非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 9i\RdJv.
function z = zernfun(n,m,r,theta,nflag) 3+Lwtb}XPF
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?{ )'O+s
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3N_KNW
% and angular frequency M, evaluated at positions (R,THETA) on the #&'S-XE+
% unit circle. N is a vector of positive integers (including 0), and LO_Xrj
% M is a vector with the same number of elements as N. Each element PEI$1,z
% k of M must be a positive integer, with possible values M(k) = -N(k) zDdo RK@
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, H1k)ya x4_
% and THETA is a vector of angles. R and THETA must have the same ww{k_'RRJ
% length. The output Z is a matrix with one column for every (N,M) LA6XTgcu
% pair, and one row for every (R,THETA) pair. 4mDHAR%D
% g$uiwqNA%
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Q#% LIkeq
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ec!e
% with delta(m,0) the Kronecker delta, is chosen so that the integral Z;uKnJh
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0XA\Ag\`G
% and theta=0 to theta=2*pi) is unity. For the non-normalized i3)3.WK^
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =78y*`L
% ~T@E")uR
% The Zernike functions are an orthogonal basis on the unit circle. JP Dxzp
% They are used in disciplines such as astronomy, optics, and >&.N_,*
% optometry to describe functions on a circular domain. "q?(rx;
% `:iMGqZN
% The following table lists the first 15 Zernike functions. j
EbmW*
% %`bs<ZWT
% n m Zernike function Normalization Nf4@m|#
% -------------------------------------------------- NuO@Nr
% 0 0 1 1 12
)
% 1 1 r * cos(theta) 2 =#2%[kG q
% 1 -1 r * sin(theta) 2 tV=Qt[|@
% 2 -2 r^2 * cos(2*theta) sqrt(6) >J9Qr#=H2
% 2 0 (2*r^2 - 1) sqrt(3) ,O:4[M !$w
% 2 2 r^2 * sin(2*theta) sqrt(6) a0ms9%Y;Q[
% 3 -3 r^3 * cos(3*theta) sqrt(8) ]4t1dVD
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) >7WT4l)7!b
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) d[h=<?E5
% 3 3 r^3 * sin(3*theta) sqrt(8) OFohyy(
% 4 -4 r^4 * cos(4*theta) sqrt(10) !S<p"
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )P7oL.)
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) <\~@l^lU
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S8v,'Cc
% 4 4 r^4 * sin(4*theta) sqrt(10) |Gq3pL<jkC
% -------------------------------------------------- ~[!Tpq5
% -d?<t}a
% Example 1: @u+LF]MY
% S>5w=RK
% % Display the Zernike function Z(n=5,m=1) !v3d:n\W8
% x = -1:0.01:1; 7 :\J2$P
% [X,Y] = meshgrid(x,x); t,Tq3zB
% [theta,r] = cart2pol(X,Y); /\ fR6|tJ
% idx = r<=1; M7qg\1L
% z = nan(size(X)); d1yLDj?
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ]#N8e?b,
% figure =n.&N
% pcolor(x,x,z), shading interp }G(#jOYk
% axis square, colorbar k Jz^\Re
% title('Zernike function Z_5^1(r,\theta)') vmxS^_I
% #pWy%U
% Example 2: XFFm'W6@
% +^J&x>5
% % Display the first 10 Zernike functions h9d*N 9!;M
% x = -1:0.01:1; yodhDSO5i
% [X,Y] = meshgrid(x,x); C|
% [theta,r] = cart2pol(X,Y); yTc&C)Jba
% idx = r<=1; Z{u]qI{l
% z = nan(size(X)); 7yG%E
% n = [0 1 1 2 2 2 3 3 3 3]; 3Q&@l49q
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; #x;d+Q@
% Nplot = [4 10 12 16 18 20 22 24 26 28]; C^?/9\
% y = zernfun(n,m,r(idx),theta(idx)); -Nr*na^H9#
% figure('Units','normalized') 7LaRFL.,kO
% for k = 1:10 P{RGW.Ci@
% z(idx) = y(:,k); P/S ,dhs(
% subplot(4,7,Nplot(k)) :S`12*_g"
% pcolor(x,x,z), shading interp k-4z2qB
% set(gca,'XTick',[],'YTick',[]) f!7fz~&Sh
% axis square auB+ g'l
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) uEsF 8
% end [$6YPM>Ee
% fG?a"6~
% See also ZERNPOL, ZERNFUN2. &/Gf@[
c*w0Jz>@.7
% Paul Fricker 11/13/2006 CT\rx>[J.6
-{oZK{a1
%f\j)qw
% Check and prepare the inputs: AO-~dV
% ----------------------------- -f'&JwE0=
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) z3^gufOkQ
error('zernfun:NMvectors','N and M must be vectors.') F.Bij8\
end =q[+e(,3
pgUjje>#
if length(n)~=length(m) nBd(pOe
error('zernfun:NMlength','N and M must be the same length.') >YdLB@
end Z@ec}`UO|u
6!6R3Za$
n = n(:); 29z@ !
m = m(:); iDCQqj`
if any(mod(n-m,2)) Vo%ikR #
error('zernfun:NMmultiplesof2', ... +Lr`-</VF
'All N and M must differ by multiples of 2 (including 0).') (s+}l?
end ),,0T/69+9
Dz$dJF1
8
if any(m>n) G[d]t$f=
error('zernfun:MlessthanN', ... #|V)>")
'Each M must be less than or equal to its corresponding N.') 16ip:/5
end x=W5e
^0?
'^Q$:P{G?
if any( r>1 | r<0 ) e=!sMWx6
error('zernfun:Rlessthan1','All R must be between 0 and 1.') *I9O63
end %xXb5aY
f(EO|d^u
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 3z k},8fu
error('zernfun:RTHvector','R and THETA must be vectors.') {XXnMO4uR;
end U@}r?!)"f
Nah\4-75&
r = r(:); y
:QnK0
theta = theta(:); i_y%HG
length_r = length(r); a0k/R<4
if length_r~=length(theta) d|sf2
error('zernfun:RTHlength', ... Nc^:v/(P
'The number of R- and THETA-values must be equal.') #A~7rH%hi
end JGYJ;j{E]
!Ks<%;
rb
% Check normalization: |lIgvHgg
% -------------------- kb\\F:w(W
if nargin==5 && ischar(nflag) tt&{f <*
isnorm = strcmpi(nflag,'norm'); nwi8>MG
if ~isnorm 0\1g-kc!v
error('zernfun:normalization','Unrecognized normalization flag.') /W{^hVkvC
end 9
H>JS
else z>*\nomOn=
isnorm = false; ;Yt'$D*CP
end _Q*,~ z~
)'/xNR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *"V) hI5
% Compute the Zernike Polynomials +WCV"m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <.
V*]g/;
S:cd'68D
% Determine the required powers of r: S<I9`k G
% ----------------------------------- 0|mCk
m_abs = abs(m); aC3Qmo6?m
rpowers = []; =|V#~p*
for j = 1:length(n) CSzu$Hnq
rpowers = [rpowers m_abs(j):2:n(j)]; pWeD,!f
end m&--$sr
rpowers = unique(rpowers); q^}iXE~
5_rx$avm
% Pre-compute the values of r raised to the required powers, k4JTc2b
% and compile them in a matrix:
C5TC@ w1*
% ----------------------------- LoO"d'{
if rpowers(1)==0 G#. q%Up
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); q3u:Tpn4%
rpowern = cat(2,rpowern{:}); Go7 oj'"
rpowern = [ones(length_r,1) rpowern]; cZ,}1?!
else VP }To
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); wYd{X 8$
rpowern = cat(2,rpowern{:}); C)&BtiUN/
end O~5*X f
P\$%p-G
% Compute the values of the polynomials: rDLgQ{Sea
% -------------------------------------- C:vVFU|4
y = zeros(length_r,length(n)); qKI)*o062
for j = 1:length(n) 'Z6x\p
s = 0:(n(j)-m_abs(j))/2; 1(WBvAPS
pows = n(j):-2:m_abs(j); ._6Q "JAB
for k = length(s):-1:1 K#x|/b'5d
p = (1-2*mod(s(k),2))* ... N}'2GBqfU4
prod(2:(n(j)-s(k)))/ ... 15kkf~Z<t
prod(2:s(k))/ ... Hw,@oOh.
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... oUL4l=dj.
prod(2:((n(j)+m_abs(j))/2-s(k))); 7J|nqr`>t
idx = (pows(k)==rpowers); %vRCs]
y(:,j) = y(:,j) + p*rpowern(:,idx); +DYsBCVbag
end ]9}^}U1."
$OaxetPH
if isnorm Wfsd$kN6{
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); [I(
Yn
end j;EH[3
end lB
% END: Compute the Zernike Polynomials *~`BG5w
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V=H :`n3k
5wC,:c[H7
% Compute the Zernike functions: kK.[v'[>&
% ------------------------------ &&
b;Wr
idx_pos = m>0; ,#j'~-5
idx_neg = m<0; sV]I]DR
[G"Va_A8
z = y; n]jw!;
if any(idx_pos) ,k}(]{ -
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); aqv'c
j>
end 9<5S!?JL
if any(idx_neg) V}Ce3wgvA
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); &W*^&0AV
end b[ ~-b
{=ATRwUL
% EOF zernfun