非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #un#~s
7Q
function z = zernfun(n,m,r,theta,nflag) @Oe!*|?mS
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. JO:40V?op
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N OO..
Y
% and angular frequency M, evaluated at positions (R,THETA) on the a9=,P
% unit circle. N is a vector of positive integers (including 0), and ;H5H7ezV
% M is a vector with the same number of elements as N. Each element _ukKzY
% k of M must be a positive integer, with possible values M(k) = -N(k) i7:R4G(/#
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, g>h5NrDN
% and THETA is a vector of angles. R and THETA must have the same `A5^D
% length. The output Z is a matrix with one column for every (N,M) z= pb<Y@X
% pair, and one row for every (R,THETA) pair. ar.w'z
% \ /C-e
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ea@N:t?(8=
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7<V(lX.{
% with delta(m,0) the Kronecker delta, is chosen so that the integral o/EA%q1
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^7C?yC
% and theta=0 to theta=2*pi) is unity. For the non-normalized cT
abZc
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. xXl^\?HC
% DXj_\ R(}
% The Zernike functions are an orthogonal basis on the unit circle. <>,V>k|
% They are used in disciplines such as astronomy, optics, and 4C2J yP3
% optometry to describe functions on a circular domain. <lh+mrXm
% 7_ g}t!b`
% The following table lists the first 15 Zernike functions. \HFeEEKH
% WAlsh
% n m Zernike function Normalization M$L1!o1Xf
% -------------------------------------------------- CLI!( 8ZW
% 0 0 1 1 o.DT`L8
% 1 1 r * cos(theta) 2 vKppXm1
% 1 -1 r * sin(theta) 2 pX
]K-
% 2 -2 r^2 * cos(2*theta) sqrt(6) s$e0;C!D
% 2 0 (2*r^2 - 1) sqrt(3) U@v=q9'W
% 2 2 r^2 * sin(2*theta) sqrt(6) `INcZr"
% 3 -3 r^3 * cos(3*theta) sqrt(8) 1P&XG@
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) {.2A+JT,
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) tE/s|v#O
% 3 3 r^3 * sin(3*theta) sqrt(8) }YHoWYR
% 4 -4 r^4 * cos(4*theta) sqrt(10) }?xu/C
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zm rQ7(y
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) q:.URl
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Hk%m`|Z
% 4 4 r^4 * sin(4*theta) sqrt(10) ou6|;*>d
% -------------------------------------------------- uUb[Dqn
% AZ cWf8
% Example 1: b`E'MX_ m
% /!,>P[Vx
% % Display the Zernike function Z(n=5,m=1) 'S<ebwRd=
% x = -1:0.01:1; n'ft@7>%h
% [X,Y] = meshgrid(x,x); 5S:#I5Wa
% [theta,r] = cart2pol(X,Y); zRsG$)B
% idx = r<=1; ZK4/o
% z = nan(size(X)); Q}ho
Y
% z(idx) = zernfun(5,1,r(idx),theta(idx)); weC$\st:D
% figure :M(%sv</
% pcolor(x,x,z), shading interp }./__gJ
% axis square, colorbar D t\F]\6sd
% title('Zernike function Z_5^1(r,\theta)') I0oM\~#
% FQSepUl
% Example 2: Kr`Cr5v
% *,!6#Z7
% % Display the first 10 Zernike functions cMxTv4|wui
% x = -1:0.01:1; 1cWUPVQ
% [X,Y] = meshgrid(x,x); :N5R.@9
% [theta,r] = cart2pol(X,Y); - xtj:UO
% idx = r<=1; zZDa71>
% z = nan(size(X)); lil1$K: i
% n = [0 1 1 2 2 2 3 3 3 3]; g83]/s+
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; tn201TDZ]=
% Nplot = [4 10 12 16 18 20 22 24 26 28]; N8;/Zd;^
% y = zernfun(n,m,r(idx),theta(idx)); aLTC#c%U
% figure('Units','normalized') [9NzvC 9I
% for k = 1:10 O#fGHI<43[
% z(idx) = y(:,k); WP7*Q:5
% subplot(4,7,Nplot(k)) S{aK\>>H
% pcolor(x,x,z), shading interp \ '6hv>W@
% set(gca,'XTick',[],'YTick',[]) <<K G S
% axis square <hg t{b4
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) s<LF=qGu
% end hkeOe
% <)+9PV<w
% See also ZERNPOL, ZERNFUN2. n8#i L
`~QS3zq
% Paul Fricker 11/13/2006 sF}T9Ue
8@ck" LUzD
!T02@e/
% Check and prepare the inputs: Au08k}h<G
% ----------------------------- !},_,J~(|
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) m[,!
orq
error('zernfun:NMvectors','N and M must be vectors.') U=MFNp+
end .<j\"X(
{j.5!Nj]B
if length(n)~=length(m) !8M]n
error('zernfun:NMlength','N and M must be the same length.') BXyg ?
end J@w Q3#5a
s,O:l0
n = n(:); \&|)?'8rS
m = m(:); ntE;*FyH
if any(mod(n-m,2)) 3G|n`dj
error('zernfun:NMmultiplesof2', ... Vr0-evwfo
'All N and M must differ by multiples of 2 (including 0).') EOWLGleD1
end 0\84~t'[
> f,G3Ay
if any(m>n) VeidB!GyP
error('zernfun:MlessthanN', ... -bT1Qh
X
'Each M must be less than or equal to its corresponding N.') ) *ocX)AE
end G4][`C]8c
;HRIB)wF
if any( r>1 | r<0 ) 'Y{fah
error('zernfun:Rlessthan1','All R must be between 0 and 1.') HM ;9%rtO
end ).e_iE[&
'H-: >'k
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) u*0Ck*pZ
error('zernfun:RTHvector','R and THETA must be vectors.') 6tBL?'pG
end S,,,D+4
`+cc{k
r = r(:); raRb
K8CQ
theta = theta(:); 9q;n@q:29
length_r = length(r); ;@xSJqT
if length_r~=length(theta) cXu"-/
error('zernfun:RTHlength', ... oZTKG'
'The number of R- and THETA-values must be equal.') (;-<
@~2
end &|'k)6Rx
!2>MaV1,
% Check normalization: O+hN?/>v
% -------------------- QQ^P IQj
if nargin==5 && ischar(nflag) ibo{!>m
isnorm = strcmpi(nflag,'norm'); *^+8_%;1
if ~isnorm swEE >=
error('zernfun:normalization','Unrecognized normalization flag.') +Zgh[a
end CU'$JF
else < ]#'6'
isnorm = false; 60?/Z2w5
end WBdC}S
}3t
7kJ =C
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Obwj=_+upd
% Compute the Zernike Polynomials w3oh8NRs_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d*;wHA,}F
R+Q..9P
% Determine the required powers of r: AdV&w: ^yf
% ----------------------------------- 4,kdP)Md$
m_abs = abs(m); #1c%3KaZI
rpowers = []; d2f
for j = 1:length(n) jinDKJ,n;
rpowers = [rpowers m_abs(j):2:n(j)]; {z:aZ]QhKc
end ]Q-*xho
rpowers = unique(rpowers); X}Heaqn
^)|8N44O
% Pre-compute the values of r raised to the required powers, ##Jg>HL'
% and compile them in a matrix: ^p3"_;p)h
% ----------------------------- }cUq1r-bW
if rpowers(1)==0 @AM;58.
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $e>(M&9,
rpowern = cat(2,rpowern{:}); {akS K
rpowern = [ones(length_r,1) rpowern]; )xKZ)SxV
else %dA6vHI,
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >6xZF'4
rpowern = cat(2,rpowern{:}); ;la sk4|
end );X&J:-l+
vhe[:`=a
% Compute the values of the polynomials: :5`=9_|
% -------------------------------------- !>gi9z,
y = zeros(length_r,length(n)); <7-Qn(m,
for j = 1:length(n) ;A^Ii>`
s = 0:(n(j)-m_abs(j))/2; (.Q.S[<Y
pows = n(j):-2:m_abs(j); :Y/>] tS4
for k = length(s):-1:1 \C<|yD
p = (1-2*mod(s(k),2))* ... }.bhsy
prod(2:(n(j)-s(k)))/ ... wB%:RI,
prod(2:s(k))/ ... Vu6$84>-,
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... !kAjne8]d
prod(2:((n(j)+m_abs(j))/2-s(k))); "'Bx<FA
idx = (pows(k)==rpowers); [=f(u
wY>g
y(:,j) = y(:,j) + p*rpowern(:,idx); 4KH8dau.fF
end <UI^~Azc#
-nM=^i4)
if isnorm ,|:TML
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); XEK% \o}
end U7GgGMw
end `[.b>ztqgJ
% END: Compute the Zernike Polynomials v[-.]b*5A$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fjD/<`}v
mar6/*`I#+
% Compute the Zernike functions: Tvdg:[V<
% ------------------------------ `XT8}9z!
idx_pos = m>0; V 5ve
idx_neg = m<0; ^ud-N;]MKs
<]{$XcNm
z = y; K+2sq+3q
if any(idx_pos) #kho[`9
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); k
:KN32%
end Q7V*~{
if any(idx_neg) d2cslDd
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); D jzHEqiH
end |AgdD
L$T23*9XY
% EOF zernfun