切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11641阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 wPA^nZ^}9c  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! k3~9;Z  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 @"@a70WHk  
    function z = zernfun(n,m,r,theta,nflag) 96=<phcwN[  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 2 $>DX\h  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 12$0-@U  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 8@3K, [Mo  
    %   unit circle.  N is a vector of positive integers (including 0), and Z;0~f<e%  
    %   M is a vector with the same number of elements as N.  Each element U& ?hG>  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) hI[} -  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 2RiJm"   
    %   and THETA is a vector of angles.  R and THETA must have the same i"{O~[  
    %   length.  The output Z is a matrix with one column for every (N,M) uuzV,q  
    %   pair, and one row for every (R,THETA) pair. ?gH[la  
    % hor7~u+  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fF Q|dE;cF  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7"(!]+BW!O  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral .)Tj}Im2p  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 53Adic  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized B2`S0 H  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. } ueFy<F  
    % Fs+ tcr/\[  
    %   The Zernike functions are an orthogonal basis on the unit circle. ou,[0B3n0  
    %   They are used in disciplines such as astronomy, optics, and exRw, Nk4  
    %   optometry to describe functions on a circular domain. % rBz A<  
    % %sa?/pjK  
    %   The following table lists the first 15 Zernike functions. #]#9Xq  
    % b)w cGBS  
    %       n    m    Zernike function           Normalization m5Bf<E,c  
    %       -------------------------------------------------- ( ?FH`<  
    %       0    0    1                                 1 JsEJ6!1  
    %       1    1    r * cos(theta)                    2 Q|y }mC/  
    %       1   -1    r * sin(theta)                    2 ~.a"jYb7A}  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 7ZcF0h  
    %       2    0    (2*r^2 - 1)                    sqrt(3) C.j+Zb1Z(  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) U(&c@u%  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) r )|3MUj  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 1gI7$y+?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) GgO5=|  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 3?OQ-7,  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) (d9~z  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5LeZ ?'"c  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) q'3{M]Tk  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lu utyK!  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) _&KqmQ8$7  
    %       -------------------------------------------------- ) u?f| D  
    % pEyZH!W  
    %   Example 1: z]7 WC  
    % [8V;Q  
    %       % Display the Zernike function Z(n=5,m=1) Cq5.gkS<  
    %       x = -1:0.01:1; ULx:2jz  
    %       [X,Y] = meshgrid(x,x); 'nmGHorp  
    %       [theta,r] = cart2pol(X,Y); 0uy'Py@2<  
    %       idx = r<=1; !$I~3_c  
    %       z = nan(size(X)); ];bRRBEU  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); _~FfG!H ^X  
    %       figure DP_b9o \5  
    %       pcolor(x,x,z), shading interp r6<;bO(  
    %       axis square, colorbar Bk8}K=%w  
    %       title('Zernike function Z_5^1(r,\theta)') nz 10/nw  
    % zLJ>)v$81  
    %   Example 2: bpu`'Vx  
    % d3%qYL_+a  
    %       % Display the first 10 Zernike functions %-hSa~20  
    %       x = -1:0.01:1; {X,%GI  
    %       [X,Y] = meshgrid(x,x); 8t+eu O  
    %       [theta,r] = cart2pol(X,Y); /<[0o]  
    %       idx = r<=1; B4s$| i{D  
    %       z = nan(size(X)); UB~K/r`.|  
    %       n = [0  1  1  2  2  2  3  3  3  3]; zCs34=3 D[  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; )@]%:m!ER  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; iSfRJ:_&6  
    %       y = zernfun(n,m,r(idx),theta(idx)); (Tx_`rO4VY  
    %       figure('Units','normalized') |mT%IR  
    %       for k = 1:10 oXo>pl  
    %           z(idx) = y(:,k); vG|!d+  
    %           subplot(4,7,Nplot(k)) GrF4*I`q  
    %           pcolor(x,x,z), shading interp Y1r$;;sH  
    %           set(gca,'XTick',[],'YTick',[]) QE 4   
    %           axis square 0nc(2Bi  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) E|pT6  
    %       end T!/o^0w  
    % A %w9Da?B  
    %   See also ZERNPOL, ZERNFUN2. ,fjY|ip  
    B>{%$@4  
    %   Paul Fricker 11/13/2006 qI'pjTMDY  
    Iv6 lE:)  
    d+n2 c`i  
    % Check and prepare the inputs: 'O a3 6@  
    % ----------------------------- E}wT5t;u  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) lHiWzt u  
        error('zernfun:NMvectors','N and M must be vectors.') _hnsH I!oD  
    end WZa6*pF  
    V#G)w~   
    if length(n)~=length(m) T;M ;c. U  
        error('zernfun:NMlength','N and M must be the same length.') &M-vKc"d  
    end VQIvu)I  
    SIK:0>yK"  
    n = n(:); eKLvBa-{@  
    m = m(:); xMbgBx4+  
    if any(mod(n-m,2)) LhG\)>Y%  
        error('zernfun:NMmultiplesof2', ... $(}rTm  
              'All N and M must differ by multiples of 2 (including 0).') `2>p#`  
    end |E~c#lV  
    ?N4FB*x  
    if any(m>n) *eg0^ByeD  
        error('zernfun:MlessthanN', ... Xg~9<BGsi  
              'Each M must be less than or equal to its corresponding N.') Jp jHbG  
    end w|dfl *  
    >H+t ZV  
    if any( r>1 | r<0 ) QN*|_H@h  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') cvcZ\y  
    end $9%F1:u  
    NX\AQVy9  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) NV5qF/<M  
        error('zernfun:RTHvector','R and THETA must be vectors.') /? %V% n  
    end sOqFEvzo1%  
    9!Av sC9  
    r = r(:); ~d7t\S  
    theta = theta(:); RUY7Y?  
    length_r = length(r); SM~~:  
    if length_r~=length(theta) RKLE@h7[?  
        error('zernfun:RTHlength', ... DN:| s+Lz  
              'The number of R- and THETA-values must be equal.') B}[CU='P*  
    end vom3 C9o  
    )>2L(~W  
    % Check normalization: J0V m&TY  
    % -------------------- 3JC uM_y  
    if nargin==5 && ischar(nflag) F'MX9P  
        isnorm = strcmpi(nflag,'norm'); zgY VB}  
        if ~isnorm rC@VMe|0  
            error('zernfun:normalization','Unrecognized normalization flag.') =%8 yEb*5#  
        end 0SvPr [ >  
    else }etdXO_^  
        isnorm = false; ?Uq"zq  
    end OUWK  
    89>}`:xS^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Tdh(J",d  
    % Compute the Zernike Polynomials RP$u/x"b  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yF\yxdUX#  
    \me5"ZU  
    % Determine the required powers of r: 7:B/ ?E  
    % ----------------------------------- ~!ooIwNNz  
    m_abs = abs(m); YE@yts  
    rpowers = []; \k5"&]I3  
    for j = 1:length(n) 'v^Vg  
        rpowers = [rpowers m_abs(j):2:n(j)]; $'KQP8M+  
    end 7;+G)44  
    rpowers = unique(rpowers); } E ]l4N2  
    .@fA_8  
    % Pre-compute the values of r raised to the required powers, (Yz[SK=U}  
    % and compile them in a matrix: xc*a(v0  
    % ----------------------------- *rTg>)  
    if rpowers(1)==0 MWme3u)D  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); WowT!0$  
        rpowern = cat(2,rpowern{:}); #czTX%+9(e  
        rpowern = [ones(length_r,1) rpowern]; t Cb34Wpf  
    else (s&:D`e  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %|e)s_%XE  
        rpowern = cat(2,rpowern{:}); bN-!&Td  
    end !Ew ff|v"  
    ^mn!;nu  
    % Compute the values of the polynomials: @<eKk.Y?+  
    % -------------------------------------- uD@ ZM  
    y = zeros(length_r,length(n)); T; tY7;<  
    for j = 1:length(n) p _[,P7  
        s = 0:(n(j)-m_abs(j))/2; w:lj4Z_  
        pows = n(j):-2:m_abs(j); >3p~>;9sc  
        for k = length(s):-1:1 pl%!AY'oE>  
            p = (1-2*mod(s(k),2))* ... l<XYDb~op  
                       prod(2:(n(j)-s(k)))/              ... T/E=?kBR  
                       prod(2:s(k))/                     ... e_e\Ie/pDc  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... M~\dvJ$cH  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); O|sk "YXF  
            idx = (pows(k)==rpowers); >%;i@"  
            y(:,j) = y(:,j) + p*rpowern(:,idx); W:8MqVm34  
        end  FkrXM!mJ  
         Mv%Qze,\V^  
        if isnorm k 6M D3c  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <=p>0L  
        end Ea S[W?u}  
    end N `:MF 9  
    % END: Compute the Zernike Polynomials @Dfg6<0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y Iwa =^  
    [L X/O@  
    % Compute the Zernike functions: 8OZasf  
    % ------------------------------ vD@|]@gq  
    idx_pos = m>0; e4Nd  
    idx_neg = m<0; G+N1#0,q  
    ^85Eveu  
    z = y; Hmr f\(x  
    if any(idx_pos) )M dddz4  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /%g9g_rt#  
    end HSysME1X:/  
    if any(idx_neg) gdeM,A|  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); xh:I]('R  
    end %:'G={G`QH  
    d)1gpRp  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) :=y5713  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. KGM__ZO.  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated [-*&ZYp  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive *gH]R*Q[Rt  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, JWd[zJ[  
    %   and THETA is a vector of angles.  R and THETA must have the same u ,3B[  
    %   length.  The output Z is a matrix with one column for every P-value, iH4LZ  
    %   and one row for every (R,THETA) pair. H2BRI d  
    % #dae^UjM  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike #?w07/~L  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) [TOo 9W  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) NH|I>vyN  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 g8uqW1E^  
    %   for all p. x3&gB`j-  
    % 3!l>\#q6  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 xx!8cvD4?  
    %   Zernike functions (order N<=7).  In some disciplines it is 0\:= KIY.  
    %   traditional to label the first 36 functions using a single mode }qso} WI  
    %   number P instead of separate numbers for the order N and azimuthal _l9fNf!@  
    %   frequency M. Q// @5m_  
    % }qM^J;uy  
    %   Example: P4Pc;8T@!  
    % zEFS\nP}E  
    %       % Display the first 16 Zernike functions KbLSK  
    %       x = -1:0.01:1; ?d3K:|g  
    %       [X,Y] = meshgrid(x,x); *@''OyL  
    %       [theta,r] = cart2pol(X,Y); L0"|4=  
    %       idx = r<=1; r{v3 XD/  
    %       p = 0:15; Uo >aQk  
    %       z = nan(size(X)); %urvX$r4K  
    %       y = zernfun2(p,r(idx),theta(idx)); }R<t=):  
    %       figure('Units','normalized') Q&:)D7m\)S  
    %       for k = 1:length(p) 5(ZOm|3ix  
    %           z(idx) = y(:,k); aI&~aezmN  
    %           subplot(4,4,k) 4,LS08&gh  
    %           pcolor(x,x,z), shading interp FDD=I\Ic  
    %           set(gca,'XTick',[],'YTick',[]) AB/${RGf+  
    %           axis square AuQ|CXG-\  
    %           title(['Z_{' num2str(p(k)) '}']) -c&=3O!  
    %       end %TQ4 ZFD3  
    % + )Qu,%2   
    %   See also ZERNPOL, ZERNFUN. SX"|~Pi(  
    ij0I!ilG4  
    %   Paul Fricker 11/13/2006 v_5qE  
    sPi  
    "O>~osj  
    % Check and prepare the inputs: P^<3 Z)L  
    % ----------------------------- [<f2h-V$  
    if min(size(p))~=1 [T_[QU:A  
        error('zernfun2:Pvector','Input P must be vector.') }d}gb`Du  
    end qI9j=4s.  
    G,!jP2S  
    if any(p)>35 >u> E !5O  
        error('zernfun2:P36', ... dPu27 "  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 9f0`HvHC  
               '(P = 0 to 35).']) ]Ik~TW&  
    end &D M3/^70  
    )1Bz0:  
    % Get the order and frequency corresonding to the function number: $a~  
    % ---------------------------------------------------------------- E>QS^)ih  
    p = p(:); -lJ|x>PG'  
    n = ceil((-3+sqrt(9+8*p))/2); hx0t!k(3  
    m = 2*p - n.*(n+2); f?. VVlD  
    mbbhz,  
    % Pass the inputs to the function ZERNFUN: O~qRHYv  
    % ---------------------------------------- J.XkdGQ  
    switch nargin c9[{P~y  
        case 3 >97YK =  
            z = zernfun(n,m,r,theta); HE+'fQ!R  
        case 4 >I@&"&d  
            z = zernfun(n,m,r,theta,nflag); sZ=!*tb-  
        otherwise v];YC6shx  
            error('zernfun2:nargin','Incorrect number of inputs.') D Z*c.|W  
    end DL V ny]  
    wqDf\k}'v  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Ec<33i]h*p  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. A v>v\ :.>  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ROTKK8:+:  
    %   order N and frequency M, evaluated at R.  N is a vector of <UO[*_,\  
    %   positive integers (including 0), and M is a vector with the OH>Gc-V  
    %   same number of elements as N.  Each element k of M must be a ?wkT=mv  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) s2,6aW C  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is cu1!WD  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix AB%i|t  
    %   with one column for every (N,M) pair, and one row for every m#WXZr  
    %   element in R. *P\lzM  
    % P'B|s /)  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- L=;T$4+p  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is &I ~'2mpk  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to x_O:IK.>  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 x$jLB&+ICz  
    %   for all [n,m]. a=ZVKb  
    % lGahwn:  
    %   The radial Zernike polynomials are the radial portion of the =),ZZD#J  
    %   Zernike functions, which are an orthogonal basis on the unit .7 j#F  
    %   circle.  The series representation of the radial Zernike 7)D[}UXz  
    %   polynomials is RU/WI<O  
    % O D5qPovsd  
    %          (n-m)/2 T0fm6 J  
    %            __ p&\QkI=  
    %    m      \       s                                          n-2s Heqr1btK  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r n\ Lsm  
    %    n      s=0 :s+?"'DP  
    % Zt41fPQ  
    %   The following table shows the first 12 polynomials. ,^ ,R .T  
    % T*B`8P  
    %       n    m    Zernike polynomial    Normalization VG7#C@>Z  
    %       --------------------------------------------- &b:y#gvJ:  
    %       0    0    1                        sqrt(2) rgXX,+cO  
    %       1    1    r                           2 1h`F*:nva  
    %       2    0    2*r^2 - 1                sqrt(6) Edc3YSg%;  
    %       2    2    r^2                      sqrt(6) lrkgsv6  
    %       3    1    3*r^3 - 2*r              sqrt(8) /AX)n:,  
    %       3    3    r^3                      sqrt(8) "MzBy)4Q  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) bhDqRM  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) <}&J|()  
    %       4    4    r^4                      sqrt(10) 30w(uF  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ~~WY?I-  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) n=DmdQ}  
    %       5    5    r^5                      sqrt(12) g}6M+QNj  
    %       --------------------------------------------- lhE]KdE3  
    % i\ 7JQZ  
    %   Example: 'p!&&.%  
    % Yt_tAm  
    %       % Display three example Zernike radial polynomials !j  #8zN  
    %       r = 0:0.01:1; MsIaMW_  
    %       n = [3 2 5]; k=d _{2 ~  
    %       m = [1 2 1];  fZap\  
    %       z = zernpol(n,m,r); &<&eKq  
    %       figure zGd[sjL  
    %       plot(r,z) GRj [2I7:  
    %       grid on DV?c%z`YO  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') '%|Um3);0p  
    % ;O>zA]Z8r  
    %   See also ZERNFUN, ZERNFUN2. YJwI@E(l$  
    9^sz,auB  
    % A note on the algorithm. eGKvzu  
    % ------------------------ 2sqH > fen  
    % The radial Zernike polynomials are computed using the series M?sTz@tqq  
    % representation shown in the Help section above. For many special \ D>!&   
    % functions, direct evaluation using the series representation can Rbgy?8#9  
    % produce poor numerical results (floating point errors), because mm!JNb9(  
    % the summation often involves computing small differences between p+nB@fN/  
    % large successive terms in the series. (In such cases, the functions =mwAbh)[7n  
    % are often evaluated using alternative methods such as recurrence u&`rK7 J  
    % relations: see the Legendre functions, for example). For the Zernike w?fq%-6f*  
    % polynomials, however, this problem does not arise, because the FD~uUZTM  
    % polynomials are evaluated over the finite domain r = (0,1), and =yJc pj  
    % because the coefficients for a given polynomial are generally all y9i+EV  
    % of similar magnitude. uu0t}3l  
    % .db:mSrL  
    % ZERNPOL has been written using a vectorized implementation: multiple 1,P2}mYv  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] W`#E[g?]  
    % values can be passed as inputs) for a vector of points R.  To achieve {^:i}4ZRl  
    % this vectorization most efficiently, the algorithm in ZERNPOL +:C.G[+  
    % involves pre-determining all the powers p of R that are required to W+V &  
    % compute the outputs, and then compiling the {R^p} into a single (L1O;~$  
    % matrix.  This avoids any redundant computation of the R^p, and !8 l &%  
    % minimizes the sizes of certain intermediate variables. B.Z5+MgM  
    % @v6{U?  
    %   Paul Fricker 11/13/2006 ?ODBW/{[G  
    5}9rpN{y  
    C?g*c  
    % Check and prepare the inputs: >"]t4]GVf  
    % ----------------------------- [--] ?Dr  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) C91'dM  
        error('zernpol:NMvectors','N and M must be vectors.') xJ\sm8  
    end 7S_"h*Ud  
    2mthUq9b*  
    if length(n)~=length(m) ?[5_/0L,=  
        error('zernpol:NMlength','N and M must be the same length.') YpSK |(  
    end v~!_DD au  
    8Sf}z@~]  
    n = n(:); ,I f9w$(z  
    m = m(:); \S?;5LacZ  
    length_n = length(n); NU7k2`bqAk  
    Co<F<eXe  
    if any(mod(n-m,2)) ]>(pQD  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Hg(nC*#/Q  
    end dlV HyCW  
    |JUAR{  
    if any(m<0) @G>&Gu;5  
        error('zernpol:Mpositive','All M must be positive.') 'Hq#9?<2M  
    end 2DBFY1[Pk  
    ]A_A4=[w  
    if any(m>n) S }G3ha  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') b:*( f#"q  
    end b~rlh=(o#_  
    Zr!CT5C5  
    if any( r>1 | r<0 ) > lK:~~1  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') d^aLue>g;+  
    end LtDGu})1  
    .uo:fxbd2  
    if ~any(size(r)==1) Eds{-x|10  
        error('zernpol:Rvector','R must be a vector.') kqS_2[=]  
    end d+7Dy3i|g=  
    2s`~<EF N  
    r = r(:); iS8yJRy  
    length_r = length(r); KJ6:ZTbW  
    Bn d Y\  
    if nargin==4 aD?ySc}  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); G9c2kX.Bf  
        if ~isnorm \v.YP19  
            error('zernpol:normalization','Unrecognized normalization flag.') YksJ$yH^  
        end q9m-d-!)  
    else rgrsNr:1  
        isnorm = false; lH oV>k  
    end J*f..:m  
    }zwHUf9q1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hjoxx F\_  
    % Compute the Zernike Polynomials + gP 4MP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ca!x{,Cvnj  
    'miY"L:| O  
    % Determine the required powers of r: C@FX[:l@-  
    % ----------------------------------- rt!Uix&  
    rpowers = []; n@| &jh  
    for j = 1:length(n) v>p~y u+G  
        rpowers = [rpowers m(j):2:n(j)]; O(44Dy@2  
    end Z= /bD*\g  
    rpowers = unique(rpowers); T#G (&0J5  
    <nT).S>+  
    % Pre-compute the values of r raised to the required powers, .Vb\f  
    % and compile them in a matrix: { BDUl3T  
    % ----------------------------- `n`aA)|<  
    if rpowers(1)==0 5Og=`T  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); gK"E4{y_@  
        rpowern = cat(2,rpowern{:}); 0 8 aZU  
        rpowern = [ones(length_r,1) rpowern]; P<gr=&  
    else J*'#! xIa  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); D4CiB"g3*  
        rpowern = cat(2,rpowern{:}); 3SWO_  
    end _,9/g^<  
    C{Er%  
    % Compute the values of the polynomials:  Wfyap)y  
    % -------------------------------------- LIDYKKDJ^  
    z = zeros(length_r,length_n); n g?kl|VG  
    for j = 1:length_n niP/i  
        s = 0:(n(j)-m(j))/2; hiA%Tq?  
        pows = n(j):-2:m(j); qHQ#^jH  
        for k = length(s):-1:1 )o@-h85";  
            p = (1-2*mod(s(k),2))* ... WscNjWQ^TD  
                       prod(2:(n(j)-s(k)))/          ... q`DilZ]S  
                       prod(2:s(k))/                 ... hA_Y@&=W  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... W"L;8u  
                       prod(2:((n(j)+m(j))/2-s(k))); bMpCQ  
            idx = (pows(k)==rpowers); Oe*+pReSD  
            z(:,j) = z(:,j) + p*rpowern(:,idx); vT>ki0P_;  
        end 6H_7M(f  
         |LNAd:0  
        if isnorm /SDDCZ`;|c  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ^l"  
        end Q:~>$5Em5  
    end %.*?i9}  
    6S2v3  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  :wJ=t/ho  
    18|i{fE;  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 JfmNI~%  
    0W|}5(C  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)