切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9643阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 0F6~S   
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! XO}SPf-  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #I#_gjJkx  
    function z = zernfun(n,m,r,theta,nflag) H=9{|%iS  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. r|y\FL  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ;A0ZcgF  
    %   and angular frequency M, evaluated at positions (R,THETA) on the -/_hO$|W  
    %   unit circle.  N is a vector of positive integers (including 0), and Yn>FSq^Wp-  
    %   M is a vector with the same number of elements as N.  Each element |}@teN^J*U  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) d}wE4(]b  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, _)6r@fZ.p  
    %   and THETA is a vector of angles.  R and THETA must have the same JY%l1:}G3  
    %   length.  The output Z is a matrix with one column for every (N,M) o;>qsn8  
    %   pair, and one row for every (R,THETA) pair. G<Urj+3/Xo  
    % .e\PCf9v  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike WLH ;{  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 57EL&V%j  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral MR zY<MD  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 'l3 DP  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized /a s+ TU`A  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. :0p$r pJP  
    % y2nT)nL  
    %   The Zernike functions are an orthogonal basis on the unit circle. =-avzuy#  
    %   They are used in disciplines such as astronomy, optics, and oo1h"[  
    %   optometry to describe functions on a circular domain. @*WrHoa2N  
    % ek d[|g  
    %   The following table lists the first 15 Zernike functions. /< Dtu UM  
    % QiaBZAol  
    %       n    m    Zernike function           Normalization gFXz:!A  
    %       -------------------------------------------------- A2.4#Qb'  
    %       0    0    1                                 1 vnqLcNB H  
    %       1    1    r * cos(theta)                    2 TXqtE("BDl  
    %       1   -1    r * sin(theta)                    2 0Y8Cz/$  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ~SI G0U8  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 2B+qS'OT  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) P.djR)YI  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) fFXnD  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 7_J0[C!G  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) g|j15&x  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) )GOio+{H  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 0JW =RW  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) PB~ r7O]  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [4+I1UR`  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !1l~'/r  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) v3wq-  
    %       -------------------------------------------------- O"wo&5b_  
    % m14'u GC  
    %   Example 1: CW FE{  
    % %0'7J@W  
    %       % Display the Zernike function Z(n=5,m=1) Rpj{!Ia  
    %       x = -1:0.01:1; Sx1OY0)s  
    %       [X,Y] = meshgrid(x,x); z~ua#(z1S  
    %       [theta,r] = cart2pol(X,Y); !Oi':OQG  
    %       idx = r<=1; 1JV-X G6  
    %       z = nan(size(X)); k&npC8oA  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Lzx2An@R  
    %       figure UYzNaw4/x  
    %       pcolor(x,x,z), shading interp 9x eg,#1  
    %       axis square, colorbar 8YQ7XB  
    %       title('Zernike function Z_5^1(r,\theta)') 9)uJ\NMy  
    % GtKSA#oYZB  
    %   Example 2: cI-@nV  
    % 5>hXqNjP2  
    %       % Display the first 10 Zernike functions lBudC  
    %       x = -1:0.01:1; onm" 7JsO'  
    %       [X,Y] = meshgrid(x,x); J|([(  
    %       [theta,r] = cart2pol(X,Y); 7tne/Yz  
    %       idx = r<=1; #$l:%  
    %       z = nan(size(X)); E@-5L9eJ\  
    %       n = [0  1  1  2  2  2  3  3  3  3]; xl9S=^`=  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; *d31fBCk%  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 2SlI5+u  
    %       y = zernfun(n,m,r(idx),theta(idx)); o ^ 08<  
    %       figure('Units','normalized') un}!&*+  
    %       for k = 1:10 4~2 9,  
    %           z(idx) = y(:,k); w%(D4ldp   
    %           subplot(4,7,Nplot(k)) bk]g}s  
    %           pcolor(x,x,z), shading interp lHE \Z`  
    %           set(gca,'XTick',[],'YTick',[]) # hw;aQ  
    %           axis square +`!>lo{X  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])  j}w  
    %       end YD0j&@.  
    % $"va8,  
    %   See also ZERNPOL, ZERNFUN2. <YrsS-9  
    <v?2p{U%  
    %   Paul Fricker 11/13/2006 <4CqG4}Y  
    /v.<h*hxWy  
    %g69kizoWi  
    % Check and prepare the inputs: Pfd%[C/vdm  
    % ----------------------------- X]dN1/_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #}Bv/`t  
        error('zernfun:NMvectors','N and M must be vectors.') gLlA'`!  
    end L]l?_#*x  
    QHd|cg  
    if length(n)~=length(m) '@5 x=>  
        error('zernfun:NMlength','N and M must be the same length.') 1B$8<NCQ=?  
    end 7/K'nA  
    EJNHZ<  
    n = n(:); l-5O5|C  
    m = m(:); Vddod  
    if any(mod(n-m,2)) g[;&_gL  
        error('zernfun:NMmultiplesof2', ... L @J$kqWY  
              'All N and M must differ by multiples of 2 (including 0).') rS+ >oP}  
    end X^i3(N  
    <SdOb#2  
    if any(m>n) M0hR]4T  
        error('zernfun:MlessthanN', ... :*-O;Yw?S@  
              'Each M must be less than or equal to its corresponding N.') >f D%lq;  
    end }H/94]~tH  
    =6N=5JePB  
    if any( r>1 | r<0 ) "B9zQ,[Q  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') rddn"~lm1  
    end ?"kU+tCxg  
    Jg$ NYs.xZ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) D0L s~qr  
        error('zernfun:RTHvector','R and THETA must be vectors.') [ C!m,4  
    end y^D3}ds  
    q?8#D  
    r = r(:); J ayax]u7J  
    theta = theta(:); T0cm+|S  
    length_r = length(r); "9Br )3  
    if length_r~=length(theta) p*JP='p  
        error('zernfun:RTHlength', ... }:*?w>=  
              'The number of R- and THETA-values must be equal.') VeH%E.:  
    end B5_QH8kt7  
    Np;tpq~  
    % Check normalization: a, `B.I  
    % -------------------- `:2np{  
    if nargin==5 && ischar(nflag) mXu";?2  
        isnorm = strcmpi(nflag,'norm'); 5nK|0vv%2  
        if ~isnorm ncpA\E;ff^  
            error('zernfun:normalization','Unrecognized normalization flag.') @@}muW>;T  
        end -*2b/=$u  
    else k"cKxzB  
        isnorm = false; TLg 9`UA  
    end tq*{Hil>P`  
    i6i;{\tc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $GVf;M2*  
    % Compute the Zernike Polynomials `g{eWY1l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }( WUZ^L  
    nVGOhYn  
    % Determine the required powers of r: u%Z4 8wr  
    % ----------------------------------- Rb <{o8  
    m_abs = abs(m); Z#K0a'  
    rpowers = []; @s\}ER3  
    for j = 1:length(n) VD{_6  
        rpowers = [rpowers m_abs(j):2:n(j)]; g}vU*g ;  
    end ul"Z% 1]  
    rpowers = unique(rpowers); Ge24Lp;Y 6  
    s3~6[T?8  
    % Pre-compute the values of r raised to the required powers, Y1BxRd?D  
    % and compile them in a matrix: 5'xZ9K  
    % ----------------------------- " j:15m5  
    if rpowers(1)==0 \d w["k  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); x/ P\qI  
        rpowern = cat(2,rpowern{:}); 1z3I^gI*i  
        rpowern = [ones(length_r,1) rpowern]; prxmDI   
    else QFhQfn  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8)J,jh9q  
        rpowern = cat(2,rpowern{:}); eT8h:+k  
    end |mz0 ]  
    X<H+Z2d  
    % Compute the values of the polynomials: S_Vquw(+  
    % -------------------------------------- \BSPv]d  
    y = zeros(length_r,length(n)); w_q =mKu  
    for j = 1:length(n) ?\a';@h  
        s = 0:(n(j)-m_abs(j))/2; `y.i(~^1  
        pows = n(j):-2:m_abs(j); QSOJHRl=C  
        for k = length(s):-1:1 @2 SL$0!QA  
            p = (1-2*mod(s(k),2))* ... ~ o5h}OU"  
                       prod(2:(n(j)-s(k)))/              ... Q\$cBSJC1  
                       prod(2:s(k))/                     ... lpefOnO[  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... hPUYq7B  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ,q Bu5t  
            idx = (pows(k)==rpowers); cp+eh  
            y(:,j) = y(:,j) + p*rpowern(:,idx); n\YWWW[wf  
        end xCm`g {  
         uC1v^!D  
        if isnorm 0y#TGM|0D  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); j<i: rk|  
        end `ln= D$  
    end /A`Ly p#  
    % END: Compute the Zernike Polynomials ':,p6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \Eyy^pb  
    O[&G6+  
    % Compute the Zernike functions: 82z<Q*YP  
    % ------------------------------ BP@Lhii  
    idx_pos = m>0; =[^_x+x hE  
    idx_neg = m<0; fkr; a`<W  
    LtBm }0  
    z = y; &v_b7h  
    if any(idx_pos) dp>LhTLc  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Jm G)=$,  
    end +JL"Z4b@R}  
    if any(idx_neg) t8b,@J`R  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,vUMy&AV  
    end %g%#=a;]q  
    Yy8%vDdJO  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) kculHIa\.  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. nA^UF_rD-  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated  zWIC4:  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive w`J s "_\  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, h+h`0(z  
    %   and THETA is a vector of angles.  R and THETA must have the same geu8$^  
    %   length.  The output Z is a matrix with one column for every P-value, co!#.  
    %   and one row for every (R,THETA) pair. j:{d'OV  
    % 9rsty{J8  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike g&"__~dS-F  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) NI136P  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) gyW##M@{  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 }$|uIS  
    %   for all p. kyc Z  
    % -?WhJ.U  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 #b4Pn`[   
    %   Zernike functions (order N<=7).  In some disciplines it is nAJ<@a  
    %   traditional to label the first 36 functions using a single mode JY tM1d  
    %   number P instead of separate numbers for the order N and azimuthal YS5Pt)?  
    %   frequency M. <t0o{}^P*  
    % \f_YJit  
    %   Example: M[R\URu8  
    % ;yO7!{_  
    %       % Display the first 16 Zernike functions :jq   
    %       x = -1:0.01:1; 9RoN,e8!  
    %       [X,Y] = meshgrid(x,x); g2WDa'{L  
    %       [theta,r] = cart2pol(X,Y); D-BWgK  
    %       idx = r<=1;  w|>O!]K]  
    %       p = 0:15; "p~1| ?T  
    %       z = nan(size(X)); *gC6yQ2?  
    %       y = zernfun2(p,r(idx),theta(idx)); czf|c  
    %       figure('Units','normalized') Svo gvn  
    %       for k = 1:length(p) 4=>4fia&D  
    %           z(idx) = y(:,k); ?B2 T'}~  
    %           subplot(4,4,k)  %Ln7{w  
    %           pcolor(x,x,z), shading interp =%YU~  
    %           set(gca,'XTick',[],'YTick',[]) .)>DFGb>H  
    %           axis square -$4#eG%3  
    %           title(['Z_{' num2str(p(k)) '}']) DM%4 V|F"  
    %       end %<q l  
    % ;w,g|=RQ  
    %   See also ZERNPOL, ZERNFUN. 0'm4 ) \  
    q8 ;WHfGf  
    %   Paul Fricker 11/13/2006 o5\nqw^  
    }F1|& A  
    ]3C&l+m$ot  
    % Check and prepare the inputs: ~/6m|k  
    % ----------------------------- k 4+F  
    if min(size(p))~=1 qsUlfv9L6  
        error('zernfun2:Pvector','Input P must be vector.') !'No5  
    end $*bd})y)I  
    1Ig@gdmz  
    if any(p)>35 [}|-% 4s  
        error('zernfun2:P36', ... Z;aQ/ n[`  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... =3J &UQL  
               '(P = 0 to 35).']) c_]$UM[7L  
    end !+4}x;!8  
    6<+R55  
    % Get the order and frequency corresonding to the function number: ,o}!pQ  
    % ---------------------------------------------------------------- qHfs*MBJ%  
    p = p(:); y_$=Pu6H  
    n = ceil((-3+sqrt(9+8*p))/2); h:3`e`J<h  
    m = 2*p - n.*(n+2); QW.VAF\6*  
    %Lexu)odW  
    % Pass the inputs to the function ZERNFUN: EnJAHgRV;e  
    % ---------------------------------------- SxYX`NQ  
    switch nargin h1Ca9Z_  
        case 3 ~l%Dcp  
            z = zernfun(n,m,r,theta); ,>n 4 `A  
        case 4 9N|O*h1;u  
            z = zernfun(n,m,r,theta,nflag); xQC.ap  
        otherwise u2^ oXl  
            error('zernfun2:nargin','Incorrect number of inputs.') (u-i{<   
    end m& DDz+g  
    Pq~"`-h7:  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 3=1aMQ  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. SC`.VCfc.  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Dg/&m*Yl  
    %   order N and frequency M, evaluated at R.  N is a vector of .e5GJAW~9  
    %   positive integers (including 0), and M is a vector with the X~Uvh8O  
    %   same number of elements as N.  Each element k of M must be a OB8fFd  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) |Sy |E  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ?@l9T)fF  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix  "/6(  
    %   with one column for every (N,M) pair, and one row for every _CP e  
    %   element in R. D Y($  
    % JQ'NFl9<  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 9ulJZ\cQ  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is /yyed{q  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ;RW!l pGjP  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ?7^H1L  
    %   for all [n,m]. Q3\j4;jI(  
    % FZz\z p  
    %   The radial Zernike polynomials are the radial portion of the BD[XP`[{  
    %   Zernike functions, which are an orthogonal basis on the unit q"'^W<i  
    %   circle.  The series representation of the radial Zernike #O z<<G<  
    %   polynomials is ;_M .(8L  
    % 7_d gQI3y  
    %          (n-m)/2 {*As-Y:'F  
    %            __ Vp\BNq_!s  
    %    m      \       s                                          n-2s Ec[=~>;n{l  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r "0+_P{w+  
    %    n      s=0 "{&\nt  
    % 0O+s3#"?@  
    %   The following table shows the first 12 polynomials. gzvEy^X  
    % bT*MJ7VVm  
    %       n    m    Zernike polynomial    Normalization {bl&r?[y  
    %       --------------------------------------------- B%Dy;zdWd/  
    %       0    0    1                        sqrt(2) @$gvV]dA  
    %       1    1    r                           2 *Eu ca~%=  
    %       2    0    2*r^2 - 1                sqrt(6) 3/>McZ@OH  
    %       2    2    r^2                      sqrt(6) &4sUi K"  
    %       3    1    3*r^3 - 2*r              sqrt(8) `UMv#-Y8  
    %       3    3    r^3                      sqrt(8) FJKt5}`8  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) mfQQ<Q@  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) HlBw:D(z:^  
    %       4    4    r^4                      sqrt(10) XgP7 !  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) rJ]iJ0[I  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 1bF aQ50t  
    %       5    5    r^5                      sqrt(12) [Pi8gj*  
    %       --------------------------------------------- 5Az=)q4Q  
    % @>B#2t&  
    %   Example: ~;QO`I=0P  
    % .%<oy"_  
    %       % Display three example Zernike radial polynomials $)vljM<<  
    %       r = 0:0.01:1; F:x" RbbF  
    %       n = [3 2 5]; SfyZ,0  
    %       m = [1 2 1]; mMjY I1F  
    %       z = zernpol(n,m,r); XU5/7 .  
    %       figure HvN!_}[  
    %       plot(r,z) Bjq1za  
    %       grid on 63QMv[`,  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') YH&`+ +  
    % (Ybc~M)z  
    %   See also ZERNFUN, ZERNFUN2. wAkpk&R  
    kq8:h  
    % A note on the algorithm. r@f8-!{s2h  
    % ------------------------ %RG kXOgp  
    % The radial Zernike polynomials are computed using the series xmb]L:4F  
    % representation shown in the Help section above. For many special RZ:Yu  
    % functions, direct evaluation using the series representation can d5fnJ*a>l  
    % produce poor numerical results (floating point errors), because |sMRIW,P  
    % the summation often involves computing small differences between @ U'g}K  
    % large successive terms in the series. (In such cases, the functions B/:q  
    % are often evaluated using alternative methods such as recurrence H ifKa/}P8  
    % relations: see the Legendre functions, for example). For the Zernike 57*z0<  
    % polynomials, however, this problem does not arise, because the 8s-y+M@.  
    % polynomials are evaluated over the finite domain r = (0,1), and ZZ?0%9  
    % because the coefficients for a given polynomial are generally all 8{#W F#  
    % of similar magnitude. O $'# 8  
    % M' e<\wqm  
    % ZERNPOL has been written using a vectorized implementation: multiple vP`Sz}FU  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] zR6,?Tzg  
    % values can be passed as inputs) for a vector of points R.  To achieve t,#7F$t  
    % this vectorization most efficiently, the algorithm in ZERNPOL {mrTpw  
    % involves pre-determining all the powers p of R that are required to .LhIB?  
    % compute the outputs, and then compiling the {R^p} into a single F{0Z  
    % matrix.  This avoids any redundant computation of the R^p, and d&4 ve Lu  
    % minimizes the sizes of certain intermediate variables. U<gM gA  
    % 8om6wALXB  
    %   Paul Fricker 11/13/2006 R8I%Cyc  
    &l"/G%W  
    nICc}U?k  
    % Check and prepare the inputs: Oq@+/UWX  
    % ----------------------------- 7DDd 1"jE  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }(A`aB_  
        error('zernpol:NMvectors','N and M must be vectors.') 6=U81  
    end _v bCC7Bf8  
    3}(6z"r  
    if length(n)~=length(m) 83K)j"!<X  
        error('zernpol:NMlength','N and M must be the same length.') `ltc)$  
    end Z8E-(@`q5Q  
    #%O|P&rA  
    n = n(:);  (-Cxv`7  
    m = m(:); o}$uP5M8q  
    length_n = length(n); ;$,=VB:'  
    7rQwn2XD{  
    if any(mod(n-m,2)) )UbPG`x8  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') CX?q%o2b  
    end YbtsJ <w  
    :dq.@:+<R  
    if any(m<0) L#O1 >  
        error('zernpol:Mpositive','All M must be positive.') \ne1Xu:hM  
    end U{i xok  
    ( m/uj z  
    if any(m>n) fn.KZ  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 2 j.6  
    end 8C]K36q  
    01=nS?  
    if any( r>1 | r<0 ) 7irpD7P>  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Z,zkm{9*  
    end <}75Xo  
    ]l4\Tdz  
    if ~any(size(r)==1) W*S}^6ZT`  
        error('zernpol:Rvector','R must be a vector.') g>G+?PY  
    end [NE|ZL~  
    "Vh3hnS~  
    r = r(:); T5nBvSVv'  
    length_r = length(r); p0*qv"lA  
    R !g'zS'  
    if nargin==4 ,ZGU\t  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); L$L/5/  
        if ~isnorm 4`yE'%6.}  
            error('zernpol:normalization','Unrecognized normalization flag.') C7*n<+e  
        end PAng(tubl  
    else /pY-how%!  
        isnorm = false; %,T=|5  
    end n(I,pF  
    P5Lb)9_Jw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1lo. X_  
    % Compute the Zernike Polynomials fGZ56eH:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W(pq_H'  
    yFoPCA86y  
    % Determine the required powers of r: Fn>KdoByN  
    % ----------------------------------- }1fi#  
    rpowers = []; nTsKJX%\  
    for j = 1:length(n) '9{`Czc(Gb  
        rpowers = [rpowers m(j):2:n(j)]; +3uPHpMB-  
    end QB uX#bDV  
    rpowers = unique(rpowers); )]}G8A  
    r>: ~!o*  
    % Pre-compute the values of r raised to the required powers, "; 1@f"kw  
    % and compile them in a matrix: Sq&r ;  
    % ----------------------------- KH$|wv  
    if rpowers(1)==0 W4;/;[/L  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); K;z$~;F  
        rpowern = cat(2,rpowern{:}); b5Q|$E   
        rpowern = [ones(length_r,1) rpowern]; @C-03`JWuK  
    else NSawD.9mV  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 0$A^ .M;  
        rpowern = cat(2,rpowern{:}); azz=,^U#  
    end CvHE7H|-{  
    +m9ouF  
    % Compute the values of the polynomials: (> W \Nf  
    % -------------------------------------- 6k_Uq.<X  
    z = zeros(length_r,length_n); 3Ccy %;  
    for j = 1:length_n SZ29B  
        s = 0:(n(j)-m(j))/2; 2FR+Z3&z  
        pows = n(j):-2:m(j); SJB^dI**/d  
        for k = length(s):-1:1 y2W|,=Vd  
            p = (1-2*mod(s(k),2))* ... 80zpRU"  
                       prod(2:(n(j)-s(k)))/          ... Rk,'ujc  
                       prod(2:s(k))/                 ... }?\^^v h7  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 9tX+n{i  
                       prod(2:((n(j)+m(j))/2-s(k))); &szYa-K*  
            idx = (pows(k)==rpowers); ,ZghV1z  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 6hMKAk  
        end Fc#Sn2p*  
         ^T:L6:  
        if isnorm }DQTy.d;P  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); OlB9z  
        end +h@.P B^`~  
    end tr5j<O  
    Jd^Lnp6?  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    846
    光币
    834
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4347
    光币
    8695
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  (MI>7| ';  
    )Xjn:  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 b& +zAt.  
    M_};J;  
    07年就写过这方面的计算程序了。
    提供免费光学设计培训,请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)