非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 4&E"{d
>
function z = zernfun(n,m,r,theta,nflag) >33=0<
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Yo %U{/e
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !$Uo$?gC
% and angular frequency M, evaluated at positions (R,THETA) on the 7nPg2K&
% unit circle. N is a vector of positive integers (including 0), and V_3oAu54s{
% M is a vector with the same number of elements as N. Each element {/noYB<;
% k of M must be a positive integer, with possible values M(k) = -N(k) 6vNW)1{nn
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, >FE8CH!W&
% and THETA is a vector of angles. R and THETA must have the same C2<TR PT
% length. The output Z is a matrix with one column for every (N,M) vapC5,W"2-
% pair, and one row for every (R,THETA) pair. wXQu%F3
% NFVu~t
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 2wpJ)t*PF
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), M2%@bETJ
% with delta(m,0) the Kronecker delta, is chosen so that the integral L\mF[Kd#+T
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^S|qGu,G
% and theta=0 to theta=2*pi) is unity. For the non-normalized 23CvfP
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }wo:1v8J
% aH;AGbp
% The Zernike functions are an orthogonal basis on the unit circle. ;[o:VuTs
% They are used in disciplines such as astronomy, optics, and w!UF^~
% optometry to describe functions on a circular domain. h`U-{VIrqi
% /BgXY}JC.
% The following table lists the first 15 Zernike functions. tHzgZoBz
% cPcH
8Vd
% n m Zernike function Normalization emQc%wd{
% -------------------------------------------------- v
RD/67
% 0 0 1 1 1*A^v
% 1 1 r * cos(theta) 2 7mSNz.
% 1 -1 r * sin(theta) 2 q=^;lWs4
% 2 -2 r^2 * cos(2*theta) sqrt(6) r?)1)?JnHe
% 2 0 (2*r^2 - 1) sqrt(3) MO0t
% 2 2 r^2 * sin(2*theta) sqrt(6) f:3cV(mC
% 3 -3 r^3 * cos(3*theta) sqrt(8) ]$#bNt/p
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) wHbmK
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) g]j&F65D
% 3 3 r^3 * sin(3*theta) sqrt(8) NtGJpT4YX
% 4 -4 r^4 * cos(4*theta) sqrt(10) \i?bt0 bM
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W7C1\'T
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) p7AsNqEp
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ok6t|
7sq
% 4 4 r^4 * sin(4*theta) sqrt(10) C'@I!m._i
% -------------------------------------------------- 7zz F M
% TgJ+:^+0
% Example 1: ms3"
% .hckZx /
% % Display the Zernike function Z(n=5,m=1) 2aTq?ZR|8A
% x = -1:0.01:1; v,opyTwG|
% [X,Y] = meshgrid(x,x); C_3,|Zq?|
% [theta,r] = cart2pol(X,Y); Fr50hrtkU
% idx = r<=1; $@s-OQ}
% z = nan(size(X)); #Ey_.4S
% z(idx) = zernfun(5,1,r(idx),theta(idx)); KHP/Y{mH
% figure Y*b$^C%2
% pcolor(x,x,z), shading interp LV ]10v6
% axis square, colorbar q-^{2.ftcx
% title('Zernike function Z_5^1(r,\theta)') @u$NB3
% l`#rhuy`
% Example 2: gs+nJ+b
% #-b}QhxH
% % Display the first 10 Zernike functions S['rTuk
% x = -1:0.01:1; ){mqo%{SO
% [X,Y] = meshgrid(x,x); 7%$3`4i`O
% [theta,r] = cart2pol(X,Y); AaU!a
% idx = r<=1; uo?R;fX26
% z = nan(size(X)); Qn$YI9t
% n = [0 1 1 2 2 2 3 3 3 3]; zA?AX1%Wa
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; gc I<bY
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Mi
NEf
% y = zernfun(n,m,r(idx),theta(idx)); qOmL\'8
% figure('Units','normalized') 63'%+
% for k = 1:10 rR^o
% z(idx) = y(:,k); 7}NvO"u
% subplot(4,7,Nplot(k)) cSv;HN:
% pcolor(x,x,z), shading interp daCkjDGl\
% set(gca,'XTick',[],'YTick',[]) F <iV;+
% axis square ^r<l#D,
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ) iV^rLwL
% end ]N\D^`iQ
% t%,:L.?J#
% See also ZERNPOL, ZERNFUN2. fg,vTpBk
_J2?B?S/j
% Paul Fricker 11/13/2006 ^N^s|c'
fHwS12SB
@:Ft+*2
% Check and prepare the inputs: g`Q!5WK*
% ----------------------------- i"+TKo-
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) f fI=Bt]t
error('zernfun:NMvectors','N and M must be vectors.') CX2qtI8N?
end J!|R1
?.-+U~
if length(n)~=length(m) *T}c{/
error('zernfun:NMlength','N and M must be the same length.') `tuGy}S2
end a".iVf6y
Mcz;`h|EW
n = n(:); Jq"3xj
m = m(:); !]fSS)\H
if any(mod(n-m,2)) eu]qgtg~U
error('zernfun:NMmultiplesof2', ... jrS$!cEo
'All N and M must differ by multiples of 2 (including 0).') =b"{*Heuw
end 7/KK}\NE
*Jt+-ZM
if any(m>n) f6\4,()
error('zernfun:MlessthanN', ... zFDtC-GF
'Each M must be less than or equal to its corresponding N.') fGA#0/_`
end .F%jbnKd_
OXl0R{4
if any( r>1 | r<0 ) X>pCkGE
error('zernfun:Rlessthan1','All R must be between 0 and 1.') C]3:&dx9
end ang~_Ec.
]
X)~D!mA
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) u] G
error('zernfun:RTHvector','R and THETA must be vectors.') }G^'y8U
end {wk#n.c
8 .K; 2
r = r(:); PQ;9iv
theta = theta(:); zmu+un"\j
length_r = length(r); 8N |K
if length_r~=length(theta) kaoiSL<[6
error('zernfun:RTHlength', ... uvR l`"Y
'The number of R- and THETA-values must be equal.') CbxWK#aMmB
end UxF9Ko( ]d
9s7TLT k
% Check normalization: {KK/mAp{
% -------------------- Lr
d-
if nargin==5 && ischar(nflag) >o3R~ [
isnorm = strcmpi(nflag,'norm'); OwNo$b]h`
if ~isnorm f)Y~F/[$P
error('zernfun:normalization','Unrecognized normalization flag.') v>mK~0.$
end rR/{Yx4
else =w:)AWZ
isnorm = false; @A`j Wao
end UKTfLh
Q`;eI
a6U
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KLuOg$i
% Compute the Zernike Polynomials l&kZ6lZ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W4P+?c>'2
z
yp3+|
% Determine the required powers of r: Wi,)a{
% ----------------------------------- cF EO}
m_abs = abs(m); 1_;{1O+B
rpowers = []; x&+&)d
for j = 1:length(n) y!rJ}e
rpowers = [rpowers m_abs(j):2:n(j)]; ?1O`
Rd{tn
end 5'V-Ly)*%
rpowers = unique(rpowers); jY=M{?h''
yh|+Usa
% Pre-compute the values of r raised to the required powers, u~JR]T
% and compile them in a matrix: ?<\2}1
% ----------------------------- ,!PV0(F(
if rpowers(1)==0 E'6/@xM
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); l[%=S!
rpowern = cat(2,rpowern{:}); bR:hu}YS
rpowern = [ones(length_r,1) rpowern]; %~>-nqS
else 9`"#OQPn1
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); WIAukM8~
rpowern = cat(2,rpowern{:}); nZ#u#V
end 7[K3kUm[
s5Wb iOF
% Compute the values of the polynomials: l]Ym)QP
% -------------------------------------- Y}Dk>IG
y = zeros(length_r,length(n)); 0V^I.S/q
for j = 1:length(n) 1A#/70Mo
s = 0:(n(j)-m_abs(j))/2; ^-|~c`&}B
pows = n(j):-2:m_abs(j); agkKm?xIL
for k = length(s):-1:1 6R$Yh0%
p = (1-2*mod(s(k),2))* ... :qAX9T'{t
prod(2:(n(j)-s(k)))/ ... SXvflr] =m
prod(2:s(k))/ ... s aHY9{)
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8K8jz9.s
prod(2:((n(j)+m_abs(j))/2-s(k))); T{-gbo`Yji
idx = (pows(k)==rpowers); FgrVXb_q
y(:,j) = y(:,j) + p*rpowern(:,idx); "!eq~/nk
end -xN/H,xok
ukc
7Z
OQ
if isnorm z}7}D !
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :("@U,
end xdz 6[8d8
end WU@_aw[
% END: Compute the Zernike Polynomials ,w9|?%S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BSJS4+,E
-AolW+Y
% Compute the Zernike functions: C+%eT&OO
% ------------------------------ @,c`#,F/
idx_pos = m>0; n6M #Xc'JA
idx_neg = m<0; ^K_FGE0ec
b353+7"|
z = y; Hi/[
if any(idx_pos) n\<7`,
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); +uTl
Lu;MT
end L$+_
if any(idx_neg) 6U$e;cr6
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 1wdc4>
end T\=#y
"O|.e`C%^
% EOF zernfun