切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11714阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 U[\aj;g)  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦!  k~#F@_  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 e"^* ~'mJ  
    function z = zernfun(n,m,r,theta,nflag) $-9m8}U(Y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 8Z%C7 "4O  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N H)1< ;{:  
    %   and angular frequency M, evaluated at positions (R,THETA) on the g9OO#C>  
    %   unit circle.  N is a vector of positive integers (including 0), and ;3NA,JA#Y  
    %   M is a vector with the same number of elements as N.  Each element #LEK?]y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) A<.`HCv2  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, rJK3;d?E  
    %   and THETA is a vector of angles.  R and THETA must have the same weC$\st:D  
    %   length.  The output Z is a matrix with one column for every (N,M) :M(%sv</  
    %   pair, and one row for every (R,THETA) pair. 31-%IkX+k  
    % T%K"^4k  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike uZ*;%y nQ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @%@uZqQ4  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral #kT3Sx  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +avu&2B  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized /m%Y.:g  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 'l2'%@E>  
    % dC;@ Fn  
    %   The Zernike functions are an orthogonal basis on the unit circle. W@jBX{k  
    %   They are used in disciplines such as astronomy, optics, and z>+@pj   
    %   optometry to describe functions on a circular domain. 01q5BQ7u  
    % t>><|~wp  
    %   The following table lists the first 15 Zernike functions. ZZp6@@zyq'  
    % :a(er'A  
    %       n    m    Zernike function           Normalization 'cJHOd  
    %       -------------------------------------------------- 1t/#ZT!X/  
    %       0    0    1                                 1 mjG-A8y  
    %       1    1    r * cos(theta)                    2 >lxhXYp  
    %       1   -1    r * sin(theta)                    2 \gy39xoW(  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) QcG4~DEX4  
    %       2    0    (2*r^2 - 1)                    sqrt(3) he;;p="!*  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 7a 4G:  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) "<x%kD  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) KOVGwEj  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) W #E-vi+l  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) AjB-&Z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) !Z2?dhS  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sF}T9 Ue  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 8@ck" LUzD  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !T02@e/  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Au08k}h<G  
    %       -------------------------------------------------- !},_,J~(|  
    % m[,! orq  
    %   Example 1:  U=MFNp+  
    % .<j\"X(  
    %       % Display the Zernike function Z(n=5,m=1) v)>R)bzqe  
    %       x = -1:0.01:1; B$"CoLC7+  
    %       [X,Y] = meshgrid(x,x); j-@3jFu  
    %       [theta,r] = cart2pol(X,Y); |13UJ vR  
    %       idx = r<=1; ~itrM3^"w  
    %       z = nan(size(X)); u{maE ,  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ]Ec\!,54u  
    %       figure 6VpT*,2d~  
    %       pcolor(x,x,z), shading interp 0q(}nv  
    %       axis square, colorbar I|]~f[xI  
    %       title('Zernike function Z_5^1(r,\theta)') 9mfqr$3  
    % >.N?y@  
    %   Example 2: 4JSf t t  
    % nE#p Ry]  
    %       % Display the first 10 Zernike functions JSCe86a7<E  
    %       x = -1:0.01:1; >AI65g  
    %       [X,Y] = meshgrid(x,x); oF[l<OY4  
    %       [theta,r] = cart2pol(X,Y); uH S)  
    %       idx = r<=1; ] P;Ng=a  
    %       z = nan(size(X)); @w|'ip5@  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 6Pc3;X~  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Q[J%  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; E!w%oTx{OR  
    %       y = zernfun(n,m,r(idx),theta(idx)); ;:NW  
    %       figure('Units','normalized') ;LM`B^Q]s  
    %       for k = 1:10 v:kTZB  
    %           z(idx) = y(:,k); qV2aa9p+  
    %           subplot(4,7,Nplot(k)) /iFtW#K+  
    %           pcolor(x,x,z), shading interp dUiv+K)ccQ  
    %           set(gca,'XTick',[],'YTick',[]) 'N#,,d/G  
    %           axis square ;L(2Ffk8  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^3?]S{1/#  
    %       end ^Rriu $\  
    % ]Z%9l(  
    %   See also ZERNPOL, ZERNFUN2. U {Xg#UN  
    qELy'\  
    %   Paul Fricker 11/13/2006 BMMWP   
    R: 8\z0"L*  
    ]G m"U!h*  
    % Check and prepare the inputs: H.#<&5f  
    % ----------------------------- eCHT) 35u  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g9~>mJR  
        error('zernfun:NMvectors','N and M must be vectors.') (F9U`1~4  
    end w3oh8NRs_  
    d*;wHA,}F  
    if length(n)~=length(m) R+Q..9 P  
        error('zernfun:NMlength','N and M must be the same length.') <RQ\nU  
    end Fy_D[g  
    uh#"4-v  
    n = n(:); SJ4[n.tPI  
    m = m(:); &0A^_Z .nA  
    if any(mod(n-m,2)) w+c%Y\:  
        error('zernfun:NMmultiplesof2', ... _qwKFC  
              'All N and M must differ by multiples of 2 (including 0).') n@IpO i$Q  
    end _)AX/%^%  
    P:,@2el  
    if any(m>n) ^5n"L2 9V  
        error('zernfun:MlessthanN', ... @ov*Fh  
              'Each M must be less than or equal to its corresponding N.') ^i>Tm9vM  
    end t;g= @o9YA  
    ? I7}4i7  
    if any( r>1 | r<0 ) VnqgN  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') imGg3'  
    end h8#14?  
    JRfG]u6GU  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) rt-^?2c?  
        error('zernfun:RTHvector','R and THETA must be vectors.') );-?~   
    end R0|dKKzS  
    3 sUTdCnNf  
    r = r(:); J${'?!N  
    theta = theta(:); zF'LbQz0[  
    length_r = length(r); t2V|moG  
    if length_r~=length(theta) w<}kY|A"=-  
        error('zernfun:RTHlength', ... VHwAO:+-  
              'The number of R- and THETA-values must be equal.') T\Zf`.mt  
    end n."vCP}O+  
    ;Ih:$"$!  
    % Check normalization: Y|%s =0M  
    % -------------------- c;X8: Z=ja  
    if nargin==5 && ischar(nflag) J@$h'YUF  
        isnorm = strcmpi(nflag,'norm'); /Z':wu\  
        if ~isnorm "9Q @&C  
            error('zernfun:normalization','Unrecognized normalization flag.') 2/[J<c\G  
        end  hsYS<]  
    else >iE/t$%1  
        isnorm = false; ]mO$Tg&s~  
    end ,mkXUW  
    6k569c{7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -B+Pl*  
    % Compute the Zernike Polynomials \53(D7+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Tvdg:[V<  
    `XT8}9z!  
    % Determine the required powers of r: Y8$Y]2  
    % ----------------------------------- 6M sVV_/  
    m_abs = abs(m); u`K)dH,  
    rpowers = []; W|C>X=zTi  
    for j = 1:length(n) J3 Y-d7=|  
        rpowers = [rpowers m_abs(j):2:n(j)]; &A}@@d  
    end $q}zW%  
    rpowers = unique(rpowers); +OEheG8  
    x?5D>M/Y  
    % Pre-compute the values of r raised to the required powers, G3Z>,"w;=  
    % and compile them in a matrix: .X2fu/}  
    % ----------------------------- >"Tivc5  
    if rpowers(1)==0 _SVIY@K|/  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Vp"=8p#k  
        rpowern = cat(2,rpowern{:}); 3 VNPdXsh  
        rpowern = [ones(length_r,1) rpowern]; ,q[aV 6kO  
    else [9}D+k F  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3mmp5 d  
        rpowern = cat(2,rpowern{:}); idG}p+(;  
    end G&2UXr3  
    $-x@P9im  
    % Compute the values of the polynomials: NFYo@kX> G  
    % -------------------------------------- {DP%=4  
    y = zeros(length_r,length(n)); .k_> BD];  
    for j = 1:length(n) _BC%98:WP  
        s = 0:(n(j)-m_abs(j))/2; `B1r+uTP~  
        pows = n(j):-2:m_abs(j); B<V8:vOam  
        for k = length(s):-1:1 \:7G1_o  
            p = (1-2*mod(s(k),2))* ... 7IEG%FY T  
                       prod(2:(n(j)-s(k)))/              ... IF>dsAAI<  
                       prod(2:s(k))/                     ... Nj p?/r  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ,RA;X  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); (SH< ]@s  
            idx = (pows(k)==rpowers); u;@~P  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Ah_,5Z@&R  
        end H!H&<71-  
         pUp&eH  
        if isnorm 2cnyq$4k  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); bi:TX<K+  
        end obRYU|T  
    end 9Q*T'+V  
    % END: Compute the Zernike Polynomials +mgm39  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )(4.7>  
    &"_5?7_N  
    % Compute the Zernike functions: \vKK q/f  
    % ------------------------------ ~4T:v _Q7g  
    idx_pos = m>0; CC,f*I  
    idx_neg = m<0; f+WN=-F\  
    r2h{#2  
    z = y; vV(?A  
    if any(idx_pos) 2oO&8:`tv  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ktEdbALK  
    end t_Q\uo}  
    if any(idx_neg) !e<D2><^  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); REK(^1 h  
    end &/\Q6$a  
    Kw/7X[|'G  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) SNUq  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. H,Y+n)5  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ';vL j1v  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive d#W>"Cqxqa  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, BYKONZu  
    %   and THETA is a vector of angles.  R and THETA must have the same Y9w^F_relL  
    %   length.  The output Z is a matrix with one column for every P-value, ?c6`p3p3L  
    %   and one row for every (R,THETA) pair. U;q GUqI  
    % ]Jum(1Bo  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 2 {I(A2  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 8-_\Q2vG  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) LJ{P93aq`^  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 "<Q,|Md  
    %   for all p. 4~DW7 (  
    % P2t9RCH  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 <l`xP)] X  
    %   Zernike functions (order N<=7).  In some disciplines it is Z'cL"n\9R]  
    %   traditional to label the first 36 functions using a single mode N ,0&xg3  
    %   number P instead of separate numbers for the order N and azimuthal GU,ztO.w3  
    %   frequency M. vFx0B?  
    % 1:j[p=Q&  
    %   Example: [+2iwfD  
    % D\LXjEm e.  
    %       % Display the first 16 Zernike functions I$Ra*r  
    %       x = -1:0.01:1; cxB{EH,2Um  
    %       [X,Y] = meshgrid(x,x); n]< >$  
    %       [theta,r] = cart2pol(X,Y); H3Zs m)+:  
    %       idx = r<=1; 6}"t;4@$x  
    %       p = 0:15; )r`F}_CEL  
    %       z = nan(size(X)); y7@q]~%  
    %       y = zernfun2(p,r(idx),theta(idx)); wticA#mb  
    %       figure('Units','normalized') )d =8)9B  
    %       for k = 1:length(p) 3o.9}`/  
    %           z(idx) = y(:,k); k@=w? m  
    %           subplot(4,4,k) TJ`Jqnh  
    %           pcolor(x,x,z), shading interp #k/NS  
    %           set(gca,'XTick',[],'YTick',[]) .ZVADVg\  
    %           axis square D6NgdE7b  
    %           title(['Z_{' num2str(p(k)) '}']) 'g#EBy  
    %       end 6b7SA ,  
    % 2)4oe  
    %   See also ZERNPOL, ZERNFUN. %1UdG6&J_  
    |<Rf^"T  
    %   Paul Fricker 11/13/2006 ^,sKj-  
    V")u y&Ob  
    V 3yt{3Or  
    % Check and prepare the inputs: a`E1rK'  
    % ----------------------------- %VsIg  
    if min(size(p))~=1 <UE-9g5?G  
        error('zernfun2:Pvector','Input P must be vector.') %]\IC(q  
    end ;cfmMt!QWJ  
    }Q#3\z5  
    if any(p)>35 h$U(1B  
        error('zernfun2:P36', ... UR' P,  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ?_BK(kL_  
               '(P = 0 to 35).']) Jd-u ?  
    end  X0&[cyP!  
    P;DGs]PF  
    % Get the order and frequency corresonding to the function number:  WgayH  
    % ---------------------------------------------------------------- "qxu9Hg!  
    p = p(:); =1e>$E#  
    n = ceil((-3+sqrt(9+8*p))/2); #57D10j  
    m = 2*p - n.*(n+2); 0hoi=W6AQ  
    $9PscubM4  
    % Pass the inputs to the function ZERNFUN: J<27w3bs~p  
    % ---------------------------------------- $`'Xb  
    switch nargin vq;_x  
        case 3 HTw7l]]  
            z = zernfun(n,m,r,theta); o3kVcX^  
        case 4 }MCJ$=5  
            z = zernfun(n,m,r,theta,nflag); %D $+Z(  
        otherwise /j(3 ~%]o4  
            error('zernfun2:nargin','Incorrect number of inputs.') ZMn~QU_5  
    end si,W.9rU  
    ! 1wf/C;=  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) %9Y3jB",2  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. G ;fc8a[X  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of lJ$j[Y  
    %   order N and frequency M, evaluated at R.  N is a vector of Ks_B%d  
    %   positive integers (including 0), and M is a vector with the ux=0N]lc  
    %   same number of elements as N.  Each element k of M must be a | l|7[  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) nr>Os@\BU  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 9W+RUh^W  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix %SJ2W>e  
    %   with one column for every (N,M) pair, and one row for every 6&KvT2?tA`  
    %   element in R. NR|t~C+  
    % OS7^S1r-  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- hUO&rov3@  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Ka|, qkb  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to _zF*S]9 X  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 -lDAxp6p  
    %   for all [n,m]. 3qNLosm#M  
    % 7v{s?h->$  
    %   The radial Zernike polynomials are the radial portion of the TeXt'G=M  
    %   Zernike functions, which are an orthogonal basis on the unit hCFgZiH2  
    %   circle.  The series representation of the radial Zernike D/x!`&.sN  
    %   polynomials is }=T=Z#OgH  
    % N,F$^ q6  
    %          (n-m)/2 GO<,zOqvU  
    %            __ C]'ru  
    %    m      \       s                                          n-2s lS!uL9t.  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r RwyRPc _  
    %    n      s=0 d]!`II  
    % z [9f  
    %   The following table shows the first 12 polynomials. /CfgxPo  
    % 'j27.Ry.  
    %       n    m    Zernike polynomial    Normalization RjW< H6a"K  
    %       --------------------------------------------- DJ.n8hne  
    %       0    0    1                        sqrt(2) rwh,RI) )g  
    %       1    1    r                           2 #'lqE)T  
    %       2    0    2*r^2 - 1                sqrt(6) :y%CP8  
    %       2    2    r^2                      sqrt(6)  tQSJ"Q  
    %       3    1    3*r^3 - 2*r              sqrt(8) B;=-h(E}vJ  
    %       3    3    r^3                      sqrt(8) ]sL)[o  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) + 2?=W1`  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) }X?M6;$)  
    %       4    4    r^4                      sqrt(10) uS}qy-8J  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) \!Cc[n(f#  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) s.qo/o\b  
    %       5    5    r^5                      sqrt(12) 6! .nj3$*  
    %       --------------------------------------------- i0/RvrLc  
    % .XTR HL*:  
    %   Example: jPc"qER!  
    % ?CU6RC n  
    %       % Display three example Zernike radial polynomials '2X6 >6`w  
    %       r = 0:0.01:1; ExKjH*gn  
    %       n = [3 2 5]; O~~WP*N  
    %       m = [1 2 1]; MIF`|3$,  
    %       z = zernpol(n,m,r); Z\. n6  
    %       figure &'KJh+jJ  
    %       plot(r,z) X" m0||  
    %       grid on 97 eEqI$#  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') JVxGS{Z  
    % QMAineO  
    %   See also ZERNFUN, ZERNFUN2. d.Im{-S  
    IF~E;  
    % A note on the algorithm. R;l;;dC=  
    % ------------------------ K~6,xZlDWM  
    % The radial Zernike polynomials are computed using the series bbe$6xwi  
    % representation shown in the Help section above. For many special 1r?hRJ:'  
    % functions, direct evaluation using the series representation can ]/ffA|"U`  
    % produce poor numerical results (floating point errors), because XV %DhR=  
    % the summation often involves computing small differences between ?_V&~?r   
    % large successive terms in the series. (In such cases, the functions ]o+5$L,5b  
    % are often evaluated using alternative methods such as recurrence T0TgV  
    % relations: see the Legendre functions, for example). For the Zernike 'L$}!H1y  
    % polynomials, however, this problem does not arise, because the Q /zlU@  
    % polynomials are evaluated over the finite domain r = (0,1), and Z`]r)z%f  
    % because the coefficients for a given polynomial are generally all 3Z%~WE;I  
    % of similar magnitude. 0* ^>/*  
    % ' Ih f|;r  
    % ZERNPOL has been written using a vectorized implementation: multiple DV{0|E  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] s{9 G//  
    % values can be passed as inputs) for a vector of points R.  To achieve pB5#Ho>S  
    % this vectorization most efficiently, the algorithm in ZERNPOL Swr 8  
    % involves pre-determining all the powers p of R that are required to '^!#*O  
    % compute the outputs, and then compiling the {R^p} into a single :tf'Gw6v  
    % matrix.  This avoids any redundant computation of the R^p, and l' mdj!{&  
    % minimizes the sizes of certain intermediate variables. Uu_Es{@  
    % .$"13"  
    %   Paul Fricker 11/13/2006 bGtS! 'I  
    PX/7:D?  
    N(Sc!rX  
    % Check and prepare the inputs: gzd<D}2F~  
    % -----------------------------  $+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) r\T'_wo  
        error('zernpol:NMvectors','N and M must be vectors.') f>hA+  
    end Ek6z[G` O  
    @s.civ!Yk  
    if length(n)~=length(m) 4H4ui&|7u6  
        error('zernpol:NMlength','N and M must be the same length.') ;_p$5GVR|  
    end Rl{e<>O\^  
    v8l3{qq  
    n = n(:); K 7 OIT2-  
    m = m(:); / DG  t  
    length_n = length(n); q>rDxmP<  
    8}K^o>J&K  
    if any(mod(n-m,2)) zQ~ax!}R  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') zI,z<-  
    end H!P$p-*.  
    _)kTlX:,  
    if any(m<0) c> 0R_  
        error('zernpol:Mpositive','All M must be positive.') ,n3e8qd  
    end x/dyb.  
    |i\%> Y,  
    if any(m>n) ["^? vhv  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 1I?`3N  
    end 5=_bK^Am  
    =&I9d;7  
    if any( r>1 | r<0 ) yu>)[|-  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') %#x l+^  
    end Ggk#>O G  
    19b@QgfWpb  
    if ~any(size(r)==1) Nsn~mY%  
        error('zernpol:Rvector','R must be a vector.') i_(6} Y&  
    end ShesJj  
    [\3W_jR  
    r = r(:); rS8}(lf  
    length_r = length(r); &WNIL13DK  
    $p|Im,  
    if nargin==4 s}F.D^^G  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); m6uFmU*<M}  
        if ~isnorm <?>tjCg'  
            error('zernpol:normalization','Unrecognized normalization flag.') A{p_I<  
        end =P%?{7  
    else uJ`:@Z^J  
        isnorm = false; 7M)<Sv  
    end xz Hb+1+p  
    f?$yxMw:@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h~lps?.#b  
    % Compute the Zernike Polynomials wk#cJ`wG;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [,3E#+y  
    l >~Rzw  
    % Determine the required powers of r: &F:%y(;{Y  
    % ----------------------------------- V :/v r  
    rpowers = []; m Uy>w  
    for j = 1:length(n) S!rVq,| d  
        rpowers = [rpowers m(j):2:n(j)]; p:V1VHT,  
    end =~k}XB  
    rpowers = unique(rpowers); ~b @"ir+g4  
    w3;{z ,,T  
    % Pre-compute the values of r raised to the required powers, ^5Zka!'X2Z  
    % and compile them in a matrix: 6l:uQz9  
    % ----------------------------- *zQhTYY  
    if rpowers(1)==0 IrUoAQ2xpG  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9k \M<jA  
        rpowern = cat(2,rpowern{:}); %l,CJd5  
        rpowern = [ones(length_r,1) rpowern]; $_3 )m  
    else h$mGaw vZ~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;d<O/y,:4  
        rpowern = cat(2,rpowern{:}); W[R`],x`  
    end Cp+tcrd_s  
    ,Wtgj=1!.  
    % Compute the values of the polynomials: W[sQ_Z1C  
    % -------------------------------------- j\"d/{7Q  
    z = zeros(length_r,length_n); yuC|_nL  
    for j = 1:length_n PjofW%7F  
        s = 0:(n(j)-m(j))/2; 3?D{iMRM  
        pows = n(j):-2:m(j); 39MOqVc  
        for k = length(s):-1:1 * =*\w\ te  
            p = (1-2*mod(s(k),2))* ... !1%Sf.`!_  
                       prod(2:(n(j)-s(k)))/          ... [)?9|yY"`  
                       prod(2:s(k))/                 ... !L( )3=  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... v,Zoy|Lu  
                       prod(2:((n(j)+m(j))/2-s(k))); 4]FS jVO  
            idx = (pows(k)==rpowers); D<:zw/IRE  
            z(:,j) = z(:,j) + p*rpowern(:,idx); &*bpEdkZ  
        end YeVo=hYH@  
         -?l`LbD  
        if isnorm rp^:{6O  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ej7L-~lxQ  
        end 5(GVwv  
    end 7kITssVHI  
    gLY15v4?  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  (v:8p!QN  
    PI,2b(`h_  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 =4U$9jo!;  
    ~Ga{=OM??  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)