非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 RBGX_v?
function z = zernfun(n,m,r,theta,nflag) )qU7`0'8
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. {`"#yl6"
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N vqNsZ 8|`
% and angular frequency M, evaluated at positions (R,THETA) on the -?a<qa?$
% unit circle. N is a vector of positive integers (including 0), and - u3e5gW
% M is a vector with the same number of elements as N. Each element csQfic
% k of M must be a positive integer, with possible values M(k) = -N(k) LE=k
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, %[QV,fD'E
% and THETA is a vector of angles. R and THETA must have the same S h4wqf
% length. The output Z is a matrix with one column for every (N,M) acW'$@y9?N
% pair, and one row for every (R,THETA) pair. d&(_|xq#
% .tXtcf/
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1np^(['ih
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #AViM_u
% with delta(m,0) the Kronecker delta, is chosen so that the integral Tpr tE.mP
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, lmCZ8 j(FF
% and theta=0 to theta=2*pi) is unity. For the non-normalized XcfKx@l
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. b=[?b+
% @QEqB_W
% The Zernike functions are an orthogonal basis on the unit circle. 2+"r~#K*
% They are used in disciplines such as astronomy, optics, and pW?&J>\6
% optometry to describe functions on a circular domain. "ZMkL)'7-
% s(2GFc
% The following table lists the first 15 Zernike functions. 5g
;ac~g
% Iy7pt~DJ,
% n m Zernike function Normalization MXvXVhCU
% -------------------------------------------------- 'r}fZ
% 0 0 1 1 Om'(mr
% 1 1 r * cos(theta) 2 k9si|'
% 1 -1 r * sin(theta) 2 K
k[`dR;
% 2 -2 r^2 * cos(2*theta) sqrt(6) tj1JB%
% 2 0 (2*r^2 - 1) sqrt(3) Q(@IK&v
% 2 2 r^2 * sin(2*theta) sqrt(6) 9'~-U
% 3 -3 r^3 * cos(3*theta) sqrt(8) cma*Dc
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) !u;>Wyd W
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) -uR72f
% 3 3 r^3 * sin(3*theta) sqrt(8) GA3sRFZdQ
% 4 -4 r^4 * cos(4*theta) sqrt(10) F}
DUEDND*
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) TH1B#Y#<J
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 7"v$- W y
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u5E]t9~Pq
% 4 4 r^4 * sin(4*theta) sqrt(10) o'V%EQ
% -------------------------------------------------- QLq@u[A
% A.%CAGU5w
% Example 1: d^Di*&X
% &xSa7FY
% % Display the Zernike function Z(n=5,m=1) 0tz:Wd*<
% x = -1:0.01:1; -8Ti*:
% [X,Y] = meshgrid(x,x); E
l&h;N
% [theta,r] = cart2pol(X,Y); e$/B_o7(
% idx = r<=1; 15H6:_+=0
% z = nan(size(X)); Y:QD
% z(idx) = zernfun(5,1,r(idx),theta(idx)); mxG ]kqi
% figure /.Jb0h[W1
% pcolor(x,x,z), shading interp gUax'^w;V;
% axis square, colorbar d]v+mVAyE
% title('Zernike function Z_5^1(r,\theta)') r0dDHj~F
% <,%:
% Example 2: -pb&-@Hul
% }ZOFYu0f
% % Display the first 10 Zernike functions ^CT&0
% x = -1:0.01:1; _7)F
?
% [X,Y] = meshgrid(x,x); i8pU|VpA
% [theta,r] = cart2pol(X,Y); h#}YKWL
% idx = r<=1; P&A|PY,P
% z = nan(size(X)); fQLax
% n = [0 1 1 2 2 2 3 3 3 3]; 2 YxT MT
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; `k{& /]
% Nplot = [4 10 12 16 18 20 22 24 26 28]; x;E2~&E
% y = zernfun(n,m,r(idx),theta(idx)); :osz
% figure('Units','normalized') ]o/|na*
% for k = 1:10 [IBQvL
% z(idx) = y(:,k); !fkep=
% subplot(4,7,Nplot(k)) h5zVGr
% pcolor(x,x,z), shading interp TCVl8)j
% set(gca,'XTick',[],'YTick',[]) jx`QB')kX
% axis square -7]Xjb5
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =bt]JRU
% end !Jfs?Hy
% #
'|'r+
% See also ZERNPOL, ZERNFUN2. 0lk;F
b!>\2DlyJ
% Paul Fricker 11/13/2006 Hgc=M
!sSQQo2Sv
ik,lSTBD
% Check and prepare the inputs: }E^S]hdvz
% ----------------------------- alFjc.~}
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |Rzy8j*
error('zernfun:NMvectors','N and M must be vectors.') 76fIC
end I*[tMzE
<g2_6C\j
if length(n)~=length(m) -`c:}m
error('zernfun:NMlength','N and M must be the same length.') B7*}c]^6/
end L):qu
q" @
n = n(:); e_3CSx8Cc
m = m(:); w5C*L)l
if any(mod(n-m,2)) +FFG#6e
error('zernfun:NMmultiplesof2', ... V~{
_3YY
'All N and M must differ by multiples of 2 (including 0).') SpTdj^ ]4>
end ni CE\B~
- 0HkT Y
if any(m>n) ;DRTQn`m
error('zernfun:MlessthanN', ... M~T.n)x2
'Each M must be less than or equal to its corresponding N.') cd@.zg'sYn
end q`|CrOzO
N1EezC'^
if any( r>1 | r<0 ) pa
.K-e)Mu
error('zernfun:Rlessthan1','All R must be between 0 and 1.') "kW!{n
end -f(/B9}
g<*jlM1r
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) zri}
h/{
error('zernfun:RTHvector','R and THETA must be vectors.') J QKdW
end W=}Okq)x9I
obClBO)@Y
r = r(:); }2>"<)
theta = theta(:); tV;%J4E'
length_r = length(r); YhKZ|@
if length_r~=length(theta) y&T&1o
error('zernfun:RTHlength', ... ]n1dp2aH
'The number of R- and THETA-values must be equal.') mPZGA\
end @ CsV]97`
B~WtZ-%%E
% Check normalization: ]L_w$ev'
% --------------------
&wH:aD
if nargin==5 && ischar(nflag) t@zdmy
isnorm = strcmpi(nflag,'norm'); `vk0c
if ~isnorm B uQ|~V
error('zernfun:normalization','Unrecognized normalization flag.') Jcf"#u-Q/
end X!,@j\L
else Q'NmSX)0
isnorm = false; ~Vh =5J~
end 0OZ Mlt%z
n[+'OU[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4n( E;!s
% Compute the Zernike Polynomials 70W"G
X&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GUp;AoQ
}U5Y=RYo
% Determine the required powers of r: 5a`%)K
% ----------------------------------- dz9Y}\2tf
m_abs = abs(m); SOh-,c\C
rpowers = []; ?s%v0cF
for j = 1:length(n) `H%G3M0a
rpowers = [rpowers m_abs(j):2:n(j)]; &k>aP0k"
end eBr4O i
rpowers = unique(rpowers); x!7yU_ls`
/="HqBI#i
% Pre-compute the values of r raised to the required powers, eb:A1f4L
% and compile them in a matrix: mX# "+X|
% ----------------------------- y2Bh?>pg
if rpowers(1)==0 BNm4k7
]M
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {ShgJ;! Q
rpowern = cat(2,rpowern{:}); |^n3{m
rpowern = [ones(length_r,1) rpowern]; j+ ::y) $
else pK_?}~
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _2Py\+$
rpowern = cat(2,rpowern{:}); d.F)9h]XHO
end 'Z!Ga.I
%CH6lY=lI
% Compute the values of the polynomials: /Bv#) -5
% -------------------------------------- v"6 \=@
y = zeros(length_r,length(n)); 8v_C5d\
for j = 1:length(n) F4I6P
s = 0:(n(j)-m_abs(j))/2; NlPS#
pows = n(j):-2:m_abs(j); Utl
t<
for k = length(s):-1:1 ?m%h`<wgMc
p = (1-2*mod(s(k),2))* ... ISqfU]>[
prod(2:(n(j)-s(k)))/ ... 19u =W(
prod(2:s(k))/ ... J1F{v)T'?
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... UsW5d]i}Y
prod(2:((n(j)+m_abs(j))/2-s(k))); b{[*N
idx = (pows(k)==rpowers); y;`eDS'0.N
y(:,j) = y(:,j) + p*rpowern(:,idx); VV3}]GjC
end '5.\#=S 1
E,"&-`/2v
if isnorm IM(u<c$
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); zmFws-+A
end H
oy7RC&
end e-6w8*!i
% END: Compute the Zernike Polynomials &w\I<J`T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -;c
%vqT#+x
% Compute the Zernike functions: C7"HQQ
% ------------------------------ .Ao0;:;(2-
idx_pos = m>0; !vqC+o>@
idx_neg = m<0; LsTffIP
R{}qK r
z = y; R 1zC.m
if any(idx_pos) A|RR]CFJ
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); LJuW${Y
end sg?@qc=g
if any(idx_neg) lgD]{\O$ip
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ej[S u
end &a #GXf
qd2xb8r
% EOF zernfun