非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 <uImZC
function z = zernfun(n,m,r,theta,nflag) z(#CO<C.t
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. q}]z8 L
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 734H{,~
% and angular frequency M, evaluated at positions (R,THETA) on the )`#SMLMy~
% unit circle. N is a vector of positive integers (including 0), and f3*SIKi
% M is a vector with the same number of elements as N. Each element \;Sl5*kr
% k of M must be a positive integer, with possible values M(k) = -N(k) L*6>S_l[
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, n){u!z)Al
% and THETA is a vector of angles. R and THETA must have the same )&[ol9+\
% length. The output Z is a matrix with one column for every (N,M) 2]5ux!Lqln
% pair, and one row for every (R,THETA) pair. F!RP *
% xf;Tk
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ),@m
3wQ
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _4LDzVjNRe
% with delta(m,0) the Kronecker delta, is chosen so that the integral ]V,#>'
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^3C%&
% and theta=0 to theta=2*pi) is unity. For the non-normalized 2UMX%+ "J
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. WS+uK b^<
% g6H` uO
% The Zernike functions are an orthogonal basis on the unit circle. z>HM$n`YD
% They are used in disciplines such as astronomy, optics, and au+a7~0~
% optometry to describe functions on a circular domain. \98|.EG
% L-|u=c-6
% The following table lists the first 15 Zernike functions. L,3%}_
% JD~]aoH
% n m Zernike function Normalization loD:4e1
% -------------------------------------------------- Y+C6+I<3
% 0 0 1 1 Np?/r}
% 1 1 r * cos(theta) 2 eMjW^-RgE5
% 1 -1 r * sin(theta) 2 iwfH~
% 2 -2 r^2 * cos(2*theta) sqrt(6) Lw6}bB`}
% 2 0 (2*r^2 - 1) sqrt(3) 8Ib5
% 2 2 r^2 * sin(2*theta) sqrt(6) "4CO^ B
% 3 -3 r^3 * cos(3*theta) sqrt(8) DuRC1@e
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) RCMO?CBe
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) KS;Wr6]@(O
% 3 3 r^3 * sin(3*theta) sqrt(8) 2SYV2
% 4 -4 r^4 * cos(4*theta) sqrt(10) :+ AqY(Gz
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :&m0eZZ%
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) npcL<$<6X
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) O*1la/~m
% 4 4 r^4 * sin(4*theta) sqrt(10) 9 j1
tcT
% -------------------------------------------------- (o8?j^ -v
% cKt8e^P
% Example 1: %)L|7v<
% #rx@
2zi
% % Display the Zernike function Z(n=5,m=1) ?r R,
h{~
% x = -1:0.01:1; !%'c$U2
% [X,Y] = meshgrid(x,x); IJ6&*t
wT
% [theta,r] = cart2pol(X,Y); E>rWm_G
% idx = r<=1; Cce{aY
% z = nan(size(X)); :2MHx}]il
% z(idx) = zernfun(5,1,r(idx),theta(idx)); A"T*uv|
% figure #po}Y
% pcolor(x,x,z), shading interp s
]Db<f
% axis square, colorbar `BY&&Bv#?
% title('Zernike function Z_5^1(r,\theta)') ^qPS&G
% ea!Znld]
% Example 2: 6M@m`c
% #}zL?s^G
% % Display the first 10 Zernike functions d<v)ovQJ]
% x = -1:0.01:1; E"b"VB
% [X,Y] = meshgrid(x,x); / Hexv#3
% [theta,r] = cart2pol(X,Y); 67d p)X
% idx = r<=1; 3o^oq
% z = nan(size(X)); sme!!+Rd
% n = [0 1 1 2 2 2 3 3 3 3]; OEs! H]v
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; q}%;O
>Z
% Nplot = [4 10 12 16 18 20 22 24 26 28]; &;oWmmvz{
% y = zernfun(n,m,r(idx),theta(idx)); D(Yq<%Q
% figure('Units','normalized') H3jb{S
b
% for k = 1:10 ch]Q% M
% z(idx) = y(:,k); =]F15:%Zq
% subplot(4,7,Nplot(k)) .p(~/MnO
% pcolor(x,x,z), shading interp %/=#8v4*
% set(gca,'XTick',[],'YTick',[]) BW%"]J
% axis square [&p^h
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vq*)2.
% end &B>YiA
% Q2ky|
% See also ZERNPOL, ZERNFUN2. "e~"-B7(\Y
@d=4C{g%o
% Paul Fricker 11/13/2006 D3-H!TFpDb
[)83X\CO
X8=sk
% Check and prepare the inputs: ^DS+O>
% ----------------------------- @~`2Lo/
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) gDjs:]/YR
error('zernfun:NMvectors','N and M must be vectors.') 4).>b3OhX
end 6z80Y*|eJ
p*Hbc|?{Q&
if length(n)~=length(m) ZCS{D
error('zernfun:NMlength','N and M must be the same length.') 5x; y{qT
end x?MSHOia`P
ckPI^0A!
n = n(:); _<1uO=km6
m = m(:); U m9]X@z
if any(mod(n-m,2)) P(&9S` I
error('zernfun:NMmultiplesof2', ... o`]u&
'All N and M must differ by multiples of 2 (including 0).') FGG7;0(
end y!?l;xMS
E>3fk
if any(m>n) 1f^4J~{
error('zernfun:MlessthanN', ... ?H_'L4Wv
'Each M must be less than or equal to its corresponding N.') %8lF%uu!x
end -(fvb
#D&]5"0cX
if any( r>1 | r<0 ) xl~%hwBd
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;n,@[v
end 9@."Y>1G
^#VyI F3q
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^N5BJ'[F:
error('zernfun:RTHvector','R and THETA must be vectors.') __,1;=
end >-{)wk;1&
ymLhSF][
r = r(:); c~+;P(>
theta = theta(:); .Z"p'v
length_r = length(r); yprf
`D>
if length_r~=length(theta) EK6fd#J?1
error('zernfun:RTHlength', ... d8? }69:h
'The number of R- and THETA-values must be equal.') ,S i23S\
end {D
jz']
o(I[_oUy\
% Check normalization: @P^8?!i+
% -------------------- @]H:=Q'gj
if nargin==5 && ischar(nflag) tGs=08`
isnorm = strcmpi(nflag,'norm'); `"<} B"s
if ~isnorm 6NV- &0 _
error('zernfun:normalization','Unrecognized normalization flag.') /M-%]sayj
end Ta38/v;S
else {yy^DlHb
isnorm = false; IZ;%lV7t
end EQkv&k5X
.`OdnLGy
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qd B@P
% Compute the Zernike Polynomials O0{M3-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P!{
O<P
U'nz3
% Determine the required powers of r: 9LkP*$2"M<
% ----------------------------------- s|U?{Byb!
m_abs = abs(m); 1CiK&fQ'
rpowers = []; "mnWqRpX
for j = 1:length(n) PEPBnBA&1
rpowers = [rpowers m_abs(j):2:n(j)]; hN6j5.x%
end {@u;F2?
rpowers = unique(rpowers); xFpMn}CD
n:GK0wu.s
% Pre-compute the values of r raised to the required powers, 9IKFrCO9,
% and compile them in a matrix: )jK"\'cK
% ----------------------------- {ZH9W
if rpowers(1)==0 )POuH*j
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); k=<,A'y-/
rpowern = cat(2,rpowern{:}); cPxA
R]'U
rpowern = [ones(length_r,1) rpowern]; 6=kA
else >ln% 3=
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); oXgKuR
rpowern = cat(2,rpowern{:}); lK%pxqx
end ;$G.?r
|Ebwl] X2
% Compute the values of the polynomials: j(!M
% -------------------------------------- J'O</o@e
y = zeros(length_r,length(n)); m9UI3fBX
for j = 1:length(n) zxtx~XO
s = 0:(n(j)-m_abs(j))/2; =uZ[
pows = n(j):-2:m_abs(j); m<wng2`NTv
for k = length(s):-1:1 31LXzQvFG
p = (1-2*mod(s(k),2))* ... qWf7k+7G
prod(2:(n(j)-s(k)))/ ... [0D( PV(n
prod(2:s(k))/ ... NamBJ\2E1[
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5tg
prod(2:((n(j)+m_abs(j))/2-s(k))); 9cAb\5c|
idx = (pows(k)==rpowers); %_wX9ZT
y(:,j) = y(:,j) + p*rpowern(:,idx); }+0{opY4R
end r>S?,qr
|A0LYKni
if isnorm ^zHBDRsb2F
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); k+2~=#
end |b{XnD_g
end TdI5{?sW
% END: Compute the Zernike Polynomials C`3}7qi|C
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1@C0c%
g]R }w@nJ
% Compute the Zernike functions: >[=q9k
% ------------------------------ cA1"Nek
idx_pos = m>0; Crmxsw.W^Y
idx_neg = m<0; {[PoLOCI
Z9s tB>?
z = y; !Ac <A.
if any(idx_pos) >&tPIrz
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7=t4;8|j;
end ]:JoGGE a0
if any(idx_neg) m]BxGwT=m
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V2cLwQ'0
end
9@
6y(#s
0b9K/a%sQv
% EOF zernfun