切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11139阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 5Fh8*8u6hL  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 9j2\y=<&  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 juR  
    function z = zernfun(n,m,r,theta,nflag) K7+^Yv\YQx  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. P&h/IBA_  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N JE/l#Q!  
    %   and angular frequency M, evaluated at positions (R,THETA) on the jt/l,=9YK  
    %   unit circle.  N is a vector of positive integers (including 0), and zz[g{[SN  
    %   M is a vector with the same number of elements as N.  Each element t&8<k+m  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) UP5%C;  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, \l>q Y(gu  
    %   and THETA is a vector of angles.  R and THETA must have the same 4{g:^?1=  
    %   length.  The output Z is a matrix with one column for every (N,M) C5BzWgK  
    %   pair, and one row for every (R,THETA) pair. *1R##9\jU7  
    % "^18&>^  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fp,1qzU[k  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gD,A9a(3  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 9UB??049z  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $>nkGb%Kp  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized M^Q&A R'F  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [8xeQKp4  
    % 5?D1][  
    %   The Zernike functions are an orthogonal basis on the unit circle. t%0r"bTi  
    %   They are used in disciplines such as astronomy, optics, and H f!9`R[  
    %   optometry to describe functions on a circular domain. WNCM|VUl  
    % u XaL  
    %   The following table lists the first 15 Zernike functions. fma tc#G  
    % ^)(G(=-Rf  
    %       n    m    Zernike function           Normalization ~+7ad$   
    %       -------------------------------------------------- YK(XS"Kl  
    %       0    0    1                                 1 FZM ]o  
    %       1    1    r * cos(theta)                    2 D!81(}p  
    %       1   -1    r * sin(theta)                    2 Kc%tnVyGh:  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) *2w_oKE'+5  
    %       2    0    (2*r^2 - 1)                    sqrt(3) i!s~kk  
    %       2    2    r^2 * sin(2*theta)             sqrt(6)  `;zu1o  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) XfD z #  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) u>JqFw1  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) m$j n5:  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ^yzo!`)fso  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) =d:R/Z%,  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;9 =}_h)]  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) tf.q~@Pi  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) > #Grf)@"6  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Ak<IHp^Q  
    %       -------------------------------------------------- CpBQ>!CW  
    % !7kAJG g  
    %   Example 1: N]3-L`t  
    % ?CcR 7l  
    %       % Display the Zernike function Z(n=5,m=1) &!H~bzg  
    %       x = -1:0.01:1; ?,A}E|jZ  
    %       [X,Y] = meshgrid(x,x); HV#?6,U}  
    %       [theta,r] = cart2pol(X,Y); SSSDl$}'t  
    %       idx = r<=1; P wt ?9I  
    %       z = nan(size(X)); V{7lltu  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); :)^# xE(  
    %       figure 0KWy?6 X  
    %       pcolor(x,x,z), shading interp ;EE{ ~  
    %       axis square, colorbar ?NL&x  
    %       title('Zernike function Z_5^1(r,\theta)') I@y2HxM  
    % =woqHTR  
    %   Example 2: aPcGI  
    % y<IZ|f  
    %       % Display the first 10 Zernike functions , }xpYq_/  
    %       x = -1:0.01:1; A>&>6O4  
    %       [X,Y] = meshgrid(x,x); m!FM+kge  
    %       [theta,r] = cart2pol(X,Y); 0+VncL)u  
    %       idx = r<=1; 7cOg(6N  
    %       z = nan(size(X)); _oMs `"4K  
    %       n = [0  1  1  2  2  2  3  3  3  3]; u"Hd55"&  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; oHc-0$eMKY  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Y]`lEq%  
    %       y = zernfun(n,m,r(idx),theta(idx)); '6d D^0dZ  
    %       figure('Units','normalized') `-9*@_ -=M  
    %       for k = 1:10 #J<`p  
    %           z(idx) = y(:,k); s)`1Rf  
    %           subplot(4,7,Nplot(k)) _{Fdw  
    %           pcolor(x,x,z), shading interp J*^,l`C/  
    %           set(gca,'XTick',[],'YTick',[]) SSA%1l 2!  
    %           axis square ],fwZd[t  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) r(?'Yy  
    %       end Fw_bY/WN{  
    % V5(tf'  
    %   See also ZERNPOL, ZERNFUN2. &t9XK8S  
    l1iF}>F2  
    %   Paul Fricker 11/13/2006 {Vt^Xc  
    mBD!:V'  
    )N%1%bg^-  
    % Check and prepare the inputs: tnKpn-LPA  
    % ----------------------------- l/y Kc8^<  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) F] dd>#  
        error('zernfun:NMvectors','N and M must be vectors.') JQ{zWJlt  
    end anKb  
    .SKNIct M  
    if length(n)~=length(m) ]y)R C-N  
        error('zernfun:NMlength','N and M must be the same length.') >X\s[d&(  
    end j4 &  
    hsQrd%{f  
    n = n(:); AT'_0> x8  
    m = m(:); y9re17{ X  
    if any(mod(n-m,2)) R>YMGUH~w  
        error('zernfun:NMmultiplesof2', ... "k_n+cH%  
              'All N and M must differ by multiples of 2 (including 0).') ixI5Xd<  
    end ,nu7r1}  
    X~Rk ,d3  
    if any(m>n) nV,{w4t+  
        error('zernfun:MlessthanN', ... O>"r. sR  
              'Each M must be less than or equal to its corresponding N.') ,$zSJzS  
    end "DcueU#!  
    +(h6{e%)  
    if any( r>1 | r<0 ) wEHrer  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') O( 5L2G  
    end ]cGz~TN~  
    J9$]]\52s.  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;o)`9<es!2  
        error('zernfun:RTHvector','R and THETA must be vectors.') @qr3v>3X<  
    end [&O:qaD^  
    %]:vT&M  
    r = r(:); [:hy  
    theta = theta(:); ? /|@ #&  
    length_r = length(r); dnWt\>6& 2  
    if length_r~=length(theta) >!v,`O1  
        error('zernfun:RTHlength', ... @)juP- o%  
              'The number of R- and THETA-values must be equal.') HTtGpTsF  
    end (=3&8$  
    &T{B~i3w8  
    % Check normalization: L8-[:1  
    % -------------------- -z~ V   
    if nargin==5 && ischar(nflag)  =R24 h  
        isnorm = strcmpi(nflag,'norm'); m 'H  
        if ~isnorm id[>!fQ=Y  
            error('zernfun:normalization','Unrecognized normalization flag.') @ vYN7  
        end 5P t}  
    else r|H!s,  
        isnorm = false; %_J/&{6G  
    end $j4?'-i=e  
    <"|<)BGeI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4uAb LSh9  
    % Compute the Zernike Polynomials F~@1n ,[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~9/nx|%D  
    O@(.ei*HJ!  
    % Determine the required powers of r: u1|Y;*  
    % ----------------------------------- ZWe$(?  
    m_abs = abs(m); $O</akn;  
    rpowers = []; BaHg c 4zI  
    for j = 1:length(n) A)p! w aG  
        rpowers = [rpowers m_abs(j):2:n(j)]; s8I77._s  
    end nF[eb{GR`  
    rpowers = unique(rpowers); 5J2p^$s  
    +7vh__  
    % Pre-compute the values of r raised to the required powers, T9;o.f S  
    % and compile them in a matrix: _itN.^  
    % ----------------------------- w.F3o4YP  
    if rpowers(1)==0 (pxz#B4  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); P9cI{RI  
        rpowern = cat(2,rpowern{:}); &i}cC4i   
        rpowern = [ones(length_r,1) rpowern]; (i~%4w=  
    else o!dkS/u-m  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1bAp{u&  
        rpowern = cat(2,rpowern{:}); b({b5z.A  
    end g$+O<a@n  
    ?*5l}y=  
    % Compute the values of the polynomials: =ir;m  
    % -------------------------------------- {$eZF_}Y^  
    y = zeros(length_r,length(n));  KNyD}1  
    for j = 1:length(n) "dU#j,B2  
        s = 0:(n(j)-m_abs(j))/2; WaK{/6?T,  
        pows = n(j):-2:m_abs(j); ?lna8]t  
        for k = length(s):-1:1 !-o||rt  
            p = (1-2*mod(s(k),2))* ... &aht K}u  
                       prod(2:(n(j)-s(k)))/              ... xF>w r r  
                       prod(2:s(k))/                     ... J#;m)5[ a%  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... jQlK-U=oi  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 30v1VLR_)  
            idx = (pows(k)==rpowers); [eik<1=,~?  
            y(:,j) = y(:,j) + p*rpowern(:,idx); &T.P7nJ=  
        end rpI7W?hh  
         rca"q[,  
        if isnorm g/Nj|:3  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); mZ&Mj.0+~  
        end ]6 7wk  
    end 8[p6C Jl)  
    % END: Compute the Zernike Polynomials cG"<*Xi<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X)+sHcE~#  
    b#'a4j-u  
    % Compute the Zernike functions: ] ]-0RJ=S?  
    % ------------------------------ 1pr_d"#4  
    idx_pos = m>0; vu \Dx9  
    idx_neg = m<0; _NN{Wk/3w  
    6$;)CO!h  
    z = y; kqB 00 ;  
    if any(idx_pos) IY6S\Gn  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /[T8/7;_l  
    end j_<n~ri-  
    if any(idx_neg) @Oay$gP{T  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); JKbB,  
    end Mo=-P2)>lt  
    9!C?2*>A P  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) $ wB  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. A1;t60z+q>  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated r!uAofIi_  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 03;(v%  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 2p ,6=8^v  
    %   and THETA is a vector of angles.  R and THETA must have the same ".Ug A\0  
    %   length.  The output Z is a matrix with one column for every P-value, \2b9A' d>  
    %   and one row for every (R,THETA) pair. 9hzU@m  
    % K; lC#  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 5xKR ]u  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) "j>0A Hem  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) "YZ`g}sG  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 0w]?yqnE  
    %   for all p. }@4*0_g"Aw  
    % wH<*  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 jT0fF  
    %   Zernike functions (order N<=7).  In some disciplines it is ~?r6Ax-R  
    %   traditional to label the first 36 functions using a single mode 9-SXu lgu  
    %   number P instead of separate numbers for the order N and azimuthal `,"Jc<R7Z  
    %   frequency M. Kwnu|8  
    % n]!H,Q1,T  
    %   Example: K-5)Y+| >  
    % WI3!?>d  
    %       % Display the first 16 Zernike functions 2S/7f:  
    %       x = -1:0.01:1; H[Cn@XE  
    %       [X,Y] = meshgrid(x,x); w6 .HvH-@?  
    %       [theta,r] = cart2pol(X,Y); q[ZYlF,Ho  
    %       idx = r<=1; us+adS.l&  
    %       p = 0:15; ,-Gw#!0  
    %       z = nan(size(X)); ^g\%VIOD  
    %       y = zernfun2(p,r(idx),theta(idx)); \266N;JrN  
    %       figure('Units','normalized') C5z4%,`f  
    %       for k = 1:length(p) M}u2aW2]X  
    %           z(idx) = y(:,k); ,\7okf7H,-  
    %           subplot(4,4,k) *<1m 2t>.  
    %           pcolor(x,x,z), shading interp z_)$g= 9$  
    %           set(gca,'XTick',[],'YTick',[]) ;7hr8?M|  
    %           axis square P/ 5r(l5  
    %           title(['Z_{' num2str(p(k)) '}']) ]&>)=b!,  
    %       end _6( =0::x  
    % #oI`j q  
    %   See also ZERNPOL, ZERNFUN. v\vn}/>*d  
    Jt"Wtr  
    %   Paul Fricker 11/13/2006  |QdS;  
    _QY "#  
    RB2u1]l  
    % Check and prepare the inputs:  f63q  
    % ----------------------------- "+AD+D  
    if min(size(p))~=1 DS yE   
        error('zernfun2:Pvector','Input P must be vector.') 3L|k3 `I4  
    end QPn c "!  
    v:'y&yS  
    if any(p)>35 L<n_}ucA  
        error('zernfun2:P36', ... r%4:,{HF  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... YeVhWPn@  
               '(P = 0 to 35).']) ORNE>6J H  
    end r|+Zni]  
    R.@GLx_zpQ  
    % Get the order and frequency corresonding to the function number: RA}PM?D/  
    % ---------------------------------------------------------------- BKk*<WMD  
    p = p(:); 9z#IdY$a  
    n = ceil((-3+sqrt(9+8*p))/2); tH(Z9\L7  
    m = 2*p - n.*(n+2); U,N4+F}FR  
    W7 $yE},z  
    % Pass the inputs to the function ZERNFUN: {#MViBhd%  
    % ---------------------------------------- d hy=x  
    switch nargin jp|wc,]!  
        case 3 5"+* c@L  
            z = zernfun(n,m,r,theta); Oqyh{q%]  
        case 4 <[Vr(.A  
            z = zernfun(n,m,r,theta,nflag); lc^%:#@  
        otherwise Rp#SqRy`  
            error('zernfun2:nargin','Incorrect number of inputs.') 2mRso.Ah  
    end v|e>zm <  
    b\?`721BG  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) OA8pao~H  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. N4Ym[l  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of -Bc.<pFqp  
    %   order N and frequency M, evaluated at R.  N is a vector of NQb?&.C   
    %   positive integers (including 0), and M is a vector with the !vU[V,~  
    %   same number of elements as N.  Each element k of M must be a R .,w`<<  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) T@L^RaPX  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Sdn] f4  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix :=/DF  
    %   with one column for every (N,M) pair, and one row for every `f (!i mN  
    %   element in R. @{bf]Oc  
    % E^  rN)  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- R75sK(oS  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 4B |f}7%\  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to XjV7Ew^7  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 {*: C$"L  
    %   for all [n,m]. giPyo"SD  
    % f"[C3o2P  
    %   The radial Zernike polynomials are the radial portion of the /<n_X:[)  
    %   Zernike functions, which are an orthogonal basis on the unit cD 1p5U  
    %   circle.  The series representation of the radial Zernike %c&h:7);  
    %   polynomials is ?HW*qD#k  
    % F/&&VSv>LO  
    %          (n-m)/2 KMZ% 1=a  
    %            __ g}f@8;TY  
    %    m      \       s                                          n-2s Q<M>+U;t  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r se?nx7~  
    %    n      s=0 Ay{4R  
    % 'RPe5 vB  
    %   The following table shows the first 12 polynomials. ] `lTkh  
    % (LnKaf8  
    %       n    m    Zernike polynomial    Normalization "Aynt_a.  
    %       --------------------------------------------- #e=[W))  
    %       0    0    1                        sqrt(2) 0s(G*D2%6  
    %       1    1    r                           2 KjhOz%Yt[o  
    %       2    0    2*r^2 - 1                sqrt(6) a^,Xm(Wb}  
    %       2    2    r^2                      sqrt(6) ETmfy}V8  
    %       3    1    3*r^3 - 2*r              sqrt(8) ^mH^cP?/  
    %       3    3    r^3                      sqrt(8) kw!! 5U;7  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10)  G=wJz  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 5YRa2#d  
    %       4    4    r^4                      sqrt(10) 1v`*%95  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) w|NLK  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) <FP&1Eg!|  
    %       5    5    r^5                      sqrt(12) Ygg+*z  
    %       --------------------------------------------- Nkc=@l {  
    % -(Yq$5Zc&  
    %   Example: %/4ChKf!VR  
    % |A"zxNeS"  
    %       % Display three example Zernike radial polynomials emTqbO  
    %       r = 0:0.01:1; DRal{?CH  
    %       n = [3 2 5]; ]c*&5c$  
    %       m = [1 2 1]; =ove#3  
    %       z = zernpol(n,m,r); aCQAh[T  
    %       figure {>90d(j  
    %       plot(r,z) E-CZk_K9  
    %       grid on >]FRHJo_  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') p?ICZg:  
    % xM[m(m  
    %   See also ZERNFUN, ZERNFUN2. 2WqjNqx)6  
    kid@*.I  
    % A note on the algorithm. \:8 >@Q  
    % ------------------------ rxt)l  
    % The radial Zernike polynomials are computed using the series t}+P|$[  
    % representation shown in the Help section above. For many special af.yC[  
    % functions, direct evaluation using the series representation can nzU^G)  
    % produce poor numerical results (floating point errors), because 9[T}cN=|  
    % the summation often involves computing small differences between NU O9,  
    % large successive terms in the series. (In such cases, the functions yoQ}m/Cj  
    % are often evaluated using alternative methods such as recurrence ).5$c0`U&  
    % relations: see the Legendre functions, for example). For the Zernike R e-4y5f  
    % polynomials, however, this problem does not arise, because the kyMWO*>|  
    % polynomials are evaluated over the finite domain r = (0,1), and p4[cPt~C  
    % because the coefficients for a given polynomial are generally all U8 '}(  
    % of similar magnitude. `5:b=^'D /  
    % ibha`  
    % ZERNPOL has been written using a vectorized implementation: multiple yHe%e1  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] n2cb,b/7  
    % values can be passed as inputs) for a vector of points R.  To achieve )k$ +T%  
    % this vectorization most efficiently, the algorithm in ZERNPOL | bDUekjR  
    % involves pre-determining all the powers p of R that are required to OF-$*  
    % compute the outputs, and then compiling the {R^p} into a single 8(]*J8/wt  
    % matrix.  This avoids any redundant computation of the R^p, and 22$M6Qof]n  
    % minimizes the sizes of certain intermediate variables. p%[/ _ -7  
    % $9bLD >.  
    %   Paul Fricker 11/13/2006 ].w~FUa  
    ~qT5F)$B-  
    &#_c,c;  
    % Check and prepare the inputs: b*(74>XY  
    % ----------------------------- jnho *,X  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) m7!M stu  
        error('zernpol:NMvectors','N and M must be vectors.') 3RJsH :u8  
    end vnc- W3N  
    ^Y,nv,gYn  
    if length(n)~=length(m) 7Ji|x{``  
        error('zernpol:NMlength','N and M must be the same length.') 2!QQypQ  
    end O%}?DiSl  
    t>Lq "]1  
    n = n(:); Ce_k&[AJF  
    m = m(:); ip8%9fG\>  
    length_n = length(n); 9X/]O<i,Es  
    mBN+c9n/  
    if any(mod(n-m,2)) %?2y2O ,;  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') gjFpM.D-.  
    end S\io5|P  
    v(=?@ tF}E  
    if any(m<0) )xm[mvt  
        error('zernpol:Mpositive','All M must be positive.') JCFiKt9n  
    end %[B^b)2  
    Gu@n1/m@o  
    if any(m>n) m55|&Ux|  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') X)Zc*9XA  
    end mUA!GzJ~u-  
    z;iNfs0i$  
    if any( r>1 | r<0 ) ]sLdz^E3D  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Uhs/F:E[A  
    end [eLMb)n  
    " rA-u)Te  
    if ~any(size(r)==1) 1 K(0tG:5  
        error('zernpol:Rvector','R must be a vector.') y~Z7sx0  
    end WIKSz {"=/  
    "o)jB~ :L  
    r = r(:); Y#[xX2z9  
    length_r = length(r); m941 Y  
    *q;u%; 4  
    if nargin==4 -kzp >=  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); j[CXIz?c  
        if ~isnorm q\Q'9Rl0(  
            error('zernpol:normalization','Unrecognized normalization flag.') 2Y>#FEW/  
        end o4U0kiI@  
    else *[Im].  
        isnorm = false; L.2!Q3&  
    end Q2qT[aD,  
    ?xwLe  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 70 -nAv  
    % Compute the Zernike Polynomials 'D'H)J  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X4eoE  
    zb3,2D+P  
    % Determine the required powers of r: F1*xY%Jv^M  
    % ----------------------------------- U3u j`Oq  
    rpowers = []; "% l``  
    for j = 1:length(n) 9+#BU$*v  
        rpowers = [rpowers m(j):2:n(j)]; Cz|F%>y#  
    end ?t)Mt]("  
    rpowers = unique(rpowers); 0oQJ}8t  
    [2{2w68D!  
    % Pre-compute the values of r raised to the required powers, DGbEQiX$\  
    % and compile them in a matrix: y!8m7a  
    % ----------------------------- / %1-tGh  
    if rpowers(1)==0 ZZM;%i-B  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); IY hwFw 5O  
        rpowern = cat(2,rpowern{:}); _1G;!eO  
        rpowern = [ones(length_r,1) rpowern]; tH=jaFJ   
    else \NZ@>on  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); a$K6b5`>Rs  
        rpowern = cat(2,rpowern{:}); MzMVs3w|  
    end +,]_TxL|C  
    8.HJoos  
    % Compute the values of the polynomials: k%R(Qga  
    % -------------------------------------- ioBYxbY`  
    z = zeros(length_r,length_n); ;b}cn!U]  
    for j = 1:length_n 3S .2  
        s = 0:(n(j)-m(j))/2; ''($E /  
        pows = n(j):-2:m(j); l?A~^4(5a/  
        for k = length(s):-1:1 )# v}8aL  
            p = (1-2*mod(s(k),2))* ... OP|X-  
                       prod(2:(n(j)-s(k)))/          ... y[ZVi5) ,  
                       prod(2:s(k))/                 ... (y s<{Y-;  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... <m/XGFc  
                       prod(2:((n(j)+m(j))/2-s(k))); JmC2buO  
            idx = (pows(k)==rpowers); Rrrq>{D  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ;OC{B}.vH  
        end E~c>j<'-"<  
         P~84#5R1  
        if isnorm G\R6=K:f7  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ;6$W-W _  
        end 7+Er}y>  
    end l{QlJ>%~{;  
    :Wihb#TO)  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Bsk` e  
    UMMGT6s,E8  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 xa 967Ki9"  
    L+mHeS l  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)