切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11650阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 d2[R{eNX=  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 8/`ij?gn  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 BNpc-O~  
    function z = zernfun(n,m,r,theta,nflag) rw]7Lr_>  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle.  j2%?-(U  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `;\~$^sj}  
    %   and angular frequency M, evaluated at positions (R,THETA) on the UhVJ !NrT  
    %   unit circle.  N is a vector of positive integers (including 0), and u RPvo}!=1  
    %   M is a vector with the same number of elements as N.  Each element ] R-<v&O  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) k$v8cE  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, )9'Zb`n  
    %   and THETA is a vector of angles.  R and THETA must have the same mdy+ >e <  
    %   length.  The output Z is a matrix with one column for every (N,M) _5&LV2  
    %   pair, and one row for every (R,THETA) pair. 3?:?dy(3z  
    % E{W(5.kb;i  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +!Lz]@9K  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3}25=%;[  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral >P[BwL]  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, F=l.2t*9  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Kb,#Ot  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2"C,u V@F!  
    % 6V^KOG  
    %   The Zernike functions are an orthogonal basis on the unit circle. ,J ZM%f  
    %   They are used in disciplines such as astronomy, optics, and 'ghwc:Og|%  
    %   optometry to describe functions on a circular domain. {H[3[  
    % sm96Ye{O{  
    %   The following table lists the first 15 Zernike functions. T,SCK^  
    % )3A%Un#B  
    %       n    m    Zernike function           Normalization q;#:nf"  
    %       -------------------------------------------------- gPz p/I  
    %       0    0    1                                 1 CyEEE2cV  
    %       1    1    r * cos(theta)                    2 (X(c.Jj  
    %       1   -1    r * sin(theta)                    2 ztHEXM.  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) X'XH-E  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "R9^X3;  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) @(_f}S gfE  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) *^t7?f[  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) C8bv%9  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) >S=,ype~G  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ! tPHT  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) tFKR~?Gc  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #uHl  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) c`x[C  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v'X=|$75  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) %x zgTZ  
    %       -------------------------------------------------- tF=Y3W+L  
    % %eDJ]\*^X  
    %   Example 1: CKgbb4;<m[  
    % vhj^R5=  
    %       % Display the Zernike function Z(n=5,m=1) k=8LhO  
    %       x = -1:0.01:1; *, RxOz2=  
    %       [X,Y] = meshgrid(x,x); )o>1=Y`[z  
    %       [theta,r] = cart2pol(X,Y); [V_?`M  
    %       idx = r<=1; sksop4gu5  
    %       z = nan(size(X)); _E<  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); B@@j-  
    %       figure qs'ggF1  
    %       pcolor(x,x,z), shading interp H]JVv8  
    %       axis square, colorbar 08JVX'X-mr  
    %       title('Zernike function Z_5^1(r,\theta)') AiE\PMF~{P  
    % H G)c\b  
    %   Example 2: Pu7cL  
    % Yiy|^j  
    %       % Display the first 10 Zernike functions \NI0rL  
    %       x = -1:0.01:1; vspub^;5\  
    %       [X,Y] = meshgrid(x,x); SP |R4*KY  
    %       [theta,r] = cart2pol(X,Y); @mu2,%  
    %       idx = r<=1; P2^((c  
    %       z = nan(size(X)); baL-~`(T  
    %       n = [0  1  1  2  2  2  3  3  3  3]; =gb(<`{>  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; }R]^%q@&  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; b/g"ws_  
    %       y = zernfun(n,m,r(idx),theta(idx)); sB>ZN3ptH^  
    %       figure('Units','normalized') J4;F k  
    %       for k = 1:10 (!9ybH;T  
    %           z(idx) = y(:,k); NDaM;`  
    %           subplot(4,7,Nplot(k)) Ul?92  
    %           pcolor(x,x,z), shading interp q|fZdTw  
    %           set(gca,'XTick',[],'YTick',[]) sBfPhBT|  
    %           axis square YDMimis\H5  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) F6h|AF|"  
    %       end 7 /$s!pV  
    % ~0~f  
    %   See also ZERNPOL, ZERNFUN2. _Z|3qQ  
    E?+MM0  
    %   Paul Fricker 11/13/2006 xHMbtY  
    SWGD(]}uz  
    u/2!v(  
    % Check and prepare the inputs: {Z=m5Dy}  
    % ----------------------------- >S:>_&I`I  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) U'tfsf/V  
        error('zernfun:NMvectors','N and M must be vectors.') E-_Q3^  
    end yHL5gz@k  
    "x)xjL  
    if length(n)~=length(m) 1TvR-.e  
        error('zernfun:NMlength','N and M must be the same length.') SdTJ?P+m  
    end /\_wDi+#  
    Cp@' k;(  
    n = n(:); 'l}T_7g  
    m = m(:); i@C$O.m(  
    if any(mod(n-m,2)) URFp3qE  
        error('zernfun:NMmultiplesof2', ... =(~UK9`  
              'All N and M must differ by multiples of 2 (including 0).') uM^eoh_  
    end -b4#/q+bb+  
    ZAG ia q  
    if any(m>n) #*<*|AwoW|  
        error('zernfun:MlessthanN', ... !L#>wlX)  
              'Each M must be less than or equal to its corresponding N.') UA|A>c  
    end R]7-6  
    ]$>O--  
    if any( r>1 | r<0 ) -K_p? l  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') z|V5/"  
    end ~Zc=FP:1  
    y2U^7VrO  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 2y&m8_s-p  
        error('zernfun:RTHvector','R and THETA must be vectors.') O,kzU,zOs  
    end (,gpR4O[  
    %Hk9.1hn5  
    r = r(:); HCI|6{k  
    theta = theta(:); &O'6va  
    length_r = length(r); )-_]y|/D:r  
    if length_r~=length(theta) E,[@jxP  
        error('zernfun:RTHlength', ... >_Dq)n;%  
              'The number of R- and THETA-values must be equal.') -];/*nl  
    end 5xm^[o2#y  
    V #0F2GV<,  
    % Check normalization: VV*Z5U@b  
    % -------------------- K{}U[@_tS  
    if nargin==5 && ischar(nflag) c7[<X<yk  
        isnorm = strcmpi(nflag,'norm'); 1jJ>(S  
        if ~isnorm :3s5{s   
            error('zernfun:normalization','Unrecognized normalization flag.') gJ_{V;R  
        end vap,)kILF  
    else S0\;FmLIc  
        isnorm = false; @{_L38. Nw  
    end )")_aA  
    ^ 2"r't  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I6x  
    % Compute the Zernike Polynomials |&+0Tg~ZE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,m-z D  
    :Rh?#yO 5  
    % Determine the required powers of r: bqHR~4 #IR  
    % ----------------------------------- !1tHg Z2\  
    m_abs = abs(m); L7*,v5  
    rpowers = []; 4LRrrW  
    for j = 1:length(n) &@O]'  
        rpowers = [rpowers m_abs(j):2:n(j)]; QkXnXu  
    end phu`/1;p  
    rpowers = unique(rpowers); 4aAuE0  
    .5ap9li]  
    % Pre-compute the values of r raised to the required powers, *{qW7x.6h  
    % and compile them in a matrix: YRXXutm  
    % ----------------------------- uT'}_2=:  
    if rpowers(1)==0 g-0?8q5T6  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); j@xerY  
        rpowern = cat(2,rpowern{:}); #V[j Q Vl  
        rpowern = [ones(length_r,1) rpowern]; >+iJ(jqq  
    else lWr{v\L'  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); w-%V9]J1  
        rpowern = cat(2,rpowern{:}); WgxGx`Y)  
    end eSNwAExm  
    .E'Tfa  
    % Compute the values of the polynomials: d NQ?8P-&  
    % -------------------------------------- UEZnd8  
    y = zeros(length_r,length(n)); cFcn61x-  
    for j = 1:length(n) G%{J.J41F  
        s = 0:(n(j)-m_abs(j))/2; p^|IN'lx,  
        pows = n(j):-2:m_abs(j); Mu,}?%  
        for k = length(s):-1:1 hk =nXv2M  
            p = (1-2*mod(s(k),2))* ...  F?UI8  
                       prod(2:(n(j)-s(k)))/              ... e6E{l  
                       prod(2:s(k))/                     ... #k %$A}9  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #wXq'yi  
                       prod(2:((n(j)+m_abs(j))/2-s(k)));  `mar-r_m  
            idx = (pows(k)==rpowers); 4~mYj@lvd  
            y(:,j) = y(:,j) + p*rpowern(:,idx); kvWP[! j?)  
        end 0p"l}Fu@`  
         : +Na8\d  
        if isnorm .<0|V  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); C-i9F%..  
        end i3bH^WwE&k  
    end a$0,T_wD  
    % END: Compute the Zernike Polynomials 42*y27Dtm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BHoy:Tp  
    Gk<M@d^hQ  
    % Compute the Zernike functions: :@BAiKa[wa  
    % ------------------------------ bXVH7Fy  
    idx_pos = m>0; =L,s6J8_'  
    idx_neg = m<0; pKeK6K\8  
    [BPK0  
    z = y; _[D6 WY+  
    if any(idx_pos) (v<l9}!  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Gjhpi5?%8  
    end HPz9Er  
    if any(idx_neg) Y nD_:ZK  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); IUB#Vdx  
    end mGss9eZa  
    1k=w 9  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) U*P&O+(1'  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ;Jh=7wx  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated *$%ch=  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive xIOYwVC  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, w'[^RZW:j  
    %   and THETA is a vector of angles.  R and THETA must have the same cSbyVC[r  
    %   length.  The output Z is a matrix with one column for every P-value, = aO1uC|6C  
    %   and one row for every (R,THETA) pair. uPe&i5YR  
    % E#?Bn5-uBs  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike O4)'78ATp  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) B^7B-RBi0  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Q7 4Q|r7  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 U?@ s`.  
    %   for all p. fT]hpoJl  
    % m`;dFL7"E  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 c0 I;8z`b  
    %   Zernike functions (order N<=7).  In some disciplines it is /nPNHO>U  
    %   traditional to label the first 36 functions using a single mode N7Kg52|  
    %   number P instead of separate numbers for the order N and azimuthal 0|Rt[qwKb@  
    %   frequency M. V(lxkEu/Fj  
    % 0mt lM(  
    %   Example: n]%T>\gw  
    % )9pRT dT  
    %       % Display the first 16 Zernike functions ^ gy"$F3{`  
    %       x = -1:0.01:1; 8;%F-?  
    %       [X,Y] = meshgrid(x,x); i1c z+}  
    %       [theta,r] = cart2pol(X,Y); D+nKQ4  
    %       idx = r<=1; 4](jV}Hg  
    %       p = 0:15; j3-^,r t4  
    %       z = nan(size(X)); i?HN  
    %       y = zernfun2(p,r(idx),theta(idx)); Z2t'?N|_  
    %       figure('Units','normalized') )ajF ca@v  
    %       for k = 1:length(p) q0m> NA   
    %           z(idx) = y(:,k); S9 p*rk ~  
    %           subplot(4,4,k) R!+_mPb=Q*  
    %           pcolor(x,x,z), shading interp /h]#}y j  
    %           set(gca,'XTick',[],'YTick',[]) Wr j<}L|  
    %           axis square jqzG=/0~{  
    %           title(['Z_{' num2str(p(k)) '}']) x(]Um!  
    %       end ln1QY"g  
    % r(ZMZ^  
    %   See also ZERNPOL, ZERNFUN. lH%%iYBM  
    w/1Os!p  
    %   Paul Fricker 11/13/2006 6_=t~9sY  
    1B0+dxN`  
    -:V0pb  
    % Check and prepare the inputs: )yTBtYw3  
    % ----------------------------- .:~{+ <*`  
    if min(size(p))~=1 J< vVsz+7:  
        error('zernfun2:Pvector','Input P must be vector.') =Hd+KvA  
    end # 0* oj/  
    r%uka5@  
    if any(p)>35 _{C =d3  
        error('zernfun2:P36', ... 2(i@\dZCb<  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... W2w A66MB  
               '(P = 0 to 35).']) K ; e R)  
    end [uLpm*7  
    UhX)?'J  
    % Get the order and frequency corresonding to the function number: .4cV X|T  
    % ---------------------------------------------------------------- EyDH -}Y  
    p = p(:); fG,)`[eD!_  
    n = ceil((-3+sqrt(9+8*p))/2); l+r3|b  
    m = 2*p - n.*(n+2); xbNL <3"a  
    OpLo[Y\  
    % Pass the inputs to the function ZERNFUN: J=?P`\h  
    % ---------------------------------------- (:|rCZC  
    switch nargin 5OM*NT t  
        case 3 WbwS!F<au  
            z = zernfun(n,m,r,theta); TN=!;SvQU  
        case 4 <hBd #J  
            z = zernfun(n,m,r,theta,nflag); bjr()NM1  
        otherwise #zed8I:w  
            error('zernfun2:nargin','Incorrect number of inputs.') OnND(YiX  
    end x:E:~h[.^  
    6 =H]p1p~O  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) =5q_aK#i  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. )ZMR4U$+v  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of .H}#,pQ}l  
    %   order N and frequency M, evaluated at R.  N is a vector of .YlhK=d4  
    %   positive integers (including 0), and M is a vector with the XR+  
    %   same number of elements as N.  Each element k of M must be a *q*$%H  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 7srq~;j3  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is > zV  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix B'hN3.  
    %   with one column for every (N,M) pair, and one row for every VJSkQ\KD  
    %   element in R. x0||'0I0  
    % I\<)9`O  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- FyWrb+_0v  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is !7n`-#)  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to |lMc6C  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 7_~_$I~g*  
    %   for all [n,m]. z#GrwE,r   
    % sf Zb$T J  
    %   The radial Zernike polynomials are the radial portion of the 34I;DUdcE  
    %   Zernike functions, which are an orthogonal basis on the unit N gagzsJ=  
    %   circle.  The series representation of the radial Zernike 589P$2e1X  
    %   polynomials is K6 c[W%Va  
    % i$6o>V6  
    %          (n-m)/2 [mFgo il  
    %            __ : U,-v  
    %    m      \       s                                          n-2s 6T6UIq  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r !,OY{='  
    %    n      s=0 p?O6|q  
    % JOo+RA5d  
    %   The following table shows the first 12 polynomials. m1DrT>oN'  
    % *YP:-  
    %       n    m    Zernike polynomial    Normalization P-\65]`C  
    %       --------------------------------------------- q"u,r6ED  
    %       0    0    1                        sqrt(2) e3WEsD+  
    %       1    1    r                           2 nq:'jdY5|  
    %       2    0    2*r^2 - 1                sqrt(6) %+oV-o\ #A  
    %       2    2    r^2                      sqrt(6) KvumU>c#A  
    %       3    1    3*r^3 - 2*r              sqrt(8) TU^s!Tj  
    %       3    3    r^3                      sqrt(8) Kidbc Z  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) AWDy_11Nm  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) BFQ`Ab+  
    %       4    4    r^4                      sqrt(10) v+W4wD  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) %&!B2z}  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) :8U@KABH@h  
    %       5    5    r^5                      sqrt(12) xTy)qN]P  
    %       --------------------------------------------- #c(BBTuX  
    % )CD-cz6n  
    %   Example: {Z}zT1kA  
    % cd;~60@K  
    %       % Display three example Zernike radial polynomials #:=*n(GT  
    %       r = 0:0.01:1; ~H:.&'E  
    %       n = [3 2 5]; kudXwj  
    %       m = [1 2 1]; GHFYIor  
    %       z = zernpol(n,m,r); GpCjoNcW{  
    %       figure zKQXmyO  
    %       plot(r,z) [bjP-pX  
    %       grid on l%# z  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') {-51rAyi  
    % 3K%_wCZ  
    %   See also ZERNFUN, ZERNFUN2. `!C5"i8+i2  
    \9 k3;zw  
    % A note on the algorithm. g2 tM!IRQ  
    % ------------------------ ?>q5Abp[  
    % The radial Zernike polynomials are computed using the series vvP]tRZ  
    % representation shown in the Help section above. For many special [_HOD^  
    % functions, direct evaluation using the series representation can GriFb]ml"  
    % produce poor numerical results (floating point errors), because Muok">#3.  
    % the summation often involves computing small differences between ?&bB?mg\  
    % large successive terms in the series. (In such cases, the functions ;O {"\H6  
    % are often evaluated using alternative methods such as recurrence AS a)xf9  
    % relations: see the Legendre functions, for example). For the Zernike Qb@i_SX(fs  
    % polynomials, however, this problem does not arise, because the V eLGxc  
    % polynomials are evaluated over the finite domain r = (0,1), and #0c;2}D  
    % because the coefficients for a given polynomial are generally all ]~9YRVeC  
    % of similar magnitude. oG=4&SQ  
    % Is>~P*2Y=  
    % ZERNPOL has been written using a vectorized implementation: multiple R_Uy.0=4  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] l8+;)2p!  
    % values can be passed as inputs) for a vector of points R.  To achieve yUvn h  
    % this vectorization most efficiently, the algorithm in ZERNPOL vvF]g.,  
    % involves pre-determining all the powers p of R that are required to 2I{kLN1TY  
    % compute the outputs, and then compiling the {R^p} into a single '1b4nj|<m  
    % matrix.  This avoids any redundant computation of the R^p, and ;Mz7emt  
    % minimizes the sizes of certain intermediate variables. kNoS% ?1,  
    % #pk  
    %   Paul Fricker 11/13/2006 ?cB26Zrcb  
    <P#:dS%r  
    g])iU9)8  
    % Check and prepare the inputs: [p_<`gU?  
    % ----------------------------- 5?|yYQM0tK  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) B:(a?X-7  
        error('zernpol:NMvectors','N and M must be vectors.') unt{RVR%  
    end wpcqgc  
    vAfYONU  
    if length(n)~=length(m) Y/y`c-VO  
        error('zernpol:NMlength','N and M must be the same length.') 41I2t(H @z  
    end abg` : E  
    Gq{);fq  
    n = n(:); !wH'dsriD  
    m = m(:); ~r&+18Z;  
    length_n = length(n); YFeL#)5y  
    LQJC]*b1  
    if any(mod(n-m,2)) jQ dIeQD+  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') oq2-)F2/  
    end ^a=V.  
    8Od7e`  
    if any(m<0) ISg-?h/  
        error('zernpol:Mpositive','All M must be positive.') C%AN4Mo  
    end !nTI(--  
    VUzRA"DP|  
    if any(m>n) bkiMF$K,K  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') mLDuizWI  
    end ?s[!JeUA  
    BB.120v&N  
    if any( r>1 | r<0 ) b 4A1M  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') wLy:S.r  
    end |J:m{  
    (;(2n;i[M  
    if ~any(size(r)==1) iO7s zi  
        error('zernpol:Rvector','R must be a vector.') qEfg-`*M  
    end +7r?vo1  
    nf,Ez  
    r = r(:); >)VWXv0  
    length_r = length(r); iVA=D&eZ  
    .@ @&q4= &  
    if nargin==4 @s|yH"  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); WP !u3\91  
        if ~isnorm [@/s! i @  
            error('zernpol:normalization','Unrecognized normalization flag.') Yduj3Ht:w  
        end R/l/GNm  
    else /}nq?Vf  
        isnorm = false; 9 !s)52qt  
    end ?gG%FzfQ/  
    q>[}JtXK  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9b)'vr*Hy7  
    % Compute the Zernike Polynomials D;6C2>U~L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N'YQ6U  
    F{laA YE  
    % Determine the required powers of r: 69N8COLB  
    % ----------------------------------- g:Fo7*i  
    rpowers = []; spma\,o  
    for j = 1:length(n) 3 ]w a8|  
        rpowers = [rpowers m(j):2:n(j)]; kg^5D3!2{Q  
    end R*VEeLx  
    rpowers = unique(rpowers); ~LJtlJ 0  
    3]67U}`  
    % Pre-compute the values of r raised to the required powers, L[MAc](me-  
    % and compile them in a matrix: Wt!8.d} =  
    % ----------------------------- :.SwO<j  
    if rpowers(1)==0 P7*?E*   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8" (j_~;  
        rpowern = cat(2,rpowern{:}); sn8r`59C  
        rpowern = [ones(length_r,1) rpowern]; yXBWu=w3`O  
    else 2C#b-Y 1~N  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )5w#n1  
        rpowern = cat(2,rpowern{:}); oWBjPsQ  
    end 0xUn#&A~  
    +5H1n(6)  
    % Compute the values of the polynomials: Z._%T$8aJv  
    % -------------------------------------- )zu m.6pT  
    z = zeros(length_r,length_n); 51`*VR]`K  
    for j = 1:length_n &"clBR Vg  
        s = 0:(n(j)-m(j))/2; ~>rn q7j  
        pows = n(j):-2:m(j); A{)p#K8  
        for k = length(s):-1:1 NUX$)c  
            p = (1-2*mod(s(k),2))* ... 9a]h;r8,9z  
                       prod(2:(n(j)-s(k)))/          ... 4_ kg/  
                       prod(2:s(k))/                 ... =/(R_BFna  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... As(6E}{S  
                       prod(2:((n(j)+m(j))/2-s(k))); +d=8/3O%  
            idx = (pows(k)==rpowers); _A6e|(.ll  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 2E@g#:3  
        end %QQJSake|  
         bH.f4-.u>)  
        if isnorm c? >;UzM  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); )No>Q :t  
        end #fq&yjl#A  
    end Sb?HRoe_  
    l42tTD8Awz  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  :gacP?  
    !Zma\Ip  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 h?`'%m?_b  
    g)#.|d+  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)