切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11422阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Fx4C]S  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! >s1FTB-$W  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 LoOyqJ,  
    function z = zernfun(n,m,r,theta,nflag) =ADAMP  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ZgtW  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N $Pzvv`f*  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ]SBv3Q0D7  
    %   unit circle.  N is a vector of positive integers (including 0), and & ?/h5<  
    %   M is a vector with the same number of elements as N.  Each element miuJ!Kr'  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) V?Lf& X?  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, u):z1b3*?  
    %   and THETA is a vector of angles.  R and THETA must have the same  1k2Ck  
    %   length.  The output Z is a matrix with one column for every (N,M) j!mI9*hP  
    %   pair, and one row for every (R,THETA) pair. < t>N(e  
    % hz Vpv,|G  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1kio.9NIp  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), H4k`wWOk  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral uP|AP  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, VOG DD@  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized T fzad2}^  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~W5 fJd0  
    % J2aA"BhdC"  
    %   The Zernike functions are an orthogonal basis on the unit circle. akm)X0!-}  
    %   They are used in disciplines such as astronomy, optics, and :b=`sUn<X+  
    %   optometry to describe functions on a circular domain. m f4@g05  
    % J9/9k  
    %   The following table lists the first 15 Zernike functions. ]_d(YHYf  
    % kC|tv{g#>  
    %       n    m    Zernike function           Normalization K_]LK  
    %       -------------------------------------------------- 3(^9K2.s}  
    %       0    0    1                                 1 kt[#@M!}  
    %       1    1    r * cos(theta)                    2 F!pUfF,&  
    %       1   -1    r * sin(theta)                    2 b44H2A .  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) o"Ef>5N  
    %       2    0    (2*r^2 - 1)                    sqrt(3) kG?tgO?*  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) *}ay  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) tjDVU7um  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) L2{tof  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) v bb mmv  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) !!2~lG<]  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) e{=7,DRH<  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) CFul_qZ/e  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) (d#?\  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9!2KpuWji  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) OMKEn!Wq  
    %       -------------------------------------------------- UY}lJHp0  
    % hJFQ/(  
    %   Example 1: jq.@<<j|$  
    % YI%7#L7C  
    %       % Display the Zernike function Z(n=5,m=1) YLPiK  
    %       x = -1:0.01:1; $23="Jcl  
    %       [X,Y] = meshgrid(x,x); c0Q`S"o+  
    %       [theta,r] = cart2pol(X,Y); ucoBeNsHx  
    %       idx = r<=1; ik&loM_  
    %       z = nan(size(X)); 3XL0Pm  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Aba6/  
    %       figure "ajZ&{Z  
    %       pcolor(x,x,z), shading interp #\`6ZHW  
    %       axis square, colorbar Yv"uIj+']  
    %       title('Zernike function Z_5^1(r,\theta)') +"' h?7'C  
    % <LBMth  
    %   Example 2: v]VIUVd  
    % tp5]n`3rD  
    %       % Display the first 10 Zernike functions c%xxsq2n  
    %       x = -1:0.01:1; rB=1*.}FLc  
    %       [X,Y] = meshgrid(x,x); lV]l`$XI  
    %       [theta,r] = cart2pol(X,Y); tQ`tHe  
    %       idx = r<=1; w?Q@"^IL  
    %       z = nan(size(X)); SvI  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ^gb2=gWZ<  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;y HA.}  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; {tWfLfzU  
    %       y = zernfun(n,m,r(idx),theta(idx)); kx'6FkZPIr  
    %       figure('Units','normalized') &p=~=&g=  
    %       for k = 1:10 c:=Z<0S;  
    %           z(idx) = y(:,k); pM X7Rl  
    %           subplot(4,7,Nplot(k)) q/4PX  
    %           pcolor(x,x,z), shading interp g@nE7H1V  
    %           set(gca,'XTick',[],'YTick',[]) W9eR3q  
    %           axis square &m Y<e4  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) X_%78$N-a`  
    %       end E"V|Plf c  
    % anl?4q3;9  
    %   See also ZERNPOL, ZERNFUN2. {?5EOp~  
    -Ep-v4}  
    %   Paul Fricker 11/13/2006 -O(.J'=8  
    !3HMGzt  
    (5Cm+Sy  
    % Check and prepare the inputs: Yt|{l  
    % ----------------------------- j4G,Z4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >aa-ix &  
        error('zernfun:NMvectors','N and M must be vectors.') ky!'.3yoI  
    end [dt1%DD`M  
    /]+t$K\cBq  
    if length(n)~=length(m) hP 9+|am%  
        error('zernfun:NMlength','N and M must be the same length.') :+[q `  
    end  \f  
    { 0Leua  
    n = n(:); gVZ~OcB!W  
    m = m(:); )0UQy#r  
    if any(mod(n-m,2)) $9hOWti  
        error('zernfun:NMmultiplesof2', ... Cu/w><h)  
              'All N and M must differ by multiples of 2 (including 0).')  Rl 6E  
    end  Gc SX5c  
    I.(/j  
    if any(m>n) _-^ KqNyy  
        error('zernfun:MlessthanN', ... 4; &(  
              'Each M must be less than or equal to its corresponding N.') D$ `yxc  
    end a&y%|Gs^f  
    RJd55+h  
    if any( r>1 | r<0 ) hg\$>W~ 2  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') JsiJ=zo<  
    end FQ O6w'  
    tWc!!Hf2j  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) w/Q'T&>b/  
        error('zernfun:RTHvector','R and THETA must be vectors.') 5ue{&z @T  
    end uFECfh  
    {){i ONd  
    r = r(:); eOLS  
    theta = theta(:); }0f[x ?V  
    length_r = length(r); &|gn%<^  
    if length_r~=length(theta) .Olq_wuH  
        error('zernfun:RTHlength', ... \9D '7/$I,  
              'The number of R- and THETA-values must be equal.') gv<9XYByt  
    end 0! !pNK%(  
    iyj&O"  
    % Check normalization: v?Y9z!M  
    % -------------------- neOR/]  
    if nargin==5 && ischar(nflag) 4pA(.<#A  
        isnorm = strcmpi(nflag,'norm'); bh_i*DJ]  
        if ~isnorm =zI eZ7  
            error('zernfun:normalization','Unrecognized normalization flag.') 5N ' QG<jE  
        end odj|" ZK  
    else m2VF}% EIr  
        isnorm = false; IURi90Ir  
    end rF 7EO%,  
    }HXNhv-K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L!/USh:IP  
    % Compute the Zernike Polynomials cty.)e=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \.Q"fd?a_D  
    {)jQbAr(G  
    % Determine the required powers of r: oIbd+6>f  
    % ----------------------------------- 6)DYQ^4y  
    m_abs = abs(m); yjN|PqtSV  
    rpowers = []; }R.cqk\qa^  
    for j = 1:length(n) \ Fc"Q@.u  
        rpowers = [rpowers m_abs(j):2:n(j)]; J}<k`af  
    end [\. ho9  
    rpowers = unique(rpowers); %'EOFv]  
    ~f ){`ZJc  
    % Pre-compute the values of r raised to the required powers, O2A Z|[*I  
    % and compile them in a matrix: %:((S]vAi  
    % ----------------------------- g^8bY=* .  
    if rpowers(1)==0 :9K5zD  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Q{mls  
        rpowern = cat(2,rpowern{:}); qTiX;e\W  
        rpowern = [ones(length_r,1) rpowern]; U2+CL)al^  
    else W^al`lg+y  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <W\~A$  
        rpowern = cat(2,rpowern{:}); b6oPnP_3P  
    end N6yqA)z?;  
    J;'?(xO3\  
    % Compute the values of the polynomials: `<+D<x)(3  
    % -------------------------------------- _.wLQL~y  
    y = zeros(length_r,length(n)); O/l|\n  
    for j = 1:length(n) js7J#b7  
        s = 0:(n(j)-m_abs(j))/2; lty`7(\  
        pows = n(j):-2:m_abs(j); ^K&& O {  
        for k = length(s):-1:1 mKWA-h+f  
            p = (1-2*mod(s(k),2))* ... U3%!#E{  
                       prod(2:(n(j)-s(k)))/              ... uVOOw&q_  
                       prod(2:s(k))/                     ... [4( TG<I  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... D='/-3f!F]  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); RH>b,  
            idx = (pows(k)==rpowers); c9i CH~  
            y(:,j) = y(:,j) + p*rpowern(:,idx); r~TiJ?8I  
        end lHz:Iibt  
         Lj({ T'f(  
        if isnorm 4d9i AN  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Qn<J@%  
        end PS(9?rX#+  
    end [*8w v^  
    % END: Compute the Zernike Polynomials )#i]exZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CI$F#j  
    g :e|  
    % Compute the Zernike functions: ;STO!^9~  
    % ------------------------------ N;RZIg(x  
    idx_pos = m>0; kw|bEL9!u  
    idx_neg = m<0; <k/'mBDk  
    7f[nNng  
    z = y; @T]gw J  
    if any(idx_pos) !tHqF  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); kzgH p,;R{  
    end H>-,1/IY  
    if any(idx_neg) *sB=Ys?  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); tkV:kh< L~  
    end \f0I:%-  
    8~\Fpz|Og  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) RAXqRP,iw  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. {3`#? q^o'  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated nLQ 3s3@1>  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive VlXIM,  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, (fm\kV  
    %   and THETA is a vector of angles.  R and THETA must have the same 1S0Hc5vw  
    %   length.  The output Z is a matrix with one column for every P-value, ^7F!>!9Ca  
    %   and one row for every (R,THETA) pair. v#YO3nD  
    % Qf7]t-Kp  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike \*!g0C 8 o  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) :[|`&_D9J  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) L'"20=sf  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 o9q%=/@,  
    %   for all p. Wq F(  
    % ;&;coH8`  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 J>] ' {!+  
    %   Zernike functions (order N<=7).  In some disciplines it is 8y~ Jn~t  
    %   traditional to label the first 36 functions using a single mode TBrAYEk  
    %   number P instead of separate numbers for the order N and azimuthal . I {X  
    %   frequency M.  @*%Q,$  
    % mL18FR N  
    %   Example: .eK1xwhJ  
    % #x)G2T'?  
    %       % Display the first 16 Zernike functions `Ft`8=(  
    %       x = -1:0.01:1; L>xcgV7  
    %       [X,Y] = meshgrid(x,x); \C/`?"4w  
    %       [theta,r] = cart2pol(X,Y); e%(zjCA  
    %       idx = r<=1; :v1'(A1t  
    %       p = 0:15; nU)}!` E  
    %       z = nan(size(X)); D#W{:_f  
    %       y = zernfun2(p,r(idx),theta(idx)); dZ`nv[]k~  
    %       figure('Units','normalized') pc:K5 -Os  
    %       for k = 1:length(p) "MM7qV  
    %           z(idx) = y(:,k); %zb7M%dC6`  
    %           subplot(4,4,k) mZ ONxR6q$  
    %           pcolor(x,x,z), shading interp nH NMoA  
    %           set(gca,'XTick',[],'YTick',[]) g0cCw2S  
    %           axis square c^A3|tCi  
    %           title(['Z_{' num2str(p(k)) '}']) <4C`^p  
    %       end *G'zES0x  
    % <kPU*P,  
    %   See also ZERNPOL, ZERNFUN. R:0Fv9bwS  
    ;# {XNq<1  
    %   Paul Fricker 11/13/2006 L.l"'=M  
    J j yQ  
    \EUc17  
    % Check and prepare the inputs: 4-ZiKM  
    % ----------------------------- T/)$}#w0i  
    if min(size(p))~=1 ] bhzB  
        error('zernfun2:Pvector','Input P must be vector.') w+2:eFi=/  
    end uhQ3  
    j%]i#iqF  
    if any(p)>35 $M$oNOT}Y  
        error('zernfun2:P36', ... f^:9gRt  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... V6BCW;   
               '(P = 0 to 35).']) EG7ki0  
    end &p=|z2 J  
    YAC=V?U-#  
    % Get the order and frequency corresonding to the function number: Fr/8q:m &  
    % ---------------------------------------------------------------- az F"tke  
    p = p(:); $T1 D ?X  
    n = ceil((-3+sqrt(9+8*p))/2); XH1so1h  
    m = 2*p - n.*(n+2); xfos>|0N  
    xg. d)n  
    % Pass the inputs to the function ZERNFUN: 1 (P >TH  
    % ---------------------------------------- rM=Q.By+\  
    switch nargin goIn7ei92  
        case 3 Ju)2J?Xs5  
            z = zernfun(n,m,r,theta); 4LUFG  
        case 4 S%mN6b~{  
            z = zernfun(n,m,r,theta,nflag); 9);a0}*5  
        otherwise #u|;YC  
            error('zernfun2:nargin','Incorrect number of inputs.') ; =F^G?p^  
    end /LPSI^l!m  
    SZ1+h TY7d  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) $ LFzpg  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 5c3 )p^ ]g  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 19 bP0y  
    %   order N and frequency M, evaluated at R.  N is a vector of )Qp?N<&'  
    %   positive integers (including 0), and M is a vector with the _d %H;<_  
    %   same number of elements as N.  Each element k of M must be a Y;xVB" (  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) {xr4CDP  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is &0Wv+2l @  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix WP2|0ib  
    %   with one column for every (N,M) pair, and one row for every <CzH'!FJN  
    %   element in R. J@p[v3W  
    % %I&Hx<H j  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 7=Ew[MOmM  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is |v[{k>7f  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to h+t{z"Ic=  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 |a3)U%rUEQ  
    %   for all [n,m]. pWwaN4  
    % D!TS/J1S;u  
    %   The radial Zernike polynomials are the radial portion of the ]\ sBl  
    %   Zernike functions, which are an orthogonal basis on the unit Ia0.I " ,  
    %   circle.  The series representation of the radial Zernike T$0//7$')  
    %   polynomials is 6@ ToPbj4  
    % ZK{VQ~  
    %          (n-m)/2 7W5FHZd'  
    %            __ 6_^ u}me  
    %    m      \       s                                          n-2s a}hpcr({?  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r \_De( p  
    %    n      s=0 aOyAP-m,  
    % @Zjy"u  
    %   The following table shows the first 12 polynomials. J0C,K U(  
    % b H?dyS6Bx  
    %       n    m    Zernike polynomial    Normalization kNd[M =%  
    %       --------------------------------------------- ,Hch->?Og  
    %       0    0    1                        sqrt(2) 4g$mz:vo  
    %       1    1    r                           2 st+X~;PX*  
    %       2    0    2*r^2 - 1                sqrt(6) {%N*AxkvId  
    %       2    2    r^2                      sqrt(6) bF|j%If%  
    %       3    1    3*r^3 - 2*r              sqrt(8) 2oGl"3/p  
    %       3    3    r^3                      sqrt(8) hg]\~#&-  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) j42U|CuK  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) UStZ3A'  
    %       4    4    r^4                      sqrt(10) 0 #VH=pga  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 8ooj)  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) (C!u3ke2D  
    %       5    5    r^5                      sqrt(12) .NiPaUzc<  
    %       --------------------------------------------- :G9.}VrU  
    % n/=&?#m}d  
    %   Example: 6}K|eUak/  
    % 4%KNHeaN  
    %       % Display three example Zernike radial polynomials *jCXH<?R  
    %       r = 0:0.01:1; !FA^~  
    %       n = [3 2 5]; I}kx;!*b  
    %       m = [1 2 1]; eeoIf4]  
    %       z = zernpol(n,m,r); !D7/Ja  
    %       figure f:KKOLm  
    %       plot(r,z) rPv+eM" >  
    %       grid on DSM,dO'  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') >C*q  
    % ,}=x8Xxr  
    %   See also ZERNFUN, ZERNFUN2. ALiA+k N  
    B+`m  
    % A note on the algorithm. 4["$}O5  
    % ------------------------ )z=`,\&p:  
    % The radial Zernike polynomials are computed using the series f]h99T  
    % representation shown in the Help section above. For many special TMhUo#`I|  
    % functions, direct evaluation using the series representation can _o8il3  
    % produce poor numerical results (floating point errors), because *QG>U[  
    % the summation often involves computing small differences between ;E,%\<  
    % large successive terms in the series. (In such cases, the functions 5dXC  
    % are often evaluated using alternative methods such as recurrence "c\ZUx_i6  
    % relations: see the Legendre functions, for example). For the Zernike $f7#p4;}(  
    % polynomials, however, this problem does not arise, because the C8m8ys  
    % polynomials are evaluated over the finite domain r = (0,1), and Vv B%,_\  
    % because the coefficients for a given polynomial are generally all #W @6@Mv  
    % of similar magnitude. &s_[~g<  
    % PxM]3Aoa  
    % ZERNPOL has been written using a vectorized implementation: multiple IMmoq={ (z  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] gLaFIeF<+  
    % values can be passed as inputs) for a vector of points R.  To achieve }mxy6m ,  
    % this vectorization most efficiently, the algorithm in ZERNPOL R.Ao%VT  
    % involves pre-determining all the powers p of R that are required to B+ud-M0  
    % compute the outputs, and then compiling the {R^p} into a single &y;('w  
    % matrix.  This avoids any redundant computation of the R^p, and '&I.w p`^  
    % minimizes the sizes of certain intermediate variables. ^*C8BzcH  
    % xx)egy_  
    %   Paul Fricker 11/13/2006 w-Y-;*S  
    K=;z&E=<c  
    ssoIC  
    % Check and prepare the inputs: 63#Sf$p{v  
    % ----------------------------- q=M!YWz  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9*h?g+\  
        error('zernpol:NMvectors','N and M must be vectors.') z:ue]7(.  
    end G +o)s  
    6 wYd)MDLL  
    if length(n)~=length(m) npkE [JE:  
        error('zernpol:NMlength','N and M must be the same length.') f\nF2rlu  
    end GPy+\P`  
    il(dVW  
    n = n(:); v/ dSz/<]  
    m = m(:); ?\L@Pr|=Dr  
    length_n = length(n); Du k v[/60  
    YLVIn_\}  
    if any(mod(n-m,2)) h\Ck""&  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Y,RBTH  
    end 2j9Mr  
    ; f:}gMK  
    if any(m<0) Ms ;:+JI  
        error('zernpol:Mpositive','All M must be positive.') {9q~bt  
    end ~e~iCyW;S  
    (]n^_G#-$  
    if any(m>n) CPWe (  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 8  ;y N  
    end NRe{0U}nO  
    |QHDg(   
    if any( r>1 | r<0 ) R#eY@N}\  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') y#!8S{  
    end _&_#uV<WG0  
    GD<xmuo  
    if ~any(size(r)==1) jc) [5i0  
        error('zernpol:Rvector','R must be a vector.') `h*)PitRa  
    end i1e|UR-wl  
    Lt $LXE  
    r = r(:); '!>LF1W=  
    length_r = length(r); AP&mr1_  
    E96FwA5  
    if nargin==4 tn&~~G~#  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); [1K\ _  
        if ~isnorm *^e06xc:  
            error('zernpol:normalization','Unrecognized normalization flag.') H,bYzWsrPo  
        end r)UtS4 7  
    else dY'/\dJ  
        isnorm = false; RwJ#G7S#  
    end x?v/|  
    pT\>kqmj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;WxE0Q:!~  
    % Compute the Zernike Polynomials ;L (dmx?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D|lp3\`%  
    oh c/{D2  
    % Determine the required powers of r: = s^KZV  
    % ----------------------------------- CBz$N)f  
    rpowers = []; EUZ#o\6  
    for j = 1:length(n) ?UCK  
        rpowers = [rpowers m(j):2:n(j)]; \6~(# y  
    end zXWf($^&E  
    rpowers = unique(rpowers); rvrv[^a(  
    1 ;Bgtv$  
    % Pre-compute the values of r raised to the required powers, ^GMM%   
    % and compile them in a matrix: &o@IMbJ8  
    % ----------------------------- `R]B<gp  
    if rpowers(1)==0 ',`GdfAsH  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); R3=PV{`M  
        rpowern = cat(2,rpowern{:}); s3?pv  
        rpowern = [ones(length_r,1) rpowern]; yzJ VU0s  
    else Ni "n_Yun  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); SKO*x^"eU  
        rpowern = cat(2,rpowern{:}); d/oxRzk'L  
    end vZ3/t8$*  
    JtA tG%  
    % Compute the values of the polynomials: CJ0{>?  
    % -------------------------------------- w;f$oT  
    z = zeros(length_r,length_n); 8Ac5K!  
    for j = 1:length_n &+]x  
        s = 0:(n(j)-m(j))/2; NbG`v@yH  
        pows = n(j):-2:m(j); Z#w@ /!"}T  
        for k = length(s):-1:1  zE$KU$  
            p = (1-2*mod(s(k),2))* ... -;rr! cQ?  
                       prod(2:(n(j)-s(k)))/          ... ^W}(]jL  
                       prod(2:s(k))/                 ... _4H 9rPhf  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 6yZ!K  
                       prod(2:((n(j)+m(j))/2-s(k))); DLMM1 A  
            idx = (pows(k)==rpowers); cF6eMml;  
            z(:,j) = z(:,j) + p*rpowern(:,idx); c!#DD;<Q  
        end q=Cc2|Ve  
         m^hi}Am1  
        if isnorm `x%( n@g  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); |cKo#nfzZ  
        end ]!l]^/ .  
    end 0V:7pSC{P  
    Ej |rf Y  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  jyLE  
    [WfigqY`b*  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 4V6^@   
    2aDjt{7P  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)