切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11098阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Jw86P=  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! PCFm@S@Q  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 0$P40 7  
    function z = zernfun(n,m,r,theta,nflag) RJGf@am&  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 8mMrGf[Q\  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ";xG[ne$Be  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Ot(EDa9}IJ  
    %   unit circle.  N is a vector of positive integers (including 0), and o fN|%g /  
    %   M is a vector with the same number of elements as N.  Each element 6KV&E8Gn  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 4cs`R+]o  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ey y&JjVs  
    %   and THETA is a vector of angles.  R and THETA must have the same gmrj CLj  
    %   length.  The output Z is a matrix with one column for every (N,M) /Bb\jvk-E  
    %   pair, and one row for every (R,THETA) pair. /LJ?JwAvg5  
    % >yT:eG  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ww[STg  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <]"aP1+C  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Prr<:q  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, RMsr7M4<91  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized :p OX,  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. x!Wl&  
    % F[Peil+|`  
    %   The Zernike functions are an orthogonal basis on the unit circle. &?x^I{j  
    %   They are used in disciplines such as astronomy, optics, and 2 0hE)!A  
    %   optometry to describe functions on a circular domain. `kFxq<?aK  
    % qk<tLvD_'  
    %   The following table lists the first 15 Zernike functions. ZLBfQ+pM)  
    % V_0e/7}Ya  
    %       n    m    Zernike function           Normalization "bC8/^  
    %       -------------------------------------------------- Oq|pd7fcgm  
    %       0    0    1                                 1 }Z2Y>raA\  
    %       1    1    r * cos(theta)                    2 g pO@xk$  
    %       1   -1    r * sin(theta)                    2 |f`!{=?  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) (swP#t5S  
    %       2    0    (2*r^2 - 1)                    sqrt(3) #{<Jm?sU  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) lQ)ZsFs=  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) oA73\BFfP  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ynDa4HB  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 8a"aJYj  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) oXfLNe6>L  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) v%B^\S3)  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) q"fK"H-j  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) $zDW)%nAX  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u5%.T0 P  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Z@j0J[s  
    %       -------------------------------------------------- {5_*tV<I  
    % K2)),_,@5+  
    %   Example 1: G4ZeO:r  
    % l6a,:*_  
    %       % Display the Zernike function Z(n=5,m=1) {8b6A~/  
    %       x = -1:0.01:1; 6rdm=8WFA  
    %       [X,Y] = meshgrid(x,x); `/0X].s#o  
    %       [theta,r] = cart2pol(X,Y); .wYx_  
    %       idx = r<=1; llQDZ}T  
    %       z = nan(size(X)); YAd.i@^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); [bE9Y;  
    %       figure `W{Ye=|[d#  
    %       pcolor(x,x,z), shading interp O{LWQ"@y  
    %       axis square, colorbar L +-B,466  
    %       title('Zernike function Z_5^1(r,\theta)') 3 u-j`7  
    % o^_z+JFwb  
    %   Example 2: TQYud'u/  
    % 8h-6;x^^  
    %       % Display the first 10 Zernike functions 9 /q4]%`  
    %       x = -1:0.01:1; kXv -B-wOj  
    %       [X,Y] = meshgrid(x,x); CEZ*a 0}=  
    %       [theta,r] = cart2pol(X,Y); !P#lTyz  
    %       idx = r<=1; A+:K!|w  
    %       z = nan(size(X)); LV'v7 2yUH  
    %       n = [0  1  1  2  2  2  3  3  3  3]; %xkqiI3Ff  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ~99Ta]U  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; -KbT[]  
    %       y = zernfun(n,m,r(idx),theta(idx)); 5-aCNAF2  
    %       figure('Units','normalized') jb fMTb4  
    %       for k = 1:10 =as]>?<  
    %           z(idx) = y(:,k); t$rWE|+_z  
    %           subplot(4,7,Nplot(k)) 8[ :FU  
    %           pcolor(x,x,z), shading interp p}O@ %*p .  
    %           set(gca,'XTick',[],'YTick',[]) 7$;mkHu4H%  
    %           axis square ka*VQXk*  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) X~%Wg*Hm  
    %       end T?NwSxGo  
    % lv,8NmP5  
    %   See also ZERNPOL, ZERNFUN2. vpTS>!i  
    ]D%D:>9|/  
    %   Paul Fricker 11/13/2006 ;./Tv84I^  
    xOPSw|!w  
    &2#<6=}  
    % Check and prepare the inputs: JzCfs<D  
    % ----------------------------- !9OAMHa*9  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) H&`p9d*(e  
        error('zernfun:NMvectors','N and M must be vectors.') K|E}Ni  
    end 9:4P7  
    2}' &38wMT  
    if length(n)~=length(m) Cm(Hu  
        error('zernfun:NMlength','N and M must be the same length.') ?cowey\m .  
    end }=;N3Q" #y  
    % UY=VE\F  
    n = n(:); .KTDQA\  
    m = m(:); nEyP Nm )  
    if any(mod(n-m,2)) 5|wQeosXxI  
        error('zernfun:NMmultiplesof2', ... c"77<Db$  
              'All N and M must differ by multiples of 2 (including 0).') pA"pt~6  
    end }a|S gI  
    [t,grdw  
    if any(m>n) FL"IPX;S  
        error('zernfun:MlessthanN', ... Fu!:8Wp!(  
              'Each M must be less than or equal to its corresponding N.') 5{[3I|m{  
    end Vr`UF0_3q  
    hFyN|Dqhds  
    if any( r>1 | r<0 ) @N1ta-D#  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') E}.cz\!.  
    end wW]|ElYR=  
    rXo,\zI;u^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Y -7x**I  
        error('zernfun:RTHvector','R and THETA must be vectors.') N{L]H _=  
    end %[&cy'  
    nS]/=xP{  
    r = r(:); W;OxH"eC  
    theta = theta(:); "?}QwtUW  
    length_r = length(r); A\.k['!  
    if length_r~=length(theta) ZLxe$.V_  
        error('zernfun:RTHlength', ... :G$NQ* (z  
              'The number of R- and THETA-values must be equal.') %t:1)]2  
    end &=K-~!?  
    %U-KQI0  
    % Check normalization: x !]ZVl]  
    % -------------------- jKM-(s!(  
    if nargin==5 && ischar(nflag) DM~Q+C=Yr  
        isnorm = strcmpi(nflag,'norm'); ezC55nm  
        if ~isnorm dcYUw]  
            error('zernfun:normalization','Unrecognized normalization flag.') RkP7}ZA;  
        end t.485L %  
    else d\'M ~VQ  
        isnorm = false; 0JKbp*H  
    end ]%"Z[R   
    _H<ur?G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W5EB+b49KM  
    % Compute the Zernike Polynomials C Vyq/X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `61VP-r  
    #oJ9BgDry  
    % Determine the required powers of r: 3Akb|r  
    % ----------------------------------- L}lc=\  
    m_abs = abs(m); /vwGSuk._  
    rpowers = []; J$]d%p_I  
    for j = 1:length(n) =y[eQS$  
        rpowers = [rpowers m_abs(j):2:n(j)]; FwmE1,  
    end !N?|[n1  
    rpowers = unique(rpowers); .#lQZo6$\|  
    gj$gqO`B  
    % Pre-compute the values of r raised to the required powers, _+.z2} M  
    % and compile them in a matrix: *.ZV.(  
    % ----------------------------- &z&Jl#t-)  
    if rpowers(1)==0 D{PO!WzW  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9Z6O{ >  
        rpowern = cat(2,rpowern{:}); c R[DT04  
        rpowern = [ones(length_r,1) rpowern]; CIYTs,u#  
    else 8{epy  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {*yhiE,  
        rpowern = cat(2,rpowern{:}); wNcf7/ky  
    end q}1AV7$Ai  
    0_,V}  
    % Compute the values of the polynomials: Cp_"PvTmT  
    % -------------------------------------- E.}T.St  
    y = zeros(length_r,length(n)); L+9a4/q  
    for j = 1:length(n) "&77`R  
        s = 0:(n(j)-m_abs(j))/2; 7f~.Qus  
        pows = n(j):-2:m_abs(j); "Do9gW  
        for k = length(s):-1:1 rP^2MH"  
            p = (1-2*mod(s(k),2))* ...  ceyZ4M  
                       prod(2:(n(j)-s(k)))/              ... +'y$XR~W{  
                       prod(2:s(k))/                     ... W5HC7o\4  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [gqV}Y"Md  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); jbMzcn~ehI  
            idx = (pows(k)==rpowers); (VU: &.  
            y(:,j) = y(:,j) + p*rpowern(:,idx); "qMd%RP  
        end u=p([ 5]  
         sj0Hv d9  
        if isnorm {Lrez E4  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); u2@:[:Ao  
        end Ycn*aR2  
    end S^a")U4  
    % END: Compute the Zernike Polynomials Aum&U){yY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [;83 IoU}  
    #92MI#|n9  
    % Compute the Zernike functions: }9:d(B9;  
    % ------------------------------ gR?=z}`@p  
    idx_pos = m>0; 9p9:nx\  
    idx_neg = m<0; D)K/zh)  
    #zZQ@+5zw  
    z = y; H+;>>|+:~  
    if any(idx_pos) yAW%y  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3K_J"B*7  
    end m!tB;:6  
    if any(idx_neg) C8e{9CF  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); OU/PB  
    end o/)]z  
    z|<6y~5,  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) `DUMTFcMX  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. )4bBR@QM  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated t ux/@}I  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive |p-, B>p!  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, v8 I&~_b  
    %   and THETA is a vector of angles.  R and THETA must have the same [?Cv^t${+  
    %   length.  The output Z is a matrix with one column for every P-value, %7x x"$P:R  
    %   and one row for every (R,THETA) pair. 2ed$5.D  
    % AD_")_B|i  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike nxS|]  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) N>/!e787OU  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) I~-W4{  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 @ 4#q  
    %   for all p. YNRpIhb  
    % |k\4\a Lj  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 |a*VoMZ  
    %   Zernike functions (order N<=7).  In some disciplines it is #.'0DWT \-  
    %   traditional to label the first 36 functions using a single mode ^<}9#q/rt  
    %   number P instead of separate numbers for the order N and azimuthal |A0BYzlVc  
    %   frequency M. "3(""0Q  
    % iP]KV.e'/C  
    %   Example: ~k^rIjR  
    % 3X=9$xw_  
    %       % Display the first 16 Zernike functions lm i,P-Q  
    %       x = -1:0.01:1;  LP-~;  
    %       [X,Y] = meshgrid(x,x); T~8==Z{[  
    %       [theta,r] = cart2pol(X,Y); -GCC  
    %       idx = r<=1; MHeUh[%(  
    %       p = 0:15; xQ+UZc  
    %       z = nan(size(X)); 9~n`6;R  
    %       y = zernfun2(p,r(idx),theta(idx)); WK)hj{k  
    %       figure('Units','normalized') L-? ?%_=  
    %       for k = 1:length(p) ]V0V8fU|  
    %           z(idx) = y(:,k); AJ}QS?p8s  
    %           subplot(4,4,k) m!Cvd9X=  
    %           pcolor(x,x,z), shading interp ~_8Dv<"a  
    %           set(gca,'XTick',[],'YTick',[]) 6Ri+DPf:  
    %           axis square 4'upbI  
    %           title(['Z_{' num2str(p(k)) '}']) >'ev_eAk  
    %       end f>!)y-7  
    % 6?$yBu9l  
    %   See also ZERNPOL, ZERNFUN. 9: N[9;('  
    1yC_/Va1  
    %   Paul Fricker 11/13/2006 FjR/_GPo6  
    nsn  
    !xk`oW  
    % Check and prepare the inputs: Z.'j7(tu  
    % ----------------------------- H1>~,zc>E  
    if min(size(p))~=1 /S2lA>  
        error('zernfun2:Pvector','Input P must be vector.') 9^ ;Cz>6s  
    end #N Qpr  
    QTr) r;Tro  
    if any(p)>35 kb3>q($  
        error('zernfun2:P36', ... epN> ;e z  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... uPCzs$R  
               '(P = 0 to 35).']) S!WG|75B  
    end kZ<0|b  
    Hi%)TDfv  
    % Get the order and frequency corresonding to the function number: dhrh "x_?:  
    % ---------------------------------------------------------------- PWciD '!  
    p = p(:); qlSI|@CO  
    n = ceil((-3+sqrt(9+8*p))/2); B|d-3\sn  
    m = 2*p - n.*(n+2); ,5V w^@F  
    *.%z  
    % Pass the inputs to the function ZERNFUN: ]gjQy.c|  
    % ---------------------------------------- @}; vl  
    switch nargin W4Z8U0co  
        case 3 4 .Kl/b;  
            z = zernfun(n,m,r,theta); 'h} (>%  
        case 4 oZ,J{I!L  
            z = zernfun(n,m,r,theta,nflag); u00w'=pe)  
        otherwise M>qqe!c*  
            error('zernfun2:nargin','Incorrect number of inputs.') mrmm@?  
    end VAW:h5j2@  
    w#6)XR|+,.  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) pO?v$Rjl  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. X9 N4  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of o$QC:%[#  
    %   order N and frequency M, evaluated at R.  N is a vector of ^[x6p}$  
    %   positive integers (including 0), and M is a vector with the *82+GY]  
    %   same number of elements as N.  Each element k of M must be a CCHGd&\Z  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) !78P+i  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is w#v-h3XcF  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix *iX PG9XZ  
    %   with one column for every (N,M) pair, and one row for every {x,d9I  
    %   element in R. p[Zk;AT~  
    % sU(<L0  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ~4+ICCbH  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ,(i`gH{D  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to >P+o NY  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 M!YGv   
    %   for all [n,m]. A$g'/QM  
    % 7}1Z7"?  
    %   The radial Zernike polynomials are the radial portion of the R]&lVXyH  
    %   Zernike functions, which are an orthogonal basis on the unit mxnu\@}(  
    %   circle.  The series representation of the radial Zernike r>#4Sr  
    %   polynomials is M3U?\g  
    % 9!_JV;2  
    %          (n-m)/2 0"}=A,o(w  
    %            __ ){LU>MW{&  
    %    m      \       s                                          n-2s .wV-g:2  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Or#KF6+ut  
    %    n      s=0 mEmgr(W  
    % k QF3DR$,B  
    %   The following table shows the first 12 polynomials. =pZ$oTR  
    % q eDXG  
    %       n    m    Zernike polynomial    Normalization tmd{G x}c  
    %       --------------------------------------------- Up1 n0  
    %       0    0    1                        sqrt(2) b@S~ =  
    %       1    1    r                           2 I5*<J n  
    %       2    0    2*r^2 - 1                sqrt(6) $."D OZQ3U  
    %       2    2    r^2                      sqrt(6) ov<vSc<u  
    %       3    1    3*r^3 - 2*r              sqrt(8) &^`[$LtYd  
    %       3    3    r^3                      sqrt(8) H: nO\]  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) H|S hi/  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) !K-qoBqKM  
    %       4    4    r^4                      sqrt(10) 2 g~W})e  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 2#   
    %       5    3    5*r^5 - 4*r^3            sqrt(12) % *ng *  
    %       5    5    r^5                      sqrt(12) ZkWMo= vL  
    %       --------------------------------------------- 1#3eY? Nb  
    % QFK'r\3 pU  
    %   Example: Q4Nut  
    % N1}r%!jk/  
    %       % Display three example Zernike radial polynomials foUBMl  
    %       r = 0:0.01:1; O1@3V/.Wu  
    %       n = [3 2 5]; 4k9$' k  
    %       m = [1 2 1]; HVdB*QEH  
    %       z = zernpol(n,m,r); 4B9D  
    %       figure i[4!% FxB  
    %       plot(r,z) Py?e+[cN  
    %       grid on /2''EF';  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') VnqcpJ  
    % 1+"d-`'Z2O  
    %   See also ZERNFUN, ZERNFUN2. U'^ G-@  
    r0wAh/J|  
    % A note on the algorithm. e7y,zcbv  
    % ------------------------ >;]S+^dXY  
    % The radial Zernike polynomials are computed using the series *k Tj,&x[  
    % representation shown in the Help section above. For many special .+mP#<mAg  
    % functions, direct evaluation using the series representation can 1g,Ofr  
    % produce poor numerical results (floating point errors), because O6vHo3k  
    % the summation often involves computing small differences between p-m\0tQ  
    % large successive terms in the series. (In such cases, the functions  Ci 'V  
    % are often evaluated using alternative methods such as recurrence o=RxQk1N  
    % relations: see the Legendre functions, for example). For the Zernike ] *U+nG  
    % polynomials, however, this problem does not arise, because the _>a`dp.19  
    % polynomials are evaluated over the finite domain r = (0,1), and Adet5m.|[8  
    % because the coefficients for a given polynomial are generally all H2xDC_Fs  
    % of similar magnitude. *Kpw@4G   
    % wy^mh.= UX  
    % ZERNPOL has been written using a vectorized implementation: multiple mG1!~}[  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ?^J%S,  
    % values can be passed as inputs) for a vector of points R.  To achieve :fDzMD  
    % this vectorization most efficiently, the algorithm in ZERNPOL mN l[D  
    % involves pre-determining all the powers p of R that are required to tSY4'  
    % compute the outputs, and then compiling the {R^p} into a single  k{'<J(Hb  
    % matrix.  This avoids any redundant computation of the R^p, and GDs/U1[*  
    % minimizes the sizes of certain intermediate variables. nltOX@P-  
    % j >`FZKxp  
    %   Paul Fricker 11/13/2006 8QMMKO ui\  
    A~ v[6*~>  
    ul b0B"  
    % Check and prepare the inputs: oB@)!'  
    % ----------------------------- y<~(}xsHh  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >0u*E *Y  
        error('zernpol:NMvectors','N and M must be vectors.') gV$0J?Pr.  
    end }8ESp3~e_  
    c6 .j$6t  
    if length(n)~=length(m) 3sRI 7g  
        error('zernpol:NMlength','N and M must be the same length.') eoFG$X/PO  
    end ]T(qk  
    4]E1x l  
    n = n(:); BpGyjo J2  
    m = m(:); \ KsKb0sM  
    length_n = length(n); _v 8u%  
    ,$aqF<+;  
    if any(mod(n-m,2)) ?r*}1WsH  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 4uh~@Lv  
    end FjI1'Ah\  
    J*zQ8\f=}  
    if any(m<0)  $C,` ^n'  
        error('zernpol:Mpositive','All M must be positive.') *3h_'3yo@  
    end VD $PoP  
    Z%b1B<u$  
    if any(m>n) ONZ(0H{ 1$  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') xT( pB-R  
    end f =A#:d  
    &_s^C?x  
    if any( r>1 | r<0 ) Gm> =s  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') (w+SmD  
    end IGo5b-ds  
    _mQj=  
    if ~any(size(r)==1) Z#l6BXK  
        error('zernpol:Rvector','R must be a vector.') !HtW~8|:  
    end ]zj&U#{  
    GO*D4<#u  
    r = r(:); :T>OJ"p  
    length_r = length(r); &LG|YvMY6  
    >]A#_p  
    if nargin==4 Bk@EQdn  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); O2f-{jnTz,  
        if ~isnorm HX,i{aWWy  
            error('zernpol:normalization','Unrecognized normalization flag.') {%RwZ'  
        end |eFaOL|  
    else ~Y;Z5e=  
        isnorm = false; fN21[Jv3  
    end Y4lNxvY  
    eht>4)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D{q r N6g#  
    % Compute the Zernike Polynomials Zlt,Us`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z5D*UOy5M  
    V}~',o<m  
    % Determine the required powers of r: g $^Yv4  
    % ----------------------------------- hSN38wy  
    rpowers = []; 3hEbM'L  
    for j = 1:length(n) Okd.  ~  
        rpowers = [rpowers m(j):2:n(j)]; ?5^DQ|Hg ^  
    end TTWiwPo59  
    rpowers = unique(rpowers); ,|;\)tT  
    d+5v[x~'  
    % Pre-compute the values of r raised to the required powers, (/9erfuJ  
    % and compile them in a matrix: I>6zX  
    % ----------------------------- eLV[U  
    if rpowers(1)==0 ??LE0i  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @Jb-[W$*  
        rpowern = cat(2,rpowern{:}); r%>7n,+o  
        rpowern = [ones(length_r,1) rpowern]; :QHh;TIG=<  
    else T-x9IoE  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?k@;,l :s  
        rpowern = cat(2,rpowern{:}); &Z9rQH81f>  
    end [M:<!QXw  
    FBOgaI83G  
    % Compute the values of the polynomials: rd24R-6  
    % -------------------------------------- ~zvZK]JoX  
    z = zeros(length_r,length_n); G_WHW(8   
    for j = 1:length_n J$T(p%  
        s = 0:(n(j)-m(j))/2; ^X"x,8}&V  
        pows = n(j):-2:m(j); mtw{7 E  
        for k = length(s):-1:1 wSdiF-ue  
            p = (1-2*mod(s(k),2))* ... #BgiDLh  
                       prod(2:(n(j)-s(k)))/          ... 6(Ntt  
                       prod(2:s(k))/                 ... LWN9 D  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... l&m Y}k  
                       prod(2:((n(j)+m(j))/2-s(k))); }^b  
            idx = (pows(k)==rpowers); Id>I.e4  
            z(:,j) = z(:,j) + p*rpowern(:,idx); *D`$oK,U  
        end ; 3sjTqD  
         )t:8;;W@Ir  
        if isnorm w6-<HPW<S  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); [L ' >  
        end WD*z..`  
    end W A*1_  
    (B?ZUXM,  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  I0!]J{  
    ?nWzJ5w3  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 W!Fc60>p@f  
    .8T0OQ4  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)