切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11709阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 J!5BH2bg  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 1c_gh12  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 zogtIn)  
    function z = zernfun(n,m,r,theta,nflag) HScj  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0dS}p d">k  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 'J^ M`/  
    %   and angular frequency M, evaluated at positions (R,THETA) on the E)==!T@E  
    %   unit circle.  N is a vector of positive integers (including 0), and GC?X>AC:  
    %   M is a vector with the same number of elements as N.  Each element [ZwZGAP  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) \zj _6Os  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, x._IP,vRx^  
    %   and THETA is a vector of angles.  R and THETA must have the same vZV+24YWb  
    %   length.  The output Z is a matrix with one column for every (N,M) a*LT<N  
    %   pair, and one row for every (R,THETA) pair. u] C/RDTH  
    % A ?"(5da.  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike xlPUu m-o  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Bvzu{B%  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 0kN;SSX!  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, .C^1.)  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized &gJKJ=7  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ,#3}TDC  
    % %bI(   
    %   The Zernike functions are an orthogonal basis on the unit circle. .qVz rS  
    %   They are used in disciplines such as astronomy, optics, and `5 py6,  
    %   optometry to describe functions on a circular domain. Zgp]s+%E  
    % mv@cGdxu  
    %   The following table lists the first 15 Zernike functions. ?pgdj|"a  
    % <hi@$.u_Q^  
    %       n    m    Zernike function           Normalization *8}Y0V\s  
    %       -------------------------------------------------- nb(4"|8}  
    %       0    0    1                                 1 "|W .o=R  
    %       1    1    r * cos(theta)                    2 K/RQ-xd4  
    %       1   -1    r * sin(theta)                    2 PfX{n5yBW8  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) X! 5N2x  
    %       2    0    (2*r^2 - 1)                    sqrt(3) M=[/v/M=  
    %       2    2    r^2 * sin(2*theta)             sqrt(6)  Q(SVJ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) c>fLSf  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) FFXDt"i2  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) YwGc[9=n  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) `x:znp}'  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) v+-f pl&  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +3.Ik,Z}zq  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) }HS:3Dt  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )#-27Y  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) "sLdkd}dj  
    %       -------------------------------------------------- T!$7:% D  
    % =jD[A>3I  
    %   Example 1: h"VQFqQy  
    % )/k0*:OMyO  
    %       % Display the Zernike function Z(n=5,m=1) Wz$%o'OnC  
    %       x = -1:0.01:1; .4={K)kz|F  
    %       [X,Y] = meshgrid(x,x); H e]1 <tx  
    %       [theta,r] = cart2pol(X,Y); `}o4&$  
    %       idx = r<=1; `NA[zH,w3  
    %       z = nan(size(X)); G%)?jg@EA  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Wd4fIegk  
    %       figure 7}bjJR "  
    %       pcolor(x,x,z), shading interp GZT}aMMSJ  
    %       axis square, colorbar K#M h  
    %       title('Zernike function Z_5^1(r,\theta)') /H.QGPr  
    % !8&,GT  
    %   Example 2: ^|}C!t+  
    %  k*|dX.C:  
    %       % Display the first 10 Zernike functions .fcU&t  
    %       x = -1:0.01:1; }]vj"!?a  
    %       [X,Y] = meshgrid(x,x); Okk[}G)  
    %       [theta,r] = cart2pol(X,Y); 6QdNGpN  
    %       idx = r<=1; WO*yJ`9]  
    %       z = nan(size(X)); dsDoPo0!  
    %       n = [0  1  1  2  2  2  3  3  3  3]; []Cvma 1\  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 7'FDI`e[  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; "@B! 5s0  
    %       y = zernfun(n,m,r(idx),theta(idx)); z.1 6%@R  
    %       figure('Units','normalized') vy/U""w`  
    %       for k = 1:10 YVVX7hB  
    %           z(idx) = y(:,k); R#~}ZUk2  
    %           subplot(4,7,Nplot(k)) vZ 4Z+;.  
    %           pcolor(x,x,z), shading interp c 5P52_@  
    %           set(gca,'XTick',[],'YTick',[]) i=_leC)rl  
    %           axis square 7UHqiA`L  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) $oE 4q6b  
    %       end ^7q=E@[e  
    % *pP"u::S  
    %   See also ZERNPOL, ZERNFUN2. nzy =0Ox[  
    &n<jpMB  
    %   Paul Fricker 11/13/2006 5X&<+{bX  
    (Wr;:3i  
    zc J]US  
    % Check and prepare the inputs: D{o1G?A  
    % ----------------------------- v,vTRrpK  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) q" wi.&|  
        error('zernfun:NMvectors','N and M must be vectors.') mDE{s",q/  
    end Js+d4``W  
    w|WZEu:0|  
    if length(n)~=length(m) {+c/$4 <  
        error('zernfun:NMlength','N and M must be the same length.') xmKa8']x  
    end qh$D;t1=  
    =khjD[muC  
    n = n(:); a2/r$Tgm  
    m = m(:); 4\pA^%73  
    if any(mod(n-m,2)) 7g ]]>  
        error('zernfun:NMmultiplesof2', ... Z.6`O1OY}?  
              'All N and M must differ by multiples of 2 (including 0).') |U nTd$m  
    end P},S[GaZ  
    VK`_ Qc#B  
    if any(m>n) uW>AH@Pij  
        error('zernfun:MlessthanN', ... p8s2#+/  
              'Each M must be less than or equal to its corresponding N.') xHsH .f_{  
    end mk\U wv  
    |+6Z+-.Hg  
    if any( r>1 | r<0 ) dMGu9k~u  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') fH`1dU  
    end 7P/j\frW  
    nWFp$tJ/R  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 1)_f9GR  
        error('zernfun:RTHvector','R and THETA must be vectors.') ^\N2 Iu>6  
    end @mP@~  
    ,_NO[+5U  
    r = r(:); #*S/Sh?Q  
    theta = theta(:); RB/[(4  
    length_r = length(r); *XH?|SV  
    if length_r~=length(theta) |D]jdd@!a2  
        error('zernfun:RTHlength', ... Jr17pu(t  
              'The number of R- and THETA-values must be equal.') aS~k.^N  
    end $#R.+B  
    w2{k0MW  
    % Check normalization: Jq6p5jr"  
    % -------------------- yWzvE:!)  
    if nargin==5 && ischar(nflag) u"T5m  
        isnorm = strcmpi(nflag,'norm'); PNc200`v4_  
        if ~isnorm ^|\ *i  
            error('zernfun:normalization','Unrecognized normalization flag.') 4] ?  
        end /SMp`Q88  
    else 8.-PQ  
        isnorm = false; -HoPECe  
    end pbqa  
    W@wT ,yJ8@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ; UrwK  
    % Compute the Zernike Polynomials ,?&hqM\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8(3vNuyP  
    xmiF!R  
    % Determine the required powers of r: $6y1';A  
    % ----------------------------------- ;uoH+`pf  
    m_abs = abs(m); ][G<CO`k  
    rpowers = []; B/5C jHz  
    for j = 1:length(n) I*lq0&  
        rpowers = [rpowers m_abs(j):2:n(j)]; ~S-x-cZ  
    end I5x/N.  
    rpowers = unique(rpowers); Y!POUMA }A  
    ?R,^prW{  
    % Pre-compute the values of r raised to the required powers, TqQ>\h"&_  
    % and compile them in a matrix: <S\S @3  
    % ----------------------------- /_}v|E0  
    if rpowers(1)==0 uL-i>!"L!}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); vO0ql  
        rpowern = cat(2,rpowern{:}); t4gD*j6J3  
        rpowern = [ones(length_r,1) rpowern]; Q 5@~0  
    else p~3CXmUc~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); kdmVHiGF  
        rpowern = cat(2,rpowern{:}); 2o\\qEYg  
    end 3I"&Qp%2  
    1]hMA\x  
    % Compute the values of the polynomials: aaaC8;.  
    % -------------------------------------- E#HO0 ]S  
    y = zeros(length_r,length(n)); E0)v;yRcw  
    for j = 1:length(n) M/1Q/;0P  
        s = 0:(n(j)-m_abs(j))/2; /au\OBUge  
        pows = n(j):-2:m_abs(j); 4yBe(&N-d  
        for k = length(s):-1:1 Szg<;._J  
            p = (1-2*mod(s(k),2))* ... W1: o2 C7  
                       prod(2:(n(j)-s(k)))/              ... %djx0sy  
                       prod(2:s(k))/                     ... gcv,]v 8  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... %< W1y  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Kjf#uU.7  
            idx = (pows(k)==rpowers); }(hE{((o  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ^ g4)aaBZ  
        end ,#c-"x Y  
         8"<!8Img  
        if isnorm Q]|+Y0y}X  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); y!v$5wi  
        end g:2/!tujL  
    end Aga7X@fV(  
    % END: Compute the Zernike Polynomials _aD x('  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u@gYEx}  
    nEGku]pCH{  
    % Compute the Zernike functions: 3)3'-wu  
    % ------------------------------ G4RsH/  
    idx_pos = m>0; k~q[qKb8y:  
    idx_neg = m<0; m.^6e f  
    F(XWnfUv  
    z = y; D:F!;n9  
    if any(idx_pos) 3[e@mcO  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); R 7{ rY  
    end O! j@8~='  
    if any(idx_neg) GB !3Z  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); NKB! _R+  
    end I+<`}  
    L9kSeBt  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 3{c&%F~!  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ,J~1~fg89  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated WI6er;D  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive l%U9g  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Z6*RIdD>  
    %   and THETA is a vector of angles.  R and THETA must have the same zCQv:.0L  
    %   length.  The output Z is a matrix with one column for every P-value, Z g'[.wov  
    %   and one row for every (R,THETA) pair. %kUJ:lg;d  
    % pE`( kD  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike C4G)anT  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) xz%ig^L  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ~ACB #D%  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 /;lk.-yU  
    %   for all p. *CG2sAeB  
    % h\dIp`H  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 @V-ZV  
    %   Zernike functions (order N<=7).  In some disciplines it is fSP~~YSeU  
    %   traditional to label the first 36 functions using a single mode mrbIoN==`  
    %   number P instead of separate numbers for the order N and azimuthal K)14v;@  
    %   frequency M. |/s.PNP2  
    % ~W#f,mf  
    %   Example: MVj@0W33m  
    % ?y '.sQ  
    %       % Display the first 16 Zernike functions Q\r qG  
    %       x = -1:0.01:1; | -R::gm  
    %       [X,Y] = meshgrid(x,x); iIT<{m&`  
    %       [theta,r] = cart2pol(X,Y); 1dq.UW\  
    %       idx = r<=1; v_ J.M]  
    %       p = 0:15; /qCYNwWH9  
    %       z = nan(size(X)); nJ?C4\#3  
    %       y = zernfun2(p,r(idx),theta(idx)); V4"AFArI  
    %       figure('Units','normalized') 4a 5n*6G!  
    %       for k = 1:length(p) 63f/-64?7  
    %           z(idx) = y(:,k); f^]AyU;F:  
    %           subplot(4,4,k) \?g%>D:O;  
    %           pcolor(x,x,z), shading interp %MIu;u FR  
    %           set(gca,'XTick',[],'YTick',[]) I)x:NF6JO  
    %           axis square ^U =`Rx  
    %           title(['Z_{' num2str(p(k)) '}']) \xdt|:8  
    %       end :X!(^ a;]  
    % Q?>#sN,  
    %   See also ZERNPOL, ZERNFUN. Y!`?q8z$G  
    }/LYI  
    %   Paul Fricker 11/13/2006 ZJ 4"QsF  
    %,^7J;  
    ^d"J2n,7L  
    % Check and prepare the inputs: %pt $S~j  
    % ----------------------------- DYl^6 ]  
    if min(size(p))~=1 i-<=nD&?t  
        error('zernfun2:Pvector','Input P must be vector.') GBQb({  
    end 1_t Dp& UO  
    vBpg6 fX  
    if any(p)>35 7HJv4\K  
        error('zernfun2:P36', ... D6vn3*,&  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 79V5{2Y*U  
               '(P = 0 to 35).']) WNx^Rg" >'  
    end ArEpH"}@  
    !vB%Q$!x  
    % Get the order and frequency corresonding to the function number: gB"Tc[l1  
    % ---------------------------------------------------------------- I>xB.$A  
    p = p(:); "tark'  
    n = ceil((-3+sqrt(9+8*p))/2); PHXP1)^}S  
    m = 2*p - n.*(n+2); U&5zs r  
    Gh pd k;  
    % Pass the inputs to the function ZERNFUN: P=@lkF!\#  
    % ---------------------------------------- CvW((<?  
    switch nargin o`U\Nhq  
        case 3 pxbNeqK@p  
            z = zernfun(n,m,r,theta); <It7s1O  
        case 4 KC u6:)6'  
            z = zernfun(n,m,r,theta,nflag); M~Slc*_%  
        otherwise ;!}SgzSH}  
            error('zernfun2:nargin','Incorrect number of inputs.') h=tu +pn  
    end Psa8OJan  
    p^:Lj9Qax  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) \i+h P1 mz  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. lnWi E}F  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of F"H!CJJu&  
    %   order N and frequency M, evaluated at R.  N is a vector of 5Nb_K`Vp*  
    %   positive integers (including 0), and M is a vector with the PoJyWC  
    %   same number of elements as N.  Each element k of M must be a \Sby(l  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 55LF  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ss{=::#  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix C<t>m_t9  
    %   with one column for every (N,M) pair, and one row for every d-sh6q5  
    %   element in R. h3EDN:FQ  
    % _0["J:s9  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- S1`0d9ds#  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Iq]6]  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ~ p.W*skD  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 "T%'Rp`j|  
    %   for all [n,m]. }.cmiC  
    % 4_I{Q^f  
    %   The radial Zernike polynomials are the radial portion of the @!/fvP  
    %   Zernike functions, which are an orthogonal basis on the unit DB%AO:8  
    %   circle.  The series representation of the radial Zernike Wky STc  
    %   polynomials is TQd FC\@f"  
    % eJGos!>*  
    %          (n-m)/2 Qsxkw  
    %            __ $ cK B+}  
    %    m      \       s                                          n-2s T\!SA  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r SzlfA%4+GR  
    %    n      s=0 yO;C3q  
    % .0E4c8R\X  
    %   The following table shows the first 12 polynomials. 0,$-)SkT  
    % bM0[V5:jB  
    %       n    m    Zernike polynomial    Normalization P&3/nL$9N  
    %       --------------------------------------------- wv.Ul rpx.  
    %       0    0    1                        sqrt(2) K}<!{/fi)  
    %       1    1    r                           2 #K1BJ#KUt  
    %       2    0    2*r^2 - 1                sqrt(6) % rY8  
    %       2    2    r^2                      sqrt(6) -f2`qltjb  
    %       3    1    3*r^3 - 2*r              sqrt(8) 50GYL5)q  
    %       3    3    r^3                      sqrt(8) ,e FQ}&^A  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) UxcDDa/j2T  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) L sDzV)  
    %       4    4    r^4                      sqrt(10) ,PMb9 O\B  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) EY&C [=  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Qy^z*s  
    %       5    5    r^5                      sqrt(12) +F~0\#d  
    %       --------------------------------------------- -Bo~"q  
    % d6@jEa-  
    %   Example: ?hJsN  
    % Ym.l@(  
    %       % Display three example Zernike radial polynomials -iDEh_pts  
    %       r = 0:0.01:1; n *i'vtQ8  
    %       n = [3 2 5]; T$^>Fiz{Se  
    %       m = [1 2 1]; q$?7 ~*M;x  
    %       z = zernpol(n,m,r); k g,ys4  
    %       figure Ls>u` hG  
    %       plot(r,z) blfE9Oy  
    %       grid on k=mT!  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') fAM D2C  
    % 8gbm"!  
    %   See also ZERNFUN, ZERNFUN2. *pTO|x{  
    Ku/H=  
    % A note on the algorithm. %g0z) J  
    % ------------------------ h*#2bS~nl-  
    % The radial Zernike polynomials are computed using the series !0OD(XT  
    % representation shown in the Help section above. For many special ~1=.?Ho  
    % functions, direct evaluation using the series representation can :q>oD-b$}  
    % produce poor numerical results (floating point errors), because .:Bwa  
    % the summation often involves computing small differences between rO(TG  
    % large successive terms in the series. (In such cases, the functions 5hJYy`h~  
    % are often evaluated using alternative methods such as recurrence 2z.8rNwT  
    % relations: see the Legendre functions, for example). For the Zernike uRm_  
    % polynomials, however, this problem does not arise, because the =X`]Ct8 Z  
    % polynomials are evaluated over the finite domain r = (0,1), and XewXTd #x  
    % because the coefficients for a given polynomial are generally all (~G5t(+  
    % of similar magnitude. :m* !?QGdL  
    % D/S>w(=  
    % ZERNPOL has been written using a vectorized implementation: multiple =XMD+  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] [+%d3+27  
    % values can be passed as inputs) for a vector of points R.  To achieve UH 47e  
    % this vectorization most efficiently, the algorithm in ZERNPOL AB2mt:^  
    % involves pre-determining all the powers p of R that are required to Q7 uAf3  
    % compute the outputs, and then compiling the {R^p} into a single pkXfsi-Nu  
    % matrix.  This avoids any redundant computation of the R^p, and >[|GC/C  
    % minimizes the sizes of certain intermediate variables. :dY.D|j*  
    % 29a_ZU7e6  
    %   Paul Fricker 11/13/2006 obAs<nk  
    HPtTv}l  
    %tzN@  
    % Check and prepare the inputs: X,WQ'|rC  
    % ----------------------------- R3B5-^s  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) )IFl 0<d  
        error('zernpol:NMvectors','N and M must be vectors.') C#U< k0R  
    end 5\akI\  
    Uz6{>OCvk|  
    if length(n)~=length(m) p}YI#f in/  
        error('zernpol:NMlength','N and M must be the same length.') Qp kKVLi  
    end >JKnGeF  
    $` Z>Lm*  
    n = n(:); mL:m;>JJ n  
    m = m(:); a=J@y K  
    length_n = length(n); ; x:k-s2-  
    +cz"`T`X 2  
    if any(mod(n-m,2)) r6d0x  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') J3/\<=Qh  
    end y|q@;*rGNa  
    /d0Q>v.g  
    if any(m<0) IajD;V  
        error('zernpol:Mpositive','All M must be positive.') ,wtFs!8  
    end )XLj[6j0  
    ?^%YRB&  
    if any(m>n) pN\)(:"8v  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Gw ~{V  
    end = EQN-{#  
    )KSisEL  
    if any( r>1 | r<0 ) .S~@BI(|<  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') DMF?5GX  
    end i\t753<Ys  
    2y3?!^$  
    if ~any(size(r)==1) U91 &|  
        error('zernpol:Rvector','R must be a vector.') c3=-Mq9Q  
    end $Y8>_6%+T  
    f ,tW_g  
    r = r(:); 't +"k8  
    length_r = length(r); vuYO\u+ud  
    $ q%mu  
    if nargin==4 3p:=xL  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 7~_{.f  
        if ~isnorm }x*7l`1  
            error('zernpol:normalization','Unrecognized normalization flag.') u?Fnln e4@  
        end /8f>':zUb  
    else 8';m)Jc  
        isnorm = false; iaY5JEV:CA  
    end 60xa?8<cg  
    T>d\%*Q+B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :W~6F*A  
    % Compute the Zernike Polynomials 6ayy[5tW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T!MZ+Ph`F  
    %dEB/[  
    % Determine the required powers of r: ~j=xiP  
    % ----------------------------------- ARPKzF`Wq  
    rpowers = []; j7K5SS_]  
    for j = 1:length(n) ^;.T}c%N  
        rpowers = [rpowers m(j):2:n(j)]; 8EOh0gk7  
    end >9ob*6q,  
    rpowers = unique(rpowers); TI}}1ScA'  
    FC6xFg^  
    % Pre-compute the values of r raised to the required powers, +a|"{  
    % and compile them in a matrix: <"<Mbbp  
    % ----------------------------- KacR?Al  
    if rpowers(1)==0 5?Bc Y ;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (B@X[~  
        rpowern = cat(2,rpowern{:}); k^z0Lo|)'  
        rpowern = [ones(length_r,1) rpowern]; aS el* L  
    else 1@xP(XS  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2d-{Q 8Pi  
        rpowern = cat(2,rpowern{:}); tv0Ha A  
    end ny)]GvxI  
    g+/0DO_F3  
    % Compute the values of the polynomials: hi!`9k  
    % -------------------------------------- qpI]R  
    z = zeros(length_r,length_n); xq2V0Jp1u  
    for j = 1:length_n W;4Lkk$  
        s = 0:(n(j)-m(j))/2; 3QW_k5o  
        pows = n(j):-2:m(j); xOythvO  
        for k = length(s):-1:1 5k]XQxc6_  
            p = (1-2*mod(s(k),2))* ... +]c/&Xo!  
                       prod(2:(n(j)-s(k)))/          ... Wbe0ZnM]  
                       prod(2:s(k))/                 ... -IadHX}]t  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ygN>"eP  
                       prod(2:((n(j)+m(j))/2-s(k))); qe?Qeh(!X  
            idx = (pows(k)==rpowers); B@ {&<  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 4jQ'+ 2it  
        end [>f]@>  
         Z&Ue|Z4Qt  
        if isnorm #;]2=@  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); &R,9+c  
        end Di>rO038  
    end fxd0e;NAAh  
    6g"C#&{@  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Lh.b 5Q|  
    W-Hoyn>?2  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 , t5 '  
    ypOLp SYk  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)