非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 sbG3,'i)
function z = zernfun(n,m,r,theta,nflag) Dzp9BRS
2f
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?6a:!^eL
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N sKNN ahGjh
% and angular frequency M, evaluated at positions (R,THETA) on the !,I}2,1%k
% unit circle. N is a vector of positive integers (including 0), and =>ignoeI
% M is a vector with the same number of elements as N. Each element *}LYMrP
% k of M must be a positive integer, with possible values M(k) = -N(k) 7 Xw#
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, \N!k)6\
% and THETA is a vector of angles. R and THETA must have the same &"25a[x{B
% length. The output Z is a matrix with one column for every (N,M) j'v2m 6/
% pair, and one row for every (R,THETA) pair. *)"`v]
% )<!y_;$A
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |>d56
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )|*HkdF`
% with delta(m,0) the Kronecker delta, is chosen so that the integral l0]z Zcpt
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (?$}Vp
% and theta=0 to theta=2*pi) is unity. For the non-normalized ;i\i+:=
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )=2iGEVW
% >/-<,,<\C
% The Zernike functions are an orthogonal basis on the unit circle. P1)9OE
% They are used in disciplines such as astronomy, optics, and #knpZ'
% optometry to describe functions on a circular domain. r"k\G\,%
% eB5;wH
% The following table lists the first 15 Zernike functions. mKn:EqA
% 0f1*#8-6
% n m Zernike function Normalization N^:)U"9*e
% -------------------------------------------------- ECQ>VeP
% 0 0 1 1 Z^s&]
% 1 1 r * cos(theta) 2 sJMT _yt;
% 1 -1 r * sin(theta) 2 Fvl_5 l
% 2 -2 r^2 * cos(2*theta) sqrt(6) >u~
l_?
% 2 0 (2*r^2 - 1) sqrt(3) tP7l
;EX4
% 2 2 r^2 * sin(2*theta) sqrt(6) 0~)cAKus
% 3 -3 r^3 * cos(3*theta) sqrt(8) Nx,.4CI
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) "1WwSh}Z
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) c]#F^(-A`
% 3 3 r^3 * sin(3*theta) sqrt(8) e")s1`
% 4 -4 r^4 * cos(4*theta) sqrt(10) sBB>O@4
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6[w_/X"
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) <mi*AY
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vm
1vX;
% 4 4 r^4 * sin(4*theta) sqrt(10) 6f{Kj)
% -------------------------------------------------- eG =Hyc
% w%KU@$
% Example 1: Z;-=x p
% FK{Vnj0
% % Display the Zernike function Z(n=5,m=1) %?@N-$j
% x = -1:0.01:1; <"X\~
% [X,Y] = meshgrid(x,x); Q6]SsV?x
% [theta,r] = cart2pol(X,Y); w<*6pPy
% idx = r<=1; T}M!A|
% z = nan(size(X)); ^yyL4{/
% z(idx) = zernfun(5,1,r(idx),theta(idx)); qwoF4_VN
% figure s<h]2W
% pcolor(x,x,z), shading interp STtjkZ6
% axis square, colorbar MV'q_{J
% title('Zernike function Z_5^1(r,\theta)') D!^&*Ia?2
% R m>AU=
% Example 2: F^fL
% $oDc
% % Display the first 10 Zernike functions Hyh$-iCa
% x = -1:0.01:1; XOe)tz
L
% [X,Y] = meshgrid(x,x); Nb(c;|nV
% [theta,r] = cart2pol(X,Y); A]c'`Nf
% idx = r<=1; wxS.!9K
% z = nan(size(X)); }%x2Z{VF
% n = [0 1 1 2 2 2 3 3 3 3]; 5%Hw,h
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 14Y_ oH9
% Nplot = [4 10 12 16 18 20 22 24 26 28]; KP,#x$Bg
% y = zernfun(n,m,r(idx),theta(idx)); DP_ ]\V<sT
% figure('Units','normalized') Z8IY!d
% for k = 1:10 # 3UrGom
% z(idx) = y(:,k); Dc-v`jZ@)
% subplot(4,7,Nplot(k)) KW`^uoY$
% pcolor(x,x,z), shading interp @{n"/6t
% set(gca,'XTick',[],'YTick',[]) e98f+,E/
% axis square 4AW-'W
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) gc,%A'OR^<
% end Kg?(Ax4
% v'=$K[_
% See also ZERNPOL, ZERNFUN2. vLCyT=OB`
{8p<iY- %
% Paul Fricker 11/13/2006 )09>#!*
uW;[FTcqy$
UZvF5Hoe+O
% Check and prepare the inputs: eO%w
i.Q
% ----------------------------- @:s(L]
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) = j)5kY`
error('zernfun:NMvectors','N and M must be vectors.') (`'(`x#
end _?~EWT
^`iqa-1
if length(n)~=length(m) &lM=>?
error('zernfun:NMlength','N and M must be the same length.') kZ5;Fe\*
end KJ (|skO
Y.yiUf/Q
n = n(:); }IJE%
m = m(:); D`c&Q4$:
if any(mod(n-m,2)) T&'p5h=l
error('zernfun:NMmultiplesof2', ... $Iz *W]B!
'All N and M must differ by multiples of 2 (including 0).') 7up~8e$ _
end )>"|<h.2]
12]rfd
if any(m>n) kLE("I:7
error('zernfun:MlessthanN', ... "~2SHM@q
'Each M must be less than or equal to its corresponding N.') |-l9 Z
end e92,@
W79Sz}):
if any( r>1 | r<0 ) t4d^DZDh!
error('zernfun:Rlessthan1','All R must be between 0 and 1.') F%< ZEVm
end "50c<sZSB
2p %j@O
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) h[ cqa
error('zernfun:RTHvector','R and THETA must be vectors.') ~v>3lEGn*
end D/)E[Fv+
um,G^R
r = r(:); tNvjwgV\
theta = theta(:); >BWe"{ ;
length_r = length(r); b9R0"w!ml
if length_r~=length(theta) joA>-k04
error('zernfun:RTHlength', ... x1`4hB
'The number of R- and THETA-values must be equal.') e+~@"^|
end 4|/}~9/
J.(mg
D
% Check normalization: LK|1[y^h
% -------------------- )k[{re
if nargin==5 && ischar(nflag) kxCN0e#_
isnorm = strcmpi(nflag,'norm'); fnJx$PD~
if ~isnorm Ak kth*p
error('zernfun:normalization','Unrecognized normalization flag.') {%Rntb
end gySl.cxt
else l@:&0id4I
isnorm = false; laRn![[
end V}h
<,E9
\_)[FC@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Nt,:`o |
% Compute the Zernike Polynomials \MDhm,H<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CH$K_\
9
lXnNK
|]
% Determine the required powers of r: SuA
@S
% ----------------------------------- S&F[\4w5]
m_abs = abs(m); Y41b8.|P+
rpowers = []; /$d#9Uv
for j = 1:length(n) 9K>~9Za
rpowers = [rpowers m_abs(j):2:n(j)]; Nd
He::
end cTja<*W^xv
rpowers = unique(rpowers); l0r^LK$
2)Q%lEm`SP
% Pre-compute the values of r raised to the required powers, eIj2(q9
% and compile them in a matrix: ]tNB^
% ----------------------------- KK?R|1VK9
if rpowers(1)==0 5mX"0a_Q
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _"t"orD6
rpowern = cat(2,rpowern{:}); "^)$MAZ
rpowern = [ones(length_r,1) rpowern]; D}rnpwp{
else W0S\g#
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +3J5j+
rpowern = cat(2,rpowern{:}); 8dh ?JqX
end Am<){&XT
]
iU|X/>k?
% Compute the values of the polynomials: p^C$(}Yh
% -------------------------------------- yujv^2/
y = zeros(length_r,length(n)); MKh}2B#S
for j = 1:length(n) b y$S#ef
s = 0:(n(j)-m_abs(j))/2; TU1W!=Z
pows = n(j):-2:m_abs(j); Tdxc%'l
for k = length(s):-1:1 N97WI+`
p = (1-2*mod(s(k),2))* ... Bxf&gDwjgr
prod(2:(n(j)-s(k)))/ ... RgD:"zeM
prod(2:s(k))/ ... *|,ye5"
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... WtlLqD!_D
prod(2:((n(j)+m_abs(j))/2-s(k))); sWq@E6,I
idx = (pows(k)==rpowers); yPf,GB"
y(:,j) = y(:,j) + p*rpowern(:,idx); m0*_
end O{Z
bpa^
_=K\E0I.m
if isnorm Hv*+HUc(:
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); &r!jjT
end ?s]?2>p
end $e%m=@ga
% END: Compute the Zernike Polynomials >&JS-jFg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M
y!;N1
t;
@T~%
% Compute the Zernike functions: 'Uo|@tK
% ------------------------------ [M?&JA