切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11053阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 MUjfqxTT  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! /t=Fx94  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 `2l j{N  
    function z = zernfun(n,m,r,theta,nflag) J *nWCL  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. {[:]}m(c  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N RTQtXv6mD  
    %   and angular frequency M, evaluated at positions (R,THETA) on the E=$li  
    %   unit circle.  N is a vector of positive integers (including 0), and DU|>zO%  
    %   M is a vector with the same number of elements as N.  Each element hRaX!QcG3  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 4qvE2W}&  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, mO8E-D*3  
    %   and THETA is a vector of angles.  R and THETA must have the same ~/l5ys  
    %   length.  The output Z is a matrix with one column for every (N,M) p"tCMB  
    %   pair, and one row for every (R,THETA) pair. S!6 ? b5  
    % ,9YgznQ  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^_5t5>  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), O]VHX![Y$  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral #dhce0m  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, OYLg-S  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized A(}D76o_  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M"!{Dx~  
    % w:HRzU>  
    %   The Zernike functions are an orthogonal basis on the unit circle. AQm#a;  
    %   They are used in disciplines such as astronomy, optics, and F1GFn|OA  
    %   optometry to describe functions on a circular domain. )l6(ss!J  
    % kK%@cIXS3  
    %   The following table lists the first 15 Zernike functions. :D:Y-cG*n<  
    % K*9~ g('  
    %       n    m    Zernike function           Normalization 6^NL>|?  
    %       -------------------------------------------------- {'NXJ!I;t  
    %       0    0    1                                 1 )uRR!<"~  
    %       1    1    r * cos(theta)                    2 mPJ@hr%3  
    %       1   -1    r * sin(theta)                    2 lEXI<b'2  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) tb/`*Yl@  
    %       2    0    (2*r^2 - 1)                    sqrt(3) *6/OLAkyF  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) :zp9L/eh  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) rk8Cea  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) .Ge`)_e  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 9][A1 +"  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Vu5Djx'  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ,{Ga7rH*   
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %G/(7l[W  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) #&,~5  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7 0Wy]8<P  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) p|n!R $_g\  
    %       -------------------------------------------------- FM,o&0HSd  
    % ,buo&DT{L  
    %   Example 1: <[A;i  
    % $J9/AFzO"  
    %       % Display the Zernike function Z(n=5,m=1) RgSB?  
    %       x = -1:0.01:1; ~9Cw5rwH<;  
    %       [X,Y] = meshgrid(x,x); fRK=y+gl@  
    %       [theta,r] = cart2pol(X,Y); KMP[Ledr  
    %       idx = r<=1; zn#lFPj12  
    %       z = nan(size(X)); *hlinQKs  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 9S/X,|i  
    %       figure D!rD-e  
    %       pcolor(x,x,z), shading interp \2[sUY<W  
    %       axis square, colorbar S N ;1F  
    %       title('Zernike function Z_5^1(r,\theta)') Nn{/_QG  
    % q85 4k+C  
    %   Example 2: yC\!6pg  
    % L*zfZ&  
    %       % Display the first 10 Zernike functions S.|%dz  
    %       x = -1:0.01:1; TXbnK"XQ  
    %       [X,Y] = meshgrid(x,x); 6F; |x  
    %       [theta,r] = cart2pol(X,Y); tvOyT6]  
    %       idx = r<=1; ?o`fX wE  
    %       z = nan(size(X)); ZO& F15$P  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 4XNkto  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; nVoP:FHH  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; % |G"ZPO?  
    %       y = zernfun(n,m,r(idx),theta(idx)); HY,VJxR[  
    %       figure('Units','normalized') 7VW/v4n  
    %       for k = 1:10 \me-#: Gu  
    %           z(idx) = y(:,k); qF4=MQm\aE  
    %           subplot(4,7,Nplot(k)) ,~>u<Wc!S  
    %           pcolor(x,x,z), shading interp \OVw  
    %           set(gca,'XTick',[],'YTick',[]) o?><(A|  
    %           axis square b5?k)s2  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5@EX,$h  
    %       end Fiaeo0  
    % )NnkoCNeE  
    %   See also ZERNPOL, ZERNFUN2. v-XB\|f  
    e_dsBmTh  
    %   Paul Fricker 11/13/2006 cdTG ]n  
    r<pt_Cd  
    q(Zu;ecBN  
    % Check and prepare the inputs: 7l3Dx w/N  
    % -----------------------------  \z?-  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T#ehJq 5  
        error('zernfun:NMvectors','N and M must be vectors.') iCdq-r/r!6  
    end Kgb<uXk  
    X;d 1@G  
    if length(n)~=length(m) %:Y'+!bX  
        error('zernfun:NMlength','N and M must be the same length.') ew1bb K>  
    end LEA^o"NW.  
    v2}>/b)  
    n = n(:); BV eIj }  
    m = m(:); hSXZu?/  
    if any(mod(n-m,2)) tx]!|x" F  
        error('zernfun:NMmultiplesof2', ... ZqfoO!Ta  
              'All N and M must differ by multiples of 2 (including 0).') $}.#0c8I  
    end w C-x'  
    Y 016Xg5  
    if any(m>n) 7vEZb.~4z  
        error('zernfun:MlessthanN', ... YiC_,8A~  
              'Each M must be less than or equal to its corresponding N.') ~i=5NUE  
    end lQ|i Ws  
    5mg] su&#  
    if any( r>1 | r<0 ) E[tEW0ub  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') '/@i} digf  
    end q@}tv =}  
    2$1D+(5;  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 6]Ri$V&"  
        error('zernfun:RTHvector','R and THETA must be vectors.') 5 0<  
    end 0ae}!LO  
    *.zC9Y,  
    r = r(:); Q*]y=Za#:  
    theta = theta(:); Bu#\W  
    length_r = length(r); |1UJKJwX  
    if length_r~=length(theta) Rs53R$PIR  
        error('zernfun:RTHlength', ... g BV66L  
              'The number of R- and THETA-values must be equal.') }bYk#6KX  
    end CxJH)H$  
    RaAvPIJa |  
    % Check normalization: qrY]tb^K  
    % -------------------- $GX9-^og=T  
    if nargin==5 && ischar(nflag) W(jP??up  
        isnorm = strcmpi(nflag,'norm'); CChCxB  
        if ~isnorm ,dSP%?vV  
            error('zernfun:normalization','Unrecognized normalization flag.') dwmZ_m.  
        end ~jM!8]=  
    else 5 DvD  
        isnorm = false; Tw!_=zy(Gw  
    end HsAKz]Mq  
    EALgBv>#ZL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +t<'{KZ7;  
    % Compute the Zernike Polynomials u;=a=>05IR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t"FB}%G  
    at5=Zo[bP  
    % Determine the required powers of r: uOQl;}Lk5  
    % ----------------------------------- NZt 8L?  
    m_abs = abs(m); @1+({u#B  
    rpowers = []; .{66q#.  
    for j = 1:length(n) ,B$m8wlI|  
        rpowers = [rpowers m_abs(j):2:n(j)]; NEcE -7aT  
    end Un{9reX5  
    rpowers = unique(rpowers); {{Z3M>Q  
    btv.M  
    % Pre-compute the values of r raised to the required powers, ]B9Ut&mF;  
    % and compile them in a matrix: V.~C.x  
    % ----------------------------- KmaMS(A(3  
    if rpowers(1)==0 p|VgtQ/ )%  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Hy#<fKz`!  
        rpowern = cat(2,rpowern{:}); WcKL=Z?(  
        rpowern = [ones(length_r,1) rpowern]; o 9{~F`{p  
    else \,yX3R3}.~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); IjnO2X  
        rpowern = cat(2,rpowern{:}); w $z]Z-  
    end VVm8bl.q  
    _.K<#S  
    % Compute the values of the polynomials: nZ~J &QK-  
    % -------------------------------------- -aF\ u[b  
    y = zeros(length_r,length(n)); E:S (v  
    for j = 1:length(n) ky |Py  
        s = 0:(n(j)-m_abs(j))/2; VXIB9 /*i  
        pows = n(j):-2:m_abs(j); 1g bqHxWI  
        for k = length(s):-1:1 [Z{0|NR  
            p = (1-2*mod(s(k),2))* ... w[?E oFI$Y  
                       prod(2:(n(j)-s(k)))/              ... +oRwXO3W  
                       prod(2:s(k))/                     ... U+'h~P'4  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _Sn7z?  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ,5/zTLd   
            idx = (pows(k)==rpowers); o~={M7 m  
            y(:,j) = y(:,j) + p*rpowern(:,idx); J#jx)K!  
        end [+z*&~'  
         Bd-@@d.H<  
        if isnorm !i*bb~  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); #ybtjsu'"U  
        end <R @w0b>  
    end kSH|+K\M4  
    % END: Compute the Zernike Polynomials "I)`g y&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9 M!J7 W  
    ;PF!=8dW  
    % Compute the Zernike functions: ds D!)$  
    % ------------------------------ pv){R;f  
    idx_pos = m>0; C J#1j>  
    idx_neg = m<0; 4l`"P~=2<  
    b$G &i'd  
    z = y; cuW&X9\m,  
    if any(idx_pos) C6cEt5  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); '}.Z' %;  
    end 1*u i|fuK  
    if any(idx_neg) =}7[ypQM`]  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ew{(@p+$  
    end n*vzp?+Y  
    mq*Efb)!  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 7.N~e}p 8  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ,ThN/GkSC  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated $m)[> C  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive jizp\%W+  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 0281"aO  
    %   and THETA is a vector of angles.  R and THETA must have the same 9et%Hn.K'  
    %   length.  The output Z is a matrix with one column for every P-value, x\MzMQ#Bf  
    %   and one row for every (R,THETA) pair. }:2GD0Ru  
    % J5 2- qR/  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike vRn"0Mzl8  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) JXA!l ?%  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) >p;cbp[ht  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 `rLy7\@;  
    %   for all p. k-N` h  
    % V$';B=M  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 @K:TGo,%I  
    %   Zernike functions (order N<=7).  In some disciplines it is 27q=~R}  
    %   traditional to label the first 36 functions using a single mode P>s 3Rh3:  
    %   number P instead of separate numbers for the order N and azimuthal ;+-M+9"?O  
    %   frequency M. mxQPOu  
    % *8?0vkZZ2  
    %   Example: m^M sp:T,  
    % /$NZj" #  
    %       % Display the first 16 Zernike functions ]= nM|e  
    %       x = -1:0.01:1; u|}p3-z|Y  
    %       [X,Y] = meshgrid(x,x); ./# F,^F2  
    %       [theta,r] = cart2pol(X,Y); ]> dCt<  
    %       idx = r<=1; EiP#xjn?c  
    %       p = 0:15; ) ir*\<6Y=  
    %       z = nan(size(X)); \sZT[42  
    %       y = zernfun2(p,r(idx),theta(idx)); r{pbUk  
    %       figure('Units','normalized') |MQ_VZ{6  
    %       for k = 1:length(p) e[)oT  
    %           z(idx) = y(:,k); z;#]xCV  
    %           subplot(4,4,k) gc KXda(  
    %           pcolor(x,x,z), shading interp O h{ >xg  
    %           set(gca,'XTick',[],'YTick',[]) Ns}BE H  
    %           axis square B{ptP4As-  
    %           title(['Z_{' num2str(p(k)) '}']) 7)U08"  
    %       end }> pNf  
    % EFqYEDXW  
    %   See also ZERNPOL, ZERNFUN. 2Sg^SZFH+o  
    [zv@}@$  
    %   Paul Fricker 11/13/2006 )E hR qX9  
    Je1'0h9d  
    #o/  
    % Check and prepare the inputs: MaS"V`NI  
    % ----------------------------- R$Or&:E ^  
    if min(size(p))~=1 )=]u]7p}  
        error('zernfun2:Pvector','Input P must be vector.') Q6lC:cB<  
    end <<5x"W(,  
    4[o/p8*/  
    if any(p)>35 xP61^*-2  
        error('zernfun2:P36', ... 7i@vj7K  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... J+o6*t2|  
               '(P = 0 to 35).']) zD z"Dn9  
    end p}:"@6  
    []I _r=  
    % Get the order and frequency corresonding to the function number: 9iy3 dy^  
    % ---------------------------------------------------------------- Y :-O/X  
    p = p(:); X]T&kdQ6q  
    n = ceil((-3+sqrt(9+8*p))/2); P1>?crw  
    m = 2*p - n.*(n+2); r]<?,xx [  
    dPmtU{E<M  
    % Pass the inputs to the function ZERNFUN: 1@"os[ 9  
    % ---------------------------------------- k`u.:C&  
    switch nargin EK=PY  
        case 3 X<*-d6?gD`  
            z = zernfun(n,m,r,theta); &]_2tN=S$  
        case 4 _Q=h3(ZI  
            z = zernfun(n,m,r,theta,nflag); n=8DC&  
        otherwise px>g  
            error('zernfun2:nargin','Incorrect number of inputs.') &o]ic(74c?  
    end qQ T ^d  
    Fd(o8z8Q  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) X*QQVj  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ul!e!^qwx  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of og)f?4  
    %   order N and frequency M, evaluated at R.  N is a vector of oa q!<lI  
    %   positive integers (including 0), and M is a vector with the $s,Az_bs  
    %   same number of elements as N.  Each element k of M must be a l1uv]t <  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) I\WBPI  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is kBr?Q  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix $s`#&.>c-  
    %   with one column for every (N,M) pair, and one row for every +txHj(Y`  
    %   element in R. ]rM HO  
    % h4geoC_W2  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- %RD%AliO}K  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is jk9/EmV*r  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to >m'n#=yap  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 0Ma3  
    %   for all [n,m]. sMHP=2##  
    % oF {u  
    %   The radial Zernike polynomials are the radial portion of the 4khc*fh  
    %   Zernike functions, which are an orthogonal basis on the unit g7@.Fa.u'!  
    %   circle.  The series representation of the radial Zernike "^&Te%x_b  
    %   polynomials is L/*K4xQ  
    % a"bael  
    %          (n-m)/2 >4iVVs  
    %            __ aYrbB#  
    %    m      \       s                                          n-2s W~Ae&gcn#  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ,cCBAO ueO  
    %    n      s=0 ;tG@ 6  
    % S<Od`I  
    %   The following table shows the first 12 polynomials. 1Q6~O2a  
    % nz_1Fu>g|  
    %       n    m    Zernike polynomial    Normalization kpLx?zW--q  
    %       --------------------------------------------- o|bm=&f  
    %       0    0    1                        sqrt(2) IEeh9:Km  
    %       1    1    r                           2 .F^372hH3  
    %       2    0    2*r^2 - 1                sqrt(6) SEXmVFsQ  
    %       2    2    r^2                      sqrt(6) /?_5!3KJ  
    %       3    1    3*r^3 - 2*r              sqrt(8) -v &  
    %       3    3    r^3                      sqrt(8) ds "N*\.  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) l invK.Lf  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Z,JoxK2"  
    %       4    4    r^4                      sqrt(10) 1T/ 72+R0  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) klxNGxWAX  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) hyVBQhk  
    %       5    5    r^5                      sqrt(12) e763 yd  
    %       --------------------------------------------- Z>(K|3_  
    % ? uu,w  
    %   Example: AEE&{ _[S  
    % +XoY@|Djd  
    %       % Display three example Zernike radial polynomials TS49{^d$  
    %       r = 0:0.01:1; k r ga!,I  
    %       n = [3 2 5]; ^j *H  
    %       m = [1 2 1]; -APbN(Vi  
    %       z = zernpol(n,m,r); HMl M!Xk?  
    %       figure +(/' b' *  
    %       plot(r,z) G' 0JK+=o  
    %       grid on 'v0(ki#  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') @G?R (  
    % DM=`hyf(v  
    %   See also ZERNFUN, ZERNFUN2. SK t&BnW  
    $9rQ w1#e  
    % A note on the algorithm. ~jDf,a2  
    % ------------------------ _ 0h)O  
    % The radial Zernike polynomials are computed using the series v/[*Pze,C  
    % representation shown in the Help section above. For many special Rg\D-F6:  
    % functions, direct evaluation using the series representation can Bhg,P.7  
    % produce poor numerical results (floating point errors), because 'j 'G4P_G  
    % the summation often involves computing small differences between a2SXg A  
    % large successive terms in the series. (In such cases, the functions ':#DROe!  
    % are often evaluated using alternative methods such as recurrence ='Fh^]*5  
    % relations: see the Legendre functions, for example). For the Zernike Wo+^R%K' 4  
    % polynomials, however, this problem does not arise, because the )JXy>q#  
    % polynomials are evaluated over the finite domain r = (0,1), and iCNJ%AZ H  
    % because the coefficients for a given polynomial are generally all {pz7ADK<  
    % of similar magnitude. +~\1g^h  
    % k<QZ_*x}G  
    % ZERNPOL has been written using a vectorized implementation: multiple vu|-}v?:  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 0T.kwZ8  
    % values can be passed as inputs) for a vector of points R.  To achieve aK?PK }@  
    % this vectorization most efficiently, the algorithm in ZERNPOL q"Th\? }%  
    % involves pre-determining all the powers p of R that are required to ufvjW]   
    % compute the outputs, and then compiling the {R^p} into a single Qv;q*4_  
    % matrix.  This avoids any redundant computation of the R^p, and o|Kd\<rY  
    % minimizes the sizes of certain intermediate variables. z6uHe{|  
    % tNC ;CP#R+  
    %   Paul Fricker 11/13/2006 4;V;8a\A  
    5 Mz6/&`  
    :@#6]W  
    % Check and prepare the inputs: ,iMdv+  
    % ----------------------------- [Y-3C47  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 1BOv|xPjZ  
        error('zernpol:NMvectors','N and M must be vectors.') 7_c/wbA#me  
    end ]6@6g>f?  
    {ug*  
    if length(n)~=length(m) 3"LT''  
        error('zernpol:NMlength','N and M must be the same length.') X]c>clk,  
    end ()(^B}VK  
    N4$ K {  
    n = n(:); $/"QYSF  
    m = m(:); NKMVp/66D  
    length_n = length(n); 'H-hp   
    Tl L\&n.$  
    if any(mod(n-m,2)) 2U& +K2  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') >6Ody<JPHP  
    end sGO+O$J  
    UY^TTRrH  
    if any(m<0) #Q$e%VJ(c1  
        error('zernpol:Mpositive','All M must be positive.') Z.,pcnaQb  
    end [ @9a  
    u]sxX")  
    if any(m>n) vf?Xt  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') />2zKF?  
    end Xh@;4n  
    x\aCZ  
    if any( r>1 | r<0 ) dZuPR  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') `Ln1g@  
    end (je`sV  
    OXS.CFZM  
    if ~any(size(r)==1) kJpr:4;@_  
        error('zernpol:Rvector','R must be a vector.') lY[\eQ 1:  
    end Wn&9R j  
    hCob^o  
    r = r(:); lu;gmWz  
    length_r = length(r); R{UZCFZ  
    6f)7*j~  
    if nargin==4 &Y1RPO41J  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm');  TUq ,  
        if ~isnorm J+l#!gk$!  
            error('zernpol:normalization','Unrecognized normalization flag.') H $mZ?  
        end ;E0x#JUrw  
    else z?WkHQ9  
        isnorm = false; lm|s%  
    end k,LaFe`W  
    `$XgfMBf |  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \?[m%$A  
    % Compute the Zernike Polynomials ~(]'ah,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8 @r>`c  
    @./ @"mR<  
    % Determine the required powers of r: pER[^LH_)  
    % ----------------------------------- `a5,5}7v%`  
    rpowers = []; oF_ '<\ly=  
    for j = 1:length(n) ]l^" A~va  
        rpowers = [rpowers m(j):2:n(j)]; >=/DCQ$  
    end <`Qb b=*  
    rpowers = unique(rpowers); *1h@Jb34  
    Kl]l[!c7$  
    % Pre-compute the values of r raised to the required powers, f('##pND@  
    % and compile them in a matrix: #rQT)n  
    % ----------------------------- ~h$ H@&5  
    if rpowers(1)==0 K0\`0E^,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *iV#_  
        rpowern = cat(2,rpowern{:}); #>2cfZ`6'J  
        rpowern = [ones(length_r,1) rpowern]; rge s`&0  
    else BirnCfj/2  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); lL&p?MUp  
        rpowern = cat(2,rpowern{:}); ^ # 3,*(S  
    end :=\`P  
    2]}e4@{  
    % Compute the values of the polynomials: 2=$ F*B>9  
    % -------------------------------------- k#G+<7c<  
    z = zeros(length_r,length_n); m}t`43}QE  
    for j = 1:length_n XsX];I{E,  
        s = 0:(n(j)-m(j))/2; [6)vD@  
        pows = n(j):-2:m(j); uFL!* #A  
        for k = length(s):-1:1 Si68_]:^  
            p = (1-2*mod(s(k),2))* ... c3*9{Il^  
                       prod(2:(n(j)-s(k)))/          ... -Fc 9mv(H  
                       prod(2:s(k))/                 ... M7ug < 8i  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... F6" QsFG  
                       prod(2:((n(j)+m(j))/2-s(k))); NN~PWy1opa  
            idx = (pows(k)==rpowers); G$s=P  
            z(:,j) = z(:,j) + p*rpowern(:,idx); VM+l9 z>  
        end RQ,X0 pS  
         JC9OL.Ob  
        if isnorm +f,I$&d.V  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); !'-./LD")  
        end :|Bzbn=N2  
    end (, $Lp0mB7  
    ZVz*1]}  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  _M7NL^B&  
    x$aFJ CL  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 a,*~wmg  
    2u'h,on?  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)