切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11662阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 |A'8'z&q  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! x"8(j8e  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 wd..{j0&  
    function z = zernfun(n,m,r,theta,nflag) Q&`$:h.~  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 9WtTUk  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N p8Lb*7W  
    %   and angular frequency M, evaluated at positions (R,THETA) on the BI4 p3-  
    %   unit circle.  N is a vector of positive integers (including 0), and q/70fR7{v  
    %   M is a vector with the same number of elements as N.  Each element :ozHuHJ#  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ? Ew>'(Q  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, <^n9?[m*  
    %   and THETA is a vector of angles.  R and THETA must have the same ;#` Z(A}  
    %   length.  The output Z is a matrix with one column for every (N,M) Zp- Av8  
    %   pair, and one row for every (R,THETA) pair. 'PV,c|f>  
    % {< jLfL1  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0/{-X[z  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *% Vd2jW/  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral kj@#oLd%  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, k5g\s9n]  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized )bi*y`UM]  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. #mx;t3ja7  
    % <| Xf4.  
    %   The Zernike functions are an orthogonal basis on the unit circle. 1MfRF v  
    %   They are used in disciplines such as astronomy, optics, and N5%~~JRO  
    %   optometry to describe functions on a circular domain. rIW`(IG_  
    % !G`w@E9M)  
    %   The following table lists the first 15 Zernike functions. rZ:  
    % WDE_"Mm  
    %       n    m    Zernike function           Normalization ` mALx! `  
    %       -------------------------------------------------- +vDT^|2SF  
    %       0    0    1                                 1 () b0Sh=  
    %       1    1    r * cos(theta)                    2 ;)"r^M)):  
    %       1   -1    r * sin(theta)                    2 lS XhHy  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) CEqfsKrsxE  
    %       2    0    (2*r^2 - 1)                    sqrt(3) tQo"$ JN}  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) F_YZV)q!W  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) aH'^`]'_=  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) (Clf]\_II  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ~NU~jmT2  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) f=} u;^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) rAP+nh ans  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \ E[0KvN;O  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) !Q#u i[0q  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =E4nNL?  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Br \/7F  
    %       -------------------------------------------------- O=c&  
    % K# _plpr  
    %   Example 1: &/=xtO/Z{  
    % =k3QymA  
    %       % Display the Zernike function Z(n=5,m=1) Vk0O^o  
    %       x = -1:0.01:1; -?LSw  
    %       [X,Y] = meshgrid(x,x); PcDPRX!@  
    %       [theta,r] = cart2pol(X,Y); r8^1JJ~\  
    %       idx = r<=1; 1;ZEuO  
    %       z = nan(size(X)); {oBVb{<  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 'Nfg%)-N  
    %       figure bsqoR8  
    %       pcolor(x,x,z), shading interp 8ne5 B4  
    %       axis square, colorbar ,!sAr;Rk`  
    %       title('Zernike function Z_5^1(r,\theta)') 2S!=2u+7  
    % pxDZ}4mOh  
    %   Example 2: V!]e#QH;  
    % a`/[\K6  
    %       % Display the first 10 Zernike functions k E6\G}zj  
    %       x = -1:0.01:1; BtU,1`El5  
    %       [X,Y] = meshgrid(x,x); u"C`S<c  
    %       [theta,r] = cart2pol(X,Y); JhB{aW>  
    %       idx = r<=1; R8":1 #&  
    %       z = nan(size(X)); Z!LzyCVl  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Pw$'TE}  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !B-&I E?  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Ix1ec^?f  
    %       y = zernfun(n,m,r(idx),theta(idx)); z^Oiwzo  
    %       figure('Units','normalized') _ogT(uYyr  
    %       for k = 1:10 W=F?+Kg L  
    %           z(idx) = y(:,k); x%cKTpDh!  
    %           subplot(4,7,Nplot(k)) ?;^_%XSQ*  
    %           pcolor(x,x,z), shading interp Ai#W. n  
    %           set(gca,'XTick',[],'YTick',[]) +k8><_vr}  
    %           axis square Dk ]Y\:  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <`6-J `.  
    %       end xvpS%MS  
    % g*Cs /w  
    %   See also ZERNPOL, ZERNFUN2. Jc{zi^)(EN  
    Kpj0IfC,10  
    %   Paul Fricker 11/13/2006 =_ -@1 1a  
    xA&G91|s  
    H Qf[T@  
    % Check and prepare the inputs: 7sHtJr  
    % ----------------------------- {&K#~[)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (CuaBHR  
        error('zernfun:NMvectors','N and M must be vectors.') y1k""75  
    end WGp81DNS|  
    ijyj}gpWha  
    if length(n)~=length(m) Y*J`Wf(w  
        error('zernfun:NMlength','N and M must be the same length.') $9Z8P_^.0(  
    end wW!*"z  
    rl4daV&,U  
    n = n(:); (qB$I\  
    m = m(:); 173/A=]  
    if any(mod(n-m,2)) p1X lni%=  
        error('zernfun:NMmultiplesof2', ... , JVD ;u  
              'All N and M must differ by multiples of 2 (including 0).') >@ge[MuS  
    end <V>vDno\  
    d@] 0 =Ax  
    if any(m>n) W P.6ea7k  
        error('zernfun:MlessthanN', ... '%K,A-7W  
              'Each M must be less than or equal to its corresponding N.') }>)"!p;t_  
    end ;O{AYF?,N  
    nM}X1^PiK"  
    if any( r>1 | r<0 ) |? r,W ~9`  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') UN,@K9  
    end 2psLX  
    !>t |vgW  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) z,DEBRT+  
        error('zernfun:RTHvector','R and THETA must be vectors.')  /H!I90  
    end 3(FJ<,"D}  
    9LCV"xgX  
    r = r(:); 5F <zW-;  
    theta = theta(:); 7b'XQ/rs  
    length_r = length(r); S=M$g#X`5  
    if length_r~=length(theta) G4<'G c  
        error('zernfun:RTHlength', ... Is?0q@  
              'The number of R- and THETA-values must be equal.') s "*Cb*  
    end \>9%=32u.  
    ApS/,cV  
    % Check normalization: ^pZ(^  
    % --------------------  >cSc   
    if nargin==5 && ischar(nflag) ,v)@&1Wh:  
        isnorm = strcmpi(nflag,'norm'); 4-cnkv\~  
        if ~isnorm !:e}d+F  
            error('zernfun:normalization','Unrecognized normalization flag.') O '$:wc#  
        end tlvLbP*r  
    else =b !f  
        isnorm = false; 5=Gq d4&*  
    end }$iH 3#E8  
    r7w&p.?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *^" 4 )  
    % Compute the Zernike Polynomials 46}/C5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - n11L  
    3haY{CEr  
    % Determine the required powers of r: dos$d3B4  
    % ----------------------------------- r=qb[4HiV  
    m_abs = abs(m); O!/J2SfuDH  
    rpowers = []; E: XzX Fxx  
    for j = 1:length(n) 3- LO  
        rpowers = [rpowers m_abs(j):2:n(j)]; [ &R-YQ@  
    end J/RUKhs/  
    rpowers = unique(rpowers); 7{<t]wQq  
    Y@#~8\_  
    % Pre-compute the values of r raised to the required powers, !;fkc0&!  
    % and compile them in a matrix: \]y$[\F>  
    % ----------------------------- 3(vI{[yhT  
    if rpowers(1)==0 Ep?a1&b  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0~n= |3*P  
        rpowern = cat(2,rpowern{:}); u5T \_0  
        rpowern = [ones(length_r,1) rpowern]; 6>bKlYl&9  
    else n6ud;jN|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ab3" ?.3m  
        rpowern = cat(2,rpowern{:}); |{ *ce<ip5  
    end Z@~8iAgE  
    iM}cd$r{  
    % Compute the values of the polynomials: 80:na7$)#  
    % -------------------------------------- QE-t v00  
    y = zeros(length_r,length(n)); <lv:mqV  
    for j = 1:length(n) )+\e+Ad}H  
        s = 0:(n(j)-m_abs(j))/2; a)`h*P5@  
        pows = n(j):-2:m_abs(j); I#$u(2.H  
        for k = length(s):-1:1 uQpV1o5iA  
            p = (1-2*mod(s(k),2))* ... R,6?1Z:J  
                       prod(2:(n(j)-s(k)))/              ... xa!@$w=U&  
                       prod(2:s(k))/                     ... 6,cyi|s  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... EY> %#0  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); %;ny  
            idx = (pows(k)==rpowers); QN*'MA"M  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 2+y4Gd 7  
        end G0a UZCw  
         ]+fL6"OD/2  
        if isnorm Lqwc:%Y:_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); &8~U&g6C  
        end ]9b*!n<z  
    end MPM_/dn-  
    % END: Compute the Zernike Polynomials ! =|{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OP``g/x)  
    9)mJo(  
    % Compute the Zernike functions: xr.fZMOh4  
    % ------------------------------ =]etw  
    idx_pos = m>0; m#'u;GP]k  
    idx_neg = m<0; Hyc19|  
    Uv5E$Y"e10  
    z = y; 0 ,Bd,<3  
    if any(idx_pos) qItj`F)d  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); lD 9'^J  
    end C 5)G^  
    if any(idx_neg) M62V NYt  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); //| 9J(B]  
    end 'B6D&xn'%&  
    wK|&[m s  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Mt-y{*6!k  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ^c.b@BE  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated <>2QDI6_  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Y@;bA=Du}  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, [o> /2  
    %   and THETA is a vector of angles.  R and THETA must have the same cUS2* 7h  
    %   length.  The output Z is a matrix with one column for every P-value, .8fOc.h8h  
    %   and one row for every (R,THETA) pair. $]Y' [pE@  
    % 9;JU c0%  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike RC\TPG/8!  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ZtDHN L  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) {s_0[>  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 X9zTz2 Fy  
    %   for all p. :n>:*e@w%  
    % *)u_m h  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ^3AJYu  
    %   Zernike functions (order N<=7).  In some disciplines it is .r]n<  
    %   traditional to label the first 36 functions using a single mode #`}g?6VHo  
    %   number P instead of separate numbers for the order N and azimuthal %xWmzdn  
    %   frequency M. o3}12i S  
    % YQe @C  
    %   Example: ZL~}B.nqS  
    % vJXd{iQE@C  
    %       % Display the first 16 Zernike functions 1gH5#_ ?  
    %       x = -1:0.01:1; WV?iYX!  
    %       [X,Y] = meshgrid(x,x); I]ywO4  
    %       [theta,r] = cart2pol(X,Y); ]:]2f 9y  
    %       idx = r<=1; rPr#V1}1a  
    %       p = 0:15; ?mgr #UN  
    %       z = nan(size(X)); <%) :'0q&  
    %       y = zernfun2(p,r(idx),theta(idx)); OM2|c}]ZQ  
    %       figure('Units','normalized') c3oI\lU  
    %       for k = 1:length(p) EL~s90C  
    %           z(idx) = y(:,k); z,/dYvT<  
    %           subplot(4,4,k) XTHrf'BU  
    %           pcolor(x,x,z), shading interp QR79^A@5  
    %           set(gca,'XTick',[],'YTick',[]) ZOS{F_2.  
    %           axis square Tz%l 9aC  
    %           title(['Z_{' num2str(p(k)) '}']) KLA nW#  
    %       end z36nyo  
    % 8>O'_6Joj  
    %   See also ZERNPOL, ZERNFUN. ?55('+{l  
    lWnV{/q\X  
    %   Paul Fricker 11/13/2006 C8NbxP  
    F KL}6W:  
    %'^m6^g;  
    % Check and prepare the inputs: RTF{<,E.UX  
    % ----------------------------- 9DPf2`*$  
    if min(size(p))~=1 X(E f=:  
        error('zernfun2:Pvector','Input P must be vector.') F"B!r-J  
    end a ,W5T8  
    Q"Q|]f*  
    if any(p)>35 ?V*>4A  
        error('zernfun2:P36', ... I+u=H2][2  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Fi*6ud\n!  
               '(P = 0 to 35).']) Mzxz-cE  
    end /R@(yT=t  
    x1A^QIuxO  
    % Get the order and frequency corresonding to the function number: =X+DC&]%!  
    % ---------------------------------------------------------------- |a^ydwb  
    p = p(:); 1Rl`}7Km  
    n = ceil((-3+sqrt(9+8*p))/2); !K`;fp!  
    m = 2*p - n.*(n+2); 3>?ip;  
    lOZ.{0{f,  
    % Pass the inputs to the function ZERNFUN: xb1)ZJH  
    % ---------------------------------------- d eTUfbd'  
    switch nargin c) 1m4SB@  
        case 3 /T_tI R>  
            z = zernfun(n,m,r,theta); v< ;, x  
        case 4 />+JK5  
            z = zernfun(n,m,r,theta,nflag); J }JT%S W  
        otherwise "I_3!Yu  
            error('zernfun2:nargin','Incorrect number of inputs.') vA+RZ  
    end !fz`O>-mZ  
    (&X"~:nm2  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Gt-  -7S  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. E8IWHh_  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of fpoH7Jd V  
    %   order N and frequency M, evaluated at R.  N is a vector of S%Ja:0=}?  
    %   positive integers (including 0), and M is a vector with the ~ |!q>z  
    %   same number of elements as N.  Each element k of M must be a 4e*0kItC  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) <5L!.Ci  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is vqL{~tR  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 6"%[s@C  
    %   with one column for every (N,M) pair, and one row for every mM}|x~\R  
    %   element in R. /G84T,H  
    % !3T x\a`?/  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 0.+iVOz+Y  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is P.[>x  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 2RM1-j ($  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 R o%S_!  
    %   for all [n,m]. crvWAsm  
    % 5[*MT%ms  
    %   The radial Zernike polynomials are the radial portion of the |y=CmNG,  
    %   Zernike functions, which are an orthogonal basis on the unit UayRT#}]  
    %   circle.  The series representation of the radial Zernike t`DUY3>36  
    %   polynomials is  H) (K  
    % Z{ p;J^:  
    %          (n-m)/2 sIELkF?.  
    %            __ E}a3.6)p  
    %    m      \       s                                          n-2s $_)f|\s  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r A+[wH(  
    %    n      s=0 FtF!Dtv  
    % m"v` E7G  
    %   The following table shows the first 12 polynomials. *nC<1.JW  
    % ;$0za]x  
    %       n    m    Zernike polynomial    Normalization j^64:3  
    %       --------------------------------------------- MvRuW:  
    %       0    0    1                        sqrt(2) k $+&  
    %       1    1    r                           2 <F!:dyl  
    %       2    0    2*r^2 - 1                sqrt(6) 2y<d@z:K  
    %       2    2    r^2                      sqrt(6) s )To#  
    %       3    1    3*r^3 - 2*r              sqrt(8) Rx'7tff%I  
    %       3    3    r^3                      sqrt(8) VK|!aqA{b  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) FyY;F;4P  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) $9b||L  
    %       4    4    r^4                      sqrt(10) _Juhl^LM;  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ? th+~dE  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) tB1Qr**  
    %       5    5    r^5                      sqrt(12) Th!S?{v   
    %       --------------------------------------------- JG4&eK$-  
    % b< [eBXe  
    %   Example: X^@d@xU4v  
    % i!Ne<Q  
    %       % Display three example Zernike radial polynomials "= %-  
    %       r = 0:0.01:1; =,?@p{g}  
    %       n = [3 2 5]; 50'6l X(v,  
    %       m = [1 2 1]; _wX'u,HrC  
    %       z = zernpol(n,m,r); mKn[>M1  
    %       figure MM5#B!BB  
    %       plot(r,z) gjs-j{*  
    %       grid on As>po +T*  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') oVsl,V  
    % ;eA~z"g  
    %   See also ZERNFUN, ZERNFUN2. 2.:b   
    ~S=hxKI  
    % A note on the algorithm. Ads^y`b  
    % ------------------------ 54 8@._-S  
    % The radial Zernike polynomials are computed using the series :x;D- kZ  
    % representation shown in the Help section above. For many special 1yE~#KpH  
    % functions, direct evaluation using the series representation can ( NiuAy  
    % produce poor numerical results (floating point errors), because Rd#,Tl\  
    % the summation often involves computing small differences between |Z "h q  
    % large successive terms in the series. (In such cases, the functions [S9nF  
    % are often evaluated using alternative methods such as recurrence #u2PAZ@qd  
    % relations: see the Legendre functions, for example). For the Zernike ?Ts Z_  
    % polynomials, however, this problem does not arise, because the OZv&{_b_  
    % polynomials are evaluated over the finite domain r = (0,1), and uZ'5&k96T  
    % because the coefficients for a given polynomial are generally all k5PzY!N  
    % of similar magnitude. hpw;w}m  
    % DdFVOs|  
    % ZERNPOL has been written using a vectorized implementation: multiple _p~ `nQ=7  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] +nqOP3  
    % values can be passed as inputs) for a vector of points R.  To achieve eq/s8]uM  
    % this vectorization most efficiently, the algorithm in ZERNPOL i?|SC=  
    % involves pre-determining all the powers p of R that are required to h knobk  
    % compute the outputs, and then compiling the {R^p} into a single ho:,~ A;k  
    % matrix.  This avoids any redundant computation of the R^p, and @D7cv"   
    % minimizes the sizes of certain intermediate variables. 3 +#bkG  
    % {wMCo ,  
    %   Paul Fricker 11/13/2006 ^^%*2^  
    Vj:PNt[  
    \[8I5w-  
    % Check and prepare the inputs: Z> &PM06  
    % ----------------------------- "+AeqrYYm5  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #:{u1sq;  
        error('zernpol:NMvectors','N and M must be vectors.') 8.A; I<  
    end ~7Jc;y&  
    MZ+"Arzb  
    if length(n)~=length(m) nH_A`m3%/  
        error('zernpol:NMlength','N and M must be the same length.') #G\)ZheG  
    end gReaFnm  
    iE&`F hf?  
    n = n(:); G N{.R7  
    m = m(:); 2Hq!YsJ4]  
    length_n = length(n); 9^}GUJy?  
    #6YNgJNk  
    if any(mod(n-m,2)) BE m%x 0y  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') f^]2qoN  
    end .lE"N1  
    ~o8$/%Oeb/  
    if any(m<0) U3Dy:K[  
        error('zernpol:Mpositive','All M must be positive.') 1Ju{IEV  
    end M`5^v0,C  
    y%T'e(5Ed  
    if any(m>n) `rM-b'D  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') &9O-!  
    end K3@UoR  
    `9F'mT#o/  
    if any( r>1 | r<0 ) '7xY ,IY  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 8d>OtDLa  
    end *=ALns?y  
    '8W }|aF  
    if ~any(size(r)==1) AFY;;_Xks  
        error('zernpol:Rvector','R must be a vector.') d:j$!@o  
    end 'DKP-R"  
    q_I''L  
    r = r(:); 9x:c"S*  
    length_r = length(r); p2cKtk+  
    !!P)r1=g  
    if nargin==4 $A-b-`X  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 3<'n>'  
        if ~isnorm K~Xt`  
            error('zernpol:normalization','Unrecognized normalization flag.') ABx0IdOcI  
        end Nlo*vu  
    else `zTVup&  
        isnorm = false; le1'r>E$  
    end _E?(cWC  
    ~Ipl'cE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .m4K ]^m  
    % Compute the Zernike Polynomials '|6j1i0x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J \G8 g,@  
    z43H]  
    % Determine the required powers of r: pfZxG.l  
    % ----------------------------------- 3ldOOQW%  
    rpowers = []; 4sG^ bZ,  
    for j = 1:length(n) gB&'MA!  
        rpowers = [rpowers m(j):2:n(j)]; iJ#sg+  
    end +nZx{d,wt  
    rpowers = unique(rpowers); 2"2b\b}my  
    5Rc 5/m  
    % Pre-compute the values of r raised to the required powers, 9GCxF`OB  
    % and compile them in a matrix: UW40Y3W0  
    % ----------------------------- I*'QD)  
    if rpowers(1)==0 ;Qw>&24h[  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ] $Z aS\m  
        rpowern = cat(2,rpowern{:}); A]W`r}  
        rpowern = [ones(length_r,1) rpowern]; Pxl7zz&pl=  
    else !K3 #4   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :xv"m {8+  
        rpowern = cat(2,rpowern{:}); #N7@p }P  
    end $n>.;CV  
     a2sN$k  
    % Compute the values of the polynomials: (L q^C=  
    % -------------------------------------- 3d \bB !  
    z = zeros(length_r,length_n); <w 8*Ly:L  
    for j = 1:length_n %e=BC^VW  
        s = 0:(n(j)-m(j))/2; Dy5'm?  
        pows = n(j):-2:m(j); ,US]  
        for k = length(s):-1:1 F~&bgl[YZ  
            p = (1-2*mod(s(k),2))* ... m+,a=sR  
                       prod(2:(n(j)-s(k)))/          ... ~%>ke  
                       prod(2:s(k))/                 ... BgUf:PT  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... uh@ZHef[l  
                       prod(2:((n(j)+m(j))/2-s(k))); td%EbxJK]`  
            idx = (pows(k)==rpowers);  #6@7XC  
            z(:,j) = z(:,j) + p*rpowern(:,idx); jsH7EhF{'  
        end DzH1q r  
         O57 eq.aT  
        if isnorm /tDwgxJ  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ^~( @QfY  
        end e")s1`  
    end wwk=*X-8  
    j l%27Ld  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  [Smqe>U 1  
    Og-v][  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 GLp~SeF#  
    #g#[|c.  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)