非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 K[9P{0hA
function z = zernfun(n,m,r,theta,nflag) NVf_#p"h
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. =C)2DW J1
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \K
Kt&bKL
% and angular frequency M, evaluated at positions (R,THETA) on the JRtDjZ4>
% unit circle. N is a vector of positive integers (including 0), and "%rU1/@#
% M is a vector with the same number of elements as N. Each element THCvcU?X
% k of M must be a positive integer, with possible values M(k) = -N(k) Gch3|e
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ~sWXd~\
% and THETA is a vector of angles. R and THETA must have the same Te^_gdf
% length. The output Z is a matrix with one column for every (N,M) >ca`0gu
% pair, and one row for every (R,THETA) pair. [cfXcl
% =%[vHQ\%
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $JK,9G[Vu
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P}!pmg6V
% with delta(m,0) the Kronecker delta, is chosen so that the integral bl|)/)6o
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, TD!c+${w
% and theta=0 to theta=2*pi) is unity. For the non-normalized 7Mh!@Rd_V
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. "1Y DT-I"
% Vk1 c14i>
% The Zernike functions are an orthogonal basis on the unit circle. bWZzb&
% They are used in disciplines such as astronomy, optics, and uxW<Eh4H*
% optometry to describe functions on a circular domain. %=vU
Z4
% ]==S?_.B3n
% The following table lists the first 15 Zernike functions. O&dh<
% gm: xtN
% n m Zernike function Normalization O%} hNTS"
% -------------------------------------------------- xu'b@G}12
% 0 0 1 1 ZYTBc#f
% 1 1 r * cos(theta) 2 Ui"3'OU'
% 1 -1 r * sin(theta) 2 BGO
pUy
% 2 -2 r^2 * cos(2*theta) sqrt(6) }$3pS:_N~
% 2 0 (2*r^2 - 1) sqrt(3) %e/L
.#0
% 2 2 r^2 * sin(2*theta) sqrt(6) _G^ 4KwYp
% 3 -3 r^3 * cos(3*theta) sqrt(8) O<?.iF%
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ~(.&nysZ-
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) StLbX?d 6
% 3 3 r^3 * sin(3*theta) sqrt(8) jhka;m
% 4 -4 r^4 * cos(4*theta) sqrt(10) YJZ`Clp?
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) aSfAu!j)
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) gJOD+~
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u&o<>d;)
% 4 4 r^4 * sin(4*theta) sqrt(10) :*tFW~<*b
% -------------------------------------------------- t"&qaG{
% 9_%??@^>
% Example 1: 8;(3fSNC
% #\3X;{
% % Display the Zernike function Z(n=5,m=1) )=#zMdK&
% x = -1:0.01:1; Tnnj8I1v
% [X,Y] = meshgrid(x,x); )gxZ &n6
% [theta,r] = cart2pol(X,Y); m*>gG{3;
% idx = r<=1; Okd7ua-f
% z = nan(size(X)); IG8I<+< o
% z(idx) = zernfun(5,1,r(idx),theta(idx)); nS^,Sq\Ak
% figure [5MV$)"!j
% pcolor(x,x,z), shading interp .JWN\\
% axis square, colorbar qoC<qn{.a
% title('Zernike function Z_5^1(r,\theta)') x\Kt}/9 7e
% Mg\8m-L^
% Example 2: 3?wL)6Uj8J
% lnrs4s Km
% % Display the first 10 Zernike functions Y\9zjewc
% x = -1:0.01:1; )!=X?fz,O
% [X,Y] = meshgrid(x,x); `t]8 [P5
% [theta,r] = cart2pol(X,Y); p3cb_
% idx = r<=1; e,@5`aYHM@
% z = nan(size(X)); 3s,a%GOk
% n = [0 1 1 2 2 2 3 3 3 3]; j=PM]
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; .oe\wJ S6
% Nplot = [4 10 12 16 18 20 22 24 26 28]; <s (o?U
% y = zernfun(n,m,r(idx),theta(idx)); ,+'VQa"]
% figure('Units','normalized') -N1X=4/fg
% for k = 1:10 ,y[w`Q\
% z(idx) = y(:,k); O
_^Y*!
% subplot(4,7,Nplot(k)) eOUEhpE
% pcolor(x,x,z), shading interp qfgw^2aUa
% set(gca,'XTick',[],'YTick',[]) |h2=9\:]
% axis square U%aDkC+M
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) j
k/-7/r
% end V`"Cd?R0Z
% i$XT Qr0K=
% See also ZERNPOL, ZERNFUN2. 'F^"+Xi
F<Z13]|
% Paul Fricker 11/13/2006 0$.;EGP
mS
&^xWPV
aj$&~-/
R
% Check and prepare the inputs: 6JE_rAab
% ----------------------------- oSkvTK$&i
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~Z$Ro/;l
error('zernfun:NMvectors','N and M must be vectors.') #i-b|J+%
end
lN[#+n
%ERR^
if length(n)~=length(m) z_nY>_L83*
error('zernfun:NMlength','N and M must be the same length.') _5v]69C#
end vH>s2\V"
r<