切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11609阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 B6r~4=w_  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! :Bc)1^ I  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 HNN,1MN  
    function z = zernfun(n,m,r,theta,nflag) +e_NpC  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. TJ9JIxnS  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N WP-?C<Iw  
    %   and angular frequency M, evaluated at positions (R,THETA) on the BeZr5I"`}  
    %   unit circle.  N is a vector of positive integers (including 0), and i-Ck:-J  
    %   M is a vector with the same number of elements as N.  Each element '&@'V5}C{  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) v <1d3G=G  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, =$3]%b}  
    %   and THETA is a vector of angles.  R and THETA must have the same v^2q\A-?  
    %   length.  The output Z is a matrix with one column for every (N,M) *(~7H6  
    %   pair, and one row for every (R,THETA) pair. R}lS@w1  
    % ''P.~~ezr5  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &~oBJar  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 6|gC##T  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Yt79W  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, }$5S@,  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Ft)7Wx" S  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. B|E4(,]^  
    % c?oNKqPzg  
    %   The Zernike functions are an orthogonal basis on the unit circle. #7/;d=  
    %   They are used in disciplines such as astronomy, optics, and C5mq@$6  
    %   optometry to describe functions on a circular domain. jyRSe^x  
    % P)x&9OHV  
    %   The following table lists the first 15 Zernike functions. -Z )j"J  
    % 4PG]L`J{  
    %       n    m    Zernike function           Normalization  GZ.Xx  
    %       -------------------------------------------------- A?[06R5E#  
    %       0    0    1                                 1 `l+{jrRb<  
    %       1    1    r * cos(theta)                    2 KEF"`VTB@  
    %       1   -1    r * sin(theta)                    2 3>FeTf#:  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ?pq#|PI)  
    %       2    0    (2*r^2 - 1)                    sqrt(3) #&zNYzI  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) /KD KA)  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) vAZc.=+ >  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) =\mAvVe  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) .OI&Zm-  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 1fwjW0t  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) G3O`r8oZcJ  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <u>l#weG,  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) e7X#C)  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Cx(|ZD^  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 82ay("ZY  
    %       -------------------------------------------------- ( )K,~  
    % 67Z@Hg  
    %   Example 1: +>BLox6  
    % -Lh\]  
    %       % Display the Zernike function Z(n=5,m=1) vsc)EM ]  
    %       x = -1:0.01:1; Y*0AS|r!  
    %       [X,Y] = meshgrid(x,x); c^$_epc*  
    %       [theta,r] = cart2pol(X,Y); +u+|9@  
    %       idx = r<=1; m$b5Vqq  
    %       z = nan(size(X)); c:QZ(8d]L  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); g \]2?vY.  
    %       figure :E ]Ys  
    %       pcolor(x,x,z), shading interp *d%"/l^0  
    %       axis square, colorbar -Zs.4@GH  
    %       title('Zernike function Z_5^1(r,\theta)') UQZ<sp4v;  
    % M\4pTcz{  
    %   Example 2: AAbI+L0m{  
    % Cu*+E%P9`  
    %       % Display the first 10 Zernike functions _}8hE v  
    %       x = -1:0.01:1; Cq mtO?vne  
    %       [X,Y] = meshgrid(x,x); (C{l4  
    %       [theta,r] = cart2pol(X,Y); ?\|QDJXY  
    %       idx = r<=1; )UBU|uYR\  
    %       z = nan(size(X)); zx<:1nF,]  
    %       n = [0  1  1  2  2  2  3  3  3  3]; [ 6+iR  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 5Ii`|?vg  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ybsQ[9_36  
    %       y = zernfun(n,m,r(idx),theta(idx)); z$#q'+$  
    %       figure('Units','normalized') GWb=X cx  
    %       for k = 1:10  UZJ^ e$N  
    %           z(idx) = y(:,k); $;GH -+  
    %           subplot(4,7,Nplot(k)) |qUi9#NUo  
    %           pcolor(x,x,z), shading interp wm1`<r^M.  
    %           set(gca,'XTick',[],'YTick',[]) Y~ku?/"6T  
    %           axis square ]O}TK^%  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) "cJ))v-'  
    %       end >9-$E?Mt  
    % Vr/UY79  
    %   See also ZERNPOL, ZERNFUN2. 9i9'Rd`g  
    is?#wrV=K  
    %   Paul Fricker 11/13/2006 v)+E!"R3.  
    h2k"iO }  
    80(Olf@PE  
    % Check and prepare the inputs: [)efh9P*  
    % ----------------------------- FM{^ND9x  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 1 8*M  
        error('zernfun:NMvectors','N and M must be vectors.') pl#2J A8  
    end }%^N9AA8  
    z@za9U`6i  
    if length(n)~=length(m) !TNp|U!  
        error('zernfun:NMlength','N and M must be the same length.') AW{"9f4  
    end G5MoIC  
    =()Vrk|uK  
    n = n(:); }4Q~<2  
    m = m(:); |DUWB;  
    if any(mod(n-m,2)) c{"=p8F_  
        error('zernfun:NMmultiplesof2', ... 8Pb~`E/  
              'All N and M must differ by multiples of 2 (including 0).') sej$$m R  
    end /)+V(Jlu  
    qdW"g$fW  
    if any(m>n) ( *&E~ g  
        error('zernfun:MlessthanN', ...  =1MVF  
              'Each M must be less than or equal to its corresponding N.') <cof   
    end gWK[%.Jnw  
    qV$\E=%fhM  
    if any( r>1 | r<0 ) M6nQ17\{  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') +,g3Xqs}X  
    end {>v5~G  
    PTS dW~3  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) F<V.OFt  
        error('zernfun:RTHvector','R and THETA must be vectors.') s(.H"_ a  
    end 0jJ:WPR  
    }srmG|@:  
    r = r(:); gJ=y7yX  
    theta = theta(:); 'w$jVX/  
    length_r = length(r); MlKSjKl" !  
    if length_r~=length(theta) -P6Z[ V%  
        error('zernfun:RTHlength', ... rv?4S`Z,x$  
              'The number of R- and THETA-values must be equal.') 969Y[XQ  
    end 1 ORA6  
    ;% <[*T:*'  
    % Check normalization: M*gbA5  
    % -------------------- JGHQzC  
    if nargin==5 && ischar(nflag) ?-v]+<$Y  
        isnorm = strcmpi(nflag,'norm'); m[}@\y  
        if ~isnorm WGwIc7  
            error('zernfun:normalization','Unrecognized normalization flag.') btR~LJb  
        end Q "vhl2RX  
    else 8a8CY,n{  
        isnorm = false; ,{C hHnJ%#  
    end cjp~I/U  
    \\ZCi`O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `B$rr4_  
    % Compute the Zernike Polynomials 8=MNzcA }  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wJc`^gj  
    j 06 mky  
    % Determine the required powers of r: elGwS\sw  
    % ----------------------------------- :Tcvj5  
    m_abs = abs(m); R wTzS;  
    rpowers = []; (V x2*Aw]  
    for j = 1:length(n) *S<d`mp[  
        rpowers = [rpowers m_abs(j):2:n(j)]; ^)p+)5l   
    end 8l l}"  
    rpowers = unique(rpowers); /O}lSXo6E  
    6Z l#$>P  
    % Pre-compute the values of r raised to the required powers, Q?2Gw N  
    % and compile them in a matrix:  3 GL,=q  
    % ----------------------------- ]!X[[w)  
    if rpowers(1)==0 m:D0O]2  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [G",Yky  
        rpowern = cat(2,rpowern{:}); .% 79(r^  
        rpowern = [ones(length_r,1) rpowern]; -A,UqEt  
    else c6T[2Ig  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); az1#:Go  
        rpowern = cat(2,rpowern{:}); ]++,7Z\AU  
    end ~l8w]R3A  
    r"9hpZH  
    % Compute the values of the polynomials: [XhG7Ly  
    % -------------------------------------- Yosfk\D  
    y = zeros(length_r,length(n)); YU`}T<;bg  
    for j = 1:length(n) u]*f^/6Q  
        s = 0:(n(j)-m_abs(j))/2; =o:1Rc7J  
        pows = n(j):-2:m_abs(j); c'INmc I|  
        for k = length(s):-1:1 BJgHel+N  
            p = (1-2*mod(s(k),2))* ... Urz9S3#\  
                       prod(2:(n(j)-s(k)))/              ... qjsEyro$-  
                       prod(2:s(k))/                     ... w\RYxu?  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `&:>?Y/X2  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Iw4[D#o  
            idx = (pows(k)==rpowers); VXnWY8\  
            y(:,j) = y(:,j) + p*rpowern(:,idx); R; ui 4wg6  
        end '=`af>Nc  
         DYF(O-hJK  
        if isnorm OFxCV`>ce  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Pm]lr|Q{I  
        end yAFt|<  
    end q`3HHq  
    % END: Compute the Zernike Polynomials +NJIi@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V aoqI  
    Zu*7t<W  
    % Compute the Zernike functions: ]XASim:A  
    % ------------------------------ R7 rO7M !  
    idx_pos = m>0; "rrw~  
    idx_neg = m<0; ]K'OH&  
    t`Rbn{   
    z = y; h$XoR0  
    if any(idx_pos) DX^8w?t  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)');  nvCp-Z$  
    end yIC C8M  
    if any(idx_neg) *'*,mfk[  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); `An p;el  
    end @?jbah#  
    $:yIe.F  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ^ZIs>.'  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. A)gSOC{3F)  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated e _(';Lk  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Qp7F3,/#  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, j"jQiL_*  
    %   and THETA is a vector of angles.  R and THETA must have the same LqXVi80  
    %   length.  The output Z is a matrix with one column for every P-value, iUFG!,+d  
    %   and one row for every (R,THETA) pair. Ljiw9*ZI  
    % g{ ;OgS3>  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike /6F\]JwU  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) )w5!'W4Z8  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) G^cMY$?99  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ]0O3kiVQ  
    %   for all p. !xBJJ/K+|  
    % 1JJ1!& >  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 #?`S+YN!q)  
    %   Zernike functions (order N<=7).  In some disciplines it is @FZ_[CYg  
    %   traditional to label the first 36 functions using a single mode #|3,DZ|)F  
    %   number P instead of separate numbers for the order N and azimuthal ,hr v  
    %   frequency M. >Q'*~S@v3  
    % D>^g2!b:  
    %   Example: ao0^;  
    % >JA>np  
    %       % Display the first 16 Zernike functions hT,rcIkg:  
    %       x = -1:0.01:1; mfF `K2R  
    %       [X,Y] = meshgrid(x,x); x}O,xquY  
    %       [theta,r] = cart2pol(X,Y); cs _  
    %       idx = r<=1; TyA1Qk\  
    %       p = 0:15; &*E! %57  
    %       z = nan(size(X)); +J~%z*A  
    %       y = zernfun2(p,r(idx),theta(idx)); >$yA ,N  
    %       figure('Units','normalized') :xTm- L  
    %       for k = 1:length(p) o~W,VhCP  
    %           z(idx) = y(:,k); B'mUDW8\D  
    %           subplot(4,4,k) k ]T  
    %           pcolor(x,x,z), shading interp jt(GXgm  
    %           set(gca,'XTick',[],'YTick',[]) (`_fP.Ogb  
    %           axis square K<r5jb  
    %           title(['Z_{' num2str(p(k)) '}']) 2#00<t\  
    %       end z,hBtq:-$  
    % Qg]A^{.1  
    %   See also ZERNPOL, ZERNFUN. -E3cS  
    uix/O*^  
    %   Paul Fricker 11/13/2006 {-Mjs BR  
    >)u{%@Rcy{  
    $pKegK;'z  
    % Check and prepare the inputs: )Z|G6H`c3  
    % ----------------------------- SjY|aW+wAL  
    if min(size(p))~=1 FC~%G&K/q^  
        error('zernfun2:Pvector','Input P must be vector.') S{v]B_N[M  
    end KK5_;<  
    00s)=A_  
    if any(p)>35 xt IF)M  
        error('zernfun2:P36', ... >4-9 @i0FV  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... : bi(mX7t  
               '(P = 0 to 35).']) k4!_(X%8  
    end *W^a<Zm8>  
    w(z=xO  
    % Get the order and frequency corresonding to the function number: #, #:{&H  
    % ---------------------------------------------------------------- KF5r?|8 M  
    p = p(:); @HSK[[?  
    n = ceil((-3+sqrt(9+8*p))/2); XN>bv|*q  
    m = 2*p - n.*(n+2); -'L~Y~'.  
    ^nNpT!o  
    % Pass the inputs to the function ZERNFUN: `m8WLj  
    % ---------------------------------------- 2_6ON   
    switch nargin qX; F+~  
        case 3 _ WPt zL  
            z = zernfun(n,m,r,theta); \x\N?$`ANc  
        case 4 GQJ4d-w  
            z = zernfun(n,m,r,theta,nflag); 80 T2EN:$  
        otherwise >dJ~  
            error('zernfun2:nargin','Incorrect number of inputs.') '*&dP"  
    end :<k (y?GB  
    CWRB/WH:  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) dKC*QHU  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. QtXiUx^ k<  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of m"n" 1;o=  
    %   order N and frequency M, evaluated at R.  N is a vector of J7- vB",U  
    %   positive integers (including 0), and M is a vector with the )8eb(!}7  
    %   same number of elements as N.  Each element k of M must be a HwZl"!;Mry  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) j;V\~[I^u  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ,b IJW]h0  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix rIYO(}Fl  
    %   with one column for every (N,M) pair, and one row for every :dRC$?f4  
    %   element in R. 9wGsHf8]  
    % oWLP|c~ Ap  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 6OAEAIh  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is V9qA'k  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to nnN$?'%~6  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 TF5jTpGq  
    %   for all [n,m]. JC-> eY"O2  
    % ]jn1T^D'  
    %   The radial Zernike polynomials are the radial portion of the S@S4<R1{\  
    %   Zernike functions, which are an orthogonal basis on the unit -y|']I^ &  
    %   circle.  The series representation of the radial Zernike ^Go,HiB  
    %   polynomials is @9n|5.i  
    % $F9w0kz:,*  
    %          (n-m)/2 BBGub?(dR  
    %            __ iWC}\&i  
    %    m      \       s                                          n-2s j[FB*L1!D  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ;~djbo0,X  
    %    n      s=0 "\`Fu  
    % 1cMLl6Bp>  
    %   The following table shows the first 12 polynomials. ai1;v@1  
    % 1%R${Qhr  
    %       n    m    Zernike polynomial    Normalization Scm45"wB+  
    %       --------------------------------------------- |2n*Ds'  
    %       0    0    1                        sqrt(2) MN5}}@  
    %       1    1    r                           2 K@xMPB8in  
    %       2    0    2*r^2 - 1                sqrt(6) *i#N50k*j'  
    %       2    2    r^2                      sqrt(6) zTfjuI|R  
    %       3    1    3*r^3 - 2*r              sqrt(8) '[%Pdd]! E  
    %       3    3    r^3                      sqrt(8) do.>Y}d  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) +HRtuRv0T  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) XOQ0(e6  
    %       4    4    r^4                      sqrt(10) F.i}&UQ%  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) yufw}Lo-  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) T}1"  
    %       5    5    r^5                      sqrt(12) dTCLE t.  
    %       --------------------------------------------- =uNc\a(  
    % &qSf ~7/  
    %   Example: mwsBj)  
    % RMpiwO^  
    %       % Display three example Zernike radial polynomials AB,(%JT/2{  
    %       r = 0:0.01:1; ub9[!}r't  
    %       n = [3 2 5]; N~IAm:G}[  
    %       m = [1 2 1]; ,N hv#U<$  
    %       z = zernpol(n,m,r); %saP>]o  
    %       figure 5 -|7I7(G$  
    %       plot(r,z) htL1aQ.  
    %       grid on `8O Bw  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') :@P6ibcX  
    % `$FX%p  
    %   See also ZERNFUN, ZERNFUN2. zjcSn7iu  
    fQU_:[ Uz  
    % A note on the algorithm. )B&`<1Oie  
    % ------------------------ 0F![<5X  
    % The radial Zernike polynomials are computed using the series I3r")}P  
    % representation shown in the Help section above. For many special 2dKt}o>   
    % functions, direct evaluation using the series representation can ^[}W}j>  
    % produce poor numerical results (floating point errors), because C@t,oDU#  
    % the summation often involves computing small differences between \),f?f-m  
    % large successive terms in the series. (In such cases, the functions i<>%y*+@  
    % are often evaluated using alternative methods such as recurrence 7A'E+>1d  
    % relations: see the Legendre functions, for example). For the Zernike K;rgLj0m  
    % polynomials, however, this problem does not arise, because the ?SO!INJ  
    % polynomials are evaluated over the finite domain r = (0,1), and p^q/u  
    % because the coefficients for a given polynomial are generally all }Rh%bf7,  
    % of similar magnitude. CMbID1M3  
    % st)v'ce,  
    % ZERNPOL has been written using a vectorized implementation: multiple O gQ8yKfDB  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 6'e^np  
    % values can be passed as inputs) for a vector of points R.  To achieve -zJ V(`  
    % this vectorization most efficiently, the algorithm in ZERNPOL *q,nALs  
    % involves pre-determining all the powers p of R that are required to m;rr7{7X  
    % compute the outputs, and then compiling the {R^p} into a single edcz%IOM(  
    % matrix.  This avoids any redundant computation of the R^p, and L>g6 9D !  
    % minimizes the sizes of certain intermediate variables. )CE]s)6+2  
    % 5bXpj86mY  
    %   Paul Fricker 11/13/2006 LH+Bu%s  
    >?ar  
    L >"O[@  
    % Check and prepare the inputs: ??P\v0E  
    % ----------------------------- :*[mvF  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5Uy *^C7M^  
        error('zernpol:NMvectors','N and M must be vectors.') c /^:vTF  
    end PZ'|)  
    FJ!`[.t1AU  
    if length(n)~=length(m) L;vglS=l;  
        error('zernpol:NMlength','N and M must be the same length.') p$x>I3C(\  
    end No[9m_  
    NKB["+S<  
    n = n(:); T|h!06   
    m = m(:); TNN@G~@cm  
    length_n = length(n); a=y%+E'a '  
    NX(+%EBcA  
    if any(mod(n-m,2)) \nuz l   
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 1R*;U8?  
    end zd- *UF i  
    ;=^J_2ls  
    if any(m<0) KQ6][2-  
        error('zernpol:Mpositive','All M must be positive.') QQ{*j7i)  
    end Q7F4OS5b  
    nm%qm  
    if any(m>n) lf KV%  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') }W!w  
    end Xg1TX_3Ml  
    ?G~rYETvw  
    if any( r>1 | r<0 ) HA}q.L]#  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') y,1U]1TP  
    end zPHx\z"  
    . uGne  
    if ~any(size(r)==1) -Q Mwtr#q}  
        error('zernpol:Rvector','R must be a vector.') s?1Aj<  
    end ('j'>"1H  
    5?Q5cD2]\6  
    r = r(:); x30|0EHYl[  
    length_r = length(r); jgXr2JQ<  
    ,-k?"|tQ  
    if nargin==4 .`J*l=u$  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 7.2!g}E  
        if ~isnorm IQ~Anp^R  
            error('zernpol:normalization','Unrecognized normalization flag.') -AVT+RE9z  
        end YKayaI\*  
    else (;9fkqm%m  
        isnorm = false; ;"EDFH#W  
    end N.E{6_{S  
    /4+zT?f  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /FW$)w2{j  
    % Compute the Zernike Polynomials H>]*<2(=-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ds+2z=!!e  
    ' Gx\  
    % Determine the required powers of r: |t3}>+"?z  
    % ----------------------------------- 67}8EV!/k  
    rpowers = []; S7cD}yx*[  
    for j = 1:length(n) +9t{ovF?L  
        rpowers = [rpowers m(j):2:n(j)]; rij%l+%@#  
    end &+oJPpHi\  
    rpowers = unique(rpowers); 8(q8}s$>  
    V8o, e  
    % Pre-compute the values of r raised to the required powers, QJR},nZ3  
    % and compile them in a matrix: eej#14 &  
    % ----------------------------- :*|So5fs  
    if rpowers(1)==0 QL2 LIs  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &A/b9GW^-  
        rpowern = cat(2,rpowern{:}); Xf{p>-+DL  
        rpowern = [ones(length_r,1) rpowern]; TI"Ki$jC  
    else egfd=z=2un  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); PV=sqLM~  
        rpowern = cat(2,rpowern{:}); _:Y| a>  
    end QP!;Gwqr  
    OzRo  
    % Compute the values of the polynomials: zI(uexxPqd  
    % -------------------------------------- R&P^rrC@B5  
    z = zeros(length_r,length_n); 9M|#X1r{%{  
    for j = 1:length_n 3y:),;|5  
        s = 0:(n(j)-m(j))/2; [6.<#_~{  
        pows = n(j):-2:m(j); ) 54cG  
        for k = length(s):-1:1 7pep\  
            p = (1-2*mod(s(k),2))* ... z?`7g%Z?{  
                       prod(2:(n(j)-s(k)))/          ... KiC,O7&<  
                       prod(2:s(k))/                 ... ]:?hU^H]<  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 6BQq|:U  
                       prod(2:((n(j)+m(j))/2-s(k))); Dp} $q`F[  
            idx = (pows(k)==rpowers); NP~3!b  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ,L>{(Q)  
        end b1=! "Y@  
         *8%uXkMm  
        if isnorm NJoHrhC='  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); l}g_<  
        end YVz,P_\(m  
    end m,w^,)  
    gMZrtK`<  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  }SF<. A  
    !$^LTBOH3  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 -PH!U Hg  
    i slg5  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)