非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Hj\>&vMf
function z = zernfun(n,m,r,theta,nflag) kEiWE|
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. tk=~b}8
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ;|7]%Z}%
% and angular frequency M, evaluated at positions (R,THETA) on the a^/j&9
% unit circle. N is a vector of positive integers (including 0), and FbO\ #p s
% M is a vector with the same number of elements as N. Each element s[6y|{&ze
% k of M must be a positive integer, with possible values M(k) = -N(k) }\Kki
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, o+Cd\D69S
% and THETA is a vector of angles. R and THETA must have the same Q#!|h:K
% length. The output Z is a matrix with one column for every (N,M) :+Ti^FF`w
% pair, and one row for every (R,THETA) pair. bit@Kv1<C
% DvL/xlN
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike H|@R+
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), >wx1M1
% with delta(m,0) the Kronecker delta, is chosen so that the integral )2vkaR
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $;~
% and theta=0 to theta=2*pi) is unity. For the non-normalized 4FLL*LCNX
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 'KL!)}B$h
% ~Psv[b=]
% The Zernike functions are an orthogonal basis on the unit circle. BhFyEY(
% They are used in disciplines such as astronomy, optics, and o}QtKf)W
% optometry to describe functions on a circular domain. w
K)/m`{g
% oMdqg4HUF
% The following table lists the first 15 Zernike functions. QxUsdF?p
% * F[;D7sZ~
% n m Zernike function Normalization !.\- l2f
% -------------------------------------------------- #>)OLKP
% 0 0 1 1 |Iq#Q3w
% 1 1 r * cos(theta) 2 ;F3#AO4(
% 1 -1 r * sin(theta) 2 @o otKY`
% 2 -2 r^2 * cos(2*theta) sqrt(6) #i6ZY^+ee
% 2 0 (2*r^2 - 1) sqrt(3) N5m+r.<;
% 2 2 r^2 * sin(2*theta) sqrt(6) [OTZ"XQLI
% 3 -3 r^3 * cos(3*theta) sqrt(8) ?-.Qv1hs6p
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) [&_c.ti
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ftr?@^
% 3 3 r^3 * sin(3*theta) sqrt(8) 7Qoy~=E
% 4 -4 r^4 * cos(4*theta) sqrt(10) &v}c3wL]
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [*i6?5}-
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 'UW]~
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y*6-?@
% 4 4 r^4 * sin(4*theta) sqrt(10) b Ag>;e(
% -------------------------------------------------- ^j-w^)@T
% BZUA/;Hz &
% Example 1: \~ACWF7l
% Ic!8$NhRS
% % Display the Zernike function Z(n=5,m=1) ?U^h:n
% x = -1:0.01:1; (bT3
r_
% [X,Y] = meshgrid(x,x); ;_]Z3
% [theta,r] = cart2pol(X,Y); U`25bb1Wj
% idx = r<=1; XMJ EIG
% z = nan(size(X)); Wu:@+~J.h
% z(idx) = zernfun(5,1,r(idx),theta(idx)); I[td:9+hK@
% figure uW@o,S0:
% pcolor(x,x,z), shading interp <Oyxzs
% axis square, colorbar 4=b{k,kzgA
% title('Zernike function Z_5^1(r,\theta)') ;8VvpO^G/
% ]E8S`[Vn
% Example 2: Gd=l{~
% gr&Rkuyfv
% % Display the first 10 Zernike functions +[2X@J
% x = -1:0.01:1; J3;dRW
% [X,Y] = meshgrid(x,x); 0SJ7QRo|K
% [theta,r] = cart2pol(X,Y); cag9f?w@V
% idx = r<=1; O7KR~d
% z = nan(size(X)); gJn_Z7Mg J
% n = [0 1 1 2 2 2 3 3 3 3]; _mi(:s(
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; xQKD1#y
% Nplot = [4 10 12 16 18 20 22 24 26 28];
n-%8RV
% y = zernfun(n,m,r(idx),theta(idx)); \q |n0>
% figure('Units','normalized') 9S_N*wC.
% for k = 1:10 y%9Q]7&=
% z(idx) = y(:,k); `U~Y{f_!H
% subplot(4,7,Nplot(k)) c[a1
Md&
% pcolor(x,x,z), shading interp C/sDyv$
% set(gca,'XTick',[],'YTick',[]) vW\|%
@hW,
% axis square NbDfD3
1GK
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) g;M\4o
% end 5[1#d\QR
% jNO8n)a&p
% See also ZERNPOL, ZERNFUN2. ~w>Z !RuhT
1|PmZPKq9n
% Paul Fricker 11/13/2006 TLkJZ4}?Q
*C 0gpEf9S
$!msav
% Check and prepare the inputs: HJ\CGYmyz
% ----------------------------- fK$N|r
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) wG&+*,}
error('zernfun:NMvectors','N and M must be vectors.') /G>reG,G
end UpA{$@
c/c%-=
if length(n)~=length(m) w|1Gb[
error('zernfun:NMlength','N and M must be the same length.')
W1@Q)i
end #=MQE
`Al[gG?/!
n = n(:); 0H V-e
m = m(:); /&+6nOP
if any(mod(n-m,2)) !Qg%d&q.Sx
error('zernfun:NMmultiplesof2', ... >VAZ^kgi
'All N and M must differ by multiples of 2 (including 0).') MKuy?mri~
end 7 -(LWH
OoFQ@zE7%
if any(m>n) <?TJ-
error('zernfun:MlessthanN', ... MI!JZI$z5
'Each M must be less than or equal to its corresponding N.') L-ZJ[#D
end zn4Yo
@QAyXwp
if any( r>1 | r<0 ) AR}M*sSh
error('zernfun:Rlessthan1','All R must be between 0 and 1.') h= 3156M
end x+O}R D*G
GMw|@?:{
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,H3C\.%w\
error('zernfun:RTHvector','R and THETA must be vectors.') kUJ\AK
end [xXml On!
@UO=)PxN3
r = r(:); %5_eos&<^)
theta = theta(:); zr0_SCh;2
length_r = length(r); !d1}IU-h
if length_r~=length(theta) RRD\V3C84
error('zernfun:RTHlength', ... u+]v.Mt
'The number of R- and THETA-values must be equal.') `9QrkkG+
end /HNZwbh]uJ
!Xwp;P=
% Check normalization: E(T6s^8
% -------------------- ;3n0 bKDY
if nargin==5 && ischar(nflag) ;y#6Nx,:
isnorm = strcmpi(nflag,'norm'); [@}{sH(#Ta
if ~isnorm Ii?"`d +JA
error('zernfun:normalization','Unrecognized normalization flag.') `>fN?He
end ? OBe!NDf
else A
a2*f[
isnorm = false; `d=$9Pi
end xDBEs*
P,"z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _"Q
+G@@
% Compute the Zernike Polynomials E<3hy
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q{UP_6OF
`8F%bc54iw
% Determine the required powers of r: FhB^E$r%
% ----------------------------------- Rg&6J#h
m_abs = abs(m); x8T5aS
rpowers = []; SaEe7eHd
for j = 1:length(n) ]lF'o&v]
rpowers = [rpowers m_abs(j):2:n(j)]; gKg2Ntxj
end NQ<~$+{
rpowers = unique(rpowers); +G&h
b?o T|@
% Pre-compute the values of r raised to the required powers, }>xgzhdT
% and compile them in a matrix: {KL<Hx2M
% ----------------------------- Do(7LidC5
if rpowers(1)==0 2
G_*Pqc
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); J
p .wg
rpowern = cat(2,rpowern{:}); 1!\!3xa V
rpowern = [ones(length_r,1) rpowern]; gQ
h0-Dnw
else >TsJ0E?3x
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ',0~ \V
rpowern = cat(2,rpowern{:}); ?ZSG4La\
end Be2@9
,"PwNv
% Compute the values of the polynomials: +byw*Kk
% -------------------------------------- @hm%0L
y = zeros(length_r,length(n)); .jr1<LE
for j = 1:length(n) G=3/PYp
s = 0:(n(j)-m_abs(j))/2; ~0fT*lp
pows = n(j):-2:m_abs(j); *6Rl[eXS
for k = length(s):-1:1 >w9)c|
p = (1-2*mod(s(k),2))* ... W.\HfJ74
prod(2:(n(j)-s(k)))/ ... $BE^'5G&4Y
prod(2:s(k))/ ... g_]
u<8&
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 6!bA~"N
prod(2:((n(j)+m_abs(j))/2-s(k))); -p ) l63
idx = (pows(k)==rpowers); |.:O$/ Tt[
y(:,j) = y(:,j) + p*rpowern(:,idx); C3 0b}2
end -baGr;,Cu
S#+G?I3w
if isnorm Sct-,K%i
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $t1]w]}d
end 6kT
l(+
end f\~e&`PV
% END: Compute the Zernike Polynomials V{Idj\~Jh
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q|gun}
%8$JL=c
% Compute the Zernike functions: ACl:~7;
% ------------------------------ Oe$cM=Yf
idx_pos = m>0; lIzJO$8cM
idx_neg = m<0; 8t}=?:B+{
#jr;.;8sQ
z = y; 'xStA
if any(idx_pos) u{H,i(mx?
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2WE
end }jiqUBn%
if any(idx_neg) (fh:q2E#
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); >Fx$Rty
end cw"x0 RS
bdaZ{5^{
% EOF zernfun