非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 6hK"k
function z = zernfun(n,m,r,theta,nflag) HqBPY[;s
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. (Y)h+}n5N
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %#9 ~V
% and angular frequency M, evaluated at positions (R,THETA) on the 0Q >|s_
% unit circle. N is a vector of positive integers (including 0), and .M2&ad :
% M is a vector with the same number of elements as N. Each element MF}Lv1/[-J
% k of M must be a positive integer, with possible values M(k) = -N(k) Ba0D"2CgY
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, kVnyX@
% and THETA is a vector of angles. R and THETA must have the same |vz;bJG
% length. The output Z is a matrix with one column for every (N,M) "S`wwl
% pair, and one row for every (R,THETA) pair. --`LP[ll
% !d.>r
7w
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]4mj 1g&C
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), G3+a+=e
% with delta(m,0) the Kronecker delta, is chosen so that the integral ;|QR-m2/
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, QV$dKjMS
% and theta=0 to theta=2*pi) is unity. For the non-normalized q&Wwtqc9
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. RCYbRR4y
% B:4qW[U#
% The Zernike functions are an orthogonal basis on the unit circle. 0t?<6-3`/
% They are used in disciplines such as astronomy, optics, and 9Fx z!-9m
% optometry to describe functions on a circular domain. t[,T}BCy.
% YO$b#
% The following table lists the first 15 Zernike functions. sDm},=X}
% XhAcC
% n m Zernike function Normalization w s>Iyw.u
% -------------------------------------------------- sFCs_u1tNN
% 0 0 1 1 I%>]!X
% 1 1 r * cos(theta) 2 FR^wDm$
% 1 -1 r * sin(theta) 2 |~LjH |*M
% 2 -2 r^2 * cos(2*theta) sqrt(6) s4`*0_n
% 2 0 (2*r^2 - 1) sqrt(3) !9 LAXM
% 2 2 r^2 * sin(2*theta) sqrt(6) ]#q7}Sd
% 3 -3 r^3 * cos(3*theta) sqrt(8) L_ qv<iM$
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Z?c=t-yqp
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) W?J*9XQ`
% 3 3 r^3 * sin(3*theta) sqrt(8) [pgkY!R?)
% 4 -4 r^4 * cos(4*theta) sqrt(10) dzNaow*0&V
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) I+?$4SC
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) _AHB|P I
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `[ ` *@O(y
% 4 4 r^4 * sin(4*theta) sqrt(10) #u5;utY:F
% -------------------------------------------------- 9hLmrYNM1
% < Gy!i/
% Example 1: M(WOxZ8
% ~uZLe\>K
% % Display the Zernike function Z(n=5,m=1) K[a<
% x = -1:0.01:1; &Yks,2:P
% [X,Y] = meshgrid(x,x); `{Di*
% [theta,r] = cart2pol(X,Y); +fCyR
% idx = r<=1; X`v79`g_
% z = nan(size(X)); u:H 3.5)%
% z(idx) = zernfun(5,1,r(idx),theta(idx)); y#Za|nt
% figure i2}=/
% pcolor(x,x,z), shading interp <\9Ijuq}k
% axis square, colorbar UNcJ=
% title('Zernike function Z_5^1(r,\theta)') 9Glfi@.
% ah"MzU)
% Example 2: O{cGk:
y
% \
[^)
WQ
% % Display the first 10 Zernike functions q,,>:]f#
% x = -1:0.01:1; - Zoo)
% [X,Y] = meshgrid(x,x); Hs`#{W{.
% [theta,r] = cart2pol(X,Y); I1 R\Ts@
% idx = r<=1; (VXx G/E3
% z = nan(size(X)); Or#+E2%1E
% n = [0 1 1 2 2 2 3 3 3 3]; `ToRkk&&>{
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; a.`JS
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ZJI1NCBZ
% y = zernfun(n,m,r(idx),theta(idx)); qqt.nrQ^
% figure('Units','normalized') cM<hG:4%wX
% for k = 1:10 MHr0CYyb.
% z(idx) = y(:,k); -2jBs-z
% subplot(4,7,Nplot(k)) Zc\h15+P
% pcolor(x,x,z), shading interp CMxjX
% set(gca,'XTick',[],'YTick',[]) {cyo0-9nv
% axis square EBDC '^
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vu'!-K=0
% end +?5Uy*$
% gC_s\WU
% See also ZERNPOL, ZERNFUN2. >upXt?
l;{N/cS
% Paul Fricker 11/13/2006 p`<e~[]a
B-ri}PA
e"s {_V
% Check and prepare the inputs: Th;gps%b
% ----------------------------- kG;eOp16R
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9p\wTzA
error('zernfun:NMvectors','N and M must be vectors.') x+*L5$;h
end "U5Ln2X{J
0q>NE<L
if length(n)~=length(m) K@j^gF/0B
error('zernfun:NMlength','N and M must be the same length.') mb~=Xyk&
end MNf @HG
& L.PU@
n = n(:); 6PQJgki
m = m(:); mcz(,u}
if any(mod(n-m,2)) =6Kv`
error('zernfun:NMmultiplesof2', ... kO,VayjT
'All N and M must differ by multiples of 2 (including 0).') l`M5'r]l
end ]g8i>,G
VNxpOoV=S
if any(m>n) =N@)CB7a
error('zernfun:MlessthanN', ... ZXsY-5$#d-
'Each M must be less than or equal to its corresponding N.') u.pKK
end vzohq1r5
\\2k}TsB
if any( r>1 | r<0 ) =UB*xm%!
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Oj4u!SY\j
end 7i+!^Qj?y
m>abK@5na
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 0x>/ 6 <<
error('zernfun:RTHvector','R and THETA must be vectors.') C$'D]fX
end 68J 9T^84
iKF$J3a\2f
r = r(:); =;k+g?.@I
theta = theta(:); ^ =/?<C4
length_r = length(r); >TlW]st
if length_r~=length(theta) O7'<I|aD
error('zernfun:RTHlength', ... B
\_d5WJ<
'The number of R- and THETA-values must be equal.') V&mH#k
end Mf;|z0UX
j5,^9'
% Check normalization: 56bud3CVs
% -------------------- ]e@0T{!
if nargin==5 && ischar(nflag) c4ZuW_&:
isnorm = strcmpi(nflag,'norm'); 5M<'A=
if ~isnorm $IxU6=ajn
error('zernfun:normalization','Unrecognized normalization flag.') S/nj5Lh
end \ifK~?
else B0b[p*gIl
isnorm = false; "W &:j:o
end |b$>68:
WNn[L=f
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *]}CSZ[>
% Compute the Zernike Polynomials cQ3W;F8|n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +{")E)
(xZr ]v ]U
% Determine the required powers of r: ,?xLT2>J_
% ----------------------------------- Ci7P%]9
m_abs = abs(m); O6m.t%*
rpowers = []; {)
:%WnM9
for j = 1:length(n) %]a
@A8o0
rpowers = [rpowers m_abs(j):2:n(j)]; X$7Oo^1;
end vU_d=T%$
rpowers = unique(rpowers); }J ei$0x
.>mH]/]m
% Pre-compute the values of r raised to the required powers, zb>f;[
% and compile them in a matrix: V;h=8C 5J
% ----------------------------- oUJj5iu}
if rpowers(1)==0 Vs#"SpH{'
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); mR{CVU
rpowern = cat(2,rpowern{:}); @4IW=V
rpowern = [ones(length_r,1) rpowern]; YSR mt/
else sU) TXL'_!
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (C8 U
rpowern = cat(2,rpowern{:});
]pW86L%
end H~A"C'P3#
A}t %;V2
% Compute the values of the polynomials: C`\9cej
% -------------------------------------- "+=Pp
y = zeros(length_r,length(n)); Y/.AUN
Z
for j = 1:length(n) FJP< bREQ
s = 0:(n(j)-m_abs(j))/2; HXQ e\r
pows = n(j):-2:m_abs(j); +c^_^Z$_4o
for k = length(s):-1:1 Iz
DG&c
p = (1-2*mod(s(k),2))* ... "j{i,&Y$_
prod(2:(n(j)-s(k)))/ ... xK(IS:HJ*
prod(2:s(k))/ ... O^5UB~
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... T4mv%zzS
prod(2:((n(j)+m_abs(j))/2-s(k))); >^a$
idx = (pows(k)==rpowers); 1EVfowIl
y(:,j) = y(:,j) + p*rpowern(:,idx); <fN;
xIB
end "jMqt9ysN
C:]s;0$3'9
if isnorm KQ&Y2l1*>>
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); "`pNH'
end aF!E x
end Q"40#RFA
% END: Compute the Zernike Polynomials et=7}K]l
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .%q$d d>>
]kx-,M(
% Compute the Zernike functions: Yc^%zxub
% ------------------------------ I%oRvg|q
idx_pos = m>0; o]Gguw5W{
idx_neg = m<0; 5iVQc -m&
l^\(ss0~
z = y; v:E;^$6Vn
if any(idx_pos) "e 1wr
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (S`6Q
end NUCiY\td
if any(idx_neg) cFK @3a
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); GcT;e5D
end F/>*Ifs
lwc5S`"
% EOF zernfun