非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 lx%<oC+M
function z = zernfun(n,m,r,theta,nflag) qF>}"m
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0'a.Ypf
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N b8>rUGA{
% and angular frequency M, evaluated at positions (R,THETA) on the kGCd!$fsk
% unit circle. N is a vector of positive integers (including 0), and \vKMNk;kz
% M is a vector with the same number of elements as N. Each element C]{43
% k of M must be a positive integer, with possible values M(k) = -N(k) ,*Sj7qb#
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, T'FRnC^~
% and THETA is a vector of angles. R and THETA must have the same FLi)EgZXt
% length. The output Z is a matrix with one column for every (N,M) E{h
% pair, and one row for every (R,THETA) pair. z~Gi/Ln
% Fz-Bd*uS
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike !MoGdI-<r[
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \
VJ3
% with delta(m,0) the Kronecker delta, is chosen so that the integral -fYgTst2
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, cu.f]'
% and theta=0 to theta=2*pi) is unity. For the non-normalized W,}C*8{+
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g;vG6!;E\
% tZwZZ0]Z
% The Zernike functions are an orthogonal basis on the unit circle. `5Q0U%`W
% They are used in disciplines such as astronomy, optics, and vTN$SgzfCU
% optometry to describe functions on a circular domain. UZ v^3_,qz
% nCJ)=P.d
% The following table lists the first 15 Zernike functions. ,{7Z OzA
% v-EcJj%
% n m Zernike function Normalization Ee d2`~
% -------------------------------------------------- JuS#p5E #
% 0 0 1 1 cV=h8F
% 1 1 r * cos(theta) 2 pGzzv{H
% 1 -1 r * sin(theta) 2 <