切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11691阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 6Te}"t>  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! } -vBRY  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 zRu`[b3u<  
    function z = zernfun(n,m,r,theta,nflag) tTH%YtG  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. u`@f ~QP0  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gN(hv.nQ  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 1RbYPX  
    %   unit circle.  N is a vector of positive integers (including 0), and (OB8vTRXP  
    %   M is a vector with the same number of elements as N.  Each element ]5f M?:<l  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) }yw;L(3  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, + nS/jW  
    %   and THETA is a vector of angles.  R and THETA must have the same XL^N5  
    %   length.  The output Z is a matrix with one column for every (N,M) F5+_p@ !i  
    %   pair, and one row for every (R,THETA) pair. %wW5)Y I  
    % ]Rh( =bg  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike q}$=bR1+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), JF%=Bc$C  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral (Fzh1#  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, lM^!^6=v0l  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized HY;?z `=  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. b U]N^og^  
    % [IFRwQ^%_O  
    %   The Zernike functions are an orthogonal basis on the unit circle. *t{c}Y&@  
    %   They are used in disciplines such as astronomy, optics, and 2?iOB6  
    %   optometry to describe functions on a circular domain. WV1 Z  
    % xsDa!  
    %   The following table lists the first 15 Zernike functions. -!,]Y10  
    % 8$ZSF92C  
    %       n    m    Zernike function           Normalization WWW#s gM%  
    %       -------------------------------------------------- 3D{4vMm X  
    %       0    0    1                                 1 Ln2C#Uf  
    %       1    1    r * cos(theta)                    2 i i@1!o  
    %       1   -1    r * sin(theta)                    2 v\(m"|4(i  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) k(z<Bm  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Z,!Xxv;4  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 1{x~iZa  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 8='21@wrN  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) t"/"Ge#a  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) )_*a7N!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) M |?p3%  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) uuYH6bw*d  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2~WFLD  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) I"32[?0 (;  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xPMyG);  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) P^3m:bE]  
    %       -------------------------------------------------- ]Wd`GI  
    % I49l2>  
    %   Example 1: `JWYPsWk  
    % e9@fQ  
    %       % Display the Zernike function Z(n=5,m=1) YD46Z~$  
    %       x = -1:0.01:1; L\Fu']l  
    %       [X,Y] = meshgrid(x,x); E)Qh]:<2v  
    %       [theta,r] = cart2pol(X,Y); b^,Mw8KsO  
    %       idx = r<=1; =HV-8C]  
    %       z = nan(size(X)); f:[d]J|  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); s>@#9psm  
    %       figure U++~3e@l  
    %       pcolor(x,x,z), shading interp I0w@S7  
    %       axis square, colorbar rw8J:?0x  
    %       title('Zernike function Z_5^1(r,\theta)') j&[.2PW\  
    % J4[x,(iq(  
    %   Example 2:  m-'(27  
    % ?Tc)f_a  
    %       % Display the first 10 Zernike functions foz5D9sQ  
    %       x = -1:0.01:1; Z0"&  
    %       [X,Y] = meshgrid(x,x); $}^\=p}X  
    %       [theta,r] = cart2pol(X,Y); MeI2i  
    %       idx = r<=1; NB+$ym  
    %       z = nan(size(X)); \'??  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 7"n1it[RJ8  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; #OD@q;  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; n-y^ 7'v  
    %       y = zernfun(n,m,r(idx),theta(idx)); VX!Y`y^a  
    %       figure('Units','normalized') F8S~wW=\w  
    %       for k = 1:10 *{.&R9#7U'  
    %           z(idx) = y(:,k); y4/>Ol]  
    %           subplot(4,7,Nplot(k)) PUE'Rr(Q  
    %           pcolor(x,x,z), shading interp (I7&8$Zl  
    %           set(gca,'XTick',[],'YTick',[]) 9xK4!~5V  
    %           axis square mI7rx`4H  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Fp5NRM*-!  
    %       end iM/*&O}  
    % ayH%  qp  
    %   See also ZERNPOL, ZERNFUN2. 5:l*Ib:s7  
    uXQ7eXX  
    %   Paul Fricker 11/13/2006 yZ;k@t_WRD  
    kJurUDo  
    XW UvP  
    % Check and prepare the inputs: v?YdLR  
    % ----------------------------- cXb @H#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _H4$$  
        error('zernfun:NMvectors','N and M must be vectors.') Q(=Vk~v  
    end .*EOVo9S  
    "[Qb'9/Jc  
    if length(n)~=length(m) .7pGx*WH^Y  
        error('zernfun:NMlength','N and M must be the same length.') SRt$4EL21  
    end FVsu8z u  
    *xX( !t'  
    n = n(:); FXOT+9bg  
    m = m(:); Gut J_2f^9  
    if any(mod(n-m,2)) I~p8#<4#b  
        error('zernfun:NMmultiplesof2', ... 9n>$}UI\  
              'All N and M must differ by multiples of 2 (including 0).') T6h;Y  
    end t$]&,ucW#  
    `ICcaRIN8I  
    if any(m>n) lFp!XZ!  
        error('zernfun:MlessthanN', ... ASzzBR;?_  
              'Each M must be less than or equal to its corresponding N.') $6:XsrV\a  
    end a%7"_{s1  
    ?%\mQmjas  
    if any( r>1 | r<0 ) % ~#!NX  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') N,j>;x3xT  
    end #&^ZQs<  
    <a8#0ojm  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?%cn'=>ZI  
        error('zernfun:RTHvector','R and THETA must be vectors.') j+_S$T8w  
    end n0rerI[R  
    G 2%  
    r = r(:); awj+#^  
    theta = theta(:); 8- dRdQu]  
    length_r = length(r); [c&2i`C  
    if length_r~=length(theta) ]j& FbP)3  
        error('zernfun:RTHlength', ... 5TXg;v#Z  
              'The number of R- and THETA-values must be equal.') -W|*fKN`3  
    end $.oOG"u0]  
    {E!$ xY8  
    % Check normalization: ]s*5[ =uc2  
    % -------------------- 2}^+ ]5  
    if nargin==5 && ischar(nflag) b7,  
        isnorm = strcmpi(nflag,'norm'); \e?.h m q  
        if ~isnorm g~~m' ^  
            error('zernfun:normalization','Unrecognized normalization flag.') )-0[ra]  
        end -L@]I$Yo  
    else d32@M~vD  
        isnorm = false; 90Xt_$_}s  
    end ]UK`?J=t2g  
    h6g=$8E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "Jb3&qdU  
    % Compute the Zernike Polynomials %lXbCE:[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WI,40&<  
    q&u$0XmV  
    % Determine the required powers of r: ?ouV  
    % ----------------------------------- ( FM4 ^#6  
    m_abs = abs(m); ,/~[S  
    rpowers = []; YV*b~6{d  
    for j = 1:length(n) pPoH5CzcK  
        rpowers = [rpowers m_abs(j):2:n(j)]; .j:i&j(  
    end [!^cd%l  
    rpowers = unique(rpowers); W&<g} N+  
    2bWUa~%B  
    % Pre-compute the values of r raised to the required powers, 3f_i1|>)'  
    % and compile them in a matrix: LRWOBD  
    % ----------------------------- ,,S9$@R  
    if rpowers(1)==0 }.'Z =yy  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Zotz?j VVr  
        rpowern = cat(2,rpowern{:}); ?p(kh^z  
        rpowern = [ones(length_r,1) rpowern]; d&hD[v  
    else 0[.3Es:_  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?RDO] I>  
        rpowern = cat(2,rpowern{:}); ]22C )<  
    end Hfke  
    a~WqUL  
    % Compute the values of the polynomials: S0F@#mSQ?  
    % -------------------------------------- )B81i! q  
    y = zeros(length_r,length(n)); QW2?n`Fa9-  
    for j = 1:length(n) k,T_e6(  
        s = 0:(n(j)-m_abs(j))/2; w5,6$#  
        pows = n(j):-2:m_abs(j); ?gLAWz  
        for k = length(s):-1:1 *MI)]S  
            p = (1-2*mod(s(k),2))* ... ~]4kkm7Y  
                       prod(2:(n(j)-s(k)))/              ... .vK.XFZ8R  
                       prod(2:s(k))/                     ... QeL{Wa-2F  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... WJAYM2 6\  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 3g;T?E  
            idx = (pows(k)==rpowers); P 4QkY#v  
            y(:,j) = y(:,j) + p*rpowern(:,idx); tR<L`?4  
        end L%f;J/  
         b7!UZu]IEv  
        if isnorm m*gj|1k  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); C,.-Q"juH  
        end ms7SoY bSu  
    end ?s%v 3T  
    % END: Compute the Zernike Polynomials ' X}7]y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AQe!Sqg'  
    ?NlSeh  
    % Compute the Zernike functions: K}Na3}m  
    % ------------------------------ U%q:^S%#eG  
    idx_pos = m>0; ~Zmi(Ra  
    idx_neg = m<0; M\ dO({o  
    _#FIay\ahB  
    z = y; N#UXP5C(  
    if any(idx_pos) rCE;'? Y  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (`pNXQ0n  
    end ".E5t@ }?m  
    if any(idx_neg) ?gN9kd)  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Mb/L~gd"  
    end gH'_ymT= 3  
    /1[gn8V691  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) s^cc@C  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ?+Q$#pb  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 6-]h5L]  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 7]s%r ya  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, f;wc{qy  
    %   and THETA is a vector of angles.  R and THETA must have the same UiIF6-ZZ!  
    %   length.  The output Z is a matrix with one column for every P-value, +T2HE\  
    %   and one row for every (R,THETA) pair. B+Z13;}B  
    % k2p'G')H  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike HIGNRm  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) q^*6C[G B  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 'gDe3@ci!  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 4P%m>[   
    %   for all p. xnbsg!`;7W  
    % @rwU 1T33  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 DjwQ`MA  
    %   Zernike functions (order N<=7).  In some disciplines it is {6O0.}q]&  
    %   traditional to label the first 36 functions using a single mode FJT1i@N  
    %   number P instead of separate numbers for the order N and azimuthal ru{f]|  
    %   frequency M. }lP5 GT2  
    % BS7J#8cu  
    %   Example: :Q-oV8t{  
    % @Tr&`Hi  
    %       % Display the first 16 Zernike functions 7F(5)Utt  
    %       x = -1:0.01:1; 6>,# 6{?jl  
    %       [X,Y] = meshgrid(x,x); nU/;2=f<  
    %       [theta,r] = cart2pol(X,Y); OJ/SYZ.r  
    %       idx = r<=1; *Hs*,}MS  
    %       p = 0:15; CCqT tp  
    %       z = nan(size(X)); _faJB@a_  
    %       y = zernfun2(p,r(idx),theta(idx)); 2*u.3,aW  
    %       figure('Units','normalized') Z^# ]#f  
    %       for k = 1:length(p) +.@c{5J<  
    %           z(idx) = y(:,k); "K?Q  
    %           subplot(4,4,k) ntGq" o  
    %           pcolor(x,x,z), shading interp .N"~zOV<#  
    %           set(gca,'XTick',[],'YTick',[]) (A{NF(   
    %           axis square NfwYDY  
    %           title(['Z_{' num2str(p(k)) '}']) i2PZ'.sL  
    %       end zZ=$O-&%  
    % q4ipumy*  
    %   See also ZERNPOL, ZERNFUN. XoItV  
    9?EVQ  
    %   Paul Fricker 11/13/2006 |nY~ZVTt/  
    mp\%M 1<  
    )~ z Z'^  
    % Check and prepare the inputs: V=}1[^  
    % ----------------------------- >F3.c%VU]w  
    if min(size(p))~=1 A#DR9Eq  
        error('zernfun2:Pvector','Input P must be vector.') U<Jt50O  
    end 6E|S  
    eH <Jng  
    if any(p)>35 kus}W  J  
        error('zernfun2:P36', ... ;6m;M63z  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 6I|A- h  
               '(P = 0 to 35).']) #?&0D>E?k  
    end 8h.V4/?  
    `Ko[r R+  
    % Get the order and frequency corresonding to the function number: H}nJbnU  
    % ---------------------------------------------------------------- OM:v`<T!z  
    p = p(:); 8S  U%  
    n = ceil((-3+sqrt(9+8*p))/2); 7[KCWJ  
    m = 2*p - n.*(n+2); v01#>,R  
    @`|)Ia<  
    % Pass the inputs to the function ZERNFUN: E5UcZ7  
    % ----------------------------------------  t;47(U  
    switch nargin 9y~"|t  
        case 3 4# )6.f~  
            z = zernfun(n,m,r,theta); P5?<_x0v4b  
        case 4 ,X/-  
            z = zernfun(n,m,r,theta,nflag); }9&9G%  
        otherwise n%$ &=-Fk  
            error('zernfun2:nargin','Incorrect number of inputs.') lS9n@  
    end #I%s 3  
    ^Mytp>7  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) /Ox)|) l  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. &; >4N"]  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ;n*J$B  
    %   order N and frequency M, evaluated at R.  N is a vector of jv&+<j`r  
    %   positive integers (including 0), and M is a vector with the Q`6i=mB;  
    %   same number of elements as N.  Each element k of M must be a mEDpKWBk  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ~UPZ<  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is u$\a3yi  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix +nU.p/cK+\  
    %   with one column for every (N,M) pair, and one row for every FpVV4D  
    %   element in R. !B^K[2`)N  
    % o4Q3<T7nI  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- >i~^TY-&  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is K=\&+at1  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to L *Y|ey  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 0I%: BT  
    %   for all [n,m]. n1J]p#nCa.  
    % 2`Gv5}LfyR  
    %   The radial Zernike polynomials are the radial portion of the NFyMY#\]  
    %   Zernike functions, which are an orthogonal basis on the unit wE Qi0!  
    %   circle.  The series representation of the radial Zernike V4K'R2t  
    %   polynomials is (bm;*2  
    % ]QrR1Rg  
    %          (n-m)/2 $p$dKH  
    %            __ J^zi2 jtV  
    %    m      \       s                                          n-2s .v])S}K  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 4hAJ!7[A.  
    %    n      s=0 S; /. %  
    % oXgdLtsu  
    %   The following table shows the first 12 polynomials. OJ3UE(,I=  
    % Ly #_?\bn  
    %       n    m    Zernike polynomial    Normalization yrr) y  
    %       --------------------------------------------- g22gIj]  
    %       0    0    1                        sqrt(2) 9&  
    %       1    1    r                           2 I%;Jpe  
    %       2    0    2*r^2 - 1                sqrt(6) K&_Uk548  
    %       2    2    r^2                      sqrt(6) a!,r46>$H  
    %       3    1    3*r^3 - 2*r              sqrt(8) Oh; Jw  
    %       3    3    r^3                      sqrt(8) I/uy>*  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) hIU(P Dl4  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Yl({)qK{  
    %       4    4    r^4                      sqrt(10) ;YH[G;aJ  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) aC^$*qN-)  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 9- )qZ  
    %       5    5    r^5                      sqrt(12) {IM! Wb  
    %       --------------------------------------------- $c9k*3{<+A  
    % PCE4W^ns  
    %   Example: 1FERmf? ?d  
    % 5Ec/(-F  
    %       % Display three example Zernike radial polynomials l-O$m  
    %       r = 0:0.01:1; ls|LCQPx  
    %       n = [3 2 5]; 6X_\Ve  
    %       m = [1 2 1]; :b /J\  
    %       z = zernpol(n,m,r); 2qU&l|>  
    %       figure zx%X~U   
    %       plot(r,z) X0$@Ik  
    %       grid on = r4!V>  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 4s.]M>Yb  
    % :1aL ?  
    %   See also ZERNFUN, ZERNFUN2. 7"2b H  
    &m'kI  
    % A note on the algorithm. |g&ym Fc  
    % ------------------------ w*!wQ,o  
    % The radial Zernike polynomials are computed using the series C"eXs#A  
    % representation shown in the Help section above. For many special &|o$=Ad  
    % functions, direct evaluation using the series representation can w1^QD^KnH  
    % produce poor numerical results (floating point errors), because wij,N(,H  
    % the summation often involves computing small differences between =$^MQ\S0p  
    % large successive terms in the series. (In such cases, the functions kfrY1  
    % are often evaluated using alternative methods such as recurrence q mQfLz7&x  
    % relations: see the Legendre functions, for example). For the Zernike -_0?_Cb  
    % polynomials, however, this problem does not arise, because the bbN%$/d  
    % polynomials are evaluated over the finite domain r = (0,1), and ?J!3j{4e  
    % because the coefficients for a given polynomial are generally all S2^>6/[xM  
    % of similar magnitude. raUs%Y3  
    % ukAKFc^)k  
    % ZERNPOL has been written using a vectorized implementation: multiple H[WQ=){  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] $dg9z}D  
    % values can be passed as inputs) for a vector of points R.  To achieve R.RSQk7;  
    % this vectorization most efficiently, the algorithm in ZERNPOL dt,3"J  
    % involves pre-determining all the powers p of R that are required to 3Qn!y\#  
    % compute the outputs, and then compiling the {R^p} into a single H Sz" tN  
    % matrix.  This avoids any redundant computation of the R^p, and 2U$"=:Cf  
    % minimizes the sizes of certain intermediate variables. LR&_2e^[  
    % D4Nu8Wr$  
    %   Paul Fricker 11/13/2006 {^ec(EsO#  
    -,# +`>w  
    QwWW! 8  
    % Check and prepare the inputs: ,T5u'";  
    % ----------------------------- r@}bDkx  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) TkRP3_b  
        error('zernpol:NMvectors','N and M must be vectors.') 5J.0&Dda  
    end F jrINxL7^  
    &"E lm  
    if length(n)~=length(m) oh-|'5+,;h  
        error('zernpol:NMlength','N and M must be the same length.') w=_Jc8/.  
    end Lxe^v/LsT  
    Oe!6){OG)  
    n = n(:); @!%n$>p/V  
    m = m(:); :1wrVU-?h  
    length_n = length(n); L36Yx7gT<  
    ;`j/D@H  
    if any(mod(n-m,2)) `wz[='yM  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 2& LQg=O  
    end ][@F  
    6ghx3_%w  
    if any(m<0) 6[P-Ny{z  
        error('zernpol:Mpositive','All M must be positive.') O1y|v[-BW  
    end |\9TvN^$`  
    Im72Vt:p-  
    if any(m>n) 9U_ks[Qa  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') :}}%#/nd  
    end 7}o/:  
    dJuD|9R  
    if any( r>1 | r<0 ) C*kK)6v `  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 3'I^lc  
    end MXp3g@Cz  
    Nh!_l  
    if ~any(size(r)==1) RYR-K^;R  
        error('zernpol:Rvector','R must be a vector.') GHc/Zc"iX  
    end LDj<?'  
    hsNWqk qys  
    r = r(:); %j,iAUE<  
    length_r = length(r); TpfZ>d2  
    |`O5Xs1{B  
    if nargin==4 hvV_xD8|  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); :z"!kzdJ  
        if ~isnorm L=!of{4Z(}  
            error('zernpol:normalization','Unrecognized normalization flag.') YlK7;yrq(  
        end #KpY6M-H  
    else Gwec 4D  
        isnorm = false; Sb&lhgW]c  
    end k[|~NLB8  
    m?CZQq,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !7p}C-RZp  
    % Compute the Zernike Polynomials l&(l$@t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b'p4wE>  
    (c\hy53dP  
    % Determine the required powers of r: Xz{~3ih  
    % ----------------------------------- UmU:j@ xvg  
    rpowers = []; 8G^<[`.@j  
    for j = 1:length(n) a$11PBi[9  
        rpowers = [rpowers m(j):2:n(j)]; B|=|.qp$)  
    end f i~I@KJ>  
    rpowers = unique(rpowers); - xm{&0e)  
    q3e8#R)l  
    % Pre-compute the values of r raised to the required powers, XVVD 0^ Q  
    % and compile them in a matrix: P87# CAN  
    % ----------------------------- D)$8 W[  
    if rpowers(1)==0 \1%l^dE@  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &p(0K4:  
        rpowern = cat(2,rpowern{:}); PH3 >9/H  
        rpowern = [ones(length_r,1) rpowern]; e)^j+ l  
    else 7N8H)X  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); q ?j|K|%   
        rpowern = cat(2,rpowern{:}); "?}uQ5f  
    end . )XP\ m\  
    Qt>>$3]!!  
    % Compute the values of the polynomials: MHj,<|8Q  
    % -------------------------------------- n`7f"'/:  
    z = zeros(length_r,length_n); u eb-2[=  
    for j = 1:length_n afEF]i  
        s = 0:(n(j)-m(j))/2; NaUr!s  
        pows = n(j):-2:m(j); g(x9S'H3l  
        for k = length(s):-1:1 i&Fiq&V)[  
            p = (1-2*mod(s(k),2))* ... n]Li->1  
                       prod(2:(n(j)-s(k)))/          ... -~f511<  
                       prod(2:s(k))/                 ... 1QqHF$S  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... E;Y;r"  
                       prod(2:((n(j)+m(j))/2-s(k))); f2I6!_C!+  
            idx = (pows(k)==rpowers); ;az5ZsvN D  
            z(:,j) = z(:,j) + p*rpowern(:,idx); l1=JrpCan  
        end +/{L#e>   
         {D&9UZm  
        if isnorm ->{d`-}m'  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); xG2F!WeF  
        end ShOX<Fb&  
    end H6TD@kL9Wr  
    DPn=n9n2  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  [a o U5;7  
    )Dp/('Z2  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 @pI5lh  
    _{vkX<s  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)