非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 \;'_|bu3.
function z = zernfun(n,m,r,theta,nflag) VoWA tNU
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. <tGI]@Nwk
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #R5we3&p
% and angular frequency M, evaluated at positions (R,THETA) on the 4|I7:~
% unit circle. N is a vector of positive integers (including 0), and C8!8u?k
% M is a vector with the same number of elements as N. Each element b"`ru~]
% k of M must be a positive integer, with possible values M(k) = -N(k) 5+J64_
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 0@JilGk1u
% and THETA is a vector of angles. R and THETA must have the same jM{(8aUG
% length. The output Z is a matrix with one column for every (N,M) rwasH,+
% pair, and one row for every (R,THETA) pair. G* 8+h
% BYkVg2D(
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1y_fQ+\2A
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), TB;3`
% with delta(m,0) the Kronecker delta, is chosen so that the integral ce 7Yr*ZB
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, t$ACQ*O
% and theta=0 to theta=2*pi) is unity. For the non-normalized f%`*ba"v
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^ uKnP>*l
% bEoB;]
% The Zernike functions are an orthogonal basis on the unit circle. {d&X/tT
% They are used in disciplines such as astronomy, optics, and ocb%&m;i
% optometry to describe functions on a circular domain. A73V6"
% +9Xu"OFm
% The following table lists the first 15 Zernike functions. Kx(76_XD
% V=G b>_d
% n m Zernike function Normalization fho=<|-
% -------------------------------------------------- 4r68`<mn[
% 0 0 1 1 y|&.v<
% 1 1 r * cos(theta) 2 YlZYS'_
% 1 -1 r * sin(theta) 2 U)O?|
VN^o
% 2 -2 r^2 * cos(2*theta) sqrt(6) yEMX `
% 2 0 (2*r^2 - 1) sqrt(3) !$%/
rQ9
% 2 2 r^2 * sin(2*theta) sqrt(6) JL}hOBqfI
% 3 -3 r^3 * cos(3*theta) sqrt(8) *u:;:W&5y
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) J3]qg.B%z
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) .(TQ5/
~
% 3 3 r^3 * sin(3*theta) sqrt(8) fxLE ]VJQ
% 4 -4 r^4 * cos(4*theta) sqrt(10) l044c,AW(
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0A#9C09
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ~u O:tL
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U.zRIhA]
% 4 4 r^4 * sin(4*theta) sqrt(10) 4?P%M"\Iv
% -------------------------------------------------- 7eaA]y~H
% ~#HH;q_7m
% Example 1: kxr6sO~
% XwHu:v'=
% % Display the Zernike function Z(n=5,m=1) Z`SWZ<
% x = -1:0.01:1; .!7Fe)(x
% [X,Y] = meshgrid(x,x); 9^#zxmH)
% [theta,r] = cart2pol(X,Y); &;r'{$
% idx = r<=1; ft~|
% z = nan(size(X)); 5WtQwN~
% z(idx) = zernfun(5,1,r(idx),theta(idx)); i/C
-{+}U
% figure l`~a}y "n
% pcolor(x,x,z), shading interp I>YtWY|ed
% axis square, colorbar ?34EJ
!
% title('Zernike function Z_5^1(r,\theta)') p[af[!
% >Rl0%!
% Example 2: CA~em_dC
% v;N1'
% % Display the first 10 Zernike functions O&rD4#
% x = -1:0.01:1; zezofW]a
% [X,Y] = meshgrid(x,x); !R] CmK
% [theta,r] = cart2pol(X,Y); BCa90
% idx = r<=1; 34+)-\ xt:
% z = nan(size(X)); m-Z'K_oQ
% n = [0 1 1 2 2 2 3 3 3 3]; WcZo+r
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; +[ZMrTW!0C
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Z,N7nMJf
% y = zernfun(n,m,r(idx),theta(idx)); I9Edw]
% figure('Units','normalized') >~^mIu_BH
% for k = 1:10 3;t@KuQ66
% z(idx) = y(:,k); (:j+[3Ht
% subplot(4,7,Nplot(k)) Ul7pxzj
% pcolor(x,x,z), shading interp r+V(1<`2X
% set(gca,'XTick',[],'YTick',[]) iaaH9X
%
% axis square eK=m0 2
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Mi%1+
% end NXWIE4T>*^
% YQB]t=Ha
% See also ZERNPOL, ZERNFUN2. w ufKb.4`
Chb4VoE
% Paul Fricker 11/13/2006 1=/MT#d^?
9m#H24{V'
69<rsp(p
% Check and prepare the inputs: +*:x#$phx
% ----------------------------- F-reb5pt.=
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) kDceBs s
error('zernfun:NMvectors','N and M must be vectors.') T`RQUJO
end =?I1V#.
J7
*G/F
if length(n)~=length(m) 1Hk<_no5
error('zernfun:NMlength','N and M must be the same length.') 3' :[i2[
end :+gCO!9Y
0=(-8vwd
n = n(:); eqUn8<<s
m = m(:); D\_*,Fc
if any(mod(n-m,2)) O+8ApicjTc
error('zernfun:NMmultiplesof2', ... EDa08+Y
'All N and M must differ by multiples of 2 (including 0).') K9z_=c+
end Ie`SWg*WL
%;B(_ht<-w
if any(m>n) Lct+cKKU
error('zernfun:MlessthanN', ... > {LJ#Dc6
'Each M must be less than or equal to its corresponding N.') QF.wtMGF&
end 9>$%F;JP44
^v'g ~+@o
if any( r>1 | r<0 ) ezq
q@t9
error('zernfun:Rlessthan1','All R must be between 0 and 1.') )l!&i?h%
end ^) b7m
U0|j^.)
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) y
4,T
error('zernfun:RTHvector','R and THETA must be vectors.') b09#+CH?
end <x%my4M
EJ
&ZZg
r = r(:); as!|8JE`
theta = theta(:); $Bwvw)(%
length_r = length(r); yn ?U7`V
if length_r~=length(theta) ~E:/oV:4 >
error('zernfun:RTHlength', ... ['N#aDh.?
'The number of R- and THETA-values must be equal.') 5-QvQ&eH.
end 3z/O`z
<&m
% Check normalization: Z5^,!6
% -------------------- C6T 9
if nargin==5 && ischar(nflag) )mo|.L0
isnorm = strcmpi(nflag,'norm'); MT#[ -M\
if ~isnorm s)&R W#:X
error('zernfun:normalization','Unrecognized normalization flag.') NYV0<z@M2M
end G}hkr
else >8mW-p
isnorm = false; ])ZJ1QL1
end ^&w'`-ra
GPhwq n{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ea[a)Z7#
% Compute the Zernike Polynomials z )}wo3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G?/8&%8
I8pxo7(-
% Determine the required powers of r: RV @(&