and theta=0 to theta=2*pi) is unity. For the non-normalized fjk\L\1
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?`zXLY9q7
% Jc&y9]
% The Zernike functions are an orthogonal basis on the unit circle. ';Zi@f"
% They are used in disciplines such as astronomy, optics, and w@JKl5
% optometry to describe functions on a circular domain. ABE@n%|`
% ;2'q_Btk4
% The following table lists the first 15 Zernike functions. .
8N.l^0,
% om?-WJI
% n m Zernike function Normalization s*U1
% -------------------------------------------------- >{\7&}gz
% 0 0 1 1
<1%f@}+8
% 1 1 r * cos(theta) 2 e@:sR
% 1 -1 r * sin(theta) 2 ^j-3av=
% 2 -2 r^2 * cos(2*theta) sqrt(6) (jU6GJRP
% 2 0 (2*r^2 - 1) sqrt(3) ;JZS^Wa
% 2 2 r^2 * sin(2*theta) sqrt(6) U!U$x74D5
% 3 -3 r^3 * cos(3*theta) sqrt(8) @2'Mt}R>
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Z R/#V7Pj
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 4jD2FFG-
G
% 3 3 r^3 * sin(3*theta) sqrt(8) 5waKI?4F
% 4 -4 r^4 * cos(4*theta) sqrt(10) zg-2C>(6a
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M%jPH
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Xd^\@
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (Jz;W<E
% 4 4 r^4 * sin(4*theta) sqrt(10) y ]?V~%
% -------------------------------------------------- ME'|saP
% o sKKt?^?
% Example 1: ;2B{ 9{
% ^%O]P`$
% % Display the Zernike function Z(n=5,m=1) 8\:NMP8W\
% x = -1:0.01:1; sc,Xw:YO
% [X,Y] = meshgrid(x,x); 6k#Jpmmr
% [theta,r] = cart2pol(X,Y); M|:UwqV>
% idx = r<=1; |4'Y/re
% z = nan(size(X)); U8
nH;}i
% z(idx) = zernfun(5,1,r(idx),theta(idx)); [jmd
% figure q$=#A7H>3)
% pcolor(x,x,z), shading interp 8#vc(04(
% axis square, colorbar C*P7-oE2rh
% title('Zernike function Z_5^1(r,\theta)') ,\NFt`]j
% GvBHd%Ot
% Example 2: s6>ZREf#J
% u*hSj)vr1
% % Display the first 10 Zernike functions K4kMM*D
% x = -1:0.01:1; 5LOo8xN
% [X,Y] = meshgrid(x,x); IIbYfPiO
% [theta,r] = cart2pol(X,Y); YpqrZWvh
% idx = r<=1; -Z's@'*
% z = nan(size(X)); %n*-VAfE\
% n = [0 1 1 2 2 2 3 3 3 3]; 8YbE`32
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; EY tQw(!Q
% Nplot = [4 10 12 16 18 20 22 24 26 28]; M3q|l7|9
% y = zernfun(n,m,r(idx),theta(idx)); z*-2.}&U<
% figure('Units','normalized') b9!FC$^J
% for k = 1:10 L*:jXmUM_~
% z(idx) = y(:,k); rW=Z>1
% subplot(4,7,Nplot(k)) 0=?<y'=
% pcolor(x,x,z), shading interp j:VbrR
% set(gca,'XTick',[],'YTick',[]) !jTcsN%
% axis square :8OZ#D_Hl
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Oeok; :
% end :5{wf Am
% %\:[ o
% See also ZERNPOL, ZERNFUN2. ,k;^G><
=
;5)P6S.D
% Paul Fricker 11/13/2006 Om5Y|v"*
K57&yVX
3U0`,c\ao*
% Check and prepare the inputs: (=om,g}
% ----------------------------- p9x(D/YP0
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) \pVXimam
error('zernfun:NMvectors','N and M must be vectors.') <_-hRbS
end NGbG4-w-
|AozR ~
if length(n)~=length(m) rogT~G}q
error('zernfun:NMlength','N and M must be the same length.') %4gg@Z9
end 2I,^YWR
|EJD3&
n = n(:); H["`Mn7j2
m = m(:); =Lf,?"S
if any(mod(n-m,2)) ^y<<>Y'I
error('zernfun:NMmultiplesof2', ... '2 PF
'All N and M must differ by multiples of 2 (including 0).') H<PtAYFS
end %yv<y+yP~
3v1iy/ /
if any(m>n) AHX St
error('zernfun:MlessthanN', ... T9Nb`sbV]
'Each M must be less than or equal to its corresponding N.') &tg&5_
end kH
G"XTL
mjW8Q\D
if any( r>1 | r<0 ) {?:X8&Sf
error('zernfun:Rlessthan1','All R must be between 0 and 1.') e4 >_v('
end =4FXBPoQK
0.8 2kl
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) NTYg[VTr
error('zernfun:RTHvector','R and THETA must be vectors.') JzQ )jdvp
end YoBDvV":@
AP'*Nh@Ik(
r = r(:); R#%(5-Zu#R
theta = theta(:); 7/I, HxXp!
length_r = length(r); iOW#>66d
if length_r~=length(theta) 5kCUaPu
error('zernfun:RTHlength', ... E87Ww,z8
'The number of R- and THETA-values must be equal.') e4?>-
end Vf]
"L.G
W*Zkc:{eB
% Check normalization: =THpdtL
% -------------------- :bwjJ}F
if nargin==5 && ischar(nflag) Vl&?U
isnorm = strcmpi(nflag,'norm'); ,$s8GAmq
if ~isnorm ChGYTn`X
error('zernfun:normalization','Unrecognized normalization flag.') _`&m\Qe>
end I ?gSG*m
else l]Ax : Z
isnorm = false; (k5We!4[1
end L^@'q6*}
~A'!2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F \KjEl0
% Compute the Zernike Polynomials 4T|b
Cs?e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c;Pe/ d
M2OIBH4!
% Determine the required powers of r: a_f~N1kq
% ----------------------------------- PgtJ3oq[}
m_abs = abs(m); ON=@O
rpowers = []; JTSlWq4
for j = 1:length(n) zzTfYf)
rpowers = [rpowers m_abs(j):2:n(j)]; 6e9,PS
end
D~S<U
rpowers = unique(rpowers); )dbB=OZ
m% -g ~q
% Pre-compute the values of r raised to the required powers, e7Xeo +/
% and compile them in a matrix: [ 9 {*94M
% ----------------------------- dJJP3}M/
if rpowers(1)==0 7}f}$1
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); e!N:,`R
5
rpowern = cat(2,rpowern{:}); JTO~9>$ B
rpowern = [ones(length_r,1) rpowern]; _aGOb;h
else $PTP/^
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l{I6&^!KS
rpowern = cat(2,rpowern{:}); ^1iSn)&
end $HHs ^tW
DFZkh^PFd
% Compute the values of the polynomials: {.?ZHy\Rk
% -------------------------------------- { C=NUK%?
y = zeros(length_r,length(n)); 4>F'oqFF
for j = 1:length(n) xST8|H
s = 0:(n(j)-m_abs(j))/2; 6&
e3Nt
pows = n(j):-2:m_abs(j); \KMToN&2
for k = length(s):-1:1 adCU61t
p = (1-2*mod(s(k),2))* ... `q}I"iS
prod(2:(n(j)-s(k)))/ ... _<k\FU
r
prod(2:s(k))/ ... F,W~,y
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... v- T$:cL
prod(2:((n(j)+m_abs(j))/2-s(k))); z>58dA@f
idx = (pows(k)==rpowers); MLw7}[
y(:,j) = y(:,j) + p*rpowern(:,idx); `eE&