非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 BNpc-O~
function z = zernfun(n,m,r,theta,nflag) rw]7Lr_>
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. j2%?-(U
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `;\~$^sj}
% and angular frequency M, evaluated at positions (R,THETA) on the UhVJ! NrT
% unit circle. N is a vector of positive integers (including 0), and u RPvo}!=1
% M is a vector with the same number of elements as N. Each element ] R-<v&O
% k of M must be a positive integer, with possible values M(k) = -N(k) k$v8cE
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, )9'Zb`n
% and THETA is a vector of angles. R and THETA must have the same mdy+ >e<
% length. The output Z is a matrix with one column for every (N,M) _5&LV2
% pair, and one row for every (R,THETA) pair. 3?:?dy(3z
% E{W(5.kb;i
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +!Lz]@9K
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3}25=%;[
% with delta(m,0) the Kronecker delta, is chosen so that the integral >P[BwL]
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, F=l. 2t*9
% and theta=0 to theta=2*pi) is unity. For the non-normalized Kb,#Ot
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2"C,u V@F!
% 6V^KOG
% The Zernike functions are an orthogonal basis on the unit circle. ,J ZM%f
% They are used in disciplines such as astronomy, optics, and 'ghwc:Og|%
% optometry to describe functions on a circular domain. {H[3[
% sm96Ye{O{
% The following table lists the first 15 Zernike functions. T,SCK^
% )3A%Un#B
% n m Zernike function Normalization q;#:nf"
% -------------------------------------------------- gPzp/I
% 0 0 1 1 CyEEE2cV
% 1 1 r * cos(theta) 2 (X( c.Jj
% 1 -1 r * sin(theta) 2 ztHEXM.
% 2 -2 r^2 * cos(2*theta) sqrt(6) X'XH-E
% 2 0 (2*r^2 - 1) sqrt(3) "R9^X3;
% 2 2 r^2 * sin(2*theta) sqrt(6) @(_f}SgfE
% 3 -3 r^3 * cos(3*theta) sqrt(8) *^t7?f[
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) C8bv%9
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) >S=,ype~G
% 3 3 r^3 * sin(3*theta) sqrt(8) ! tPHT
% 4 -4 r^4 * cos(4*theta) sqrt(10) tFKR~?Gc
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #uHl
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) c`x[C
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v'X=|$75
% 4 4 r^4 * sin(4*theta) sqrt(10) %x zgTZ
% -------------------------------------------------- tF=Y3W+L
% %eDJ]\*^X
% Example 1: CKgbb4;<m[
% vhj^R5=
% % Display the Zernike function Z(n=5,m=1) k=8L hO
% x = -1:0.01:1; *, RxOz2=
% [X,Y] = meshgrid(x,x); )o>1=Y`[z
% [theta,r] = cart2pol(X,Y); [V _?`M
% idx = r<=1; sksop4gu5
% z = nan(size(X)); _E<