切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10977阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ?aInn:FE  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 9n!<M)E  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 o[^%0uVF  
    function z = zernfun(n,m,r,theta,nflag) ,U2 /J  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;}3wT,=sN  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N pL>Q'{7s3  
    %   and angular frequency M, evaluated at positions (R,THETA) on the xfqgK D>  
    %   unit circle.  N is a vector of positive integers (including 0), and r4jW=?|  
    %   M is a vector with the same number of elements as N.  Each element l%lkDh!$"  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) GAbX.9[V  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Os9xZ  
    %   and THETA is a vector of angles.  R and THETA must have the same |UM':Ec  
    %   length.  The output Z is a matrix with one column for every (N,M) !l@IG C  
    %   pair, and one row for every (R,THETA) pair. DqrS5!C  
    % NFPW#-TF  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike O'U0Y8HN  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), q~.\NKc  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral R>[2}R30  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +Tde#T&[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized URmx8=q  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _S/bwPj|~y  
    % 4p&qH igG  
    %   The Zernike functions are an orthogonal basis on the unit circle. }S3m wp<Y  
    %   They are used in disciplines such as astronomy, optics, and I-4csw<Qy  
    %   optometry to describe functions on a circular domain. |vA3+kG  
    % gSK (BP|  
    %   The following table lists the first 15 Zernike functions. e{.2*>pH  
    % nX<!n\J T  
    %       n    m    Zernike function           Normalization ow]S 3[07  
    %       -------------------------------------------------- l%.3hId-  
    %       0    0    1                                 1 cnC&=6=a<  
    %       1    1    r * cos(theta)                    2 /K<Xr[z~y  
    %       1   -1    r * sin(theta)                    2 m C_v!nL.  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 5 |{0|mP  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ry3;60E \)  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) \TkBV?W  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) f8_5.vlw  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ,SuF1&4  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ZU7e1VaZM  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ~d?7\:n  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) [oKc<o7)~"  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jwyJ=W-  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) R*/%+  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {%^q8l4j  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) y _>HQs,:  
    %       -------------------------------------------------- SoS[yr  
    % .?CDWbzq  
    %   Example 1: V' "p a  
    % KQaw*T[Q3w  
    %       % Display the Zernike function Z(n=5,m=1) d%VGfSrKq  
    %       x = -1:0.01:1; 8b !&TP~m1  
    %       [X,Y] = meshgrid(x,x); 1$?O5.X:  
    %       [theta,r] = cart2pol(X,Y); Erl"X}P  
    %       idx = r<=1; jY$Bns&.w  
    %       z = nan(size(X)); 1Jc-hrN-  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Yq4_ss'nB  
    %       figure BQ,]]}e43z  
    %       pcolor(x,x,z), shading interp ;" '` P[  
    %       axis square, colorbar k]`I 3>/L  
    %       title('Zernike function Z_5^1(r,\theta)') +dS e" W9  
    % "]JE]n}Ulg  
    %   Example 2: ]zmY] 5  
    % \gki!!HQ  
    %       % Display the first 10 Zernike functions QL"fC;xUn,  
    %       x = -1:0.01:1; iW+ZI6@  
    %       [X,Y] = meshgrid(x,x); ae{% * \J  
    %       [theta,r] = cart2pol(X,Y); $dFEC}1t  
    %       idx = r<=1; '{QbjG%<P  
    %       z = nan(size(X)); ^;$a_eR  
    %       n = [0  1  1  2  2  2  3  3  3  3]; PbJn8o   
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; K SDo)7`  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; {tk42}8k  
    %       y = zernfun(n,m,r(idx),theta(idx)); Dsw(ti`@  
    %       figure('Units','normalized') ]Hc `<P  
    %       for k = 1:10 aN}yS=(Ff  
    %           z(idx) = y(:,k); HZ5*PXg~  
    %           subplot(4,7,Nplot(k)) &sh %]o8  
    %           pcolor(x,x,z), shading interp G?&0Z++  
    %           set(gca,'XTick',[],'YTick',[]) tmDI2Z%7  
    %           axis square M['8zN  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 29z+<?K{  
    %       end =<y$5"|  
    % ce.'STm=  
    %   See also ZERNPOL, ZERNFUN2. 8GN0487H  
    VzA~w` $d  
    %   Paul Fricker 11/13/2006 pjvChl5  
    Uxn_nh  
    5Z ] `n  
    % Check and prepare the inputs: pi q%b]  
    % ----------------------------- Ry,_ %j3  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4gG&u33RrE  
        error('zernfun:NMvectors','N and M must be vectors.') }N#jA yp!  
    end NYM$0v`0YK  
    iSUn}%YFz!  
    if length(n)~=length(m) qtnLQl"M  
        error('zernfun:NMlength','N and M must be the same length.') ah>;wW!6/  
    end ;}#tm9S;  
    6P;IKOv^  
    n = n(:); eY"y[  
    m = m(:); XG@_Lcv*  
    if any(mod(n-m,2)) }at8b ^  
        error('zernfun:NMmultiplesof2', ... 7h<B:~(K  
              'All N and M must differ by multiples of 2 (including 0).') BLgmF E2  
    end f7)}A/$4+  
    1t+]r:{  
    if any(m>n) Yn+/yz5k_  
        error('zernfun:MlessthanN', ... &Y\Vh}  
              'Each M must be less than or equal to its corresponding N.') [(B A:x1  
    end q{ n~v>wU  
    Dp8YzWL2^  
    if any( r>1 | r<0 ) ?y>xC|kt  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') bqJL@!T  
    end 8wp)aGTcU  
    /FJAI  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #*BcO-N  
        error('zernfun:RTHvector','R and THETA must be vectors.') %0YwaxXPn7  
    end Wy.2*+5FX0  
    HTao)`.  
    r = r(:); Q!7Er  
    theta = theta(:);  gG1%.q  
    length_r = length(r); 2P`hdg  
    if length_r~=length(theta) ^2mmgN   
        error('zernfun:RTHlength', ... 5u'"m<4  
              'The number of R- and THETA-values must be equal.') pFX Do4eH  
    end J!3 X}@_N  
    { xi$'r  
    % Check normalization: sw6]Bc  
    % -------------------- )}\jbh>RH  
    if nargin==5 && ischar(nflag) G#ZU^%$M,  
        isnorm = strcmpi(nflag,'norm'); 3+u11'0=t  
        if ~isnorm tj;<Z.  
            error('zernfun:normalization','Unrecognized normalization flag.') =>-:o:Cu{  
        end cF_ Y}C  
    else {-2I^Ym 5i  
        isnorm = false; mg[=~&J^  
    end !R-M:|  
    lsU|xOB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~b+4rYNxU_  
    % Compute the Zernike Polynomials 4ZrX= e,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <%#M&9d)E  
    {(U?)4@  
    % Determine the required powers of r: ~>3$Id:  
    % ----------------------------------- &s->,-,  
    m_abs = abs(m); *>h"}e41  
    rpowers = []; r@5_LD@f  
    for j = 1:length(n) 8G; t[9  
        rpowers = [rpowers m_abs(j):2:n(j)]; \\AufAkJ  
    end T~J6(,"  
    rpowers = unique(rpowers); r0379 _  
    }OZ%U2PU  
    % Pre-compute the values of r raised to the required powers, Ac 0C,*|^  
    % and compile them in a matrix: 1q0DOf]!T  
    % ----------------------------- A6v02WG_1T  
    if rpowers(1)==0 }]$%aMxy T  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); xPWzm hF  
        rpowern = cat(2,rpowern{:}); jq yqOhb4  
        rpowern = [ones(length_r,1) rpowern]; \`}Rdr!p%  
    else W(Z_ac^e[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7dyGC:YuTL  
        rpowern = cat(2,rpowern{:}); i 2hP4<;h  
    end Eq c&iS~  
    S;sggeP7,  
    % Compute the values of the polynomials: |6'(yn  
    % -------------------------------------- 6+u}'mSj8  
    y = zeros(length_r,length(n)); N3 .!E|  
    for j = 1:length(n) .Qm"iOyM  
        s = 0:(n(j)-m_abs(j))/2; +kP)T(6  
        pows = n(j):-2:m_abs(j); e` Z;}& ,  
        for k = length(s):-1:1 rCR?]1*Z  
            p = (1-2*mod(s(k),2))* ... _eb:"(m  
                       prod(2:(n(j)-s(k)))/              ... :0|]cHm  
                       prod(2:s(k))/                     ... Tqz{{]%j~$  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... S 1sNVW  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); U\a.'K50F  
            idx = (pows(k)==rpowers); #_0OYL`(mE  
            y(:,j) = y(:,j) + p*rpowern(:,idx); nd*9vxM  
        end {G&*\5W  
         `WQz_}TqB  
        if isnorm {XH!`\  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1wP#?p)c  
        end =cI -<0QSn  
    end S&_Z,mT./  
    % END: Compute the Zernike Polynomials 2 eo]D?}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Vp{! Ft8>  
    xS?[v&"2  
    % Compute the Zernike functions: j hf%ze  
    % ------------------------------ /?uA{/8  
    idx_pos = m>0; iU"jV*P]  
    idx_neg = m<0; KI)jP((  
    (8qD'(@  
    z = y; WP[h@#7<  
    if any(idx_pos) dZcRLLR  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); DjY&)oce(  
    end -x)Oo`  
    if any(idx_neg) x O?w8*d  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); |YCGWJaci  
    end s\2t|d   
    `>KB8SY:qK  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) +g/TDwyVH  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. vF yl,S5A  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated )y>o;^5'  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive IxN0m7  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Wm ri%  
    %   and THETA is a vector of angles.  R and THETA must have the same RW| LL@r  
    %   length.  The output Z is a matrix with one column for every P-value, s zBlyT  
    %   and one row for every (R,THETA) pair. 6r  
    % ~nYp*t C'  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike n^vL9n_N  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) pT3p!/pl3  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ]^aOYtKX  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 #9{N[t  
    %   for all p. `;KU^dH  
    % F<FNZQ@<U  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Mn$w_Z?  
    %   Zernike functions (order N<=7).  In some disciplines it is ZqT8G  
    %   traditional to label the first 36 functions using a single mode jw63sn  
    %   number P instead of separate numbers for the order N and azimuthal .quui\I3  
    %   frequency M. DD 8uG`<  
    % w7Fz(`\  
    %   Example: )@lZ~01~d  
    % y[QQopy4:  
    %       % Display the first 16 Zernike functions st~ 1[in  
    %       x = -1:0.01:1; q8&2M  
    %       [X,Y] = meshgrid(x,x); cyYsz'i m  
    %       [theta,r] = cart2pol(X,Y); X}"Ic@8  
    %       idx = r<=1; Kf=6l#J7  
    %       p = 0:15; Y:o\qr!Y  
    %       z = nan(size(X)); U|tUX)9O  
    %       y = zernfun2(p,r(idx),theta(idx)); ]M^ k~Xa  
    %       figure('Units','normalized') 4)- ?1?)  
    %       for k = 1:length(p) ^d6}rtG  
    %           z(idx) = y(:,k); NMaZ+g!t(  
    %           subplot(4,4,k) ^eF%4DUC;  
    %           pcolor(x,x,z), shading interp {WokH;a/  
    %           set(gca,'XTick',[],'YTick',[]) PSCzeR  
    %           axis square pF0sXvWGG  
    %           title(['Z_{' num2str(p(k)) '}']) M$Sq3m`{!  
    %       end ~nQ=iB  
    % <4lR  
    %   See also ZERNPOL, ZERNFUN. #>O!N  
    +Cs[]~  
    %   Paul Fricker 11/13/2006 9E`WZo^.  
    p2m@0ou  
    |l\!  
    % Check and prepare the inputs: _:N+mEF  
    % ----------------------------- MTnW5W-r9  
    if min(size(p))~=1 5hxG\f#}?  
        error('zernfun2:Pvector','Input P must be vector.') 2EO WbN}M  
    end Bh` Y?S  
    6_UCRo5h%  
    if any(p)>35 ojmF:hR"  
        error('zernfun2:P36', ... mGZJ$|  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 31VDlcn E  
               '(P = 0 to 35).']) rC !!X  
    end /#<R  
    gKPqWh  
    % Get the order and frequency corresonding to the function number: seQSDCsvw*  
    % ---------------------------------------------------------------- 9F~e^v]zp  
    p = p(:); Bqcih$`BVU  
    n = ceil((-3+sqrt(9+8*p))/2); 2SjH7 '  
    m = 2*p - n.*(n+2); )GT*HJR(vc  
    3VI[*b  
    % Pass the inputs to the function ZERNFUN: `EBI$;!  
    % ---------------------------------------- yT$CImP73  
    switch nargin F.rNh`44  
        case 3 X mmb^2I  
            z = zernfun(n,m,r,theta); QD8.C=2R  
        case 4 :.VI*X:aQh  
            z = zernfun(n,m,r,theta,nflag); 95XQ?%  
        otherwise o"kVA;5<G  
            error('zernfun2:nargin','Incorrect number of inputs.') {th=MldJ?  
    end Ru&>8Ln0  
    )a7nr<)aU  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) $q|-9B  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. xS'Kr.S  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 5V $H?MW>  
    %   order N and frequency M, evaluated at R.  N is a vector of %#jW  
    %   positive integers (including 0), and M is a vector with the > eC>sTPQ{  
    %   same number of elements as N.  Each element k of M must be a g7UZtpLTm  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) UR|Au'iu  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is BNw};.lO  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix >iV2>o_  
    %   with one column for every (N,M) pair, and one row for every ZLGglT'EW>  
    %   element in R. De-hHY{>  
    % Ueb&<tS  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 6"L,#aKm^  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is d}w}VL8l  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to mXPA1#qo  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Pf:;iXH?  
    %   for all [n,m]. 8}?w i[T  
    % v[2N-  
    %   The radial Zernike polynomials are the radial portion of the `DFo:w!k  
    %   Zernike functions, which are an orthogonal basis on the unit <-h[I&."  
    %   circle.  The series representation of the radial Zernike ^$AJV%3wI  
    %   polynomials is rJM/.;Ag  
    % W%wc@.P  
    %          (n-m)/2 vf@toYc[E  
    %            __ "?M)2,:A  
    %    m      \       s                                          n-2s QPyHos `  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 1xD?cA\vu  
    %    n      s=0 8yC/:_ML  
    % W9G1wU  
    %   The following table shows the first 12 polynomials. h J H  
    % ujf]@L?  
    %       n    m    Zernike polynomial    Normalization 1wg#4h43l  
    %       --------------------------------------------- ,Dy9-o  
    %       0    0    1                        sqrt(2) 98rO]rg  
    %       1    1    r                           2 v8y !zo'  
    %       2    0    2*r^2 - 1                sqrt(6) 0F%/R^mw  
    %       2    2    r^2                      sqrt(6) Y'+mC  
    %       3    1    3*r^3 - 2*r              sqrt(8) =&"a:l  
    %       3    3    r^3                      sqrt(8) 0B]c`$"aD  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) b:Tv Ta  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) iOB*K)U1  
    %       4    4    r^4                      sqrt(10) 5 D <  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 5|A"YzY#  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) emMk*l,  
    %       5    5    r^5                      sqrt(12) 4d8}g25C  
    %       --------------------------------------------- 2[CHiB*>  
    % (5l'?7  
    %   Example: 98Y1-Z^ .  
    % '[vC C'  
    %       % Display three example Zernike radial polynomials 'x,6t66*"l  
    %       r = 0:0.01:1; 4jw q$G  
    %       n = [3 2 5]; =bOMtQ]  
    %       m = [1 2 1]; *pYawT  
    %       z = zernpol(n,m,r); yS.)l  
    %       figure ) S-Fuq4i4  
    %       plot(r,z) L>n^Q:M  
    %       grid on p:ubj'(U05  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ;qs^+  
    % ~IFafAO&  
    %   See also ZERNFUN, ZERNFUN2. 4xF}rm  
    [M2xF<r6t  
    % A note on the algorithm. OyQ[}w3o|  
    % ------------------------ KP_7h/e  
    % The radial Zernike polynomials are computed using the series DFQ`<r&!  
    % representation shown in the Help section above. For many special sitgz)Ki^  
    % functions, direct evaluation using the series representation can d~KTUgH'<  
    % produce poor numerical results (floating point errors), because RREl($$p  
    % the summation often involves computing small differences between }Xb|Ur43  
    % large successive terms in the series. (In such cases, the functions w19OOD  
    % are often evaluated using alternative methods such as recurrence R(s[JH(&  
    % relations: see the Legendre functions, for example). For the Zernike {8556>\~  
    % polynomials, however, this problem does not arise, because the kbSl.V%)  
    % polynomials are evaluated over the finite domain r = (0,1), and  ]l}bk]  
    % because the coefficients for a given polynomial are generally all 5R6QZVc  
    % of similar magnitude. oQR?H  
    % L>pSE'}  
    % ZERNPOL has been written using a vectorized implementation: multiple TVVu_ib  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ,x utI  
    % values can be passed as inputs) for a vector of points R.  To achieve ir5eR}H  
    % this vectorization most efficiently, the algorithm in ZERNPOL =N2@H5+7  
    % involves pre-determining all the powers p of R that are required to s$~H{za  
    % compute the outputs, and then compiling the {R^p} into a single {KSy I#  
    % matrix.  This avoids any redundant computation of the R^p, and hyY^$p+  
    % minimizes the sizes of certain intermediate variables. SduUXHk  
    % ypNeTR$4  
    %   Paul Fricker 11/13/2006 w+{{4<+cd  
    [$M l;K  
    o\qeX|.70  
    % Check and prepare the inputs: }tJMnq/m($  
    % ----------------------------- \==Mgy2J8  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;\]DZV4?)r  
        error('zernpol:NMvectors','N and M must be vectors.') <9x|)2P  
    end X7SSTcA   
    *-'`Ea  
    if length(n)~=length(m) ;L,yJ~  
        error('zernpol:NMlength','N and M must be the same length.') Ls*Vz,3!5  
    end tPDB'S:&3  
    o3`0x9{  
    n = n(:); '.e 5Ku  
    m = m(:); ^y~oXS(  
    length_n = length(n); &-x/c\jz  
    n65fT+;  
    if any(mod(n-m,2)) =nCV. Wf  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') _he~Y2zFz  
    end Up>,~bs]  
    PAiVUGp5[  
    if any(m<0) G }M!  
        error('zernpol:Mpositive','All M must be positive.') 1?r$Rx<R  
    end 5;[0Q  
    3]>YBbXvE  
    if any(m>n) &# @"^(} 6  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') &A^2hPe}  
    end xG(:O@  
    cSj(u%9}  
    if any( r>1 | r<0 ) FYK}AR<=  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') &< hk&B  
    end !zxq9IhWR  
    /Wy9 ".  
    if ~any(size(r)==1) ]xhH:kW4  
        error('zernpol:Rvector','R must be a vector.') obw:@i#  
    end V.[b${  
    DE?@8k  
    r = r(:); +@PZ3 [s  
    length_r = length(r); !Tu.A@  
    vw` '9~  
    if nargin==4 -Q!?=JNtQ  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); /PkOF ((  
        if ~isnorm *oIKddZh  
            error('zernpol:normalization','Unrecognized normalization flag.') #elaz8 5  
        end s3M#ua#mX  
    else :Czvwp{z  
        isnorm = false; b;I!Cy D  
    end SHC VjI6  
    S*rcXG6Q^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !v3wl0  
    % Compute the Zernike Polynomials H{;8i7%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q5w)i  
    wD[qE  
    % Determine the required powers of r: St1>J.k_  
    % ----------------------------------- iainl@3Qj  
    rpowers = []; Os1y8ui  
    for j = 1:length(n) 5?|PC.  
        rpowers = [rpowers m(j):2:n(j)]; zdDJcdbGd1  
    end Q1'D*F4  
    rpowers = unique(rpowers); *Xd_=@L&B  
    ZP%Bu2xd  
    % Pre-compute the values of r raised to the required powers, F^');8~L  
    % and compile them in a matrix: D%.<} vG  
    % ----------------------------- PiIILX{DuH  
    if rpowers(1)==0 4>@-1nt}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Mq,_DQ  
        rpowern = cat(2,rpowern{:}); >l5JwwG  
        rpowern = [ones(length_r,1) rpowern];  ]cI(||x  
    else M, UYDZ',  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GgjBLe=C  
        rpowern = cat(2,rpowern{:}); F[OBPPQ3  
    end kC[nY  
    m;I;{+"u  
    % Compute the values of the polynomials: dzMI5fA<_  
    % -------------------------------------- ts0K"xmY\c  
    z = zeros(length_r,length_n); /h%MWCZWm^  
    for j = 1:length_n *'(dcy9  
        s = 0:(n(j)-m(j))/2; LvS3c9|Aj  
        pows = n(j):-2:m(j); K#{E87G(  
        for k = length(s):-1:1 E0S[TEDa]  
            p = (1-2*mod(s(k),2))* ... ]# T9v06w  
                       prod(2:(n(j)-s(k)))/          ... )uyh  
                       prod(2:s(k))/                 ... Wkv **X}  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... I!Za2?  
                       prod(2:((n(j)+m(j))/2-s(k)));  yQ8H-a.  
            idx = (pows(k)==rpowers); )O%lh 8fI  
            z(:,j) = z(:,j) + p*rpowern(:,idx); |wj/lX7y  
        end ]R{=|  
         cWM|COXL+  
        if isnorm K+mtuB]yr  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); wh:`4Yw  
        end }Mo9r4}  
    end j|(bDa4\  
    XT_BiZ%l5O  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  NHF?73:  
    YM|S<  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。  o %%fO  
    PpRO7(<cD  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)