切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10963阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 }x#e.}hf&  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! %O!x rA{  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 IMM+g]#e  
    function z = zernfun(n,m,r,theta,nflag) hi(e%da  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ZI4dD.B  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "1XTgCu\  
    %   and angular frequency M, evaluated at positions (R,THETA) on the .x] pJ9  
    %   unit circle.  N is a vector of positive integers (including 0), and 0Ntvd7"`}  
    %   M is a vector with the same number of elements as N.  Each element _O Jfd  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) PJ&L7   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, =_ j<x$,b-  
    %   and THETA is a vector of angles.  R and THETA must have the same \b6{u6?+  
    %   length.  The output Z is a matrix with one column for every (N,M) +e.w]\}  
    %   pair, and one row for every (R,THETA) pair. WrRY 3X  
    % zN;P_@U  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike br TP}A  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), VR1[-OE  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 'Q 7^bF^  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8lDb<i  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ZNDi;6e  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. /:{4,aX2  
    % IsJx5GO  
    %   The Zernike functions are an orthogonal basis on the unit circle. n'q:L(`M  
    %   They are used in disciplines such as astronomy, optics, and sSwY!";  
    %   optometry to describe functions on a circular domain. Ahba1\,N$  
    % sV5") /~  
    %   The following table lists the first 15 Zernike functions. [MKG5=kaE  
    % <]DUJuF-M  
    %       n    m    Zernike function           Normalization d-m.aP)y:  
    %       -------------------------------------------------- $%M]2_W(  
    %       0    0    1                                 1 hosY`"X  
    %       1    1    r * cos(theta)                    2 34"PtWbV>  
    %       1   -1    r * sin(theta)                    2 %{3q=9ii  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) z$~F9Es9  
    %       2    0    (2*r^2 - 1)                    sqrt(3) n53c} ^  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) '+vmC*-I(  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) @OFxnF`  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) xsPt  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) {,*vMQ<^  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) h~CLJoK<  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) q &{<HcP  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) IoK/2Gp  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) $)X8'1%6  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) YHu]\'Ff  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) >mR8@kob<  
    %       -------------------------------------------------- L@zhbWY  
    % VlL%dN; 0  
    %   Example 1: 3Z me?o*bY  
    % *TI?tD  
    %       % Display the Zernike function Z(n=5,m=1) |</)6r  
    %       x = -1:0.01:1; dT?3Q;>B?  
    %       [X,Y] = meshgrid(x,x); PXJ7Ek*/  
    %       [theta,r] = cart2pol(X,Y); pWv1XTs@t:  
    %       idx = r<=1; %.$7-+:7A  
    %       z = nan(size(X)); 5U+4vV/*  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ]{\M,txo8  
    %       figure ]b sabS?  
    %       pcolor(x,x,z), shading interp [2Nux0g  
    %       axis square, colorbar 7:b.c  
    %       title('Zernike function Z_5^1(r,\theta)') <LXx_{=:  
    % :lvBcFw  
    %   Example 2: ^eO/?D8~h  
    % p nI=  
    %       % Display the first 10 Zernike functions <Up ?w/9  
    %       x = -1:0.01:1; GQCdB>   
    %       [X,Y] = meshgrid(x,x); iI7ocyUv  
    %       [theta,r] = cart2pol(X,Y); NsM`kZM4H  
    %       idx = r<=1; Vr( Z;YO  
    %       z = nan(size(X)); {]dtA&8(  
    %       n = [0  1  1  2  2  2  3  3  3  3]; PR$;*|@  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; udLIAV*  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; gM=:80  
    %       y = zernfun(n,m,r(idx),theta(idx)); &{+0a[rN  
    %       figure('Units','normalized') qdv O>k3  
    %       for k = 1:10 yrfV&C%=n  
    %           z(idx) = y(:,k); n;N79`mZC  
    %           subplot(4,7,Nplot(k)) 4sn\UuKyL  
    %           pcolor(x,x,z), shading interp Bi :!"Nw[X  
    %           set(gca,'XTick',[],'YTick',[]) i-5,* 0e6m  
    %           axis square e3:L]4t  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) { $yju_[  
    %       end uh2_Rzln  
    % <.gDg?'3  
    %   See also ZERNPOL, ZERNFUN2. "2sk1  
    Q1?*+]  
    %   Paul Fricker 11/13/2006 9jEH"`qqk  
    2@GizT*mA  
    N 1Ag .  
    % Check and prepare the inputs: bP#!U'b"=  
    % ----------------------------- Q!U}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7>F{.\Z  
        error('zernfun:NMvectors','N and M must be vectors.') 1hGj?L0m.  
    end NM![WvtjW  
    &s(&B>M  
    if length(n)~=length(m) je2_ .^  
        error('zernfun:NMlength','N and M must be the same length.') flFdoEV.U)  
    end 15<? [`:6  
     sTlel&  
    n = n(:); PMB4]p%o  
    m = m(:); t S]  
    if any(mod(n-m,2)) }F_c0zM  
        error('zernfun:NMmultiplesof2', ... $Emu*'  
              'All N and M must differ by multiples of 2 (including 0).') 5Q"w{ n  
    end |.UY' B  
    !+^'Ej)z  
    if any(m>n) /+SLq`'u)  
        error('zernfun:MlessthanN', ... ~S\L(B(  
              'Each M must be less than or equal to its corresponding N.') =huV(THU  
    end +W*~=*h|  
    `;;l {8  
    if any( r>1 | r<0 ) Hn(1_I%zF  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 'Uf?-t*LT@  
    end k<^M >` $  
    X4!7/&  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #H>{>0q  
        error('zernfun:RTHvector','R and THETA must be vectors.') )XK\[tL  
    end @q/g%-WNz  
    SXOAa<u5  
    r = r(:); l_+@Xpl  
    theta = theta(:); d"#Zp&#  
    length_r = length(r); Q]xkDr?   
    if length_r~=length(theta) .=#j dc/  
        error('zernfun:RTHlength', ... K -rR)-rI  
              'The number of R- and THETA-values must be equal.') Ytlzn%  
    end YoKyiO!   
    H,X|-B  
    % Check normalization: K ?!qNK  
    % -------------------- &HM-UC|  
    if nargin==5 && ischar(nflag) ;J5z  
        isnorm = strcmpi(nflag,'norm'); 5h#h>0F  
        if ~isnorm cu0IFNF}[  
            error('zernfun:normalization','Unrecognized normalization flag.')  XTJD>  
        end e}e8WR=B  
    else <s'de$[  
        isnorm = false; `)n4I:)2  
    end ?W'p&(;  
    ilL0=[2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d7X&3L%Oq  
    % Compute the Zernike Polynomials <'I["Um  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .9qK88fUR  
    Fr8GGN~/  
    % Determine the required powers of r: RU:Rt'  
    % ----------------------------------- (G>[A}-  
    m_abs = abs(m); |:=o\eu&  
    rpowers = []; ijF_ KP'  
    for j = 1:length(n) LSJ?;Zg(=z  
        rpowers = [rpowers m_abs(j):2:n(j)]; 6@J=n@J$p  
    end c0@8KW[,  
    rpowers = unique(rpowers); ~.m<`~u  
    m.e]tTe  
    % Pre-compute the values of r raised to the required powers, 6gg8 h>b  
    % and compile them in a matrix: AC) M2;  
    % ----------------------------- q!5:M\  
    if rpowers(1)==0 I#M3cI!X?  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >d2Fa4u3  
        rpowern = cat(2,rpowern{:}); az(<<2=  
        rpowern = [ones(length_r,1) rpowern]; Wp=3heCa6  
    else 2@D`^]]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9B: 3Ha=  
        rpowern = cat(2,rpowern{:}); +$,Re.WnP  
    end %t9C  
    LwH#|8F  
    % Compute the values of the polynomials: 'x!\pE-  
    % -------------------------------------- m|@H`=`d  
    y = zeros(length_r,length(n)); $7S"4rou  
    for j = 1:length(n) pN%&`]Wev  
        s = 0:(n(j)-m_abs(j))/2; nVb@sI{{k  
        pows = n(j):-2:m_abs(j); |W">&Rb<t#  
        for k = length(s):-1:1 K9lgDk"i  
            p = (1-2*mod(s(k),2))* ... 4>hHUz[_  
                       prod(2:(n(j)-s(k)))/              ... i--t ?@#  
                       prod(2:s(k))/                     ... j9+$hu#a  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 11[lc2  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); :S+K\  
            idx = (pows(k)==rpowers); #< im?  
            y(:,j) = y(:,j) + p*rpowern(:,idx); o\IMYT  
        end x*Lt]]A  
         )h!cOEt  
        if isnorm N@q}eGe  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); dj0; tQ=C  
        end kmI0V[Y  
    end 7F^d-  
    % END: Compute the Zernike Polynomials RK>Pe3<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `2s!%/  
    z^gJy,T  
    % Compute the Zernike functions: E9HMhUe  
    % ------------------------------ kSQ8kU_w+  
    idx_pos = m>0; <B"sp r&1  
    idx_neg = m<0; [VCC+_  
    rH+OXGoB  
    z = y; c7Z4u|G  
    if any(idx_pos) _FLEz|%~  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); hRcb}>pr  
    end o`?rj!\  
    if any(idx_neg) )*,/L <  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); &1xCPKIr  
    end T(4d5 fY  
    K"}fD;3  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) XC4Z,,ah"  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. qfkHGW?1/j  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated #Ondhy%h[  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive E_HB[ 9  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, mYBEjZ B  
    %   and THETA is a vector of angles.  R and THETA must have the same !,WGd|oJ  
    %   length.  The output Z is a matrix with one column for every P-value, ;|N:F G  
    %   and one row for every (R,THETA) pair. ) "#'   
    % "}]`64?  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike R;& >PFmq  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) H#- 3  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) X>%nzY]m  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 prBLNZp  
    %   for all p. l?Y^3x}j  
    % J( }2Ua_  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 wN 2+3LY{  
    %   Zernike functions (order N<=7).  In some disciplines it is +Qs]8*^?;  
    %   traditional to label the first 36 functions using a single mode 1C[9}}  
    %   number P instead of separate numbers for the order N and azimuthal 'nJF:+30ZH  
    %   frequency M. )n/%P4l  
    % #%"q0"  
    %   Example: WKf<% E$  
    % #F*|@  
    %       % Display the first 16 Zernike functions &{iC:zp  
    %       x = -1:0.01:1; mgxIxusR  
    %       [X,Y] = meshgrid(x,x); w7nt $L5  
    %       [theta,r] = cart2pol(X,Y); Zw]`z*,yRA  
    %       idx = r<=1; ? @V R%z  
    %       p = 0:15; $o6/dEKQ  
    %       z = nan(size(X)); Iw1Y?Qia  
    %       y = zernfun2(p,r(idx),theta(idx)); l}{{7~C`  
    %       figure('Units','normalized') We+rFk1ddt  
    %       for k = 1:length(p) e4X df>B  
    %           z(idx) = y(:,k); ^-;S&=  
    %           subplot(4,4,k) vccWe7rh  
    %           pcolor(x,x,z), shading interp I8*VM3  
    %           set(gca,'XTick',[],'YTick',[]) G#iQX`  
    %           axis square D+8d^-:  
    %           title(['Z_{' num2str(p(k)) '}']) ]{-.?W*$  
    %       end 4Nm>5*]  
    % ?0b-fL^^+l  
    %   See also ZERNPOL, ZERNFUN. P{L=u74b{x  
    fV:15!S[  
    %   Paul Fricker 11/13/2006 -luQbGcT3  
    91 jRIB  
    U~ {k_'-i  
    % Check and prepare the inputs: 0V%c%]PH  
    % ----------------------------- h\RX/C!+  
    if min(size(p))~=1 5 s7BUT  
        error('zernfun2:Pvector','Input P must be vector.') E}^V@ :j>  
    end ?7{U=1gb$  
    VJ*1g+c  
    if any(p)>35 0SpB 2>_  
        error('zernfun2:P36', ... }A9#3Y|F  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... {%jAp11y+O  
               '(P = 0 to 35).']) G1:}{a5i_  
    end IQQv+af5  
    ;5a$ OM  
    % Get the order and frequency corresonding to the function number: !}*N';  
    % ---------------------------------------------------------------- 6fwNlC/9  
    p = p(:); yUoR6w  
    n = ceil((-3+sqrt(9+8*p))/2); 2Gyq40  
    m = 2*p - n.*(n+2); NW|B|kc  
    u ExLj6  
    % Pass the inputs to the function ZERNFUN: v|?@k^Ms  
    % ---------------------------------------- 1- RY5R}VR  
    switch nargin j*=!M# D  
        case 3 dQX-s=XJ  
            z = zernfun(n,m,r,theta); J%|?[{rO{'  
        case 4 ktu?-?#0,  
            z = zernfun(n,m,r,theta,nflag); u#05`i:Z  
        otherwise Sn:>|y~  
            error('zernfun2:nargin','Incorrect number of inputs.') AR"2?2<mJ7  
    end +)jUA]hJ/  
    o<g?*"TRh  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) I=`?4%  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. =D zrM%  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of X[z;P!U  
    %   order N and frequency M, evaluated at R.  N is a vector of N$=YL @m8  
    %   positive integers (including 0), and M is a vector with the =^"Sx??V  
    %   same number of elements as N.  Each element k of M must be a f/\!=sa:  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) vgW(l2,@  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is hvt]VC]]  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix L F?/60  
    %   with one column for every (N,M) pair, and one row for every MmJMx  
    %   element in R. Nr4Fp`b8  
    % +|?a7qM  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- $W._FAAJ#  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is `&;#A*C0  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to q/U-WQ<+  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 +\dVC,,=^g  
    %   for all [n,m]. lp*5;Ls'q  
    % /%YW[oY{V  
    %   The radial Zernike polynomials are the radial portion of the l&& i`  
    %   Zernike functions, which are an orthogonal basis on the unit ^Ks1[xc*`  
    %   circle.  The series representation of the radial Zernike BKFO^  
    %   polynomials is +=WBH'  
    % NT6jwK.?)?  
    %          (n-m)/2 Uo3  
    %            __ ft"-  
    %    m      \       s                                          n-2s wXNng(M7  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 4DIU7#GG  
    %    n      s=0 HoBx0N9\2  
    % Q}#4Qz~n  
    %   The following table shows the first 12 polynomials. tbQY&TO1  
    % GEPWb[Oa  
    %       n    m    Zernike polynomial    Normalization COi15( G2  
    %       --------------------------------------------- h]zok}$  
    %       0    0    1                        sqrt(2) l6zAMyau5  
    %       1    1    r                           2 3P_.SF  
    %       2    0    2*r^2 - 1                sqrt(6) PvKGB01_  
    %       2    2    r^2                      sqrt(6) /OKp(u;)z  
    %       3    1    3*r^3 - 2*r              sqrt(8) 4Q+,_iP  
    %       3    3    r^3                      sqrt(8) `!8\ |/  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) hC-uz _/3  
    %       4    2    4*r^4 - 3*r^2            sqrt(10)  hyxv+m[  
    %       4    4    r^4                      sqrt(10) 4lo7yx  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 1P]J3o  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) R0M>'V?e  
    %       5    5    r^5                      sqrt(12) &UDbH* !4=  
    %       --------------------------------------------- qJ" (:~  
    % c[J 2;"SP  
    %   Example: (~@.9&cBD  
    % uVYn,DB`  
    %       % Display three example Zernike radial polynomials &4E|c[HN  
    %       r = 0:0.01:1; %<~EwnoT  
    %       n = [3 2 5]; azZ|T{S  
    %       m = [1 2 1]; _9oKW;7f7  
    %       z = zernpol(n,m,r); mR.j8pi  
    %       figure [KUkv  
    %       plot(r,z) t{,$?}  
    %       grid on gvVy0nJI~  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') {9J|\Zz3  
    % K-YxZAf  
    %   See also ZERNFUN, ZERNFUN2. nA Nl9;G  
    hl[<o<`Q  
    % A note on the algorithm. u%L6@M2  
    % ------------------------ A._CCou  
    % The radial Zernike polynomials are computed using the series J^t0M\  
    % representation shown in the Help section above. For many special ~N /%R>(v  
    % functions, direct evaluation using the series representation can hzbvR~rn  
    % produce poor numerical results (floating point errors), because BTsvL>Wy  
    % the summation often involves computing small differences between H28-;>'`  
    % large successive terms in the series. (In such cases, the functions yO-2.2h  
    % are often evaluated using alternative methods such as recurrence \*PE#RB#6  
    % relations: see the Legendre functions, for example). For the Zernike \;%D;3Au  
    % polynomials, however, this problem does not arise, because the <F`9;WX  
    % polynomials are evaluated over the finite domain r = (0,1), and tzl,r"k3  
    % because the coefficients for a given polynomial are generally all :Gz$(!j1.'  
    % of similar magnitude. iMry0z  
    % DKo6lP`  
    % ZERNPOL has been written using a vectorized implementation: multiple !B[ Y?b:  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ZyDf@(z`  
    % values can be passed as inputs) for a vector of points R.  To achieve '>OEQU5-  
    % this vectorization most efficiently, the algorithm in ZERNPOL Z=hn }QY.(  
    % involves pre-determining all the powers p of R that are required to !d0$cF):  
    % compute the outputs, and then compiling the {R^p} into a single [p\xk{7Y  
    % matrix.  This avoids any redundant computation of the R^p, and Jv(E '"H  
    % minimizes the sizes of certain intermediate variables. x1 LI&  
    % PazWMmI  
    %   Paul Fricker 11/13/2006 /3+E-|4s  
    .yzXw8~S  
    ( *26aMp  
    % Check and prepare the inputs: I9TNUZq('  
    % ----------------------------- ~+\A4BW  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5m;pHgkb  
        error('zernpol:NMvectors','N and M must be vectors.') X:FyNUa  
    end h1)+QLI  
    zBrIhL]95  
    if length(n)~=length(m) zv1,DnkqF  
        error('zernpol:NMlength','N and M must be the same length.') +=`w  
    end W OYZ  
    F0m[ls$  
    n = n(:); Jx3a7CpX  
    m = m(:); yl<=_Q  
    length_n = length(n); YU87l  
    ),<h6$  
    if any(mod(n-m,2)) 1_~'?'&^  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') E?0RR'  
    end /|Gz<nSc  
    Q<osYO{l  
    if any(m<0) 11J:>A5zt  
        error('zernpol:Mpositive','All M must be positive.') 7|m{hSc  
    end 9Up> e  
    .Gno K?  
    if any(m>n) e mq%" ;.  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ,! ~U5~  
    end e?aSM  
    KE)^S [Da  
    if any( r>1 | r<0 ) [xs`Pi  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') )P/~{Ci:T&  
    end m[5ed1+  
    H]lD*3b  
    if ~any(size(r)==1) V6<Ki  
        error('zernpol:Rvector','R must be a vector.') kr ?`GQm  
    end B@3>_};Ct  
    6Hpj&Qm  
    r = r(:); <RkJ 7Z^  
    length_r = length(r); @0:mP  
    x(zW<J5X"  
    if nargin==4 FLlL0Gu  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); J0Y-e39 `  
        if ~isnorm Lj3q?>D*^6  
            error('zernpol:normalization','Unrecognized normalization flag.') \AR3DDm  
        end k.0pPl  
    else 0xutG/-&N  
        isnorm = false; dZbG#4oO  
    end XG6UV('  
    HPWjNwM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p4zV<qZ>e  
    % Compute the Zernike Polynomials Boa?Ghg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r(=3yd/G$  
    "Zicac@N  
    % Determine the required powers of r: |}roR{gc|  
    % -----------------------------------  )2,\Y  
    rpowers = []; t#J #DyY5  
    for j = 1:length(n) zPoIs @  
        rpowers = [rpowers m(j):2:n(j)]; mCpoaGV_  
    end Y6 @A@VJ  
    rpowers = unique(rpowers); 65A>p:OO  
    ">RDa<H]  
    % Pre-compute the values of r raised to the required powers, )@YrHS4  
    % and compile them in a matrix: D#9W [6  
    % ----------------------------- 0r\hX6 k  
    if rpowers(1)==0 WxLILh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); fx4X!(w!B  
        rpowern = cat(2,rpowern{:}); aKCXV[PO   
        rpowern = [ones(length_r,1) rpowern]; k4-C*Gx$h  
    else {=d\t<p*n  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); xF{<-b  
        rpowern = cat(2,rpowern{:}); xH8nn3U  
    end *o[*,1Pw  
    K`1\3J)  
    % Compute the values of the polynomials: yyHr. C  
    % -------------------------------------- ffyKAZ{]po  
    z = zeros(length_r,length_n); (iiyptJ  
    for j = 1:length_n 71w$i 4  
        s = 0:(n(j)-m(j))/2; R=M${u<t  
        pows = n(j):-2:m(j); vi>V6IC4v  
        for k = length(s):-1:1 qx/GioPU  
            p = (1-2*mod(s(k),2))* ... C31SXQ  
                       prod(2:(n(j)-s(k)))/          ... {ByT,92  
                       prod(2:s(k))/                 ... oZ~M`yOz.  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... j:,*Liz  
                       prod(2:((n(j)+m(j))/2-s(k))); nmN6RGx  
            idx = (pows(k)==rpowers); B|~\m ~  
            z(:,j) = z(:,j) + p*rpowern(:,idx); @ B3@M  
        end T ~t%3G  
         UeT"v?zP  
        if isnorm _B|g)Rdv  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); fr\UX}o  
        end >[Q(!Ai  
    end BiHBu8<  
    &e% y|{Y  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  xv9SQ,n<  
    4=>/x90y  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 J/M1#sE  
    oAA%pZ@  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)