切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10897阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ;<0~^,Xm  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! B 'd@ms  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 K[9P{0hA  
    function z = zernfun(n,m,r,theta,nflag) NVf_#p"h  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. =C)2DWJ1  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \K Kt& bKL  
    %   and angular frequency M, evaluated at positions (R,THETA) on the JRtDjZ4>  
    %   unit circle.  N is a vector of positive integers (including 0), and "%rU1/@#  
    %   M is a vector with the same number of elements as N.  Each element THCvcU?X  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Gch3|e  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ~ sWXd~\  
    %   and THETA is a vector of angles.  R and THETA must have the same Te^_gdf  
    %   length.  The output Z is a matrix with one column for every (N,M) >ca`0gu  
    %   pair, and one row for every (R,THETA) pair.  [cfXcl  
    % =%[vHQ\%  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $JK,9G[Vu  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P}!pmg6V  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral bl|)/)6o  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, TD!c+ ${w  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 7Mh!@Rd_V  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. "1Y DT-I"  
    % Vk1 c14i>  
    %   The Zernike functions are an orthogonal basis on the unit circle.  bWZzb&  
    %   They are used in disciplines such as astronomy, optics, and uxW<Eh4H*  
    %   optometry to describe functions on a circular domain. %=vU Z4  
    % ]==S?_.B3n  
    %   The following table lists the first 15 Zernike functions.  O&dh<  
    % gm: xtN  
    %       n    m    Zernike function           Normalization O%} hNTS"  
    %       -------------------------------------------------- xu'b@G}12  
    %       0    0    1                                 1 ZYTBc#f  
    %       1    1    r * cos(theta)                    2 Ui"3'OU'  
    %       1   -1    r * sin(theta)                    2 BGO pUy  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) }$3pS:_N~  
    %       2    0    (2*r^2 - 1)                    sqrt(3) %e/L .#0  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) _G^4KwYp  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) O<?.iF%  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ~(.&nysZ-  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) StLbX?d6  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) jhka;m  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) YJZ`Clp?  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) aSfAu!j)  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) gJOD+~  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u&o<>d;)  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) :*tFW~<*b  
    %       -------------------------------------------------- t"&qaG{  
    % 9_%??@^>  
    %   Example 1: 8;(3fSNC  
    % #\3X;{  
    %       % Display the Zernike function Z(n=5,m=1) )=#zMdK&  
    %       x = -1:0.01:1; Tnnj8I1v  
    %       [X,Y] = meshgrid(x,x); )gxZ &n6  
    %       [theta,r] = cart2pol(X,Y); m*>gG{3;  
    %       idx = r<=1; Okd7ua-f  
    %       z = nan(size(X)); IG8I<+<o  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); nS^,Sq\Ak  
    %       figure [5MV$)"!j  
    %       pcolor(x,x,z), shading interp .JWN\\  
    %       axis square, colorbar qoC<qn{.a  
    %       title('Zernike function Z_5^1(r,\theta)') x\Kt}/97e  
    % Mg\8m-L^  
    %   Example 2: 3?wL)6Uj8J  
    % lnrs4s Km  
    %       % Display the first 10 Zernike functions Y\9zjewc  
    %       x = -1:0.01:1; )!=X?fz,O  
    %       [X,Y] = meshgrid(x,x); `t]8 [P5  
    %       [theta,r] = cart2pol(X,Y); p3cb_  
    %       idx = r<=1; e,@5`aYHM@  
    %       z = nan(size(X)); 3s,a%GOk  
    %       n = [0  1  1  2  2  2  3  3  3  3]; j =PM]  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; .oe\wJS6  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; <s (o?U  
    %       y = zernfun(n,m,r(idx),theta(idx)); ,+'VQa"]  
    %       figure('Units','normalized') -N1X=4/fg  
    %       for k = 1:10 ,y[w`Q\  
    %           z(idx) = y(:,k); O _^Y*!  
    %           subplot(4,7,Nplot(k)) eOUEhpE  
    %           pcolor(x,x,z), shading interp qfgw^2aUa  
    %           set(gca,'XTick',[],'YTick',[]) |h2=9\:]  
    %           axis square U %aDkC+M  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) j k/-7/r  
    %       end V`"Cd?R0Z  
    % i$XT Qr0K=  
    %   See also ZERNPOL, ZERNFUN2. 'F^"+Xi  
    F<Z13]|  
    %   Paul Fricker 11/13/2006 0$. ;EGP  
    mS &^xWPV  
    aj$&~-/ R  
    % Check and prepare the inputs: 6JE_rAab  
    % ----------------------------- oSkvTK$ &i  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~Z$Ro/;l  
        error('zernfun:NMvectors','N and M must be vectors.') #i-b|J+%  
    end lN[#+n  
    %ERR^  
    if length(n)~=length(m) z_nY>_L83*  
        error('zernfun:NMlength','N and M must be the same length.') _5v]69C#  
    end vH>s2\V"  
    r<_qU3Eaj  
    n = n(:); lQ?_1H~4=  
    m = m(:); O+ J0X*&x  
    if any(mod(n-m,2)) Y?JB%%WWI  
        error('zernfun:NMmultiplesof2', ... zB#.EW  
              'All N and M must differ by multiples of 2 (including 0).') C&RZdh,$  
    end W$Z8AZ{E  
    18ON`j  
    if any(m>n) d+&w7/F  
        error('zernfun:MlessthanN', ... (bGk=q=M  
              'Each M must be less than or equal to its corresponding N.') WTu1t]  
    end y6gaoj  
    eZmwF@  
    if any( r>1 | r<0 ) *\$ko)x?c  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6:`4bo  
    end q$jwH] .  
    *4[P$k$7  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) SnG XEQ  
        error('zernfun:RTHvector','R and THETA must be vectors.') QzV%m0  
    end F|?}r3{aJ  
    Vu Ey`c  
    r = r(:); <l$ vnq  
    theta = theta(:); xgZ<. r  
    length_r = length(r); #e&LyYx4  
    if length_r~=length(theta) 8l>YpS*S^  
        error('zernfun:RTHlength', ... X-cP '"  
              'The number of R- and THETA-values must be equal.') /Ca M(^W   
    end MUMB\K*$  
    TZa LB}4  
    % Check normalization: LBnlaH.  
    % -------------------- @{@)gE  
    if nargin==5 && ischar(nflag) H.)J?3  
        isnorm = strcmpi(nflag,'norm'); 82yfPQ&UI  
        if ~isnorm 921s'"  
            error('zernfun:normalization','Unrecognized normalization flag.') *I`Eb7 ^  
        end gyOAvx  
    else R{{?wr6b$  
        isnorm = false; Xb1is\JB  
    end <(BIWm*  
    8j8~?=$a6Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j&`D{z-c~  
    % Compute the Zernike Polynomials F-2Q3+7$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kf_*=ER  
    @Zfg]L{Lr  
    % Determine the required powers of r: SQDc%I>b  
    % ----------------------------------- nC#SnyUO  
    m_abs = abs(m); /n3SE0Y  
    rpowers = []; WWv.kglz  
    for j = 1:length(n) __)"-\w-_(  
        rpowers = [rpowers m_abs(j):2:n(j)]; r z5@E  
    end A2I\T, Z  
    rpowers = unique(rpowers); Hh &s.ja  
    4YCuO%  
    % Pre-compute the values of r raised to the required powers, VoNk.h"T  
    % and compile them in a matrix: 0|]qW cD  
    % ----------------------------- uo7[T*<Q  
    if rpowers(1)==0 1N+ju"2R  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Q57Z~EsF  
        rpowern = cat(2,rpowern{:}); {hx=6"@  
        rpowern = [ones(length_r,1) rpowern]; K(_8oB784  
    else L%/atl!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,UneS  
        rpowern = cat(2,rpowern{:}); /@6T~XY M  
    end CZ ,2Rq  
    }\vw>iHPX@  
    % Compute the values of the polynomials: pwo @ S"  
    % -------------------------------------- _>G=xKA#e  
    y = zeros(length_r,length(n)); ]9hhAT44  
    for j = 1:length(n) gA&`vnNP  
        s = 0:(n(j)-m_abs(j))/2; U (A#}  
        pows = n(j):-2:m_abs(j); RHuc#b0  
        for k = length(s):-1:1 T,v5cc:nO  
            p = (1-2*mod(s(k),2))* ... `6o5[2V  
                       prod(2:(n(j)-s(k)))/              ... }*vO&J@z  
                       prod(2:s(k))/                     ... 57:27d0y  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... FK;2u $:  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ePTN^#|W  
            idx = (pows(k)==rpowers); h~k+!\  
            y(:,j) = y(:,j) + p*rpowern(:,idx); b R9iqRbn  
        end .'S_9le  
         u(4o#m  
        if isnorm d>x(Bj6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); [<VyH.  
        end je=XZ's,i~  
    end Q$~_'I7~Mz  
    % END: Compute the Zernike Polynomials }dG>_/3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $H1igYc  
    wQ\bGBks  
    % Compute the Zernike functions: u7bji>j  
    % ------------------------------ 'BNZUuUl  
    idx_pos = m>0; UsdUMt!u  
    idx_neg = m<0; &p.7SPQ8/  
    4_o+gG%HaM  
    z = y; wK  Je^7  
    if any(idx_pos) \w2X.2b.F  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); BXLw  
    end >;k~B  
    if any(idx_neg) =p#:v  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ybpU?n  
    end HkyN$1s  
    z=DK(b;$z  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) UUxP4  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. s7:w>,v/  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated }xytV5a^  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive "oT]_WHqo  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1,  Rlx  
    %   and THETA is a vector of angles.  R and THETA must have the same \-I)dMm[  
    %   length.  The output Z is a matrix with one column for every P-value, 'd9cCQ}  
    %   and one row for every (R,THETA) pair. (.~'\@  
    % &%@>S.  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Q&?B^[N*Q  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) &Y$)s<u8.  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) DWu~%U8  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ~)]n67Or~  
    %   for all p. qgsw8O&  
    % s:Z1 ZAxv  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 <`*v/D7\02  
    %   Zernike functions (order N<=7).  In some disciplines it is i-Ri;E  
    %   traditional to label the first 36 functions using a single mode No(S#,vJ;  
    %   number P instead of separate numbers for the order N and azimuthal 7dXh,sD  
    %   frequency M. /G#W/Q  
    % G>W:3y  
    %   Example: pOIfKd  
    % 73(5.'F  
    %       % Display the first 16 Zernike functions 6>- Gi  
    %       x = -1:0.01:1; S{ qn^\0  
    %       [X,Y] = meshgrid(x,x); f9J]-#Iif  
    %       [theta,r] = cart2pol(X,Y); LQ4F/[1}  
    %       idx = r<=1; rcG-V f@  
    %       p = 0:15; I}1<epd ,  
    %       z = nan(size(X)); mNr<=Z%b  
    %       y = zernfun2(p,r(idx),theta(idx)); a1A3uP  
    %       figure('Units','normalized') 0p!N'7N  
    %       for k = 1:length(p)  `/eh  
    %           z(idx) = y(:,k); ?+y# t?  
    %           subplot(4,4,k) RUlJP  
    %           pcolor(x,x,z), shading interp 0/?=FM >  
    %           set(gca,'XTick',[],'YTick',[]) $ iU~p  
    %           axis square "aeKrMgc6V  
    %           title(['Z_{' num2str(p(k)) '}']) ? p^':@=  
    %       end Y'M}lv$sa  
    % |NaEXzo|qY  
    %   See also ZERNPOL, ZERNFUN. S3_QOL  
    ,ikn%l#cm  
    %   Paul Fricker 11/13/2006 R=s^bYdoy  
    )lB*] n`Z]  
    wvg>SfV,e  
    % Check and prepare the inputs: s h^&3}  
    % ----------------------------- ut;KphvSH  
    if min(size(p))~=1 dG'5: ,n/  
        error('zernfun2:Pvector','Input P must be vector.') aW#_"Y}v'  
    end ?c# v'c^=h  
    K iG/XnS  
    if any(p)>35 1F }mlyS  
        error('zernfun2:P36', ... Nyo,6 AA  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... p&,2@(Q  
               '(P = 0 to 35).']) `PvGfmYOl  
    end 7(bE;(4  
    v0S7 ]?_  
    % Get the order and frequency corresonding to the function number: f=*xdOB3  
    % ---------------------------------------------------------------- .%N*g[J  
    p = p(:); ' 8bT9  
    n = ceil((-3+sqrt(9+8*p))/2); 0qMf6  
    m = 2*p - n.*(n+2); .=-K7.X.)  
    LjA>H>8%[  
    % Pass the inputs to the function ZERNFUN: ?$FvE4!n  
    % ---------------------------------------- ,R;wk=k  
    switch nargin (_O_zu8_  
        case 3 LuIs4&[EW  
            z = zernfun(n,m,r,theta); 7U{g'<  
        case 4 >QM$ NIf@  
            z = zernfun(n,m,r,theta,nflag); kVb8$Sp  
        otherwise OM 5h>\9  
            error('zernfun2:nargin','Incorrect number of inputs.') "Crm\UI6  
    end Qr l>A*  
    eA(c{  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) >HXmpu.O  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. H|iY<7@  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of .\> I-  
    %   order N and frequency M, evaluated at R.  N is a vector of zWh[U'6  
    %   positive integers (including 0), and M is a vector with the -dn\*n5  
    %   same number of elements as N.  Each element k of M must be a D>Qc/+  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) X%b.]A  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is e-#!3j!'  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix icPg<>TQ  
    %   with one column for every (N,M) pair, and one row for every g np\z/'>  
    %   element in R. Sy<s/x^`  
    % p7;/| ]o3  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 3yfq*\_uXw  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is G:2m)0bW  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to &L S&O  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 E5<}7Pt  
    %   for all [n,m]. {~"6/L  
    % ?Q)z5i'g#  
    %   The radial Zernike polynomials are the radial portion of the ^3L6mOoA  
    %   Zernike functions, which are an orthogonal basis on the unit Bld$<uU  
    %   circle.  The series representation of the radial Zernike $3Ct@}=n  
    %   polynomials is 6Q. _zk  
    % |[VtYV _{  
    %          (n-m)/2 &&;ol}W  
    %            __ t zhkdG  
    %    m      \       s                                          n-2s \&p MF  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r XKU+'Tz  
    %    n      s=0 #D$vH  
    % ji[O?  
    %   The following table shows the first 12 polynomials. ,rp-`E5ap  
    % ~\%MJ3  
    %       n    m    Zernike polynomial    Normalization 7lvUIc?krW  
    %       --------------------------------------------- <z*SO a  
    %       0    0    1                        sqrt(2) MhNDf[W>  
    %       1    1    r                           2 Uk02VuS  
    %       2    0    2*r^2 - 1                sqrt(6) G w$sL&1m\  
    %       2    2    r^2                      sqrt(6) y4HOKJxI  
    %       3    1    3*r^3 - 2*r              sqrt(8) ,f4mFL0~N  
    %       3    3    r^3                      sqrt(8) 6N&S3<c4JO  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 2@ >04]  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) o Ohm`7iy  
    %       4    4    r^4                      sqrt(10) onM ~*E  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) -BNlZgk-^  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) $Wy7z^ t  
    %       5    5    r^5                      sqrt(12) 6s833Tmb&r  
    %       --------------------------------------------- G"= tQ$ZU  
    % ,x?H]a)  
    %   Example: _$me.  
    % eiJO;%fl>l  
    %       % Display three example Zernike radial polynomials oVsj Q  
    %       r = 0:0.01:1; 4-4lh TE(  
    %       n = [3 2 5]; nBd!296  
    %       m = [1 2 1]; j w)Lofn  
    %       z = zernpol(n,m,r); HM])m>KeT  
    %       figure *Rv eR?kO  
    %       plot(r,z) _M+'30  
    %       grid on A / N$  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') b'^OW  
    % )>atoA  
    %   See also ZERNFUN, ZERNFUN2. _dj< xPO  
    zi23k=  
    % A note on the algorithm. ~pn9x;N%H  
    % ------------------------ U RDb  
    % The radial Zernike polynomials are computed using the series oW-Tw@D  
    % representation shown in the Help section above. For many special @.gT&Hq  
    % functions, direct evaluation using the series representation can J_s?e#s  
    % produce poor numerical results (floating point errors), because JbG\Ywi0]  
    % the summation often involves computing small differences between zYdSg<[^  
    % large successive terms in the series. (In such cases, the functions aTs5^Kh')  
    % are often evaluated using alternative methods such as recurrence $jb0/  
    % relations: see the Legendre functions, for example). For the Zernike n37C"qJ/i  
    % polynomials, however, this problem does not arise, because the ~1pJQ)!zlq  
    % polynomials are evaluated over the finite domain r = (0,1), and />XfK,c-  
    % because the coefficients for a given polynomial are generally all :b;2iBVB  
    % of similar magnitude. _=jc%@]1y  
    % .Lo$uKsW$l  
    % ZERNPOL has been written using a vectorized implementation: multiple Qw^nN(K!>  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] GBvB0kC)c  
    % values can be passed as inputs) for a vector of points R.  To achieve ^ 3LM%B  
    % this vectorization most efficiently, the algorithm in ZERNPOL xTX\% s|  
    % involves pre-determining all the powers p of R that are required to ]nN']?{7PW  
    % compute the outputs, and then compiling the {R^p} into a single PGMu6$  
    % matrix.  This avoids any redundant computation of the R^p, and |H5){2V>K  
    % minimizes the sizes of certain intermediate variables. )1O *~%  
    % ;h_"5/#  
    %   Paul Fricker 11/13/2006 $nQ; ++  
    fcb:LPk;  
    &-+qB >SK>  
    % Check and prepare the inputs: N10'./c K  
    % ----------------------------- N{`-&8q;K  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +&tY&dQQB  
        error('zernpol:NMvectors','N and M must be vectors.') /`0*!sN*5  
    end P"_x/C(]@J  
    &Z5$ 5,[  
    if length(n)~=length(m) =2bW"gs I  
        error('zernpol:NMlength','N and M must be the same length.') \SnW(,`oX  
    end fyx-VXu  
    e%N\Pshgv  
    n = n(:); knpb$eX4  
    m = m(:); [9a0J):w{  
    length_n = length(n); SxC$EQ gL  
    [X)+(-J  
    if any(mod(n-m,2)) jDcE_55o  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') @g[p>t> *  
    end 4r-jpVN~  
    5JDqSz{  
    if any(m<0) 2Y&z}4'j  
        error('zernpol:Mpositive','All M must be positive.') oScHmGFv  
    end E3.=|]W'  
    K8{ j oh  
    if any(m>n) \,[Qg#W$u  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') >Fz_]z   
    end ?AyG!F  
    )rz4IfE  
    if any( r>1 | r<0 ) k\Oy\z@  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') q NU\XO`H  
    end s>~!r.GC  
    b.h~QyI/W  
    if ~any(size(r)==1) wlC_rRj~  
        error('zernpol:Rvector','R must be a vector.') aCX](sN  
    end X6!u(plVQ  
    M\,0<{  
    r = r(:); y .S0^  
    length_r = length(r); 9fvy)kX;s  
    (p68Qe%OuG  
    if nargin==4 Hy|$7]1  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ~m[^|w  
        if ~isnorm iYHD:cg)~  
            error('zernpol:normalization','Unrecognized normalization flag.') ]&yO>\MgJB  
        end z >vzXM  
    else l:8gCi  
        isnorm = false; bU=!~W5  
    end QgEG%YqB  
    zkI\ji  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?nB).fc  
    % Compute the Zernike Polynomials -&M9Yg|Se  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /%$'N$@f  
    eek5Xm  
    % Determine the required powers of r: iF{eGi  
    % ----------------------------------- _,NL;66=[  
    rpowers = []; 9,82Uta  
    for j = 1:length(n) JV/K ouL  
        rpowers = [rpowers m(j):2:n(j)]; ]Tf.KUm  
    end MT$OjH'Q`  
    rpowers = unique(rpowers); }a"T7y23  
    (# eB %  
    % Pre-compute the values of r raised to the required powers, . CLiv  
    % and compile them in a matrix: 0DIaXdOdW+  
    % ----------------------------- +~  :1H.  
    if rpowers(1)==0 r=s ,Ath  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); C z4"[C`;  
        rpowern = cat(2,rpowern{:}); $oH?oD1  
        rpowern = [ones(length_r,1) rpowern]; u\ytiGO*  
    else ! 0fpD'f!n  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); q3VE\&*^F  
        rpowern = cat(2,rpowern{:}); -/B}XN W  
    end jkFS=eonK  
    tKo ^A:M  
    % Compute the values of the polynomials: I(s\ Q[  
    % -------------------------------------- z~A||@4'  
    z = zeros(length_r,length_n); I`t"Na2i  
    for j = 1:length_n :'f#0ox  
        s = 0:(n(j)-m(j))/2; %TPnC'2  
        pows = n(j):-2:m(j); LP7t*}PK  
        for k = length(s):-1:1 68*h#&  
            p = (1-2*mod(s(k),2))* ... zW!3>(L/  
                       prod(2:(n(j)-s(k)))/          ... Ol~sCr  
                       prod(2:s(k))/                 ... T#|Qexz6 @  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... S@z$,}Yc`<  
                       prod(2:((n(j)+m(j))/2-s(k))); f /&Dy'OV7  
            idx = (pows(k)==rpowers); <)uUAh  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Jv1.Yz  
        end x5WFPY$wM  
         /$! / F@^  
        if isnorm Gz+Bk5#{  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ^p|MkB?uM  
        end Ii?<Lz  
    end uPsn~>(4  
    {K09U^JU  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  u&z5)iU  
    s_S[iW`l=  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 _LU]5$\b  
    pKJ0+mN#"  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)