非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 u8Ak2:
function z = zernfun(n,m,r,theta,nflag) XT%\Ce!
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. OaeX:r+&Q
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N j@u]( nf
% and angular frequency M, evaluated at positions (R,THETA) on the E*AI}:or;
% unit circle. N is a vector of positive integers (including 0), and C2} f'
% M is a vector with the same number of elements as N. Each element 38E
%]*5F
% k of M must be a positive integer, with possible values M(k) = -N(k) 8yDe{
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, c4V%>A
% and THETA is a vector of angles. R and THETA must have the same yQ!I`T>a
% length. The output Z is a matrix with one column for every (N,M) c]%~X&Tg`
% pair, and one row for every (R,THETA) pair. U[EZ,7n8
% ?Gqq]ozm
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :Xi&H.k)p
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), NH'Dz6K5
% with delta(m,0) the Kronecker delta, is chosen so that the integral \@B'f
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, V|&->9"
% and theta=0 to theta=2*pi) is unity. For the non-normalized SceK$
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. r#'ug^^k$X
% dt|| nF
% The Zernike functions are an orthogonal basis on the unit circle. B",;z)(%
% They are used in disciplines such as astronomy, optics, and 6o
d^+>U
% optometry to describe functions on a circular domain. +l hJ8&
% LU $=j
% The following table lists the first 15 Zernike functions. p?2^JJpUb
% =6'Fm$R
% n m Zernike function Normalization 8I[=iU7]l
% -------------------------------------------------- 4$+1&+@ ]
% 0 0 1 1 < Dt/JA(p
% 1 1 r * cos(theta) 2 ZM16 ~k
% 1 -1 r * sin(theta) 2 XR_Gsb%l
% 2 -2 r^2 * cos(2*theta) sqrt(6) *3\*GatJ
% 2 0 (2*r^2 - 1) sqrt(3) $f?GD<}?7r
% 2 2 r^2 * sin(2*theta) sqrt(6) Ozg,6&3ji
% 3 -3 r^3 * cos(3*theta) sqrt(8) |*$0~mA
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) FBxg^g%PB@
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) m+Kl
% 3 3 r^3 * sin(3*theta) sqrt(8) _#K?yP?
% 4 -4 r^4 * cos(4*theta) sqrt(10) />n!2'!
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ON9L+"vqv0
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ;ObrBN,Fu
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "H#pN;)+
% 4 4 r^4 * sin(4*theta) sqrt(10) uJ`:@Z^J
% -------------------------------------------------- 7M)<Sv
% xzHb+1+p
% Example 1: f?$yxMw:@
% h~lps?.#b
% % Display the Zernike function Z(n=5,m=1) Z!-V&H.
% x = -1:0.01:1; A0,h7<i
% [X,Y] = meshgrid(x,x); ,bzC|AK
% [theta,r] = cart2pol(X,Y); UD=[::##
% idx = r<=1; jO-T1P']Y
% z = nan(size(X)); ~BiLzT1,
% z(idx) = zernfun(5,1,r(idx),theta(idx)); OS-k_l L
% figure 8*;>:g
% pcolor(x,x,z), shading interp 2@W`OW Njm
% axis square, colorbar EU7nS3K)O~
% title('Zernike function Z_5^1(r,\theta)') EW`3$J;
% 5"y)<VLJX
% Example 2: T+q5~~\d
% zs6rd83#
% % Display the first 10 Zernike functions B@v
(ZY
% x = -1:0.01:1; orOq5?3
% [X,Y] = meshgrid(x,x); aLl=L_
% [theta,r] = cart2pol(X,Y); +|Izjx]ZV
% idx = r<=1; Tm$8\c4V:*
% z = nan(size(X)); n-g#nEc:
% n = [0 1 1 2 2 2 3 3 3 3]; +p[O|[z
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; W[R`],x`
% Nplot = [4 10 12 16 18 20 22 24 26 28]; jvxCCYXR
% y = zernfun(n,m,r(idx),theta(idx)); 0{
_6le]
% figure('Units','normalized') |ZC'a!
% for k = 1:10 +IMt$}7[
% z(idx) = y(:,k); fR?'HsQg
% subplot(4,7,Nplot(k)) k<