切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11056阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 |52VHW8 c  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! GA6)O-^G  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 x!!: jL'L  
    function z = zernfun(n,m,r,theta,nflag) O>w $  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. VX&KGG.6  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Q=~e|  
    %   and angular frequency M, evaluated at positions (R,THETA) on the E](Ood  
    %   unit circle.  N is a vector of positive integers (including 0), and blaxUP:  
    %   M is a vector with the same number of elements as N.  Each element 05nG |  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) wamqeb{u  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, WJe  
    %   and THETA is a vector of angles.  R and THETA must have the same sBF}j.b  
    %   length.  The output Z is a matrix with one column for every (N,M) p%J,af  
    %   pair, and one row for every (R,THETA) pair. ?mRU9VY  
    % "S#0QH%5  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike a+zE`uY  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), u&bo32fc  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral LUKdu&M  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |)pT"`  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized e|AJxn]  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {:od=\*R  
    % 9+=U&*  
    %   The Zernike functions are an orthogonal basis on the unit circle. ~b8U#'KD  
    %   They are used in disciplines such as astronomy, optics, and d'^jek h  
    %   optometry to describe functions on a circular domain. 3j<] W  
    % 4<Bj;1*4  
    %   The following table lists the first 15 Zernike functions. v.\1-Q?  
    % <J{VTk ~  
    %       n    m    Zernike function           Normalization 8*4X%a=Of  
    %       -------------------------------------------------- h{J2CWJ  
    %       0    0    1                                 1 wC<!,tB(8  
    %       1    1    r * cos(theta)                    2  uGc}^a2  
    %       1   -1    r * sin(theta)                    2 &bs/a] ?Z7  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 4\ H;A  
    %       2    0    (2*r^2 - 1)                    sqrt(3) eNu `\  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) gjL>FOe8u  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) q+e'=0BHd:  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) bNY_V;7Kw`  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) cl1h;w9s  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) GJ ZT~  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) <d$|~qS_  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %{&yXi:mS  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) id&;  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~naL1o_FZ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 8>6+]]O  
    %       -------------------------------------------------- ga6M8eOI  
    % cm6cW(x6  
    %   Example 1: V8`t7[r  
    % JQi)6A?J  
    %       % Display the Zernike function Z(n=5,m=1) L!c7$M5xJ  
    %       x = -1:0.01:1; t~Cul+  
    %       [X,Y] = meshgrid(x,x); vUvIZa  
    %       [theta,r] = cart2pol(X,Y); ISa2|v;M  
    %       idx = r<=1; &JtK<g  
    %       z = nan(size(X)); ZnI_<iFR*  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); -fT]}T6=  
    %       figure p_) V@ 7  
    %       pcolor(x,x,z), shading interp dilRL,  
    %       axis square, colorbar j2=jD G  
    %       title('Zernike function Z_5^1(r,\theta)') DZilK:  
    % /b@8#px  
    %   Example 2: ~*- eL.  
    % xuv%mjQ  
    %       % Display the first 10 Zernike functions ,N?~je.  
    %       x = -1:0.01:1; V[5-A $ft  
    %       [X,Y] = meshgrid(x,x); j0Kj>  
    %       [theta,r] = cart2pol(X,Y); I|n<B"Q6^  
    %       idx = r<=1; # 0dN!l;  
    %       z = nan(size(X)); L#M9!  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ,L6d~>=41  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 4! XB?-.  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7Xw;TA  
    %       y = zernfun(n,m,r(idx),theta(idx)); B'lWs;  
    %       figure('Units','normalized') zVd2kuI&?  
    %       for k = 1:10 QDF1$,s4i  
    %           z(idx) = y(:,k); q+>{@tP9  
    %           subplot(4,7,Nplot(k)) cuB~A8H#}  
    %           pcolor(x,x,z), shading interp |Eu_K`  
    %           set(gca,'XTick',[],'YTick',[]) z\sy~DM;>  
    %           axis square O1ofN#u  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) J;Xh{3[vO  
    %       end p'0jdb :S  
    % l|/h4BJ'  
    %   See also ZERNPOL, ZERNFUN2. g G>1  
    A{bt Z#k  
    %   Paul Fricker 11/13/2006 P|!GXkS  
    4askQV &hj  
    \A6MVMF8  
    % Check and prepare the inputs: 5IOOVYl  
    % ----------------------------- [}9sq+##  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 1y2D]h/'  
        error('zernfun:NMvectors','N and M must be vectors.') _[<R<&jG  
    end j#f+0  
    w-C ~ Ik  
    if length(n)~=length(m) GLp2 ?fon  
        error('zernfun:NMlength','N and M must be the same length.') ryB^$Kh,,  
    end o8-BTq8  
    r/$+'~apTk  
    n = n(:); 9TIyY`2!  
    m = m(:); mS p -  
    if any(mod(n-m,2)) {0nZ;1,m  
        error('zernfun:NMmultiplesof2', ... 9z$]hl  
              'All N and M must differ by multiples of 2 (including 0).') #v0"hFOH,  
    end 5x(`z   
    o]t6u .L  
    if any(m>n) Kfa7}f_  
        error('zernfun:MlessthanN', ... cv=nGFx6  
              'Each M must be less than or equal to its corresponding N.') %0fF_OU  
    end 1P. W 34  
    MUhC6s\F  
    if any( r>1 | r<0 ) \_Nr7sc\  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 11glFe  
    end / *RDy!m  
    &tB|l_p_-p  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Jkzt=6WZ0  
        error('zernfun:RTHvector','R and THETA must be vectors.') ?&I gD.  
    end K{.s{;#  
    x|d Xa0=N_  
    r = r(:); bE#=\kf|  
    theta = theta(:); nd3=\.(P  
    length_r = length(r); {hGr`Rh  
    if length_r~=length(theta) C)~YWx@v  
        error('zernfun:RTHlength', ... PVP,2Yq!  
              'The number of R- and THETA-values must be equal.') *:J#[ET,  
    end >ygyPl ;1s  
    ` wuA}v3!  
    % Check normalization: %_0,z`f  
    % -------------------- O<Qa1Ow7f  
    if nargin==5 && ischar(nflag) v_)a=I%o&2  
        isnorm = strcmpi(nflag,'norm'); JZ  Qkr  
        if ~isnorm S(9Xbw)T  
            error('zernfun:normalization','Unrecognized normalization flag.') R $HI JM  
        end "D}PbT[V  
    else >y mMQEX`  
        isnorm = false; Vc.A <(  
    end E1IRb':  
    @'C f<wns  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D M(WYL{  
    % Compute the Zernike Polynomials .j:.?v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .F:qJ6E  
    zWoPa,  
    % Determine the required powers of r: YLmzMD>  
    % ----------------------------------- k$UgTZ  
    m_abs = abs(m); Y:[WwX|  
    rpowers = []; dya]^L}fL  
    for j = 1:length(n) Bj09?#~[  
        rpowers = [rpowers m_abs(j):2:n(j)]; R#i|n< x  
    end -fw0bL%0  
    rpowers = unique(rpowers); <MZ$baK  
    f ZL%H0&  
    % Pre-compute the values of r raised to the required powers, aDFu!PLB{)  
    % and compile them in a matrix: Ev* b  
    % ----------------------------- |Ak>kQJ(1z  
    if rpowers(1)==0 O( G|fs  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |={><0  
        rpowern = cat(2,rpowern{:}); #c@Dn.W  
        rpowern = [ones(length_r,1) rpowern]; CnruaN@  
    else JYL/p9K[I  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ni*f1[sI<  
        rpowern = cat(2,rpowern{:}); 0-pLCf  
    end Z m9 e|J  
    9PjL 4A  
    % Compute the values of the polynomials: ez=$]cln  
    % -------------------------------------- })!d4EcZf  
    y = zeros(length_r,length(n)); +]uW|owxo  
    for j = 1:length(n) 1RM;"b/  
        s = 0:(n(j)-m_abs(j))/2; n"vl%!B  
        pows = n(j):-2:m_abs(j); ]vJZ v"ACn  
        for k = length(s):-1:1 0Ge*\Q  
            p = (1-2*mod(s(k),2))* ... p8K4^H  
                       prod(2:(n(j)-s(k)))/              ... @'L/]  
                       prod(2:s(k))/                     ... *#1&IJPI  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... wH=  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); vzK*1R5  
            idx = (pows(k)==rpowers); jT"P$0sJAd  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ;ZX P*M9  
        end ^I3cU'X  
         8T92;.~(  
        if isnorm In^MZ)?  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); gS4zX>rqe  
        end ^6[KzE#*  
    end *F*c  
    % END: Compute the Zernike Polynomials (rO_ Vfaa  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1}#v<b$  
    Be}e%Rk  
    % Compute the Zernike functions: /:v+:-lU  
    % ------------------------------ >JwdVy^  
    idx_pos = m>0; z_R^n#A~r  
    idx_neg = m<0; 6TJ5G8z_  
    Y(GH/jw  
    z = y; E@TX>M-&  
    if any(idx_pos) 4O_z|K_k|  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _F>1b16:/P  
    end vF"<r,pg  
    if any(idx_neg) `?LQd2p  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 7IW:,=Zk8+  
    end JPfNf3<@My  
    B04%4N.g"X  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) u{0+w\xH\  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. o^dt# &  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated sj a;NL  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ,Hh7' `  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, nL!h hseH  
    %   and THETA is a vector of angles.  R and THETA must have the same nR4L4tdS  
    %   length.  The output Z is a matrix with one column for every P-value, XSt5s06TM  
    %   and one row for every (R,THETA) pair. ya5a7  
    % vb/*ILS  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike BF8n: }9U  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) hu~02v5  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) FQNhn+A  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 4 q}1  
    %   for all p. }l$M%Ps!a  
    % L(TO5Y]  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 y@]4xLB]  
    %   Zernike functions (order N<=7).  In some disciplines it is cd{3JGg B  
    %   traditional to label the first 36 functions using a single mode 5~k-c Ua  
    %   number P instead of separate numbers for the order N and azimuthal Pc{D,/EpR  
    %   frequency M. .vNfbYH(  
    % {YZ)IaqZ  
    %   Example: Q>7#</i\.  
    % ,e+.Q#r*Y  
    %       % Display the first 16 Zernike functions 1  6;l,@  
    %       x = -1:0.01:1;  z:9  
    %       [X,Y] = meshgrid(x,x); l2GMVAca  
    %       [theta,r] = cart2pol(X,Y); T[a1S?_*T  
    %       idx = r<=1; /k<*!H]KSg  
    %       p = 0:15; 5FqUFzVqsl  
    %       z = nan(size(X)); RI w6i?/I  
    %       y = zernfun2(p,r(idx),theta(idx)); )<G>]IP<  
    %       figure('Units','normalized') /:"%m:-P  
    %       for k = 1:length(p) XOa<R  
    %           z(idx) = y(:,k); 8F($RnP3  
    %           subplot(4,4,k) Iu|G*~\  
    %           pcolor(x,x,z), shading interp gJi11^PK  
    %           set(gca,'XTick',[],'YTick',[]) -`wGF#}y(=  
    %           axis square *7oPM5J|v  
    %           title(['Z_{' num2str(p(k)) '}']) i_g="^  
    %       end 9F0B-aZ  
    % KQi9qj  
    %   See also ZERNPOL, ZERNFUN. OH5 kT$  
    ~] Mq'  
    %   Paul Fricker 11/13/2006 JiZ9ly( G  
    !Y=s_)X  
    q9pBS1Ej  
    % Check and prepare the inputs: ;w4rwL  
    % ----------------------------- \F,?ptu  
    if min(size(p))~=1 o"[P++qd  
        error('zernfun2:Pvector','Input P must be vector.') z%ljEI"<C  
    end z QoMHFL3  
    GK/a^[f+'l  
    if any(p)>35 /7@@CG6b  
        error('zernfun2:P36', ... >IfJ.g"  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... M<7 <L   
               '(P = 0 to 35).']) s .^9;%@$J  
    end ':[+UUC@  
    v0X5`VV  
    % Get the order and frequency corresonding to the function number: T1PWFw\GH  
    % ---------------------------------------------------------------- *-Lnsi^7v  
    p = p(:); gb@Rx  
    n = ceil((-3+sqrt(9+8*p))/2); gtJ^8khME  
    m = 2*p - n.*(n+2); OI %v>ns  
    F"hi2@/TI  
    % Pass the inputs to the function ZERNFUN:  _+|*  
    % ---------------------------------------- &IT'%*Y:V  
    switch nargin {eIE|   
        case 3 jR@-h"2*A  
            z = zernfun(n,m,r,theta); |Y(].G,  
        case 4 1>a^Q  
            z = zernfun(n,m,r,theta,nflag); Uvf-h4^J]:  
        otherwise ~SM2W%  
            error('zernfun2:nargin','Incorrect number of inputs.') ( 4ow0}1  
    end a9QaFs"  
    PG<N\  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) xR#hU;E}  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. G#dpSNV3|  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Om}&`AP};  
    %   order N and frequency M, evaluated at R.  N is a vector of D>G&aQ  
    %   positive integers (including 0), and M is a vector with the 0QC*Z (  
    %   same number of elements as N.  Each element k of M must be a Qs% f6rL  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) aOYd "S}u  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is _LK>3S qd  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix OPKX&)SE-  
    %   with one column for every (N,M) pair, and one row for every r.K4<ly-N  
    %   element in R. gLpWfT29V  
    % _R5^4-Qe  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- U#F(#3/  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is |0qk  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to *ac#wEd  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 2lp.Td`{  
    %   for all [n,m]. //LXbP3/  
    % >F-J}P  
    %   The radial Zernike polynomials are the radial portion of the ^<% w'*gR  
    %   Zernike functions, which are an orthogonal basis on the unit PA5g]Tz  
    %   circle.  The series representation of the radial Zernike .}Zmqz[  
    %   polynomials is H}U&=w'  
    % DJn>. Gd  
    %          (n-m)/2 '6/uc:zv  
    %            __ S0 yPg9v  
    %    m      \       s                                          n-2s t?0=;.D  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r YF:NRY[i  
    %    n      s=0 fA 3  
    % _K;rM7  
    %   The following table shows the first 12 polynomials. ?` `+OH  
    % a,j!B hu  
    %       n    m    Zernike polynomial    Normalization uq 6T|Zm  
    %       --------------------------------------------- T|{BT! W1E  
    %       0    0    1                        sqrt(2) a:;*"p[R  
    %       1    1    r                           2 M1ayAXO  
    %       2    0    2*r^2 - 1                sqrt(6) {M%"z,GL7J  
    %       2    2    r^2                      sqrt(6) VX>_Sp s  
    %       3    1    3*r^3 - 2*r              sqrt(8) )(ma  
    %       3    3    r^3                      sqrt(8) a"&Z!A:Z=  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 17 j7j@s)  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) " 3^6  
    %       4    4    r^4                      sqrt(10) t]@ Zd*  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) uq%RZF z(v  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 72{kig9c  
    %       5    5    r^5                      sqrt(12) K^w9@&g6  
    %       --------------------------------------------- #g|j;{P  
    % T@RzY2tz  
    %   Example: }pTj8Tr  
    % q7)$WXe2LM  
    %       % Display three example Zernike radial polynomials 6Nl$&jL  
    %       r = 0:0.01:1; 2 G"p:iPp  
    %       n = [3 2 5]; #dl8+  
    %       m = [1 2 1]; h)<42Y  
    %       z = zernpol(n,m,r); vEgJmHv;  
    %       figure ]{"(l(  
    %       plot(r,z) 1mjv~W  
    %       grid on pGcc6q1  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Y"lxh/l$}  
    % &FZe LIt  
    %   See also ZERNFUN, ZERNFUN2. (Dn-vY'  
    Q3/q%#q>  
    % A note on the algorithm. IB?A]oN1{  
    % ------------------------ (la   
    % The radial Zernike polynomials are computed using the series F9c2JBOM  
    % representation shown in the Help section above. For many special NV91{o(-7  
    % functions, direct evaluation using the series representation can E8j9@BHU[r  
    % produce poor numerical results (floating point errors), because wM yPR_  
    % the summation often involves computing small differences between pIrAGA;  
    % large successive terms in the series. (In such cases, the functions T4#knSIlh  
    % are often evaluated using alternative methods such as recurrence Bdg*XfXXk  
    % relations: see the Legendre functions, for example). For the Zernike ,AD| u_pP  
    % polynomials, however, this problem does not arise, because the {&;b0'!Tf  
    % polynomials are evaluated over the finite domain r = (0,1), and 6d.m@T6~  
    % because the coefficients for a given polynomial are generally all tFSdi. |G=  
    % of similar magnitude. K;97/"  
    % y$&a(S]  
    % ZERNPOL has been written using a vectorized implementation: multiple 5\'%zZ,l  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] [@y=% \%R  
    % values can be passed as inputs) for a vector of points R.  To achieve FlgB-qR]<n  
    % this vectorization most efficiently, the algorithm in ZERNPOL FvNO*'xP  
    % involves pre-determining all the powers p of R that are required to 'LOqGpmVc  
    % compute the outputs, and then compiling the {R^p} into a single C0fA3y72  
    % matrix.  This avoids any redundant computation of the R^p, and ljis3{kn""  
    % minimizes the sizes of certain intermediate variables. C[KU~@  
    % s7 KKH w  
    %   Paul Fricker 11/13/2006 Pz)QOrrG~  
    ."^dJ |fN  
    \}Wkj~IX  
    % Check and prepare the inputs: $ i&$ZdX  
    % ----------------------------- Cei U2.:U  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) w2,T.3DT  
        error('zernpol:NMvectors','N and M must be vectors.') b(yO  
    end v-gT 3kJ  
    ]EcZ|c7o9y  
    if length(n)~=length(m) "@?|Vv,vn  
        error('zernpol:NMlength','N and M must be the same length.') e>>G4g  
    end '-S&i{H  
    M"vcF5q  
    n = n(:); I>3]4mI*a  
    m = m(:); 1;xw)65  
    length_n = length(n); ]dK]a:S  
    7 b. -&,  
    if any(mod(n-m,2)) n>0dz#  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') y;Zfz~z  
    end +{%4&T<nHw  
    7qUtsDK  
    if any(m<0) \O8f~zA{G  
        error('zernpol:Mpositive','All M must be positive.') &0eB@8{N  
    end /2cI{]B  
    qQcC[50  
    if any(m>n) 9v F2aLPk  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Ntn md  
    end  b:QFD|  
    0xxzhlKNL  
    if any( r>1 | r<0 ) Q kZM(pG  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') yK B[HpU-  
    end /kA19E4  
    :ky<`Jfr`  
    if ~any(size(r)==1) D,n}Qf!GYk  
        error('zernpol:Rvector','R must be a vector.') BXo|CITso  
    end V0 F30rK  
    KYu(H[a  
    r = r(:); tv OAN|+F  
    length_r = length(r); N &[,nUd  
    &a=e=nR5  
    if nargin==4 &7T H V  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); KY`96~z  
        if ~isnorm ij i.3-  
            error('zernpol:normalization','Unrecognized normalization flag.') <s >/< kW:  
        end -k <9v.:  
    else E)JyKm.  
        isnorm = false; !"J#,e|  
    end dn\F!  
    NoO+xLHw8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8>{W:?I  
    % Compute the Zernike Polynomials /plUzy2Yu  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8KtgSash  
    HD)HCDTX  
    % Determine the required powers of r: +q j*P9  
    % ----------------------------------- P"x-7>c>Y  
    rpowers = []; @7s,| \  
    for j = 1:length(n) @pG lWw9*  
        rpowers = [rpowers m(j):2:n(j)]; (Q5@MfK`  
    end pfZ,t<bE2  
    rpowers = unique(rpowers); 2rCY&8  
    0 BCGJFZ{  
    % Pre-compute the values of r raised to the required powers, B^_Chj*m  
    % and compile them in a matrix: F>QT|  
    % ----------------------------- N+M&d3H`  
    if rpowers(1)==0 ]rg+n c3  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [b.'3a++  
        rpowern = cat(2,rpowern{:}); >I& jurU#  
        rpowern = [ones(length_r,1) rpowern]; K@P`_yxN  
    else ! F <] T  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W/r mm*  
        rpowern = cat(2,rpowern{:}); vA;F]epr!  
    end +F o$o  
    F[kW:-ne@Z  
    % Compute the values of the polynomials: ,B%fjcn  
    % -------------------------------------- o? i.v0@!K  
    z = zeros(length_r,length_n); *?bk?*?s  
    for j = 1:length_n <.WM-Z  
        s = 0:(n(j)-m(j))/2; PDt<lJU+X  
        pows = n(j):-2:m(j); vV.~76AD5  
        for k = length(s):-1:1 r)p2'+}pV  
            p = (1-2*mod(s(k),2))* ... *1W, M zg  
                       prod(2:(n(j)-s(k)))/          ... (~Uel1~@  
                       prod(2:s(k))/                 ... A!{.|x[S44  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... qEJ8o.D-=  
                       prod(2:((n(j)+m(j))/2-s(k))); {zz6XlKPj  
            idx = (pows(k)==rpowers); Aw4?y[{H  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ``$%L=_m  
        end l#b|@4:I  
         WBr:|F+~s  
        if isnorm 'cZMRR c <  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); )[^y t0%  
        end rg5]`-!=  
    end S\9t4Ki_'  
    {OO*iZ.O  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  }Ov ^GYnn  
    ~. YWV  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 )"Q*G/+2Ie  
    $= B8qZ+  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)