非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 detwa}h[0
function z = zernfun(n,m,r,theta,nflag)
B<C*
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Duc#$YfGm
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N w`q%#qRk
% and angular frequency M, evaluated at positions (R,THETA) on the D@!=d@V.
% unit circle. N is a vector of positive integers (including 0), and i;!H!-sM
% M is a vector with the same number of elements as N. Each element IpP~Uz
% k of M must be a positive integer, with possible values M(k) = -N(k) ^h{)Gf,+\
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 'Ysx=
% and THETA is a vector of angles. R and THETA must have the same ~ o1x;Y6
% length. The output Z is a matrix with one column for every (N,M) #!)n
{h+
% pair, and one row for every (R,THETA) pair. tU_y6
% M`ip~7"
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike cI=(\pC
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), v%fu
% with delta(m,0) the Kronecker delta, is chosen so that the integral h,Q3oy\s1
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, [,TkFbDq"J
% and theta=0 to theta=2*pi) is unity. For the non-normalized {J^lX/D
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. n> ^[T[.S
% 1UKg=A-q
% The Zernike functions are an orthogonal basis on the unit circle. (
H6c{'&
% They are used in disciplines such as astronomy, optics, and :>+s0~
% optometry to describe functions on a circular domain. b, :QT~g=
% <n(*Xak{a
% The following table lists the first 15 Zernike functions. _Gu-
uuy
% {#)0EzV6
% n m Zernike function Normalization Me=CSQqf<
% -------------------------------------------------- h[PYP5{L
% 0 0 1 1 3Kn_mL3V-
% 1 1 r * cos(theta) 2 /PLn+-
% 1 -1 r * sin(theta) 2 F$[ U|%*
% 2 -2 r^2 * cos(2*theta) sqrt(6) qG<$Ajiin
% 2 0 (2*r^2 - 1) sqrt(3) &LbJT$}V
% 2 2 r^2 * sin(2*theta) sqrt(6) g&`pgmUX
% 3 -3 r^3 * cos(3*theta) sqrt(8) 7U"[Gf
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) .jj$ Kh q]
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) [o?*"c
% 3 3 r^3 * sin(3*theta) sqrt(8) e[8LmuIZ
% 4 -4 r^4 * cos(4*theta) sqrt(10) gCxAG
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /tUy3myJ
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ` \+@Fwfx
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *V+j%^91}
% 4 4 r^4 * sin(4*theta) sqrt(10) Dq)j:f#QM
% -------------------------------------------------- 7^g&)P
% &B|D;|7H
% Example 1: +).0cs0k5
% *W
kIq>
% % Display the Zernike function Z(n=5,m=1) 9-rNw?7
% x = -1:0.01:1; L:z?Zt)|
% [X,Y] = meshgrid(x,x); +=:#wzK@
% [theta,r] = cart2pol(X,Y); z(H^..<!5
% idx = r<=1; 3mOtW%Hl
% z = nan(size(X)); G>q(iF'
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ezMI\r6
% figure IV)<5'v
% pcolor(x,x,z), shading interp v;0|U:`]
% axis square, colorbar f/V
2f].
% title('Zernike function Z_5^1(r,\theta)') !&"<oPjr+
% 4fKC 6UR
% Example 2: "70WUx(\t
% Jm42b4
% % Display the first 10 Zernike functions >ss/D^YS
% x = -1:0.01:1; :duo#w"K
% [X,Y] = meshgrid(x,x); R%'^ gFk8
% [theta,r] = cart2pol(X,Y); HB7;0yt`:
% idx = r<=1; aAB`G3
% z = nan(size(X)); yUp,NfS]o
% n = [0 1 1 2 2 2 3 3 3 3]; T,VY.ep/
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 8)4P Ll
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Z"AQp _
% y = zernfun(n,m,r(idx),theta(idx)); >hr{JJe
% figure('Units','normalized') %%4t~XC#
% for k = 1:10 Uy$)%dYfq5
% z(idx) = y(:,k); q5#J~n8Wr
% subplot(4,7,Nplot(k)) l'3pQ;
% pcolor(x,x,z), shading interp et }T%~T
% set(gca,'XTick',[],'YTick',[]) |JVk&8
?8
% axis square <^lRUw
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) K5XK%Gl"
% end =|YxDas
% +9")KQT
% See also ZERNPOL, ZERNFUN2. t8dm)s[r8
sx`O8t
% Paul Fricker 11/13/2006 QI3Nc8t_2
@0SC"CqM
TqddOp
% Check and prepare the inputs: 19j+lCSvH
% ----------------------------- :Cp'm'omb
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?'<nx{!c
error('zernfun:NMvectors','N and M must be vectors.') jb^N|zb
end \xS&v7b
~>+]%FPv
if length(n)~=length(m) gwWN%Z"
error('zernfun:NMlength','N and M must be the same length.') -
h9?1vc7
end d{E}6)1=
7__Q1>o
n = n(:); 7IjQi=#:
m = m(:); yd?x=|
if any(mod(n-m,2)) -Q
U^c2
error('zernfun:NMmultiplesof2', ... H
`(exa:w
'All N and M must differ by multiples of 2 (including 0).') ^)W[l!!<)
end cwL1/DGDB
L_K=g_]
if any(m>n) ~R@Nd~L
error('zernfun:MlessthanN', ... [NTtz
<i@
'Each M must be less than or equal to its corresponding N.') 6%VV,$p
end 6MxKl
D7kl
@!8ZPiW<
if any( r>1 | r<0 ) ](^(=%
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ti<;7Yb
end C,.Ee3T
!1G ."fo
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ME=/|.}D<
error('zernfun:RTHvector','R and THETA must be vectors.') oun;rMq
end $O*O/iG
<&:=z?30"
r = r(:); 4~N[%>zJ
theta = theta(:); B0ndcB-
length_r = length(r); R?p00
if length_r~=length(theta) xQ'2BAEa
error('zernfun:RTHlength', ... P:N1#|g
'The number of R- and THETA-values must be equal.') HuVJ\%.
end s$a09x
!eUDi(
% Check normalization: >~Qr
% -------------------- RJ$7XCY%`*
if nargin==5 && ischar(nflag) fa<v0vb+
isnorm = strcmpi(nflag,'norm'); V}zEK0n(6
if ~isnorm D2,z)O%VK
error('zernfun:normalization','Unrecognized normalization flag.') I'@Ydt2
end jr`Es s
else 6HlePTf8
isnorm = false; Usta0Ag
end b? j< BvQ
Q"7Gy<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?Sb8@S&J
% Compute the Zernike Polynomials is@b&V]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _{ZqO;[u
-@Uqz781
% Determine the required powers of r: }YHX-e<Yx]
% ----------------------------------- 25&J7\P*
m_abs = abs(m); A<B=f<N3gV
rpowers = []; E.U_W
for j = 1:length(n) Q[d}J+l4{
rpowers = [rpowers m_abs(j):2:n(j)]; k{<,\J
end RTFZPq84
rpowers = unique(rpowers); +L5\;
LvEnX S
% Pre-compute the values of r raised to the required powers, B)QHM+[=F
% and compile them in a matrix: %/rMg"f:
% ----------------------------- K_ci_g":
if rpowers(1)==0 BY]i;GVq
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,do58i
K
rpowern = cat(2,rpowern{:}); ?SC[G-b
rpowern = [ones(length_r,1) rpowern]; YOJ6w
else N72Yq)(
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +z$pg
rpowern = cat(2,rpowern{:}); "t0kAG
end +nT'I!//
$*W6A/%O
% Compute the values of the polynomials: |> _!eS\=<
% -------------------------------------- MBXBog7U
y = zeros(length_r,length(n)); Kn?lHH*w7
for j = 1:length(n) `w.AQ?p@
s = 0:(n(j)-m_abs(j))/2; 7^Yk`Z?|a
pows = n(j):-2:m_abs(j); U`]T~9I
for k = length(s):-1:1 5IbJ
p = (1-2*mod(s(k),2))* ... x+G0J8cW
prod(2:(n(j)-s(k)))/ ... _A0mxq
prod(2:s(k))/ ... Z'k|u4ZC
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... U bYEEY#
prod(2:((n(j)+m_abs(j))/2-s(k))); -uH#VP{0M
idx = (pows(k)==rpowers); 8+Td-\IMk
y(:,j) = y(:,j) + p*rpowern(:,idx); d
O~O
|Xsb
end \))=gu)I
Ia'ZV7'
if isnorm Nlj^Dm
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); > MH(0+B*
end A?*o0I
end ZY56\qcY
% END: Compute the Zernike Polynomials )=DGdIEt
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HQ9X7[3
)H}#A#ovj7
% Compute the Zernike functions: :>81BuMvg
% ------------------------------ YQ0)5 }
idx_pos = m>0; efY8M2
idx_neg = m<0; 9TAj) {U%'
JO'>oFv_W
z = y; Vj!rT
<@
if any(idx_pos) @WKzX41'
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); LA[g(i 7
end &'' WRgZ}
if any(idx_neg) y4Er@8I`
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); wIf
{6z{
end O6]. *25
%5*@l vy
% EOF zernfun