非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 i a|F
function z = zernfun(n,m,r,theta,nflag) Vy?w,E0^:
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. j C@^/rMh
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N b6i0_fOO
% and angular frequency M, evaluated at positions (R,THETA) on the *oPSkEA{
% unit circle. N is a vector of positive integers (including 0), and vxm`[s |QC
% M is a vector with the same number of elements as N. Each element '=ZE*nGC
% k of M must be a positive integer, with possible values M(k) = -N(k) -g>27EI5
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, >i.+v[)#
% and THETA is a vector of angles. R and THETA must have the same BAPi<U'D
% length. The output Z is a matrix with one column for every (N,M) } 6KL
% pair, and one row for every (R,THETA) pair. 3646.i[D
% ;L`'xFo>>
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Md~mI8
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Z4e?zY
% with delta(m,0) the Kronecker delta, is chosen so that the integral RDZq(rKc
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, e9:l
% and theta=0 to theta=2*pi) is unity. For the non-normalized EbW7Av
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (&B &
V
% x|Ei_hI-
% The Zernike functions are an orthogonal basis on the unit circle. J^W.TM&q$,
% They are used in disciplines such as astronomy, optics, and E*ic9Za8`h
% optometry to describe functions on a circular domain. IKU-
% ?e@Ff"Y@e
% The following table lists the first 15 Zernike functions. RsY<j& f
% -8o8lz
% n m Zernike function Normalization x88$#N>Q5
% -------------------------------------------------- ucn aj|
% 0 0 1 1 lH6t d
% 1 1 r * cos(theta) 2 (;n|>l?*
% 1 -1 r * sin(theta) 2 mA4v 4z
% 2 -2 r^2 * cos(2*theta) sqrt(6) [W2p }4(
% 2 0 (2*r^2 - 1) sqrt(3) !At _^hSqz
% 2 2 r^2 * sin(2*theta) sqrt(6) Qj=l OhM
% 3 -3 r^3 * cos(3*theta) sqrt(8) *n*OVI8L
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) tQ)8HVKF
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) kgQEg)A]!x
% 3 3 r^3 * sin(3*theta) sqrt(8) `KL`^UqR
% 4 -4 r^4 * cos(4*theta) sqrt(10)
V`%m~#Me
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /Ly%-py-$
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) "qF&%r'
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kxdLJ_
% 4 4 r^4 * sin(4*theta) sqrt(10) #e#8I7P
% -------------------------------------------------- '*T7tl
% qvt~wJf<
% Example 1: Ri,UHI4 W
% C*KRu`t
% % Display the Zernike function Z(n=5,m=1) lf Giw^
% x = -1:0.01:1; 'UB<;6wy
% [X,Y] = meshgrid(x,x); 1xx-}AIH#
% [theta,r] = cart2pol(X,Y); LHacHv
% idx = r<=1; XJQ[aU"[]N
% z = nan(size(X)); X{ Nif G
% z(idx) = zernfun(5,1,r(idx),theta(idx)); e8[*=&
% figure h?TE$&CL?
% pcolor(x,x,z), shading interp u'N'<(\k
% axis square, colorbar sFGXW
% title('Zernike function Z_5^1(r,\theta)') 'rg$%M*(
% qH-dT,`"{
% Example 2: n,0}K+}
% 1
t#Tp$
% % Display the first 10 Zernike functions *</;:?
% x = -1:0.01:1; W=|B3}C?
% [X,Y] = meshgrid(x,x); |mKd5[$
% [theta,r] = cart2pol(X,Y); RuHJk\T+
% idx = r<=1; G U!XD!!&
% z = nan(size(X)); 8n'C@#{WV
% n = [0 1 1 2 2 2 3 3 3 3]; "+rX*~
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; YY.;J3C
% Nplot = [4 10 12 16 18 20 22 24 26 28]; <}UqtDF 0
% y = zernfun(n,m,r(idx),theta(idx)); O}D]G%,m
% figure('Units','normalized') J|I|3h<T
% for k = 1:10 p?!]sO1l
% z(idx) = y(:,k); W9u(
% subplot(4,7,Nplot(k)) ;[6u79;I
% pcolor(x,x,z), shading interp *+J&ebSTN
% set(gca,'XTick',[],'YTick',[]) H_$"]iQ
% axis square ^&,{
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) KDY~9?}TM
% end N.VzA
6C
% `yVJ `}hm
% See also ZERNPOL, ZERNFUN2. *|4~
0w
bG5c~
% Paul Fricker 11/13/2006 AQFx>:in
}XAoMp
ly{~X
% Check and prepare the inputs: xR%CS`0R
% ----------------------------- yP"_j&ef7
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *{tJ3<t(1
error('zernfun:NMvectors','N and M must be vectors.') =g&0CFF <
end Ya>cGaLq
*M8 4Dry`y
if length(n)~=length(m) #S1)n[
error('zernfun:NMlength','N and M must be the same length.') k1%Ek#5
end ZLO_5#<
M
r@M~ -
n = n(:); +}:c+Z<
m = m(:); $i3/||T,9
if any(mod(n-m,2)) vF*H5\ m<a
error('zernfun:NMmultiplesof2', ... 5v?6J#]2
'All N and M must differ by multiples of 2 (including 0).') *rqih_j0
end [y:6vC
n'R
8nn6^
if any(m>n) 5 :AAqMa
error('zernfun:MlessthanN', ... #ocT4
'Each M must be less than or equal to its corresponding N.') ,@2O_O`:
end cW3;5
O,DA{> *m
if any( r>1 | r<0 ) qg'm<[
error('zernfun:Rlessthan1','All R must be between 0 and 1.') =si<OB
end "3!4 hiU9
Bg34YmZ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]P 2M
error('zernfun:RTHvector','R and THETA must be vectors.') {wd.aUB
end <;acWT?(
?XeRL<n
r = r(:); Z&PwNr/
theta = theta(:); T%ha2X=
length_r = length(r); t<$yxD/R
if length_r~=length(theta) 5#iv[c
error('zernfun:RTHlength', ... 9@^/ON\O
'The number of R- and THETA-values must be equal.') c !5OK4+Z
end ) .#,1
^&.F!
% Check normalization:
kH{axMNc
% -------------------- LtCkDnXk
if nargin==5 && ischar(nflag) 6g<JPc
isnorm = strcmpi(nflag,'norm'); :yw0-]/DD
if ~isnorm y/Nvts2!C
error('zernfun:normalization','Unrecognized normalization flag.') ?Bk"3{hl
end ogPxj KSI
else psYfz)1;
isnorm = false; ;;UvK
v
end #opFUX-
8)sqj=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g*8sh
% Compute the Zernike Polynomials CjIkRa@!x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Kw'A%7^e
WT!%FQ9
% Determine the required powers of r: /(vT49(]
% ----------------------------------- r$*k-c9Bf
m_abs = abs(m); ydBoZ3 }
rpowers = []; 2< ^B]N
for j = 1:length(n) <m9IZIY<
rpowers = [rpowers m_abs(j):2:n(j)]; D<nTo&m_
end U4Qc$&j>
rpowers = unique(rpowers); "< [D1E\
"bC8/^
% Pre-compute the values of r raised to the required powers, O^
f[ugs
% and compile them in a matrix: 2)mKcUL-
% ----------------------------- $yOfqr
if rpowers(1)==0 cC>.`1:
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^W'\8L
rpowern = cat(2,rpowern{:}); oz@yF)/Sm
rpowern = [ones(length_r,1) rpowern]; QK//bV)
else &oNy~l
o
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /I: d<A
rpowern = cat(2,rpowern{:}); #B>Hq~ vrC
end '0w'||#1
V18w
% Compute the values of the polynomials: t t#M4n@
% -------------------------------------- T w/CJg
y = zeros(length_r,length(n)); ()XL}~I{!A
for j = 1:length(n) UPLr[>Q#
s = 0:(n(j)-m_abs(j))/2; d4gl V`%.
pows = n(j):-2:m_abs(j); Z @j0J[s
for k = length(s):-1:1 {5_*tV<I
p = (1-2*mod(s(k),2))* ... K2)),_,@5+
prod(2:(n(j)-s(k)))/ ... G4ZeO:r
prod(2:s(k))/ ... l6a,:*_
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {8b6A~/
prod(2:((n(j)+m_abs(j))/2-s(k))); B*,9{ g0m/
idx = (pows(k)==rpowers); %vyjn&13
y(:,j) = y(:,j) + p*rpowern(:,idx); c1e7h l
end 5AQ $xm4
nwW`Q>+#U
if isnorm ^d-`?zb
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ;J2=6np
end 7nfQ=?XNK
end Ma wio5
% END: Compute the Zernike Polynomials 3u-j`7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T4._S:~
K*p^Gs,
% Compute the Zernike functions: %vn rLt$
% ------------------------------ Hd6Qy {,*-
idx_pos = m>0; A*E$_N
idx_neg = m<0; Jg|/*Or
q'{E $V)E
z = y; RIb<
7
if any(idx_pos) wGAN"K:e
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Ewu 7tq Z
end Ow mI*`
if any(idx_neg) SIzW3y[
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); CP/`ON
end aCy2.Qn
W<k) '|
% EOF zernfun