非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 KXQ &u{[<
function z = zernfun(n,m,r,theta,nflag) %]2hxTV
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. =41g9UQ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N iE~][_%U
% and angular frequency M, evaluated at positions (R,THETA) on the /3VSO"kcZ
% unit circle. N is a vector of positive integers (including 0), and w[5uX>
% M is a vector with the same number of elements as N. Each element I:ag}L8`
% k of M must be a positive integer, with possible values M(k) = -N(k) zXop@"(e
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1,
(SEE(G35
% and THETA is a vector of angles. R and THETA must have the same aw\\oN*
% length. The output Z is a matrix with one column for every (N,M) >;$C@
% pair, and one row for every (R,THETA) pair. k"kGQk4
% x?aNK$A~X
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike G` _LD+
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), t+,'
% with delta(m,0) the Kronecker delta, is chosen so that the integral GV+K]
KDI
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, e|t@"MxvC
% and theta=0 to theta=2*pi) is unity. For the non-normalized 1kd\Fq^z$
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]d4`PXI
% y*BS
%xTF
% The Zernike functions are an orthogonal basis on the unit circle. [eb?Fd~WB]
% They are used in disciplines such as astronomy, optics, and y&-1SP<
% optometry to describe functions on a circular domain. W7F1o[
% 95wi~^^
% The following table lists the first 15 Zernike functions. o*[n[\cR
% [{i"Au]
% n m Zernike function Normalization ?F^$4:
% -------------------------------------------------- ^n5rUwS>
% 0 0 1 1 n0ZrgTVJ
% 1 1 r * cos(theta) 2 z frEM
% 1 -1 r * sin(theta) 2 9_h
V1:
% 2 -2 r^2 * cos(2*theta) sqrt(6) _+OnH!G0
% 2 0 (2*r^2 - 1) sqrt(3) -KuC31s_W
% 2 2 r^2 * sin(2*theta) sqrt(6) 4
Wb^$i!
% 3 -3 r^3 * cos(3*theta) sqrt(8) j5rB+
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) kE8\\}B7
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Z~?1xJ&