非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 cGyR_8:2cv
function z = zernfun(n,m,r,theta,nflag) P(UY}oU
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. H;seT XL
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N l{gR6U{e
% and angular frequency M, evaluated at positions (R,THETA) on the qe5;Pq !G
% unit circle. N is a vector of positive integers (including 0), and "A*;V
% M is a vector with the same number of elements as N. Each element <TTBIXV
% k of M must be a positive integer, with possible values M(k) = -N(k) v|KGzQx$.*
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ;jJ4H+8
% and THETA is a vector of angles. R and THETA must have the same !"ir}Y%
% length. The output Z is a matrix with one column for every (N,M) D~FIv
% pair, and one row for every (R,THETA) pair. XmaRg{22
% DL#y_;#3_
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike !ALq?u
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), kxR!hA8wv4
% with delta(m,0) the Kronecker delta, is chosen so that the integral 86e aX+F
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, K^h9\<w
% and theta=0 to theta=2*pi) is unity. For the non-normalized *+k
yuY J
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M~h.MPI
% (Y*9[hm
% The Zernike functions are an orthogonal basis on the unit circle. 0Y'ow=8M
% They are used in disciplines such as astronomy, optics, and Ljiw9*ZI
% optometry to describe functions on a circular domain. ,:#h;4!VRF
% V(XZ7<& {
% The following table lists the first 15 Zernike functions. 4\ |/S@.
% )G;Hf?M
% n m Zernike function Normalization ;<GK{8
% -------------------------------------------------- #|3,DZ|)F
% 0 0 1 1 "Ec9.#U/
% 1 1 r * cos(theta) 2 *VHWvj
% 1 -1 r * sin(theta) 2 K2\)9
% 2 -2 r^2 * cos(2*theta) sqrt(6) yJ`{\7Uqg
% 2 0 (2*r^2 - 1) sqrt(3) 7=NKbv]
% 2 2 r^2 * sin(2*theta) sqrt(6) 8GRB6-.h
% 3 -3 r^3 * cos(3*theta) sqrt(8) "',;pGg|K
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ,6#%+u}f
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) IlwHHt;njp
% 3 3 r^3 * sin(3*theta) sqrt(8) 6nJQP a
% 4 -4 r^4 * cos(4*theta) sqrt(10) O,-NzGs
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y@<jvH1
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Qg]A^{.1
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v,8Q9<=O
% 4 4 r^4 * sin(4*theta) sqrt(10) QhLgFu
% -------------------------------------------------- 717G
CL@
% #d<|_
% Example 1: \{!,a
% Fa\jVFIQ
% % Display the Zernike function Z(n=5,m=1) #_`qbIOAj
% x = -1:0.01:1; Zy.ls&<:
% [X,Y] = meshgrid(x,x); Gg]Jp:GF
% [theta,r] = cart2pol(X,Y); nz'6^D7`r
% idx = r<=1; @HSK[[?
% z = nan(size(X)); hF5T9^8
% z(idx) = zernfun(5,1,r(idx),theta(idx)); &cJ?mSI
% figure )n1[#x^I
% pcolor(x,x,z), shading interp 1c429&-
% axis square, colorbar 1X`,7B@pz
% title('Zernike function Z_5^1(r,\theta)') D^V)$ME
% Bd)Cijr
% Example 2: 1|!)*!hu
% rlawH}1b
% % Display the first 10 Zernike functions &zJ\D`\,O
% x = -1:0.01:1; 1E'PSq
% [X,Y] = meshgrid(x,x); HRjbGc|[
% [theta,r] = cart2pol(X,Y); 'RF`XX
% idx = r<=1; sKsMF:|OT
% z = nan(size(X)); dKC*QHU
% n = [0 1 1 2 2 2 3 3 3 3]; C984Ee
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; MEJX5qG6m
% Nplot = [4 10 12 16 18 20 22 24 26 28]; @Tq-3Um
% y = zernfun(n,m,r(idx),theta(idx)); ^k$Bx_{
% figure('Units','normalized') `-{? !
% for k = 1:10 Ovj^
7r:<s
% z(idx) = y(:,k); {fHY[8su0
% subplot(4,7,Nplot(k)) jpS$5Ct
% pcolor(x,x,z), shading interp IbL'Z
% set(gca,'XTick',[],'YTick',[]) C& XPn;f
% axis square <_Z.fdUA
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @9n|5.i
% end i=]R1yP
% .boBb<
% See also ZERNPOL, ZERNFUN2. 8 l)K3;q_
-u<F>C
% Paul Fricker 11/13/2006 5@
td0
`w`N5 !
(VI(Nv:o@
% Check and prepare the inputs: ~TXu20c
% ----------------------------- DNqV]N_W
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -3~S{)
error('zernfun:NMvectors','N and M must be vectors.') 2|i1}
end ?I?~BWu
\v\ONp"
if length(n)~=length(m) S{8-XiL,
error('zernfun:NMlength','N and M must be the same length.') 6SE^+@jR
end :AFU5mR4&
":qHDL3
n = n(:); `v)'(R7){
m = m(:); }` H{;A
h
if any(mod(n-m,2)) RsS:I6L
error('zernfun:NMmultiplesof2', ... S^|`*%pq
'All N and M must differ by multiples of 2 (including 0).') ar,v/l>d4N
end bXc*d9]
&=M4Z/Ao
if any(m>n) yih|6sd$F
error('zernfun:MlessthanN', ... J(!=Dno
'Each M must be less than or equal to its corresponding N.') K;rgLj0m
end zh=0zJ
/U!B2%vq_
if any( r>1 | r<0 ) 1,$"'lKwt
error('zernfun:Rlessthan1','All R must be between 0 and 1.') i%<NKE;v7m
end LWhy5H;Es
g@s`PBF7`
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +HWFoK
error('zernfun:RTHvector','R and THETA must be vectors.') J1cz
D |(
end :eD-'#@$u
I9aiAD0s
r = r(:); 3WwCo.q;m
theta = theta(:); F@Wi[K
length_r = length(r); toPFkc6`
if length_r~=length(theta) 4Y3@^8h&=
error('zernfun:RTHlength', ... tl* v(ZW
'The number of R- and THETA-values must be equal.') <vV"abk
end :6)!#q'g
1R*;U8?
% Check normalization: qBK68B)
% -------------------- \8\TTkVSq
if nargin==5 && ischar(nflag) ;@gI*i
N"
isnorm = strcmpi(nflag,'norm'); AB+lM;_>
if ~isnorm a;U)#*(5|v
error('zernfun:normalization','Unrecognized normalization flag.') 4Wa$>vz
end "5FP$oR
else =HIKn6C<
isnorm = false; :@E^oNKa0
end EW4a@
CK4#ZOiaa
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nZL!}3@<
% Compute the Zernike Polynomials ;QCGl$8A
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Mg8ciV}\xY
+"WNG
% Determine the required powers of r: Y:Lkh>S1Q
% ----------------------------------- H|j]uLZ
m_abs = abs(m); m432,8 K3r
rpowers = []; jY/(kA]}
for j = 1:length(n) o@j!J I&
rpowers = [rpowers m_abs(j):2:n(j)]; aYpc\jJ
end SbMRrWy
rpowers = unique(rpowers); J &=5h.G$
P$AHw;n[R
% Pre-compute the values of r raised to the required powers, Xf{p>-+DL
% and compile them in a matrix: LSXsq}
% ----------------------------- i^ILo,Q
if rpowers(1)==0 "~6&rt
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); M
0G`P1o
rpowern = cat(2,rpowern{:}); CJ)u#PmkJ
rpowern = [ones(length_r,1) rpowern]; -H_#et3&i