非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 9w1`_r[J
function z = zernfun(n,m,r,theta,nflag) Oz"_KMz
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. A+fXt`YNM
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N r*FAUb`bG
% and angular frequency M, evaluated at positions (R,THETA) on the j|[ >f
% unit circle. N is a vector of positive integers (including 0), and \"Qa)1|
% M is a vector with the same number of elements as N. Each element f%q ?
% k of M must be a positive integer, with possible values M(k) = -N(k) $wl_
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, V%`\x\Xat
% and THETA is a vector of angles. R and THETA must have the same 3XncEdy_
% length. The output Z is a matrix with one column for every (N,M) 2cZgG^
% pair, and one row for every (R,THETA) pair. i7&ay\+@
% 3]7j,1^
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @jZ1WHS_a
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ak3V< =gx
% with delta(m,0) the Kronecker delta, is chosen so that the integral C[><m2T
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Nkn2\w
% and theta=0 to theta=2*pi) is unity. For the non-normalized FyChH7
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. dChMjaix
% jFI`CA6P
% The Zernike functions are an orthogonal basis on the unit circle. D23 c/8K
% They are used in disciplines such as astronomy, optics, and SXNde@%
{
% optometry to describe functions on a circular domain. '<6DLtZl
% on1B~?*D
% The following table lists the first 15 Zernike functions. I`x[1%y2 F
% IUD@Kf]S
% n m Zernike function Normalization `1lGAKv
% -------------------------------------------------- sdN1BV2
% 0 0 1 1 n-OQCz9Xl
% 1 1 r * cos(theta) 2 ,Z8)DC=
% 1 -1 r * sin(theta) 2 ROO@EQ#`Z
% 2 -2 r^2 * cos(2*theta) sqrt(6) TrQUhmS/!
% 2 0 (2*r^2 - 1) sqrt(3) T5dnj&N ]
% 2 2 r^2 * sin(2*theta) sqrt(6) [7,q@>:CS
% 3 -3 r^3 * cos(3*theta) sqrt(8) NFqGbA|
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8)
L08lkq,
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 7s Gf_`Z
% 3 3 r^3 * sin(3*theta) sqrt(8) N_l_^yD
% 4 -4 r^4 * cos(4*theta) sqrt(10) F4IU2_CnPD
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <driD'=F
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) B'b OK`p
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [*
|+ it+!
% 4 4 r^4 * sin(4*theta) sqrt(10) "kjSg7m*:
% -------------------------------------------------- p@oz[017/J
% @]Ac >&
% Example 1: z:&/O&?
% D J7U6{KLq
% % Display the Zernike function Z(n=5,m=1) T`GiM%R;g
% x = -1:0.01:1; y<c7RK]
% [X,Y] = meshgrid(x,x); !x") uYf
% [theta,r] = cart2pol(X,Y); ^zfs8]QSf
% idx = r<=1; ~_wSB[z
% z = nan(size(X)); 7j88^59
% z(idx) = zernfun(5,1,r(idx),theta(idx)); {+EnJ"
% figure ?}(B8^
% pcolor(x,x,z), shading interp RNt9Qdr4y
% axis square, colorbar 3u<
ntx ><
% title('Zernike function Z_5^1(r,\theta)') SF da?>
% fm!\**Q1
% Example 2: `v)ZOw9&
% F45-M[z
% % Display the first 10 Zernike functions 20I/En
% x = -1:0.01:1; pnXwE-c_
% [X,Y] = meshgrid(x,x); jsP+,brO
% [theta,r] = cart2pol(X,Y); 1\g r
;b
% idx = r<=1; r;+a%?P
% z = nan(size(X)); (O&HCT|
% n = [0 1 1 2 2 2 3 3 3 3]; 8isQL
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; R*2F)e\|
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ex66GJQe1
% y = zernfun(n,m,r(idx),theta(idx));
{BgJ=0g?
% figure('Units','normalized') 8\jsGN.$JZ
% for k = 1:10 #7KR`H
% z(idx) = y(:,k); R*r"};
% subplot(4,7,Nplot(k)) %"WhD'*z}
% pcolor(x,x,z), shading interp
[X*u`J
% set(gca,'XTick',[],'YTick',[]) T1'\!6_5
% axis square p1W6 s0L
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Y~?Z'uR
% end $EzWUt
% PKQ.gPu6*@
% See also ZERNPOL, ZERNFUN2. <(H<*Xf9
^F&j;8U
% Paul Fricker 11/13/2006 ~YByyJG
-FJLM
gdq6jz
% Check and prepare the inputs: CTxP3a9]
% ----------------------------- 2jxIr-a1G
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) G,<l}(tEG
error('zernfun:NMvectors','N and M must be vectors.') :zNNtv iA
end :}-?X\|\
mu5r4W47
if length(n)~=length(m) O 0$V+fE
error('zernfun:NMlength','N and M must be the same length.') q([{WZ:6Oq
end >?6HUUQ
}6=?
zs}
n = n(:); #%w)w R3
m = m(:); Z]x6np
if any(mod(n-m,2)) D4uAwmc
error('zernfun:NMmultiplesof2', ... ]&dPY[~,/i
'All N and M must differ by multiples of 2 (including 0).') 6Nt/>[
end %?Q&a ]
^aQ&.q
if any(m>n) N
Hn#c3o
error('zernfun:MlessthanN', ... {s@ 0<!
'Each M must be less than or equal to its corresponding N.') SpYmgL?wJ
end K}2G4*8S_G
Zxozhmg
if any( r>1 | r<0 ) b*/Mco 9O
error('zernfun:Rlessthan1','All R must be between 0 and 1.') `zB bB^\`W
end GLX{EG9Z
X(\L1N
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) WW2hwB(
error('zernfun:RTHvector','R and THETA must be vectors.') )lz~Rt;1i
end 7[!dm_
B9%%jEH*
r = r(:); yH>C7M7t
theta = theta(:); `uZMln @
length_r = length(r); $15H_X*!
if length_r~=length(theta) R[)bGl6#
error('zernfun:RTHlength', ... ?%Ww3cU+J
'The number of R- and THETA-values must be equal.') UEhFId
end c{KJNH%7
(E,Ibz2G:e
% Check normalization: 6 jm@`pYbE
% -------------------- !l Egta[Ql
if nargin==5 && ischar(nflag) |I29m`
isnorm = strcmpi(nflag,'norm'); +r9neS.l
if ~isnorm E.+%b;Eqe
error('zernfun:normalization','Unrecognized normalization flag.') T7Y}v,+-
end w=a$]`
else WuFBt=%
isnorm = false; _:WNk(
end #TC}paIpj
ST0TWE'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Jb^{o+s53
% Compute the Zernike Polynomials ^!0z+M:>^
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M ?AX:0
vxLr034
% Determine the required powers of r: 8n-Xt7z
% ----------------------------------- K+XUC
m_abs = abs(m); 9%"`9j~H>
rpowers = []; fOME&$=O
for j = 1:length(n) 3D1y^I
rpowers = [rpowers m_abs(j):2:n(j)]; ~8"oH5
end <RZqs
rpowers = unique(rpowers); dv+ZxP%g
9q
2 vT^
% Pre-compute the values of r raised to the required powers, o4J@M{xb_
% and compile them in a matrix: -sZb+2tDa
% ----------------------------- aM(#J7;
if rpowers(1)==0 ~PpDrJ; Va
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &43c/TSb
rpowern = cat(2,rpowern{:}); +6
=lN[b
rpowern = [ones(length_r,1) rpowern]; T93st<F=R
else YOj&1ymBZ
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); odC"#Rb
rpowern = cat(2,rpowern{:}); jD}h`(bE
end B]:|;d
9V[}#(f$
% Compute the values of the polynomials: i3Bpim.
% -------------------------------------- ",J&UTUh
y = zeros(length_r,length(n)); N)AlQ'Lwx
for j = 1:length(n) &;)B
qqXc
s = 0:(n(j)-m_abs(j))/2; `JpFqZ'58
pows = n(j):-2:m_abs(j); ey,f igjd.
for k = length(s):-1:1 ,UNk]vd
p = (1-2*mod(s(k),2))* ... LExm#T`
prod(2:(n(j)-s(k)))/ ... Lo#G. s|
prod(2:s(k))/ ... R=<::2_Y96
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0"T/a1S7bl
prod(2:((n(j)+m_abs(j))/2-s(k))); dJ Q K|/
idx = (pows(k)==rpowers); ViMl{3
y(:,j) = y(:,j) + p*rpowern(:,idx); "DfjUk
end >]ZE<.
]'M B3@T
if isnorm HLG5SS7
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .`5|NUhN
end nqo1+OR
end $I>]61l%
% END: Compute the Zernike Polynomials `O%nDry
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cL~WDW/
6)ln,{
% Compute the Zernike functions: xW*Lceb
% ------------------------------ kWVk^,
idx_pos = m>0; 0Xw>_#Y/xS
idx_neg = m<0; .UQ|k,,t
cNxxX!P/
z = y; ge.>#1f}
if any(idx_pos) Z"_8l3
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -N wic|
end VPuR4p.
if any(idx_neg) REE.8_
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); <tZZ]Y]
end DB-79U %W
X&LJ"ahK
% EOF zernfun