切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11681阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 [IF3 ,C  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! /hOp>|  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ZtlF]k:MV  
    function z = zernfun(n,m,r,theta,nflag) gs_"H  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. pR4{}=g,  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N T#DJQ"$  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 'C]zB'H=  
    %   unit circle.  N is a vector of positive integers (including 0), and  4C/  
    %   M is a vector with the same number of elements as N.  Each element yyPkjUy[  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) br .jj  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, T?N' k=   
    %   and THETA is a vector of angles.  R and THETA must have the same puG$\D-[  
    %   length.  The output Z is a matrix with one column for every (N,M) ^DS9D:oE  
    %   pair, and one row for every (R,THETA) pair. ,+3l9FuQ  
    % #*BcO-N  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike W @Y$!V<  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {# ;e{v  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral rtS(iD@B"  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, hzg&OW=:  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized dB ?+-aE  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9`f]Rf"  
    % ;eI,1 [_  
    %   The Zernike functions are an orthogonal basis on the unit circle. Vl5}m  
    %   They are used in disciplines such as astronomy, optics, and ,@tY D(Z  
    %   optometry to describe functions on a circular domain. 8c`g{ *z  
    % %a<N[H3NV@  
    %   The following table lists the first 15 Zernike functions. *>n<7T0  
    % !lG5BOJM  
    %       n    m    Zernike function           Normalization .e!dEF)D  
    %       -------------------------------------------------- ^*#5iT8/  
    %       0    0    1                                 1 5?kJ]:  
    %       1    1    r * cos(theta)                    2 (Gf1#,/3~  
    %       1   -1    r * sin(theta)                    2 +yiGZV/X  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) \`;FL\1+W  
    %       2    0    (2*r^2 - 1)                    sqrt(3) B_i@D?bTD  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) <_=a1x  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) sn '#]yM  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 0V`s 3,k  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) DDq*#;dP  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 5&D)W>{d  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ~'m GGH2  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *.K+"WS%  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Pni  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) p 2It/O  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) G&)A7WaC  
    %       -------------------------------------------------- cW4:eh  
    % cod__.  
    %   Example 1: ZE.nB- H  
    % -'QvUHL|  
    %       % Display the Zernike function Z(n=5,m=1) \< <u  
    %       x = -1:0.01:1; v: cO+dQ  
    %       [X,Y] = meshgrid(x,x); 5, R\tJCK  
    %       [theta,r] = cart2pol(X,Y); \-a^8{.^E  
    %       idx = r<=1; vz #VW  
    %       z = nan(size(X)); N%v}$58Z  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); f]L`^WU  
    %       figure v]& )+0  
    %       pcolor(x,x,z), shading interp 9G_bM(q'^2  
    %       axis square, colorbar !4\`g?  
    %       title('Zernike function Z_5^1(r,\theta)') {P"$;_Y"<  
    % 5+].$  
    %   Example 2: G7yCGT)vQ  
    % [tGAo/  
    %       % Display the first 10 Zernike functions Vz6p^kMB  
    %       x = -1:0.01:1; Gl}[1<~o  
    %       [X,Y] = meshgrid(x,x); Q*&>Ui[&  
    %       [theta,r] = cart2pol(X,Y); |s`j=<rNQI  
    %       idx = r<=1; VC5LxA0{  
    %       z = nan(size(X)); ,X25-OFZ  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ivYHq#b59  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; @GDe{GG+  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; B38_1X7  
    %       y = zernfun(n,m,r(idx),theta(idx)); 6Qne rd%Ec  
    %       figure('Units','normalized') CG*eo!Nw  
    %       for k = 1:10 kW0|\  
    %           z(idx) = y(:,k); 92!1I$zi  
    %           subplot(4,7,Nplot(k)) Kmc*z (Q  
    %           pcolor(x,x,z), shading interp 7nM]E_  
    %           set(gca,'XTick',[],'YTick',[]) va F^[/ (g  
    %           axis square u>o<u a p  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 0h/gqlTK1  
    %       end `T7gfb%1-3  
    % R_ymTB}<t(  
    %   See also ZERNPOL, ZERNFUN2. A:PQIcR;V  
    ^ZV1Ev8T6  
    %   Paul Fricker 11/13/2006 H^z6.!$m  
    JJ`RF   
    d2`m0U  
    % Check and prepare the inputs: Oya:{d&=  
    % ----------------------------- C"}CD{<H]M  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 1Z%^U ?  
        error('zernfun:NMvectors','N and M must be vectors.') s ;EwAd(  
    end j3 ,6U jlU  
    soh)IfZ  
    if length(n)~=length(m) p vone,y2  
        error('zernfun:NMlength','N and M must be the same length.') Z^ynw8k"  
    end uJ<n W%}  
    jkCa2!WQ'i  
    n = n(:); hr3RC+ y  
    m = m(:); f'&30lF  
    if any(mod(n-m,2)) (3a]#`Q  
        error('zernfun:NMmultiplesof2', ... u`?MV2jU2  
              'All N and M must differ by multiples of 2 (including 0).') nAIV]9RAZ%  
    end D=Ia$O0.  
    5-'jYp/  
    if any(m>n) :U;n?Zu S  
        error('zernfun:MlessthanN', ... `/?XvF\  
              'Each M must be less than or equal to its corresponding N.') %+Hhe]J ld  
    end s jl(  
    "Kky|(EQ$$  
    if any( r>1 | r<0 ) -OV:y],-  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') \yt-_W=[  
    end E57:ap)/  
    8T"C]  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 3h t>eaHi  
        error('zernfun:RTHvector','R and THETA must be vectors.') OXu*w l(z  
    end t8SvU  
    LpRl!\FY$  
    r = r(:); 3sr> ?/>:  
    theta = theta(:); UQ]WBS\  
    length_r = length(r); $Ro]]NUz|  
    if length_r~=length(theta) MI8f(ZJK5  
        error('zernfun:RTHlength', ... +9mE1$C  
              'The number of R- and THETA-values must be equal.') =AEl:SY+  
    end t6-He~  
    <X@XbM  
    % Check normalization: 7G6XK   
    % -------------------- lO^Ly27  
    if nargin==5 && ischar(nflag) 'Mp8!9=&  
        isnorm = strcmpi(nflag,'norm'); +c4-7/kE  
        if ~isnorm bm/pLC6%.  
            error('zernfun:normalization','Unrecognized normalization flag.') > mI1wV[  
        end ~)J]`el,Q  
    else "rxhS; R1>  
        isnorm = false; H}v.0R  
    end )v\zaz  
    &n6'r^[D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ek'~i  
    % Compute the Zernike Polynomials f@JMDJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yC%zX}5  
    ,q9nHZG^  
    % Determine the required powers of r: [/Q .MmnL  
    % ----------------------------------- FXLY*eRk  
    m_abs = abs(m); O5rHN;\_  
    rpowers = []; ai,\'%N  
    for j = 1:length(n) n*(9:y=l1  
        rpowers = [rpowers m_abs(j):2:n(j)]; ;/-v4  
    end I^}q;L![\  
    rpowers = unique(rpowers); ~H<oqk:O-  
    =*paa  
    % Pre-compute the values of r raised to the required powers, d7, ZpHt  
    % and compile them in a matrix: *[VO03  
    % ----------------------------- Myj 5qh  
    if rpowers(1)==0 j?c"BF.  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5hxG\f#}?  
        rpowern = cat(2,rpowern{:}); o )\\(^ld  
        rpowern = [ones(length_r,1) rpowern]; \\ZR~f!<  
    else g5",jTn#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); y4N8B:j%  
        rpowern = cat(2,rpowern{:}); Rs$fNW@P  
    end [N@t/^gRC  
    ^nO0/nqz]  
    % Compute the values of the polynomials: r6,EyCWcCs  
    % -------------------------------------- X283.?  
    y = zeros(length_r,length(n)); : Xe,=M(l~  
    for j = 1:length(n) c<k=8P   
        s = 0:(n(j)-m_abs(j))/2; #|92 +  
        pows = n(j):-2:m_abs(j); ~wejy3|@0  
        for k = length(s):-1:1 cWp5' e]A  
            p = (1-2*mod(s(k),2))* ... .Iu8bN(L`  
                       prod(2:(n(j)-s(k)))/              ... !xE /  
                       prod(2:s(k))/                     ... ]n\Qa   
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... OM>,1;UH]  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ,(&p "O":  
            idx = (pows(k)==rpowers); :.VI*X:aQh  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Ym% $!#  
        end  v|K,  
         (7X|W<xT  
        if isnorm Os90fR  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); DPWt=IFU  
        end "V= IG{.  
    end 5SB!)F]   
    % END: Compute the Zernike Polynomials ,H)v+lI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ri   
    k4C3SI*`4  
    % Compute the Zernike functions: Mzg zOM  
    % ------------------------------ $yn7XonS  
    idx_pos = m>0; *XU2%"Sc  
    idx_neg = m<0; =%)Y, )"  
    S|jE1v"L  
    z = y; 21T#NYfew  
    if any(idx_pos) 2@Nt6r  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); VxP cC+  
    end K]{x0A  
    if any(idx_neg) +GYO<N7  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !&eKq?P{j  
    end iJ&jg`"=F  
    B,5kG{2!  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) kf:Nub+h t  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. h(/& ;\Cr  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 5$?)f&M  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive J*Q+$Ai~  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, KU=+ 1,Jf  
    %   and THETA is a vector of angles.  R and THETA must have the same t?(fDWd|-  
    %   length.  The output Z is a matrix with one column for every P-value, <\'aUfF v  
    %   and one row for every (R,THETA) pair. 5-RA<d#  
    % =T-jG_.H  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike r [E4/?_  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) h J H  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) UrmnHc>}c  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 edL sn>\*#  
    %   for all p. 7PW7&]-WQ  
    % _u9bZ'  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 zN&m-nrw  
    %   Zernike functions (order N<=7).  In some disciplines it is @s|G18@  
    %   traditional to label the first 36 functions using a single mode U1)!X@F{  
    %   number P instead of separate numbers for the order N and azimuthal 8xb({e4  
    %   frequency M. Ul Mc8z  
    % aT~=<rEDy  
    %   Example: DP.Y <V)B  
    % | vPU]R>6  
    %       % Display the first 16 Zernike functions H1d2WNr[  
    %       x = -1:0.01:1; 5|A"YzY#  
    %       [X,Y] = meshgrid(x,x); %w;wQ_  
    %       [theta,r] = cart2pol(X,Y); iLO,XW?d v  
    %       idx = r<=1; pM-mZ/?  
    %       p = 0:15; oi7Y?hTj  
    %       z = nan(size(X)); wD92Ava   
    %       y = zernfun2(p,r(idx),theta(idx)); A\})H  
    %       figure('Units','normalized') i3vg7V.  
    %       for k = 1:length(p) E^B3MyS^^  
    %           z(idx) = y(:,k); b=kY9!GN,v  
    %           subplot(4,4,k) +O4//FC-"  
    %           pcolor(x,x,z), shading interp G2dPm}sZG  
    %           set(gca,'XTick',[],'YTick',[]) T}jW,Ost  
    %           axis square 6t{G{ ]  
    %           title(['Z_{' num2str(p(k)) '}']) p+;;01Z+_  
    %       end o0_H(j?  
    % ;o?o92d  
    %   See also ZERNPOL, ZERNFUN. #G\Ae:O  
    XZ"oOE0=  
    %   Paul Fricker 11/13/2006 `0`#Uf_/$  
    v)aV(Oa  
    F8&L'@m9>  
    % Check and prepare the inputs: K_fJ{Vc>O  
    % ----------------------------- w19OOD  
    if min(size(p))~=1 j>3Fwg9V  
        error('zernfun2:Pvector','Input P must be vector.') nK`H;k  
    end t!59upbN}3  
    } x Kv N  
    if any(p)>35 Mehp]5*  
        error('zernfun2:P36', ... 24*3m&fA*K  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 8l<~zIoO  
               '(P = 0 to 35).']) E(*S]Z[  
    end \[ W`hhJ  
    k>=wwPy  
    % Get the order and frequency corresonding to the function number: TA+#{q+a  
    % ---------------------------------------------------------------- !1mAq+q!  
    p = p(:); iV:\,<8d  
    n = ceil((-3+sqrt(9+8*p))/2); y\:,.cZ+TQ  
    m = 2*p - n.*(n+2); .uB[zJc  
    ]dT]25V  
    % Pass the inputs to the function ZERNFUN: RN$q,f[#  
    % ---------------------------------------- Q6n8,2*  
    switch nargin !iAZEOkRR  
        case 3 Pr,C)uch  
            z = zernfun(n,m,r,theta); X*a7`aL  
        case 4 %;#9lkOXWH  
            z = zernfun(n,m,r,theta,nflag); N6v*X+4JH  
        otherwise #fF D|q  
            error('zernfun2:nargin','Incorrect number of inputs.') o3`0x9{  
    end W$` WkR  
    }mS Q!"f:  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) kEg~yN  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. /sl#M  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of :$QwOz^N*  
    %   order N and frequency M, evaluated at R.  N is a vector of `~@}f"c`u  
    %   positive integers (including 0), and M is a vector with the b{ W ,wn  
    %   same number of elements as N.  Each element k of M must be a l> >BeZ  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) &jDRRT3  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ,-> P+m5  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix jw]IpGTt  
    %   with one column for every (N,M) pair, and one row for every gKb5W094@  
    %   element in R. C,u;l~zz  
    % v=H!Y";  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ]j(Ld\:L  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is  *8 ]  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to H/ub=,Ej*  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 *OZ O} i  
    %   for all [n,m]. FRTvo  
    % UKSI"/8I  
    %   The radial Zernike polynomials are the radial portion of the n6*; ~h5  
    %   Zernike functions, which are an orthogonal basis on the unit A3zNUad;  
    %   circle.  The series representation of the radial Zernike ? oGmGKq  
    %   polynomials is %$!EjyH9  
    % ,I[A~  
    %          (n-m)/2 uMP&.Y(  
    %            __ S[uHPYhlA  
    %    m      \       s                                          n-2s ::8E?c  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 3K_!:[  
    %    n      s=0 LZu_-I  
    % k_Edug~B  
    %   The following table shows the first 12 polynomials. {c$%3iQq  
    % B?_ujH80m  
    %       n    m    Zernike polynomial    Normalization E9[8th,t  
    %       --------------------------------------------- F~O! J@4]  
    %       0    0    1                        sqrt(2) *$>$O%   
    %       1    1    r                           2 Eb9M;u  
    %       2    0    2*r^2 - 1                sqrt(6) ?Qs>L~  
    %       2    2    r^2                      sqrt(6) \'N|1!EO|t  
    %       3    1    3*r^3 - 2*r              sqrt(8) /t?(IcP5  
    %       3    3    r^3                      sqrt(8) F[OBPPQ3  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 8%9OB5?F6  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) K#p&XIY,  
    %       4    4    r^4                      sqrt(10) qsL6*(S(r  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ~ .Eln+N  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) L:EJ+bNG  
    %       5    5    r^5                      sqrt(12) gM3gc;  
    %       --------------------------------------------- }~5xlg$B<<  
    % DSHpM/7  
    %   Example: ("BFI  
    % Yui:=GgUrr  
    %       % Display three example Zernike radial polynomials Wkv **X}  
    %       r = 0:0.01:1; I!Za2?  
    %       n = [3 2 5];  yQ8H-a.  
    %       m = [1 2 1]; PZl(S}VY  
    %       z = zernpol(n,m,r); )+9D$m=P;  
    %       figure 9P)<CD0  
    %       plot(r,z) s ^{j  
    %       grid on efP2 C\  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') PX'I:B]x*  
    % +e"}"]n  
    %   See also ZERNFUN, ZERNFUN2. Dl/_jM  
    `ionMTZY  
    % A note on the algorithm. 4%j&]PASa1  
    % ------------------------ ;3sT>UB  
    % The radial Zernike polynomials are computed using the series F]?$Q'U  
    % representation shown in the Help section above. For many special 5tl}rmI`  
    % functions, direct evaluation using the series representation can ~K],hi^<P  
    % produce poor numerical results (floating point errors), because Lou4M  
    % the summation often involves computing small differences between qkUr5^1  
    % large successive terms in the series. (In such cases, the functions aLXA9?  
    % are often evaluated using alternative methods such as recurrence cuk2\> Xl  
    % relations: see the Legendre functions, for example). For the Zernike j)IK  
    % polynomials, however, this problem does not arise, because the y!!+IeReS  
    % polynomials are evaluated over the finite domain r = (0,1), and Q84KU8?d  
    % because the coefficients for a given polynomial are generally all A1ebXXD )  
    % of similar magnitude. $'FPst8Q<  
    % ,n!xzoX_  
    % ZERNPOL has been written using a vectorized implementation: multiple 0XYO2 k  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] r rwsj`  
    % values can be passed as inputs) for a vector of points R.  To achieve 3Ob"r`  
    % this vectorization most efficiently, the algorithm in ZERNPOL \ bT]?.si  
    % involves pre-determining all the powers p of R that are required to JcVq%~ {M  
    % compute the outputs, and then compiling the {R^p} into a single $=m17GD  
    % matrix.  This avoids any redundant computation of the R^p, and JN KZ'9  
    % minimizes the sizes of certain intermediate variables. kyo ,yD  
    % Z%OSW  
    %   Paul Fricker 11/13/2006 C aJD*  
    2aje$w-  
    nG%j4r ;  
    % Check and prepare the inputs: #Aanv  
    % ----------------------------- l*:p==  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) P/PS(`  
        error('zernpol:NMvectors','N and M must be vectors.') \!V6` @0KC  
    end &s<  
    =W|Q0|U  
    if length(n)~=length(m) uATBt   
        error('zernpol:NMlength','N and M must be the same length.') -<O:isB   
    end 6Rf5  
    e#OU {2X  
    n = n(:); +Ae.>%}  
    m = m(:); ::`j@ ]  
    length_n = length(n); 3z#;0n}  
    Mk9 kGP%  
    if any(mod(n-m,2)) t2SZ]|C  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 8say"Qz  
    end )nk>*oE  
    ~3Y NHm6V  
    if any(m<0) K/,lw~>  
        error('zernpol:Mpositive','All M must be positive.') N_ DgnZ7*  
    end &4[iC/}  
    A{o{o++  
    if any(m>n) M#>GU<4"  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') "}EbA3  
    end '~cEdGD9H  
    HY:@=%R  
    if any( r>1 | r<0 ) g0U ?s  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') TatyD**(  
    end I(CI')Q  
    ~Iu09t|a  
    if ~any(size(r)==1) FS}z_G|4]  
        error('zernpol:Rvector','R must be a vector.') yW&i Uh=0  
    end uSQ*/h-<)0  
    eBV{B70k  
    r = r(:); ] 6gu  
    length_r = length(r); wm8x1+P  
    )pLq^j  
    if nargin==4 vSA%A47G  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); WI,=?~-   
        if ~isnorm _YS+{0 Vq%  
            error('zernpol:normalization','Unrecognized normalization flag.') ("oA{:@d  
        end 1W g8jr's  
    else Chup %F  
        isnorm = false; D+3Y.r 9  
    end GXRjR\Ch  
    {\&"I|dpe  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hrD6r=JT<~  
    % Compute the Zernike Polynomials %}!}2s.A  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ODEXQl}R  
    C(|5,P#5  
    % Determine the required powers of r: }6> J   
    % ----------------------------------- m4wTg 8LJ  
    rpowers = []; Ol9 fwd  
    for j = 1:length(n) `yZZP   
        rpowers = [rpowers m(j):2:n(j)]; '>Y 2lqa  
    end { NJ>[mKg  
    rpowers = unique(rpowers); Z5L1^  
    lKUm_; m  
    % Pre-compute the values of r raised to the required powers, Ekme62Q>u  
    % and compile them in a matrix: ef;L|b%pp  
    % ----------------------------- ~,68S^nP)H  
    if rpowers(1)==0 B7MW" y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Z D%_PgiT  
        rpowern = cat(2,rpowern{:}); YX VJJd$U  
        rpowern = [ones(length_r,1) rpowern]; znO00qX  
    else y UAn~!s  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }>~>5jc/Pg  
        rpowern = cat(2,rpowern{:}); 5]l7Z35  
    end O + & xb  
    AsLjU#jn  
    % Compute the values of the polynomials: FT>~ES]cQd  
    % -------------------------------------- 7$W;4!BN*  
    z = zeros(length_r,length_n); d$rUxqB.  
    for j = 1:length_n q{/Jw"e  
        s = 0:(n(j)-m(j))/2; s@LNQ|'kO  
        pows = n(j):-2:m(j); YB~t|m65  
        for k = length(s):-1:1 %*c|[7Z~V  
            p = (1-2*mod(s(k),2))* ... ,l .U^d6>  
                       prod(2:(n(j)-s(k)))/          ... uyt-q|83=  
                       prod(2:s(k))/                 ... N"RYM~c7  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... LIC~Kehi  
                       prod(2:((n(j)+m(j))/2-s(k))); d5"EvT  
            idx = (pows(k)==rpowers); SM+fG:4d  
            z(:,j) = z(:,j) + p*rpowern(:,idx); E 'JC  
        end `F\:XuY   
         |p -R9A*>h  
        if isnorm  7EP|X.  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); vj&5`  
        end BDkBYhz;7  
    end hdtnC29$  
    SWjQ.aM  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  nHSTeF I?  
    X!T|07#c  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。  LsQs:O  
    LkaG8#m1R  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)