切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10981阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 $/paEn"  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! +#s;yc#=2  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 b/<mRQ{  
    function z = zernfun(n,m,r,theta,nflag) p<5!0 2yQ\  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. %{C)1*M7  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N OCnFEX"  
    %   and angular frequency M, evaluated at positions (R,THETA) on the =yqHC<8:  
    %   unit circle.  N is a vector of positive integers (including 0), and >uy%-aXiVa  
    %   M is a vector with the same number of elements as N.  Each element 7>n"}8i  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) &U"X $aFc  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, c+2%rh1  
    %   and THETA is a vector of angles.  R and THETA must have the same L.B~ax.|Z  
    %   length.  The output Z is a matrix with one column for every (N,M) ~R.dPUr  
    %   pair, and one row for every (R,THETA) pair. Ld(NhB'7  
    % %0XvJF)s  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Zw$ OKU  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *)>do L  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 5v9Vk` 3'  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, `,Orf ZMb  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized .Yx_:h=u  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. J%Mnjk^_\S  
    % HY)ESU !  
    %   The Zernike functions are an orthogonal basis on the unit circle. ^%#grX#  
    %   They are used in disciplines such as astronomy, optics, and \%5MAQS  
    %   optometry to describe functions on a circular domain. sLns3&n2  
    % 2P9J' L  
    %   The following table lists the first 15 Zernike functions. #w>~u2W  
    % )q3"t2-  
    %       n    m    Zernike function           Normalization 3z[ $4L'.  
    %       -------------------------------------------------- :a3 xvN-l  
    %       0    0    1                                 1 k+1gQru{d  
    %       1    1    r * cos(theta)                    2 @-"R$HOT  
    %       1   -1    r * sin(theta)                    2 =|SdVv   
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) usOx=^?=  
    %       2    0    (2*r^2 - 1)                    sqrt(3) !>g:Si"  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) '4u v3)P  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) pn\V+Rg'  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) IR$ (_9z  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) OW`STp!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) js <Ww$zFW  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) SUE ~rb  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q~Ea8UT. #  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ZK !A#Jm{  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -]XP2}#d  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) &88oB6$D^q  
    %       -------------------------------------------------- zY%. Rq-  
    % &mkpJF/  
    %   Example 1: :"'nK6>  
    % Z'M`}3O  
    %       % Display the Zernike function Z(n=5,m=1) *<9$D  
    %       x = -1:0.01:1; S>f&6ZDNY(  
    %       [X,Y] = meshgrid(x,x); fgCT!s7z  
    %       [theta,r] = cart2pol(X,Y); ,]$A\+m'  
    %       idx = r<=1; d`%M g&  
    %       z = nan(size(X)); GAl+Zg##  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); &; >4N"]  
    %       figure ;n*J$B  
    %       pcolor(x,x,z), shading interp  CL3xg)x6  
    %       axis square, colorbar Q`6i=mB;  
    %       title('Zernike function Z_5^1(r,\theta)') 5 9 -!6;T  
    % ~UPZ<  
    %   Example 2: 3!#/k+,C  
    % <Ar$v'W=F{  
    %       % Display the first 10 Zernike functions _T*AC.  
    %       x = -1:0.01:1; M{KW@7j  
    %       [X,Y] = meshgrid(x,x); wahZK~,EaY  
    %       [theta,r] = cart2pol(X,Y); 9l !S9d  
    %       idx = r<=1; ][:rLs  
    %       z = nan(size(X)); 8^ #mvHah  
    %       n = [0  1  1  2  2  2  3  3  3  3]; J@#?@0]F  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ]WL|~mG  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Tr.hmGU  
    %       y = zernfun(n,m,r(idx),theta(idx)); '%7 Bxof  
    %       figure('Units','normalized') fx?$9(r,  
    %       for k = 1:10 =`t^~.5  
    %           z(idx) = y(:,k); N|dD!  
    %           subplot(4,7,Nplot(k)) A3R#z]Ub  
    %           pcolor(x,x,z), shading interp >*qQ+_  
    %           set(gca,'XTick',[],'YTick',[]) PT]GJ<K/  
    %           axis square I}.i@d'O  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) k-jahm4  
    %       end o`?zF+M0  
    % EzT`,#b  
    %   See also ZERNPOL, ZERNFUN2. ;l!`C':'  
    GozPvR^/  
    %   Paul Fricker 11/13/2006 >^SEWZ_[  
    qX6D1X1_  
    \}dyS8  
    % Check and prepare the inputs: 92[a; a  
    % ----------------------------- VmvQvQ/9R  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6 /Y1 wu  
        error('zernfun:NMvectors','N and M must be vectors.') G|4^_`-  
    end 4Z5#F]OA7  
    };katqzEg  
    if length(n)~=length(m) O4|2|sA  
        error('zernfun:NMlength','N and M must be the same length.') q |dH~BK  
    end `_qK&&s  
    ai-n z-;  
    n = n(:); yoS? s  
    m = m(:); <hvRP!~<)  
    if any(mod(n-m,2)) a.kbov(  
        error('zernfun:NMmultiplesof2', ... `f`TS#V  
              'All N and M must differ by multiples of 2 (including 0).') 2QUx&u:  
    end 97`WMs  
    pv# 2]v  
    if any(m>n) x` /)g(  
        error('zernfun:MlessthanN', ... AEg(m<t  
              'Each M must be less than or equal to its corresponding N.') ;O=h$8]  
    end 7P**:b  
    !:0v{ZQ  
    if any( r>1 | r<0 ) !1Y&Y@ze  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') r<R4 1Fz  
    end (03pJV&K  
    7$uJ7`e  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) l-)B ivoi  
        error('zernfun:RTHvector','R and THETA must be vectors.') #h'@5 l  
    end p*qPcuAA  
    46x.i;b7  
    r = r(:); 1wn&js C  
    theta = theta(:); wpo1  
    length_r = length(r); ?6N3tk-2  
    if length_r~=length(theta) FN87^.^2S  
        error('zernfun:RTHlength', ... mG2'Y)Sz  
              'The number of R- and THETA-values must be equal.') W>-B [5O&[  
    end 0^l%j8/  
    fi%r<]@  
    % Check normalization: FxW&8 9G  
    % -------------------- *3+-W  
    if nargin==5 && ischar(nflag) ZxHJ<2oD  
        isnorm = strcmpi(nflag,'norm'); oy\B;aAK  
        if ~isnorm H[WQ=){  
            error('zernfun:normalization','Unrecognized normalization flag.') M\oVA=d\0  
        end l54 m22pfv  
    else -j`LhS~|  
        isnorm = false; W`)<vGn=Y  
    end Le#spvV3J|  
    ([E]_Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /iQ(3F  
    % Compute the Zernike Polynomials ^twivNB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hv)8K'u  
    + ,4" u  
    % Determine the required powers of r: "&o,yd%  
    % ----------------------------------- uofr8oL~  
    m_abs = abs(m); E`;;&V q-  
    rpowers = []; 3vic(^Qh  
    for j = 1:length(n) ~^US/"  
        rpowers = [rpowers m_abs(j):2:n(j)]; v}(6 <wnnS  
    end KtN&,C )lJ  
    rpowers = unique(rpowers); -1%OlKC  
    +pmu2}E.3  
    % Pre-compute the values of r raised to the required powers, [0@`wZ  
    % and compile them in a matrix: grom\  
    % ----------------------------- URTzX 2'[  
    if rpowers(1)==0 >,5i60Q  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .qD@ Y3-  
        rpowern = cat(2,rpowern{:}); S-F o  
        rpowern = [ones(length_r,1) rpowern]; }VCI=?-  
    else O l@_(U  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2KJ1V+g@a6  
        rpowern = cat(2,rpowern{:}); DVp5hR_$  
    end VG@};dwbz*  
    't (O$  
    % Compute the values of the polynomials: l]Lx L  
    % -------------------------------------- v zo4g,Bj  
    y = zeros(length_r,length(n)); _t>"5s&i  
    for j = 1:length(n) <=um1P3X  
        s = 0:(n(j)-m_abs(j))/2; V%ii3  
        pows = n(j):-2:m_abs(j); 7}o/:  
        for k = length(s):-1:1 dJuD|9R  
            p = (1-2*mod(s(k),2))* ... C*kK)6v `  
                       prod(2:(n(j)-s(k)))/              ... 3'I^lc  
                       prod(2:s(k))/                     ... MXp3g@Cz  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [0;buVU.  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); [AzO:A  
            idx = (pows(k)==rpowers); a:rX9-**  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Kx`/\u=/  
        end S33j?+ Vs  
         /BA{O&Ro^  
        if isnorm jA(vTR.`  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); X]j)+DX>  
        end U>qHn'M  
    end 4vZ4/#(x  
    % END: Compute the Zernike Polynomials YV'pVO'_+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |`rJJFA  
    /Ft:ffR|R  
    % Compute the Zernike functions: OYL]j{  
    % ------------------------------ qa'gM@]  
    idx_pos = m>0; EMvHFu   
    idx_neg = m<0; tNaL;0#Tx  
    oy.[+EI`|  
    z = y; y0bq;(~X~  
    if any(idx_pos)  1jCo  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); m\u26`M  
    end 'xK.U I  
    if any(idx_neg) T2'RATfG  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); db72W x0>  
    end Tbbz'b;{  
    .8gl< vX  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Fzq41jiS  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. @I3eK^#|P  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated =Ufr^naA  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive |pZUlQbb  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, N#xG3zZl|N  
    %   and THETA is a vector of angles.  R and THETA must have the same ;^){|9@  
    %   length.  The output Z is a matrix with one column for every P-value, 0$.m_0H  
    %   and one row for every (R,THETA) pair. L{{CAB!  
    % +JyUe    
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike n| !@1sd  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) /1w2ehE<  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) j+4H}XyE  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 R=j% S!  
    %   for all p. F'm(8/A$  
    % yl&UM qI(  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 TX8<J>x  
    %   Zernike functions (order N<=7).  In some disciplines it is _D7]-3uC!  
    %   traditional to label the first 36 functions using a single mode ?Ke eHMu  
    %   number P instead of separate numbers for the order N and azimuthal !BIOY!M  
    %   frequency M. !c#]?b%  
    % zy'D!db`Z  
    %   Example: q%YV$$c   
    % H6TD@kL9Wr  
    %       % Display the first 16 Zernike functions C(T;>if0NH  
    %       x = -1:0.01:1; dP2irC%f8  
    %       [X,Y] = meshgrid(x,x); RI n9(r  
    %       [theta,r] = cart2pol(X,Y); G[Lpe  
    %       idx = r<=1; tB7}|jC  
    %       p = 0:15; GwU?wIIj^  
    %       z = nan(size(X)); (oz$B0HO:  
    %       y = zernfun2(p,r(idx),theta(idx)); {No L  
    %       figure('Units','normalized') 266oTER]v:  
    %       for k = 1:length(p) SGc8^%-`  
    %           z(idx) = y(:,k); RJeDEYXeg  
    %           subplot(4,4,k) AV8T  
    %           pcolor(x,x,z), shading interp ~X(UcZ2  
    %           set(gca,'XTick',[],'YTick',[]) B@YyQ'  
    %           axis square Fm_y&7._  
    %           title(['Z_{' num2str(p(k)) '}']) UaG1c%7?X  
    %       end P(k(m< 0  
    % \G@wp5  
    %   See also ZERNPOL, ZERNFUN. I751 t  
    V%0I%\0Y  
    %   Paul Fricker 11/13/2006 az;Q"V'6  
    bizTd  
    a&{X!:X  
    % Check and prepare the inputs: "t=hzn"~%  
    % ----------------------------- G2{O9  
    if min(size(p))~=1 >O9o,o/6R  
        error('zernfun2:Pvector','Input P must be vector.') t`'iU$:1f  
    end 5+Mdh`  
    fU3`v\X  
    if any(p)>35 lq:}0<k  
        error('zernfun2:P36', ... V&]DzjT/  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... RkeltE~u  
               '(P = 0 to 35).']) (6p]ZY  
    end Scm36sT{  
    NG&_?|OmV  
    % Get the order and frequency corresonding to the function number: eas:6Q)  
    % ---------------------------------------------------------------- <+#o BN  
    p = p(:); 3-Dt[0%{  
    n = ceil((-3+sqrt(9+8*p))/2); h&3YGCl  
    m = 2*p - n.*(n+2); o\otgyoh  
    >kZ57,  
    % Pass the inputs to the function ZERNFUN: lS^(&<{  
    % ---------------------------------------- \vfBrN  
    switch nargin /2M.~3gQ  
        case 3 d@0Kr5_  
            z = zernfun(n,m,r,theta); y4:H3Sk  
        case 4 VQI(Vp|  
            z = zernfun(n,m,r,theta,nflag); )+")Sz3zx  
        otherwise ?Ucu#UO  
            error('zernfun2:nargin','Incorrect number of inputs.') YT/kC'A  
    end GV6K/T :  
    "& Dx=Yf  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) *Oc.9 F88"  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. |]Z:&[D]i  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ;;$#)b  
    %   order N and frequency M, evaluated at R.  N is a vector of Wjh/M&,  
    %   positive integers (including 0), and M is a vector with the (}r|yE  
    %   same number of elements as N.  Each element k of M must be a am_gH  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) {K{EOB_u  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is CBQhIvq.d  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ;Yfv!\^|  
    %   with one column for every (N,M) pair, and one row for every C9DJO:f.2y  
    %   element in R. _qqr5NU  
    % lDC$F N  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- K-<^ $VWh  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is +`M!D }!  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to "1q>At  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 B<8N96fx  
    %   for all [n,m]. d8SE,A&  
    % "TV(H+1,z  
    %   The radial Zernike polynomials are the radial portion of the *{undZ?(>  
    %   Zernike functions, which are an orthogonal basis on the unit }ZSQ>8a  
    %   circle.  The series representation of the radial Zernike @UBjq%z  
    %   polynomials is K'iIJA*Sn  
    % UmnE@H"t$\  
    %          (n-m)/2 qQi.?<d2"s  
    %            __ 8By,#T".  
    %    m      \       s                                          n-2s j#~Jxv%n  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 3bqC\i^[\m  
    %    n      s=0 3lLMu B+  
    % _mS!XF~`P  
    %   The following table shows the first 12 polynomials. < _$%@4 L  
    % 5WqXo{S  
    %       n    m    Zernike polynomial    Normalization B{oU,3U>  
    %       --------------------------------------------- ]nQt>R p_  
    %       0    0    1                        sqrt(2) 1CPjil*eb  
    %       1    1    r                           2 FG3UZVUg9  
    %       2    0    2*r^2 - 1                sqrt(6) UY2X  
    %       2    2    r^2                      sqrt(6) e}@)z3Q<l  
    %       3    1    3*r^3 - 2*r              sqrt(8) KV|}#<dD  
    %       3    3    r^3                      sqrt(8) V>64/  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ~'5  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ;Zj]~|  
    %       4    4    r^4                      sqrt(10) k *R<,  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) vhvdKD  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) {:c]|^w6  
    %       5    5    r^5                      sqrt(12) zL5d0_E9  
    %       ---------------------------------------------  `G1&Z]z  
    % j7FN\ cz  
    %   Example: 2RF^s.W  
    % (3[z%@I  
    %       % Display three example Zernike radial polynomials H$ftGwS8  
    %       r = 0:0.01:1; zJ+8FWy:S  
    %       n = [3 2 5]; Obw?_@X  
    %       m = [1 2 1]; bW#@OrsS  
    %       z = zernpol(n,m,r); 4E8JT#&  
    %       figure r4x3$M c  
    %       plot(r,z) ^ yh'lh/  
    %       grid on o!E v;' D  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Cp^@zw*/  
    % +,:^5{9{  
    %   See also ZERNFUN, ZERNFUN2. m`4R]L]  
    x# ~ x;)  
    % A note on the algorithm. 3:"]Rn([P  
    % ------------------------ 3$vRW.c\q  
    % The radial Zernike polynomials are computed using the series \ JG8KE=j  
    % representation shown in the Help section above. For many special ~,D@8tv  
    % functions, direct evaluation using the series representation can 1%M&CX  
    % produce poor numerical results (floating point errors), because M >:]lpRK  
    % the summation often involves computing small differences between >$gG/WD?KR  
    % large successive terms in the series. (In such cases, the functions 6#}93Dgv4  
    % are often evaluated using alternative methods such as recurrence c8)/:xxl  
    % relations: see the Legendre functions, for example). For the Zernike *BD=O@  
    % polynomials, however, this problem does not arise, because the W$JebW<z(  
    % polynomials are evaluated over the finite domain r = (0,1), and `<^VR[Mx  
    % because the coefficients for a given polynomial are generally all $&|y<Y=  
    % of similar magnitude. j9qREf9)  
    % }MR1^  
    % ZERNPOL has been written using a vectorized implementation: multiple C\_zdADUb%  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] a m-b!l!q^  
    % values can be passed as inputs) for a vector of points R.  To achieve s57N) 0kP  
    % this vectorization most efficiently, the algorithm in ZERNPOL }14 {2=!Q  
    % involves pre-determining all the powers p of R that are required to eLwTaW !C  
    % compute the outputs, and then compiling the {R^p} into a single N-lGa@ j  
    % matrix.  This avoids any redundant computation of the R^p, and ?6Cz[5\  
    % minimizes the sizes of certain intermediate variables. ~/_9P Fk  
    % -B#yy]8  
    %   Paul Fricker 11/13/2006 %zC[KE*~  
    ogM%N  
    |eoid?=  
    % Check and prepare the inputs: STfyCtS  
    % ----------------------------- k<w(i k1bi  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) tg4Y i|5  
        error('zernpol:NMvectors','N and M must be vectors.') A]`El8_t"  
    end ezhDcI_T  
    A6<C-1 N}j  
    if length(n)~=length(m) `&M{cfp_  
        error('zernpol:NMlength','N and M must be the same length.') *y`%]Hy<  
    end u{&B^s)k.  
    ^x*nq3^h\  
    n = n(:); @Un/c:n  
    m = m(:); +&tgJ07A  
    length_n = length(n); n?#!VN3  
    (VyNvB  
    if any(mod(n-m,2)) puSLqouTM  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') |1Dc!V'?"  
    end fBBa4"OK=  
    aRj>iQaddx  
    if any(m<0) e"-X U@`k1  
        error('zernpol:Mpositive','All M must be positive.') +y[@T6_  
    end IC/(R! Crj  
    *VSel4;\t  
    if any(m>n) MB);!qy  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') wYeB)1.  
    end iMF<5fLH&  
    MgnM,95  
    if any( r>1 | r<0 ) Rg29  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') y;" n9  
    end ?tf&pgo  
    "re-@Baw  
    if ~any(size(r)==1) "SWMk!  
        error('zernpol:Rvector','R must be a vector.') 71FeDpe  
    end NW$H"}+o  
    W!$zXwY}(  
    r = r(:); X{Yw+F,j  
    length_r = length(r); [}nK"4T"Ri  
    -y) ,Y |  
    if nargin==4 '6Qy/R  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); RR1A65B  
        if ~isnorm {!ZyCi19  
            error('zernpol:normalization','Unrecognized normalization flag.') @54*.q$  
        end ]>##`X  
    else oqkVYlE  
        isnorm = false; i;\s.wrzH  
    end v|Jlf$>  
    s}M= oe  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }pNX@C#De  
    % Compute the Zernike Polynomials R U"/2i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .W\ve>;  
    O[~x_xeW  
    % Determine the required powers of r: W@L3+4  
    % ----------------------------------- KHiFJ_3  
    rpowers = []; .r|*Ch#;P  
    for j = 1:length(n) ]rd/;kg.S  
        rpowers = [rpowers m(j):2:n(j)]; /z."l!u6  
    end =Cf ]  
    rpowers = unique(rpowers); /  YiQ\  
    9pWy"h$H  
    % Pre-compute the values of r raised to the required powers, 4\X||5.c  
    % and compile them in a matrix: ~d>%,?zz  
    % ----------------------------- U0B2WmT~Q  
    if rpowers(1)==0 -H(vL=  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); TT!ET<ciN  
        rpowern = cat(2,rpowern{:}); 2F_ R/{D  
        rpowern = [ones(length_r,1) rpowern]; uPyVF-i  
    else E +_&HG}a  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); =y ]Jl,_.  
        rpowern = cat(2,rpowern{:}); q?{}3 dPC  
    end %(m ])  
    \9c$`nn  
    % Compute the values of the polynomials: g1m-+a  
    % -------------------------------------- y+mElG$F  
    z = zeros(length_r,length_n); A;K(J4y*  
    for j = 1:length_n pck>;V  
        s = 0:(n(j)-m(j))/2; {5:Zl<0  
        pows = n(j):-2:m(j); >mu)/kl  
        for k = length(s):-1:1 _"f  :`  
            p = (1-2*mod(s(k),2))* ...  <dR,'  
                       prod(2:(n(j)-s(k)))/          ... R|,7d:k  
                       prod(2:s(k))/                 ... $`Nd?\$  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... =Z0t :{  
                       prod(2:((n(j)+m(j))/2-s(k))); /"AvOh*  
            idx = (pows(k)==rpowers); #Fd W/y5  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ^tAO_~4  
        end "X1vZwK8N  
         60B-ay0e$b  
        if isnorm t\y-T$\\  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); V 2znU  
        end +H'\3^C-  
    end a<Uqyilm  
    q=c/B(II!  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  2^ kn5  
    ^ N_`^m  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 h=mv9=x  
    Faw. GU  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)