非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 e M}Xn^}
function z = zernfun(n,m,r,theta,nflag) ;%}
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Y`wi=(
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N e=U7w7(s9
% and angular frequency M, evaluated at positions (R,THETA) on the <Ip}uy[Y
% unit circle. N is a vector of positive integers (including 0), and 6m9Z5:xG
% M is a vector with the same number of elements as N. Each element yI!K
quMC
% k of M must be a positive integer, with possible values M(k) = -N(k) z|Xl%8
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, YG_3@`-<
% and THETA is a vector of angles. R and THETA must have the same GZ"O%:d
% length. The output Z is a matrix with one column for every (N,M) t0Uax-E(
% pair, and one row for every (R,THETA) pair. ty ~U~
% <M=K!k
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 8m iIlB
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *m2:iChY
% with delta(m,0) the Kronecker delta, is chosen so that the integral UX6-{
RP
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {pqm&PB04
% and theta=0 to theta=2*pi) is unity. For the non-normalized .._wTOSq
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. %}@^[E)
% CzgLgh;:T
% The Zernike functions are an orthogonal basis on the unit circle. \6o
~ i
% They are used in disciplines such as astronomy, optics, and S}>rsg!
% optometry to describe functions on a circular domain. jGt[[s
% I$YF55uB
% The following table lists the first 15 Zernike functions. 1t6UI4U!$
% cla4%|kq3Y
% n m Zernike function Normalization Wl1%BN0>
% -------------------------------------------------- _\[Zr.y
% 0 0 1 1 yuND0,e
% 1 1 r * cos(theta) 2 /)|*Vzu
% 1 -1 r * sin(theta) 2 G 2mv6xK'
% 2 -2 r^2 * cos(2*theta) sqrt(6) }Vt5].TA
% 2 0 (2*r^2 - 1) sqrt(3) {_ocW@@
% 2 2 r^2 * sin(2*theta) sqrt(6) )|:|.`H
% 3 -3 r^3 * cos(3*theta) sqrt(8) W6Hiqu+
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) +f+\uObi:
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) )Aj~ xA
% 3 3 r^3 * sin(3*theta) sqrt(8) F](kU#3"S
% 4 -4 r^4 * cos(4*theta) sqrt(10) %9IM|\ulp
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?wmr~j
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Cu}Rq!9i
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M$w^g8F27H
% 4 4 r^4 * sin(4*theta) sqrt(10) 8g<3J-7Mm
% -------------------------------------------------- sGV%O=9?2
% b747 eR 7E
% Example 1: hI"I#(*jA%
% Ji=E 1R
% % Display the Zernike function Z(n=5,m=1) 419t"1b
% x = -1:0.01:1; IE3GM^7\
% [X,Y] = meshgrid(x,x); il*bsnwpZv
% [theta,r] = cart2pol(X,Y); Od!j+.OY<
% idx = r<=1; `jP6;i
% z = nan(size(X)); es.`:^A
% z(idx) = zernfun(5,1,r(idx),theta(idx)); C; ! )<(Vw
% figure Fd2zvi
% pcolor(x,x,z), shading interp k+&| *!j
% axis square, colorbar JTVCaL3Z
% title('Zernike function Z_5^1(r,\theta)') mWtwp-
% hd\iW7
% Example 2: vQA: \!
% )4j#gHN\
% % Display the first 10 Zernike functions KnlVZn[3t
% x = -1:0.01:1; U|,VH-#
% [X,Y] = meshgrid(x,x); 3dXyKi
% [theta,r] = cart2pol(X,Y); B;^7Yu0,
% idx = r<=1; m|'TPy
% z = nan(size(X)); fuQ?@F
% n = [0 1 1 2 2 2 3 3 3 3]; ++xEMP)
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; &}rh+z
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ^G15]Pyw
% y = zernfun(n,m,r(idx),theta(idx)); P\SE_*&
% figure('Units','normalized') `6UW?1_Z5
% for k = 1:10 aVd{XVE
% z(idx) = y(:,k); 2OEOb,`
% subplot(4,7,Nplot(k)) "Y4tt0I
% pcolor(x,x,z), shading interp xZBmQ:s',S
% set(gca,'XTick',[],'YTick',[]) \07
s'W U
% axis square /z6NJ2jb
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) d!!5'/tmS
% end an.)2*u
% ]kR 93
% See also ZERNPOL, ZERNFUN2. +,If|5>(
'H:lR1(,
% Paul Fricker 11/13/2006 'R= r9_%
6X)8vQH
EY':m_7W
% Check and prepare the inputs: IeE+h-3p
% ----------------------------- ]x! vPIyq
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) amOBUD5Ld`
error('zernfun:NMvectors','N and M must be vectors.') "h\{PoG
end %
`\8z
u[y>DPPx
if length(n)~=length(m) yjc:+Y{5'
error('zernfun:NMlength','N and M must be the same length.') >AV?g8B;
end WC0@g5;1[
Bx;bc
n = n(:); (',G
Ako
m = m(:); u
JGYXlLE
if any(mod(n-m,2)) XswEAz0=
error('zernfun:NMmultiplesof2', ... %=%jy
'All N and M must differ by multiples of 2 (including 0).') [[ HXOPaV
end ^<7)w2ns
>PfYHO
if any(m>n) }B^KV#_{S
error('zernfun:MlessthanN', ... L3'o2@$
'Each M must be less than or equal to its corresponding N.') gtJUQu p2
end >i-cR4=LL{
$D1Pk
if any( r>1 | r<0 ) 1P@&xcvS\
error('zernfun:Rlessthan1','All R must be between 0 and 1.') =#SKN\4
end U5%EQc-"P
e%o6s+"
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) BB>3Kj:|
error('zernfun:RTHvector','R and THETA must be vectors.') aV,>y"S
end !Tr +: SM
P%(pbG-X.
r = r(:); /EA4-#uw
theta = theta(:); D\bW' k]!
length_r = length(r); 6(VCQ{
if length_r~=length(theta) AS'a'x>8>,
error('zernfun:RTHlength', ... x/R|i%u-s
'The number of R- and THETA-values must be equal.') 8it|yK.G@&
end qJKD|=_
P10`X&
% Check normalization: O\-cLI<h2
% -------------------- JIQS'r
if nargin==5 && ischar(nflag) z{7&= $
isnorm = strcmpi(nflag,'norm'); zH.DyD5T;
if ~isnorm |r$Vb$z
error('zernfun:normalization','Unrecognized normalization flag.') -6aGcPq
end 8J7xs6@
else
9Ld3
isnorm = false; &Dgho
end "n=`{~F
Da0E)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :I1)=8lO
% Compute the Zernike Polynomials (G*--+Gn
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YR=<xn;m.
n'U*8ID
% Determine the required powers of r: AM#VRRTU
% ----------------------------------- dyC: Mko=
m_abs = abs(m); l%oie1g l
rpowers = []; kzMCI)>"
for j = 1:length(n) Z;P[)q
rpowers = [rpowers m_abs(j):2:n(j)]; { %vX/Ek
end ~6Vs>E4G
rpowers = unique(rpowers); (&=-o(
P*BA
% Pre-compute the values of r raised to the required powers, 5rr7lwWZ
% and compile them in a matrix: ]3BTL7r
% ----------------------------- *1$rg?yGf
if rpowers(1)==0 S`)KC-
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); O$V
6QJ
rpowern = cat(2,rpowern{:}); W7c(]
tg.
rpowern = [ones(length_r,1) rpowern]; F<M#T
else qH: `
O%,
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N4}j,{#
rpowern = cat(2,rpowern{:}); .DMeWi
end $pyM<:*L&<
DGz'Dn
% Compute the values of the polynomials: H 0aDWFWS
% -------------------------------------- ]8NNxaE3 (
y = zeros(length_r,length(n)); &.y:QVR,!
for j = 1:length(n) 5? &k? v@
s = 0:(n(j)-m_abs(j))/2; bc}U &X<
pows = n(j):-2:m_abs(j); . p^='Kz?
for k = length(s):-1:1 ;EP 7q[
p = (1-2*mod(s(k),2))* ... RY8;bUSR
prod(2:(n(j)-s(k)))/ ... H[wJ; l
prod(2:s(k))/ ... Py^F},?J
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... $W<H[k&(B
prod(2:((n(j)+m_abs(j))/2-s(k))); "CapP`:
idx = (pows(k)==rpowers); ^/47*vcN5
y(:,j) = y(:,j) + p*rpowern(:,idx); vvU;55-
end "WdGY*r
~}q"M[{
if isnorm dQVV0)z
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); cKEf- &~
end MUh)
end BNw^ _j1
% END: Compute the Zernike Polynomials #I|Vyufw
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iNUisl
7L|w~l7R~
% Compute the Zernike functions: BC ]^BKP
% ------------------------------ hZ Gr/5f
idx_pos = m>0; 2f9~:.NgF
idx_neg = m<0; #O6SEK|Z
kj~)#KDN
z = y; (cAv :EKpo
if any(idx_pos) DmEmv/N=
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Oh9wBV
end 6a[D]46y,2
if any(idx_neg) ,> A9OTSN\
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ;{
u{FL
end iT1"Le/N
$v#Q'?jE
% EOF zernfun