切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11359阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ~4P%%b0,o  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ,rJXy_  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 detwa}h[0  
    function z = zernfun(n,m,r,theta,nflag) B<C*  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Duc#$YfGm  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N w`q%#q Rk  
    %   and angular frequency M, evaluated at positions (R,THETA) on the D@!=d@V.  
    %   unit circle.  N is a vector of positive integers (including 0), and i;!H!-sM  
    %   M is a vector with the same number of elements as N.  Each element IpP~Uz  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ^h{)Gf,+\  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 'Ysx=  
    %   and THETA is a vector of angles.  R and THETA must have the same ~ o1x;Y6  
    %   length.  The output Z is a matrix with one column for every (N,M) #!)n {h+  
    %   pair, and one row for every (R,THETA) pair. tU_y6  
    % M`ip~7"  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike cI=(\pC  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), v%fu  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral h,Q3oy\s1  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, [,TkFbDq"J  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized {J^lX/D  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. n> ^[T[.S  
    % 1UKg=A-q  
    %   The Zernike functions are an orthogonal basis on the unit circle. ( H6c{'&  
    %   They are used in disciplines such as astronomy, optics, and :>+s0~  
    %   optometry to describe functions on a circular domain. b, :QT~g=  
    % <n(*Xak{a  
    %   The following table lists the first 15 Zernike functions. _Gu- uuy  
    % {#)0EzV6  
    %       n    m    Zernike function           Normalization Me=CSQqf<  
    %       -------------------------------------------------- h[PYP5{L  
    %       0    0    1                                 1 3Kn_mL3V-  
    %       1    1    r * cos(theta)                    2 /PLn+-  
    %       1   -1    r * sin(theta)                    2 F$[ U|%*  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) qG<$Ajiin  
    %       2    0    (2*r^2 - 1)                    sqrt(3) &LbJT$}V  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) g&`pgmUX  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 7U"[Gf  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) .jj$Kh q]  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) [o?* "c  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) e [8LmuIZ  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) gCxAG  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /tUy3myJ  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) `\+@Fwfx  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *V+j%^91}  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Dq)j:f#QM  
    %       -------------------------------------------------- 7^g&)P  
    % &B|D;|7H  
    %   Example 1: +). 0cs0k5  
    % *W kIq>  
    %       % Display the Zernike function Z(n=5,m=1) 9 -rNw?7  
    %       x = -1:0.01:1; L: z?Zt)|  
    %       [X,Y] = meshgrid(x,x); +=:#wzK@  
    %       [theta,r] = cart2pol(X,Y); z(H^..<!5  
    %       idx = r<=1; 3mOtW%Hl  
    %       z = nan(size(X)); G>q(iF'  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ezMI \r6  
    %       figure IV)<5'v  
    %       pcolor(x,x,z), shading interp v;0|U:`]  
    %       axis square, colorbar f/V 2f].  
    %       title('Zernike function Z_5^1(r,\theta)') !&"<oPjr+  
    % 4fKC6UR  
    %   Example 2: "70WUx(\t  
    % Jm42b4  
    %       % Display the first 10 Zernike functions >ss/D^YS  
    %       x = -1:0.01:1; :duo#w"K  
    %       [X,Y] = meshgrid(x,x); R%'^gFk 8  
    %       [theta,r] = cart2pol(X,Y); HB7;0yt`:  
    %       idx = r<=1; a AB`G3  
    %       z = nan(size(X)); yUp,NfS]o  
    %       n = [0  1  1  2  2  2  3  3  3  3]; T,VY.ep/  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 8)4P Ll  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Z"AQp _  
    %       y = zernfun(n,m,r(idx),theta(idx)); >hr{JJe  
    %       figure('Units','normalized') %%4t~XC#  
    %       for k = 1:10 Uy$)%dYfq5  
    %           z(idx) = y(:,k); q5#J~n8Wr  
    %           subplot(4,7,Nplot(k)) l'3pQ;  
    %           pcolor(x,x,z), shading interp et }T %~T  
    %           set(gca,'XTick',[],'YTick',[]) |JVk&8 ?8  
    %           axis square <^lRUw  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) K5XK%Gl"  
    %       end =|YxDas  
    % +9") KQT  
    %   See also ZERNPOL, ZERNFUN2. t8dm)s[r8  
    sx`O8t  
    %   Paul Fricker 11/13/2006 QI3Nc8t_2  
    @0SC"CqM  
    TqddOp  
    % Check and prepare the inputs: 19j+lCSvH  
    % ----------------------------- :Cp'm'omb  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?'<nx{!c  
        error('zernfun:NMvectors','N and M must be vectors.') jb^N|zb  
    end \xS&v7b  
    ~>+]%FPv  
    if length(n)~=length(m) gwWN%Z"  
        error('zernfun:NMlength','N and M must be the same length.') - h9?1vc7  
    end d{E}6)1=  
    7__Q1 > o  
    n = n(:); 7IjQi=#:  
    m = m(:); yd?x= |  
    if any(mod(n-m,2)) -Q U^c2  
        error('zernfun:NMmultiplesof2', ... H `(exa:w  
              'All N and M must differ by multiples of 2 (including 0).') ^)W[l!!<)  
    end cwL1/DGDB  
    L_K=g_]  
    if any(m>n) ~R@Nd~L  
        error('zernfun:MlessthanN', ... [NTtz <i@  
              'Each M must be less than or equal to its corresponding N.') 6%VV,$p  
    end 6MxKl D7kl  
    @!8ZPiW<  
    if any( r>1 | r<0 ) ](^(=%  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ti<;7Yb  
    end C,.Ee3T  
    !1G."fo  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ME=/|.}D<  
        error('zernfun:RTHvector','R and THETA must be vectors.') oun;rMq  
    end $O*O/ iG  
    <&:=z?30"  
    r = r(:); 4~N[%>zJ  
    theta = theta(:); B0ndcB-  
    length_r = length(r); R?p00  
    if length_r~=length(theta) xQ'2BAEa  
        error('zernfun:RTHlength', ... P:N1#|g  
              'The number of R- and THETA-values must be equal.') HuV J\%.  
    end s$a09x  
    !eUDi(   
    % Check normalization: >~Qr  
    % -------------------- RJ$7XCY%`*  
    if nargin==5 && ischar(nflag) fa<v0vb+  
        isnorm = strcmpi(nflag,'norm'); V}zEK0n(6  
        if ~isnorm D2,z)O%VK  
            error('zernfun:normalization','Unrecognized normalization flag.') I'@Ydt2  
        end jr`Ess  
    else 6HlePTf8  
        isnorm = false; Usta0Ag  
    end b?j< BvQ  
    Q"7Gy<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?Sb8@S&J  
    % Compute the Zernike Polynomials is@b&V]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _{ZqO;[u  
    -@Uqz781  
    % Determine the required powers of r: }YHX-e<Yx]  
    % ----------------------------------- 25&J7\P*  
    m_abs = abs(m); A<B=f<N3gV  
    rpowers = []; E.U_W  
    for j = 1:length(n) Q[d}J+l4{  
        rpowers = [rpowers m_abs(j):2:n(j)]; k{<,\J  
    end RTFZPq84  
    rpowers = unique(rpowers); +L5\;  
    LvEnXS  
    % Pre-compute the values of r raised to the required powers, B)QHM+[= F  
    % and compile them in a matrix: %/rMg"f:  
    % ----------------------------- K_ ci_g":  
    if rpowers(1)==0 BY]i;GVq  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,do58i K  
        rpowern = cat(2,rpowern{:}); ?SC[G-b  
        rpowern = [ones(length_r,1) rpowern]; Y OJ6 w  
    else N72Yq)(  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +z$pg  
        rpowern = cat(2,rpowern{:}); "t0kAG  
    end +nT'I!//  
    $*W6A/%O  
    % Compute the values of the polynomials: |> _!eS\=<  
    % -------------------------------------- M BXBog7U  
    y = zeros(length_r,length(n)); Kn?lHH*w7  
    for j = 1:length(n) `w.AQ?p@  
        s = 0:(n(j)-m_abs(j))/2; 7^Yk`Z?|a  
        pows = n(j):-2:m_abs(j); U`]T~9I  
        for k = length(s):-1:1 5IbJ  
            p = (1-2*mod(s(k),2))* ... x+G0J8cW  
                       prod(2:(n(j)-s(k)))/              ... _A0mxq  
                       prod(2:s(k))/                     ... Z'k|u4ZC  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... U bYEEY#  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); -uH#VP{0M  
            idx = (pows(k)==rpowers); 8+Td-\IMk  
            y(:,j) = y(:,j) + p*rpowern(:,idx); d O~O |Xsb  
        end \))=gu)I  
         Ia'ZV7'  
        if isnorm Nlj^D m  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); > MH(0+B*  
        end A?*o0I  
    end ZY56\qcY  
    % END: Compute the Zernike Polynomials )=DGdI Et  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HQ9X7[3  
    )H}#A#ovj7  
    % Compute the Zernike functions: :>81BuMvg  
    % ------------------------------ YQ0)5}  
    idx_pos = m>0; efY8M2  
    idx_neg = m<0; 9TAj) {U%'  
    JO'>oFv_W  
    z = y; Vj!rT <@  
    if any(idx_pos) @WKzX41'  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); LA[g(i 7  
    end &''WRgZ}  
    if any(idx_neg) y4Er @8I`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); wIf {6z{  
    end O6].*25  
    %5*@l vy  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) [= "r<W0  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. V|>oGtt7  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 7'N S9|  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive :|1.seLQ  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, C_LvZ=  
    %   and THETA is a vector of angles.  R and THETA must have the same [ REf>_R  
    %   length.  The output Z is a matrix with one column for every P-value, >ulY7~wUv  
    %   and one row for every (R,THETA) pair. (3dPLp:K  
    % ueG|*[  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ~}DQT>7$  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Yct5V,X^  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) y]e>E  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 De_C F8  
    %   for all p. rx:z#"?I  
    % mceG!@t  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 @$eT~ C  
    %   Zernike functions (order N<=7).  In some disciplines it is [hRU&z;W  
    %   traditional to label the first 36 functions using a single mode xdy^ ^3"  
    %   number P instead of separate numbers for the order N and azimuthal +2C?9:bH  
    %   frequency M. s:y ^_W)d  
    % F&;   
    %   Example: {0YAzZ7  
    % ~]L}p  
    %       % Display the first 16 Zernike functions 3_5XHOdE  
    %       x = -1:0.01:1;  StYzGJ  
    %       [X,Y] = meshgrid(x,x); fMf&?`V  
    %       [theta,r] = cart2pol(X,Y); +[ .Yy  
    %       idx = r<=1; `3q;~ 9  
    %       p = 0:15; T{vR,  
    %       z = nan(size(X)); =wq;@'U  
    %       y = zernfun2(p,r(idx),theta(idx)); 'YSuQP>  
    %       figure('Units','normalized') GQ_Ia\  
    %       for k = 1:length(p) C0x "pO7  
    %           z(idx) = y(:,k); &GWkq>  
    %           subplot(4,4,k) <1~^C  
    %           pcolor(x,x,z), shading interp <JI& {1  
    %           set(gca,'XTick',[],'YTick',[]) _2vd`k  
    %           axis square ~9$X3.+  
    %           title(['Z_{' num2str(p(k)) '}']) ;9uRO*H?T  
    %       end (S^ck%]]a!  
    % Cef:tdk7  
    %   See also ZERNPOL, ZERNFUN. "t(wG{RxY  
    UmKX*T9  
    %   Paul Fricker 11/13/2006 dX )W0  
    .+K S`  
    >[a<pm !  
    % Check and prepare the inputs: uL?vG6% ^1  
    % ----------------------------- d @rs3Q1z  
    if min(size(p))~=1 #^mqQRpgq  
        error('zernfun2:Pvector','Input P must be vector.') R21~Q:b !  
    end kB\kpW  
    '=cKU0 G#  
    if any(p)>35 ~S(^T9R  
        error('zernfun2:P36', ... #2%([w  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... keqcV23k  
               '(P = 0 to 35).']) %c6E-4b  
    end 0-2"FdeQU  
    s\0Ko1  
    % Get the order and frequency corresonding to the function number: ms~8QL  
    % ---------------------------------------------------------------- :mv`\  
    p = p(:); +2T! z=  
    n = ceil((-3+sqrt(9+8*p))/2); Rs$5PdH  
    m = 2*p - n.*(n+2); t;#Gmo  
    r[HT9  
    % Pass the inputs to the function ZERNFUN: E20 :uZ7\  
    % ---------------------------------------- !0fI"3P@r  
    switch nargin KAb(NZK  
        case 3 ^b53}f8H  
            z = zernfun(n,m,r,theta); LD55n%|0`H  
        case 4 u3ds QU  
            z = zernfun(n,m,r,theta,nflag); if~rp-\P  
        otherwise %<}=xJf>1  
            error('zernfun2:nargin','Incorrect number of inputs.') fA8ozL T  
    end d bO#  
    l C\E  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 5G? .T?  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M.  `$-lL"  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of "T*I|  
    %   order N and frequency M, evaluated at R.  N is a vector of +"L$ed(=nJ  
    %   positive integers (including 0), and M is a vector with the ~n]NyVFP  
    %   same number of elements as N.  Each element k of M must be a R{<Y4C2~  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) K/Jk[29"\  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is u33zceE8  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 5<N~3 1z  
    %   with one column for every (N,M) pair, and one row for every @+dHF0aXd  
    %   element in R. N5\{yV21",  
    % lO&cCV;  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 'rx?hL3VW  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ]<X2AO1  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to &"AQ; %&N  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 {8ECNQ[]  
    %   for all [n,m]. 9Dq.lr^  
    % D-iUN  
    %   The radial Zernike polynomials are the radial portion of the m0Z7N5v)  
    %   Zernike functions, which are an orthogonal basis on the unit `Qq/ F]  
    %   circle.  The series representation of the radial Zernike IHVMHOq}'  
    %   polynomials is 1"$R 3@s;  
    % T?e9eYwS  
    %          (n-m)/2 Ws>i)6[  
    %            __ ;fx1!:;.  
    %    m      \       s                                          n-2s f+^c@0que  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r qvTJ>FILT  
    %    n      s=0 O#PwRud$  
    % =phiD&=  
    %   The following table shows the first 12 polynomials. m >hovikY*  
    % uWrFunh%  
    %       n    m    Zernike polynomial    Normalization O*4gV}:G  
    %       --------------------------------------------- TMY{OI8a  
    %       0    0    1                        sqrt(2) Gt5$6>A  
    %       1    1    r                           2 SW=aHM  
    %       2    0    2*r^2 - 1                sqrt(6) /Tcb\:`9  
    %       2    2    r^2                      sqrt(6) 2*YP"Ryh  
    %       3    1    3*r^3 - 2*r              sqrt(8) ?.j,Bq5At  
    %       3    3    r^3                      sqrt(8) =g[H]-Ee  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) J=V yyUB  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Fd}<Uote3  
    %       4    4    r^4                      sqrt(10) X?kPi&ru  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) :o<N!*pT  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) vo H4  
    %       5    5    r^5                      sqrt(12) Pzptr%{  
    %       --------------------------------------------- }8 \|1@09  
    % H-m`Dh5{  
    %   Example: uc\.oG;~q  
    % ?KCxrzf  
    %       % Display three example Zernike radial polynomials ^ `E@/<w8  
    %       r = 0:0.01:1; Q~h6J*  
    %       n = [3 2 5]; oc=tI@W  
    %       m = [1 2 1]; ny~W]1  
    %       z = zernpol(n,m,r); X -v~o/r7  
    %       figure |zb`&tv}  
    %       plot(r,z) tNYJQ  
    %       grid on w2@"PGR  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Jtpa@!M  
    % ha5 bD%  
    %   See also ZERNFUN, ZERNFUN2. @F~0p5I  
    GA7u5D"0  
    % A note on the algorithm. +RdI;QmM  
    % ------------------------ "u,sRbL  
    % The radial Zernike polynomials are computed using the series Xv8fPP(  
    % representation shown in the Help section above. For many special :(+]b  
    % functions, direct evaluation using the series representation can jJ*=Ghu-  
    % produce poor numerical results (floating point errors), because G u6[{u  
    % the summation often involves computing small differences between |o|gP8  
    % large successive terms in the series. (In such cases, the functions G1p43  
    % are often evaluated using alternative methods such as recurrence v<%]XHN  
    % relations: see the Legendre functions, for example). For the Zernike tb:    
    % polynomials, however, this problem does not arise, because the bD  d_}  
    % polynomials are evaluated over the finite domain r = (0,1), and v^;-@ddr  
    % because the coefficients for a given polynomial are generally all l~CZW*/  
    % of similar magnitude. exsQmbj* %  
    % _qEWu Do  
    % ZERNPOL has been written using a vectorized implementation: multiple AmgWj/>  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ws. ?cCTpt  
    % values can be passed as inputs) for a vector of points R.  To achieve 8IpxOA#jQ  
    % this vectorization most efficiently, the algorithm in ZERNPOL yW[L,N7d  
    % involves pre-determining all the powers p of R that are required to oEN)Dw o  
    % compute the outputs, and then compiling the {R^p} into a single +_P8'e%Iy  
    % matrix.  This avoids any redundant computation of the R^p, and vP-3j  
    % minimizes the sizes of certain intermediate variables. TLXhE(o|o  
    % l&vm[3  
    %   Paul Fricker 11/13/2006 CGCQa0  
    U2VV[e)Z!  
    Ck:#1-t8{  
    % Check and prepare the inputs:  dD:  
    % ----------------------------- 10/x'#(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) IPwj_jvw  
        error('zernpol:NMvectors','N and M must be vectors.') e21E_exM0  
    end /*AJ+K._  
    v/]Qq  
    if length(n)~=length(m) te4F"SEf  
        error('zernpol:NMlength','N and M must be the same length.') oo;;y,`8py  
    end kboizJp  
    z7| s%&  
    n = n(:); f<'n5}{RO0  
    m = m(:); j l}!T[5  
    length_n = length(n); $+A%ODv  
    ]d[Rf$>vu0  
    if any(mod(n-m,2)) r9+E'\  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') vYYS .ve  
    end bl$+8 !~  
    @][ a8:Y9I  
    if any(m<0) )3BR[*u*  
        error('zernpol:Mpositive','All M must be positive.') W^5<XX,ON  
    end I/oIcQS!k  
    dMey/A/VYt  
    if any(m>n) ;r gH}r  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') /#:Rd^  
    end oNiToFbQu  
    JmnBq<&,0  
    if any( r>1 | r<0 ) C}n[?R  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') YgO aZqN  
    end -iY9GN89c  
    sI^@A=.@  
    if ~any(size(r)==1) #>7')G  
        error('zernpol:Rvector','R must be a vector.') IlcNT_ 5a8  
    end oq=?i%'>  
    P%.`c?olbs  
    r = r(:); <QYCo1_  
    length_r = length(r); omXBnzT  
    *p""YEN  
    if nargin==4 -}=@ *See#  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); #citwMW  
        if ~isnorm * i=?0M4S  
            error('zernpol:normalization','Unrecognized normalization flag.') "z^BKb5  
        end qk_p}l-F1  
    else d9`3EP)n  
        isnorm = false; 3~cS}N T  
    end :5TXA  
    z*Myokhf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u@GRN`yn  
    % Compute the Zernike Polynomials p2pTs&}S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A8_\2'b  
    Nm H}"ndv+  
    % Determine the required powers of r: ZcUh[5:|  
    % ----------------------------------- c%q}"Y0oh  
    rpowers = []; U@o2gjGN  
    for j = 1:length(n) nu\  
        rpowers = [rpowers m(j):2:n(j)]; &(5^v w<0  
    end |#DC.Ga!  
    rpowers = unique(rpowers); Y|hzF:ll  
    9f@#SB_H  
    % Pre-compute the values of r raised to the required powers, ",MK'\E  
    % and compile them in a matrix: r~S!<9f  
    % ----------------------------- c,6<7  
    if rpowers(1)==0 G=r(SJq  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  IgzCh  
        rpowern = cat(2,rpowern{:}); %f_)<NP9=  
        rpowern = [ones(length_r,1) rpowern]; .fio<mqi  
    else o1fyNzq<  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?c|`R1D  
        rpowern = cat(2,rpowern{:}); gE-w]/1zD5  
    end O4 +SD  
    gt2>nTJz.Z  
    % Compute the values of the polynomials: 'DL;c@}37  
    % -------------------------------------- '<R B  
    z = zeros(length_r,length_n); ;a!h.8UJPI  
    for j = 1:length_n <6d{k[7fz)  
        s = 0:(n(j)-m(j))/2; _'?8s6 H  
        pows = n(j):-2:m(j); #Qtg\X  
        for k = length(s):-1:1 D{,[\^c  
            p = (1-2*mod(s(k),2))* ... !7O=<  
                       prod(2:(n(j)-s(k)))/          ... NPB,q& Th  
                       prod(2:s(k))/                 ... p%1xj2 ?nN  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... sx;V,"Y  
                       prod(2:((n(j)+m(j))/2-s(k))); 'T&=$9g7  
            idx = (pows(k)==rpowers); D+*uKldS;  
            z(:,j) = z(:,j) + p*rpowern(:,idx); *sc0,'0  
        end 4%',scn  
         o+if%3  
        if isnorm "6I-]:K-  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); !T#8N7J>  
        end 9sfB+]}h  
    end '-nuH;r  
    giPhW>  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ={i&F  
    HG3>RcB  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 4#7@KhK}  
    O"-PNF,J  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)