非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 x!!:jL'L
function z = zernfun(n,m,r,theta,nflag) O>w$
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. VX&KGG.6
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Q=~e|
% and angular frequency M, evaluated at positions (R,THETA) on the E](Ood
% unit circle. N is a vector of positive integers (including 0), and blaxUP:
% M is a vector with the same number of elements as N. Each element 05nG|
% k of M must be a positive integer, with possible values M(k) = -N(k) wamqeb{u
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, WJe
% and THETA is a vector of angles. R and THETA must have the same sBF}j.b
% length. The output Z is a matrix with one column for every (N,M) p%J,af
% pair, and one row for every (R,THETA) pair. ?mRU9VY
% " S#0QH%5
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike a+zE`uY
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), u&bo32fc
% with delta(m,0) the Kronecker delta, is chosen so that the integral LUKdu&M
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |)pT"`
% and theta=0 to theta=2*pi) is unity. For the non-normalized e|AJxn]
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {:od=\*R
% 9+=U&*
% The Zernike functions are an orthogonal basis on the unit circle. ~b8U#'KD
% They are used in disciplines such as astronomy, optics, and d'^jekh
% optometry to describe functions on a circular domain. 3j<]
W
% 4<Bj;1*4
% The following table lists the first 15 Zernike functions. v.\1-Q?
% <J {VTk ~
% n m Zernike function Normalization 8*4X%a=Of
% -------------------------------------------------- h{J2CWJ
% 0 0 1 1 wC <!,tB(8
% 1 1 r * cos(theta) 2 uGc}^a2
% 1 -1 r * sin(theta) 2 &bs/a]?Z7
% 2 -2 r^2 * cos(2*theta) sqrt(6) 4\ H;A
% 2 0 (2*r^2 - 1) sqrt(3) eNu`\
% 2 2 r^2 * sin(2*theta) sqrt(6) gjL>FOe8u
% 3 -3 r^3 * cos(3*theta) sqrt(8) q+e'=0BHd:
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) bNY_V;7Kw`
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) cl1h;w9s
% 3 3 r^3 * sin(3*theta) sqrt(8) GJ
ZT~
% 4 -4 r^4 * cos(4*theta) sqrt(10) <d$|~qS_
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %{&yXi:mS
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) id&;
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~naL1o_FZ
% 4 4 r^4 * sin(4*theta) sqrt(10) 8>6+]]O
% -------------------------------------------------- ga6M8eOI
% cm6cW(x6
% Example 1: V8`t7[r
% JQi)6A?J
% % Display the Zernike function Z(n=5,m=1) L!c7$M5xJ
% x = -1:0.01:1; t~Cul+
% [X,Y] = meshgrid(x,x); vUvIZa
% [theta,r] = cart2pol(X,Y); ISa2|v;M
% idx = r<=1; &JtK<g
% z = nan(size(X)); ZnI_<iFR*
% z(idx) = zernfun(5,1,r(idx),theta(idx)); -fT]}T6=
% figure p_)V@7
% pcolor(x,x,z), shading interp dilRL,
% axis square, colorbar j2=jD G
% title('Zernike function Z_5^1(r,\theta)') DZilK:
% /b@8#px
% Example 2: ~*- eL.
%
xuv%mjQ
% % Display the first 10 Zernike functions ,N?~je.
% x = -1:0.01:1; V[5-A $ft
% [X,Y] = meshgrid(x,x); j0Kj>
% [theta,r] = cart2pol(X,Y); I|n<B"Q6^
% idx = r<=1; #
0dN!l;
% z = nan(size(X)); L#M9 !
% n = [0 1 1 2 2 2 3 3 3 3]; ,L6d~>=41
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 4!XB?-.
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 7Xw;TA
% y = zernfun(n,m,r(idx),theta(idx)); B'lWs;
% figure('Units','normalized') zVd2kuI&?
% for k = 1:10 QDF1$,s4i
% z(idx) = y(:,k); q+>{@tP9
% subplot(4,7,Nplot(k)) cuB~A8H#}
% pcolor(x,x,z), shading interp |Eu_K`
% set(gca,'XTick',[],'YTick',[]) z\sy~DM;>
% axis square O1ofN#u
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) J;Xh{3[vO
% end p'0jdb :S
% l|/h4BJ'
% See also ZERNPOL, ZERNFUN2. gG>1
A{bt
Z#k
% Paul Fricker 11/13/2006 P|!GXkS
4askQV &hj
\A6MVMF8
% Check and prepare the inputs: 5IOOV Yl
% ----------------------------- [}9sq+##
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 1y2D]h /'
error('zernfun:NMvectors','N and M must be vectors.') _[<R<&jG
end j#f+0
w-C~
Ik
if length(n)~=length(m) GLp2
?fon
error('zernfun:NMlength','N and M must be the same length.') ryB^$Kh,,
end o8-BTq8
r/$+'~apTk
n = n(:); 9TIyY`2!
m = m(:); mSp-
if any(mod(n-m,2)) {0nZ;1,m
error('zernfun:NMmultiplesof2', ... 9z$]hl
'All N and M must differ by multiples of 2 (including 0).') #v0"hFOH,
end 5x(`z
o]t6u .L
if any(m>n) Kfa7}f_
error('zernfun:MlessthanN', ... cv=nGFx6
'Each M must be less than or equal to its corresponding N.') %0fF_OU
end 1P.
W 34
MUhC6s\F
if any( r>1 | r<0 ) \_Nr7sc\
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 11glFe
end / *RDy!m
&tB|l_p_-p
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Jkzt=6WZ0
error('zernfun:RTHvector','R and THETA must be vectors.') ?&I gD.
end K{.s{;#
x|d Xa0=N_
r = r(:); bE#=\kf|
theta = theta(:); nd3=\.(P
length_r = length(r); {hG r`Rh
if length_r~=length(theta) C)~YWx@v
error('zernfun:RTHlength', ... PVP,2Yq!
'The number of R- and THETA-values must be equal.') *:J#[ET,
end >ygyPl
;1s
` wuA}v3!
% Check normalization: %_0,z`f
% --------------------
O<Qa1Ow7f
if nargin==5 && ischar(nflag) v_)a=I%o&2
isnorm = strcmpi(nflag,'norm'); JZQkr
if ~isnorm S(9Xbw)T
error('zernfun:normalization','Unrecognized normalization flag.') R $HIJM
end "D}PbT[V
else >y m MQEX`
isnorm = false; Vc.A<(
end E1IRb':
@'C f<wns
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D
M(WYL{
% Compute the Zernike Polynomials .j:.?v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .F:qJ6E
zWoPa,
% Determine the required powers of r: YLmzMD>
% ----------------------------------- k$UgTZ
m_abs = abs(m); Y:[WwX|
rpowers = []; dya]^L}fL
for j = 1:length(n)
Bj09?#~[
rpowers = [rpowers m_abs(j):2:n(j)]; R#i|n<x
end -fw0bL%0
rpowers = unique(rpowers); <MZ$ baK
fZL%H0&
% Pre-compute the values of r raised to the required powers, aDFu!PLB{)
% and compile them in a matrix: Ev* b
% ----------------------------- |Ak>kQJ(1z
if rpowers(1)==0 O( G|fs
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |={><0
rpowern = cat(2,rpowern{:}); #c@Dn.W
rpowern = [ones(length_r,1) rpowern]; CnruaN@
else JYL/p9K[I
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ni*f1[sI<
rpowern = cat(2,rpowern{:}); 0-p LCf
end Z m9 e|J
9PjL
4A
% Compute the values of the polynomials: ez=$ ]cln
% -------------------------------------- })!d4EcZf
y = zeros(length_r,length(n)); +]uW|owxo
for j = 1:length(n) 1RM;"b/
s = 0:(n(j)-m_abs(j))/2; n"vl%!B
pows = n(j):-2:m_abs(j); ]vJZ v"ACn
for k = length(s):-1:1 0Ge*\Q
p = (1-2*mod(s(k),2))* ... p8K4^H
prod(2:(n(j)-s(k)))/ ... @'L/]
prod(2:s(k))/ ... *#1&IJPI
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... wH=
prod(2:((n(j)+m_abs(j))/2-s(k))); vzK*1R5
idx = (pows(k)==rpowers); jT"P$0sJAd
y(:,j) = y(:,j) + p*rpowern(:,idx); ;ZXP*M9
end ^I3cU'X
8T92;.~(
if isnorm In^MZ)?
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); gS4zX>rqe
end ^6[KzE#*
end *F* c
% END: Compute the Zernike Polynomials (rO_Vfaa
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1}#v<b$
Be}e%Rk
% Compute the Zernike functions: /:v+:-lU
% ------------------------------ >JwdVy^
idx_pos = m>0; z_R^n#A~r
idx_neg = m<0; 6TJ5G8z_
Y(GH/jw
z = y; E@TX>M-&
if any(idx_pos) 4O_z|K_k|
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _F>1b16:/P
end vF"<r,pg
if any(idx_neg) `?LQd2p
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 7IW:,=Zk8+
end JPfNf3<@My
B04%4N.g"X
% EOF zernfun