切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11700阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 iNCT(N~.  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! /:Q  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 cGyR_8:2cv  
    function z = zernfun(n,m,r,theta,nflag) P(UY}oU  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. H;seT XL  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N l{gR6U{e  
    %   and angular frequency M, evaluated at positions (R,THETA) on the qe5;Pq !G  
    %   unit circle.  N is a vector of positive integers (including 0), and "A*;V  
    %   M is a vector with the same number of elements as N.  Each element <TTBIXV  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) v|KGzQx$.*  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ;jJ4H+8  
    %   and THETA is a vector of angles.  R and THETA must have the same !"ir}Y%  
    %   length.  The output Z is a matrix with one column for every (N,M) D~FIv  
    %   pair, and one row for every (R,THETA) pair. XmaRg{22  
    % DL#y_;#3_  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike !ALq?u  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), kxR!hA8wv4  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 86eaX+F  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, K^h9\< w  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized *+k yuY J  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M~h.M PI  
    % (Y*9 [hm  
    %   The Zernike functions are an orthogonal basis on the unit circle. 0Y'ow=8M  
    %   They are used in disciplines such as astronomy, optics, and Ljiw9*ZI  
    %   optometry to describe functions on a circular domain. ,:#h;4!VRF  
    % V(XZ7<& {  
    %   The following table lists the first 15 Zernike functions. 4\ |/S@.  
    % )G;H f?M  
    %       n    m    Zernike function           Normalization ;<GK{8  
    %       -------------------------------------------------- #|3,DZ|)F  
    %       0    0    1                                 1 "Ec9.#U/  
    %       1    1    r * cos(theta)                    2 *VH Wvj  
    %       1   -1    r * sin(theta)                    2 K2\)9  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) yJ `{\7Uqg  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 7=NKbv]  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 8GRB6-.h  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) "',;pGg|K  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ,6#%+u}f  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) IlwHHt;njp  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 6nJQPa  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) O,-NzGs  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y@< j vH1  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Qg]A^{.1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v,8Q9<=O  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) QhLgFu  
    %       -------------------------------------------------- 717G CL@  
    % #d<|_  
    %   Example 1: \{!,a  
    % Fa\jVFIQ  
    %       % Display the Zernike function Z(n=5,m=1) #_`q bIOAj  
    %       x = -1:0.01:1; Zy.ls&<:  
    %       [X,Y] = meshgrid(x,x); Gg]Jp:GF  
    %       [theta,r] = cart2pol(X,Y); nz'6^D7`r  
    %       idx = r<=1; @HSK[[?  
    %       z = nan(size(X)); hF5T9^8  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); &cJ?mSI  
    %       figure )n 1[#x^I  
    %       pcolor(x,x,z), shading interp 1c429&-  
    %       axis square, colorbar 1X`,7B@pz  
    %       title('Zernike function Z_5^1(r,\theta)') D^V)$ME  
    % Bd)Cijr  
    %   Example 2: 1|!)*!hu  
    % rlawH}1b  
    %       % Display the first 10 Zernike functions &zJ\D`\,O  
    %       x = -1:0.01:1; 1E'PSq  
    %       [X,Y] = meshgrid(x,x); HRjbGc|[  
    %       [theta,r] = cart2pol(X,Y); 'RF`XX  
    %       idx = r<=1; sKsMF:|OT  
    %       z = nan(size(X)); dKC*QHU  
    %       n = [0  1  1  2  2  2  3  3  3  3]; C984Ee  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; MEJX5qG6m  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; @Tq-3Um  
    %       y = zernfun(n,m,r(idx),theta(idx)); ^k$Bx_{  
    %       figure('Units','normalized') `-{? !  
    %       for k = 1:10 Ovj^ 7r:<s  
    %           z(idx) = y(:,k); {fHY[8su0  
    %           subplot(4,7,Nplot(k)) jpS$5Ct  
    %           pcolor(x,x,z), shading interp IbL'Z   
    %           set(gca,'XTick',[],'YTick',[]) C& XPn;f  
    %           axis square <_Z.fdUA  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @9n|5.i  
    %       end i=]R1yP  
    % .boB b<  
    %   See also ZERNPOL, ZERNFUN2. 8 l)K3;q_  
    -u<F>C  
    %   Paul Fricker 11/13/2006 5@ td0  
    `w`N5 !  
    (VI(Nv:o@  
    % Check and prepare the inputs: ~TXu20c  
    % ----------------------------- DNqV]N_W  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -3~S{)  
        error('zernfun:NMvectors','N and M must be vectors.') 2|i1}  
    end ?I? ~BWu  
    \v\ONp"  
    if length(n)~=length(m) S{8-XiL,  
        error('zernfun:NMlength','N and M must be the same length.') 6SE^+@jR  
    end :AFU5mR4&  
    ":qHDL3  
    n = n(:); `v)'(R7){  
    m = m(:); }`H{;A h  
    if any(mod(n-m,2)) Rs S:I6L  
        error('zernfun:NMmultiplesof2', ... S^|`*%pq  
              'All N and M must differ by multiples of 2 (including 0).') ar,v/l>d4N  
    end bXc*d9]  
    &=M4Z/Ao  
    if any(m>n) yih|6sd$F  
        error('zernfun:MlessthanN', ... J(!=Dno  
              'Each M must be less than or equal to its corresponding N.') K;rgLj0m  
    end zh=0zJ  
    /U!B2%vq_  
    if any( r>1 | r<0 ) 1,$"'lKwt  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') i%<NKE;v7m  
    end LWhy5H;Es  
    g@s`PBF7`  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +HWFoK  
        error('zernfun:RTHvector','R and THETA must be vectors.') J1cz D|(  
    end :eD-'#@$u  
    I9aiAD0s  
    r = r(:); 3WwCo.q;m  
    theta = theta(:); F @Wi[K  
    length_r = length(r); toPFkc6`  
    if length_r~=length(theta) 4Y3@^8h&=  
        error('zernfun:RTHlength', ... tl*v(ZW  
              'The number of R- and THETA-values must be equal.') <vV"abk  
    end :6)!#q'g  
    1R*;U8?  
    % Check normalization: qB K68B)  
    % -------------------- \8\T TkVSq  
    if nargin==5 && ischar(nflag) ;@gI*i N"  
        isnorm = strcmpi(nflag,'norm'); AB+lM;_>  
        if ~isnorm a;U)#*(5|v  
            error('zernfun:normalization','Unrecognized normalization flag.') 4Wa$>vz  
        end "5FP$oR  
    else =HIKn6C<  
        isnorm = false; :@E^oNKa0  
    end EW4a@  
    CK4#ZOiaa  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nZL!}3@<  
    % Compute the Zernike Polynomials ;QCGl$8A  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Mg8ciV}\xY  
    +"WNG  
    % Determine the required powers of r: Y:Lkh>S1Q  
    % ----------------------------------- H|j]uLZ  
    m_abs = abs(m); m432,8 K3r  
    rpowers = []; jY/(kA]}  
    for j = 1:length(n) o@j!JI&  
        rpowers = [rpowers m_abs(j):2:n(j)]; aYpc\jJ  
    end SbMRrWy  
    rpowers = unique(rpowers); J &=5h.G$  
    P$AHw;n[R  
    % Pre-compute the values of r raised to the required powers, Xf{p>-+DL  
    % and compile them in a matrix: LSXsq}  
    % ----------------------------- i^ILo,Q  
    if rpowers(1)==0 " ~6&rt  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); M 0G`P1o  
        rpowern = cat(2,rpowern{:}); CJ)u#PmkJ  
        rpowern = [ones(length_r,1) rpowern]; -H_#et3&i  
    else 0CX9tr2J  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); KiC,O7&<  
        rpowern = cat(2,rpowern{:}); ?=kH}'igq  
    end 33hP/p%  
    fG.6S"|M  
    % Compute the values of the polynomials: [fkt3fS  
    % -------------------------------------- 2AxKB+c1`  
    y = zeros(length_r,length(n)); MfFmJ7>Bg  
    for j = 1:length(n) R \y qM;2  
        s = 0:(n(j)-m_abs(j))/2; pm=s  
        pows = n(j):-2:m_abs(j); EF 8rh  
        for k = length(s):-1:1 biQ~q $E  
            p = (1-2*mod(s(k),2))* ... < r b5'  
                       prod(2:(n(j)-s(k)))/              ... D42!#  
                       prod(2:s(k))/                     ... 4!'4 l=jO  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... # .OCoc  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); AX )dZdd  
            idx = (pows(k)==rpowers); =}SC .E\  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ai4ro"H  
        end 7#26Smv  
         _]+ \ B  
        if isnorm T(+*y  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); vFgnbWxG  
        end eGbjk~,f'  
    end %w/:mH3FA  
    % END: Compute the Zernike Polynomials 0INlo   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @Y&(1Wl  
    S%Z2J)H"  
    % Compute the Zernike functions: o{K#LP  
    % ------------------------------ O-<nL B!Wf  
    idx_pos = m>0; hOcVxSc.  
    idx_neg = m<0; ;5aAnvgW  
    +~EFRiP]  
    z = y; p+{*&Hm5  
    if any(idx_pos) SA -r61  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /p[lOg  
    end E#M4{a1  
    if any(idx_neg) 77zDHq=  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 0BHSeO,  
    end xz vbjS W  
    7E)*]7B%  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) #[aHKq:?b  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. YU24wTe;k  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated p$OkWSi~  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive B&k"B?9mL  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, *wVWyC  
    %   and THETA is a vector of angles.  R and THETA must have the same y72=d?]W  
    %   length.  The output Z is a matrix with one column for every P-value, ;/]v mgl2  
    %   and one row for every (R,THETA) pair. \z>L,U  
    % exQU  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike EvEI5/ z  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) @z1Yj"^Pm  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) .gK>O2hI  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 QCvz|)  
    %   for all p. AqHH^adzA:  
    % kX)Xo`^Ys  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 =u#xPI0:  
    %   Zernike functions (order N<=7).  In some disciplines it is J$X{4  
    %   traditional to label the first 36 functions using a single mode >SR! *3$5  
    %   number P instead of separate numbers for the order N and azimuthal ySk'#\d  
    %   frequency M. G uLU7a  
    % k&h3"  
    %   Example: <+wbnnK  
    % VS{po:]A  
    %       % Display the first 16 Zernike functions 1:+f@#  
    %       x = -1:0.01:1; w`")^KXi  
    %       [X,Y] = meshgrid(x,x); Nhnw'9  
    %       [theta,r] = cart2pol(X,Y); ^t'mfG|DV  
    %       idx = r<=1; [h GS*  
    %       p = 0:15; O*8 .kqlgt  
    %       z = nan(size(X)); 2# y!(D8  
    %       y = zernfun2(p,r(idx),theta(idx)); muc>4!Q  
    %       figure('Units','normalized') cn~M: LW23  
    %       for k = 1:length(p) '8$*gIQ8  
    %           z(idx) = y(:,k); K~ 6[zJ4  
    %           subplot(4,4,k) ?Thh7#7LM  
    %           pcolor(x,x,z), shading interp -9Ll'fbq  
    %           set(gca,'XTick',[],'YTick',[]) X?'v FC  
    %           axis square YF]W<ZpY  
    %           title(['Z_{' num2str(p(k)) '}']) 0"*!0s ~  
    %       end *C (/ 2  
    % 2th>+M~A  
    %   See also ZERNPOL, ZERNFUN. yJj$iri  
    y$f{P:!"{3  
    %   Paul Fricker 11/13/2006 n%M-L[n  
    L1'#wH  
    VhWF(*  
    % Check and prepare the inputs: VOj{&O2c  
    % ----------------------------- 0gs0[@  
    if min(size(p))~=1 J(%Jg  
        error('zernfun2:Pvector','Input P must be vector.') Od?M4Ed(  
    end I(cy<ey+e  
    "o=*f/M  
    if any(p)>35 Dd(#   
        error('zernfun2:P36', ... 3( Y#*f|  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... rW~hFSrV[o  
               '(P = 0 to 35).']) NaR/IsN8%  
    end ~s :M l  
    &m>yY{ be  
    % Get the order and frequency corresonding to the function number: 9{{|P=  
    % ---------------------------------------------------------------- % |6t\[gn  
    p = p(:); ?f\;z<e|  
    n = ceil((-3+sqrt(9+8*p))/2); Mn- f  
    m = 2*p - n.*(n+2); `W3;LTPEb  
    @+gr>a1K#  
    % Pass the inputs to the function ZERNFUN: ] Q 'Ed  
    % ---------------------------------------- 1@ e22\  
    switch nargin @E(_H$|E  
        case 3 4QK~qAi  
            z = zernfun(n,m,r,theta); 8y<NT"  
        case 4 Z*Sa%yf  
            z = zernfun(n,m,r,theta,nflag); e~Oge  
        otherwise O#}'QZd'  
            error('zernfun2:nargin','Incorrect number of inputs.') y+ZRh?2  
    end :YZqrcr}  
    ,qx;kJJ  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) we6kV-L.  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Kq`C5  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of -`z`K08sT  
    %   order N and frequency M, evaluated at R.  N is a vector of v6gfyGCJ  
    %   positive integers (including 0), and M is a vector with the bCM&Fe0GM  
    %   same number of elements as N.  Each element k of M must be a bITc9Hqc  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) `m6>r9:  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ~$#"'Tl4J  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 0]x gE  
    %   with one column for every (N,M) pair, and one row for every @a AR99M  
    %   element in R. W/(D"[:l%  
    % d$>TC(E=t  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- rJ LlDKP-(  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is UL81x72O  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Hzr<i4Y=w9  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ]7 qn&(]  
    %   for all [n,m]. sV8}Gv a  
    % tb^8jC  
    %   The radial Zernike polynomials are the radial portion of the {1RI!#[\  
    %   Zernike functions, which are an orthogonal basis on the unit T#;W5<"  
    %   circle.  The series representation of the radial Zernike ]*I:N  
    %   polynomials is I{8fTod  
    % axJuJ`+Y  
    %          (n-m)/2 ZLsfF =/G  
    %            __ i$~2pr  
    %    m      \       s                                          n-2s Lu.D,oP  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r <Fkm7ME]  
    %    n      s=0 "/ N ?$  
    % w! J|KM  
    %   The following table shows the first 12 polynomials. $XBn:0U  
    % |eN#9Bm  
    %       n    m    Zernike polynomial    Normalization X9W'.s.[Q  
    %       --------------------------------------------- ~7!=<MW  
    %       0    0    1                        sqrt(2) QucDIZ  
    %       1    1    r                           2 L-B"P&  
    %       2    0    2*r^2 - 1                sqrt(6) l(c2 B  
    %       2    2    r^2                      sqrt(6) lSMv9 :N  
    %       3    1    3*r^3 - 2*r              sqrt(8) 4*k>M+o/C4  
    %       3    3    r^3                      sqrt(8) 9YpgzCx Z  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) )-98pp7~BB  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 7_OC&hhL  
    %       4    4    r^4                      sqrt(10) y^PQgzm]  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) r[doN{%  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) cB$OkaG#  
    %       5    5    r^5                      sqrt(12) ]><K8N3Z  
    %       --------------------------------------------- cyM9[X4rC  
    % k|C~qe3E  
    %   Example: }BF!!*  
    % |PGF g0li  
    %       % Display three example Zernike radial polynomials l ga%U~  
    %       r = 0:0.01:1; `,lm:x+(0  
    %       n = [3 2 5]; NCW<~   
    %       m = [1 2 1]; TLcev*  
    %       z = zernpol(n,m,r); a0wSXd  
    %       figure ;(&$Iw9X  
    %       plot(r,z) /KU9sIE;  
    %       grid on _f5>r(1Q  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest')  lu_kir~  
    % ;mT|0&o>#  
    %   See also ZERNFUN, ZERNFUN2. 'E\/H17  
    ^sF/-/ {?U  
    % A note on the algorithm. yH=Hrz:<eM  
    % ------------------------  :EGvI  
    % The radial Zernike polynomials are computed using the series 8v<802  
    % representation shown in the Help section above. For many special dd+hX$,  
    % functions, direct evaluation using the series representation can YkN0,6  
    % produce poor numerical results (floating point errors), because `49: !M$i  
    % the summation often involves computing small differences between Ci-CY/]s  
    % large successive terms in the series. (In such cases, the functions <E2n M,  
    % are often evaluated using alternative methods such as recurrence jv ;8Mm  
    % relations: see the Legendre functions, for example). For the Zernike Io;x~i09K  
    % polynomials, however, this problem does not arise, because the D'8xP %P  
    % polynomials are evaluated over the finite domain r = (0,1), and &GfDo4$  
    % because the coefficients for a given polynomial are generally all C vOH*K'  
    % of similar magnitude. +#RgHo?f  
    % U/#X,Bi~  
    % ZERNPOL has been written using a vectorized implementation: multiple *'-[J2  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] @<TC+M5!  
    % values can be passed as inputs) for a vector of points R.  To achieve  * Cj<Vy  
    % this vectorization most efficiently, the algorithm in ZERNPOL (v,g=BS,  
    % involves pre-determining all the powers p of R that are required to qo*%S  
    % compute the outputs, and then compiling the {R^p} into a single gcA,u)z}R  
    % matrix.  This avoids any redundant computation of the R^p, and ^KF%Z2:$  
    % minimizes the sizes of certain intermediate variables. r}\m%(i  
    % : GdLr  
    %   Paul Fricker 11/13/2006 8C=8Wjm  
    ;u?L>(b  
    (|2:^T+  
    % Check and prepare the inputs: ii5dTimRJ  
    % ----------------------------- BhzcimC)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0sP*ChY5S  
        error('zernpol:NMvectors','N and M must be vectors.') xFScj0Y  
    end X|'[\v2ld  
    `yYYyB[  
    if length(n)~=length(m) MP|$+yuR~  
        error('zernpol:NMlength','N and M must be the same length.') n`X}&(O  
    end 7P bwCRg  
    W_L;^5Y;m  
    n = n(:); j a'_syn  
    m = m(:); [{q])P;  
    length_n = length(n); P r2WF~NuO  
    Q"s]<MtdS  
    if any(mod(n-m,2)) u\3=m%1  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') {%D4%X<  
    end Y~B-dx'V  
    ATF>"Ux  
    if any(m<0) @Yw>s9X  
        error('zernpol:Mpositive','All M must be positive.') fD*jzj7o ,  
    end Oh3A?!y#  
    2f5YkmGc";  
    if any(m>n) X- j@#Qb  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 'd]t@[#  
    end ;TL>{"z`x  
    EvptGM  
    if any( r>1 | r<0 ) X`A+/{ H  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') TR9dpt+T  
    end `h~-  
    `Krk<G  
    if ~any(size(r)==1) GK[9Cm"v  
        error('zernpol:Rvector','R must be a vector.') |`'WEe2  
    end >J_(~{-sNG  
    tu^C<MV  
    r = r(:); i,mZg+;w  
    length_r = length(r); ?(Xy 2%v  
    eyy%2> b  
    if nargin==4 y$9XHubu  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); p2hPLq  
        if ~isnorm pp+z5  
            error('zernpol:normalization','Unrecognized normalization flag.') Y/f8rN  
        end v,Z?pYYo  
    else s=Xg6D  
        isnorm = false; >]x%+@{|  
    end sj&1I.@,>  
    G_ #MXFWt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H-3*},9  
    % Compute the Zernike Polynomials /k KVIlO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,WE2MAjhT  
    4MoxP  
    % Determine the required powers of r: bUe6f,8,  
    % ----------------------------------- \=H+m%  
    rpowers = []; U:gvK 8n  
    for j = 1:length(n) D2f~*!vEnA  
        rpowers = [rpowers m(j):2:n(j)]; |$[.X3i  
    end .SDE6nvbW  
    rpowers = unique(rpowers); X.AE>fx*h  
    (Ft#6oK"  
    % Pre-compute the values of r raised to the required powers, ' /3\bvZ  
    % and compile them in a matrix: _Nf%x1m5s  
    % ----------------------------- L$?YbQo7  
    if rpowers(1)==0 oN,9#*PVL  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bQHJ}aCi  
        rpowern = cat(2,rpowern{:}); 1 0tt':  
        rpowern = [ones(length_r,1) rpowern]; @Py?.H   
    else B-wF1! Jv  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Q 822 #  
        rpowern = cat(2,rpowern{:}); W{t- UK   
    end !!6g<S7)  
    HG3iK  
    % Compute the values of the polynomials: 54Vb[;`Kkb  
    % -------------------------------------- [jTZxH<  
    z = zeros(length_r,length_n); gH0Rd WX  
    for j = 1:length_n K*5Ij]j&  
        s = 0:(n(j)-m(j))/2; G5UNW<P2C  
        pows = n(j):-2:m(j); %V92q0XW  
        for k = length(s):-1:1 Efu/v<  
            p = (1-2*mod(s(k),2))* ... 3u'@anre  
                       prod(2:(n(j)-s(k)))/          ... ~zFwSF  
                       prod(2:s(k))/                 ... jsq|K=x,  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ZBjb f_M:  
                       prod(2:((n(j)+m(j))/2-s(k))); VVc-Dx  
            idx = (pows(k)==rpowers); >viLvDng  
            z(:,j) = z(:,j) + p*rpowern(:,idx); VW:Voc  
        end 6\m'MV`R!  
         %Z yt;p2  
        if isnorm =!=DISPo  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); WDh*8!)  
        end -_f-j  
    end M2M&L,/O  
    q ;e/gP2  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  6%RN-  
    58H%#3Fy  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 lc2RMu  
    {r2fIj~V  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)