切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10935阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Nr"gj$v  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! VX:Kq<XwQ  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 <u  ImZC  
    function z = zernfun(n,m,r,theta,nflag) z(#CO<C.t  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. q}]z8 L  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 734H{,~  
    %   and angular frequency M, evaluated at positions (R,THETA) on the )`#SMLMy~  
    %   unit circle.  N is a vector of positive integers (including 0), and f3*SIKi  
    %   M is a vector with the same number of elements as N.  Each element \;Sl5*kr  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) L*6>S_l[  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, n){u!z)Al  
    %   and THETA is a vector of angles.  R and THETA must have the same )&[ol9+\  
    %   length.  The output Z is a matrix with one column for every (N,M) 2]5ux!Lqln  
    %   pair, and one row for every (R,THETA) pair. F!RP *  
    % xf;Tk   
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ),@m 3wQ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _4LDzVjNRe  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ] V,#>'  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^3C%&  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 2UMX%+ "J  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. WS+uKb^<  
    % g6H`uO  
    %   The Zernike functions are an orthogonal basis on the unit circle. z>HM$n`YD  
    %   They are used in disciplines such as astronomy, optics, and au+ a7~0~  
    %   optometry to describe functions on a circular domain. \98|.EG  
    % L-|u=c-6  
    %   The following table lists the first 15 Zernike functions. L,3%}_  
    % JD ~]aoH  
    %       n    m    Zernike function           Normalization loD:4e1  
    %       -------------------------------------------------- Y+C6+I<3  
    %       0    0    1                                 1 Np?/r}  
    %       1    1    r * cos(theta)                    2 eMjW^-RgE5  
    %       1   -1    r * sin(theta)                    2 iwfH~  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Lw6}b B`}  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 8Ib5  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) "4CO^ B  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) DuRC1@e  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) RCMO?CBe  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) KS;Wr6]@(O  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 2SYV2  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) :+ AqY(Gz  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :&m0eZZ%  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) npcL<$<6X  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) O*1la/~m  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 9j1 tcT  
    %       -------------------------------------------------- (o8?j^ -v  
    % cK t8e^P  
    %   Example 1: %)L|7v<  
    % #rx@ 2zi  
    %       % Display the Zernike function Z(n=5,m=1) ?r R, h{~  
    %       x = -1:0.01:1; !%'c$U2  
    %       [X,Y] = meshgrid(x,x); IJ6&*t wT  
    %       [theta,r] = cart2pol(X,Y); E>rWm_G  
    %       idx = r<=1; Cce{aY  
    %       z = nan(size(X)); :2MHx}]il  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); A"T*uv|  
    %       figure #po}Y  
    %       pcolor(x,x,z), shading interp s ]Db<f  
    %       axis square, colorbar `BY&&Bv#?  
    %       title('Zernike function Z_5^1(r,\theta)') ^qPS&G  
    % ea!Znld]  
    %   Example 2: 6M@m`c  
    % #}zL?s^G  
    %       % Display the first 10 Zernike functions d<v)ovQJ]  
    %       x = -1:0.01:1; E" b" VB  
    %       [X,Y] = meshgrid(x,x); / Hexv#3  
    %       [theta,r] = cart2pol(X,Y); 67dp)X  
    %       idx = r<=1; 3o^  oq  
    %       z = nan(size(X)); sme!!+Rd  
    %       n = [0  1  1  2  2  2  3  3  3  3]; OEs!H]v  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; q}%;O >Z  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; &;oWmmvz{  
    %       y = zernfun(n,m,r(idx),theta(idx)); D(Yq<%Q  
    %       figure('Units','normalized') H3jb{S b  
    %       for k = 1:10 ch]Q%M  
    %           z(idx) = y(:,k); =]F15:%Z q  
    %           subplot(4,7,Nplot(k)) .p(~/MnO  
    %           pcolor(x,x,z), shading interp %/=#8v4*  
    %           set(gca,'XTick',[],'YTick',[]) BW%"]J  
    %           axis square [&p^h  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vq*)2.  
    %       end &B>YiA  
    % Q2ky|  
    %   See also ZERNPOL, ZERNFUN2. "e~"-B7(\Y  
    @d=4C{g%o  
    %   Paul Fricker 11/13/2006 D3-H!TFpDb  
    [)83X\CO  
    X8=s k  
    % Check and prepare the inputs: ^DS+O>  
    % ----------------------------- @~`2L o/  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) gDjs:]/YR  
        error('zernfun:NMvectors','N and M must be vectors.') 4).>b3OhX  
    end 6z80Y*|eJ  
    p*Hbc|?{Q&  
    if length(n)~=length(m) Z CS{D  
        error('zernfun:NMlength','N and M must be the same length.') 5x; y{qT  
    end x?MSHOia`P  
    ckPI^0A!  
    n = n(:); _<1uO=km6  
    m = m(:); Um9]X@z  
    if any(mod(n-m,2)) P(&9S`I  
        error('zernfun:NMmultiplesof2', ... o`]u&  
              'All N and M must differ by multiples of 2 (including 0).') FGG 7;0(  
    end y!?l;xMS  
    E>3fk  
    if any(m>n) 1f^4J~{  
        error('zernfun:MlessthanN', ... ?H_'L4Wv  
              'Each M must be less than or equal to its corresponding N.') %8lF%uu!x  
    end -(fvb  
    #D&]5"0cX  
    if any( r>1 | r<0 ) xl~%hwBd  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;n,@[v  
    end 9@."Y>1G  
    ^#VyIF3q  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^N5BJ'[F:  
        error('zernfun:RTHvector','R and THETA must be vectors.') __,1;=  
    end >-{)wk;1&  
    ymLhSF][  
    r = r(:); c~+;P(>  
    theta = theta(:); .Z"p'v  
    length_r = length(r); yprf `D>  
    if length_r~=length(theta) EK6fd#J?1  
        error('zernfun:RTHlength', ... d8? }69:h  
              'The number of R- and THETA-values must be equal.') ,Si23S\  
    end {D jz']  
    o(I[_oUy\  
    % Check normalization: @P^8?!i+  
    % -------------------- @]H:=Q'gj  
    if nargin==5 && ischar(nflag) tGs=08`  
        isnorm = strcmpi(nflag,'norm'); `"<} B"s  
        if ~isnorm 6NV- &0 _  
            error('zernfun:normalization','Unrecognized normalization flag.') /M-%]sayj  
        end Ta38/v;S  
    else {yy ^DlHb  
        isnorm = false; IZ;%lV7t  
    end EQkv&k5X  
    . ` OdnLGy  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qdB@P  
    % Compute the Zernike Polynomials O0{M3-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P!{ O<P  
     U'nz3  
    % Determine the required powers of r: 9LkP*$2"M<  
    % ----------------------------------- s|U?{Byb!  
    m_abs = abs(m); 1CiK&fQ'  
    rpowers = []; "mnWqRpX  
    for j = 1:length(n) PEPBnBA&1  
        rpowers = [rpowers m_abs(j):2:n(j)]; hN6j5.x%  
    end {@u;F2?  
    rpowers = unique(rpowers); xFpMn}CD  
    n:GK0wu.s  
    % Pre-compute the values of r raised to the required powers, 9IKFrCO9,  
    % and compile them in a matrix: )jK"\'cK  
    % ----------------------------- {ZH9W  
    if rpowers(1)==0 )POuH*j  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); k=<,A'y-/  
        rpowern = cat(2,rpowern{:}); cPxA R]'U  
        rpowern = [ones(length_r,1) rpowern]; 6=kA  
    else > ln%3 =  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); oXg KuR  
        rpowern = cat(2,rpowern{:}); l K%pxqx  
    end ;$G.?r  
    |Ebwl]X2  
    % Compute the values of the polynomials: j(!M  
    % -------------------------------------- J'O</o@e  
    y = zeros(length_r,length(n)); m9UI3fBX  
    for j = 1:length(n) zxtx~XO  
        s = 0:(n(j)-m_abs(j))/2;  = uZ[  
        pows = n(j):-2:m_abs(j); m<wng2`NTv  
        for k = length(s):-1:1 31LXzQvFG  
            p = (1-2*mod(s(k),2))* ... qWf7k+7G  
                       prod(2:(n(j)-s(k)))/              ... [0D( PV(n  
                       prod(2:s(k))/                     ... NamBJ\2E1[  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5tg  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9cAb\5c|  
            idx = (pows(k)==rpowers); %_wX9Z T  
            y(:,j) = y(:,j) + p*rpowern(:,idx); }+0{opY4R  
        end r>S?,qr  
         |A0LYKni  
        if isnorm ^zHBDRsb2F  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); k+2~=#  
        end |b{XnD_g  
    end TdI5{?sW  
    % END: Compute the Zernike Polynomials C`3}7qi|C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1@C0c%  
    g]R }w@nJ  
    % Compute the Zernike functions: >[=q9k  
    % ------------------------------ cA1"Nek  
    idx_pos = m>0; Crmxsw.W^Y  
    idx_neg = m<0; {[PoLOCI  
    Z9s tB>?  
    z = y; !Ac<A.  
    if any(idx_pos) >&tPIrz  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7=t4;8|j;  
    end ]:JoGGE a0  
    if any(idx_neg) m]BxGwT=m  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V2cLwQ'0  
    end 9@ 6y(#s  
    0b9K/a%sQv  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) .`& ($W  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Iodk1Y;  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated "qUUH4mR`  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive |GtTz&  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, t\E#8  
    %   and THETA is a vector of angles.  R and THETA must have the same x):cirwkl  
    %   length.  The output Z is a matrix with one column for every P-value, Vo<V!G{  
    %   and one row for every (R,THETA) pair. zE5%l`@|o  
    % W/9dT^1y4'  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike a:Js i=  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) N"/jn_>+j  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 7A?~a_Ep  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ^AtAfVJN0  
    %   for all p. pb1/HhRR^n  
    % "  m<]B  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 5*u0VabC<  
    %   Zernike functions (order N<=7).  In some disciplines it is | ?3\xw  
    %   traditional to label the first 36 functions using a single mode xtYX}u  
    %   number P instead of separate numbers for the order N and azimuthal E&P'@'Yk  
    %   frequency M. 5mUHk]W  
    % ik)T>rYg0  
    %   Example: N|5J-fR&  
    % PjNOeI@G  
    %       % Display the first 16 Zernike functions B)g7MG  
    %       x = -1:0.01:1; ED&>~~k)  
    %       [X,Y] = meshgrid(x,x); *ndXZ64  
    %       [theta,r] = cart2pol(X,Y); HtB>#`'  
    %       idx = r<=1; Hj't.lg+j  
    %       p = 0:15; p 9Zi}!  
    %       z = nan(size(X)); )WavG1  
    %       y = zernfun2(p,r(idx),theta(idx)); ;rYL\`6L  
    %       figure('Units','normalized') /"?yB$s  
    %       for k = 1:length(p) }.ZX.qYX  
    %           z(idx) = y(:,k); #qY`xH'>  
    %           subplot(4,4,k) UXwnE@`F  
    %           pcolor(x,x,z), shading interp 9`Bmop  
    %           set(gca,'XTick',[],'YTick',[]) .6aC2A]es  
    %           axis square @igr~hJ  
    %           title(['Z_{' num2str(p(k)) '}']) <dl:';@a-  
    %       end S[(Tpk2_  
    % U;u@\E@2  
    %   See also ZERNPOL, ZERNFUN. UZ7Zzc#g  
    Jt5\  
    %   Paul Fricker 11/13/2006 @dei} !e  
    m/uBM6SXx  
    NovF?kh2  
    % Check and prepare the inputs: }A,9`  
    % ----------------------------- N,fEta6  
    if min(size(p))~=1 !qk+>6~A,  
        error('zernfun2:Pvector','Input P must be vector.') -J*BY2LU3f  
    end W5 ^eCYHoi  
    yXP+$oox9  
    if any(p)>35 UngDXD )  
        error('zernfun2:P36', ... l =~EweuM  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Vc0C@*fVM  
               '(P = 0 to 35).']) "j-Z<F]]  
    end x6Zhw9RV  
    EYWRTh  
    % Get the order and frequency corresonding to the function number: t4(Z@X$  
    % ---------------------------------------------------------------- OQ>8Q`  
    p = p(:); k?]`PUrV  
    n = ceil((-3+sqrt(9+8*p))/2); VbX+`CwH  
    m = 2*p - n.*(n+2); # 4UKkd  
    OZ>w.$ue  
    % Pass the inputs to the function ZERNFUN: Ug(;\*yg  
    % ---------------------------------------- =hD@hQ i  
    switch nargin Z./$}tVUG  
        case 3 QS(aA*D  
            z = zernfun(n,m,r,theta); *|WS,  
        case 4 [`pp[J-~7  
            z = zernfun(n,m,r,theta,nflag); SR)jJ=R3  
        otherwise ou8V7  
            error('zernfun2:nargin','Incorrect number of inputs.') <&JK5$l<X  
    end %S*<2F9  
    w]<V~X  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) }-`N^  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 8w4-Ud*$i  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of @QOlo -u  
    %   order N and frequency M, evaluated at R.  N is a vector of LAs#g||M  
    %   positive integers (including 0), and M is a vector with the |!t &ZpdD  
    %   same number of elements as N.  Each element k of M must be a A]<+Aq@{  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) v@,n]"  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 2Xw=kwu  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Q)]C~Q  
    %   with one column for every (N,M) pair, and one row for every /;5U-<qf  
    %   element in R. '%Fg+cZN\  
    % \NZ(Xk  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- # <?igtUO  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is .4CCR[Het  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 5:R$xgc  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ov3FKMG?  
    %   for all [n,m]. }xx"  
    % "mk@p=d  
    %   The radial Zernike polynomials are the radial portion of the ?Z^?A^; }$  
    %   Zernike functions, which are an orthogonal basis on the unit s+m3&(X  
    %   circle.  The series representation of the radial Zernike \p4>onGI  
    %   polynomials is YL?2gBT  
    % UY5wef2sF  
    %          (n-m)/2 5S9i>B  
    %            __  _BFDsQ  
    %    m      \       s                                          n-2s xdLMy#U2  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r W( 4Mvd  
    %    n      s=0 8_W=)w6  
    % /]1$Soo  
    %   The following table shows the first 12 polynomials. ;OMR5KAz  
    % )tvP|  
    %       n    m    Zernike polynomial    Normalization ZA1:Y{ V  
    %       --------------------------------------------- #Vy8<Vy&w  
    %       0    0    1                        sqrt(2) :  I q  
    %       1    1    r                           2 a Fh9B\n  
    %       2    0    2*r^2 - 1                sqrt(6) 1G'D'  
    %       2    2    r^2                      sqrt(6) !jQj1QZR`  
    %       3    1    3*r^3 - 2*r              sqrt(8) PtTL tiE~  
    %       3    3    r^3                      sqrt(8) $,.XPK5Q u  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) fEo5j`}  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 0 :iR=S  
    %       4    4    r^4                      sqrt(10) wPE\?en  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 79*f <Gr  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Hk8lHja+\  
    %       5    5    r^5                      sqrt(12) c 8t  
    %       --------------------------------------------- `VrQ? s  
    % %O|+` "  
    %   Example: PyoIhe&ep  
    % d=nv61]  
    %       % Display three example Zernike radial polynomials $2E&~W %  
    %       r = 0:0.01:1; NNxz Z!q!  
    %       n = [3 2 5]; a.z)m} +  
    %       m = [1 2 1]; @B`nM#X#  
    %       z = zernpol(n,m,r); eH_< <Xh!v  
    %       figure }`pxs  
    %       plot(r,z)  ;?G..,  
    %       grid on 6}cN7wnm j  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') uXouN$&  
    % |}o6N5)  
    %   See also ZERNFUN, ZERNFUN2. im3BQIPR  
    $'x#rW>v  
    % A note on the algorithm. F{G.dXZZ<  
    % ------------------------ +;ylld  
    % The radial Zernike polynomials are computed using the series M <nH  
    % representation shown in the Help section above. For many special w{WEYS  
    % functions, direct evaluation using the series representation can gX|We}H  
    % produce poor numerical results (floating point errors), because Y 8n*o3jM  
    % the summation often involves computing small differences between g)1`A 24  
    % large successive terms in the series. (In such cases, the functions N(l  
    % are often evaluated using alternative methods such as recurrence F.{$HJ  
    % relations: see the Legendre functions, for example). For the Zernike 2b/Cs#-  
    % polynomials, however, this problem does not arise, because the hLr\;Swyp  
    % polynomials are evaluated over the finite domain r = (0,1), and udOdXz6K?  
    % because the coefficients for a given polynomial are generally all FEO /RMh  
    % of similar magnitude. /E-s g, k  
    % ?J@P0(M#  
    % ZERNPOL has been written using a vectorized implementation: multiple f+lPQIB  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ?[=OQ/E  
    % values can be passed as inputs) for a vector of points R.  To achieve gW-mXb  
    % this vectorization most efficiently, the algorithm in ZERNPOL LP'wL6#  
    % involves pre-determining all the powers p of R that are required to 050V-S>s  
    % compute the outputs, and then compiling the {R^p} into a single ?_7iL?  
    % matrix.  This avoids any redundant computation of the R^p, and mndKUI}d  
    % minimizes the sizes of certain intermediate variables. +~V)&6Vn  
    % fZp3g%u  
    %   Paul Fricker 11/13/2006 [pC2#_}  
    #}HdylI\}  
    u}.mJDL  
    % Check and prepare the inputs: a%2K,.J  
    % ----------------------------- ]*hH.ZBY"^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) w$Z%RF'p  
        error('zernpol:NMvectors','N and M must be vectors.') 3T/&T`T+c  
    end )x<BeD  
    r=/$}l4  
    if length(n)~=length(m) ?=im  ~  
        error('zernpol:NMlength','N and M must be the same length.') w6h*dh$w  
    end SZUo RWx  
    ZfXgVTJ`  
    n = n(:); V KxuK0{  
    m = m(:); q8!]x-5$6j  
    length_n = length(n); Q-7L,2TL  
    fDRG+/q(+  
    if any(mod(n-m,2)) 6rWb2b  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 7&dK_x,a  
    end vY7 @1_"  
    "A> _U<Y  
    if any(m<0) L&d.&,CNs'  
        error('zernpol:Mpositive','All M must be positive.') !4T!@"#  
    end ?./%7v  
    sDY+J(Z  
    if any(m>n) g4y& 6!g  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') y\ })C-&  
    end +sV~#%%  
    "|Kag|(qB  
    if any( r>1 | r<0 ) <I#M^}`  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 1xr2x;  
    end FKPR;H8>  
    B}"V.Msv/  
    if ~any(size(r)==1) wD:2sri  
        error('zernpol:Rvector','R must be a vector.') 6 FN#Xg  
    end ^]D+H9Tl  
    eL<jA9cJ9  
    r = r(:); 7X)4ec9H\  
    length_r = length(r); =ym<yI<  
    w:/3%-  
    if nargin==4 _Ie:!q  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm');  d0i|^  
        if ~isnorm |+KwyHE`9  
            error('zernpol:normalization','Unrecognized normalization flag.') '\GU(j  
        end #hP>IU  
    else $wn0oIuW  
        isnorm = false; CYlS8j  
    end mlPvF%Ba  
    zkiwFEHA=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (L1F ],Au  
    % Compute the Zernike Polynomials $}'(%\7"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !iq|sXs  
    V/:2xT  
    % Determine the required powers of r: nW} s  
    % ----------------------------------- $$uMu{?0i  
    rpowers = []; 2[;~@n1P  
    for j = 1:length(n) <s7cCpUFP  
        rpowers = [rpowers m(j):2:n(j)]; ~L>86/hP,N  
    end &YcOmI/MM  
    rpowers = unique(rpowers); Ndmw/ae  
    pp@B]We  
    % Pre-compute the values of r raised to the required powers, mYj)![  
    % and compile them in a matrix: T--%UZD]W  
    % ----------------------------- \*Yr&Lm  
    if rpowers(1)==0 Pjn{3/*wi  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); nt+OaXe5D  
        rpowern = cat(2,rpowern{:}); i(OeE"YA  
        rpowern = [ones(length_r,1) rpowern]; oam;hmw  
    else >x3lA0m  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); $PI9vyS  
        rpowern = cat(2,rpowern{:}); 2gZ nrU  
    end YaL:6[6  
    qE|syA9  
    % Compute the values of the polynomials: ^8A [ ^cgq  
    % -------------------------------------- r/HCWs|  
    z = zeros(length_r,length_n); 1q@R04i  
    for j = 1:length_n dGi HO  
        s = 0:(n(j)-m(j))/2; )TKn5[<4  
        pows = n(j):-2:m(j); %q~q,=H$]  
        for k = length(s):-1:1 t=xEUOQAn  
            p = (1-2*mod(s(k),2))* ... E4>}O;m0  
                       prod(2:(n(j)-s(k)))/          ... ~;a \S3  
                       prod(2:s(k))/                 ... > <Zu+HX  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... uo J0wG.  
                       prod(2:((n(j)+m(j))/2-s(k))); lixM0  
            idx = (pows(k)==rpowers); vy7/  
            z(:,j) = z(:,j) + p*rpowern(:,idx); wpN3-D  
        end RRB=JP{r  
         >Q!}tbg~9  
        if isnorm Lt=32SvTn  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); eU@Mv5&6  
        end ""XAUxo  
    end u '/)l}  
    eBs.RR ]O  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  we`BqZV  
    /i>n1>~yn  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ;X<Ez5v3  
    f^1J_}cL  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)