非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 "@UU[o
function z = zernfun(n,m,r,theta,nflag) 9RCB$Ka6X
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,}xpYq_/
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N XL"v21X
% and angular frequency M, evaluated at positions (R,THETA) on the A?6{
% unit circle. N is a vector of positive integers (including 0), and [[.&,6
% M is a vector with the same number of elements as N. Each element ~T;ajvJ
% k of M must be a positive integer, with possible values M(k) = -N(k) #*ZnA,
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, b.w(x*a
% and THETA is a vector of angles. R and THETA must have the same pw(U< )
% length. The output Z is a matrix with one column for every (N,M) Vsm%h^]d
% pair, and one row for every (R,THETA) pair. 5 b#"
G"
% sqMNon`5
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Gdc~Lh
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), SevfxR
% with delta(m,0) the Kronecker delta, is chosen so that the integral )Rm
'YmO
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, .:r2BgL
% and theta=0 to theta=2*pi) is unity. For the non-normalized 0NuL9
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]HZa:aPY
% F$sF
'cw
% The Zernike functions are an orthogonal basis on the unit circle. %~8](]p
% They are used in disciplines such as astronomy, optics, and >M8^Jgh
% optometry to describe functions on a circular domain. h[[/p {z
% `o^;fcnG
% The following table lists the first 15 Zernike functions. +r#=n7t
% "p6:ekw
% n m Zernike function Normalization mPw56>
% -------------------------------------------------- ba:mO$
% 0 0 1 1 TS~Y\Cp
% 1 1 r * cos(theta) 2 J?qcRg`1E
% 1 -1 r * sin(theta) 2 Hc_hO
% 2 -2 r^2 * cos(2*theta) sqrt(6) m_PrasZ>
% 2 0 (2*r^2 - 1) sqrt(3) tc49Ty9$[
% 2 2 r^2 * sin(2*theta) sqrt(6) |=h)efo}
% 3 -3 r^3 * cos(3*theta) sqrt(8) dg'CHxU
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) }77=<N br
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 2gC&R1H
% 3 3 r^3 * sin(3*theta) sqrt(8) 4LKs'$:A=
% 4 -4 r^4 * cos(4*theta) sqrt(10) F~d7;x=g
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4
L~;>]7
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) DbNi;m
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) J:TI>*tn
% 4 4 r^4 * sin(4*theta) sqrt(10) w7*b}D@65\
% -------------------------------------------------- Z%HEn$t
% ^&Rxui
% Example 1: )2^/?jK
% Oa_o"p<Lr
% % Display the Zernike function Z(n=5,m=1) 2*7s9g
% x = -1:0.01:1; #QyK?i*
% [X,Y] = meshgrid(x,x); 61Iy{-/ZV
% [theta,r] = cart2pol(X,Y); ym,Ot1
% idx = r<=1; UV
*tO15i
% z = nan(size(X)); ZjI/zqBm
% z(idx) = zernfun(5,1,r(idx),theta(idx)); _.J[w6
% figure Ow .)h(y/
% pcolor(x,x,z), shading interp >I66R;
% axis square, colorbar [Yahxw}
% title('Zernike function Z_5^1(r,\theta)') g ]PLW3
% $M3A+6["H
% Example 2: w]5f3CIm
% 39a]B`y
% % Display the first 10 Zernike functions T~ q'y~9o
% x = -1:0.01:1; glKs8^W
% [X,Y] = meshgrid(x,x); O^="T^J
% [theta,r] = cart2pol(X,Y); y\f 8Ird
% idx = r<=1; )hZ}$P1
% z = nan(size(X)); _ry En
% n = [0 1 1 2 2 2 3 3 3 3]; vdFQf ^l
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; B+q+)O+
% Nplot = [4 10 12 16 18 20 22 24 26 28]; (.nJT"&
% y = zernfun(n,m,r(idx),theta(idx)); a ~iEps
% figure('Units','normalized') [sO<6?LY
% for k = 1:10 l<MCmKuYp
% z(idx) = y(:,k); d(B;vL@R2V
% subplot(4,7,Nplot(k)) *,XJN_DKj
% pcolor(x,x,z), shading interp H1ui#5n2
% set(gca,'XTick',[],'YTick',[]) O@(.ei*HJ!
% axis square u1|Y;*
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Z We$(?
% end $O</akn;
% Ckl]fy@D}
% See also ZERNPOL, ZERNFUN2. =smY/q^3
uY%3X/^j
% Paul Fricker 11/13/2006 ]O(HZD%
}d*sWSPu(
rJ~(Xu>,s
% Check and prepare the inputs: Kmf-l*7}
% ----------------------------- _<~Vxz9
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) )Jjw}}$}Y
error('zernfun:NMvectors','N and M must be vectors.') >_%g8T'
end P}u<NPy3Q
Ex&RR< 5
if length(n)~=length(m) 0c;"bA0>Sx
error('zernfun:NMlength','N and M must be the same length.') n\)f.}YD8d
end 2iINQK$
5lA 8e
n = n(:); |0pBBDw
m = m(:); uH;^>`DT
if any(mod(n-m,2)) }sNZQ89V*v
error('zernfun:NMmultiplesof2', ... X1~A "sW[
'All N and M must differ by multiples of 2 (including 0).') D)eKq!_
end }8KL]11b
S gsR;)2
if any(m>n) dz.MH
error('zernfun:MlessthanN', ... kK6>>lD'
'Each M must be less than or equal to its corresponding N.') +fR`@HI
end v+2qR0,LM
ba1QFzN
if any( r>1 | r<0 ) rG%_O$_dO
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 2&f=4b`Z
end V1V4 <Zj
IIEU{},}z
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 2Yf;b9-k
error('zernfun:RTHvector','R and THETA must be vectors.') !Yi<h/:
end 5DBd
[u3
_4#psxl[M
r = r(:); |,~A9
theta = theta(:); t`3T_t Y
length_r = length(r); )8>f
if length_r~=length(theta) `\uv+^x{
error('zernfun:RTHlength', ... /9#jv]C:
'The number of R- and THETA-values must be equal.') _C#()#
end KT?s\w
QlXF:Gx"=
% Check normalization: m1Z8SM+
% -------------------- i 58CA?
if nargin==5 && ischar(nflag) +~AI(h
isnorm = strcmpi(nflag,'norm'); qUg4-Z4
if ~isnorm *\+'tFT6
error('zernfun:normalization','Unrecognized normalization flag.') AUpC HG7
end VDN]P3
else 3CRBu:)m
isnorm = false; tzN;;h4C
end #i U/Yg!
e;3 (,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?m^7O_1
% Compute the Zernike Polynomials N4NH)x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h--!pE+
#ms98pw%5
% Determine the required powers of r: -"L6^IH7
% ----------------------------------- 1 niTkop
m_abs = abs(m); ~q>ilnL"h
rpowers = []; m1;jS|
for j = 1:length(n) uV:;y}T^Z
rpowers = [rpowers m_abs(j):2:n(j)]; #8|NZ6x,
end a5&j=3)|
rpowers = unique(rpowers); AVZ@?aJgF
g?M69~G$:x
% Pre-compute the values of r raised to the required powers, FZ/&[;E!
% and compile them in a matrix: DF =.G1
% ----------------------------- S5!2%-;<k
if rpowers(1)==0 y70gNPuTOD
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |7fBiVo
rpowern = cat(2,rpowern{:}); o(qmI/h
rpowern = [ones(length_r,1) rpowern]; SQk!o{
else t,6=EK*3T
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); nQ6'yd"
rpowern = cat(2,rpowern{:}); VG^-aR_F
end _m-r}9au
n-_w0Y
% Compute the values of the polynomials: \_'pUp22
% -------------------------------------- `lzH:B
y = zeros(length_r,length(n)); vt,X:3
for j = 1:length(n) DdgFBO
s = 0:(n(j)-m_abs(j))/2; t|lv6-Hy9
pows = n(j):-2:m_abs(j); j>23QPG`6U
for k = length(s):-1:1 Q0-~&e_'
p = (1-2*mod(s(k),2))* ... Nh%8;
prod(2:(n(j)-s(k)))/ ... >MH@FnUL
prod(2:s(k))/ ... "k/@tX1:R
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Hua8/:![+
prod(2:((n(j)+m_abs(j))/2-s(k))); 1[ Pbsb
idx = (pows(k)==rpowers); Ek0.r)Nw
y(:,j) = y(:,j) + p*rpowern(:,idx); z_TK
(;j
end Rz]bCiD3
B
)M~5F,)
if isnorm F\;1:y~1
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); F Te# @\I
end "'L SLp
end 7Jk.U=vY
% END: Compute the Zernike Polynomials ^D)C|T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /_8V+@im
#s%$kYp 1
% Compute the Zernike functions: xuF_^
% ------------------------------ .v{ty
idx_pos = m>0; XJ+sm^`vOf
idx_neg = m<0; teb(\% ,
8:MYeE5
z = y; T5)?6i-N
if any(idx_pos) uwJkqlUOz
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); <U*d
end Y/gCtSF
if any(idx_neg) )U`
c9*.
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); UpbzH(?#
end #]2u!ama
uJizR
F
% EOF zernfun