非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 QE84l
function z = zernfun(n,m,r,theta,nflag) rmpJG|(
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. iN+Dmq5
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N QKc3Q5)@j
% and angular frequency M, evaluated at positions (R,THETA) on the 6@g2v^ %
% unit circle. N is a vector of positive integers (including 0), and x68J [; jm
% M is a vector with the same number of elements as N. Each element 2,puu2F
% k of M must be a positive integer, with possible values M(k) = -N(k) 4Ub_;EI>
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ESiNW&u2
% and THETA is a vector of angles. R and THETA must have the same l>h%J,W
% length. The output Z is a matrix with one column for every (N,M) n|lXBCY7K
% pair, and one row for every (R,THETA) pair. ~!meO;|W
% qqT6C%Q`kG
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike K6~N{:.s
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), w_@NT}
% with delta(m,0) the Kronecker delta, is chosen so that the integral (ZQ{%-i?qR
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ]0by6hQ
% and theta=0 to theta=2*pi) is unity. For the non-normalized iI+kZI-
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }cgEC-
% }|H]>U&
% The Zernike functions are an orthogonal basis on the unit circle. n9gj{]%
% They are used in disciplines such as astronomy, optics, and uljd)kLy4O
% optometry to describe functions on a circular domain. M |?qSFv:
% g[*+R9'
% The following table lists the first 15 Zernike functions. | ctGxS9
% RO'MFU<g
% n m Zernike function Normalization cZ\#074u/
% -------------------------------------------------- l*HONl&j
% 0 0 1 1 c_}i(HQ
% 1 1 r * cos(theta) 2 1""9+4
% 1 -1 r * sin(theta) 2 |@]J*Kh
% 2 -2 r^2 * cos(2*theta) sqrt(6) :N\*;>
% 2 0 (2*r^2 - 1) sqrt(3) Z}f$KWj
% 2 2 r^2 * sin(2*theta) sqrt(6) i96Pel
% 3 -3 r^3 * cos(3*theta) sqrt(8) 9H2^4D8
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Zw| IY9D
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) );}k@w
fw)
% 3 3 r^3 * sin(3*theta) sqrt(8) '?E^\\"*
% 4 -4 r^4 * cos(4*theta) sqrt(10) .oH0yNFX
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Dk&cIZ43
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) G5ebb6[+
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) E{^*^+c"h
% 4 4 r^4 * sin(4*theta) sqrt(10) =DvFY]9{
% -------------------------------------------------- QOlm#S
% k^J~l=?v
% Example 1: 6/hY[a!
% $6XSW
% % Display the Zernike function Z(n=5,m=1) &BqRyUM$F
% x = -1:0.01:1; M A} =
% [X,Y] = meshgrid(x,x); Z*.fSmT8)
% [theta,r] = cart2pol(X,Y); qw&Wfk\}
% idx = r<=1; ]7O)iq%
% z = nan(size(X)); + Q
If7=
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Yb%H9A
% figure w3 PE.A"Q
% pcolor(x,x,z), shading interp /S$p_7N
% axis square, colorbar I.Co8is
% title('Zernike function Z_5^1(r,\theta)') bRJYw6oA<
% _2q4Aaza
% Example 2:
t@#sKdv
% dI5Z*"`R9
% % Display the first 10 Zernike functions 2WIL0Siwl
% x = -1:0.01:1; Um)0jT
% [X,Y] = meshgrid(x,x); zKe&*tZ
% [theta,r] = cart2pol(X,Y); dD1`[%
% idx = r<=1; pM@|P,w {
% z = nan(size(X)); XPd>DH(Yc
% n = [0 1 1 2 2 2 3 3 3 3]; e-,U@_B
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; !(*mcYA*W
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ~7Kqc\/H&I
% y = zernfun(n,m,r(idx),theta(idx)); m}T^rX%m_
% figure('Units','normalized') %'kaNpBz
% for k = 1:10 4
`Z @^W
% z(idx) = y(:,k); ?1?^>M
% subplot(4,7,Nplot(k)) 3Ku!;uo!u
% pcolor(x,x,z), shading interp '(5 &Sj/C
% set(gca,'XTick',[],'YTick',[]) e7t).s)b{
% axis square 8U/q3@EC
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) HDIB GG~
% end _YWw7q
% sT[)r]`T
% See also ZERNPOL, ZERNFUN2. RU,f|hB4
1Z'cL~9
% Paul Fricker 11/13/2006 bESmKe(
a^<
}IC$Du#
% Check and prepare the inputs: 4-eb&
% ----------------------------- ilw<Q-o4(
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) wp-5B= #:{
error('zernfun:NMvectors','N and M must be vectors.') v!E0/
gD
end $^.LZ1Jd
SDcxro|8i
if length(n)~=length(m) .6!IO^`[
error('zernfun:NMlength','N and M must be the same length.') C?#if;c
end K7FuMB
F8 ;M++
n = n(:); Nv,[E+a2
m = m(:); O_nk8
if any(mod(n-m,2)) b,Ed}Ir
error('zernfun:NMmultiplesof2', ... 3P6pQm'.f
'All N and M must differ by multiples of 2 (including 0).') P!,\V\TY]
end xrA(#\}f$
tE]g*]o
if any(m>n) x +!<_p
error('zernfun:MlessthanN', ... Dj;h!8t.
'Each M must be less than or equal to its corresponding N.') D7X-|`kH
end U`,&Q]
KunK.m
if any( r>1 | r<0 ) *;7&
error('zernfun:Rlessthan1','All R must be between 0 and 1.') kWF4k
end hQ i[7r($8
?Mp~^sgp'
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) VBF3N5
;W
error('zernfun:RTHvector','R and THETA must be vectors.') (s
%T18
end V,<,;d fR
P|v ;'9
r = r(:); iH9g5G`O
theta = theta(:); )?%FU?2jrn
length_r = length(r); "z69jxXo
if length_r~=length(theta) xp7,0'(;
error('zernfun:RTHlength', ... iVd*62$@$
'The number of R- and THETA-values must be equal.') f?dNTfQ3mi
end /R''R:j
@\i6m]\X
% Check normalization: rnIv|q6@
% -------------------- _0)#-L>xKF
if nargin==5 && ischar(nflag) yH|ucN~k5S
isnorm = strcmpi(nflag,'norm'); Mw?nIIu(@
if ~isnorm v>c[wg9P
error('zernfun:normalization','Unrecognized normalization flag.') ?#qA>:2,
end @~ N:F~
else 0Q;T
<%U
isnorm = false; $e+@9LNK
end 5w gtc~
]"dZE2!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 022YuqL<v
% Compute the Zernike Polynomials +AZ=nMgW
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Gnl6>/L,
blid* @-
% Determine the required powers of r: DHbLS3-
% ----------------------------------- EQyRP.
dq
m_abs = abs(m); x]euNa
rpowers = []; Ar'}#6
for j = 1:length(n) ,4NvD2Y
rpowers = [rpowers m_abs(j):2:n(j)]; HLN rI0
end "ltvD\
rpowers = unique(rpowers); enF.}fo]
RoxzCFsI\
% Pre-compute the values of r raised to the required powers, j5R= K*y
% and compile them in a matrix:
p[0Ws460
% ----------------------------- Ufv{6"sH
if rpowers(1)==0 NRcg~Nu
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !__f
rpowern = cat(2,rpowern{:}); !.+iA=K{
rpowern = [ones(length_r,1) rpowern]; `tVBV:4\
else K^J;iu 4
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N ]}Re$5
rpowern = cat(2,rpowern{:}); BNyDEFd
end (*/P~$xIj
K>RL
% Compute the values of the polynomials: yZb@
% -------------------------------------- u7^Z7;
J
y = zeros(length_r,length(n)); cK(}B_D$
for j = 1:length(n) |O+R%'z'<
s = 0:(n(j)-m_abs(j))/2; r;y&Wa
pows = n(j):-2:m_abs(j); -gu)d5b
for k = length(s):-1:1 Fy`VQ\%7t
p = (1-2*mod(s(k),2))* ... c[sC 2
prod(2:(n(j)-s(k)))/ ... Wfu%,=@,
prod(2:s(k))/ ... nkS6A}i3o
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... n j;
KnZ
prod(2:((n(j)+m_abs(j))/2-s(k))); ?b#/*T}ac
idx = (pows(k)==rpowers); A!Ng@r
y(:,j) = y(:,j) + p*rpowern(:,idx); xE9^4-Px*
end -3wg9uZ&
&VR<'^>
if isnorm 5irewh'R
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5;`([oX|_
end U(3LeS;mr
end ^P"t
"
% END: Compute the Zernike Polynomials Lg9]kpOpa
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^[&*B#(
q1r\60M
% Compute the Zernike functions: `gfK#0x#
% ------------------------------ /J/r 62
idx_pos = m>0; XwX1i!'54
idx_neg = m<0; ^nkwT~Bya
@F=ZGmq
z = y; 0 v/+%%4}
if any(idx_pos) O5_E"um
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); m( B6FPjr
end J-Sf9^G
if any(idx_neg) m1\>v?=K
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -|J?-
end Qyt6+xL
RvDqo d
% EOF zernfun