非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 15OzO.Ud
function z = zernfun(n,m,r,theta,nflag) E6M*o+Y
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. z m]R76
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ZD4aT1|Q7
% and angular frequency M, evaluated at positions (R,THETA) on the 204"\mv
% unit circle. N is a vector of positive integers (including 0), and &P"1 3]^@
% M is a vector with the same number of elements as N. Each element u"m TS&
% k of M must be a positive integer, with possible values M(k) = -N(k) kSEgq<i!
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ct<XKqbI
% and THETA is a vector of angles. R and THETA must have the same AQ,"):ofvT
% length. The output Z is a matrix with one column for every (N,M) C_yNSD
% pair, and one row for every (R,THETA) pair. QL*RzFAD3
% /IF?|71,m
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike tH#t8Tq5x
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5rmQ:8_5
% with delta(m,0) the Kronecker delta, is chosen so that the integral r! [Qpb-:
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;#mm_*L%@
% and theta=0 to theta=2*pi) is unity. For the non-normalized zGy+jeH:.
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .`(YCn?\
% 'H#0-V"=
% The Zernike functions are an orthogonal basis on the unit circle. .{|SKhXk
% They are used in disciplines such as astronomy, optics, and YMVi7D~;Q$
% optometry to describe functions on a circular domain. yYSoJqj
Q
% L
>)|l
% The following table lists the first 15 Zernike functions. #Nad1C/]
% <$d2m6 J
% n m Zernike function Normalization _>;{+XRX[
% -------------------------------------------------- 'K01"`#
% 0 0 1 1 <PM.4B@
% 1 1 r * cos(theta) 2 <j/wK]d*/
% 1 -1 r * sin(theta) 2 e)m6xiZ
% 2 -2 r^2 * cos(2*theta) sqrt(6) p<?lF
% 2 0 (2*r^2 - 1) sqrt(3) 2EYWX!Bx
% 2 2 r^2 * sin(2*theta) sqrt(6) {fjBa,o
#
% 3 -3 r^3 * cos(3*theta) sqrt(8) s_^N=3Si
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) rhZp
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 6/ T/A+u
% 3 3 r^3 * sin(3*theta) sqrt(8) :qzhkKu
% 4 -4 r^4 * cos(4*theta) sqrt(10) ^bfU>02Q6p
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) H328I}7
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) \DWKG~r-%
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) MZxU)QW1
% 4 4 r^4 * sin(4*theta) sqrt(10) J^S!GG'gb
% -------------------------------------------------- QpRk5NeLe
% Q
laoa)d#
% Example 1: 8&3&^!I
% 5.DmMG[T^=
% % Display the Zernike function Z(n=5,m=1) salDGsW^
% x = -1:0.01:1; 3\{\ al
% [X,Y] = meshgrid(x,x); s^4wn:*$zd
% [theta,r] = cart2pol(X,Y); f.bw A x
% idx = r<=1; 2aX$7E?
% z = nan(size(X)); D,|TQQ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Q7{{r&|t&
% figure C' {B
% pcolor(x,x,z), shading interp ynZEJKo
% axis square, colorbar S)W?W}*R\
% title('Zernike function Z_5^1(r,\theta)') h9!4\{V;h
% ma!C:C9#J
% Example 2: B9$pG
% f9
:=6
% % Display the first 10 Zernike functions ~b0l?P*Ff
% x = -1:0.01:1; vK+!m~kDu
% [X,Y] = meshgrid(x,x); }2:q#}"
% [theta,r] = cart2pol(X,Y); og~a*my3
% idx = r<=1; 0c1=M|2
% z = nan(size(X)); SuNc&e#(
% n = [0 1 1 2 2 2 3 3 3 3]; :eT\XtxM~{
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ^)a:DKL
% Nplot = [4 10 12 16 18 20 22 24 26 28]; R y(<6u0
% y = zernfun(n,m,r(idx),theta(idx));
cfRUVe
% figure('Units','normalized') %tC[q
% for k = 1:10 lj:.}+]r
% z(idx) = y(:,k); |T/s>OW
% subplot(4,7,Nplot(k)) i)$+#N
% pcolor(x,x,z), shading interp ;!lwB
% set(gca,'XTick',[],'YTick',[]) s{{8!Q
% axis square )EQI>1_
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) VUP.
\Vry
% end
?^MH:o
%
qFLt/
>
% See also ZERNPOL, ZERNFUN2. nh80"Ny5
x]?V*Jz
% Paul Fricker 11/13/2006 |1/8m/2Af.
vILB$%I
.F2"tt?'
% Check and prepare the inputs: 9`5.0**
% ----------------------------- v6| [p
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;]=@;? 9
error('zernfun:NMvectors','N and M must be vectors.') [eBt Dc*w
end W(?J,8>
u,}>I%21
if length(n)~=length(m) 2PUB@B'
+
error('zernfun:NMlength','N and M must be the same length.') m=v.<+>
end l0qHoM,1Y[
+lZ-xU1
n = n(:); c* ~0R?
m = m(:); $: 1/`m19
if any(mod(n-m,2)) #pPR>,4
error('zernfun:NMmultiplesof2', ... 0(9gTxdB
'All N and M must differ by multiples of 2 (including 0).') 4>H0a
end e=IbEm{|
fCnwDT
if any(m>n) [D(JEO@ :
error('zernfun:MlessthanN', ... )8n?.keq
'Each M must be less than or equal to its corresponding N.') HU|qeSyel
end 8wZ
$Hq
!{ _:k%B
if any( r>1 | r<0 ) .x/H2r'1
error('zernfun:Rlessthan1','All R must be between 0 and 1.') <7B;_3/
end B}*\ pdJ
z|Xt'?9&n
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) N1'Yo:_A
error('zernfun:RTHvector','R and THETA must be vectors.') 9$VdYw7D
end -em3 #V
xdY'i0fh
r = r(:); =,i?8Fuz
theta = theta(:); PJe\PGh
length_r = length(r); eI|~neh
if length_r~=length(theta) J
p%J02
error('zernfun:RTHlength', ... 2t
'The number of R- and THETA-values must be equal.') pCa~:q*85
end N"Y%*BkH
+|K,\
{'U
% Check normalization: )=aqj@v
% -------------------- Vhb~kI!x
if nargin==5 && ischar(nflag) Do^yer~
isnorm = strcmpi(nflag,'norm'); LW("/
if ~isnorm J4iu8_eH!D
error('zernfun:normalization','Unrecognized normalization flag.') |8x_Av0
end E)X_
else XuZgyt"=r
isnorm = false; 0TICv2l!
end 4j i#Q
(4`Tf*5hHa
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?V_v=X%w
% Compute the Zernike Polynomials >SYOtzg%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I<xcVY9L
KpS=oFX{}
% Determine the required powers of r: ZX{eggXl
% ----------------------------------- A,=
R`m
m_abs = abs(m); |c-`XC2g
rpowers = []; CPP9=CoR37
for j = 1:length(n) oW(8bd)
rpowers = [rpowers m_abs(j):2:n(j)]; miCY?=N`
end OT)`)PZ"
rpowers = unique(rpowers); qPhVc9D#
b
Hy<`p0
% Pre-compute the values of r raised to the required powers, *S4&V<W>
% and compile them in a matrix: T).}~i;!
% ----------------------------- [r'hX#
if rpowers(1)==0 JKCV>k
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); MzlE
rpowern = cat(2,rpowern{:}); 6e}T
zc\@(
rpowern = [ones(length_r,1) rpowern]; <!|=_W6
else }2Im?Q
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); DAEWa
Kui
rpowern = cat(2,rpowern{:}); Xa&:Hg<
end +ZBj_Vw*|
aIWpgUd`
% Compute the values of the polynomials: : R8+jO
% -------------------------------------- % %2~%FVb
y = zeros(length_r,length(n)); ;hFB]/.v
for j = 1:length(n) ~H]d9C
s = 0:(n(j)-m_abs(j))/2; y>RqA*J
pows = n(j):-2:m_abs(j); %U1HvmyK
for k = length(s):-1:1 >g [Wnzf
p = (1-2*mod(s(k),2))* ... g|!=@9[dv
prod(2:(n(j)-s(k)))/ ... kYd=DY
prod(2:s(k))/ ... x_H"<-By
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... BTE&7/i21
prod(2:((n(j)+m_abs(j))/2-s(k))); 6b!1j,\Vx
idx = (pows(k)==rpowers); 0XL[4[LdA
y(:,j) = y(:,j) + p*rpowern(:,idx); \}Pr!tk!
end ,l\D@<F
.3
^*_
if isnorm >rh<%55P`
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); o`}8ZtD
end 7G_lGV_
end D,uT#P
% END: Compute the Zernike Polynomials gti=GmL(L
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |e3YTLsI
8[8U49V9(
% Compute the Zernike functions: 27H4en; o=
% ------------------------------ / pR,l5
idx_pos = m>0; c;R.rV<
idx_neg = m<0;
Y
XxWu8
e}L(tXZ
z = y; l02aXxT)]
if any(idx_pos) .fY$$aD$4
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); j7HOh|q
end %E2C4UbY
if any(idx_neg) ra\|c>[%
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); i{>YQ
end WF<*rl
Q9t.*+
% EOF zernfun