切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11396阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 QQ2OZy> W  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! s?z=q%-p  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 L M<=j  
    function z = zernfun(n,m,r,theta,nflag) hghto \G5Y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ^#6%*(D  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N pOe`*2[  
    %   and angular frequency M, evaluated at positions (R,THETA) on the E* DVQ3~  
    %   unit circle.  N is a vector of positive integers (including 0), and z jNjmC!W  
    %   M is a vector with the same number of elements as N.  Each element ]> "/<"  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ?;=Y1O7N(  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, x;b+gIz*  
    %   and THETA is a vector of angles.  R and THETA must have the same 88L bO(q\d  
    %   length.  The output Z is a matrix with one column for every (N,M) i(qYyO'  
    %   pair, and one row for every (R,THETA) pair. ^# g;"K0  
    % lDM~Z3(/b  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike WoT z'  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), XQoT},C  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral UK9MWC5g9  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, # ;KG6IE  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized &+|4(d1  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 6}FDLBA  
    % 2ZIY{lBe  
    %   The Zernike functions are an orthogonal basis on the unit circle. W;9X*I8f8  
    %   They are used in disciplines such as astronomy, optics, and 7)8}8tY^{  
    %   optometry to describe functions on a circular domain. jQBdS. }'v  
    % )jZ=/ xG  
    %   The following table lists the first 15 Zernike functions. E3C[o! 5  
    % H_r'q9@<>  
    %       n    m    Zernike function           Normalization 4 ~|TKd{  
    %       -------------------------------------------------- ~0$F V  
    %       0    0    1                                 1 >WS& w;G  
    %       1    1    r * cos(theta)                    2 r{3 `zqo  
    %       1   -1    r * sin(theta)                    2 (+v*u]w4  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) sNpBTG@{l  
    %       2    0    (2*r^2 - 1)                    sqrt(3) .F$AmVTN  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) #$^i x  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ~oR&0et  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ')cgx9   
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 7CN[Z9Y^}  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) }4ju2K  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 6&Ir0K/  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V.[#$ip6:  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) P+|8MT0  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %YAiSSsV  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) NjyIwo0  
    %       -------------------------------------------------- ; SM^  
    % *M<=K.*\G  
    %   Example 1: DyTk<L  
    % ~F6gF7]z  
    %       % Display the Zernike function Z(n=5,m=1) ?B!ZqJ#  
    %       x = -1:0.01:1; nAC#_\  
    %       [X,Y] = meshgrid(x,x); UN4) >\Y  
    %       [theta,r] = cart2pol(X,Y); `*!>79_2C  
    %       idx = r<=1; YGmdiY:;1  
    %       z = nan(size(X)); j7 3@Yi%  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); P&^7wud-sb  
    %       figure E.bbIV6mQ  
    %       pcolor(x,x,z), shading interp 9>>}-;$  
    %       axis square, colorbar 25[/'7_"  
    %       title('Zernike function Z_5^1(r,\theta)') ABDUp:  
    % bbkI}d%(Ng  
    %   Example 2: =eLb"7C#0  
    % Y-{BY5E.  
    %       % Display the first 10 Zernike functions "kg$s5o  
    %       x = -1:0.01:1; F}DD;K  
    %       [X,Y] = meshgrid(x,x); OIT;fKl9  
    %       [theta,r] = cart2pol(X,Y); sYI':UQe  
    %       idx = r<=1; W+S; Do  
    %       z = nan(size(X)); -{%''(G  
    %       n = [0  1  1  2  2  2  3  3  3  3]; .4(f0RG  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; )eMh,r  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; W A}@n  
    %       y = zernfun(n,m,r(idx),theta(idx)); k|C8sSH  
    %       figure('Units','normalized')  nGd  
    %       for k = 1:10 :J-5Q]#  
    %           z(idx) = y(:,k); {\zr_v`g  
    %           subplot(4,7,Nplot(k)) gI3rF=  
    %           pcolor(x,x,z), shading interp ~l6Y<-!  
    %           set(gca,'XTick',[],'YTick',[]) _?c.3+;s  
    %           axis square ,e_#   
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) wO%:WL$5  
    %       end /CE d 14.  
    % c/U6K yiK  
    %   See also ZERNPOL, ZERNFUN2. ,4,c-   
    I!O S&8:u  
    %   Paul Fricker 11/13/2006 !l^AKn|  
    <J`xCm K  
    mIo7 K5z{  
    % Check and prepare the inputs: l$9,  
    % ----------------------------- jtY~- @*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;)a9Y?  
        error('zernfun:NMvectors','N and M must be vectors.') db~:5#*  
    end /D+$|k mW]  
    )c !S@Hs  
    if length(n)~=length(m) L|w-s4L  
        error('zernfun:NMlength','N and M must be the same length.') S>E.*]_  
    end i8.[d5  
    b{Ss+F  
    n = n(:); gAP}KR#T  
    m = m(:); FM[To  
    if any(mod(n-m,2)) s+- aHn  
        error('zernfun:NMmultiplesof2', ... xrnH= >.;m  
              'All N and M must differ by multiples of 2 (including 0).') FJ"9Hs2  
    end 3>Snd9Q  
    @~3c;9LkY  
    if any(m>n) N@)~j+Pz  
        error('zernfun:MlessthanN', ... o hlVc%a  
              'Each M must be less than or equal to its corresponding N.') R?s\0  
    end k;7.qhe:  
    Y_sVe  
    if any( r>1 | r<0 ) 7bS[\5  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') hM w`e  
    end ;$< ek(i7  
    UV.9 KcN.  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) T@.D5[q0:  
        error('zernfun:RTHvector','R and THETA must be vectors.') 5zOSb$;  
    end jF9CTL<  
    eS:e#>(  
    r = r(:); U^\~{X  
    theta = theta(:); Q;nr=f7Ys  
    length_r = length(r); It-*CD9  
    if length_r~=length(theta) F\bI6gj  
        error('zernfun:RTHlength', ... xS1|Z|&  
              'The number of R- and THETA-values must be equal.') s#ZH.z@J  
    end RC%r7K f  
    zX`RN )C  
    % Check normalization: 0+LloB  
    % -------------------- Mk?I}  
    if nargin==5 && ischar(nflag) 0B/a$NC  
        isnorm = strcmpi(nflag,'norm'); 4V8wB}y7e  
        if ~isnorm _xt(II   
            error('zernfun:normalization','Unrecognized normalization flag.') i]pG}SJ  
        end &S]v+wF  
    else *`T &Dlt'8  
        isnorm = false; !@k@7~i  
    end YU(*kC8   
    ^/vWK\-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tb3fz")UC  
    % Compute the Zernike Polynomials )W|jt/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [)n}!5fE  
    |3ETF|)?  
    % Determine the required powers of r: ><c5Humr  
    % ----------------------------------- 7!w nx.  
    m_abs = abs(m); Un{ln*AR\  
    rpowers = []; 0u2uYiE-l  
    for j = 1:length(n) QPE.b-S  
        rpowers = [rpowers m_abs(j):2:n(j)]; tC-KW~&  
    end k|'Mh0G0  
    rpowers = unique(rpowers); [)vwg`]   
    ,6\f4/  
    % Pre-compute the values of r raised to the required powers, cLC7U?-  
    % and compile them in a matrix: =A 6O}0z  
    % ----------------------------- 5N<v'6&=  
    if rpowers(1)==0 olh3 R.M<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ][#*h`I  
        rpowern = cat(2,rpowern{:}); 4{t$M}?N  
        rpowern = [ones(length_r,1) rpowern]; ~')t1Ay s  
    else F*:NKT d  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); QC,(rB  
        rpowern = cat(2,rpowern{:}); yt: V+qdv  
    end n ]}2O 4j  
    /+O8A}  
    % Compute the values of the polynomials: N~_jiVD>  
    % -------------------------------------- 2!?z%s-S  
    y = zeros(length_r,length(n)); #2ASzCe  
    for j = 1:length(n) [qMdOY%jx  
        s = 0:(n(j)-m_abs(j))/2; ER1mA:8>E  
        pows = n(j):-2:m_abs(j); [;YBX] t  
        for k = length(s):-1:1 BM~niW;k  
            p = (1-2*mod(s(k),2))* ... pu*u[n  
                       prod(2:(n(j)-s(k)))/              ... kA=~ 8N  
                       prod(2:s(k))/                     ... E?U]w0g  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0.+eF }'H  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); fO!O" D5  
            idx = (pows(k)==rpowers); ]GKx[F{)  
            y(:,j) = y(:,j) + p*rpowern(:,idx); UDtbfc7bk  
        end -8 =u{n  
         a;(zH*/XK  
        if isnorm l5]oS? >y  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); HTyF<K  
        end .ASwX   
    end vD9D:vK  
    % END: Compute the Zernike Polynomials Sb4PCt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z1&GtM  
    CVG>[~}(9'  
    % Compute the Zernike functions: E?4@C"Na  
    % ------------------------------ 13_~)V  
    idx_pos = m>0; k&iScMgCTH  
    idx_neg = m<0; _D,f 4.R  
    Cf=q_\0|W  
    z = y; "`*a)'.'^c  
    if any(idx_pos) m&0BbyE.z  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); A-C)w/7  
    end Q1\k`J  
    if any(idx_neg) i)PV{3v$J  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); jNG?2/P6&  
    end VN-#R=D  
    m?% H<4X  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) f,HzrHax  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. j YIV^o 0  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated H;*a:tbxO+  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive mn; 7o~4  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, !Xx<~l IC  
    %   and THETA is a vector of angles.  R and THETA must have the same {q tc \O  
    %   length.  The output Z is a matrix with one column for every P-value, >6l;/J  
    %   and one row for every (R,THETA) pair. 3ES[ N.V#  
    % KjwY'aYwr:  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike <\d|=>;  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) <.=#EV^i  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) j #I:6yA3  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ?%xhe  
    %   for all p. ,D@ ;i  
    % V)1:LLRW  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Q f+p0E;  
    %   Zernike functions (order N<=7).  In some disciplines it is 3q|cZQK!1  
    %   traditional to label the first 36 functions using a single mode :m++ iR  
    %   number P instead of separate numbers for the order N and azimuthal <{NYD .  
    %   frequency M. @"{'j  
    % XHZ: mLf  
    %   Example: a?,[w'7FU  
    % $D/bU lFx  
    %       % Display the first 16 Zernike functions MB8SB   
    %       x = -1:0.01:1; ,bVS.A'o  
    %       [X,Y] = meshgrid(x,x); ~6-"i0k  
    %       [theta,r] = cart2pol(X,Y); bQdSX8: !R  
    %       idx = r<=1; $vTAF-~Ql  
    %       p = 0:15; \>Ga-gv6/  
    %       z = nan(size(X)); )zW%\s*'  
    %       y = zernfun2(p,r(idx),theta(idx)); qF{DArc  
    %       figure('Units','normalized') ||=[kjG~  
    %       for k = 1:length(p) Zc%foK{  
    %           z(idx) = y(:,k); XYb^C s;  
    %           subplot(4,4,k) 'ybth  
    %           pcolor(x,x,z), shading interp Ev+HWx~Y  
    %           set(gca,'XTick',[],'YTick',[]) i+)}aA  
    %           axis square [*9YIjn  
    %           title(['Z_{' num2str(p(k)) '}']) !]rETP_  
    %       end :>P4L,Da]  
    % U R1JbyT  
    %   See also ZERNPOL, ZERNFUN. S$jV|xK B  
    r:c@17  
    %   Paul Fricker 11/13/2006 *^@#X-NG  
    2JiAd*WK  
    C(V[wvL  
    % Check and prepare the inputs: zNV!@Yr  
    % ----------------------------- $!|8g`Tm  
    if min(size(p))~=1 ceb s.sF:  
        error('zernfun2:Pvector','Input P must be vector.') b W=.K>|  
    end X-)RU?  
    wC(vr.,F  
    if any(p)>35 t;.^K\S4  
        error('zernfun2:P36', ... }XX~ W}M(\  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... t['k%c  
               '(P = 0 to 35).']) Ew %{ i(d  
    end EjR_-8@FK  
    PPoI>J  
    % Get the order and frequency corresonding to the function number: 9;0V  /y  
    % ---------------------------------------------------------------- 7Wwp )D  
    p = p(:); c=A(o  
    n = ceil((-3+sqrt(9+8*p))/2); ]#Vo}CVP  
    m = 2*p - n.*(n+2); bJQ5- *F  
    $J QWfGwR  
    % Pass the inputs to the function ZERNFUN: 7P<r`,~k-  
    % ---------------------------------------- V~(EVF{h  
    switch nargin 4M @ oj  
        case 3 $!YKZ0)B'0  
            z = zernfun(n,m,r,theta); -{X<*P4p  
        case 4 \{c,,th  
            z = zernfun(n,m,r,theta,nflag); iNod</+"K  
        otherwise nu&_gF,{  
            error('zernfun2:nargin','Incorrect number of inputs.') }P<Qz^sr_  
    end de> ?*%<  
    _:35d1[  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) .z=U= _e  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 5Z/yhF.{  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Dt.0YKF  
    %   order N and frequency M, evaluated at R.  N is a vector of lj .nCV_  
    %   positive integers (including 0), and M is a vector with the ;mEwQ  
    %   same number of elements as N.  Each element k of M must be a T}C2e! _O  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) r& vFikIz  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 7OB%A&  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Q*]$)D3n  
    %   with one column for every (N,M) pair, and one row for every bf& }8I$  
    %   element in R. (2UW_l  
    % L2KG0i`+  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- z< z*Wz  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is EQ4#fAM)  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to EE+`i%  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 M'kVL0p?vN  
    %   for all [n,m]. M70c{s`w5  
    % /\ytr%7,'  
    %   The radial Zernike polynomials are the radial portion of the Y4d3n  
    %   Zernike functions, which are an orthogonal basis on the unit /QQ8.8=5  
    %   circle.  The series representation of the radial Zernike [+;qWfs B  
    %   polynomials is ,Du@2w3Cq  
    % {J (R  
    %          (n-m)/2 !)N|J$FU  
    %            __ p8Iw!HE  
    %    m      \       s                                          n-2s mw_ E&v  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r *n8%F9F  
    %    n      s=0 :M06 ;:e  
    % %m9CdWb=w  
    %   The following table shows the first 12 polynomials. ][,4,?T7  
    % f\fdg].!  
    %       n    m    Zernike polynomial    Normalization Frk cO  
    %       --------------------------------------------- ~4Pc_%&i  
    %       0    0    1                        sqrt(2) #/|75 4]]  
    %       1    1    r                           2 J1bA2+5.*e  
    %       2    0    2*r^2 - 1                sqrt(6) qD#VbvRc9+  
    %       2    2    r^2                      sqrt(6) [QT 1Ju64  
    %       3    1    3*r^3 - 2*r              sqrt(8) f|U0s  
    %       3    3    r^3                      sqrt(8) Z`Pd2VRp  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) =+Im*mgNn  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) b.s9p7:J  
    %       4    4    r^4                      sqrt(10) RPVT*`o  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 3\AM=`  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) TI=h_%mO  
    %       5    5    r^5                      sqrt(12) K%MW6y  
    %       --------------------------------------------- 6k"P&AD  
    % . V$ps-t  
    %   Example: M`vyTuO3SO  
    % 1G;8MPU  
    %       % Display three example Zernike radial polynomials %r;w;`/hA  
    %       r = 0:0.01:1; m*Lo|F  
    %       n = [3 2 5]; H6 &7\Wbk  
    %       m = [1 2 1]; 6"U8V ?E  
    %       z = zernpol(n,m,r); f6!D L<  
    %       figure . w H*sb  
    %       plot(r,z) w(j^ccPD  
    %       grid on jij<yM8$g  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ,Ol (piR  
    % Gs dnf 7  
    %   See also ZERNFUN, ZERNFUN2. n,j$D62[  
    0)|Q6*E>  
    % A note on the algorithm. 8!mc@$Z  
    % ------------------------ jTb-;4 N'  
    % The radial Zernike polynomials are computed using the series {fV}gR2  
    % representation shown in the Help section above. For many special O oSb>Y/4  
    % functions, direct evaluation using the series representation can r[_4Lo @G  
    % produce poor numerical results (floating point errors), because e8}Ezy"^  
    % the summation often involves computing small differences between -Xz&}QA  
    % large successive terms in the series. (In such cases, the functions zP!J/}z  
    % are often evaluated using alternative methods such as recurrence at|g%$%  
    % relations: see the Legendre functions, for example). For the Zernike S[,8TErz  
    % polynomials, however, this problem does not arise, because the {f/]5x(_  
    % polynomials are evaluated over the finite domain r = (0,1), and LZ U$  
    % because the coefficients for a given polynomial are generally all W0XF~  
    % of similar magnitude. YE}s  
    % LO:fJ{ -  
    % ZERNPOL has been written using a vectorized implementation: multiple 6Pn8f  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] U7iuY~L  
    % values can be passed as inputs) for a vector of points R.  To achieve nmFC%p)4  
    % this vectorization most efficiently, the algorithm in ZERNPOL ceT&Y{T  
    % involves pre-determining all the powers p of R that are required to s '?GH  
    % compute the outputs, and then compiling the {R^p} into a single Y[Ltrk{  
    % matrix.  This avoids any redundant computation of the R^p, and ZH,4oF  
    % minimizes the sizes of certain intermediate variables. &v!WVa?  
    % o.-C|IXG  
    %   Paul Fricker 11/13/2006 re &E{  
    ,xI%A, (,;  
    is?2DcSl5  
    % Check and prepare the inputs: [xb]Wf  
    % ----------------------------- tMp=-"  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %XTcP2pRJ  
        error('zernpol:NMvectors','N and M must be vectors.') E7zm{BX]  
    end WO</Mw  
    bEV<iZDq%  
    if length(n)~=length(m) ?7MqeR4/E  
        error('zernpol:NMlength','N and M must be the same length.') |=a}iU8  
    end jJZgK$5+  
    ]i*](UQ  
    n = n(:); ww k PF  
    m = m(:); oslJC$cy'  
    length_n = length(n); xI*#(!x"G  
    LjB;;&VCn  
    if any(mod(n-m,2)) &PWB,BXv  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 8}e,%{q  
    end kcie}Be  
    ,m=4@ofX  
    if any(m<0) C1EtoOv K  
        error('zernpol:Mpositive','All M must be positive.') TXXy\$  
    end 6 sxffJt  
    qmy%J  
    if any(m>n) Mwp$  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 3q:n'PC)C  
    end LPYbHo3fq  
    sOCs13A"  
    if any( r>1 | r<0 ) RP5+d  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') KInk^`C/H  
    end ] b9-k  
    OS|>t./U  
    if ~any(size(r)==1) ^D`v3d  
        error('zernpol:Rvector','R must be a vector.') 3bZIYF2@  
    end Wo~vhv$E  
    l7{oi!   
    r = r(:); :u8(^]N  
    length_r = length(r); 0Uk@\[1ox  
    SUKxkc(  
    if nargin==4 4MuO1W-  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); S [h];eM  
        if ~isnorm !+)AeDc:j  
            error('zernpol:normalization','Unrecognized normalization flag.') h:zK(;  
        end ,j:|w+l  
    else BBG3OAyg_  
        isnorm = false; |2\{z{?  
    end @~c6qh  
    -<v~snq'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e!Y0-=?nf#  
    % Compute the Zernike Polynomials jcNT<}k C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iy.2A!f^.  
    :c9U>1`g&  
    % Determine the required powers of r: 3p2P= T  
    % ----------------------------------- yme^b ;a  
    rpowers = []; ~c)~015`  
    for j = 1:length(n) DypFl M*  
        rpowers = [rpowers m(j):2:n(j)]; U j+j}C  
    end P&m\1W(  
    rpowers = unique(rpowers); {~|OE -X][  
    ydw)mT44K  
    % Pre-compute the values of r raised to the required powers, ?pgG,=?  
    % and compile them in a matrix: ;S0Kh"A  
    % ----------------------------- [.RO'>2z  
    if rpowers(1)==0 7\*FEjRM]  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); P=3RLL<l  
        rpowern = cat(2,rpowern{:}); MX4]Vpv  
        rpowern = [ones(length_r,1) rpowern]; PP:(EN1  
    else qd8n2f  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &E xYXI  
        rpowern = cat(2,rpowern{:}); "S 3wk=?4  
    end fwK}/0%  
    !T](Udf  
    % Compute the values of the polynomials: V=fEPM  
    % -------------------------------------- mUS_(0q  
    z = zeros(length_r,length_n); :qChMU|Y6  
    for j = 1:length_n 5_XV%-wM  
        s = 0:(n(j)-m(j))/2; &Tl 0Pf  
        pows = n(j):-2:m(j); zIP6\u  
        for k = length(s):-1:1 pv^O"Bs  
            p = (1-2*mod(s(k),2))* ... '* \|; l#1  
                       prod(2:(n(j)-s(k)))/          ... "#(T  
                       prod(2:s(k))/                 ... ;<G=M2  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... F(na{<g};  
                       prod(2:((n(j)+m(j))/2-s(k))); kP/M< X"  
            idx = (pows(k)==rpowers); 6s0_#wZC  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 5M9 I,  
        end 0b4R  
         It2" x;  
        if isnorm u,}{I}x_  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); f!O{%ev  
        end v3v[[96p  
    end M33_ja+L  
    j"AU z)x  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  tQylT0'[+o  
    $5*WLG&AK  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 -UD\;D?$  
    YiPoYlD*n<  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)