切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10861阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 AEqq1A   
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! :~D]; m  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 `pm>'  
    function z = zernfun(n,m,r,theta,nflag) :1MM a6  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. %E.S[cf%8&  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <[<247%  
    %   and angular frequency M, evaluated at positions (R,THETA) on the l;0y-m1  
    %   unit circle.  N is a vector of positive integers (including 0), and H#Q;"r3  
    %   M is a vector with the same number of elements as N.  Each element ?(D}5`Nfu  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 'Sa!5h  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, TVeJ6  
    %   and THETA is a vector of angles.  R and THETA must have the same 9^\hmpP@D  
    %   length.  The output Z is a matrix with one column for every (N,M) z 6cYC,  
    %   pair, and one row for every (R,THETA) pair. Y`^o7'Z2^P  
    % O] ZC+]}/  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0H+c4IW  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), g_M ^E-3  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral s#P:6]Ar  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8t[t{"  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ,]q%/yxi  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M5O'=\+,F  
    % K(3&27sGN  
    %   The Zernike functions are an orthogonal basis on the unit circle. :\bfGSD/gd  
    %   They are used in disciplines such as astronomy, optics, and q~h:<,5  
    %   optometry to describe functions on a circular domain. lwJipIO  
    % ;"@:}_t  
    %   The following table lists the first 15 Zernike functions. 2kJ!E@n7  
    % (}"S) #C  
    %       n    m    Zernike function           Normalization +'%\Pr(  
    %       -------------------------------------------------- M2p<u-6 "  
    %       0    0    1                                 1 sOQcx\dK  
    %       1    1    r * cos(theta)                    2 RH~sbnZ)F  
    %       1   -1    r * sin(theta)                    2 [%~^kq=|  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) <4f,G]UH_  
    %       2    0    (2*r^2 - 1)                    sqrt(3)  i6 L  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) `xIh\q  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) >a@>N  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) m^A]+G#/  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) !tBeuemN%  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 4>k I^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 4+Ti7p06&\  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bKUyBk,\#  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) )&z4_l8`=  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N7pt:G2~%  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) tBv3~Of.  
    %       -------------------------------------------------- KIIym9%  
    % ^IgS  
    %   Example 1: B1+ZFQo  
    % Lzz) n%y5  
    %       % Display the Zernike function Z(n=5,m=1) \u8,!) 4i  
    %       x = -1:0.01:1; ttj2b$M,  
    %       [X,Y] = meshgrid(x,x); 4#h ?Wga  
    %       [theta,r] = cart2pol(X,Y); QkE,T0,/?h  
    %       idx = r<=1; n ,1tD  
    %       z = nan(size(X)); S.hC$0vrj  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); UE;Bb*<   
    %       figure 1|/'"9v  
    %       pcolor(x,x,z), shading interp L=m:/qQL  
    %       axis square, colorbar 0[9I0YBJ  
    %       title('Zernike function Z_5^1(r,\theta)') R9vY:oN%  
    % OpqNEo\  
    %   Example 2: }$:#+ (17  
    % lR}%)3_k  
    %       % Display the first 10 Zernike functions @G(xaU'u  
    %       x = -1:0.01:1; \k4pK &b  
    %       [X,Y] = meshgrid(x,x); k9&@(G[K3  
    %       [theta,r] = cart2pol(X,Y); @>:i-5  
    %       idx = r<=1; XNlhu^jh  
    %       z = nan(size(X)); CO'ar,  
    %       n = [0  1  1  2  2  2  3  3  3  3]; J[r^T&o  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !o<ICHHH  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; N]u2ql&  
    %       y = zernfun(n,m,r(idx),theta(idx)); T`Ro)ORC#  
    %       figure('Units','normalized') }9=2g`2Q  
    %       for k = 1:10 _uJVuCc  
    %           z(idx) = y(:,k); 4,zvFH*AH  
    %           subplot(4,7,Nplot(k)) ]738Z/)^  
    %           pcolor(x,x,z), shading interp M5 `m.n<  
    %           set(gca,'XTick',[],'YTick',[]) LfllO  
    %           axis square +;6)  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) QPV@'.2m  
    %       end KGQC't  
    % jE*Ff&]%m  
    %   See also ZERNPOL, ZERNFUN2. @p6@a6N%  
    - `4Ty*K  
    %   Paul Fricker 11/13/2006 HT&p{7kFm  
    [-]A^?yBM  
    N33AcV!*8  
    % Check and prepare the inputs: VY_f =  
    % ----------------------------- :])JaS^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) fCr\u6Tb  
        error('zernfun:NMvectors','N and M must be vectors.') eQ\jZ0s;p  
    end ]<+3Vw  
    3`ml; L?D  
    if length(n)~=length(m) [9HYO  
        error('zernfun:NMlength','N and M must be the same length.') =%L@WVbM  
    end /sV?JV[t  
    0# l#,Y6#I  
    n = n(:); EIPnm%{1  
    m = m(:); Ph Ttx(!  
    if any(mod(n-m,2)) W]@6=OpH  
        error('zernfun:NMmultiplesof2', ... k{{hZ/om  
              'All N and M must differ by multiples of 2 (including 0).') 2!idy]vy_  
    end i7(~>6@|  
    .OV-`TNWj  
    if any(m>n) ;le0QA Pf  
        error('zernfun:MlessthanN', ... W6M jQ%f  
              'Each M must be less than or equal to its corresponding N.') |mvM@V;^8{  
    end ]/[0O+B?  
    qS| AdkNL  
    if any( r>1 | r<0 ) KD=bkZ&  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') fzyzuS$  
    end ]\`w1'*  
    EP(Eq  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 8J):\jAZ6  
        error('zernfun:RTHvector','R and THETA must be vectors.') *k4+ioFnKE  
    end 5v+L';wx[T  
    6: GN(R$0  
    r = r(:); ~hzEKvs  
    theta = theta(:); wcl!S{  
    length_r = length(r); h&P {p _Y  
    if length_r~=length(theta) &8afl"_~  
        error('zernfun:RTHlength', ... ozuIwzi7N  
              'The number of R- and THETA-values must be equal.') "5h_8k~sQ  
    end  +xq=<jy  
    T1bFxim#b  
    % Check normalization: I^@.Aw t  
    % -------------------- ~Zu}M>-^c,  
    if nargin==5 && ischar(nflag) 0H<4+ *`K  
        isnorm = strcmpi(nflag,'norm'); 0NrTJ R`  
        if ~isnorm fSr`>UpxC  
            error('zernfun:normalization','Unrecognized normalization flag.') xh`Du|jvm  
        end t%:G|n Sz  
    else `;e^2  
        isnorm = false; Q<C@KBiVE  
    end g*28L[Q~  
    38"cbHE3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,.h$&QFj;  
    % Compute the Zernike Polynomials {RH*8?7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C-&#r."L  
    @| P3  
    % Determine the required powers of r: 4[Z1r~t\L  
    % ----------------------------------- xp(mB7;:  
    m_abs = abs(m); %~G0[fG  
    rpowers = []; uZ-`fcCjD  
    for j = 1:length(n) I IYLA(  
        rpowers = [rpowers m_abs(j):2:n(j)]; dw3'T4TC?  
    end zQn//7#-G  
    rpowers = unique(rpowers); BjN{@ aEO  
    jXtLo,km  
    % Pre-compute the values of r raised to the required powers, tgc@7  
    % and compile them in a matrix: VSx%8IM+X  
    % ----------------------------- C5cFw/',  
    if rpowers(1)==0 4sI3(z)9H  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Up'."w_zE  
        rpowern = cat(2,rpowern{:}); {;\%!I  
        rpowern = [ones(length_r,1) rpowern]; -GK'V  
    else 7f[8ED[4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); E $<;@  
        rpowern = cat(2,rpowern{:}); qq/_yt  
    end [O [FCn  
    rpx 0|{m  
    % Compute the values of the polynomials: G;Us-IRZ  
    % -------------------------------------- q;IhLBl'  
    y = zeros(length_r,length(n)); JtThkh'-"  
    for j = 1:length(n) L,GShl0S  
        s = 0:(n(j)-m_abs(j))/2; y{:]sHyG  
        pows = n(j):-2:m_abs(j); zo/0b/lQ  
        for k = length(s):-1:1 WT I'O  
            p = (1-2*mod(s(k),2))* ... {7/A  
                       prod(2:(n(j)-s(k)))/              ... 2n _T2{  
                       prod(2:s(k))/                     ... >\RDQ%z  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... S[ws0Y60  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Wn2Ny jX  
            idx = (pows(k)==rpowers); _T_PX$B  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ,o4r,.3[s  
        end |:dCVd<du  
         }k4`  
        if isnorm iZsau2K  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); XryQ)x(  
        end fMgcK$  
    end dCW0^k  
    % END: Compute the Zernike Polynomials X S6]C{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ](]*]a4ss  
    nomu$|I  
    % Compute the Zernike functions: jq7vOr-_g  
    % ------------------------------ W dei`u[  
    idx_pos = m>0; _-g-'Hr+N  
    idx_neg = m<0; .ruqRGe/  
    rE!G,^_{  
    z = y; ViCg|1c  
    if any(idx_pos) ?3.(Vqwog  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); !E4E'I=]N  
    end )6PJ*;p-  
    if any(idx_neg) (YaOh^T:|  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "US" `a2  
    end 50}.Xm@,BO  
    \=HfO?$ Ro  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) TmRrub  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. e'}ePvN  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Pu/-Qpqh  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive [)C)p*!Y)  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 5n&)q=jk=  
    %   and THETA is a vector of angles.  R and THETA must have the same +ZD[[+  
    %   length.  The output Z is a matrix with one column for every P-value, WHhR )$zC  
    %   and one row for every (R,THETA) pair. jQH5$  
    % 4\ uZKv@,  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ="'rH.n #  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) eG[umv.9b  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ~@)- qV^~  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 . }-@;:yh  
    %   for all p. f4 Sw,A  
    % Bd N{[2  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 iXr`0V   
    %   Zernike functions (order N<=7).  In some disciplines it is 1@1+4P0NF[  
    %   traditional to label the first 36 functions using a single mode ^`hI00u(  
    %   number P instead of separate numbers for the order N and azimuthal :N+K^gI)  
    %   frequency M. c_D,MW\IC  
    % -.+KCt G$+  
    %   Example: T_YMM'`  
    % gMoyy  
    %       % Display the first 16 Zernike functions Q(!}t"u  
    %       x = -1:0.01:1; '.}6]l  
    %       [X,Y] = meshgrid(x,x); Os]!B2j14  
    %       [theta,r] = cart2pol(X,Y); eNlF2M  
    %       idx = r<=1; IlC:dA  
    %       p = 0:15; ~L4*b *W  
    %       z = nan(size(X)); w|hyU4- ^  
    %       y = zernfun2(p,r(idx),theta(idx)); .SRuyioF&  
    %       figure('Units','normalized') W?4&lC^G  
    %       for k = 1:length(p) R~x;X3  
    %           z(idx) = y(:,k); 2yCd:wg  
    %           subplot(4,4,k)  5Xy^I^J  
    %           pcolor(x,x,z), shading interp +QCU]Fozk  
    %           set(gca,'XTick',[],'YTick',[]) lO5gkOJ?  
    %           axis square MK!]y8+Z  
    %           title(['Z_{' num2str(p(k)) '}']) k:+)$[t7  
    %       end sg9x?Bx9  
    % ]C!Y~  
    %   See also ZERNPOL, ZERNFUN. hq&  
    -G^t-I  
    %   Paul Fricker 11/13/2006 ;nAg4ll8Q  
    .9[8H:Fe  
    X T)hPwg.  
    % Check and prepare the inputs: ;'WzfJ!q  
    % ----------------------------- E=tx.h4xG~  
    if min(size(p))~=1 mw4'z,1Q  
        error('zernfun2:Pvector','Input P must be vector.') B1i!te}*  
    end Mh-*5Rx  
    5LhJ8$W  
    if any(p)>35 ]%Q]C 8[C  
        error('zernfun2:P36', ... kgbr+Yw2X  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... {pQ@0 b  
               '(P = 0 to 35).']) ~gLEhtW  
    end YVg}q#  
    +(h6{e%)  
    % Get the order and frequency corresonding to the function number: wEHrer  
    % ---------------------------------------------------------------- O( 5L2G  
    p = p(:); ]cGz~TN~  
    n = ceil((-3+sqrt(9+8*p))/2); q3pN/f;kr,  
    m = 2*p - n.*(n+2); }5Tyzi(  
    l)!woOt  
    % Pass the inputs to the function ZERNFUN: zN8V~M;  
    % ---------------------------------------- {p lmFV  
    switch nargin luxKgcU  
        case 3 >-tH&X^  
            z = zernfun(n,m,r,theta); w or'=byh\  
        case 4 KiRt'  
            z = zernfun(n,m,r,theta,nflag); Rcx'a:k  
        otherwise GYb2m"a)  
            error('zernfun2:nargin','Incorrect number of inputs.') >. nt'BQ  
    end Rp%\`'+Xz  
    :]z-Rz  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) OD@A+"  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. F]&J%i F[  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ALt";8Oa  
    %   order N and frequency M, evaluated at R.  N is a vector of WZ V*J&  
    %   positive integers (including 0), and M is a vector with the #uw*8&%0  
    %   same number of elements as N.  Each element k of M must be a HgBEV  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) )yH#*~X_   
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Y(!)G!CMc  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix  E_I6  
    %   with one column for every (N,M) pair, and one row for every q@"4Rbu6  
    %   element in R. zB7dCw  
    % d?qO`- ~$  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- $6?KH7lA  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is u'n%BVt   
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 3z. >b  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 f'yd {ihFp  
    %   for all [n,m]. 9NoPrR=x1  
    % = Ow&UI  
    %   The radial Zernike polynomials are the radial portion of the *oJ>4S  
    %   Zernike functions, which are an orthogonal basis on the unit owVUL~  
    %   circle.  The series representation of the radial Zernike F-OZIo  
    %   polynomials is ::b;4Q L  
    % xu pdjT%4  
    %          (n-m)/2 @5@{Es1u  
    %            __ 7Sv5fLu2  
    %    m      \       s                                          n-2s WaK{/6?T,  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r >0okb3+  
    %    n      s=0 3Eux-C!t  
    % DppvUiQB!a  
    %   The following table shows the first 12 polynomials. ,&l*AB!  
    % G uI sM  
    %       n    m    Zernike polynomial    Normalization w`Aw+[24  
    %       --------------------------------------------- fOfz^W  
    %       0    0    1                        sqrt(2) zW&O>H  
    %       1    1    r                           2 b,V=B{(~  
    %       2    0    2*r^2 - 1                sqrt(6) V1V4 <Zj  
    %       2    2    r^2                      sqrt(6) IIEU{},}z  
    %       3    1    3*r^3 - 2*r              sqrt(8) U`4Z j1y  
    %       3    3    r^3                      sqrt(8) ;+Kewi;<  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) "_}D{ws1  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) AhZ  
    %       4    4    r^4                      sqrt(10) 8[p6C Jl)  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) cG"<*Xi<  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) I8>1RXz  
    %       5    5    r^5                      sqrt(12) *iN]#)3>  
    %       --------------------------------------------- Mj;'vm7#'  
    % )bg,rESM  
    %   Example: 6Z}))*3 9  
    % l;FgX+)  
    %       % Display three example Zernike radial polynomials jJnBwHp  
    %       r = 0:0.01:1; i-W2!;G  
    %       n = [3 2 5]; g2_df3Q  
    %       m = [1 2 1]; }u)G ERWO  
    %       z = zernpol(n,m,r); cuk}VZ  
    %       figure LBi>D`]  
    %       plot(r,z) pjn%CR`;  
    %       grid on a5S/ O;ry  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') /Bu5k BC  
    % xeh|u"5  
    %   See also ZERNFUN, ZERNFUN2. v0J1%{/xs  
    /T(~T  
    % A note on the algorithm. ^%@.Vvz<  
    % ------------------------ wd0ACF  
    % The radial Zernike polynomials are computed using the series ];]EK6dzG  
    % representation shown in the Help section above. For many special a'~y'6  
    % functions, direct evaluation using the series representation can m$: a|'mS  
    % produce poor numerical results (floating point errors), because A| -\C$  
    % the summation often involves computing small differences between $KFWV2P  
    % large successive terms in the series. (In such cases, the functions 5!%/j,?  
    % are often evaluated using alternative methods such as recurrence aE$p;I  
    % relations: see the Legendre functions, for example). For the Zernike $ wB  
    % polynomials, however, this problem does not arise, because the *(IO<KAg8  
    % polynomials are evaluated over the finite domain r = (0,1), and %QbrVl+  
    % because the coefficients for a given polynomial are generally all m"}G-#  
    % of similar magnitude. ( #Aq*2Z.  
    % b)@x@3"O  
    % ZERNPOL has been written using a vectorized implementation: multiple l<6/ADuS  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ylJlICK  
    % values can be passed as inputs) for a vector of points R.  To achieve gf>5xf{M  
    % this vectorization most efficiently, the algorithm in ZERNPOL [J 3;U6  
    % involves pre-determining all the powers p of R that are required to u'> CU  
    % compute the outputs, and then compiling the {R^p} into a single sl 5wX  
    % matrix.  This avoids any redundant computation of the R^p, and d(XWt;KK  
    % minimizes the sizes of certain intermediate variables. \ed(<e>  
    % uIwyan-  
    %   Paul Fricker 11/13/2006 OR{"9)I  
    pn|{P<b\  
    &YMj\KmlSg  
    % Check and prepare the inputs: 56dl;Z)  
    % ----------------------------- ;0E 4S  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~3 (>_r  
        error('zernpol:NMvectors','N and M must be vectors.') &x  #5-O'  
    end Bnv%W4  
    {BU,kjv1g  
    if length(n)~=length(m) PGGJpD?  
        error('zernpol:NMlength','N and M must be the same length.') ~K`bl W47  
    end us+adS.l&  
    ,-Gw#!0  
    n = n(:); ^g\%VIOD  
    m = m(:); \266N;JrN  
    length_n = length(n); C5z4%,`f  
    bE"CSK#  
    if any(mod(n-m,2)) 8%Lg)hvl  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') m|[ Hhw=f  
    end |Gi/=[Tp  
    qE[}Cf]X  
    if any(m<0) NKws;/u  
        error('zernpol:Mpositive','All M must be positive.') KhvCkQMI@  
    end 3t'K@W?AJh  
     O(!'V~3  
    if any(m>n) S;~_9i]upe  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') |zE7W  
    end \D=B-dREq  
    vvCGzOv  
    if any( r>1 | r<0 ) ly2R8$Y`y`  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ,*30Q  
    end b3H;Ea?^^<  
    1+'3{m \5T  
    if ~any(size(r)==1) 8z&9  
        error('zernpol:Rvector','R must be a vector.') 4M}/PoJ  
    end *KAuyJr  
    A@+.[[  
    r = r(:); X+iULr.^`~  
    length_r = length(r); -_+0[Nb.  
    M=%p$\x  
    if nargin==4 ,bJx| K  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); n)yqb  
        if ~isnorm ~n?U{ RmH  
            error('zernpol:normalization','Unrecognized normalization flag.') $8)/4P?OL  
        end xS'So7:h  
    else _19k@a  
        isnorm = false; 'J}lnt[V  
    end p%BO:%v  
    f 36rU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P+xZaf H  
    % Compute the Zernike Polynomials )%6v~,'3Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4(NI-|q0  
    Q5ux**(Wr  
    % Determine the required powers of r: G>b1No3%k  
    % ----------------------------------- lc^%:#@  
    rpowers = []; h!MT5B)r.  
    for j = 1:length(n) ]?2AFkF  
        rpowers = [rpowers m(j):2:n(j)]; v|e>zm <  
    end b\?`721BG  
    rpowers = unique(rpowers); ^VQiq7 xm  
    u4Sa4o  
    % Pre-compute the values of r raised to the required powers, iZ UBw  
    % and compile them in a matrix: S $Wd}2>  
    % ----------------------------- 8^T' a^Wt  
    if rpowers(1)==0 E_? M&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); j>U.(K  
        rpowern = cat(2,rpowern{:}); <"-sN  
        rpowern = [ones(length_r,1) rpowern]; z9gZ/d   
    else {VFp fo  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W$y?~2  
        rpowern = cat(2,rpowern{:}); S"dQ@r9  
    end 5v]xk?Eb  
    2b<0g@~X  
    % Compute the values of the polynomials: 975KRnj  
    % -------------------------------------- >U17BGJ.  
    z = zeros(length_r,length_n); |D\ ukml  
    for j = 1:length_n '{|87kI  
        s = 0:(n(j)-m(j))/2; ?h5Y^}8Qg  
        pows = n(j):-2:m(j); ."2V:;;  
        for k = length(s):-1:1 4#o` -vcW  
            p = (1-2*mod(s(k),2))* ... *]rV,\z:  
                       prod(2:(n(j)-s(k)))/          ... N7[~Y2i  
                       prod(2:s(k))/                 ... a P`;Nr=  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... *Q)+Y&qn  
                       prod(2:((n(j)+m(j))/2-s(k))); yO !*pC  
            idx = (pows(k)==rpowers); D=8=wT2 <  
            z(:,j) = z(:,j) + p*rpowern(:,idx); S +He  
        end ow&R~_  
         /<n_X:[)  
        if isnorm $h2h&6mH  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); %c&h:7);  
        end n4ISHxM  
    end -+z^{*\; N  
    KMZ% 1=a  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    854
    光币
    834
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  LD/NMb  
    4h~CDy%_  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 wNl{,aH@  
    %W` }  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)