非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 9x23## s
function z = zernfun(n,m,r,theta,nflag) yIA-+# r[
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. /Rf:Z.L
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Y'mtMLfMc
% and angular frequency M, evaluated at positions (R,THETA) on the :tdN#m6&
% unit circle. N is a vector of positive integers (including 0), and xN'$Yh
% M is a vector with the same number of elements as N. Each element U]ynnw4
% k of M must be a positive integer, with possible values M(k) = -N(k) jH({Qc,97
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Iw~R@,
% and THETA is a vector of angles. R and THETA must have the same Xq@Bzya
% length. The output Z is a matrix with one column for every (N,M) Kejp7okb
% pair, and one row for every (R,THETA) pair. "A6m-xE~
% +Hgil
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike of659~EIW
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |6v
$!wBi
% with delta(m,0) the Kronecker delta, is chosen so that the integral F2QFQX(j
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, x+EkL3{
% and theta=0 to theta=2*pi) is unity. For the non-normalized u%!/-&?wF
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. L7;8:^ v
% :m]H?vq] \
% The Zernike functions are an orthogonal basis on the unit circle. aS=-9P;v
% They are used in disciplines such as astronomy, optics, and [MhKR }a
% optometry to describe functions on a circular domain. \|&KD
% Ra)wlIx
% The following table lists the first 15 Zernike functions. ^m~&2l\N=
% t-B5,,`
% n m Zernike function Normalization %D1 |0v8}
% -------------------------------------------------- 70Jx[3vr
% 0 0 1 1 :e/*5ix
% 1 1 r * cos(theta) 2 fG9 ;7KG
% 1 -1 r * sin(theta) 2 `Y O(C<r-
% 2 -2 r^2 * cos(2*theta) sqrt(6) 0xVw{k}1U
% 2 0 (2*r^2 - 1) sqrt(3) =gNPS0H
% 2 2 r^2 * sin(2*theta) sqrt(6) FJ,"a%m/Q
% 3 -3 r^3 * cos(3*theta) sqrt(8) s|IY
t^
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) *IX<&u#
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) _Ne fzZWUJ
% 3 3 r^3 * sin(3*theta) sqrt(8) !6!Gx:
% 4 -4 r^4 * cos(4*theta) sqrt(10) )G#mC0?PV
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =' uePM")
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) *:bexD H
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bd]9kRq1K
% 4 4 r^4 * sin(4*theta) sqrt(10) 0vX4v)-^u
% -------------------------------------------------- JTIt!E}P
% ;/:Sx/#s
% Example 1: 3P@D!lV&K
% &S,_Z/BS;
% % Display the Zernike function Z(n=5,m=1) *4/FN TC
% x = -1:0.01:1; >)F "lR:o
% [X,Y] = meshgrid(x,x); J3 `0i@
% [theta,r] = cart2pol(X,Y); vd?Bk_d9k,
% idx = r<=1; ?4A/?Z]ub
% z = nan(size(X)); (\0
<|pW
% z(idx) = zernfun(5,1,r(idx),theta(idx)); w4(L@1
% figure *Nm$b+
% pcolor(x,x,z), shading interp U0gZf5;*
% axis square, colorbar a`L:E'|B9
% title('Zernike function Z_5^1(r,\theta)') _%q~K (::
% Q$uv
\h;
% Example 2: j$K*R."
% />Q}0Hg
% % Display the first 10 Zernike functions z/u^
% x = -1:0.01:1; ],_+J*
% [X,Y] = meshgrid(x,x); 0j_kK
% [theta,r] = cart2pol(X,Y); P q$0ih
% idx = r<=1; dgL>7X=7
% z = nan(size(X)); 9 w$m\nV
% n = [0 1 1 2 2 2 3 3 3 3]; I)tiXcJw
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; @/F61Ut
% Nplot = [4 10 12 16 18 20 22 24 26 28]; |>yWkq
% y = zernfun(n,m,r(idx),theta(idx)); 9.8%Iw
% figure('Units','normalized') V"m S$MN
% for k = 1:10 U.KQjBi
% z(idx) = y(:,k); MjU|XQS:
% subplot(4,7,Nplot(k)) B*N1)J\5
% pcolor(x,x,z), shading interp jMgXIK\
% set(gca,'XTick',[],'YTick',[]) Hs*["zFc
% axis square ,Cb3R|L8
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #8|LPfA
% end ?u|@,tQ[
% ;xZjt4M1
% See also ZERNPOL, ZERNFUN2. '`3#FCg
)rq |t9kix
% Paul Fricker 11/13/2006 C,An\lsT
yEq7ueJ'
T9C_=0(hn
% Check and prepare the inputs: )V\@N*L`ik
% ----------------------------- 7
!$[XD
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h:nybLw?
error('zernfun:NMvectors','N and M must be vectors.') X/yq<_ g
end _p^"l2%D/
N ~{N Nf Y
if length(n)~=length(m) @eJCr)#}
error('zernfun:NMlength','N and M must be the same length.') P.}d@qD{)
end hbJ>GSoZ,
`
y\)X
C7
n = n(:); O\6U2b~
m = m(:); >#w;67he2
if any(mod(n-m,2)) !R=@Nr>
error('zernfun:NMmultiplesof2', ... {drc}BL_
'All N and M must differ by multiples of 2 (including 0).') Ho>Np&
end (k?HT'3)
);$99t
if any(m>n) t:2v`uk
error('zernfun:MlessthanN', ... 2yZr!Rb~*
'Each M must be less than or equal to its corresponding N.') E5w;75,
end iQ;p59wSzL
,~1"50 Hp@
if any( r>1 | r<0 ) CIjc5^Y2
error('zernfun:Rlessthan1','All R must be between 0 and 1.') f8Iddm#
end w G %W{T$
xG9Sk
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) i"WYcF|
error('zernfun:RTHvector','R and THETA must be vectors.') k, HC"?K
end {FNkPX
']r8q %
r = r(:); p;O%W@n"
theta = theta(:); |A%9c.DG.
length_r = length(r); 9;E=w+
if length_r~=length(theta) "8xAe0-4
error('zernfun:RTHlength', ... i[o 2(d,
'The number of R- and THETA-values must be equal.') .T|
}rB<c
end (N7uaZ?Z
|eqBCZn
% Check normalization: *m~-8_ >;
% --------------------
c0oHE8@
if nargin==5 && ischar(nflag) *doNPp)m
isnorm = strcmpi(nflag,'norm'); ={qcDgn~C
if ~isnorm YmziHns`b
error('zernfun:normalization','Unrecognized normalization flag.') CKYg!\g(:
end rtV`Q[E
else P {TJ$
isnorm = false;
=<HDek
end .ZpOYhk
K^Awf6%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M:S-%aQ_<y
% Compute the Zernike Polynomials CU'JvVe3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -V2\s
#BC"bY
% Determine the required powers of r: [#PE'i4
% -----------------------------------
`o[l%I\Q
m_abs = abs(m); 0j.K?]f)h
rpowers = []; ~}Xus?e
for j = 1:length(n) {>]\<
rpowers = [rpowers m_abs(j):2:n(j)]; ]A*}Dem*5
end '7Gv_G_
rpowers = unique(rpowers); qJhsMo2IH
t" .Ytz>
% Pre-compute the values of r raised to the required powers, YW7W6mWspS
% and compile them in a matrix: #z\ub5um
% ----------------------------- dzf2`@8#
if rpowers(1)==0 B,%Vy!o
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "-J5!y*,Y
rpowern = cat(2,rpowern{:}); RB 5SK#z
rpowern = [ones(length_r,1) rpowern]; KZm&sk=QM-
else d#k(>+%=Q
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); * {g3ia
rpowern = cat(2,rpowern{:}); YR%iZ"`*+O
end +iVEA(0&$
p3Sh%=HE'
% Compute the values of the polynomials: :E:e ^$p
% -------------------------------------- I6>J.6luF9
y = zeros(length_r,length(n)); 8y;Rw#Dz
for j = 1:length(n) J K
k0f9)
s = 0:(n(j)-m_abs(j))/2; 7]ieBUfS
pows = n(j):-2:m_abs(j); o[|[xuTm
for k = length(s):-1:1 nbi7rcT
p = (1-2*mod(s(k),2))* ... /%wS5IZ^
prod(2:(n(j)-s(k)))/ ... Cf{F"o
prod(2:s(k))/ ... +vBi7#&
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5/meH[R\M
prod(2:((n(j)+m_abs(j))/2-s(k))); ]%Q!%uTh
idx = (pows(k)==rpowers); vQAFg G
y(:,j) = y(:,j) + p*rpowern(:,idx); ^h(wi`i
end R.~[$G!
~+q1g[6
if isnorm
bGRt
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); i?00!t
end dP5x]'"x
end F3tps
jQ
% END: Compute the Zernike Polynomials *@U{[J
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +H)'(<
5> k:PKHL
% Compute the Zernike functions: Z>[7#;;
% ------------------------------ vOQ%f?%G\
idx_pos = m>0; 80xr zv
idx_neg = m<0; \2SbW7"/;P
Hbm 4oYN
z = y; %fS9F^AK
if any(idx_pos) \}j MC
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); lj4Fg*/Yn
end h$cm:uks
if any(idx_neg) ua\t5M5
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); d,<ni"
end %,>z`D,Hg
P4zo[R%4
% EOF zernfun