非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ?),K=E+=U
function z = zernfun(n,m,r,theta,nflag) r0XGGLFuZl
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. E rRMiT
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4tN~UMw?
% and angular frequency M, evaluated at positions (R,THETA) on the ^,\se9=(
% unit circle. N is a vector of positive integers (including 0), and _ZvX" {y~
% M is a vector with the same number of elements as N. Each element XQ?)
% k of M must be a positive integer, with possible values M(k) = -N(k) H6+st`{
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ^dp[Z,[1z
% and THETA is a vector of angles. R and THETA must have the same =*O9)$b
% length. The output Z is a matrix with one column for every (N,M) @o-evH;G
% pair, and one row for every (R,THETA) pair. vA $BBXX
% L:]; [xa%
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike #IciNCIrG
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ,1 9" [:WN
% with delta(m,0) the Kronecker delta, is chosen so that the integral DW;.R<8
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )7 BNzj"~
% and theta=0 to theta=2*pi) is unity. For the non-normalized ;kcFQed\w
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^<H#dkECG
% UW~tS
% The Zernike functions are an orthogonal basis on the unit circle. ,HjHt\!~<
% They are used in disciplines such as astronomy, optics, and TuT=
% optometry to describe functions on a circular domain. >?Y3WPB<F
% jl|X$w
% The following table lists the first 15 Zernike functions. Uu<sntyv
% }N=zn7W
% n m Zernike function Normalization W71#NjM2Z
% -------------------------------------------------- :r[-7
[/
% 0 0 1 1 FV<^q|K/(]
% 1 1 r * cos(theta) 2 "\P~Re"EH
% 1 -1 r * sin(theta) 2 fTnyCaB
% 2 -2 r^2 * cos(2*theta) sqrt(6) sZ(Q4)r
% 2 0 (2*r^2 - 1) sqrt(3) N/SB}Fj
% 2 2 r^2 * sin(2*theta) sqrt(6) $[9V'K
% 3 -3 r^3 * cos(3*theta) sqrt(8) MZ#2WP)F
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) UHm+5%ZC
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Y K 62#;
% 3 3 r^3 * sin(3*theta) sqrt(8) UmHb-uk ;
% 4 -4 r^4 * cos(4*theta) sqrt(10) Sv[_BP\^h
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Op)R3qt{
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) gbi~!S-
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (%^TTe
% 4 4 r^4 * sin(4*theta) sqrt(10) KLM^O$=
% -------------------------------------------------- 4rCqN.J
% X\:(8C;+
% Example 1: gl4
f9Ff
% "Kf~`0P
% % Display the Zernike function Z(n=5,m=1) xn#I7]]G
% x = -1:0.01:1; t7&
GCZ
% [X,Y] = meshgrid(x,x); aIyY%QT
% [theta,r] = cart2pol(X,Y); a[OLS+zf!P
% idx = r<=1; dJgOfg^
% z = nan(size(X)); H5rNLfw
'
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Kwmo)|7uPU
% figure 1 jd=R7
% pcolor(x,x,z), shading interp ,}$x'8v
% axis square, colorbar jF2GHyB
% title('Zernike function Z_5^1(r,\theta)') i}12mjF
% 5 s2}nIe
% Example 2: Y
.X-8
% vG=$UUh@~
% % Display the first 10 Zernike functions P=hf/jOv9
% x = -1:0.01:1; \% Ih 6
% [X,Y] = meshgrid(x,x); )=y6s^}
% [theta,r] = cart2pol(X,Y); 9!<3qx/
% idx = r<=1; `e:RZ
% z = nan(size(X)); M(gWd8?#
% n = [0 1 1 2 2 2 3 3 3 3]; <qZ+U4@I)
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; fae yk]u
% Nplot = [4 10 12 16 18 20 22 24 26 28]; B~?Q. <M
% y = zernfun(n,m,r(idx),theta(idx)); n/|`Dz.
% figure('Units','normalized') 6aK2{-+
% for k = 1:10 "PP0PL^5F
% z(idx) = y(:,k); B$eF@v"
% subplot(4,7,Nplot(k)) GOgT(.5
% pcolor(x,x,z), shading interp mAERZ<I
% set(gca,'XTick',[],'YTick',[]) :l[Q
% axis square Ny<G2!W
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) zb*4Nsda:
% end YuuG:Kk
% -s84/E4Y*
% See also ZERNPOL, ZERNFUN2. +m},c-,=$w
E^ti!4{<
% Paul Fricker 11/13/2006 !!pi\J?sk
uw&,pq
d|HM
% Check and prepare the inputs: 0X6o
% ----------------------------- YR`rg;n#
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) M?CMN.Dw
error('zernfun:NMvectors','N and M must be vectors.') qf {B
end jCa;g{#@
~&jCz4M
if length(n)~=length(m) 3Q"+
#Ob
error('zernfun:NMlength','N and M must be the same length.') XsMphZnK
end +u)$o
)}lV41u
n = n(:); M- A}(r +J
m = m(:); I=-;*3g6
if any(mod(n-m,2)) ^aMdbB
error('zernfun:NMmultiplesof2', ... f@g
'All N and M must differ by multiples of 2 (including 0).') 0u9h2/ma
end y=`(`|YW}`
(pg9cM]NA
if any(m>n) N*-Z Jv
error('zernfun:MlessthanN', ... D'+8]B
'Each M must be less than or equal to its corresponding N.') B)NB6dCp
end jg/<"/E
jzw?V9Ijb
if any( r>1 | r<0 ) |`/uS;O
error('zernfun:Rlessthan1','All R must be between 0 and 1.') q,Q|Uvpk
end gWPa8q<b
<us{4%
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) MPc=cLv
error('zernfun:RTHvector','R and THETA must be vectors.') =hlu,
B y
end "|rqt.f2[
^a5>`W
r = r(:); %tLq&tyeY
theta = theta(:); Sa~C#[V
length_r = length(r); iB-s*b<`~
if length_r~=length(theta) K@hUif|([
error('zernfun:RTHlength', ... x~^nlnKVf
'The number of R- and THETA-values must be equal.') 0&~u0B{
end '& :"/4@)
CB1u_E_
% Check normalization: 5w9<_W0d
% -------------------- 2N]s}/l
if nargin==5 && ischar(nflag) .@V>p6MV
isnorm = strcmpi(nflag,'norm'); ARo5 Ss{
if ~isnorm YJ$
=`lIM
error('zernfun:normalization','Unrecognized normalization flag.') TQH#sx
end S\(_"xJPp
else U @|_5[nl
isnorm = false; e:<>
Yq+
end vS#]RW&j
5K<C
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X;tk\Ixd
% Compute the Zernike Polynomials _{%H*PxTn=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K(2s%
@d|9(,Q
% Determine the required powers of r: (#qVtN`t
% ----------------------------------- "
cg>g/
m_abs = abs(m); cO9Aw !
rpowers = []; |zKcL3*
for j = 1:length(n) F^-4Pyq@
rpowers = [rpowers m_abs(j):2:n(j)]; a6_`V;
end %b9M\
rpowers = unique(rpowers); ,?+yu6eLb
3}+
\&[
% Pre-compute the values of r raised to the required powers, ,d#4Ib
% and compile them in a matrix: I5]zOKlVR
% ----------------------------- )3
if rpowers(1)==0 '>BHwc
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?a@l.ZM*
rpowern = cat(2,rpowern{:}); ";]m]PRAam
rpowern = [ones(length_r,1) rpowern]; jC%I]#!n
else h>?OWI
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); , fn=%tiUk
rpowern = cat(2,rpowern{:}); }{J8U2])k
end ^Tx1y[hw$
&PX'=UT
% Compute the values of the polynomials: sTDBK!9I
% -------------------------------------- m`~ Qr~
y = zeros(length_r,length(n)); vNIQc "\-
for j = 1:length(n) MZ'HMYed
s = 0:(n(j)-m_abs(j))/2; 2X`M&)"X
pows = n(j):-2:m_abs(j); |wx1
[xZ
for k = length(s):-1:1 {;U:0BPI3
p = (1-2*mod(s(k),2))* ... :nI.Qa'"H
prod(2:(n(j)-s(k)))/ ... 2ip~qZNw><
prod(2:s(k))/ ... r+Y1m\
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... v]v f(]""
prod(2:((n(j)+m_abs(j))/2-s(k))); "'Ik{wGc
idx = (pows(k)==rpowers); YQ/*|
y(:,j) = y(:,j) + p*rpowern(:,idx); 4)_ [)MZ\j
end H@zpw1fH+
aH_&=/-Tz
if isnorm aO1cd_d6x_
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); F+GQ l
end 43Q&<r$[T
end |@RO&F
% END: Compute the Zernike Polynomials <OUApp H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4/b#$o<I?
H\T
h4teE
% Compute the Zernike functions: hjE9[{K
% ------------------------------ LHps2,
idx_pos = m>0; 7Do)++t
idx_neg = m<0; 8Bhng;jX
@cON"(
z = y; =LR UasF
if any(idx_pos) KGIz)/eSg
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); V4 7Fp
end e042`&9=Ic
if any(idx_neg) Nn$$yUkMX
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); g!$
"CX%8
end L>B0%TP^
p:
o*=
% EOF zernfun