切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11158阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 gsd9QW  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ZYZQ?FN  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 D7cOEL<  
    function z = zernfun(n,m,r,theta,nflag) Gs%IZo_  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |1J=wp)#  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N d (]t}  
    %   and angular frequency M, evaluated at positions (R,THETA) on the vf(8*}'!Q  
    %   unit circle.  N is a vector of positive integers (including 0), and L'=2Uk#.D  
    %   M is a vector with the same number of elements as N.  Each element u38FY@U$  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) (x,w/1  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, QA7SQ cd,  
    %   and THETA is a vector of angles.  R and THETA must have the same _KiaeVE  
    %   length.  The output Z is a matrix with one column for every (N,M) g/,fjM_  
    %   pair, and one row for every (R,THETA) pair. oZ95)'L,  
    % CK[2duf^~  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ao)hb4ex  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), FrD.{(/~  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 0L10GJ"(  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, fU^B 3S6X  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized = aSHb[hO  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. cC w,b]  
    % {H s" "/sb  
    %   The Zernike functions are an orthogonal basis on the unit circle. ;hR!j!3}  
    %   They are used in disciplines such as astronomy, optics, and :0>wm@qCQ  
    %   optometry to describe functions on a circular domain. ])h={gI  
    % n m(yFX?=  
    %   The following table lists the first 15 Zernike functions. hH:7  
    % pgz3d{]ua  
    %       n    m    Zernike function           Normalization c/ %5IhX?  
    %       -------------------------------------------------- ElAJR4'{*i  
    %       0    0    1                                 1 6'ye-}vD-  
    %       1    1    r * cos(theta)                    2 ^zkTV_,cRp  
    %       1   -1    r * sin(theta)                    2 fEc}c.!5  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) on(P  
    %       2    0    (2*r^2 - 1)                    sqrt(3) SPW @TF1  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) j~c7nWfX  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) >U~.I2sz  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) p%Ae"#_X%  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 5P{dey!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) LA$uD?YA  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 0K7]<\)  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (u85$_C  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ~!~VC)a*  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G;615p1  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 6HpSZa  
    %       -------------------------------------------------- vIG8m@-!&;  
    % l)D18  
    %   Example 1: N%6jZmKip  
    % ;+K:^*oJ  
    %       % Display the Zernike function Z(n=5,m=1) @;_r `AT7  
    %       x = -1:0.01:1; 1YR;dn  
    %       [X,Y] = meshgrid(x,x); _6THyj$f  
    %       [theta,r] = cart2pol(X,Y); ',8]vWsl  
    %       idx = r<=1; Tz58@VYV  
    %       z = nan(size(X)); liFNJd`|o+  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); `d6 {Tli  
    %       figure z_!P0`  
    %       pcolor(x,x,z), shading interp (Z.K3  
    %       axis square, colorbar ttLC hL  
    %       title('Zernike function Z_5^1(r,\theta)') a}`4BMi3  
    % 0 sVCTJ@  
    %   Example 2: iKV;>gF,)v  
    % #!h:w  
    %       % Display the first 10 Zernike functions ;3Fgy8 T  
    %       x = -1:0.01:1; <;#d*&]  
    %       [X,Y] = meshgrid(x,x); R|{AIa{}  
    %       [theta,r] = cart2pol(X,Y); `y0ZFh1>X  
    %       idx = r<=1; /7|u2!#Ui  
    %       z = nan(size(X)); 8gJ"7,}-'  
    %       n = [0  1  1  2  2  2  3  3  3  3]; JO5~Vj_"  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; *La*j3|:  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; .Xo, BEjE/  
    %       y = zernfun(n,m,r(idx),theta(idx)); A)040n  
    %       figure('Units','normalized') N:0/8jmmO  
    %       for k = 1:10 -x3QgDno  
    %           z(idx) = y(:,k); ;M8N%  
    %           subplot(4,7,Nplot(k)) j9%u&  
    %           pcolor(x,x,z), shading interp HoymGU`w  
    %           set(gca,'XTick',[],'YTick',[]) T_6,o[b8  
    %           axis square ko im@B  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) W2tIt&{  
    %       end 9NaC7D$,  
    % b'Z#RIb  
    %   See also ZERNPOL, ZERNFUN2. F0bmGDp@-  
    z|}Anc[\  
    %   Paul Fricker 11/13/2006 P^v`5v  
    :~:(49l  
    ^o!K0 t*  
    % Check and prepare the inputs: h(d<':|  
    % ----------------------------- #g4X`AHB  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "<3PyW?zt  
        error('zernfun:NMvectors','N and M must be vectors.') !rb)Y;WQt  
    end CeR4's7  
    [HtU-8:  
    if length(n)~=length(m) *ky5SM(NR  
        error('zernfun:NMlength','N and M must be the same length.') {#=q[jVi%1  
    end -#3B>VY  
    Mz40([{  
    n = n(:); A[XEbfDO  
    m = m(:);  tAP~  
    if any(mod(n-m,2)) 4&K~EX"^T  
        error('zernfun:NMmultiplesof2', ... .pu]21m=  
              'All N and M must differ by multiples of 2 (including 0).') {qx}f^WV  
    end 93)&  
    @]WN|K  
    if any(m>n) @luv;X^%  
        error('zernfun:MlessthanN', ... p8[Z/]p  
              'Each M must be less than or equal to its corresponding N.') jFw?Ky2  
    end 0u QqPF t  
    + ?*,J=/  
    if any( r>1 | r<0 ) kxWf1hIz0  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ff?:_q+.N  
    end _R]la&^2F\  
    z^{VqC*o+  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 6T"[M  
        error('zernfun:RTHvector','R and THETA must be vectors.') AmRppbj/wO  
    end >\^:xx Tf  
    z]=A3!H/Y  
    r = r(:); ^=pn!lK;^  
    theta = theta(:); ~( -B%Az  
    length_r = length(r); w80g) 4V+  
    if length_r~=length(theta) |6"zIHvtc  
        error('zernfun:RTHlength', ... pUYa1=  
              'The number of R- and THETA-values must be equal.') 8D)*~C'85E  
    end KxGK`'E'r  
    ,;O+2TX  
    % Check normalization: tE9%;8;H  
    % -------------------- _yJd@  
    if nargin==5 && ischar(nflag) Q6RBZucv  
        isnorm = strcmpi(nflag,'norm'); j*q]-$2E  
        if ~isnorm \.9-:\'(  
            error('zernfun:normalization','Unrecognized normalization flag.') ;l &mA1+  
        end Kv{i_%j   
    else LC*@ /((  
        isnorm = false; PD:" SfV,G  
    end #8%Lc3n  
    Pd%o6~_*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +<"sC+2  
    % Compute the Zernike Polynomials }a'8lwF%I  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8D;>]>  
     z4&|~-m,  
    % Determine the required powers of r: tl CgW)<?  
    % ----------------------------------- (4>k+ H  
    m_abs = abs(m); 9%$4Ux*q  
    rpowers = []; y%cg  
    for j = 1:length(n) nr! kx)j  
        rpowers = [rpowers m_abs(j):2:n(j)]; (YGJw?]  
    end ]{0 2!  
    rpowers = unique(rpowers); J5mMx)t@  
    SE;Jl[PgcL  
    % Pre-compute the values of r raised to the required powers, pI( OI>~3  
    % and compile them in a matrix: m mu{K$9}I  
    % ----------------------------- |bO}|X  
    if rpowers(1)==0 ZxwI< T:&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); cmZ39pjBJ  
        rpowern = cat(2,rpowern{:}); L/F!Y%=;[  
        rpowern = [ones(length_r,1) rpowern]; UCa(3p^V_  
    else k,0JW=Vh>|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hof:36 <  
        rpowern = cat(2,rpowern{:}); R}#?A%,*  
    end <I&X[Sqp  
    J3oH^  
    % Compute the values of the polynomials: *<i { Mb Q  
    % -------------------------------------- w=rh@S]  
    y = zeros(length_r,length(n)); 2Rc#{A  
    for j = 1:length(n) <omSK- T-  
        s = 0:(n(j)-m_abs(j))/2; }(hx$G^M  
        pows = n(j):-2:m_abs(j); 0AZ Vc  
        for k = length(s):-1:1 dTB^6 >H  
            p = (1-2*mod(s(k),2))* ... Cz+`C9#  
                       prod(2:(n(j)-s(k)))/              ... \{\*h/m  
                       prod(2:s(k))/                     ... 0%<Fc9#  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... cDYKvrPY  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); <KoiZ{V   
            idx = (pows(k)==rpowers); Y#=0C*FS  
            y(:,j) = y(:,j) + p*rpowern(:,idx); .Qyq*6T3&  
        end V) a<)  
         [W ,Ej  
        if isnorm jav7V"$  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,_!pUal  
        end h rW  
    end 5hr$tkk L  
    % END: Compute the Zernike Polynomials nVoL7ew+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `%ZM(9T  
    F *=>=  
    % Compute the Zernike functions: i/6(~v  
    % ------------------------------ 9f\Lon4lX  
    idx_pos = m>0; `+CRUdr  
    idx_neg = m<0; DJdW$S7  
    }u5/  
    z = y; 1aP3oXLL  
    if any(idx_pos) D{x'k2=  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,,sKPj[  
    end C*a>B,H  
    if any(idx_neg) tda#9i[pkH  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 9{RCh 9  
    end 6 6(|3DX  
    _D1Uc|  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) :[xFp}w{  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. mE=%+:o.  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated R&KFF'%  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 6hp>w{+  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ^ >JAl<k  
    %   and THETA is a vector of angles.  R and THETA must have the same q4=Gj`\43  
    %   length.  The output Z is a matrix with one column for every P-value, 6|:K1bI)  
    %   and one row for every (R,THETA) pair. `v?XFwnV`  
    % $ha,DlN  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike )-VpDW!%_  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) OIJNOuI  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ~ES6Qw`Oe  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 N!!=9'fGF  
    %   for all p. 7IkNS  
    % ;O8'vp  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 "`g5iUHqUl  
    %   Zernike functions (order N<=7).  In some disciplines it is Jx@_OE_vp  
    %   traditional to label the first 36 functions using a single mode IJ\4S  
    %   number P instead of separate numbers for the order N and azimuthal O:%s;p 5  
    %   frequency M. 41G}d+  
    % m&vuBb3  
    %   Example: {6Y|Z>  
    % yUnNf 2i  
    %       % Display the first 16 Zernike functions K Q^CiX  
    %       x = -1:0.01:1; =d`w~iC  
    %       [X,Y] = meshgrid(x,x); 42$ pvw<  
    %       [theta,r] = cart2pol(X,Y); 3fGL(5|_  
    %       idx = r<=1; Qe4O N3X!  
    %       p = 0:15; o-I:p$B-  
    %       z = nan(size(X)); fVf @Ngvu  
    %       y = zernfun2(p,r(idx),theta(idx)); #mKF)W  
    %       figure('Units','normalized') #1fL2nlP*E  
    %       for k = 1:length(p) Yo%ph%e  
    %           z(idx) = y(:,k); <qGxkV  
    %           subplot(4,4,k) W{U z#o  
    %           pcolor(x,x,z), shading interp E<RPMd @a  
    %           set(gca,'XTick',[],'YTick',[]) VO JA}$  
    %           axis square ;n,xu0/  
    %           title(['Z_{' num2str(p(k)) '}']) w1Txz4JqB  
    %       end iq^F?$gFk  
    % ibH!bS{  
    %   See also ZERNPOL, ZERNFUN. KE[!{O^(a  
    "hi d3"G  
    %   Paul Fricker 11/13/2006 BTc }Kfae  
    n)|{tb^  
    %(&$CmS@  
    % Check and prepare the inputs: dJv2tVm&'  
    % ----------------------------- {ty)2  
    if min(size(p))~=1 ylm # Xa  
        error('zernfun2:Pvector','Input P must be vector.') fHK.q({Qc  
    end :a/l9 m(  
    ; DXsPpZC  
    if any(p)>35 j+9;Rvt2  
        error('zernfun2:P36', ... &&% oazR=  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... igx~6G*  
               '(P = 0 to 35).']) +Jm~Um!  
    end t)|~8xpP  
    D*&#}c,*  
    % Get the order and frequency corresonding to the function number: n g%~mt  
    % ---------------------------------------------------------------- v}LI-~M>U  
    p = p(:); `L LS|S]  
    n = ceil((-3+sqrt(9+8*p))/2); `G0k)eW  
    m = 2*p - n.*(n+2); k?Kt*T  
    >{S ~(KxK  
    % Pass the inputs to the function ZERNFUN: hCBre5  
    % ---------------------------------------- 40%fOu,u`  
    switch nargin p$=Z0p4%LL  
        case 3 ''dS {nQs  
            z = zernfun(n,m,r,theta); +=:_a$98  
        case 4 OxQ5P;O  
            z = zernfun(n,m,r,theta,nflag); |\2>n!  
        otherwise 9>ajhFyOhX  
            error('zernfun2:nargin','Incorrect number of inputs.') |k$6"dXSO  
    end Q.?(h! )9  
    J#W*,%8O  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) cLEd -{x  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 5o0n4W  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Sg$\H  
    %   order N and frequency M, evaluated at R.  N is a vector of ClY`2  
    %   positive integers (including 0), and M is a vector with the qfG:v Tm  
    %   same number of elements as N.  Each element k of M must be a hraR:l D  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 0SU v5c  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is kebk f,`p  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix &?@[bD'T  
    %   with one column for every (N,M) pair, and one row for every @0]w!q  
    %   element in R. j!@T@ 8J  
    % ny{S&f  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Fv7]1EO.  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ^KdT,^6T  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to {+zG.1o^  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 O1UArD  
    %   for all [n,m]. #K0/ >W  
    % <THw l/a  
    %   The radial Zernike polynomials are the radial portion of the oi]XSh[_s  
    %   Zernike functions, which are an orthogonal basis on the unit %%F, G  
    %   circle.  The series representation of the radial Zernike 1.M<u)1GU  
    %   polynomials is LofpBO6^  
    % #8sy QWlG  
    %          (n-m)/2 Mk~U/oq  
    %            __ "b402"&  
    %    m      \       s                                          n-2s 7m  ou  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ? V1ik[  
    %    n      s=0 `v@Z|rv,  
    % D_?Tj  
    %   The following table shows the first 12 polynomials. 'j*Q   
    % cHt4L]n8n  
    %       n    m    Zernike polynomial    Normalization i6P}MtC1  
    %       --------------------------------------------- c&1_lI,tH  
    %       0    0    1                        sqrt(2) BdMd\1eMw  
    %       1    1    r                           2 yKuZJXGVo  
    %       2    0    2*r^2 - 1                sqrt(6) qSlo)aP  
    %       2    2    r^2                      sqrt(6) *= O]^|]2  
    %       3    1    3*r^3 - 2*r              sqrt(8) z{&Av  
    %       3    3    r^3                      sqrt(8) @Co6$<  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) F53 .g/[  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) g%tUkM  
    %       4    4    r^4                      sqrt(10) epKr6 xq  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Y# I8gzv  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) f,i2U|1pbj  
    %       5    5    r^5                      sqrt(12) z6}p4  
    %       --------------------------------------------- gaQ E'qp>  
    % B8eZ}9X  
    %   Example: oexTz[  
    % n_4.`vs  
    %       % Display three example Zernike radial polynomials ]]_5_)"4  
    %       r = 0:0.01:1; }cI-]|)|2  
    %       n = [3 2 5]; 2+I5VPf  
    %       m = [1 2 1]; L-)ZjXzk  
    %       z = zernpol(n,m,r); sxA]o|  
    %       figure ;~DrsQb  
    %       plot(r,z) "=n%L +6%  
    %       grid on [TQYu:e  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ovOV&Zt  
    % 5L<A7^j  
    %   See also ZERNFUN, ZERNFUN2. @{#'y4\>  
    A4|7^Ay  
    % A note on the algorithm. u$[&'D6  
    % ------------------------ FX9WX b4w  
    % The radial Zernike polynomials are computed using the series 9mp`LT  
    % representation shown in the Help section above. For many special H;NAS/OhS  
    % functions, direct evaluation using the series representation can "9d Z z/{  
    % produce poor numerical results (floating point errors), because O7_y QQAA  
    % the summation often involves computing small differences between <mki@{;|  
    % large successive terms in the series. (In such cases, the functions V~#5^PF{  
    % are often evaluated using alternative methods such as recurrence B_iaty   
    % relations: see the Legendre functions, for example). For the Zernike 7[='m{{=C  
    % polynomials, however, this problem does not arise, because the WF*j^ %5  
    % polynomials are evaluated over the finite domain r = (0,1), and ;F*^c )  
    % because the coefficients for a given polynomial are generally all lK/4"&  
    % of similar magnitude. [kpQ:'P3  
    % *~4<CP+"0  
    % ZERNPOL has been written using a vectorized implementation: multiple M:(.aEe  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] /eU\B^k  
    % values can be passed as inputs) for a vector of points R.  To achieve {>vgtkJ  
    % this vectorization most efficiently, the algorithm in ZERNPOL ?7TmAll<.s  
    % involves pre-determining all the powers p of R that are required to k%u fgHl!  
    % compute the outputs, and then compiling the {R^p} into a single hrD2 -S  
    % matrix.  This avoids any redundant computation of the R^p, and Ct?xTFb  
    % minimizes the sizes of certain intermediate variables. |A,.mOT  
    % cUP1Uolvn  
    %   Paul Fricker 11/13/2006 \!jz1`]&{  
    -hfkF+=U'  
    !-n* ]C  
    % Check and prepare the inputs: <+r~?X_  
    % ----------------------------- A@?-"=h}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) rN7JJHV  
        error('zernpol:NMvectors','N and M must be vectors.') 'AWWdz  
    end BMQ4i&kF|  
    )(yaX  
    if length(n)~=length(m) g~,iWoY  
        error('zernpol:NMlength','N and M must be the same length.') Pzd!"Gl9  
    end (VmFYNt&  
    (pM& eow}  
    n = n(:); %-$ :/ N  
    m = m(:); ^8bc<c:P  
    length_n = length(n); ]8OmYU%6V  
    As5l36  
    if any(mod(n-m,2)) jTNt!2 :B  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') hP{+`\&<f  
    end 6C"zBJcGc  
    ,Xn %0]  
    if any(m<0) a%a0/!U[  
        error('zernpol:Mpositive','All M must be positive.') !mWm@ }Ujg  
    end 9bRUN<  
    \(=xc2  
    if any(m>n) |7n%8JsY!"  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') p:$v,3:  
    end A /c  
    7!(/7U6rP  
    if any( r>1 | r<0 ) pRxVsOb  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') :/6aBM?  
    end X{i>Q_8>  
    T*Ge67  
    if ~any(size(r)==1) o(> #}[N}  
        error('zernpol:Rvector','R must be a vector.') MK! @ND  
    end ts_|7Ev  
    b&QI#w  
    r = r(:); c;(Fz^&_  
    length_r = length(r); {,6J*v"o  
    0|K<$e6IH  
    if nargin==4 \ kY:|T  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); b{ A/M#=  
        if ~isnorm ?li/mc.XG  
            error('zernpol:normalization','Unrecognized normalization flag.') U|.r -$|5P  
        end ~#VDJ[Z  
    else B<Cg_C  
        isnorm = false; Y`$\o  
    end z<^LY]  
    x./"SQ=R+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v@2@9/  
    % Compute the Zernike Polynomials [4bE"u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vg@5`U`^h  
    GcA|JS=>  
    % Determine the required powers of r: ?dv-`)S&  
    % ----------------------------------- bUM4^m  
    rpowers = []; |/8!P Km  
    for j = 1:length(n) |=~mRqG  
        rpowers = [rpowers m(j):2:n(j)]; cD!E.2[  
    end v+trHdSBYE  
    rpowers = unique(rpowers); `D=d!!1eUi  
    l= Jw6F+5  
    % Pre-compute the values of r raised to the required powers, (Uu5$q(  
    % and compile them in a matrix: R47y/HG,  
    % ----------------------------- lx2%=5+i;  
    if rpowers(1)==0 lk81IhI  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )a'`  
        rpowern = cat(2,rpowern{:}); 'Ox "YE  
        rpowern = [ones(length_r,1) rpowern]; YSfJUB!I  
    else `m#G'E I  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }.WO=IZ  
        rpowern = cat(2,rpowern{:}); 5.oY$tb(  
    end UQYHR+  
    j` * bz-  
    % Compute the values of the polynomials: |yp^T  
    % -------------------------------------- L\bc R  
    z = zeros(length_r,length_n); ;l0%yg/}  
    for j = 1:length_n Zy?!;`c*{  
        s = 0:(n(j)-m(j))/2; h#)\K| qs  
        pows = n(j):-2:m(j); %z-so?gF  
        for k = length(s):-1:1 f w)tWJVD  
            p = (1-2*mod(s(k),2))* ... s?k:X ~m  
                       prod(2:(n(j)-s(k)))/          ... 6CGk*s  
                       prod(2:s(k))/                 ... aZa1eE  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Y,,Z47% E  
                       prod(2:((n(j)+m(j))/2-s(k))); g`.H)36  
            idx = (pows(k)==rpowers); s[/d}S@ >  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 4f ~q$Sf]<  
        end + !nf?5;  
         vgg)f~  
        if isnorm =`N 0  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); \`2EfYJ{  
        end eOXu^M>:F  
    end i$ hWX4L  
    u WdKG({][  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  F"' (i  
    '@^mesMG  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ? Z2`f6;W4  
    lpbcpB  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)