非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 j6HbJ#]
function z = zernfun(n,m,r,theta,nflag) # +]! u%n
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. {]Iu">*
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <r`Jn49
% and angular frequency M, evaluated at positions (R,THETA) on the # %y{mn
% unit circle. N is a vector of positive integers (including 0), and l<:E+lU
% M is a vector with the same number of elements as N. Each element RF2XJJ
% k of M must be a positive integer, with possible values M(k) = -N(k) RTY4%6]O
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, <T/L.>p4
% and THETA is a vector of angles. R and THETA must have the same BXv)zE=j
% length. The output Z is a matrix with one column for every (N,M) 0fK|}mmZA
% pair, and one row for every (R,THETA) pair. : 8<^rP
% {=4:Tgw
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ye7&y4v+
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), KR(ftG'
% with delta(m,0) the Kronecker delta, is chosen so that the integral ']Xx#U N
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, MNmQ%R4jRN
% and theta=0 to theta=2*pi) is unity. For the non-normalized QGj5\{E_
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 64>[pZF8
% "wC5hj]
% The Zernike functions are an orthogonal basis on the unit circle. 8Xzx;-&4
% They are used in disciplines such as astronomy, optics, and I3$vw7}5Y
% optometry to describe functions on a circular domain. lFV|GJ
% qTMz6D!Q
% The following table lists the first 15 Zernike functions. +5mkMZ
% |+~2sbM
% n m Zernike function Normalization 64X#:t+
% -------------------------------------------------- 2^M+s\p
% 0 0 1 1 :|Nbk58
% 1 1 r * cos(theta) 2 ^Jc0c)*
% 1 -1 r * sin(theta) 2 h#ot)m|I
% 2 -2 r^2 * cos(2*theta) sqrt(6) 3 v$4LY
% 2 0 (2*r^2 - 1) sqrt(3) 2=M!lB
*
% 2 2 r^2 * sin(2*theta) sqrt(6) V\hct$ 7Vm
% 3 -3 r^3 * cos(3*theta) sqrt(8) s?#lhI
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) L^s;kkB
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) +`3ZH9
% 3 3 r^3 * sin(3*theta) sqrt(8) EoCwS
% 4 -4 r^4 * cos(4*theta) sqrt(10) IEf^.Z
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (
+hI
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) G.e\#_RR?
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vkgL"([_
% 4 4 r^4 * sin(4*theta) sqrt(10) $*-L8An?
% -------------------------------------------------- oXkhj,{y5
% EC#10.
% Example 1: .Q)"F /
% @il}0
% % Display the Zernike function Z(n=5,m=1) O^%ace1
% x = -1:0.01:1; .WE0T|qDX
% [X,Y] = meshgrid(x,x); N<(`+?
% [theta,r] = cart2pol(X,Y); 8E%*o
% idx = r<=1; :/l
% z = nan(size(X)); e'VXyf
% z(idx) = zernfun(5,1,r(idx),theta(idx)); vJUB; hD
% figure M?u)H&kEl
% pcolor(x,x,z), shading interp :+!b8[?Z
% axis square, colorbar ra2q. H
% title('Zernike function Z_5^1(r,\theta)') Oh4WYDyT
% CnYX\^Ow
% Example 2: *60)Vo.=
% RR=l&uT
% % Display the first 10 Zernike functions QLG,r^
% x = -1:0.01:1; \c}r6xOr
% [X,Y] = meshgrid(x,x); ksp':2d}
% [theta,r] = cart2pol(X,Y); B4ze$#
% idx = r<=1; L1i> %5:g
% z = nan(size(X)); _Z2)e*(
% n = [0 1 1 2 2 2 3 3 3 3]; ,[#f}|s_
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; iNSJOS
% Nplot = [4 10 12 16 18 20 22 24 26 28]; eqCB2u"Jq
% y = zernfun(n,m,r(idx),theta(idx)); jQ}|]pj+
% figure('Units','normalized') c'R|Wyf
% for k = 1:10 xII!2.
% z(idx) = y(:,k); tH(#nx8
% subplot(4,7,Nplot(k)) '~J6mojE
% pcolor(x,x,z), shading interp Su #1yw>
% set(gca,'XTick',[],'YTick',[]) rzLlM
% axis square nQ~L.V
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) U$bM:d
% end :tG5~sK
% 4*X$Jle|
% See also ZERNPOL, ZERNFUN2. N2J!7uoQ
`,[c??h
% Paul Fricker 11/13/2006 +Ti@M1A&
/]&1 XT?
6suc:rp";
% Check and prepare the inputs: #u@!O%MJ
% ----------------------------- iX p8u**
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) {*9i}w|2
error('zernfun:NMvectors','N and M must be vectors.') v^G5
N)F
end b\Ub<pE
t+ ]+Gn
if length(n)~=length(m) 5Ncd1
error('zernfun:NMlength','N and M must be the same length.') m(Ynl=c
end ^5}3FvW
-X
\vB
n = n(:); OQvJdjST
m = m(:); r1]^#&V;MC
if any(mod(n-m,2)) "o^zOU
error('zernfun:NMmultiplesof2', ... Rim}DfO/
'All N and M must differ by multiples of 2 (including 0).') } _z~:{Y
end QNFrkel
' M!_k+e
if any(m>n) }=FQKqtC
error('zernfun:MlessthanN', ... ?M2@[w8_
'Each M must be less than or equal to its corresponding N.') qFk(UazN
end 5hMiCod
[&:oS35O
if any( r>1 | r<0 ) CjGI}t
error('zernfun:Rlessthan1','All R must be between 0 and 1.') +qec>ALAg
end x;Q2/YZ#
~@;7}Aag
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) \Y$NGB=2[
error('zernfun:RTHvector','R and THETA must be vectors.') 9HP--Z=
end VK#zmEiB
v5o%y:~
r = r(:); aXagiz\;
theta = theta(:); e|P60cd /
length_r = length(r); PdZSXP4;k
if length_r~=length(theta) L z
error('zernfun:RTHlength', ... tG-MC&;=
'The number of R- and THETA-values must be equal.') JiR|+6"7
end 1Rh&04O>VL
plq\D.C
% Check normalization: '4rgIs3=x"
% -------------------- LmE-&
if nargin==5 && ischar(nflag) sBwgl9
isnorm = strcmpi(nflag,'norm'); nj[6c
if ~isnorm D[mYrWHpn
error('zernfun:normalization','Unrecognized normalization flag.') q'q{M-U<
end I
f(_$>
else By9/tB
isnorm = false; ilP&ctn6+c
end .z"[z^/uF
?0x;L/d])
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oS4ag
% Compute the Zernike Polynomials tdm /U
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R)=<q]Ms
w'!gLta
% Determine the required powers of r: Sa0\93oa
% ----------------------------------- yT4|eHl
m_abs = abs(m); !`gg$9
rpowers = []; ! [X<>
for j = 1:length(n) oaHBz_pg
rpowers = [rpowers m_abs(j):2:n(j)]; `W9_LROD
end I
zT%Kq
rpowers = unique(rpowers); So:89T
*sTQ9 Kr
% Pre-compute the values of r raised to the required powers, `PL!>oa(8
% and compile them in a matrix: &Lw| t_y
% ----------------------------- @;0Ep0[
if rpowers(1)==0 3-05y!vbcE
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8c9_=8vw
rpowern = cat(2,rpowern{:}); :MVD83?4
rpowern = [ones(length_r,1) rpowern]; O
tr@jgw
else 8HzEH-J
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); eXYR/j<8
rpowern = cat(2,rpowern{:}); &}]Wbk4:
end R?W8l5CIk
;8@A7`^
% Compute the values of the polynomials: Ii)TCSt9U?
% -------------------------------------- VioVtP0
y = zeros(length_r,length(n)); i[<O@Rb
for j = 1:length(n) wcO+P7g
s = 0:(n(j)-m_abs(j))/2; 'BC-'Ot
pows = n(j):-2:m_abs(j); *VH1(E`hl
for k = length(s):-1:1 =<g\B?s]
p = (1-2*mod(s(k),2))* ... ()rDM@
prod(2:(n(j)-s(k)))/ ... mUjA9[@
prod(2:s(k))/ ... NS1[-ng
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... U5klVl
prod(2:((n(j)+m_abs(j))/2-s(k))); \rpu=*gt
idx = (pows(k)==rpowers); l$FHL2?Cp
y(:,j) = y(:,j) + p*rpowern(:,idx);
>4Lb+]
end 6jn<YR
E-
43eGfp'
if isnorm yS?1JWUC>
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); cX*^PSM
end ~&pk</Dl
end -x7L8Wj
% END: Compute the Zernike Polynomials W46sKD;\^W
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %>f:m!.
Rk'Dd4"m,
% Compute the Zernike functions: ''Hq-Ng
% ------------------------------ yCz?V[49
idx_pos = m>0; th]9@7UE,
idx_neg = m<0; 3y@'p(}Az
8Hhe&B
z = y; eq"~by[Uq
if any(idx_pos) 4U((dx*m
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); x*YJ:t
end C}Khh`8@5.
if any(idx_neg) A81kb
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); X\ h]N
end ,xGlWH wrY
DzYno-]A]
% EOF zernfun