非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 \}U[}5Pk&
function z = zernfun(n,m,r,theta,nflag) <[/PyNYK
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 'E@2I9Kj
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N >~.Zr3P6kC
% and angular frequency M, evaluated at positions (R,THETA) on the (QA-"9v#i,
% unit circle. N is a vector of positive integers (including 0), and D9e+
% M is a vector with the same number of elements as N. Each element ],H1
% k of M must be a positive integer, with possible values M(k) = -N(k) y*y`t6D
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, &NlS =
% and THETA is a vector of angles. R and THETA must have the same rsd2v9
% length. The output Z is a matrix with one column for every (N,M) FGV}5L
% pair, and one row for every (R,THETA) pair. >cBGw'S
% TEH*@~P"
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4!NfQk>X
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9k714bnMLX
% with delta(m,0) the Kronecker delta, is chosen so that the integral E_ o{c5N
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, i# CaKS
% and theta=0 to theta=2*pi) is unity. For the non-normalized j` [#Ij
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. L"Qh_+
% E1$Hu{
% The Zernike functions are an orthogonal basis on the unit circle. ;,Of\Efc|
% They are used in disciplines such as astronomy, optics, and ~ >&I^4
% optometry to describe functions on a circular domain. ({D}QEP
% iSSc5ek4
% The following table lists the first 15 Zernike functions. j;1~=j])
% N*_/@qM> a
% n m Zernike function Normalization N1D6D$s 0
% -------------------------------------------------- ws*~$x?7
% 0 0 1 1 *#9VC)Q
% 1 1 r * cos(theta) 2 'd|Q4RE+W
% 1 -1 r * sin(theta) 2 GI 0x>Z+
% 2 -2 r^2 * cos(2*theta) sqrt(6) ^8o_Iz)r,
% 2 0 (2*r^2 - 1) sqrt(3) pDLu +}@
% 2 2 r^2 * sin(2*theta) sqrt(6) hj[+d%YZY"
% 3 -3 r^3 * cos(3*theta) sqrt(8) kX ~-g
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) [HC8-N^.}
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) *"|VNnB
% 3 3 r^3 * sin(3*theta) sqrt(8) lWu9/r 1
% 4 -4 r^4 * cos(4*theta) sqrt(10) hLDch5J5~
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) KdBq@
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) LUe>)eqw
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1YF+(fk
% 4 4 r^4 * sin(4*theta) sqrt(10) 8`L#1ybMO
% -------------------------------------------------- _IQU<Za
% 4yJ*85e]
% Example 1: Q1O_CC}
% Gvt;Q,hH
% % Display the Zernike function Z(n=5,m=1)
EI?d(K
% x = -1:0.01:1; 1Pw(.8P
% [X,Y] = meshgrid(x,x); :Y}Y&mA4
% [theta,r] = cart2pol(X,Y); Rye~w6
% idx = r<=1; rL!_&|
% z = nan(size(X)); Mp^OL7p^^
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Zq\RNZ}
% figure :_{{PY0PK
% pcolor(x,x,z), shading interp v&[X&Hu[
% axis square, colorbar &;~2sEo,
% title('Zernike function Z_5^1(r,\theta)') LK
% w(vE2Y ?
% Example 2: d'lr:=GQ
% QoT3;<r}
% % Display the first 10 Zernike functions IF36K^K
% x = -1:0.01:1; yL.PGF1(
% [X,Y] = meshgrid(x,x); 0gwm gc/#
% [theta,r] = cart2pol(X,Y); g~ppPAH
% idx = r<=1; xzMeKC`
% z = nan(size(X)); ]2aYi9)
% n = [0 1 1 2 2 2 3 3 3 3]; oPBg+Bh*
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; dIBKE0`
% Nplot = [4 10 12 16 18 20 22 24 26 28]; azR;*j8Q'
% y = zernfun(n,m,r(idx),theta(idx)); DJD ]aI
% figure('Units','normalized') 4BduUH
% for k = 1:10 O$<%z[
% z(idx) = y(:,k); [G'!`^V,
% subplot(4,7,Nplot(k)) 6`s%%v
% pcolor(x,x,z), shading interp /IrR,bvA
% set(gca,'XTick',[],'YTick',[]) U'Ja\Ek/f
% axis square {LB
}v;?l
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) HP4'8#3o
% end 3gV&`>@
%
z
1#0
% See also ZERNPOL, ZERNFUN2. r:WgjjA%
IQk#
% Paul Fricker 11/13/2006 t=E|RYC(k
c:@OX[##
>^a"Z[s[
% Check and prepare the inputs: R+kZLOE
% ----------------------------- |=^#d\?]j
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) mNnw G);$
error('zernfun:NMvectors','N and M must be vectors.') guU r1Ij
end U Qi^udGFD
VkN[=0a,
if length(n)~=length(m) 2l[A=Z
error('zernfun:NMlength','N and M must be the same length.') WFeMr%Zqh>
end |W~V@n8"6
'wB Huq
n = n(:); $!l2=^\3
m = m(:); '4^V4i
if any(mod(n-m,2)) U$/Hp#~X
error('zernfun:NMmultiplesof2', ... OnPy8mC
'All N and M must differ by multiples of 2 (including 0).') _/sf@R
end {YKMQI^O/
PgG |7='
if any(m>n) T956L'.+G
error('zernfun:MlessthanN', ... &x0TnW"g
'Each M must be less than or equal to its corresponding N.') }N#>q.M
end OJ_2z|f<
X!+Mgh6
if any( r>1 | r<0 ) Y?vm%t`K
error('zernfun:Rlessthan1','All R must be between 0 and 1.') CI,`R&=xO
end 6JFDRsX>)?
EYx2IJ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .e
_D3Xp<
error('zernfun:RTHvector','R and THETA must be vectors.') J6["j
end 5#9Wd9LP
ndCS<ojcBP
r = r(:); 4 _U,-%/
theta = theta(:); MZP><Je&
length_r = length(r); pv m'pu78
if length_r~=length(theta) 't]EkH]BC
error('zernfun:RTHlength', ... |YGiATD4DG
'The number of R- and THETA-values must be equal.') 0)`lx9&h
end dXo'#.
SJ[@fUxO)
% Check normalization: @aD~YtL"n
% -------------------- hPeKQwzC0
if nargin==5 && ischar(nflag) |nH0~P#!
isnorm = strcmpi(nflag,'norm'); _6-/S!7Y\
if ~isnorm mQA<t)1
error('zernfun:normalization','Unrecognized normalization flag.') ^n45N&916
end kz VI:
else 9hs{uxwuEE
isnorm = false; W] ;6u
end 5G] #yb74
{O&liU4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ISnS;
% Compute the Zernike Polynomials vBn=bb'W
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3D09P5$W
=ci5&B?
% Determine the required powers of r: vS t=Ax3]
% ----------------------------------- np\Q&
m_abs = abs(m); gAUQQ
rpowers = []; <K[Zl/7I
for j = 1:length(n) '
bw, K*
rpowers = [rpowers m_abs(j):2:n(j)]; (Nlm4*{h
end PKM$*_LcGI
rpowers = unique(rpowers); ?a0}^:6
yzNX2u1
% Pre-compute the values of r raised to the required powers, 4%v+ark8
% and compile them in a matrix: |p4OlUq
% ----------------------------- a=B0ytNm
if rpowers(1)==0 Dw ;vDK
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4e#K.HU_
rpowern = cat(2,rpowern{:}); WfbNar[
rpowern = [ones(length_r,1) rpowern]; re7\nZ<\|
else B*iz+"H
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3N%Evo
rpowern = cat(2,rpowern{:}); 5GFnfc}
end !BikF4Y1L&
.x$T al
% Compute the values of the polynomials: ~m|?! ]n
% -------------------------------------- ?ZV0
y = zeros(length_r,length(n)); BG8)bhk;/
for j = 1:length(n) qf=[*ZY
s = 0:(n(j)-m_abs(j))/2; f>+}U;)EF
pows = n(j):-2:m_abs(j); RHAr[$
for k = length(s):-1:1 x-#9i
p = (1-2*mod(s(k),2))* ... kJeOlO[
prod(2:(n(j)-s(k)))/ ... 5)v^
cR?&
prod(2:s(k))/ ... bfI -!,
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... tWOze, N
prod(2:((n(j)+m_abs(j))/2-s(k))); =+=|{l?F
idx = (pows(k)==rpowers); nJ#@W b@
y(:,j) = y(:,j) + p*rpowern(:,idx); >(ww6vk2
end ,$qs9b~
(l_de)N7
if isnorm 8=o(nFJw
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %1 ^jd\
end
o4f9EJY
end EF=D}"E6pO
% END: Compute the Zernike Polynomials ,k! f`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ![!b^:f
~+nSI-L
% Compute the Zernike functions: Iw|[*Nu-
% ------------------------------ 2^ZPO4|
idx_pos = m>0; Aq]'.J=4
idx_neg = m<0; GXK?7S0H
3M*[a~
z = y; 4KSN;G
if any(idx_pos) <_q/ +x]8
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); BF[?* b
end vm^# aoDB
if any(idx_neg) hGXDu;{
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); |M>k &p,B-
end knzED~v@(
OYp8r
% EOF zernfun