非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Y|B/(
function z = zernfun(n,m,r,theta,nflag) #3/l4`/j
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ^ /g&Q
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N |ZRl.C/e
% and angular frequency M, evaluated at positions (R,THETA) on the `L9o!OsQ
% unit circle. N is a vector of positive integers (including 0), and Kh% x
% M is a vector with the same number of elements as N. Each element P<2yCovn`
% k of M must be a positive integer, with possible values M(k) = -N(k) k5}i^^.
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, qRB%G<H
% and THETA is a vector of angles. R and THETA must have the same NPS=?5p>
% length. The output Z is a matrix with one column for every (N,M) (<%i8xu2
% pair, and one row for every (R,THETA) pair. 4&t6
% R^8Opf_UN
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Bpk%,*$*)
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2d1'!B
zDA
% with delta(m,0) the Kronecker delta, is chosen so that the integral KJpM?:
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ASu9c2s
% and theta=0 to theta=2*pi) is unity. For the non-normalized UdLC]
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -@J;FjrXmP
% \LM'KD pP_
% The Zernike functions are an orthogonal basis on the unit circle. #c!(97l6o
% They are used in disciplines such as astronomy, optics, and BY\p?79
% optometry to describe functions on a circular domain. 03rZz1
% 0U$6TDtmE
% The following table lists the first 15 Zernike functions. C2Y&qX,
% =20Q!wcu
% n m Zernike function Normalization 8Q6il-
% -------------------------------------------------- 5#2vSq!H
% 0 0 1 1 ;#Mq=Fr-SG
% 1 1 r * cos(theta) 2 MGmtA(
% 1 -1 r * sin(theta) 2 yY&(?6\{<<
% 2 -2 r^2 * cos(2*theta) sqrt(6) PfuYT_p4s
% 2 0 (2*r^2 - 1) sqrt(3) 8{d`N|k
% 2 2 r^2 * sin(2*theta) sqrt(6) 1 1p\
z
% 3 -3 r^3 * cos(3*theta) sqrt(8) 9)4N2=
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Js=|r;'
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ,#"AWQ
% 3 3 r^3 * sin(3*theta) sqrt(8) BB|{VwN
% 4 -4 r^4 * cos(4*theta) sqrt(10) FAQ:0L$G
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |]m&LC
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) <!w-op2@ir
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %@BQv4oJ
% 4 4 r^4 * sin(4*theta) sqrt(10) ec]ksw6T+
% --------------------------------------------------
|u$AzI
% -rH3rKtf~
% Example 1: {{<o1{_H
% j?&FK
% % Display the Zernike function Z(n=5,m=1) sV77WF
% x = -1:0.01:1; pP".?|n
% [X,Y] = meshgrid(x,x); Pq_Il9
% [theta,r] = cart2pol(X,Y); |Ec $%
% idx = r<=1; j+c)%
% z = nan(size(X)); cF/FretoO
% z(idx) = zernfun(5,1,r(idx),theta(idx)); }wv$ #H[
% figure -D(UbkPw
% pcolor(x,x,z), shading interp `__CL
)N|
% axis square, colorbar Ok* :;G@
% title('Zernike function Z_5^1(r,\theta)') c/x(v=LW
% M_XZOlW5
% Example 2: }_gq vgI>p
% b(XhwkGVq
% % Display the first 10 Zernike functions gK%&VzG4
% x = -1:0.01:1; ,,G0}N@7s
% [X,Y] = meshgrid(x,x); <`N\FM^vo
% [theta,r] = cart2pol(X,Y); s*!2oj
% idx = r<=1; #
=322bnO
% z = nan(size(X)); -6H)GK14b
% n = [0 1 1 2 2 2 3 3 3 3]; c}{e,t
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; c9'#G>&h~^
% Nplot = [4 10 12 16 18 20 22 24 26 28]; >2v_fw
% y = zernfun(n,m,r(idx),theta(idx)); +"p",Z
% figure('Units','normalized') 'Lm.`U
% for k = 1:10 4XKg3l1
% z(idx) = y(:,k); `9wz:s QtP
% subplot(4,7,Nplot(k)) G A7
% pcolor(x,x,z), shading interp ^#Wf
% set(gca,'XTick',[],'YTick',[]) d[o =
% axis square aG"UV\
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) i3Ffk+ |b
% end {QhvHV
% Z,d/FC#y(
% See also ZERNPOL, ZERNFUN2. .:lzT"QXI
O&O1O>[p1
% Paul Fricker 11/13/2006 !IGVN:E
x/4lD}Pw]
v =u|D$
% Check and prepare the inputs: Y&j6;2-Z
% ----------------------------- iYnw?4Y
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) I{RktO;1
error('zernfun:NMvectors','N and M must be vectors.') 2'x_zMV
end yk#:.5H
@RnG K 5
if length(n)~=length(m) 3Y s|M%N
error('zernfun:NMlength','N and M must be the same length.') d?S<h`{x
end ~pF'Qw"z|
w6E?TI
n = n(:); tq*Q|9j7VG
m = m(:); ,)Q mQ^/
if any(mod(n-m,2)) ]-AT(L>
error('zernfun:NMmultiplesof2', ...
g`Rs;
'All N and M must differ by multiples of 2 (including 0).') fN K~z*
end ,Tr12#D:
) Z^(+
if any(m>n) /g8yc'{p
error('zernfun:MlessthanN', ... k(7!W
'Each M must be less than or equal to its corresponding N.') ^L'K?o
end lLg23k{'
ZPMEN,Dw
if any( r>1 | r<0 ) Bf-&[ 5N}
error('zernfun:Rlessthan1','All R must be between 0 and 1.') nY*ODL
end *3k~%RM%?
G_o/ lIz"
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) G's/Q-'[\
error('zernfun:RTHvector','R and THETA must be vectors.') MDB}G
'
end LEhi/>T
huQ1A0(no
r = r(:); oOD|FrlY
theta = theta(:); 1/{:}9Z@
length_r = length(r); cKxJeM07
if length_r~=length(theta) TQEZ<B$
error('zernfun:RTHlength', ... V3m!dp]
'The number of R- and THETA-values must be equal.') ]ny(l#Hu:
end d3![b 1
|_ @iaLE
% Check normalization: u_[Zu8
% -------------------- f{)*"
if nargin==5 && ischar(nflag) nBD7
isnorm = strcmpi(nflag,'norm'); {-E{.7
if ~isnorm T[7DJNdG6
error('zernfun:normalization','Unrecognized normalization flag.') e@q[Dv'mu
end Fj5^_2MU:
else %\^x3wP&o\
isnorm = false; *i\7dJ Dj
end >?DrC /
lS,Hr3Lz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "90}H0(+
% Compute the Zernike Polynomials r>G$u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/!9949XV
7'o?'He-.2
% Determine the required powers of r: a{8GT2h`4
% ----------------------------------- mDq01fU4
m_abs = abs(m); '}OrFN
rpowers = []; Uvuvr_IP
for j = 1:length(n) ~k J#IA
rpowers = [rpowers m_abs(j):2:n(j)]; : i(h[0
end x##Iv|$
rpowers = unique(rpowers); p1&d@PF&&
F>}).qx
% Pre-compute the values of r raised to the required powers, oZ=e/\[K
% and compile them in a matrix: p"X\]g^jA>
% ----------------------------- ?ph"|LyL
if rpowers(1)==0 '6aH*B:}*;
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); dxU[>m;
rpowern = cat(2,rpowern{:}); _I-0[w
rpowern = [ones(length_r,1) rpowern]; WL7:22nSHa
else &zm5s*yNt
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Y6CadC
rpowern = cat(2,rpowern{:}); p]>bN
end 6^wiEnA
;j(xrPNb
% Compute the values of the polynomials: 57oY]NT?
% -------------------------------------- lE`ScYG
y = zeros(length_r,length(n));
t,H,*2
for j = 1:length(n) 1'g?B`
s = 0:(n(j)-m_abs(j))/2; \q,w)BE
pows = n(j):-2:m_abs(j); P EbB0GL
for k = length(s):-1:1 'LX=yL]I
p = (1-2*mod(s(k),2))* ... &B3kzs
prod(2:(n(j)-s(k)))/ ... kTnvD|3_!P
prod(2:s(k))/ ... `t8e2?GH
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0)84Z.k
prod(2:((n(j)+m_abs(j))/2-s(k))); m t*v@'l.
idx = (pows(k)==rpowers); /bw-*
y(:,j) = y(:,j) + p*rpowern(:,idx); hQkmB|];5
end P(Lwpa,S
* T~sR'K+|
if isnorm L72GF5+!!
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); D QZS%)
end !Q?4sAB
end nbYaYL?&
% END: Compute the Zernike Polynomials 0~-+5V
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mq
"p"iI
'-*r&:
% Compute the Zernike functions: :bh[6F
% ------------------------------ ;J`X0Vl$
idx_pos = m>0; ?r@ZTuq#
idx_neg = m<0; 6Qo6T][
.a^/r'?
z = y; 'DIE#l`
if any(idx_pos) N[mOJa:
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); qItI):9U
end p;'vOb
if any(idx_neg) %Cr-cR0
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 8G@FX $$Q
end O_:Q#
J^?O]|
% EOF zernfun