切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11026阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 'II vub#q  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ^S:cNRSW"  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 1D 3 dYVE  
    function z = zernfun(n,m,r,theta,nflag) tRpL0 =y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. j=!(F`/  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z{8exym  
    %   and angular frequency M, evaluated at positions (R,THETA) on the $X{B* WF  
    %   unit circle.  N is a vector of positive integers (including 0), and oP 6.t-<dU  
    %   M is a vector with the same number of elements as N.  Each element U4 go8  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ^!-E`<jW8  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, )Gu0i7iN  
    %   and THETA is a vector of angles.  R and THETA must have the same P':]A{<Z  
    %   length.  The output Z is a matrix with one column for every (N,M) P'F Pe55F  
    %   pair, and one row for every (R,THETA) pair. Y`E {E|J  
    % >llwNT  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike S|O%h}AH;  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ySPlyhGF  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral GgZEg ?@  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, D]LFX/hlH  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ~jgN_jz  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. C.Wms}XA  
    % P22y5z~  
    %   The Zernike functions are an orthogonal basis on the unit circle. cP$wI;P  
    %   They are used in disciplines such as astronomy, optics, and Q0[CH~  
    %   optometry to describe functions on a circular domain. ~{3o(gzl  
    % 6qmo ZAg  
    %   The following table lists the first 15 Zernike functions. 5 O{Ip-  
    % 5Tcl<Y6l  
    %       n    m    Zernike function           Normalization 7>c 0V&  
    %       -------------------------------------------------- l>[QrRXiSN  
    %       0    0    1                                 1 )edU <1P  
    %       1    1    r * cos(theta)                    2 )f:!#v(K  
    %       1   -1    r * sin(theta)                    2 6cgpg+-a  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) `gBXeG2fn  
    %       2    0    (2*r^2 - 1)                    sqrt(3) %Hl:nT2M  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) D!OG307P  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) !)l%EJngL  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) t2!$IHE:  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) +0JH"L5!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Rd@n?qB  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) f"Vm'0r  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?*MV  ^IY  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) US*<I2ZLh  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f;_K}23  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Cs6zv>SR  
    %       -------------------------------------------------- u\Erta`  
    % CoKj'jA  
    %   Example 1: ? A^3.`  
    % )sz 2 9  
    %       % Display the Zernike function Z(n=5,m=1) \CEnOq  
    %       x = -1:0.01:1; v2W"+QS}u  
    %       [X,Y] = meshgrid(x,x); ys"mP* wD  
    %       [theta,r] = cart2pol(X,Y); d q+7K  
    %       idx = r<=1; :n%sU* 'T  
    %       z = nan(size(X)); (VF4FC  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); y1jGf83  
    %       figure VgC9'"|  
    %       pcolor(x,x,z), shading interp uq#h\p|  
    %       axis square, colorbar Q e2 /4j4  
    %       title('Zernike function Z_5^1(r,\theta)') ?'8MI|*l%  
    % \qK}(xq[  
    %   Example 2: Zia|`}peW  
    % b\e)PUm#u@  
    %       % Display the first 10 Zernike functions XQg%*Rw+t  
    %       x = -1:0.01:1; {bq-: CZe  
    %       [X,Y] = meshgrid(x,x); >TJKH^7n  
    %       [theta,r] = cart2pol(X,Y); b6E8ase:F  
    %       idx = r<=1; X0r#,u  
    %       z = nan(size(X)); ~%!U,)-  
    %       n = [0  1  1  2  2  2  3  3  3  3]; =LeVJGF  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; aR(Z~z;C  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; #t9=qR~"  
    %       y = zernfun(n,m,r(idx),theta(idx)); K:mL%o2J  
    %       figure('Units','normalized') }FdcbNsP  
    %       for k = 1:10 D*2p  
    %           z(idx) = y(:,k); LZAj4|~,m  
    %           subplot(4,7,Nplot(k)) 77bZ  
    %           pcolor(x,x,z), shading interp NtP.)  
    %           set(gca,'XTick',[],'YTick',[]) Y_ ;i  
    %           axis square ^zluO   
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) YC,.Y{oY{  
    %       end #+DmH  
    % JI#Enh!Lv  
    %   See also ZERNPOL, ZERNFUN2. _F$t#.o  
    Nz;*;BQK:  
    %   Paul Fricker 11/13/2006 @xM!:  
    PAWr1]DI  
    #o |&MV_j  
    % Check and prepare the inputs: QIz N# ;g  
    % ----------------------------- hZ /  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) f8_UIdM7  
        error('zernfun:NMvectors','N and M must be vectors.') z%gtV'  
    end -D^y)  
    nJ0eZBgB]  
    if length(n)~=length(m) `/j|Rb|eow  
        error('zernfun:NMlength','N and M must be the same length.') ~esEql=Q3'  
    end {O,M}0Eg  
    ^HN  
    n = n(:); r D!.N   
    m = m(:); nm|m1Z+U  
    if any(mod(n-m,2)) t=\[J+  
        error('zernfun:NMmultiplesof2', ... CR PE?CRQF  
              'All N and M must differ by multiples of 2 (including 0).') vz_g2.7l\  
    end YKxA2`3v%  
    $izpH  
    if any(m>n) L-:L= snO  
        error('zernfun:MlessthanN', ... oHFDg?Z`  
              'Each M must be less than or equal to its corresponding N.') 2bG4 ,M  
    end JhXN8Bq33  
    yt#;3  
    if any( r>1 | r<0 ) =4\~M"[p  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') >nW}zkfn  
    end c]v3dHE_h  
    GyM%vGl 3  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5i-;bLm  
        error('zernfun:RTHvector','R and THETA must be vectors.') o*ED!y7  
    end |DS@90}  
    cb&In<q  
    r = r(:); bRe*(  
    theta = theta(:); _eeX]xSSl  
    length_r = length(r); Pi sr&"A  
    if length_r~=length(theta) ?D 9#dGK  
        error('zernfun:RTHlength', ... W%ZU& YBc  
              'The number of R- and THETA-values must be equal.') ;Sl0kSu  
    end ]~ eWr2uG?  
    mSw?iL  
    % Check normalization: bc}OmPE  
    % -------------------- 'Mhdw}  
    if nargin==5 && ischar(nflag) V~"d`j  
        isnorm = strcmpi(nflag,'norm'); U$J_:~  
        if ~isnorm &fhurzzAm  
            error('zernfun:normalization','Unrecognized normalization flag.') Bo(l!G  
        end 8VGXw;(Y,d  
    else ]p.f*]  
        isnorm = false; ,$ret@.H  
    end {+mkXp])R  
    L"<Eov6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /1 %0A  
    % Compute the Zernike Polynomials -t#a*?"$w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aq| [g  
    vX24W*7  
    % Determine the required powers of r: #/=yz<B  
    % ----------------------------------- s(LqhF[N2]  
    m_abs = abs(m); fB}5,22  
    rpowers = []; d"a7{~l  
    for j = 1:length(n) P Y<V  
        rpowers = [rpowers m_abs(j):2:n(j)]; 717m.t,x  
    end <?}g[]i  
    rpowers = unique(rpowers); hRcJ):Wyb  
    9+|,aG s  
    % Pre-compute the values of r raised to the required powers, 2Yjysn  
    % and compile them in a matrix:  +6-!o,(  
    % ----------------------------- =W^L8!BE'  
    if rpowers(1)==0 )O(Gw-jWE  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Nn\\}R  
        rpowern = cat(2,rpowern{:}); xF31%b`z:  
        rpowern = [ones(length_r,1) rpowern]; Ci:QIsu*  
    else -^"?a]B  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :m)?+  
        rpowern = cat(2,rpowern{:}); ]}c=U@D,9  
    end }=4".V`-o  
    f#MN-1[67  
    % Compute the values of the polynomials: +'4dP#  
    % -------------------------------------- Db:WAjU  
    y = zeros(length_r,length(n)); tC~itU=V  
    for j = 1:length(n) {<BK@U  
        s = 0:(n(j)-m_abs(j))/2; |?W   
        pows = n(j):-2:m_abs(j); [=!MS?-G  
        for k = length(s):-1:1 l'f!za0  
            p = (1-2*mod(s(k),2))* ... py4_hj\v  
                       prod(2:(n(j)-s(k)))/              ... tTamFL6  
                       prod(2:s(k))/                     ... ]gk1h=Y~h  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... QX|K(`of  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); @SB+u+mOS  
            idx = (pows(k)==rpowers); DZZt%n8J  
            y(:,j) = y(:,j) + p*rpowern(:,idx); )j*qGsOg  
        end ,Ou)F;r  
         cv1L!Ce,  
        if isnorm je% 12DM  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); g"f^YEQ_  
        end Inoou 'jX  
    end yh<aFYdk  
    % END: Compute the Zernike Polynomials I{bi3y0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xb>+~59:  
    N`MQHQ1  
    % Compute the Zernike functions: ~`.%n7  
    % ------------------------------ J n/=v\K@  
    idx_pos = m>0; \}W.RQ^3  
    idx_neg = m<0; $ 7!GA9Bn  
    #1k,t  
    z = y; T]`" Xl8  
    if any(idx_pos) WLb7]rCTp  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Op~+yMef  
    end H0 t1& :  
    if any(idx_neg) u> Hx#R<*%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); AR^Di`n!  
    end [8#l~ |U  
    &9tsk#bA.g  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) > { Q2S  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. "H8N,eb2  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated XlPy(>  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 00+5a TrE  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, wC~Uy%  
    %   and THETA is a vector of angles.  R and THETA must have the same Dlp::U*N'  
    %   length.  The output Z is a matrix with one column for every P-value, p P&~S<[  
    %   and one row for every (R,THETA) pair. Xo b##{P3  
    % bql6Z1l  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike SbY i|V,H  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) A\>qoR!Y  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) f{0PLFj  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 l"/Os_4O  
    %   for all p. sKtH4d5)  
    % GU`2I/R  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 NG ~sE&,7  
    %   Zernike functions (order N<=7).  In some disciplines it is KC'{>rt7  
    %   traditional to label the first 36 functions using a single mode va\cE*,@ns  
    %   number P instead of separate numbers for the order N and azimuthal -[z;y73]t  
    %   frequency M. dL>ZL1.$  
    % A7se#"w  
    %   Example: %|Vq"MW,I  
    % S3w? X  
    %       % Display the first 16 Zernike functions +}]xuYzo  
    %       x = -1:0.01:1; qW*)]s)z  
    %       [X,Y] = meshgrid(x,x); [/FIY!nC?  
    %       [theta,r] = cart2pol(X,Y); PYGHN T  
    %       idx = r<=1; ,b{4GU$3  
    %       p = 0:15; HXX"B,N  
    %       z = nan(size(X)); c)?y3LX  
    %       y = zernfun2(p,r(idx),theta(idx)); TD'1L:mv  
    %       figure('Units','normalized') Em;zi.Y+V  
    %       for k = 1:length(p) P$Nwf,d2u  
    %           z(idx) = y(:,k); V0>,Kxk  
    %           subplot(4,4,k) occ}|u  
    %           pcolor(x,x,z), shading interp {dDU^7O  
    %           set(gca,'XTick',[],'YTick',[]) [LE_lATjU  
    %           axis square K7|BXGL8r8  
    %           title(['Z_{' num2str(p(k)) '}']) U<$|ET'  
    %       end @C#lA2(I4  
    % r?{tBju^  
    %   See also ZERNPOL, ZERNFUN. e([}dz  
    \RJ428sxn  
    %   Paul Fricker 11/13/2006 S[Et!gj:  
    YC{od5a  
    ;TYkJH"  
    % Check and prepare the inputs: 8WMC ~  
    % ----------------------------- s&4Y+dk93  
    if min(size(p))~=1 yfj<P/aA+  
        error('zernfun2:Pvector','Input P must be vector.') rR xqV?>n!  
    end ,xGkE7=5  
    ?(Nls.c  
    if any(p)>35 /)N[tv2  
        error('zernfun2:P36', ... >5\rU[H>  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Re`= B  
               '(P = 0 to 35).']) ne%ckW?ks  
    end ffdyDUzQ  
    2!A/]:[F  
    % Get the order and frequency corresonding to the function number: E8/P D  
    % ---------------------------------------------------------------- {B 34^H:  
    p = p(:); ZDlMkHJ  
    n = ceil((-3+sqrt(9+8*p))/2); Vx'_fb?wap  
    m = 2*p - n.*(n+2); Y`%:hvy~  
    Q!c*2hI  
    % Pass the inputs to the function ZERNFUN: I_Q'+d  
    % ---------------------------------------- Xcb\N  
    switch nargin J^U#dYd  
        case 3 \\_Qv  
            z = zernfun(n,m,r,theta); *+5AN306  
        case 4 bx1'  
            z = zernfun(n,m,r,theta,nflag); koFY7;_<?  
        otherwise )!'SSVaRs  
            error('zernfun2:nargin','Incorrect number of inputs.') OX!9T.j  
    end 9k1n-po  
    ^$VOC>>9  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) F4@``20|  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Y6f0 ?lB  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of z>~Hc8*]3  
    %   order N and frequency M, evaluated at R.  N is a vector of :`25@<*u  
    %   positive integers (including 0), and M is a vector with the G}d@^9FkE  
    %   same number of elements as N.  Each element k of M must be a bmFnsqo  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) lIz"mk  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 1-4W4"#  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix *22}b.)  
    %   with one column for every (N,M) pair, and one row for every wj /OYnMw  
    %   element in R. 4$C:r&K  
    % UT%^!@u  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- h5>JBLawQP  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is m z) O  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to /2 ')u|  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 -:&qNY:Vp  
    %   for all [n,m]. % [b~4,c1  
    % =otJf~  
    %   The radial Zernike polynomials are the radial portion of the ?"\X46Gz;  
    %   Zernike functions, which are an orthogonal basis on the unit yc?+L ;fN  
    %   circle.  The series representation of the radial Zernike adRvAq]mA  
    %   polynomials is @Pb!:HeJE  
    % w|7<y8#qC  
    %          (n-m)/2 n]jZ2{g+   
    %            __ [kaj8  
    %    m      \       s                                          n-2s 9v=5x[fE  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 8wMu^3r  
    %    n      s=0 h.(CAm%Y7  
    % _Gv n1"l  
    %   The following table shows the first 12 polynomials. ] X%T^3%G  
    % d#'aTmu!  
    %       n    m    Zernike polynomial    Normalization i{vM NI{  
    %       --------------------------------------------- fL>>hBCqC  
    %       0    0    1                        sqrt(2) x8|sdZFxo  
    %       1    1    r                           2 &z8I@^<  
    %       2    0    2*r^2 - 1                sqrt(6) e@|/, W   
    %       2    2    r^2                      sqrt(6) B@U;[cO&  
    %       3    1    3*r^3 - 2*r              sqrt(8) !36jtKdM  
    %       3    3    r^3                      sqrt(8) *z&m=G\  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) U= QfInB  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) vau0Jn%=ck  
    %       4    4    r^4                      sqrt(10) FwKT_XkY  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) '7Q5"M'  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) R-5EztmLae  
    %       5    5    r^5                      sqrt(12) ] ;" blB  
    %       --------------------------------------------- /Sy:/BQ  
    % J0K25w  
    %   Example: ;w--fqxVl  
    % ancs  
    %       % Display three example Zernike radial polynomials *c9/ I  
    %       r = 0:0.01:1; Kw_> X&GcJ  
    %       n = [3 2 5]; _8]hn[  
    %       m = [1 2 1]; ='"DUQH|*  
    %       z = zernpol(n,m,r); QU{|S.\  
    %       figure v 9\2/B  
    %       plot(r,z) XqX6UEVR4  
    %       grid on U (*k:Fw  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') F-0|&0  
    % F6,[!.wl  
    %   See also ZERNFUN, ZERNFUN2. Qv4g#jX{  
    [ed6n@/O@  
    % A note on the algorithm. (nL''#Ka  
    % ------------------------ ixJ%wnz  
    % The radial Zernike polynomials are computed using the series t{A/Lq9AM  
    % representation shown in the Help section above. For many special R{N9'2l:  
    % functions, direct evaluation using the series representation can P4H%pm{-  
    % produce poor numerical results (floating point errors), because >AFX}N#  
    % the summation often involves computing small differences between BTi:Bcv k  
    % large successive terms in the series. (In such cases, the functions iY_E"$}P  
    % are often evaluated using alternative methods such as recurrence zPWJ=T@N  
    % relations: see the Legendre functions, for example). For the Zernike k?[|8H~2C  
    % polynomials, however, this problem does not arise, because the 57PoJ+  
    % polynomials are evaluated over the finite domain r = (0,1), and Vm+e%  
    % because the coefficients for a given polynomial are generally all z;fi  
    % of similar magnitude. Pi7IBz  
    % Wg\`!T  
    % ZERNPOL has been written using a vectorized implementation: multiple yhwwF n\  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] x.J% c[Q8  
    % values can be passed as inputs) for a vector of points R.  To achieve N i\*<:_  
    % this vectorization most efficiently, the algorithm in ZERNPOL DSb/+8KT  
    % involves pre-determining all the powers p of R that are required to UTT7a"  
    % compute the outputs, and then compiling the {R^p} into a single gpt98:w:  
    % matrix.  This avoids any redundant computation of the R^p, and 3JnBKh\n  
    % minimizes the sizes of certain intermediate variables. BM6 J  
    % .~>Uh3S  
    %   Paul Fricker 11/13/2006 LY> -kz]  
    7NG^I6WP-  
    !w+A3Z>V  
    % Check and prepare the inputs: r0 mXRZC  
    % ----------------------------- #A&(b}#:o  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) WcE{1&PXx  
        error('zernpol:NMvectors','N and M must be vectors.') ctqXzM `  
    end ~QVN^8WPg  
    (+_i^SqK  
    if length(n)~=length(m) "otks\I<  
        error('zernpol:NMlength','N and M must be the same length.') 7J:zIC$u>  
    end qhNY<  
    E Ux kYl  
    n = n(:); MJxTzQE  
    m = m(:); RfM uWo:  
    length_n = length(n); <[N"W82p  
    kZ^}  
    if any(mod(n-m,2)) ">?ocJ\9  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') e7fA-,DV  
    end C9?R*2L>  
    g(9\r  
    if any(m<0) j9sK P]w  
        error('zernpol:Mpositive','All M must be positive.') c_oI?D9  
    end k{fTq KS%h  
    aqa%B  
    if any(m>n) ^4D7sS;~3  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') }M9R5!=q  
    end Q"2t :  
    0H|U9  
    if any( r>1 | r<0 ) $M `%A  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') h"b;e2  
    end m %mA0r  
    -85]x)JE  
    if ~any(size(r)==1) =x8F!W}Bt<  
        error('zernpol:Rvector','R must be a vector.') YJioR4+q  
    end *)PCPYB^  
    C&d%S|:IR  
    r = r(:); K]0Q=HY{.  
    length_r = length(r); $-Ud&sjn  
    F0 cde  
    if nargin==4 ) ?AlQA  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 5P?7xRA  
        if ~isnorm caK<;bmu-  
            error('zernpol:normalization','Unrecognized normalization flag.') 2(s+?n.N  
        end aFZu5-=x  
    else hWzjn5w3  
        isnorm = false; D/T& 0  
    end X)-9u8  
    ~j1.;WId[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \t'v-x>2y5  
    % Compute the Zernike Polynomials $Vu %4kq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &) '5_#S  
    jGM+  
    % Determine the required powers of r: t>W^^'=E  
    % ----------------------------------- XDtr{r6z  
    rpowers = []; ?A!Lh,  
    for j = 1:length(n) ."N`X\  
        rpowers = [rpowers m(j):2:n(j)]; y;0k |C   
    end Bl)znJ^  
    rpowers = unique(rpowers); lnXb]tm;  
    OokBi 02b  
    % Pre-compute the values of r raised to the required powers, $OE~0Z\0  
    % and compile them in a matrix: }~8/a3  
    % ----------------------------- mLa0BIP  
    if rpowers(1)==0 Qv3g 4iJ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (IAc*V~  
        rpowern = cat(2,rpowern{:}); Hh/Z4`&yi  
        rpowern = [ones(length_r,1) rpowern]; bzz{ p1e  
    else {nyQ]Nu"  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); R @h@@lSf  
        rpowern = cat(2,rpowern{:}); <"SDU_<xG  
    end UfE41el:  
    MNy)= d&<P  
    % Compute the values of the polynomials: amPC C  
    % -------------------------------------- .JR"|;M}  
    z = zeros(length_r,length_n); ~:65e 8K  
    for j = 1:length_n ZBDEE+8e  
        s = 0:(n(j)-m(j))/2; kR C0iTV'I  
        pows = n(j):-2:m(j); gq$]jWtCD  
        for k = length(s):-1:1 c|f)k:Q  
            p = (1-2*mod(s(k),2))* ... 8,E#vQ55}(  
                       prod(2:(n(j)-s(k)))/          ... b4_"dg~gK  
                       prod(2:s(k))/                 ... 1wx&/ #a  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... P #_8$#G3  
                       prod(2:((n(j)+m(j))/2-s(k))); ?[[K6v}q{  
            idx = (pows(k)==rpowers); p1dqDgF*  
            z(:,j) = z(:,j) + p*rpowern(:,idx); #MZ0Sd8]&  
        end Rp#9T?i``[  
         Ek!$Ary  
        if isnorm 2>s@2=Aq  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 1' #%U A  
        end DYvi1X6  
    end J6*Zy[)%&S  
    ?K<m.+4b*y  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ~a&s5E {  
    ]V J$;v'{[  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 %qRbl4  
    %..{c#V  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)