切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11705阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 7>j~;p{  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! JL1A3G  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 R2Fjv@Egk  
    function z = zernfun(n,m,r,theta,nflag) h<Aq|*  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~Ba=nn8Cq  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N K"0IWA  
    %   and angular frequency M, evaluated at positions (R,THETA) on the \x}\)m_7M<  
    %   unit circle.  N is a vector of positive integers (including 0), and 2]5{Xmmo9  
    %   M is a vector with the same number of elements as N.  Each element h= sNj  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) E&P2E3P  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Oo|PZ_P  
    %   and THETA is a vector of angles.  R and THETA must have the same \EySKQ=  
    %   length.  The output Z is a matrix with one column for every (N,M) PW5]+ |#  
    %   pair, and one row for every (R,THETA) pair. -^xbd_'  
    % QJVbt  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike i7Up AHd/  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), DW. w=L|5R  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral u=.8M`FxP  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, f82%nT  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized *5%vU|9b  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4 O!2nP  
    % C!VhVOy>d  
    %   The Zernike functions are an orthogonal basis on the unit circle. lvO6&sF1  
    %   They are used in disciplines such as astronomy, optics, and #J"xByQKK  
    %   optometry to describe functions on a circular domain. 0X=F(,>9  
    % ec&/a2M  
    %   The following table lists the first 15 Zernike functions. LjI`$r.B  
    % \Oeo"|  
    %       n    m    Zernike function           Normalization QrYF Lh  
    %       -------------------------------------------------- Wo 1x ZZ  
    %       0    0    1                                 1 M ^o_='\bE  
    %       1    1    r * cos(theta)                    2 f+h\RE=BGt  
    %       1   -1    r * sin(theta)                    2 q>$MqKWM  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) %F;BL8d  
    %       2    0    (2*r^2 - 1)                    sqrt(3) bv[#|^/  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) s@F&N9oh  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]vvYPRV76  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) }/cReX,so  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) =,6H2ew  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) &lQ%;)'  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) XQ#K1Z  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D.K""*ula  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) :ky`)F`  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) MCKN.f%lP  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 1<YoGm&  
    %       -------------------------------------------------- 'hpOpIsHa  
    % YB38K(  
    %   Example 1: tbFAVGcAM  
    % ZL( j5E  
    %       % Display the Zernike function Z(n=5,m=1) oac)na:O#  
    %       x = -1:0.01:1; 'Gy`e-yB  
    %       [X,Y] = meshgrid(x,x); ,;$OaJFT  
    %       [theta,r] = cart2pol(X,Y); F]ao Ty  
    %       idx = r<=1; xXe3E&  
    %       z = nan(size(X)); uX_H;,n  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 5Gz!Bf@!!  
    %       figure M/N8bIC! Q  
    %       pcolor(x,x,z), shading interp v:t;Uk^Y  
    %       axis square, colorbar 0*gvHVd/l  
    %       title('Zernike function Z_5^1(r,\theta)') D:z'`v0j  
    % ^A$=6=CX  
    %   Example 2:  {^N,=m\  
    % YuK+ N  
    %       % Display the first 10 Zernike functions ?I}RX~Tgg  
    %       x = -1:0.01:1; 'ygKP6M  
    %       [X,Y] = meshgrid(x,x); Q{[@n  
    %       [theta,r] = cart2pol(X,Y); ingG  
    %       idx = r<=1; Ykxk`SJ  
    %       z = nan(size(X)); cQ8[XNa  
    %       n = [0  1  1  2  2  2  3  3  3  3]; (95|DCL  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Cv**iW  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Gv-VDRS  
    %       y = zernfun(n,m,r(idx),theta(idx)); 7(Fas(j3  
    %       figure('Units','normalized') ,aP6ct  
    %       for k = 1:10 B7%K}|Qg  
    %           z(idx) = y(:,k); h^Wb<O`S  
    %           subplot(4,7,Nplot(k)) Sdu\4;(  
    %           pcolor(x,x,z), shading interp 8y LcTA$T  
    %           set(gca,'XTick',[],'YTick',[]) d_9 C m@  
    %           axis square _Mw3>GNl  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )w7vE\n3  
    %       end q$:1Xkl  
    % TM)INo^  
    %   See also ZERNPOL, ZERNFUN2. CMj =4e  
    ;UQGi}?CD  
    %   Paul Fricker 11/13/2006 ? i{?Q,  
    W A/dt2D|  
    )/raTD  
    % Check and prepare the inputs: AdDX_\V,*  
    % ----------------------------- oD2:19M@p  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) / Hr|u  
        error('zernfun:NMvectors','N and M must be vectors.')  r h*F  
    end htBA.eQ  
    Y~"tL(WfJl  
    if length(n)~=length(m) 69c4bT:b"  
        error('zernfun:NMlength','N and M must be the same length.') Z/Rp?Jz\j/  
    end IiPX`V>RC  
    y ``\^F  
    n = n(:); UqK.b}s  
    m = m(:); `<7\Zl  
    if any(mod(n-m,2)) ;s +/'(*  
        error('zernfun:NMmultiplesof2', ... Y{} ub]i  
              'All N and M must differ by multiples of 2 (including 0).') (?z?/4>7<  
    end csP4Oq\g[  
    K~L&Z?~|E  
    if any(m>n) 7`|'Om?'  
        error('zernfun:MlessthanN', ...  u r$  
              'Each M must be less than or equal to its corresponding N.') \{h_i FU!  
    end "wcaJ;Os  
    +( LH!\{^  
    if any( r>1 | r<0 ) h FU8iB`Q  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') l.}PxZ  
    end +7.|1x;C  
    j.=:S;  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 6n9/`D!  
        error('zernfun:RTHvector','R and THETA must be vectors.') ,r B(WKU  
    end 2yfU]`qN  
    Fb,*;M1'  
    r = r(:); Ao K9=F}  
    theta = theta(:); v5[gFY(?  
    length_r = length(r); AiHU*dp6  
    if length_r~=length(theta) "r^RfZ;  
        error('zernfun:RTHlength', ... w B)y@w4k  
              'The number of R- and THETA-values must be equal.') IdmP!(u  
    end g QBS#NY  
    EQyX!  
    % Check normalization: #2]*qgA4  
    % -------------------- KI9Pw]]{-  
    if nargin==5 && ischar(nflag) G&oD;NY@/  
        isnorm = strcmpi(nflag,'norm'); 7Z>vQf B  
        if ~isnorm >Na.C(DZ  
            error('zernfun:normalization','Unrecognized normalization flag.') 8m0*89HEu  
        end Snkb^Kt  
    else xp|1yud  
        isnorm = false; utck{]P  
    end bB<S4@jF8z  
    JD *HG]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )Xdq+$w.  
    % Compute the Zernike Polynomials %R GZu\p  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% , Q0Y} )  
    }83 8F&  
    % Determine the required powers of r: 8g -u  
    % ----------------------------------- (wu'FFJp#  
    m_abs = abs(m); d(^8#4  
    rpowers = []; qc(e3x  
    for j = 1:length(n) YP,,vcut  
        rpowers = [rpowers m_abs(j):2:n(j)]; k| OM?\  
    end ';R]`vWFe  
    rpowers = unique(rpowers); B EwaQvQ!  
    Ou[`)|>  
    % Pre-compute the values of r raised to the required powers, S(.J  
    % and compile them in a matrix: 1uw1(iL+  
    % ----------------------------- pCt2 -aam  
    if rpowers(1)==0 z}-CU GS  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _|e&zr  
        rpowern = cat(2,rpowern{:}); "|JbdI]%P  
        rpowern = [ones(length_r,1) rpowern]; $~5H-wJ  
    else dNR /|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <lzC|>BG  
        rpowern = cat(2,rpowern{:}); SY Bp-o  
    end 0[UI'2  
    h[dJNawL  
    % Compute the values of the polynomials: sqhMnDn[  
    % -------------------------------------- "E+;O,N-  
    y = zeros(length_r,length(n)); 4A+g-{d  
    for j = 1:length(n) h] ho? K  
        s = 0:(n(j)-m_abs(j))/2; L9)gN.#  
        pows = n(j):-2:m_abs(j); P[fy  
        for k = length(s):-1:1 0_qr7Ui8(  
            p = (1-2*mod(s(k),2))* ... :?~)P!/xl5  
                       prod(2:(n(j)-s(k)))/              ... e!J5h <:  
                       prod(2:s(k))/                     ... YWU@e[  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... '=nmdqP  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Xc[ym  
            idx = (pows(k)==rpowers);  +C\79,r  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 9Qszr=C0  
        end A@o7  
         G+#bO5  
        if isnorm |6^a[x3/U  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); xDeM7L'  
        end 6n/=n%US  
    end RF*>U a  
    % END: Compute the Zernike Polynomials ?5't1219  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% od#Lad@p  
    v 8F{qT50  
    % Compute the Zernike functions: &n,v@ gt  
    % ------------------------------ wdj?T`4  
    idx_pos = m>0; yl?LXc[)  
    idx_neg = m<0; -W6@[5c  
    6<@ mB Z  
    z = y; X8v)yDtw  
    if any(idx_pos) (}F@0WYT^O  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); K 'I6iCrD  
    end $m ;p@#n  
    if any(idx_neg) AAfhh5i  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); [;hkT   
    end Z42q}Fhm*R  
    Pg.JI:>2Ku  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) el<Gd.p.d  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. xBc$qjV  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated cq]0|\Vz  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive IM6n\EZ^  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, KUPQ6v }  
    %   and THETA is a vector of angles.  R and THETA must have the same A' ![*O  
    %   length.  The output Z is a matrix with one column for every P-value, [qxpu{  
    %   and one row for every (R,THETA) pair. uFmpc7  
    % /(||9\;  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike E_ 30)"]  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) JoB-&r}\V*  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) B^M L}$  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 tag)IWAiE  
    %   for all p. ?!F<xi:  
    % CBdr 1  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Y&M{7  
    %   Zernike functions (order N<=7).  In some disciplines it is ?r]0%W^  
    %   traditional to label the first 36 functions using a single mode \3(s&K\Y6\  
    %   number P instead of separate numbers for the order N and azimuthal ;[lLFI  
    %   frequency M. T+0z.E!~I  
    % O>f*D+A-  
    %   Example: AvIheR  
    % P5dD&  
    %       % Display the first 16 Zernike functions .0>bnw  
    %       x = -1:0.01:1; s,C>l_4-  
    %       [X,Y] = meshgrid(x,x); )jwovS?V  
    %       [theta,r] = cart2pol(X,Y); #WUN=u   
    %       idx = r<=1; L kafB2y  
    %       p = 0:15; $0{ h Uex  
    %       z = nan(size(X)); _Q\rZ l  
    %       y = zernfun2(p,r(idx),theta(idx)); uFuH/(}K[  
    %       figure('Units','normalized') |VE.khq#  
    %       for k = 1:length(p) q}'<[Wg  
    %           z(idx) = y(:,k); R/B/|x  
    %           subplot(4,4,k) 7"eIZ  
    %           pcolor(x,x,z), shading interp kSJ;kz,_  
    %           set(gca,'XTick',[],'YTick',[]) 8% ; .H-  
    %           axis square dqU)(T=C  
    %           title(['Z_{' num2str(p(k)) '}']) (0_]=r=q  
    %       end B}y#AVSA  
    % ]9<H[5>$R  
    %   See also ZERNPOL, ZERNFUN. g C8 deC8  
    tT A  
    %   Paul Fricker 11/13/2006 ^eV  K.  
    5^qs>k[mN  
    DjZTr}%q  
    % Check and prepare the inputs: >)[W7h  
    % ----------------------------- 1)xj 'n  
    if min(size(p))~=1 b V_<5PHP  
        error('zernfun2:Pvector','Input P must be vector.') z {NK(oW  
    end RU.MJ kYQ5  
    ykx13|iR  
    if any(p)>35 2nFr?Y3g,  
        error('zernfun2:P36', ... e=tM=i"  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... &"1_n]JO  
               '(P = 0 to 35).']) X)TZ  S  
    end fA V.Mj-  
    EN>a^B+!  
    % Get the order and frequency corresonding to the function number: su60j^e*  
    % ---------------------------------------------------------------- j9%vw.3b  
    p = p(:); rJp9ut'FEz  
    n = ceil((-3+sqrt(9+8*p))/2); \WUCm.w6\%  
    m = 2*p - n.*(n+2);  W"~"R  
    g]b%<DJ  
    % Pass the inputs to the function ZERNFUN: wqE2n  
    % ---------------------------------------- vXSpn71Jb  
    switch nargin |f}`uF  
        case 3 A,#z_2~  
            z = zernfun(n,m,r,theta); {Z$]Rj  
        case 4 >G0ihhVt  
            z = zernfun(n,m,r,theta,nflag); F9IPA%  
        otherwise ~vZ1.y4  
            error('zernfun2:nargin','Incorrect number of inputs.') ~ayU\4B  
    end {!4ZRNy(k  
    naY#`xig  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) :y!{=[>M(  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. k~1{|HxrE  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of i?F~]8  
    %   order N and frequency M, evaluated at R.  N is a vector of m`,h nDp  
    %   positive integers (including 0), and M is a vector with the wD<W'K   
    %   same number of elements as N.  Each element k of M must be a m?)F@4]  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) W$R@Klz  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is HxShNU  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Dd,]Y}P  
    %   with one column for every (N,M) pair, and one row for every e5sQl1  
    %   element in R. CakB`q(8  
    % kPp7;U2A  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- E-#}.}i5  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is e({-. ra  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to eG5xJA^  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 n6GB2<y  
    %   for all [n,m]. v$|cF'yyF=  
    % 5bprhq-7  
    %   The radial Zernike polynomials are the radial portion of the mLeK7?GL  
    %   Zernike functions, which are an orthogonal basis on the unit y-:d`>b>\  
    %   circle.  The series representation of the radial Zernike rge/qUr/^  
    %   polynomials is ]*AQT7PH  
    % v}"DW?  
    %          (n-m)/2 TP)}1 @  
    %            __ /. @"wAw:  
    %    m      \       s                                          n-2s gs=(h*  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 2o`L^^  
    %    n      s=0 5SHZRF(. 2  
    % 6.QzT(  
    %   The following table shows the first 12 polynomials. ohB@ijC!  
    % sMWNzt  
    %       n    m    Zernike polynomial    Normalization ~jOk?^6  
    %       --------------------------------------------- +C[%^G-:  
    %       0    0    1                        sqrt(2) $%3%&+z$I  
    %       1    1    r                           2 k iY1  
    %       2    0    2*r^2 - 1                sqrt(6) Mvlqx J$  
    %       2    2    r^2                      sqrt(6) mp>Ne6\Tu  
    %       3    1    3*r^3 - 2*r              sqrt(8) xAAwH@ +  
    %       3    3    r^3                      sqrt(8) /:aY)0F0<&  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) n]P,5  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) e[L%M:e9U  
    %       4    4    r^4                      sqrt(10) 4Y}{?]>pu  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 5*Y(%I<  
    %       5    3    5*r^5 - 4*r^3            sqrt(12)  i(n BXV{  
    %       5    5    r^5                      sqrt(12) @7,k0H9Moa  
    %       --------------------------------------------- :pgpE0  
    % 2lRE+_qz  
    %   Example: ~~3 BV,  
    % 5'[b:YC  
    %       % Display three example Zernike radial polynomials p6W|4_a?  
    %       r = 0:0.01:1; XlU`jv+  
    %       n = [3 2 5]; &X OFc.u  
    %       m = [1 2 1]; Ya-kM UW  
    %       z = zernpol(n,m,r); :5BVVa0oR  
    %       figure Y`!Zk$8  
    %       plot(r,z) (<xl _L:*.  
    %       grid on /}$D&KwYg  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') _tQR3I5  
    % $~<]G)*Z  
    %   See also ZERNFUN, ZERNFUN2. ._US8  
    Hn!13+fS  
    % A note on the algorithm. |#`qP^E  
    % ------------------------ FWDAG$K@0  
    % The radial Zernike polynomials are computed using the series 9._owKj  
    % representation shown in the Help section above. For many special vAjvW&'g  
    % functions, direct evaluation using the series representation can 8(""ui 8  
    % produce poor numerical results (floating point errors), because [,/~*L;7  
    % the summation often involves computing small differences between bGe@yXId5  
    % large successive terms in the series. (In such cases, the functions xv>]e <":  
    % are often evaluated using alternative methods such as recurrence n]fMl:77  
    % relations: see the Legendre functions, for example). For the Zernike {#4F}@Q  
    % polynomials, however, this problem does not arise, because the j )b[7%  
    % polynomials are evaluated over the finite domain r = (0,1), and @pO2A6 Ks  
    % because the coefficients for a given polynomial are generally all 7Nt6}${=z  
    % of similar magnitude. <#F@OU  
    % ?I332,,q  
    % ZERNPOL has been written using a vectorized implementation: multiple 6h:2,h pE  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] nv/'C=+L  
    % values can be passed as inputs) for a vector of points R.  To achieve 0;2"X [e  
    % this vectorization most efficiently, the algorithm in ZERNPOL 4Bz:n  
    % involves pre-determining all the powers p of R that are required to oA]rwa UX  
    % compute the outputs, and then compiling the {R^p} into a single ~l"]J'jF"H  
    % matrix.  This avoids any redundant computation of the R^p, and b,uu dtlH  
    % minimizes the sizes of certain intermediate variables. jPa"|9A  
    % |!E: [UH  
    %   Paul Fricker 11/13/2006 Wg!JQRHtT  
    2nkymEPu  
    I> BGp4AQ  
    % Check and prepare the inputs: Lv m"!!  
    % ----------------------------- =a^}]k}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) GY wU3`{  
        error('zernpol:NMvectors','N and M must be vectors.') ?Es(pwJB  
    end  {Bw  
    `R6dnbH  
    if length(n)~=length(m) uJ T^=Y  
        error('zernpol:NMlength','N and M must be the same length.') S^T ><C  
    end |Q?^Ba  
    Zi= /w  
    n = n(:); lgQ"K(zY  
    m = m(:); "kd)dy95H  
    length_n = length(n); &$g{i:)Z  
    W!t=9i  
    if any(mod(n-m,2)) B"?ivxM:U  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') F(KsB5OY?  
    end 9wbj}tN\z  
    cB=ExD.Q  
    if any(m<0) O_\%8*;  
        error('zernpol:Mpositive','All M must be positive.') cPy/}A  
    end 7!U^?0?/  
    #g=  
    if any(m>n) ! G3Gr  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') WT63ve  
    end @8*lqV2  
    6|n3e,&A2  
    if any( r>1 | r<0 ) LR#BP}\b'  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') g5:?O,?  
    end Z@,[a  
    Q@KCODi  
    if ~any(size(r)==1) L Q0e@5  
        error('zernpol:Rvector','R must be a vector.') GRh430V [  
    end 6GA+xr=  
    @2g <d  
    r = r(:); S#:l17e3  
    length_r = length(r); \zKO5,qw  
    s@IgaF {  
    if nargin==4 _;M3=MTM9  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); OE*Y%*b  
        if ~isnorm IGNU_w4j  
            error('zernpol:normalization','Unrecognized normalization flag.') # /Bg5:  
        end EKus0"|  
    else QQJf;p7  
        isnorm = false; d}Q% I  
    end YD;G+"n?T  
    <*(^QOM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jn(%v]  
    % Compute the Zernike Polynomials >L ')0<!&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u4j"U6"]M  
    s'|t2`K("  
    % Determine the required powers of r: XY#.?<"Q8  
    % ----------------------------------- S$ffTdRz  
    rpowers = []; 2Qt!JXC  
    for j = 1:length(n) E!_3?:[S_  
        rpowers = [rpowers m(j):2:n(j)]; "VDMO^  
    end 1YK(oRSDn  
    rpowers = unique(rpowers); M|NQoQ8q  
    1yVhO2`7]  
    % Pre-compute the values of r raised to the required powers, 2VzYP~Jg  
    % and compile them in a matrix: m*jTvn  
    % ----------------------------- 1ktxG1"1  
    if rpowers(1)==0  TJ1h[  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }R11G9N.  
        rpowern = cat(2,rpowern{:}); 5 owK2  
        rpowern = [ones(length_r,1) rpowern]; Z?xRSi2~7  
    else 0` .5gxm  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4jt(tZS  
        rpowern = cat(2,rpowern{:}); AmC?qoEWQ7  
    end 2vWn(6`  
    -n8d#Qm)  
    % Compute the values of the polynomials: oC-v>&bW  
    % -------------------------------------- v2_` iwE  
    z = zeros(length_r,length_n); hJsP;y:@Lm  
    for j = 1:length_n MqJ5|C.q  
        s = 0:(n(j)-m(j))/2; ^qnmKA>"F  
        pows = n(j):-2:m(j); YZ`SF"Bd(  
        for k = length(s):-1:1 { :1X N  
            p = (1-2*mod(s(k),2))* ... 'qvj[lpGr  
                       prod(2:(n(j)-s(k)))/          ... BM'!odRv  
                       prod(2:s(k))/                 ... 8CZ%-}-%$  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... {`G d  
                       prod(2:((n(j)+m(j))/2-s(k))); U (#JC(E-#  
            idx = (pows(k)==rpowers); 5C&*PJ~WA  
            z(:,j) = z(:,j) + p*rpowern(:,idx); fbU3-L?  
        end N#2ldY *  
         1[T7;i$  
        if isnorm lPI~5N8  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); uZZRFioX|  
        end X\/M(byn  
    end l<BV{Gl  
    3 ye  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  n~N>;m P  
    Z*%;;&?  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ?"6Zf LRi  
    uJ !&T  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)