切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10630阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 F,_L}  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! alJ0gc2?  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 4&E"{d >  
    function z = zernfun(n,m,r,theta,nflag) >33=0<  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Yo%U{/e  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !$Uo$?gC  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 7nPg2K&  
    %   unit circle.  N is a vector of positive integers (including 0), and V_3oAu54s{  
    %   M is a vector with the same number of elements as N.  Each element {/noYB<;  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 6vNW)1{nn  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, >FE8CH!W&  
    %   and THETA is a vector of angles.  R and THETA must have the same C2<TR PT  
    %   length.  The output Z is a matrix with one column for every (N,M) vapC5,W"2-  
    %   pair, and one row for every (R,THETA) pair. wXQu%F3  
    % NFVu~t  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 2wpJ)t*PF  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), M2%@bETJ  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral L\mF[Kd#+T  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^S|qGu,G  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 23CvfP  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }wo:1v8J  
    % aH;AGbp  
    %   The Zernike functions are an orthogonal basis on the unit circle. ;[o:VuTs  
    %   They are used in disciplines such as astronomy, optics, and w!UF^~  
    %   optometry to describe functions on a circular domain. h`U-{VIrqi  
    % /BgX Y}JC.  
    %   The following table lists the first 15 Zernike functions. tHzgZo Bz  
    % cPcH 8Vd  
    %       n    m    Zernike function           Normalization emQc%wd{  
    %       -------------------------------------------------- v RD/67  
    %       0    0    1                                 1 1*A^v  
    %       1    1    r * cos(theta)                    2 7mS Nz.  
    %       1   -1    r * sin(theta)                    2 q=^;lWs4  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) r?)1)?JnHe  
    %       2    0    (2*r^2 - 1)                    sqrt(3) MO0t  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) f:3cV(mC  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]$#bNt/p  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) wHbmK  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) g]j&F65D  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) NtGJpT4YX  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) \i?bt0bM  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W7C1\'T  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) p7AsNqEp  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ok6t| 7sq  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) C'@I!m._i  
    %       -------------------------------------------------- 7zzFM  
    % TgJ+:^+0  
    %   Example 1: ms3"  
    % .hckZx /  
    %       % Display the Zernike function Z(n=5,m=1) 2aTq?ZR|8A  
    %       x = -1:0.01:1; v,opyTwG|  
    %       [X,Y] = meshgrid(x,x); C_3,|Zq?|  
    %       [theta,r] = cart2pol(X,Y); Fr50hrtkU  
    %       idx = r<=1; $@s-OQ}  
    %       z = nan(size(X)); # Ey_.4S  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); KHP/Y {mH  
    %       figure Y*b$^C%2  
    %       pcolor(x,x,z), shading interp LV ]10v6  
    %       axis square, colorbar q-^{2.ftcx  
    %       title('Zernike function Z_5^1(r,\theta)') @u$NB3  
    % l`#rhuy`  
    %   Example 2: gs+n J+b  
    % #-b}QhxH  
    %       % Display the first 10 Zernike functions S['rTuk  
    %       x = -1:0.01:1; ){mqo%{SO  
    %       [X,Y] = meshgrid(x,x); 7%$3`4i`O  
    %       [theta,r] = cart2pol(X,Y); AaU!a  
    %       idx = r<=1; uo?R;fX26  
    %       z = nan(size(X)); Qn$YI9t  
    %       n = [0  1  1  2  2  2  3  3  3  3]; zA?AX1%Wa  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; gcI<bY  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Mi NEf  
    %       y = zernfun(n,m,r(idx),theta(idx)); qOmL\'8  
    %       figure('Units','normalized') 63'% +  
    %       for k = 1:10 rR ^o  
    %           z(idx) = y(:,k); 7}NvO"u  
    %           subplot(4,7,Nplot(k)) cSv;HN:  
    %           pcolor(x,x,z), shading interp daCkjDGl\  
    %           set(gca,'XTick',[],'YTick',[]) F<iV;+  
    %           axis square ^r<l#D,  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ) iV^rLwL  
    %       end ]N\D^`iQ  
    % t%,:L.?J#  
    %   See also ZERNPOL, ZERNFUN2. fg ,vTpBk  
    _J2?B?S/j  
    %   Paul Fricker 11/13/2006 ^N^s|c'  
    fHwS12SB  
    @:Ft+*2  
    % Check and prepare the inputs: g`Q!5WK*  
    % ----------------------------- i"+TKo-  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ffI=Bt]t  
        error('zernfun:NMvectors','N and M must be vectors.') CX2qtI8N?  
    end J!|R1  
    ?.-+U~  
    if length(n)~=length(m) *T}c{/  
        error('zernfun:NMlength','N and M must be the same length.') `tuGy}S2  
    end a".iVf6y  
    Mcz;`h|EW  
    n = n(:); Jq"3xj   
    m = m(:); !]fSS)\H  
    if any(mod(n-m,2)) eu]qgtg~U  
        error('zernfun:NMmultiplesof2', ...  jrS$!cEo  
              'All N and M must differ by multiples of 2 (including 0).') =b"{*Heuw  
    end 7/KK}\NE  
    *Jt+-ZM  
    if any(m>n) f6\4 ,()  
        error('zernfun:MlessthanN', ... zFDtC-GF  
              'Each M must be less than or equal to its corresponding N.') fGA#0/_`  
    end .F%jbnKd_  
    OXl0R{4  
    if any( r>1 | r<0 ) X>pCkGE  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') C]3:&dx9  
    end ang~_Ec.  
    ] X)~D!mA  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) u] G  
        error('zernfun:RTHvector','R and THETA must be vectors.') }G^'y8U  
    end {wk#n.c  
    8 .K; 2  
    r = r(:); PQ;9iv  
    theta = theta(:); zmu+un"\j  
    length_r = length(r); 8N |K   
    if length_r~=length(theta) kaoiSL<[6  
        error('zernfun:RTHlength', ... uvR l`"Y  
              'The number of R- and THETA-values must be equal.') CbxWK#aMmB  
    end UxF9Ko( ]d  
    9s7TLT k  
    % Check normalization: {KK/mAp{  
    % -------------------- Lr d-  
    if nargin==5 && ischar(nflag) >o3R~ [  
        isnorm = strcmpi(nflag,'norm'); OwNo$b]h`  
        if ~isnorm f)Y~F/[$P  
            error('zernfun:normalization','Unrecognized normalization flag.') v>mK~0.$  
        end rR/{Yx4  
    else =w:)AWZ  
        isnorm = false; @A`j Wao  
    end U KTfLh  
    Q`;eI a6U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KLu Og$i  
    % Compute the Zernike Polynomials l&kZ6lZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W4P+?c>'2  
    z yp3 +|  
    % Determine the required powers of r: Wi,)a{  
    % ----------------------------------- cF EO}  
    m_abs = abs(m); 1_;{1O+B  
    rpowers = []; x&+&)d  
    for j = 1:length(n) y!rJ}e  
        rpowers = [rpowers m_abs(j):2:n(j)]; ?1O` Rd{tn  
    end 5'V-Ly)*%  
    rpowers = unique(rpowers); jY=M{?h''  
    yh|+Usa  
    % Pre-compute the values of r raised to the required powers, u~JR]T  
    % and compile them in a matrix: ?<\2}1  
    % ----------------------------- ,!PV0(F(  
    if rpowers(1)==0 E'6/@xM  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); l[%=S!  
        rpowern = cat(2,rpowern{:}); bR:hu}YS  
        rpowern = [ones(length_r,1) rpowern]; %~>-nqS  
    else 9`"#OQPn1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); WIAukM8~  
        rpowern = cat(2,rpowern{:}); nZ#u#V  
    end 7[K3kUm[  
    s5Wb iOF  
    % Compute the values of the polynomials: l]Ym)QP  
    % -------------------------------------- Y}Dk>IG  
    y = zeros(length_r,length(n)); 0V^I.S/q  
    for j = 1:length(n) 1A#/70Mo  
        s = 0:(n(j)-m_abs(j))/2; ^-|~c`&}B  
        pows = n(j):-2:m_abs(j); agkKm?xIL  
        for k = length(s):-1:1 6R$Yh0%  
            p = (1-2*mod(s(k),2))* ... :qAX9T'{t  
                       prod(2:(n(j)-s(k)))/              ... SXvflr] =m  
                       prod(2:s(k))/                     ... s aHY9{)  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8K8jz9.s  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); T{-gbo`Yji  
            idx = (pows(k)==rpowers); FgrVXb_q  
            y(:,j) = y(:,j) + p*rpowern(:,idx); "!eq~/nk  
        end -xN/H,xok  
         ukc 7Z OQ  
        if isnorm z}7}D !  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :(" @U,  
        end xdz 6[8 d8  
    end WU@_aw[  
    % END: Compute the Zernike Polynomials ,w9| ?%S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BSJS4+,E  
    -AolW+Y  
    % Compute the Zernike functions: C+%eT&OO  
    % ------------------------------ @,c` #,F/  
    idx_pos = m>0; n6M#Xc'JA  
    idx_neg = m<0; ^K_FGE0ec  
    b35 3+7"|  
    z = y; Hi/[  
    if any(idx_pos) n\<7`,  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); +uTl Lu;MT  
    end L$+_  
    if any(idx_neg) 6U$e;cr6  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 1wd c4>  
    end T\= #y  
    "O|.e`C%^  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) }aI>dHL  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. _8F;-7Sz  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ~-uf%=  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive nm]lPKU+Y  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, i_l{#*t  
    %   and THETA is a vector of angles.  R and THETA must have the same `L[q`r7  
    %   length.  The output Z is a matrix with one column for every P-value, fkImX:|q  
    %   and one row for every (R,THETA) pair. \.p; 4V&  
    % h(J$-SUs  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike %g89eaEZ  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 1[#sHj$Na`  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) LpSF*xm  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 kdx06'4o  
    %   for all p. quC$<Y  
    %  98^7pa  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 .a(G=fk  
    %   Zernike functions (order N<=7).  In some disciplines it is dTu*%S1Z  
    %   traditional to label the first 36 functions using a single mode T<b* =i  
    %   number P instead of separate numbers for the order N and azimuthal /0Qo(  
    %   frequency M. OI78wG  
    % < 3*q) VT  
    %   Example: PApr8Xe  
    % $sg-P|Wo  
    %       % Display the first 16 Zernike functions d#$Pf=}  
    %       x = -1:0.01:1; e6tU8`z  
    %       [X,Y] = meshgrid(x,x); PYs0w6o  
    %       [theta,r] = cart2pol(X,Y); 1OMaY5F  
    %       idx = r<=1; % WXl*  
    %       p = 0:15; K`uPPyv  
    %       z = nan(size(X)); ; lrO?sm  
    %       y = zernfun2(p,r(idx),theta(idx)); gd#?rc*f<3  
    %       figure('Units','normalized') .f. tPm  
    %       for k = 1:length(p) ?"<m{,yQI  
    %           z(idx) = y(:,k); !g}@xwWax  
    %           subplot(4,4,k) o"L8n(\  
    %           pcolor(x,x,z), shading interp Qt_KUtD  
    %           set(gca,'XTick',[],'YTick',[]) jq8TfJ|   
    %           axis square 2Q@Jp`# ,4  
    %           title(['Z_{' num2str(p(k)) '}']) -)Vy)hD,  
    %       end D+! S\~u  
    % =OV5DmVmQ  
    %   See also ZERNPOL, ZERNFUN. V>E7!LIn.  
    \w1',"l`  
    %   Paul Fricker 11/13/2006 |M t2  
    +~o f#  
    =_g#I  
    % Check and prepare the inputs: `,/5skeJ  
    % ----------------------------- 7r)]9_[(  
    if min(size(p))~=1 p1i}fGS  
        error('zernfun2:Pvector','Input P must be vector.') ^;( dF<?'r  
    end K"5q387!  
    %21|-B  
    if any(p)>35 Uam %u  
        error('zernfun2:P36', ... i^Jw`eAmT  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... +j+ v(-  
               '(P = 0 to 35).']) xN}f?  
    end  6GVAR  
    ^-n^IR}J  
    % Get the order and frequency corresonding to the function number: 9m v0}I  
    % ---------------------------------------------------------------- B"#pvJN  
    p = p(:); c(FGW7L<  
    n = ceil((-3+sqrt(9+8*p))/2); (a-Lx2T  
    m = 2*p - n.*(n+2); v,ni9DIu  
    @|">j#0  
    % Pass the inputs to the function ZERNFUN: &(Hw:W 9  
    % ---------------------------------------- 3&{6+A  
    switch nargin ~]?EV?T  
        case 3 u8|CeA  
            z = zernfun(n,m,r,theta); {%^4%Eco  
        case 4 5`U zxu  
            z = zernfun(n,m,r,theta,nflag); '/9MN;_  
        otherwise Oj_F1. r  
            error('zernfun2:nargin','Incorrect number of inputs.') aUc#,t;Qd  
    end zw$\d1-+h  
    KU0Ad);e  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ;1nXJ{jKw  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 8@S]P0lk  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of J]S30&?  
    %   order N and frequency M, evaluated at R.  N is a vector of ~7g$T Ae{  
    %   positive integers (including 0), and M is a vector with the p8YOow7)  
    %   same number of elements as N.  Each element k of M must be a #<sK3PT  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) zzo93d  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ,C 0y3pL  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix _zzNF93Bn  
    %   with one column for every (N,M) pair, and one row for every \.sC{@5K  
    %   element in R. Lpkx$QZ  
    % <6,,:=#  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 3K/ tB1  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is P,WQN[(+  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 2DJg__("  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 KECW~e`  
    %   for all [n,m]. |#yT]0L%pA  
    % K{@xZ)  
    %   The radial Zernike polynomials are the radial portion of the gn~^Ajo  
    %   Zernike functions, which are an orthogonal basis on the unit sN?Rx}  
    %   circle.  The series representation of the radial Zernike ~[og\QZX  
    %   polynomials is aE3eYl9u  
    % I2SH j6 -  
    %          (n-m)/2 RF'nwzM3  
    %            __ -J#RGB{7  
    %    m      \       s                                          n-2s )flm3G2u  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r " Qyi/r41  
    %    n      s=0 `jTB9A"  
    % D Y4!RjJ47  
    %   The following table shows the first 12 polynomials. ,2 W=/,5A  
    % pBv,,d`  
    %       n    m    Zernike polynomial    Normalization T9]0/>  
    %       --------------------------------------------- afD {w*[8  
    %       0    0    1                        sqrt(2) 34k>O  
    %       1    1    r                           2 ~%M*@ fm  
    %       2    0    2*r^2 - 1                sqrt(6) )uR_d=B&  
    %       2    2    r^2                      sqrt(6) K `<HZK  
    %       3    1    3*r^3 - 2*r              sqrt(8) XIZN9/;  
    %       3    3    r^3                      sqrt(8) kw gLK@@%1  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) LayK&RwL  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) aot2F60J,  
    %       4    4    r^4                      sqrt(10) 5VQ-D`kE+  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) =h|cs{eT\2  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) JZ5";*,  
    %       5    5    r^5                      sqrt(12) .oTS7rYw  
    %       --------------------------------------------- xVX:kDX  
    % ~jHuJ` ]DF  
    %   Example: &ynAB)  
    % $_TS]~y4}  
    %       % Display three example Zernike radial polynomials `#8kJt  
    %       r = 0:0.01:1; IhZn  
    %       n = [3 2 5]; 7ZyP  
    %       m = [1 2 1]; BOcD?rrZ0  
    %       z = zernpol(n,m,r); %l a1-r~  
    %       figure r@vt.t0#  
    %       plot(r,z) K\8zhY  
    %       grid on yqL"YD  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') T{m) = (q  
    % %eIaH!x:  
    %   See also ZERNFUN, ZERNFUN2. TBO g.y]  
    FPF$~ sX  
    % A note on the algorithm. -OU{99$aS  
    % ------------------------ q+*\'H>  
    % The radial Zernike polynomials are computed using the series pnz:<V"Y(  
    % representation shown in the Help section above. For many special / j%~#@  
    % functions, direct evaluation using the series representation can ,c?( |tF  
    % produce poor numerical results (floating point errors), because aBG^Xhx  
    % the summation often involves computing small differences between w%X@os}E  
    % large successive terms in the series. (In such cases, the functions tK/,U =+  
    % are often evaluated using alternative methods such as recurrence (S+/e5c)  
    % relations: see the Legendre functions, for example). For the Zernike Mlo,F1'?>  
    % polynomials, however, this problem does not arise, because the YwF&-~mp7n  
    % polynomials are evaluated over the finite domain r = (0,1), and 19y,O0# _  
    % because the coefficients for a given polynomial are generally all P2aFn=f  
    % of similar magnitude. (jj`}Qe3U  
    % G `!A#As  
    % ZERNPOL has been written using a vectorized implementation: multiple Aaq%'07ihW  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ]d7A|)q  
    % values can be passed as inputs) for a vector of points R.  To achieve } S]!W\a  
    % this vectorization most efficiently, the algorithm in ZERNPOL sP2Uj  
    % involves pre-determining all the powers p of R that are required to ){'<67dK  
    % compute the outputs, and then compiling the {R^p} into a single e`LkCy[_  
    % matrix.  This avoids any redundant computation of the R^p, and o 7tUv"Rs  
    % minimizes the sizes of certain intermediate variables. zaLPPm&f  
    % YVgH[-`,  
    %   Paul Fricker 11/13/2006 2PRiiL@  
    QKq4kAaJ!  
    K?! W9lUq  
    % Check and prepare the inputs: GK1nGdT]  
    % ----------------------------- Q3&D A1b`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) DbFe;3  
        error('zernpol:NMvectors','N and M must be vectors.') Y`eF9Im,  
    end esBv,b?*  
    "U eq  
    if length(n)~=length(m) 6k>5+-&_  
        error('zernpol:NMlength','N and M must be the same length.') An0N'yo"Z  
    end 4u%AZ<-C}m  
    4 ?PB Fbd  
    n = n(:); %cUC~, g_(  
    m = m(:); :):vB  
    length_n = length(n); 4;AQ12<[1  
    r nr-wUW@  
    if any(mod(n-m,2)) N wNxO  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') -=gI_wLbM  
    end f+s)A(?3  
    phf{b+'#X  
    if any(m<0) 0|j44e }  
        error('zernpol:Mpositive','All M must be positive.') W'"?5} (  
    end N '&>bO?@`  
    Y,}h{*9Kd  
    if any(m>n) wEX<[#a-  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') j n SZ@u  
    end <a -a~  
    k \T]*A  
    if any( r>1 | r<0 ) ]S@T|08b  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') \ctzv``/n  
    end cl]W]^q-Cx  
    L xIKH G  
    if ~any(size(r)==1) ^w``(-[*  
        error('zernpol:Rvector','R must be a vector.') v@yqTZ  
    end 4~$U#$u_  
    O{\<Izm`D  
    r = r(:); ~aQR_S  
    length_r = length(r); U_gkO;s%  
    =1R 2`H\  
    if nargin==4 HDzeotD  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); wA/!A$v(  
        if ~isnorm !]A/ID0K  
            error('zernpol:normalization','Unrecognized normalization flag.') V( 0Y   
        end y_q1Y70i2r  
    else GeB&S!F  
        isnorm = false; Q#ksf h!D  
    end -UzWLVB^  
    Nb_Glf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MMET^SO  
    % Compute the Zernike Polynomials DO*6gzW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sg}<()  
    W1 xPK*  
    % Determine the required powers of r: Lk#)VGk:  
    % ----------------------------------- b`S9#`  
    rpowers = []; # .(f7~  
    for j = 1:length(n) 1(# H%  
        rpowers = [rpowers m(j):2:n(j)]; \eQPv kx2  
    end )T gfd5B  
    rpowers = unique(rpowers); (0LA.aBIf  
    G,Eh8 HboK  
    % Pre-compute the values of r raised to the required powers, ~~k0&mK|Q  
    % and compile them in a matrix: Vb JE zl  
    % ----------------------------- OiZ-y7;k^  
    if rpowers(1)==0 0k?]~ f  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); CW8YNJ'  
        rpowern = cat(2,rpowern{:}); #>lbpw  
        rpowern = [ones(length_r,1) rpowern]; m zoH$@  
    else :]Om4Q\-#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); rOEBL|P0  
        rpowern = cat(2,rpowern{:}); F 8sOc&L  
    end 40].:9VG  
    yW7>5r  
    % Compute the values of the polynomials: +cmi?~KS*  
    % -------------------------------------- >rP[Xox'  
    z = zeros(length_r,length_n); E2cZk6~m{  
    for j = 1:length_n $[MAm)c:]{  
        s = 0:(n(j)-m(j))/2; mA,{E-T  
        pows = n(j):-2:m(j); .:Wp9M  
        for k = length(s):-1:1 #sjGju"#_  
            p = (1-2*mod(s(k),2))* ... "o u{bKe  
                       prod(2:(n(j)-s(k)))/          ... Ic!x y  
                       prod(2:s(k))/                 ... ..'"kX:5  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Da6l =M  
                       prod(2:((n(j)+m(j))/2-s(k))); 0 .T5% _ /  
            idx = (pows(k)==rpowers); gC kR$.-E  
            z(:,j) = z(:,j) + p*rpowern(:,idx); *tR'K#:&g!  
        end OR+py.vK  
         *L*{FnsV  
        if isnorm 8$iHd  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); t*Z5{   
        end 152s<lu1Z  
    end j!k$SDA-  
    /FPO'} 6i  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ZKpJc'h  
    ;YW@ 3F-h  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 4i^WE;|s  
    =oI6yf&8 Z  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)