非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 @"@a70WHk
function z = zernfun(n,m,r,theta,nflag) 96=<phcwN[
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 2
$>DX\h
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 12$0-@U
% and angular frequency M, evaluated at positions (R,THETA) on the 8@3K, [Mo
% unit circle. N is a vector of positive integers (including 0), and Z;0~f<e%
% M is a vector with the same number of elements as N. Each element U&?hG>
% k of M must be a positive integer, with possible values M(k) = -N(k) hI[}
-
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 2RiJ m"
% and THETA is a vector of angles. R and THETA must have the same i"{O~[
% length. The output Z is a matrix with one column for every (N,M) uuzV,q
% pair, and one row for every (R,THETA) pair. ?gH[la
% hor7~u+
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fFQ|dE;cF
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7"(!]+BW!O
% with delta(m,0) the Kronecker delta, is chosen so that the integral .)Tj}Im2p
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 53Adic
% and theta=0 to theta=2*pi) is unity. For the non-normalized B2`S0 H
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }
ueFy<F
% Fs+tcr/\[
% The Zernike functions are an orthogonal basis on the unit circle. ou,[0B3n0
% They are used in disciplines such as astronomy, optics, and exRw, Nk4
% optometry to describe functions on a circular domain. % rBzA<
% %sa?/pjK
% The following table lists the first 15 Zernike functions.
#]#9Xq
% b)wcGBS
% n m Zernike function Normalization m5Bf<E,c
% -------------------------------------------------- (?FH`<
% 0 0 1 1 JsEJ6!1
% 1 1 r * cos(theta) 2 Q|y }mC/
% 1 -1 r * sin(theta) 2 ~.a"jYb7A}
% 2 -2 r^2 * cos(2*theta) sqrt(6) 7ZcF0h
% 2 0 (2*r^2 - 1) sqrt(3) C.j+Zb1Z(
% 2 2 r^2 * sin(2*theta) sqrt(6) U(&c@u%
% 3 -3 r^3 * cos(3*theta) sqrt(8) r
)|3MUj
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 1gI7$y+?
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) G gO5=|
% 3 3 r^3 * sin(3*theta) sqrt(8) 3?OQ-7,
% 4 -4 r^4 * cos(4*theta) sqrt(10) (d9~z
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5LeZ?'"c
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) q'3{M]Tk
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lu utyK!
% 4 4 r^4 * sin(4*theta) sqrt(10) _&KqmQ8$7
% -------------------------------------------------- )u?f| D
% pEyZH!W
% Example 1: z]7 WC
% [8V;Q
% % Display the Zernike function Z(n=5,m=1) Cq5.gkS<
% x = -1:0.01:1; ULx:2jz
% [X,Y] = meshgrid(x,x); 'nmGHorp
% [theta,r] = cart2pol(X,Y); 0uy'Py@2<
% idx = r<=1; !$I~3_c
% z = nan(size(X)); ];bRRBEU
% z(idx) = zernfun(5,1,r(idx),theta(idx)); _~FfG!H ^X
% figure DP_b9o
\5
% pcolor(x,x,z), shading interp r6<;bO(
% axis square, colorbar Bk8}K=%w
% title('Zernike function Z_5^1(r,\theta)') nz 10/nw
% zLJ>)v$81
% Example 2: bpu`'Vx
% d3%qYL_+a
% % Display the first 10 Zernike functions %-hSa~20
% x = -1:0.01:1; {X,%GI
% [X,Y] = meshgrid(x,x); 8 t+eu O
% [theta,r] = cart2pol(X,Y); /<[0o]
% idx = r<=1; B4s$| i{D
% z = nan(size(X)); UB~K/r`.|
% n = [0 1 1 2 2 2 3 3 3 3]; zCs34=3D[
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; )@]%:m!ER
% Nplot = [4 10 12 16 18 20 22 24 26 28]; iSfRJ:_&6
% y = zernfun(n,m,r(idx),theta(idx)); (Tx_`rO4VY
% figure('Units','normalized') |mT%IR
% for k = 1:10 oXo>pl
% z(idx) = y(:,k); vG |!d+
% subplot(4,7,Nplot(k)) GrF4*I`q
% pcolor(x,x,z), shading interp Y1r$;;sH
% set(gca,'XTick',[],'YTick',[]) QE 4
% axis square 0nc(2Bi
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) E|pT6
% end T!/o^0w
% A%w9Da?B
% See also ZERNPOL, ZERNFUN2. ,fjY|ip
B>{%$@4
% Paul Fricker 11/13/2006 qI'pjTMDY
Iv6 lE:)
d+n2
c`i
% Check and prepare the inputs: 'Oa3
6@
% ----------------------------- E}wT5t;u
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) lHiWzt
u
error('zernfun:NMvectors','N and M must be vectors.') _hnsH
I!oD
end WZa6*pF
V#G)w~
if length(n)~=length(m) T;M
;c.U
error('zernfun:NMlength','N and M must be the same length.') &M-vKc"d
end VQIvu)I
SIK:0>yK"
n = n(:); eKLvBa-{@
m = m(:); xMbgBx4+
if any(mod(n-m,2)) LhG\)>Y%
error('zernfun:NMmultiplesof2', ...
$ (}rTm
'All N and M must differ by multiples of 2 (including 0).') `2>p#`
end |E~c#lV
?N4FB*x
if any(m>n) *eg0^ByeD
error('zernfun:MlessthanN', ... Xg~9<BGsi
'Each M must be less than or equal to its corresponding N.') Jp jHbG
end w|dfl *
>H+tZV
if any( r>1 | r<0 ) QN*|_H@h
error('zernfun:Rlessthan1','All R must be between 0 and 1.') cvcZ\y
end
$9%F1:u
NX\AQVy9
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) NV5qF/<M
error('zernfun:RTHvector','R and THETA must be vectors.') /? %V%
n
end sOqFEvzo1%
9!Av sC9
r = r(:); ~d7t\S
theta = theta(:); RUY7Y?
length_r = length(r); SM~ ~:
if length_r~=length(theta) RKLE@h7[?
error('zernfun:RTHlength', ... DN:|
s+Lz
'The number of R- and THETA-values must be equal.') B}[CU='P*
end vom3C9o
)>2L(~W
% Check normalization: J0V m&TY
% -------------------- 3JC uM_y
if nargin==5 && ischar(nflag) F'M X9P
isnorm = strcmpi(nflag,'norm'); zgY VB}
if ~isnorm rC@VMe|0
error('zernfun:normalization','Unrecognized normalization flag.') =%8 yEb*5#
end 0SvPr[ >
else }etdXO_^
isnorm = false; ?Uq"zq
end OUWK
89>}`:xS^
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Tdh(J",d
% Compute the Zernike Polynomials RP$u/x"b
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yF\yxdUX#
\me5"ZU
% Determine the required powers of r: 7:B/?E
% ----------------------------------- ~!ooIwNNz
m_abs = abs(m); YE@yts
rpowers = []; \k5"&]I3
for j = 1:length(n) 'v^Vg
rpowers = [rpowers m_abs(j):2:n(j)]; $'KQP8M+
end 7;+G)44
rpowers = unique(rpowers); }E ]l4N2
.@fA_8
% Pre-compute the values of r raised to the required powers, (Yz[SK=U}
% and compile them in a matrix: xc*a(v0
% ----------------------------- *rTg>)
if rpowers(1)==0
MWme3u)D
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); WowT!0$
rpowern = cat(2,rpowern{:}); #czTX%+9(e
rpowern = [ones(length_r,1) rpowern]; t Cb34Wpf
else (s&:D`e
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %|e)s_%XE
rpowern = cat(2,rpowern{:}); bN-!&Td
end !Ew
ff|v"
^mn!;nu
% Compute the values of the polynomials: @<eKk.Y?+
% -------------------------------------- uD@ZM
y = zeros(length_r,length(n)); T; tY7;<
for j = 1:length(n) p _[,P7
s = 0:(n(j)-m_abs(j))/2; w:lj4Z_
pows = n(j):-2:m_abs(j); >3p~>;9sc
for k = length(s):-1:1 pl%!AY'oE>
p = (1-2*mod(s(k),2))* ... l<XYDb~op
prod(2:(n(j)-s(k)))/ ... T/E=?kBR
prod(2:s(k))/ ... e_e\Ie/pDc
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... M~\dvJ$cH
prod(2:((n(j)+m_abs(j))/2-s(k))); O|sk"YXF
idx = (pows(k)==rpowers); >%;i@"
y(:,j) = y(:,j) + p*rpowern(:,idx); W:8MqVm34
end FkrXM!mJ
Mv%Qze,\V^
if isnorm k6M D3c
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);
<=p>0L
end Ea
S[W?u}
end N `:MF 9
% END: Compute the Zernike Polynomials @Dfg6<0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YIwa = ^
[L X/O@
% Compute the Zernike functions: 8OZasf
% ------------------------------ vD@|]@gq
idx_pos = m>0;
e4N d
idx_neg = m<0; G+N1#0,q
^85Eveu
z = y; Hmr f\(x
if any(idx_pos) )Mdddz4
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /%g9g_rt#
end HSysME1X:/
if any(idx_neg) gdeM,A|
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); xh:I]('R
end %:'G={G`QH
d)1gpRp
% EOF zernfun