非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Q__CW5&'u
function z = zernfun(n,m,r,theta,nflag) gMI%!Y
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. EjLq&QR.
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N n#g_)\
% and angular frequency M, evaluated at positions (R,THETA) on the Q"dq_8\`U
% unit circle. N is a vector of positive integers (including 0), and &Gjpc>d
% M is a vector with the same number of elements as N. Each element (p{%]M
% k of M must be a positive integer, with possible values M(k) = -N(k) gLX<>|)*
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, w\acgQ^%e
% and THETA is a vector of angles. R and THETA must have the same uK@d?u!`
% length. The output Z is a matrix with one column for every (N,M) 9$\s
v5
% pair, and one row for every (R,THETA) pair. p[JIH~nb
% 4>=M"DhB
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike M5h
r0R{
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), u9"yU:1keb
% with delta(m,0) the Kronecker delta, is chosen so that the integral RG{T\9]n
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, YbU8 xq
% and theta=0 to theta=2*pi) is unity. For the non-normalized (U.Go/A#wE
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?Z 2,?G
% QFx3N%
% The Zernike functions are an orthogonal basis on the unit circle. =$J(]KPv!?
% They are used in disciplines such as astronomy, optics, and M!J7Vj?Ps
% optometry to describe functions on a circular domain. aDdGhB
% rJ Jx8)M
% The following table lists the first 15 Zernike functions. _li3cXE
% btuG%D{a^
% n m Zernike function Normalization 'IX1WS&\"
% -------------------------------------------------- @e)}#kN.
% 0 0 1 1 8X7??f1;Y
% 1 1 r * cos(theta) 2 ~pRgTXbz
% 1 -1 r * sin(theta) 2 |T6K?:U7
% 2 -2 r^2 * cos(2*theta) sqrt(6) JJd qdX;
% 2 0 (2*r^2 - 1) sqrt(3) Xj\ToO
% 2 2 r^2 * sin(2*theta) sqrt(6) @wcF#?J
% 3 -3 r^3 * cos(3*theta) sqrt(8) ==[=Da~
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) n{;Q"\*Sg
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) uI-T]N:W8x
% 3 3 r^3 * sin(3*theta) sqrt(8) l1 Kv`v\
% 4 -4 r^4 * cos(4*theta) sqrt(10)
77@N79lqO
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m=01V5_
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) BX?DI-o^h
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :/T\E\Qr
% 4 4 r^4 * sin(4*theta) sqrt(10) zL
yI|%KH
% -------------------------------------------------- XYo,5-
% 5*$yY-A
% Example 1: xG/Q%A
% LDjtkD.r
% % Display the Zernike function Z(n=5,m=1) Q~(Gll;
% x = -1:0.01:1; g0grfGo2p
% [X,Y] = meshgrid(x,x); bp?5GU&Uy
% [theta,r] = cart2pol(X,Y); UTkPA2x
% idx = r<=1; XZIapT
% z = nan(size(X)); a!$kKOK
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Y*c]C;%=
% figure :oIBJ u%/
% pcolor(x,x,z), shading interp !rUP&DA
% axis square, colorbar jA{5)-g
% title('Zernike function Z_5^1(r,\theta)') &!8 WRJ
% J9mK9{#q
% Example 2: ~*iF`T6
% ;MS.ag#
% % Display the first 10 Zernike functions RM|J |R
% x = -1:0.01:1; 072C!F
% [X,Y] = meshgrid(x,x); }emUpju<C
% [theta,r] = cart2pol(X,Y); {fXkbMO|
% idx = r<=1; ;R*-cm
% z = nan(size(X)); 7S{qo&j'
% n = [0 1 1 2 2 2 3 3 3 3]; D^6*Cwb
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; w<9rTHG8,
% Nplot = [4 10 12 16 18 20 22 24 26 28]; O@Aazc5K
% y = zernfun(n,m,r(idx),theta(idx)); .C^P6S2oJ
% figure('Units','normalized') 8o5[tl
?w
% for k = 1:10 FHOw ]"#
% z(idx) = y(:,k); t$!zgUJ
% subplot(4,7,Nplot(k)) ]pR?/3
% pcolor(x,x,z), shading interp )7
p"
-
% set(gca,'XTick',[],'YTick',[]) yzS^8,
% axis square ETHcZ
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) N!K%aH~O
% end Pm/<^z%
% _KH91$iW8m
% See also ZERNPOL, ZERNFUN2. "h+Z[h6T
eI1zRoIl-
% Paul Fricker 11/13/2006 ukR0E4p
*J-pAN
jR/Gd01)
% Check and prepare the inputs: Ugri _
% ----------------------------- CQWXLQED>
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &BPYlfB1
error('zernfun:NMvectors','N and M must be vectors.') VIp|U{
end gQ\.|'%
A^OwT#
if length(n)~=length(m) |}G"^r
error('zernfun:NMlength','N and M must be the same length.') O=o}uB-*6
end W> pe-
J>_mDcPo
n = n(:); |*{*tW C1
m = m(:); geG0F}oC!
if any(mod(n-m,2)) 1bV
G%N
error('zernfun:NMmultiplesof2', ... Orq/38:4G
'All N and M must differ by multiples of 2 (including 0).') 'NtI bS
end CPJ<A,V
UXct+l
if any(m>n) UdO8KD#r3
error('zernfun:MlessthanN', ... d7V/#34
'Each M must be less than or equal to its corresponding N.') KtQs uL%
end ^OY$
W
~}_^$l8#-Q
if any( r>1 | r<0 ) /]U$OP*0
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5sY$
end eHgr"f*7
?IGp?R^j"
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) mE<_oRM)
error('zernfun:RTHvector','R and THETA must be vectors.') TZgtu+&
end ;dzy5o3
P#A,(Bke3
r = r(:); MRpMmu
theta = theta(:); @D9O<x
length_r = length(r); M XG>|
if length_r~=length(theta) $>/d)o
error('zernfun:RTHlength', ... 8>C4w 5kF
'The number of R- and THETA-values must be equal.') ,Q"'q0hM=
end 0fqcPi
=IL\T8y09
% Check normalization: +-!3ruwSn
% -------------------- Z|qI[ui O
if nargin==5 && ischar(nflag) ,buX|
isnorm = strcmpi(nflag,'norm'); )?jFz'<r
if ~isnorm Y(,RJ&7
error('zernfun:normalization','Unrecognized normalization flag.') B!&5*f}*
end I=L["]
else V6merT79
isnorm = false; q{9vY:`[
end ROkwjw
'dj3y/
k%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I"x'
% Compute the Zernike Polynomials ika*w
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,ojJ;w5D
oywPPVxj
% Determine the required powers of r: +`F(wk["m
% ----------------------------------- "r6qFxY
m_abs = abs(m); |Y"XxM9
rpowers = []; ?c8~VQaQ
for j = 1:length(n) |lLe^FM
rpowers = [rpowers m_abs(j):2:n(j)]; IgbuMEfL
end Z. ${WZW
rpowers = unique(rpowers);
m}yu4
va@;V+cD
% Pre-compute the values of r raised to the required powers, l4RqQ+[KA;
% and compile them in a matrix: @JSWqi>
% ----------------------------- qK'mF#n0#
if rpowers(1)==0 j"jssbu}
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ewcFzlA@
rpowern = cat(2,rpowern{:}); 0j$=KA
rpowern = [ones(length_r,1) rpowern]; ]:f.="
else 4<s;xSCL
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); w^L`"
rpowern = cat(2,rpowern{:}); ~;(\a@ _
end
'Ft81e)/
wQ(DX!
% Compute the values of the polynomials: )nHMXZ>Td
% -------------------------------------- 7b1
yF,N
y = zeros(length_r,length(n)); w(HVC
for j = 1:length(n) E:rJi]
s = 0:(n(j)-m_abs(j))/2; ;*5z&1O
pows = n(j):-2:m_abs(j); u4lM>(3Y}
for k = length(s):-1:1 kgBkwp
p = (1-2*mod(s(k),2))* ... pRfKlTU\
prod(2:(n(j)-s(k)))/ ... vT5GUO{5
prod(2:s(k))/ ... Cnpl0rV~5
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... JSg=9p$
prod(2:((n(j)+m_abs(j))/2-s(k))); ;FlDRDZ%
idx = (pows(k)==rpowers); 7NEOaX(J9
y(:,j) = y(:,j) + p*rpowern(:,idx); igOX 0
end 9ZOQNN<ex
B)/&xQu
if isnorm -~.+3rcZ]
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); =)y$&Y