非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 2Mq@5n
function z = zernfun(n,m,r,theta,nflag) z>0$SBQ-
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. =bP<cC=3b
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N rNicg]:\x
% and angular frequency M, evaluated at positions (R,THETA) on the **z^aH?B2
% unit circle. N is a vector of positive integers (including 0), and ^fsC]9NS
% M is a vector with the same number of elements as N. Each element 6:8Nz
% k of M must be a positive integer, with possible values M(k) = -N(k) DF-PBVfpu
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, x!W5'DO
% and THETA is a vector of angles. R and THETA must have the same G9xO>Xp^Al
% length. The output Z is a matrix with one column for every (N,M) Het>G{
% pair, and one row for every (R,THETA) pair. 6Y6t.j0vN.
% yxT}hMa
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike p ^TCr<=
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), J#j3?qrxu
% with delta(m,0) the Kronecker delta, is chosen so that the integral 9bRUN<
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \(=xc2
% and theta=0 to theta=2*pi) is unity. For the non-normalized 8[t*VIXI
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. jA2%kX\6//
% ge%QbU1J
% The Zernike functions are an orthogonal basis on the unit circle. DzA'MX
% They are used in disciplines such as astronomy, optics, and 8 l= EL7
% optometry to describe functions on a circular domain. T*Ge67
% A.7lo
% The following table lists the first 15 Zernike functions. })kx#_o]'d
% GV) "[O
% n m Zernike function Normalization =_3rc\0
% -------------------------------------------------- p/u
% 0 0 1 1 )h>dD
% 1 1 r * cos(theta) 2 yKK9b
% 1 -1 r * sin(theta) 2 0*kS\R=P
% 2 -2 r^2 * cos(2*theta) sqrt(6) !a\HdQ
% 2 0 (2*r^2 - 1) sqrt(3) }X=c|]6i^
% 2 2 r^2 * sin(2*theta) sqrt(6) Voq/0,d
% 3 -3 r^3 * cos(3*theta) sqrt(8) H/ Ql
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) y=+OC1k\8
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 0t"Iq71/
% 3 3 r^3 * sin(3*theta) sqrt(8) B]b/(Q+
% 4 -4 r^4 * cos(4*theta) sqrt(10) 9mn~57`y
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f-H"|9
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) =+?OsH
v
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -vc$I=b;
% 4 4 r^4 * sin(4*theta) sqrt(10) &;r'JIp
% -------------------------------------------------- LH @B\ mS
% m:~y:.
% Example 1: 7F]Hq
%
ZdY$NpR,
% % Display the Zernike function Z(n=5,m=1) _\,lv
\u
% x = -1:0.01:1; 8KkN
"4'
% [X,Y] = meshgrid(x,x); v+trHdSBYE
% [theta,r] = cart2pol(X,Y); `D=d!!1eUi
% idx = r<=1; l=Jw6F+5
% z = nan(size(X)); (Uu5$q(
% z(idx) = zernfun(5,1,r(idx),theta(idx)); R47y/HG,
% figure lx2%=5+i;
% pcolor(x,x,z), shading interp =oiz@Q @H
% axis square, colorbar T*C
F5S
% title('Zernike function Z_5^1(r,\theta)') 5&_")k3$*
% r|
\""
% Example 2: pXBh^
% 0Krh35R_)F
% % Display the first 10 Zernike functions eLgq
)
% x = -1:0.01:1; (~5]1S}F
% [X,Y] = meshgrid(x,x); 0Y0`$
% [theta,r] = cart2pol(X,Y); X&rsWk
% idx = r<=1; MF*4E9Ue.
% z = nan(size(X)); d( ru5*p
% n = [0 1 1 2 2 2 3 3 3 3]; 9H:J&'Xi7
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; "H@I~X=
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 0yMHU[):~
% y = zernfun(n,m,r(idx),theta(idx)); i-p,x0th
% figure('Units','normalized') ZWjje6
% for k = 1:10 Bf+~&I#E
% z(idx) = y(:,k); M$>Nd6,@N
% subplot(4,7,Nplot(k)) '^7UcgugB
% pcolor(x,x,z), shading interp X_bB6A6
% set(gca,'XTick',[],'YTick',[]) KyP@ hhj
% axis square vo)W
ziHh
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Lc]hwMGR*
% end ;p<BiC$b
% oOubqx
% See also ZERNPOL, ZERNFUN2. JX&%5sn(
ePaC8sd0
% Paul Fricker 11/13/2006 <pKOFN%m
1;{nU.If
G-]<+-Q$4
% Check and prepare the inputs: Nr)DU.f
% ----------------------------- %Q.M& U
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) u$ci{<
error('zernfun:NMvectors','N and M must be vectors.') P%Q'w
end 1~2+w]-kU
2,Z@<
if length(n)~=length(m) 5
/oW/2"
error('zernfun:NMlength','N and M must be the same length.') `qCL&(`%
end RX^8`}N
Q.V@Sawe5
n = n(:); k!$$ *a*
m = m(:); E(1G!uu<
if any(mod(n-m,2)) =eDC{/K
error('zernfun:NMmultiplesof2', ... 0HbCT3g.
'All N and M must differ by multiples of 2 (including 0).') 'iwTvkf{
end Ytqx0
a%6=sqxE
if any(m>n) n<b}6L}
error('zernfun:MlessthanN', ... {3K]Q=
'Each M must be less than or equal to its corresponding N.') 3G^A^]h
end ma) +
G!
_Vt9ckaA
if any( r>1 | r<0 ) f8f3[O!x
error('zernfun:Rlessthan1','All R must be between 0 and 1.') }"%mP 4]&
end gF293Ez
d#ab"&$bv
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) E6T=lwOZ
error('zernfun:RTHvector','R and THETA must be vectors.') ^Mhh2v
end L/GVQjb
P-yVc2YH
r = r(:); !Zc#E,
theta = theta(:); -sDl[
length_r = length(r); GH3RRzp r
if length_r~=length(theta) ka(3ONbG
error('zernfun:RTHlength', ... Y(T$k9%}+
'The number of R- and THETA-values must be equal.') ?Lv U7
end 5s4x%L (~}
MA%g-}
% Check normalization: Hxc>?
% -------------------- q8GCO\(
if nargin==5 && ischar(nflag) &=T>($3r94
isnorm = strcmpi(nflag,'norm'); @cx#'
if ~isnorm W!=ur,F+
error('zernfun:normalization','Unrecognized normalization flag.') fti0Tz'
end K 4{[s
z
else OP_\V8=
isnorm = false; o(D_ /]'8
end Pe11azJ
{D,-
Whi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W~l.feW$i
% Compute the Zernike Polynomials Go]y{9+(7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l6MBnvi
.~^A!t
% Determine the required powers of r: 1NrNTBI@
% ----------------------------------- u,`V%J?vW
m_abs = abs(m); 4Y
G\<Zf
rpowers = []; 6aWnj*dF
for j = 1:length(n) bpDlFa
rpowers = [rpowers m_abs(j):2:n(j)]; \"5p)(
end lm +s5}*%o
rpowers = unique(rpowers); M3JV^{O/DV
,d^H Ag^j
% Pre-compute the values of r raised to the required powers, )hVn/*mH
% and compile them in a matrix: o nv0gb/J
% ----------------------------- 9%MgA ik(
if rpowers(1)==0 DoICf1
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); QV#HN"F/K
rpowern = cat(2,rpowern{:}); $HRl:KDdP~
rpowern = [ones(length_r,1) rpowern]; T=g2gmo9
else 5pff}Ru`
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8ddBQfCY
rpowern = cat(2,rpowern{:}); Y%zWaH
end Y|KT3
Tx'anP
% Compute the values of the polynomials: &$~irI
% -------------------------------------- ^7*zi_Q
y = zeros(length_r,length(n)); Tj6Czq=*%T
for j = 1:length(n) {817Svp@
s = 0:(n(j)-m_abs(j))/2; B_3N:K Y
9
pows = n(j):-2:m_abs(j); ]x'd0GH"]
for k = length(s):-1:1 DTd qwe6pi
p = (1-2*mod(s(k),2))* ... <e@4;Z(h04
prod(2:(n(j)-s(k)))/ ... I%z,s{9p
prod(2:s(k))/ ... Z:,`hW*A6
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... (7??5gjh
prod(2:((n(j)+m_abs(j))/2-s(k))); R|*Eg,1g -
idx = (pows(k)==rpowers); =&: |a$C
y(:,j) = y(:,j) + p*rpowern(:,idx);
B,ao%3t
end %w/vKB"nO
v++&%
if isnorm 5n e&6
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); nHLMF7\
end Q>G% *?
end JEeXoGKd
% END: Compute the Zernike Polynomials vI"BNC*Q1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z6Nz)$!_i
mWMtz]M}
% Compute the Zernike functions: "|E'E"_1
% ------------------------------ +'[/eW
idx_pos = m>0; iBY16_q
idx_neg = m<0; hN\Q&F!
VLbbn
z = y; .k,,PuP
if any(idx_pos) [z'jL'\4
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); B @8lD\
end ~bw=;xF{3
if any(idx_neg) /.t1Ow
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Y/L*0M.<
end EO/41O
{s:"mkR
% EOF zernfun