切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11718阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 hFk3[zTy  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ?[& 2o|  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 mKT>,M  
    function z = zernfun(n,m,r,theta,nflag) A<\JQ  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Hg9CZM ko  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N vsL[*OeI  
    %   and angular frequency M, evaluated at positions (R,THETA) on the tX!n sm1  
    %   unit circle.  N is a vector of positive integers (including 0), and EwS!]h?  
    %   M is a vector with the same number of elements as N.  Each element ~+<olss_  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) @:tj<\G]  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, y7S4d~&  
    %   and THETA is a vector of angles.  R and THETA must have the same .XkMk|t8  
    %   length.  The output Z is a matrix with one column for every (N,M) % aUsOB-RV  
    %   pair, and one row for every (R,THETA) pair. k<RZKwQc  
    % j F-v% ?  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -k(CJ5H9  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Cda!Mk:  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral .[u> V  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |v[Rp=?]  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized bu&t'?z x!  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. pq:7F  
    % -dv %H{  
    %   The Zernike functions are an orthogonal basis on the unit circle. ;f,c't@w  
    %   They are used in disciplines such as astronomy, optics, and _5MNMV LwW  
    %   optometry to describe functions on a circular domain. #{9G sD  
    % "lNzGi-H  
    %   The following table lists the first 15 Zernike functions. 5'w^@Rs5  
    % QQe;1O  
    %       n    m    Zernike function           Normalization `VQb-V  
    %       -------------------------------------------------- 9'x)M?{8  
    %       0    0    1                                 1 )2DQ>cm  
    %       1    1    r * cos(theta)                    2 \@}#Gez  
    %       1   -1    r * sin(theta)                    2 CSV;+,Vv  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) p"*y58  
    %       2    0    (2*r^2 - 1)                    sqrt(3) @<M*qK1h  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Qp2I[Ioz3  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) NNG}M(/V  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ?EU\}N J  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) * MM[u75  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) y<XlRTy[}  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 24Z]%+b*E  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {F N;'Uc  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) V@d )?T  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) IMnP[WA!  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) /D_+{dtE  
    %       -------------------------------------------------- 1!p/6  
    % Wk^RA_  
    %   Example 1: ^MD;"A<  
    % n:U>Fj>q  
    %       % Display the Zernike function Z(n=5,m=1) w(1Gi$Z(Q)  
    %       x = -1:0.01:1; bXYA5wG  
    %       [X,Y] = meshgrid(x,x); E3a_8@ZB7  
    %       [theta,r] = cart2pol(X,Y); .bf<<+'o  
    %       idx = r<=1; Gjz[1d  
    %       z = nan(size(X)); P6Bl *@G  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); qQ7w&9r.M  
    %       figure j%<}jw[2  
    %       pcolor(x,x,z), shading interp )a=/8ofe  
    %       axis square, colorbar bg?"ILpk  
    %       title('Zernike function Z_5^1(r,\theta)') xx*2?i  
    % BO.dz06(Rw  
    %   Example 2: _SZ5P>GIU  
    % ]WJfgN4  
    %       % Display the first 10 Zernike functions /?"8-0d  
    %       x = -1:0.01:1; lH|LdlX  
    %       [X,Y] = meshgrid(x,x); OMihXt[  
    %       [theta,r] = cart2pol(X,Y); RV-hIdAU  
    %       idx = r<=1; Fk^3a'/4KJ  
    %       z = nan(size(X)); 8_uzpeRhJc  
    %       n = [0  1  1  2  2  2  3  3  3  3];  17hTr  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; \'19BAm'  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; *.f2VQ~H  
    %       y = zernfun(n,m,r(idx),theta(idx)); 5;)*T6Y  
    %       figure('Units','normalized') LT+3q%W.UC  
    %       for k = 1:10 G>T')A  
    %           z(idx) = y(:,k); %K 4  
    %           subplot(4,7,Nplot(k)) oJ*1>7[J  
    %           pcolor(x,x,z), shading interp (#(O r  
    %           set(gca,'XTick',[],'YTick',[]) TrE3S'EU#R  
    %           axis square _-cK{  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ,D80/2U^  
    %       end mnF}S5[9  
    % v4*rPGv  
    %   See also ZERNPOL, ZERNFUN2. 3Rl,GWK  
    q]4pEip  
    %   Paul Fricker 11/13/2006 myQ&%M gx  
    7z~Ghz  
    Z& !!]"I  
    % Check and prepare the inputs: =G-N` 39  
    % ----------------------------- FE5Q?*Ea  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) FQeYx-7  
        error('zernfun:NMvectors','N and M must be vectors.') F=@i6ERi  
    end j!#O G  
    >tRHNB_  
    if length(n)~=length(m) `T!#@&+  
        error('zernfun:NMlength','N and M must be the same length.') x.DzViP/  
    end !ZtSbOC'  
    96|[}:+$&:  
    n = n(:); +6W(z3($  
    m = m(:); Ruh)^g  
    if any(mod(n-m,2)) p{;i& HNdp  
        error('zernfun:NMmultiplesof2', ... |qjZ38;6  
              'All N and M must differ by multiples of 2 (including 0).') K <`>O, F  
    end 0.(<'!"y  
    eS!C3xC;J]  
    if any(m>n) 'u[%}S38  
        error('zernfun:MlessthanN', ... KI&:9j+M)  
              'Each M must be less than or equal to its corresponding N.') PjqeE,5  
    end }HZ{(?  
    HD# r0)  
    if any( r>1 | r<0 ) 2P~)I)3V  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') hCc0sRp  
    end |w)5;uQ&\  
    k&s; {|!  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -6EK#!+  
        error('zernfun:RTHvector','R and THETA must be vectors.') [ x>  
    end $Tl<V/  
    }Zl"9A#K  
    r = r(:); oh}^?p  
    theta = theta(:); ]EL\)xCr  
    length_r = length(r); v|+5:jFOqb  
    if length_r~=length(theta) ZCiY,;c  
        error('zernfun:RTHlength', ... $iMC/Kym  
              'The number of R- and THETA-values must be equal.') o)]FtL:mm  
    end WfVMdwz=  
    Y)p4]>lT+8  
    % Check normalization: r+g jc?Ol  
    % -------------------- Lar r}o=  
    if nargin==5 && ischar(nflag) hLuJWjCV  
        isnorm = strcmpi(nflag,'norm'); (r F?If  
        if ~isnorm emWGIo  
            error('zernfun:normalization','Unrecognized normalization flag.') !EFBI+?&  
        end M9"Sgb`g  
    else ;L6Xs_L~  
        isnorm = false; -0|K,k  
    end v}`1)BUeF  
    oX|?:MS:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0\ f-z6  
    % Compute the Zernike Polynomials 8M93cyX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vl5){@   
    t.=Oj  
    % Determine the required powers of r: 1X@b?6  
    % ----------------------------------- YN#XmX%  
    m_abs = abs(m); ZgF/;8!~V-  
    rpowers = []; BlaJl[Piv  
    for j = 1:length(n) k^*$^;z  
        rpowers = [rpowers m_abs(j):2:n(j)]; YBylyVZ  
    end ,ep9V ,+|  
    rpowers = unique(rpowers); _t.FL@3e  
    A'g,:8Ou  
    % Pre-compute the values of r raised to the required powers, w6U @tW  
    % and compile them in a matrix: R+Lk~X^*l'  
    % ----------------------------- 0zV 4`y  
    if rpowers(1)==0 plku-O;]  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); tp+=0k2i  
        rpowern = cat(2,rpowern{:}); HDj$"pS  
        rpowern = [ones(length_r,1) rpowern]; $c9=mjwH  
    else l\aUresm  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); FfXZ|o$;  
        rpowern = cat(2,rpowern{:}); oc;VIK)g]c  
    end  1ZNNsB  
    ,9vJtP+T+!  
    % Compute the values of the polynomials: vf_OQ4'G,  
    % -------------------------------------- k`@w(HhS  
    y = zeros(length_r,length(n)); 4WG=m}X  
    for j = 1:length(n) B(Y.`L? %E  
        s = 0:(n(j)-m_abs(j))/2; h#O"Q+J9n  
        pows = n(j):-2:m_abs(j); QK7e|M  
        for k = length(s):-1:1 msG3 ~@q  
            p = (1-2*mod(s(k),2))* ... |8'B/ p=  
                       prod(2:(n(j)-s(k)))/              ... ~,Mr0  
                       prod(2:s(k))/                     ... 8r^j P.V  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... -mC:r&Y>[  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); K P6PQgc  
            idx = (pows(k)==rpowers); "OJr*B  
            y(:,j) = y(:,j) + p*rpowern(:,idx); `vX4! @Tw  
        end cuMc*i$w!  
         4tnjXP8  
        if isnorm :p$EiR  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); TK %< a/  
        end &%:*\_2s  
    end -fQX4'3R  
    % END: Compute the Zernike Polynomials 3.~h6r5-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x Ty7lfSe  
    N1s.3`  
    % Compute the Zernike functions: #'iPDRYy  
    % ------------------------------ c.-cpFk^L&  
    idx_pos = m>0; oB}K[3uB:t  
    idx_neg = m<0; '2xcce#  
    >F|qb*Tm7  
    z = y; /pU|ZA.z'2  
    if any(idx_pos) kU(kU2u%9  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 26}u4W$  
    end :@;6  
    if any(idx_neg) AtT"RG-6  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 59~FpjJ  
    end 6~3jn+K$1  
    $>(9~Yh0  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) B#Qpd7E+*  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ~@?"' !U  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Z$1.^H.Db  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 4*H(sq  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ,5=kDw2  
    %   and THETA is a vector of angles.  R and THETA must have the same R~!\ -6%_  
    %   length.  The output Z is a matrix with one column for every P-value, C)U #T)  
    %   and one row for every (R,THETA) pair. V*>73I  
    % 48:liR  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike (;C$gnr.C  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) \4/:^T}*  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) @|E;}:?u  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 P:>'   
    %   for all p. 2'|XtSj  
    % An/>0 5|  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Imke/ =h  
    %   Zernike functions (order N<=7).  In some disciplines it is \ hrBq^I  
    %   traditional to label the first 36 functions using a single mode n}VbdxlN  
    %   number P instead of separate numbers for the order N and azimuthal +< GrRYbC  
    %   frequency M. `!<x"xKu  
    % 3Hy%SN(  
    %   Example: 0 -!?W  
    % 3,%nkW  
    %       % Display the first 16 Zernike functions =!(S<];  
    %       x = -1:0.01:1; !~?W \b\:  
    %       [X,Y] = meshgrid(x,x); -e &$,R>;  
    %       [theta,r] = cart2pol(X,Y); U.Pa7tn  
    %       idx = r<=1; /4(Z`e;0  
    %       p = 0:15; D7EXqo  
    %       z = nan(size(X)); 3L?WTS6(u  
    %       y = zernfun2(p,r(idx),theta(idx));  ^8b~ZX  
    %       figure('Units','normalized') sWp{Y.  
    %       for k = 1:length(p) BN_!Y)F l  
    %           z(idx) = y(:,k); <zfO1~^  
    %           subplot(4,4,k) UB5}i('L  
    %           pcolor(x,x,z), shading interp ^6ExW>K  
    %           set(gca,'XTick',[],'YTick',[]) W]} #\\$z  
    %           axis square !}z%#$  
    %           title(['Z_{' num2str(p(k)) '}']) Ewa[Y=+tx  
    %       end .L~fFns/  
    % +dDJes!]  
    %   See also ZERNPOL, ZERNFUN. 0Ddn@!J*  
    X@i+&Nv"<  
    %   Paul Fricker 11/13/2006 @QvfN>T  
    Q~x*bMb.  
    }P05eI  
    % Check and prepare the inputs: <+ -V5O^  
    % ----------------------------- *U( 1iv0n  
    if min(size(p))~=1 2qt=jz\s  
        error('zernfun2:Pvector','Input P must be vector.') ( K^YD K  
    end *K]>}  
    c ,Qw;  
    if any(p)>35 zG& WWc`K  
        error('zernfun2:P36', ... ['/;'NhdlY  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... e@='Q H  
               '(P = 0 to 35).']) Rh!L'? C  
    end Wpiv1GZ%c8  
    B)( p9]q  
    % Get the order and frequency corresonding to the function number: }~7H2d);-  
    % ---------------------------------------------------------------- PpX{+^z-%  
    p = p(:); 3N(8| wh  
    n = ceil((-3+sqrt(9+8*p))/2); Ej;Vr~Wi  
    m = 2*p - n.*(n+2); P&qy.0  
    `=_7I?  
    % Pass the inputs to the function ZERNFUN: Se!gs>  
    % ---------------------------------------- % <8K^|w  
    switch nargin m~Lf^gbG?  
        case 3 {LR#(q$1  
            z = zernfun(n,m,r,theta); c@0l-R{q  
        case 4 sV9{4T~#|  
            z = zernfun(n,m,r,theta,nflag); Z\ "Kd  
        otherwise dbf^A1HI  
            error('zernfun2:nargin','Incorrect number of inputs.') u i s:\Uc  
    end 9$B)hrJo  
    @ef//G+Z"  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Z7K!"I  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. V^/h;/! ^  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of jk WBw.(  
    %   order N and frequency M, evaluated at R.  N is a vector of ~|$) 1  
    %   positive integers (including 0), and M is a vector with the UcKWa>:Fi  
    %   same number of elements as N.  Each element k of M must be a ;iwD/=Y  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 7;$L&X  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is tA;ZW2$#  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix (_s!,QUe  
    %   with one column for every (N,M) pair, and one row for every gn;nS{A  
    %   element in R.  JsAb q  
    % }[hDg6i  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 'xu7AKpU)  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is YV2pERl  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to IArpCF/"8  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 0*]<RM  
    %   for all [n,m]. v]d?6g  
    % t&p:vXF2  
    %   The radial Zernike polynomials are the radial portion of the f6/\JVi)-  
    %   Zernike functions, which are an orthogonal basis on the unit N?`GZ+5  
    %   circle.  The series representation of the radial Zernike u:{. Hn`  
    %   polynomials is NZi'eZ{^`  
    % 5BGv^Qb_2  
    %          (n-m)/2 HeAc(_=C  
    %            __ .[eSKtbc)  
    %    m      \       s                                          n-2s ej??j<]  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r k^vmRe<lk  
    %    n      s=0 4^jZv$l5  
    % c+\Gd}IJq  
    %   The following table shows the first 12 polynomials. Z)Xq!]~/g  
    % @Z1?t%1  
    %       n    m    Zernike polynomial    Normalization ,_4 KyLfBF  
    %       --------------------------------------------- 4=#QN  
    %       0    0    1                        sqrt(2) .bY1N5=sz  
    %       1    1    r                           2 _#\5]D~""  
    %       2    0    2*r^2 - 1                sqrt(6)  ZeDDH  
    %       2    2    r^2                      sqrt(6) a7 '\*  
    %       3    1    3*r^3 - 2*r              sqrt(8) YRT}fd>R&  
    %       3    3    r^3                      sqrt(8) 8 )2u@sx%  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) vr]dRStr  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 2[bR6 T89  
    %       4    4    r^4                      sqrt(10) ?),K=E+=U  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ::Ve,-0  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) fh5^Gd~  
    %       5    5    r^5                      sqrt(12) :[$i~V  
    %       --------------------------------------------- RAXJsF^5o  
    % ='l6&3X  
    %   Example: T=)L5Vuq<  
    % 9DocId.  
    %       % Display three example Zernike radial polynomials q=i,'.nS  
    %       r = 0:0.01:1; Yh!\:9@(  
    %       n = [3 2 5]; 9i xnf=$Jp  
    %       m = [1 2 1]; *SpO|*'  
    %       z = zernpol(n,m,r); rt4|GVa  
    %       figure C^ k3*N  
    %       plot(r,z) 5Qe}v  
    %       grid on ,\">ovV33  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') hrtN.4p[  
    % !&<Wc^PG  
    %   See also ZERNFUN, ZERNFUN2. r|sy_Sk/{  
    U S~JLJI  
    % A note on the algorithm. {gq:sj>  
    % ------------------------ N6 Cc%,  
    % The radial Zernike polynomials are computed using the series =?QQb>  
    % representation shown in the Help section above. For many special ~o\]K  
    % functions, direct evaluation using the series representation can r'}k`A 5>  
    % produce poor numerical results (floating point errors), because #p^pvdvh3  
    % the summation often involves computing small differences between 8CHf.SXh  
    % large successive terms in the series. (In such cases, the functions JZ*?1S>  
    % are often evaluated using alternative methods such as recurrence Hwi7oXP  
    % relations: see the Legendre functions, for example). For the Zernike 1 </t #r  
    % polynomials, however, this problem does not arise, because the ?_`P;}4#  
    % polynomials are evaluated over the finite domain r = (0,1), and )}Mt'd  
    % because the coefficients for a given polynomial are generally all PfMOc+ q  
    % of similar magnitude. [ @71  
    % L&F\"q9q71  
    % ZERNPOL has been written using a vectorized implementation: multiple kKTED1MW&W  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Sr-^faL  
    % values can be passed as inputs) for a vector of points R.  To achieve >!WBl Sy  
    % this vectorization most efficiently, the algorithm in ZERNPOL \~m%4kzG8J  
    % involves pre-determining all the powers p of R that are required to N,'qMoNf  
    % compute the outputs, and then compiling the {R^p} into a single {`SGB;ho  
    % matrix.  This avoids any redundant computation of the R^p, and jYssz4)tp  
    % minimizes the sizes of certain intermediate variables. AI`1N%Owi  
    % oz7udY=]0  
    %   Paul Fricker 11/13/2006 nT6iS}h  
    "Kf~`0P  
    xn#I7]]G  
    % Check and prepare the inputs: t7& GCZ  
    % ----------------------------- 5|H(N}S_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ib<+m%Ac  
        error('zernpol:NMvectors','N and M must be vectors.') ]0nC;|]@Lx  
    end iY`7\/H!L  
    h3 ZL0Fi*  
    if length(n)~=length(m) +(hwe jyC  
        error('zernpol:NMlength','N and M must be the same length.') ;R>42 qYF  
    end st^N QL  
    |r!Qhb.!  
    n = n(:); =cX"gI[  
    m = m(:); yH0ZSv  
    length_n = length(n); Bc` A]U  
    g{.@|;d <p  
    if any(mod(n-m,2)) -|UX}t*  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') [UrS%]OSR  
    end :'Kx?Es   
    *" +cP!  
    if any(m<0) )Syf5I  
        error('zernpol:Mpositive','All M must be positive.') "U~@o4u;  
    end 8&iI+\lCy  
    &dMSX}t  
    if any(m>n) n/|`Dz.  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 6aK2 {-+  
    end "PP0PL^5F  
    I ywx1ac  
    if any( r>1 | r<0 ) m|?J^_  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Or~6t}f  
    end i(#c Yb  
    P_Ja?)GT  
    if ~any(size(r)==1) 2n,73$ s  
        error('zernpol:Rvector','R must be a vector.') $6+P&"8  
    end YZ+g<HXB  
    *y$ry]  
    r = r(:); DFH6.0UW  
    length_r = length(r); 4B,A+{3yL  
    > %*X2'^  
    if nargin==4 y.NArN|%  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); [wxI X  
        if ~isnorm 9`VF [* 9  
            error('zernpol:normalization','Unrecognized normalization flag.') Z0@ImhejuB  
        end &xT~;R^  
    else gx.]4 v  
        isnorm = false; *g}&&$b0  
    end CzbNG^+  
    C\h<02  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M- A}(r +J  
    % Compute the Zernike Polynomials .DsYR/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $S("- 3  
    H(m+rk  
    % Determine the required powers of r: ${2fr&Tp  
    % ----------------------------------- (!=aRC.-  
    rpowers = []; a VMFjkW  
    for j = 1:length(n) @=1``z#  
        rpowers = [rpowers m(j):2:n(j)]; ':dHYvP/UX  
    end _QCI< |A  
    rpowers = unique(rpowers); J4X35H=Z  
    }e@-[RJ!  
    % Pre-compute the values of r raised to the required powers, 2geC3v% 0o  
    % and compile them in a matrix: EF~PM  
    % ----------------------------- v%Xe)D   
    if rpowers(1)==0 oa7Hx<Y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Mb!^_cS(  
        rpowern = cat(2,rpowern{:}); 1MSu ]) W  
        rpowern = [ones(length_r,1) rpowern]; SW, Po>Y  
    else TD9`S SpP  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); z#/*LP#oY  
        rpowern = cat(2,rpowern{:}); |0mI3r  
    end #{1fb%L{i  
    1=.?KAXR  
    % Compute the values of the polynomials: ,:{+ H  
    % -------------------------------------- z$b!J$A1  
    z = zeros(length_r,length_n); ]vErF=[U,  
    for j = 1:length_n 9m!fW|4  
        s = 0:(n(j)-m(j))/2; v,B\+q/  
        pows = n(j):-2:m(j); 8m0sEV>  
        for k = length(s):-1:1 B:.rp.1   
            p = (1-2*mod(s(k),2))* ... s9>!^MzBK  
                       prod(2:(n(j)-s(k)))/          ... VV0$L=mo  
                       prod(2:s(k))/                 ... S\(_"xJPp  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... m ws.)  
                       prod(2:((n(j)+m(j))/2-s(k))); g7-K62bb  
            idx = (pows(k)==rpowers); 3\7$)p+c  
            z(:,j) = z(:,j) + p*rpowern(:,idx); xcA:Q`c.{  
        end a/fYD2uNo  
         1 doqznO  
        if isnorm nt6"}vO  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); A\Gw+l<h,  
        end t1S~~FLE  
    end N%+M+zEJ  
    f_8~b0`  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  )T>a|.  
    z >pq<}R6  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 8'zwy d3  
    PgVM>_nHk  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)