非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Ka|,
qkb
function z = zernfun(n,m,r,theta,nflag) P{ HYZg
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. y)]L>o~
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ^j>w<ljzz
% and angular frequency M, evaluated at positions (R,THETA) on the 3sF^6<E
% unit circle. N is a vector of positive integers (including 0), and t~(|2nTO5
% M is a vector with the same number of elements as N. Each element Exu>%
% k of M must be a positive integer, with possible values M(k) = -N(k) 6<>T{2b:(p
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Yp(F}<f?
% and THETA is a vector of angles. R and THETA must have the same .QVZ!
% length. The output Z is a matrix with one column for every (N,M) SE;Yb'
% pair, and one row for every (R,THETA) pair. lS!uL9t.
% RwyRPc_
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike h-+GS%
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), z [9f
% with delta(m,0) the Kronecker delta, is chosen so that the integral f&ri=VJY\T
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 75?z" i
% and theta=0 to theta=2*pi) is unity. For the non-normalized $7
FT0?kG
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. i?0+f}5<p
% ;.EW7`)Z
% The Zernike functions are an orthogonal basis on the unit circle. 2n|]&D3V"'
% They are used in disciplines such as astronomy, optics, and |jT^[q(z
% optometry to describe functions on a circular domain. \[yg f6#[
% XjINRC8^4
% The following table lists the first 15 Zernike functions. B;=-h(E}vJ
% kD.KZV
% n m Zernike function Normalization 9Impp5`/B
% -------------------------------------------------- U\~9YX8
% 0 0 1 1 H)VzPe# {
% 1 1 r * cos(theta) 2 'wm :Xa
% 1 -1 r * sin(theta) 2 &upM,Jsr*
% 2 -2 r^2 * cos(2*theta) sqrt(6) L$rMfeS
% 2 0 (2*r^2 - 1) sqrt(3) >xB[k-C4
% 2 2 r^2 * sin(2*theta) sqrt(6) .`@)c/<0
% 3 -3 r^3 * cos(3*theta) sqrt(8) :+*q,lX8
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) i$CN{c*
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 6G0Y,B7&
% 3 3 r^3 * sin(3*theta) sqrt(8) YRRsbm{
% 4 -4 r^4 * cos(4*theta) sqrt(10) TpIx!R9
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pB0p?D)n
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) $vjl-1x&
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {2,vxGi
% 4 4 r^4 * sin(4*theta) sqrt(10) YggeKN
% -------------------------------------------------- _`- trE.
% ":!7R<t
% Example 1: 'ugc=-0pd
% MFzJ 8^.1R
% % Display the Zernike function Z(n=5,m=1) [QZ g=."
% x = -1:0.01:1; su\iUi
% [X,Y] = meshgrid(x,x); R;l;;dC=
% [theta,r] = cart2pol(X,Y); K~6,xZlDWM
% idx = r<=1; bbe$6x wi
% z = nan(size(X)); 1r?hRJ:'
% z(idx) = zernfun(5,1,r(idx),theta(idx)); vmsrypm
% figure 734f&2
% pcolor(x,x,z), shading interp 2>+(OL4l
% axis square, colorbar 1=U NA :t<
% title('Zernike function Z_5^1(r,\theta)') s:ZYiZ-
% Q}6!t$Vk
% Example 2: qSA]61U&
% /9@[gv
A
% % Display the first 10 Zernike functions ms%RNxU4:
% x = -1:0.01:1; qEJ#ce]G
% [X,Y] = meshgrid(x,x); EJ@&vuDd$
% [theta,r] = cart2pol(X,Y); 0Fc^c[
% idx = r<=1; }huFv*<@'
% z = nan(size(X)); CR8szMa
% n = [0 1 1 2 2 2 3 3 3 3]; ATzFs]~K;
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; V]Z!x.x"=y
% Nplot = [4 10 12 16 18 20 22 24 26 28]; RzOcz=A}
% y = zernfun(n,m,r(idx),theta(idx)); dtx3;d<NsJ
% figure('Units','normalized')
kJ[r.)HU
% for k = 1:10 {16]8-pe
% z(idx) = y(:,k); ? dh
% subplot(4,7,Nplot(k)) AC&)FY
% pcolor(x,x,z), shading interp ;1AXu/
% set(gca,'XTick',[],'YTick',[]) -\[H>)z]RB
% axis square $+
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) r\T'_wo
% end f>hA+
% Ek6z[G`
O
% See also ZERNPOL, ZERNFUN2. hZ`<ID
/N9ct4 {^
% Paul Fricker 11/13/2006
m"/ o4
Aw$+Ew[8 2
Lvd es.0|
% Check and prepare the inputs: q5xF~SQGw2
% ----------------------------- w<&R|= 93
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Lm3~< vP1e
error('zernfun:NMvectors','N and M must be vectors.') .L@gq/x)
end z3Zo64V~7
g^:
&Dh
if length(n)~=length(m) :i9=Wj
error('zernfun:NMlength','N and M must be the same length.') 0PD=/fh[
end A9_}RJ9
l0w<NZF
n = n(:); IhjZ{oV/@
m = m(:); hN^,'O
if any(mod(n-m,2)) z_8lf_N
error('zernfun:NMmultiplesof2', ... PC!g?6J
'All N and M must differ by multiples of 2 (including 0).') lG5KZ[/Or
end b.j$Gna>Q
R8-=N+hX
if any(m>n) 6,cJ3~!48
error('zernfun:MlessthanN', ... Ef$a&*)PH
'Each M must be less than or equal to its corresponding N.') g{^~g
end GIZw/L7Yb
$1 t
IC_
if any( r>1 | r<0 ) E?-
~*T
error('zernfun:Rlessthan1','All R must be between 0 and 1.') =Hbf()cN)
end v>0I=ut
C2{*m{
D
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) i__f%j`!W
error('zernfun:RTHvector','R and THETA must be vectors.') MfZamu5+F
end (YM2Cv{4
hVIv->
r = r(:); A <_{7F9
theta = theta(:); MY}/h@
length_r = length(r); )G),iy
if length_r~=length(theta) "`NAg
error('zernfun:RTHlength', ... uaE,F^p
'The number of R- and THETA-values must be equal.') (q@%eor&}
end )FN\jo!!.
6WX?Xc]$3
% Check normalization: -AN5LE9-
% -------------------- d$^@$E2f
if nargin==5 && ischar(nflag) a<J<Oc!
isnorm = strcmpi(nflag,'norm'); IIN,Da;hD
if ~isnorm <JIqkGeAi
error('zernfun:normalization','Unrecognized normalization flag.') ,rV;T";r
end L*OG2liJ
else `S+n,,l
isnorm = false; 1-$+@Xl
end Eh^gR`I
:{
iK 5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5"y)<VLJX
% Compute the Zernike Polynomials T+q5~~\d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zs6rd83#
B@v
(ZY
% Determine the required powers of r: orOq5?3
% ----------------------------------- aLl=L_
m_abs = abs(m); k
t'[
rpowers = []; d_!}9
for j = 1:length(n) !jf!\Uu[U
rpowers = [rpowers m_abs(j):2:n(j)]; {#~A `crO
end V-3;7
rpowers = unique(rpowers); AZf69z
YYL3a=;`a
% Pre-compute the values of r raised to the required powers, c/^l2CJ0
% and compile them in a matrix: +koW3>
% ----------------------------- yuC|_nL
if rpowers(1)==0 M3Qi]jO98
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); l$[,V:N
rpowern = cat(2,rpowern{:}); Sk:x.oOZ
rpowern = [ones(length_r,1) rpowern]; 0"Euf41
else "[-W(=
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); I5)$M{#a
rpowern = cat(2,rpowern{:}); e,Z[Nox
end 5`@yX[G
/;vHAtt;f
% Compute the values of the polynomials: nch#DE82
% -------------------------------------- el\xMe^SY
y = zeros(length_r,length(n)); )3 R5cq
for j = 1:length(n) YeVo=hYH@
s = 0:(n(j)-m_abs(j))/2; 2'@D0L
pows = n(j):-2:m_abs(j); );h
for k = length(s):-1:1 u@P1`E1Q
p = (1-2*mod(s(k),2))* ... aK_k'4YTm
prod(2:(n(j)-s(k)))/ ... :;c`qO4
prod(2:s(k))/ ... 7kITssVHI
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... tt
CC]
Q
prod(2:((n(j)+m_abs(j))/2-s(k))); O \gVB!x
idx = (pows(k)==rpowers); qA[cF$CIl)
y(:,j) = y(:,j) + p*rpowern(:,idx); )c?nh3D
end 8)2M%R\THn
z`eMb
if isnorm 24
.'+3
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); f3imkZ(
end R](cko=
end *K&
$9fah
% END: Compute the Zernike Polynomials Bz|/TV?X(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]omBq<ox'Y
6$kh5$[
% Compute the Zernike functions: |j{]6Nu
% ------------------------------ fQwLx
idx_pos = m>0; $Yp.BE<}
idx_neg = m<0; lIZ&'
z
k2.k}?w!JO
z = y; |WpJen*?Y
if any(idx_pos) Sx (E'?]
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :6Tv4ZUvcG
end So75h*e
if any(idx_neg) 4?+jvVq
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); KfYT
end jW4>WDN:
qq_ZkU@xg
% EOF zernfun