切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10972阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 |",/  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! a(eUdGJ  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _4jRUsvjY  
    function z = zernfun(n,m,r,theta,nflag) <kr%ylhIu  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. L0O},O  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 5>'1[e45  
    %   and angular frequency M, evaluated at positions (R,THETA) on the h tn?iLq  
    %   unit circle.  N is a vector of positive integers (including 0), and ~&Gw[Nd1  
    %   M is a vector with the same number of elements as N.  Each element %}asw/WiUa  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) LE:nmo  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, gLef6q{}  
    %   and THETA is a vector of angles.  R and THETA must have the same  XVKR}I  
    %   length.  The output Z is a matrix with one column for every (N,M) lIj2w;$v  
    %   pair, and one row for every (R,THETA) pair. P}+-))J  
    % %2)'dtPD~  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "e\:Cq>\  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), v&GBu  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral |tU4(hC  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, } 1 >i  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ."m2/Ks7  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. T>ds<MaLP  
    % \Q+<G-Kb.  
    %   The Zernike functions are an orthogonal basis on the unit circle. D20n'>ddg  
    %   They are used in disciplines such as astronomy, optics, and j7|r^  
    %   optometry to describe functions on a circular domain. C 4 &1M  
    % ;-1yG@KG  
    %   The following table lists the first 15 Zernike functions. /M;A)z  
    % SDTX3A1  
    %       n    m    Zernike function           Normalization W c"f  
    %       -------------------------------------------------- p Rn vd|  
    %       0    0    1                                 1 g6kVHxh-  
    %       1    1    r * cos(theta)                    2 QDg\GA8|  
    %       1   -1    r * sin(theta)                    2 %usy`4 2  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]_yk,}88d  
    %       2    0    (2*r^2 - 1)                    sqrt(3) eVZ/3o  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) TrHz(no  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) n3t0Qc  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) b[3K:ot+  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Ih]'OaE   
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Jm|eZDp  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 4$oX,Q`#  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) a~_5N&~pi  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) -$#'  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u[_~ !y  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 9I:H=5c  
    %       -------------------------------------------------- :6 ?&L  
    % P d@y+|  
    %   Example 1: e{~s\G8g  
    % p xrd D7  
    %       % Display the Zernike function Z(n=5,m=1) > !thxG/_  
    %       x = -1:0.01:1; zice0({iJ  
    %       [X,Y] = meshgrid(x,x); ei>8{v&g  
    %       [theta,r] = cart2pol(X,Y); xG05OqKpE  
    %       idx = r<=1; gu[3L  
    %       z = nan(size(X)); &>I4-D[  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); g_\U-pzr  
    %       figure );*A$C9RA  
    %       pcolor(x,x,z), shading interp ON{&-  
    %       axis square, colorbar er Cl@sq  
    %       title('Zernike function Z_5^1(r,\theta)') Br2ZloJ@+  
    % + j._NRXRH  
    %   Example 2: Q Fv"!Ql  
    % 1'dL8Y  
    %       % Display the first 10 Zernike functions z}vgp\cuT  
    %       x = -1:0.01:1; UC)-Fd  
    %       [X,Y] = meshgrid(x,x); iol.RszlZ|  
    %       [theta,r] = cart2pol(X,Y); E4^zW_|xE  
    %       idx = r<=1; yp=(wcJ  
    %       z = nan(size(X)); v*+.;60_  
    %       n = [0  1  1  2  2  2  3  3  3  3]; lS.*/u*5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ,4hQ#x  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; "=0#pH1o  
    %       y = zernfun(n,m,r(idx),theta(idx)); _VFxzM9f  
    %       figure('Units','normalized') )]"aa_20]  
    %       for k = 1:10 >qjQ;z[  
    %           z(idx) = y(:,k); Zk*/~f|\  
    %           subplot(4,7,Nplot(k)) ~ l~ai>/  
    %           pcolor(x,x,z), shading interp /F;b<kIy8  
    %           set(gca,'XTick',[],'YTick',[]) Y]ML-smN  
    %           axis square ^PY*INv  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) x?0ZzB),  
    %       end \e%H5W x  
    % sGjYL>*  
    %   See also ZERNPOL, ZERNFUN2. ENwDW#U9  
    x j6-~<  
    %   Paul Fricker 11/13/2006 z\Vu`Y z  
    tH0=ysf  
    "oX@Z^  
    % Check and prepare the inputs: 9*gD;)!  
    % ----------------------------- aZGX`;3  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #M;Cw}pW  
        error('zernfun:NMvectors','N and M must be vectors.') }R#YO$J7  
    end =k#SQ/@  
    +;7Rz_.6f  
    if length(n)~=length(m) [bd fp a  
        error('zernfun:NMlength','N and M must be the same length.') w) o^?9T  
    end jX5lwP Q|F  
    @G  0k+  
    n = n(:); xy>~ 15  
    m = m(:); sfSM7f  
    if any(mod(n-m,2)) b&BSigrvou  
        error('zernfun:NMmultiplesof2', ... f!;4 -.p`  
              'All N and M must differ by multiples of 2 (including 0).') RkVU^N"  
    end &D, gKT~  
    "V!y"yQ  
    if any(m>n) rWKc,A[  
        error('zernfun:MlessthanN', ... zG|}| //}  
              'Each M must be less than or equal to its corresponding N.') \; Io  
    end Ay'2! K,I  
    (;2J}XQvO~  
    if any( r>1 | r<0 ) M#II,z>q  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') G*_$[|H  
    end \M>}-j`v  
    tmF->~|  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) A+d&aE }3V  
        error('zernfun:RTHvector','R and THETA must be vectors.') W]p)}#FR  
    end qiQS:0|_  
    (Hqy^EOZ  
    r = r(:); 1A;>@4iC0  
    theta = theta(:); :hYV\8 $  
    length_r = length(r); s^Lg*t 3I  
    if length_r~=length(theta) Ie(vTP1Cj  
        error('zernfun:RTHlength', ... NLHF3h=?1p  
              'The number of R- and THETA-values must be equal.') .b*%c?e  
    end n!5 :I#B  
    `~'yy q  
    % Check normalization: 5\Sm^t|Tx  
    % -------------------- 8 ;oU{  
    if nargin==5 && ischar(nflag) F.i%o2P3  
        isnorm = strcmpi(nflag,'norm'); :K{!@=o  
        if ~isnorm Bi?+e~R  
            error('zernfun:normalization','Unrecognized normalization flag.') /7Z;/|oU  
        end .JIn(  
    else W|_^Oe<  
        isnorm = false; a=3?hVpB  
    end JAM4 R_  
     u!TVvc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ||TKo967]  
    % Compute the Zernike Polynomials ?k)(~Y&@p  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1:S75~b-`  
    .0^-a=/  
    % Determine the required powers of r: -gZI^EII  
    % ----------------------------------- 1DPgiIG~  
    m_abs = abs(m); Jybx'vZj  
    rpowers = []; R1Jj 3k  
    for j = 1:length(n) 8w &A89  
        rpowers = [rpowers m_abs(j):2:n(j)]; bd],fNgJ  
    end sV{M#UF2  
    rpowers = unique(rpowers); _<x4/".}B3  
    !e*BQ3  
    % Pre-compute the values of r raised to the required powers, 6A$ \I44  
    % and compile them in a matrix: :_F$e  
    % ----------------------------- |,k,X}gP  
    if rpowers(1)==0 NsYeg&>`  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); jFYv4!\ju  
        rpowern = cat(2,rpowern{:}); -z%| Jk  
        rpowern = [ones(length_r,1) rpowern]; NWCJ|  
    else vr#_pu)f4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N- E)b  
        rpowern = cat(2,rpowern{:}); KCG-&p$v@s  
    end sG{hUsPa  
    @ m14x}H  
    % Compute the values of the polynomials: ~$7fU  
    % -------------------------------------- ?rqU&my S  
    y = zeros(length_r,length(n)); yj!4L&A  
    for j = 1:length(n) S`ms[^-q*  
        s = 0:(n(j)-m_abs(j))/2; #SiOx/  
        pows = n(j):-2:m_abs(j); KrNu7/H  
        for k = length(s):-1:1 {VOLUC o 4  
            p = (1-2*mod(s(k),2))* ... cY1d6P0  
                       prod(2:(n(j)-s(k)))/              ... ?`%7Y~  
                       prod(2:s(k))/                     ... J{Fu8  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... iYE:o{  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ! Ff/RRo  
            idx = (pows(k)==rpowers); L' w }  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Y{~[N yE  
        end 5"1kfB3v  
         5[\mwUA  
        if isnorm 8:V:^`KaSs  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5x";}Vp>P  
        end -:w+`x?XaB  
    end }lZfZ?oAz  
    % END: Compute the Zernike Polynomials +[$d9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uzA"+cV5  
     +c@s  
    % Compute the Zernike functions: D;%(Z!  
    % ------------------------------ at_~b Ox6X  
    idx_pos = m>0; XI#1)  
    idx_neg = m<0; FSnF>3kj-  
    7;H!F!K]  
    z = y; ,U9gg-.Lp  
    if any(idx_pos) Q9v OY8  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^(5Up=.EA  
    end v`i9LD0(  
    if any(idx_neg)  [wS~.  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4N&4TUIM  
    end Dk$[b9b  
    NbPv>/r  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) rVU::C+-  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. *uJcB|KX  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated o#wDA0T  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive %au2kG,  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 6|q\ M  
    %   and THETA is a vector of angles.  R and THETA must have the same I7!+~uX  
    %   length.  The output Z is a matrix with one column for every P-value, 1k&**!S]%  
    %   and one row for every (R,THETA) pair. }:NE  
    % N 2|?I(\B  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike R2uekpP  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) d51.Tbt#%7  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ^{L/) Xy5  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 sdkKvo. y0  
    %   for all p. PGTi-o}  
    % }Yd7<"kp  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Jb. V4  
    %   Zernike functions (order N<=7).  In some disciplines it is DIx!Sw7EC  
    %   traditional to label the first 36 functions using a single mode l ;TWs_N  
    %   number P instead of separate numbers for the order N and azimuthal <pAN{:  
    %   frequency M. xO2e>[W  
    % F' eV%g  
    %   Example: &PJ&XTR  
    % !`j}%!K!  
    %       % Display the first 16 Zernike functions <PCa37  
    %       x = -1:0.01:1; )2 E7>SQc~  
    %       [X,Y] = meshgrid(x,x); ";:"p6?  
    %       [theta,r] = cart2pol(X,Y); crx8+  
    %       idx = r<=1; kNW}0CDgs  
    %       p = 0:15; SJ/($3GkBd  
    %       z = nan(size(X)); P+tnXT>nE  
    %       y = zernfun2(p,r(idx),theta(idx)); l/|bU9o /u  
    %       figure('Units','normalized') 1Yj^N" =  
    %       for k = 1:length(p) ;MD6iBD  
    %           z(idx) = y(:,k); /%W&zd=%#  
    %           subplot(4,4,k) Qx$C oY  
    %           pcolor(x,x,z), shading interp 4~;x(e@S  
    %           set(gca,'XTick',[],'YTick',[]) xl.iI$P  
    %           axis square e;QPn(  
    %           title(['Z_{' num2str(p(k)) '}']) +k@$C,A  
    %       end D]NfA2B7  
    % >]DnEF&  
    %   See also ZERNPOL, ZERNFUN. & ,KxE(C  
    +Usy  
    %   Paul Fricker 11/13/2006 dEz7 @T  
    GwHp@_>  
    0FL PZaRP  
    % Check and prepare the inputs: ^SdorPOq&  
    % ----------------------------- lO?dI=}]  
    if min(size(p))~=1 r!DUsE  
        error('zernfun2:Pvector','Input P must be vector.') {5<3./5O  
    end } v#Tm  
    J<[Hw g  
    if any(p)>35 Tyc`U&  
        error('zernfun2:P36', ... $@H]0<3,  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Ni"M.O);t  
               '(P = 0 to 35).']) 6rBXC <Z  
    end |&O7F;/_  
    3`V #ImV>  
    % Get the order and frequency corresonding to the function number: <$#;J>{WV  
    % ---------------------------------------------------------------- Ne6]?\Z  
    p = p(:); FH"u9ygF  
    n = ceil((-3+sqrt(9+8*p))/2); irg% n  
    m = 2*p - n.*(n+2); zkFx2(Hq-f  
    '"# W!p  
    % Pass the inputs to the function ZERNFUN: dd$}FlT  
    % ---------------------------------------- $Tc"7nYu  
    switch nargin })zYo 7  
        case 3 >P@JiR<@\n  
            z = zernfun(n,m,r,theta); W$E!}~Ro  
        case 4 "mBX$t'gb  
            z = zernfun(n,m,r,theta,nflag); J Iw=Bs  
        otherwise P, (#' W  
            error('zernfun2:nargin','Incorrect number of inputs.') '?WKKYD7N  
    end `%PU_;Y5Q  
    K'Gv+UC*6  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ?b}d"QsmU  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. p2(U'x c  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 7RH1,k  
    %   order N and frequency M, evaluated at R.  N is a vector of @U~i<kt  
    %   positive integers (including 0), and M is a vector with the IWRo$Yu  
    %   same number of elements as N.  Each element k of M must be a , [V#o-Z  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 9GH11B_A  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is tH7@oV;  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 1WArgR  
    %   with one column for every (N,M) pair, and one row for every ?9F_E+!  
    %   element in R. |H!kU.f]  
    % FCk4[qOp7  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 7q%<JZPY  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ]Wn^m+  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Py&DnG'H  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 N+l 0XjZD9  
    %   for all [n,m]. 9:JFG{M  
    % aGl*h" &  
    %   The radial Zernike polynomials are the radial portion of the o$S/EZ  
    %   Zernike functions, which are an orthogonal basis on the unit k^x[(gw  
    %   circle.  The series representation of the radial Zernike 1c$<z~  
    %   polynomials is Q9Y$x{R&  
    % IvW%n(a8^  
    %          (n-m)/2 G`a,(<kT;  
    %            __ FEdWe\E  
    %    m      \       s                                          n-2s Z#J cN quM  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r \R m2c8Z2  
    %    n      s=0 [<2#C#P:6  
    % xaM? B7  
    %   The following table shows the first 12 polynomials. $r>\y (W  
    % k|O?qE1hP  
    %       n    m    Zernike polynomial    Normalization E[z8;A^:0  
    %       --------------------------------------------- O%w"bEr)N  
    %       0    0    1                        sqrt(2) "*ot:;I  
    %       1    1    r                           2 C( ay7  
    %       2    0    2*r^2 - 1                sqrt(6) (%i)A$i6a  
    %       2    2    r^2                      sqrt(6) Qh 3V[br  
    %       3    1    3*r^3 - 2*r              sqrt(8) ` |L l  
    %       3    3    r^3                      sqrt(8) R(i2TAaaU  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Ql%0%naq1  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) xh7[{n[;  
    %       4    4    r^4                      sqrt(10) u-31$z<<5}  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) i?*_-NAm  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) (|{bZW}  
    %       5    5    r^5                      sqrt(12) /SXms'C  
    %       --------------------------------------------- :9_N Y"P  
    % 86]})H  
    %   Example: r`; "  
    % j-?zB .jAh  
    %       % Display three example Zernike radial polynomials |Lq -vs?  
    %       r = 0:0.01:1; #6jdv|fu  
    %       n = [3 2 5]; BIFuQ?j3  
    %       m = [1 2 1]; 3Zr'Mn  
    %       z = zernpol(n,m,r); gypE~@  
    %       figure >N&C-6W  
    %       plot(r,z) g^CAT1}  
    %       grid on !7m )QNV  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') /7bIE!Cn  
    % [P,/J$v^~  
    %   See also ZERNFUN, ZERNFUN2. kpe7\nd=>  
    ,>DaS(  
    % A note on the algorithm. MzF9 &{N  
    % ------------------------ CdTyUl  
    % The radial Zernike polynomials are computed using the series 3#IU^6l:1S  
    % representation shown in the Help section above. For many special k Xs&k8  
    % functions, direct evaluation using the series representation can #^\q Fj  
    % produce poor numerical results (floating point errors), because 5i 6*$#OM_  
    % the summation often involves computing small differences between *zf@J'  
    % large successive terms in the series. (In such cases, the functions f/FK>oUh  
    % are often evaluated using alternative methods such as recurrence :4{;^|RgU  
    % relations: see the Legendre functions, for example). For the Zernike i$Rlb5RU  
    % polynomials, however, this problem does not arise, because the xnyp'O8yk  
    % polynomials are evaluated over the finite domain r = (0,1), and 97$1na3gq  
    % because the coefficients for a given polynomial are generally all v4:g*MD?~  
    % of similar magnitude. q ;@:,^  
    % A? =(q  
    % ZERNPOL has been written using a vectorized implementation: multiple ]^>#?yEA3  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] :6^8Q,C1@  
    % values can be passed as inputs) for a vector of points R.  To achieve dIOj]5H3F  
    % this vectorization most efficiently, the algorithm in ZERNPOL >=|;2*9v  
    % involves pre-determining all the powers p of R that are required to X j'7nj  
    % compute the outputs, and then compiling the {R^p} into a single NwK(<dzG  
    % matrix.  This avoids any redundant computation of the R^p, and OT & mNE4  
    % minimizes the sizes of certain intermediate variables. d/Sx+1 "{T  
    % ~)RKpRga\p  
    %   Paul Fricker 11/13/2006 t`"]"Re  
    <lx~/3<m  
    \"E-z.wW=  
    % Check and prepare the inputs: Dn[iA~  
    % ----------------------------- W6Os|z9&|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :&]THUw  
        error('zernpol:NMvectors','N and M must be vectors.') 8gA:s`ofJ  
    end 8a\ Pjk  
    VTDp9s  
    if length(n)~=length(m) )N) "O? W9  
        error('zernpol:NMlength','N and M must be the same length.') aZe[Nos  
    end bS0z\!1  
    bd n{Y  
    n = n(:); (HHVup1f  
    m = m(:); u}Q@u!~e9  
    length_n = length(n); q><E?  
    )8H5ovj.  
    if any(mod(n-m,2)) G(alM=q  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') y.zS?vv2g  
    end u>G#{$)  
    EW* 's(  
    if any(m<0) OVsZUmSG  
        error('zernpol:Mpositive','All M must be positive.') va(ZGGS]N  
    end Ha~g8R&  
    29 +p|n  
    if any(m>n) -3M6[`/  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') #&Zb8HAj  
    end P|"U  
    T~nmEap  
    if any( r>1 | r<0 ) lP@/x+6tg  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') sA3=x7j%c  
    end P'prp=JD  
    d83K;Ryd  
    if ~any(size(r)==1) Bn7~p+N  
        error('zernpol:Rvector','R must be a vector.') WQ\H 2go  
    end 3^>D |  
    0]dL;~0y.  
    r = r(:); `Gl@?9,i  
    length_r = length(r); *wml 4lh  
    ~W q[H  
    if nargin==4 0Ey*ci^ue  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ub |tX 'o  
        if ~isnorm w[>/(R7im  
            error('zernpol:normalization','Unrecognized normalization flag.') Az_s"}G  
        end MIcF "fB![  
    else q4XS E,  
        isnorm = false; _,h hO  
    end Z4\$h1tl  
    c}nXMA^^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% giy4<  
    % Compute the Zernike Polynomials +LwE=unS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mdu5aL  
    Z/ "jLfP  
    % Determine the required powers of r: mWUo:(U  
    % ----------------------------------- p]d3F^*i  
    rpowers = []; R3]Ra&h6N)  
    for j = 1:length(n) LoHL}1BG-  
        rpowers = [rpowers m(j):2:n(j)]; M1Jnn4w*d  
    end q%u;+/|l  
    rpowers = unique(rpowers); iJg3`1@j  
    tUXq!r<'dT  
    % Pre-compute the values of r raised to the required powers, ~!c~jcq]lZ  
    % and compile them in a matrix: `I.Uw$,P  
    % ----------------------------- W/PZD (  
    if rpowers(1)==0 anj*a<C<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Xa._  
        rpowern = cat(2,rpowern{:}); ~]71(u2  
        rpowern = [ones(length_r,1) rpowern]; dP(*IOO.  
    else h9)QQPP  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); gi;#?gps  
        rpowern = cat(2,rpowern{:}); `[JX}<~i  
    end $7{V+>  
    &lYZ=|6  
    % Compute the values of the polynomials: t:m2[U_}  
    % -------------------------------------- utq*<,^  
    z = zeros(length_r,length_n); z.f~wAT@<  
    for j = 1:length_n xF*C0B;QL  
        s = 0:(n(j)-m(j))/2; $x&\9CRM  
        pows = n(j):-2:m(j); g->cgExj  
        for k = length(s):-1:1 hB#z8D  
            p = (1-2*mod(s(k),2))* ... @P:  
                       prod(2:(n(j)-s(k)))/          ... 75`*aAZ3  
                       prod(2:s(k))/                 ... u 89u#gCAC  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 2nOoG/6 E  
                       prod(2:((n(j)+m(j))/2-s(k))); O>^0}  
            idx = (pows(k)==rpowers); P7n+@ L$  
            z(:,j) = z(:,j) + p*rpowern(:,idx); K[ZgT$zZ  
        end _DChNX   
         .'Vjs2 2  
        if isnorm `;L0ax  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); jV^Dj  
        end 8$!/Zg  
    end iY~9`Q1E  
    Za{sT&(|  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  >V@-tT"^:  
    -?' r_t  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 y^=\w?d  
    ,*8}TIS(s  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)