非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 `pm>'
function z = zernfun(n,m,r,theta,nflag) :1MMa6
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. %E.S[cf%8&
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <[<247%
% and angular frequency M, evaluated at positions (R,THETA) on the l;0y-m1
% unit circle. N is a vector of positive integers (including 0), and H#Q;"r 3
% M is a vector with the same number of elements as N. Each element ?(D}5`Nfu
% k of M must be a positive integer, with possible values M(k) = -N(k) 'Sa!5h
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, T VeJ6
% and THETA is a vector of angles. R and THETA must have the same 9^\hmpP@D
% length. The output Z is a matrix with one column for every (N,M) z6cYC,
% pair, and one row for every (R,THETA) pair. Y`^o7'Z2^P
% O]ZC+]}/
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0H+c4IW
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), g_M^E-3
% with delta(m,0) the Kronecker delta, is chosen so that the integral s#P:6]Ar
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8t[t{"
% and theta=0 to theta=2*pi) is unity. For the non-normalized ,]q%/yxi
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M5O'=\+,F
% K(3&27sGN
% The Zernike functions are an orthogonal basis on the unit circle. :\bfGSD/gd
% They are used in disciplines such as astronomy, optics, and q~h:<,5
% optometry to describe functions on a circular domain. lwJip IO
% ;"@ :}_t
% The following table lists the first 15 Zernike functions. 2kJ!E@n7
% (}"S)#C
% n m Zernike function Normalization +'%\Pr(
% -------------------------------------------------- M2p<u-6
"
% 0 0 1 1 s OQcx\dK
% 1 1 r * cos(theta) 2 RH~sbnZ)F
% 1 -1 r * sin(theta) 2 [%~^kq=|
% 2 -2 r^2 * cos(2*theta) sqrt(6) <4f,G]UH_
% 2 0 (2*r^2 - 1) sqrt(3)
i6 L
% 2 2 r^2 * sin(2*theta) sqrt(6) `xIh\q
% 3 -3 r^3 * cos(3*theta) sqrt(8) >a@>N
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) m^A]+G#/
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) !tBeuemN%
% 3 3 r^3 * sin(3*theta) sqrt(8) 4>k
I^
% 4 -4 r^4 * cos(4*theta) sqrt(10) 4+Ti7p06&\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bKUyBk,\#
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) )&z4_l8`=
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N7pt:G2~%
% 4 4 r^4 * sin(4*theta) sqrt(10) tBv3~Of.
% -------------------------------------------------- KII ym9%
% ^IgS
% Example 1: B1+ZFQo
% Lzz)n%y5
% % Display the Zernike function Z(n=5,m=1) \u8,!) 4i
% x = -1:0.01:1; ttj2b$M,
% [X,Y] = meshgrid(x,x); 4#h?Wga
% [theta,r] = cart2pol(X,Y); QkE,T0,/?h
% idx = r<=1; n ,1tD
% z = nan(size(X)); S.hC$0vrj
% z(idx) = zernfun(5,1,r(idx),theta(idx)); UE;Bb*<
% figure 1|/'"9v
% pcolor(x,x,z), shading interp L=m:/qQL
% axis square, colorbar 0[9I0YBJ
% title('Zernike function Z_5^1(r,\theta)') R9vY:oN%
% OpqNEo\
% Example 2: }$:#+
(17
% lR}%)3_k
% % Display the first 10 Zernike functions @G(xaU'u
% x = -1:0.01:1; \k4pK &b
% [X,Y] = meshgrid(x,x); k9&@(G[K3
% [theta,r] = cart2pol(X,Y); @>:i-5
% idx = r<=1; XNlhu^jh
% z = nan(size(X)); CO'ar,
% n = [0 1 1 2 2 2 3 3 3 3]; J[r^T&o
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; !o<ICHHH
% Nplot = [4 10 12 16 18 20 22 24 26 28]; N]u2ql&
% y = zernfun(n,m,r(idx),theta(idx)); T`Ro)ORC#
% figure('Units','normalized') }9=2g`2Q
% for k = 1:10 _uJVuCc
% z(idx) = y(:,k); 4,zvFH*AH
% subplot(4,7,Nplot(k)) ]738Z/)^
% pcolor(x,x,z), shading interp M5 `m.n<
% set(gca,'XTick',[],'YTick',[]) LfllO
% axis square +;6)
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])
QP V@'.2m
% end KGQC't
% jE*Ff&]%m
% See also ZERNPOL, ZERNFUN2. @p6@a6N%
- `4Ty*K
% Paul Fricker 11/13/2006 HT&p{7kFm
[-]A^?yBM
N33AcV!*8
% Check and prepare the inputs: V Y_f =
% ----------------------------- :])JaS^
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) fCr\u6Tb
error('zernfun:NMvectors','N and M must be vectors.') eQ\jZ0s;p
end ]< +3Vw
3`ml;
L?D
if length(n)~=length(m) [9HYO
error('zernfun:NMlength','N and M must be the same length.') =%L@WVbM
end /sV?JV[t
0#
l#,Y6#I
n = n(:); EIPnm%{1
m = m(:); Ph
Ttx(!
if any(mod(n-m,2)) W]@6=OpH
error('zernfun:NMmultiplesof2', ... k{{hZ/om
'All N and M must differ by multiples of 2 (including 0).') 2!idy]vy_
end i7(~>6@|
.OV-`TNWj
if any(m>n) ;le0QA
Pf
error('zernfun:MlessthanN', ... W6M jQ%f
'Each M must be less than or equal to its corresponding N.') |mvM@V;^8{
end ]/[0O+B?
qS|AdkNL
if any( r>1 | r<0 ) KD=bkZ&
error('zernfun:Rlessthan1','All R must be between 0 and 1.') fzyzuS$
end ]\`w1'*
EP(Eq
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 8J):\jAZ6
error('zernfun:RTHvector','R and THETA must be vectors.') *k4+ioFnKE
end 5v+L';wx[T
6: GN(R$0
r = r(:); ~hzEKvs
theta = theta(:); wcl!S {
length_r = length(r); h&P
{p _Y
if length_r~=length(theta) &8afl"_~
error('zernfun:RTHlength', ... ozuIwzi7N
'The number of R- and THETA-values must be equal.') "5h_8k~sQ
end +xq=<jy
T1bFxim#b
% Check normalization: I^@.Awt
% -------------------- ~Zu}M>-^c,
if nargin==5 && ischar(nflag) 0H<4+
*`K
isnorm = strcmpi(nflag,'norm'); 0NrTJ R`
if ~isnorm fSr`>UpxC
error('zernfun:normalization','Unrecognized normalization flag.') xh`Du|jvm
end t%:G|n Sz
else `;e^2
isnorm = false; Q<C@KBiVE
end g*28L[Q~
38"cbHE3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,.h$&QFj;
% Compute the Zernike Polynomials {RH*8?7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C-r."L
@| P3
% Determine the required powers of r: 4[Z1r~t\L
% ----------------------------------- xp(mB7;:
m_abs = abs(m); %~G0[fG
rpowers = []; uZ-`fcCjD
for j = 1:length(n) I IYL A(
rpowers = [rpowers m_abs(j):2:n(j)]; dw3'T4TC?
end zQn//7#-G
rpowers = unique(rpowers); BjN{@aEO
jXtLo,km
% Pre-compute the values of r raised to the required powers, tgc@7
% and compile them in a matrix: VSx%8IM+X
% ----------------------------- C5cFw/',
if rpowers(1)==0 4sI3(z)9H
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Up'."w_zE
rpowern = cat(2,rpowern{:}); {;\%!I
rpowern = [ones(length_r,1) rpowern];
-GK 'V
else 7f[8ED[4
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); E
$ <;@
rpowern = cat(2,rpowern{:}); qq/_yt
end [O [FCn
rpx0|{m
% Compute the values of the polynomials: G;Us-IRZ
% -------------------------------------- q;IhLBl'
y = zeros(length_r,length(n)); J tThkh'-"
for j = 1:length(n) L,GShl 0S
s = 0:(n(j)-m_abs(j))/2; y{:]sHyG
pows = n(j):-2:m_abs(j); zo/0b/lQ
for k = length(s):-1:1 WT I 'O
p = (1-2*mod(s(k),2))* ... {7/ A
prod(2:(n(j)-s(k)))/ ... 2n _T2{
prod(2:s(k))/ ... >\RDQ%z
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... S[ws0Y60
prod(2:((n(j)+m_abs(j))/2-s(k))); Wn2Ny jX
idx = (pows(k)==rpowers); _T_PX$B
y(:,j) = y(:,j) + p*rpowern(:,idx); ,o4r,.3[s
end |:dCVd<du
}k4`
if isnorm iZsau2K
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); XryQ)x(
end fMgcK$
end dCW0^k
% END: Compute the Zernike Polynomials X
S6]C{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ](]*]a4ss
nomu$|I
% Compute the Zernike functions: jq7vOr-_g
% ------------------------------ Wdei`u[
idx_pos = m>0; _-g-'Hr+N
idx_neg = m<0; .ruqRGe/
rE!G,^_{
z = y; Vi Cg|1c
if any(idx_pos) ?3.(Vqwog
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); !E4E' I=]N
end )6PJ*;p-
if any(idx_neg) (YaOh^T:|
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "US"`a2
end 50}.Xm@,BO
\=HfO?$ Ro
% EOF zernfun