切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11042阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 lB!`,>"c  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! `|K,E  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 hT6:7 _UD  
    function z = zernfun(n,m,r,theta,nflag) 3ojK2F(1D  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. b~06-dk1  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "?,3O2t  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 1!/+~J[#  
    %   unit circle.  N is a vector of positive integers (including 0), and |Hn[XRsf  
    %   M is a vector with the same number of elements as N.  Each element 9[DQ[bL  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) )6)|PzMQ'  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, BOJ h-(>I  
    %   and THETA is a vector of angles.  R and THETA must have the same TRz~rW k  
    %   length.  The output Z is a matrix with one column for every (N,M) 3(P^PP8  
    %   pair, and one row for every (R,THETA) pair. Pb?H cg  
    % `XYT:'   
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ';V(sRU@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), i]GBu  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Gb 61X6  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, jIE>t5 fy  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Wq)'0U;{$  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~J2-B2S!  
    % Z_' %'&Y  
    %   The Zernike functions are an orthogonal basis on the unit circle. o^RdVSkU;  
    %   They are used in disciplines such as astronomy, optics, and n ! qm  
    %   optometry to describe functions on a circular domain. cb&y8!ci~  
    % QxnP+U~N  
    %   The following table lists the first 15 Zernike functions. N&NOh|YS  
    % R+]p -NI^  
    %       n    m    Zernike function           Normalization D,xWc|V  
    %       -------------------------------------------------- Z{#^lhHx  
    %       0    0    1                                 1 DjOFfD\MF  
    %       1    1    r * cos(theta)                    2 .Q"3 [  
    %       1   -1    r * sin(theta)                    2 y- k?_$ M  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) )xQxc.  
    %       2    0    (2*r^2 - 1)                    sqrt(3) J'9&dt  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 4W9!_:j(j  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) q`1t*<sk  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) qU8UKIP  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) >0 !J]gK  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) =\4w" /Y  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) jbIWdHZ/US  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) js`zQx'  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) zq!2);,  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?f']*pD8  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) %fP^Fh   
    %       -------------------------------------------------- W3UK[_qK  
    % 6AUzS4O  
    %   Example 1: R,Zuy( g  
    % u4VQx,,  
    %       % Display the Zernike function Z(n=5,m=1) lk.Q6saI1  
    %       x = -1:0.01:1; ]p'Qk  
    %       [X,Y] = meshgrid(x,x); fH`1dU  
    %       [theta,r] = cart2pol(X,Y); k`g+    
    %       idx = r<=1; vlIdi@V  
    %       z = nan(size(X)); <eN>X:_N  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ^\N2 Iu>6  
    %       figure /l(:H  
    %       pcolor(x,x,z), shading interp }"m@~kg=  
    %       axis square, colorbar EoU}@MjM~  
    %       title('Zernike function Z_5^1(r,\theta)') S-2xe?sb  
    % w**.8]A"N  
    %   Example 2: IUd>jHp`6  
    % $L</{bXW  
    %       % Display the first 10 Zernike functions )\mklM9Z  
    %       x = -1:0.01:1; um ,/^2A  
    %       [X,Y] = meshgrid(x,x); !c6 lP'U  
    %       [theta,r] = cart2pol(X,Y); 3tXtt@Yy  
    %       idx = r<=1; z*yN*M6t  
    %       z = nan(size(X)); bSz6O/A/  
    %       n = [0  1  1  2  2  2  3  3  3  3]; *\VQ%_wg  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; e}[$ =  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; t ?bq ~!X  
    %       y = zernfun(n,m,r(idx),theta(idx)); \!cqeg*53  
    %       figure('Units','normalized') ~fCD#D2KU  
    %       for k = 1:10 d0-}Xl  
    %           z(idx) = y(:,k); }d.R=A9L  
    %           subplot(4,7,Nplot(k)) ?9?0M A<[i  
    %           pcolor(x,x,z), shading interp )>\Ne~%  
    %           set(gca,'XTick',[],'YTick',[]) ?rBj{]=  
    %           axis square 2#+@bk>^{  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7%7_i%6wP  
    %       end |:!0`p{R  
    % iZjvO`@[  
    %   See also ZERNPOL, ZERNFUN2. EXJ>Z  
    -D!F|&$  
    %   Paul Fricker 11/13/2006 Kq{s^G  
    W!tP sPM  
    |{ 9"n<JW  
    % Check and prepare the inputs: 9,y&?GLP  
    % ----------------------------- f[|xp?ef  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) d=>5%$:v  
        error('zernfun:NMvectors','N and M must be vectors.') :hMuxHr  
    end :~T:&;q0  
    W:5m8aE\  
    if length(n)~=length(m) y|MW-|0=!  
        error('zernfun:NMlength','N and M must be the same length.') :eIB K  
    end #mllVQ  
    4uNcp0  
    n = n(:); hJd#Gc~*M  
    m = m(:); 1Eg}qU,:  
    if any(mod(n-m,2)) }Bc6:a  
        error('zernfun:NMmultiplesof2', ... Wb4sfP_  
              'All N and M must differ by multiples of 2 (including 0).') m%Ef]({I  
    end Pi8U}lG;  
    %{HqF>=~  
    if any(m>n) 'kh%^_FH7  
        error('zernfun:MlessthanN', ... L\-T[w),z7  
              'Each M must be less than or equal to its corresponding N.') ~(%G; fZ?x  
    end  bM-Y4[  
    @Rx/]wyH  
    if any( r>1 | r<0 ) QGshc  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') .IKK.G  
    end D J<c  
    'm2,7]  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) cA/2,i  
        error('zernfun:RTHvector','R and THETA must be vectors.') ^ g4)aaBZ  
    end s#d# *pgzh  
    *g=*}2  
    r = r(:); MI@ RdXkY  
    theta = theta(:); ^ MddfBwk  
    length_r = length(r); $~:hv7%  
    if length_r~=length(theta) qA"?5j32  
        error('zernfun:RTHlength', ... ikxSWO_Y=  
              'The number of R- and THETA-values must be equal.') Ab(bvS8r$  
    end EI_J7J+  
    &[Sw:{&*jv  
    % Check normalization: _X]?  
    % -------------------- ,U2D &{@  
    if nargin==5 && ischar(nflag) IvO3*{k ,  
        isnorm = strcmpi(nflag,'norm'); i5AhF\7F9  
        if ~isnorm RMvlA' c  
            error('zernfun:normalization','Unrecognized normalization flag.') 1i>)@{P&BN  
        end S((8DSt*  
    else }Ns_RS$  
        isnorm = false; ~(&xBtg:}  
    end f a\cLC  
    /NkZ;<uxJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]3I_H+hU  
    % Compute the Zernike Polynomials T4f:0r;^f*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #|e <l1F  
    o3W5FHFAv  
    % Determine the required powers of r: QU#/(N(U#T  
    % ----------------------------------- sV*Q8b*  
    m_abs = abs(m); d")r^7  
    rpowers = []; |j!D _j#U  
    for j = 1:length(n) 3AB5Qs<  
        rpowers = [rpowers m_abs(j):2:n(j)]; .9ROa#7U;n  
    end MRC5c:(  
    rpowers = unique(rpowers); CjST*(,b  
    bZlAK)  
    % Pre-compute the values of r raised to the required powers, @ =,J6  
    % and compile them in a matrix: UG!&n@R  
    % ----------------------------- D=OU61AA  
    if rpowers(1)==0 xp &I~YPH  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _E "[%  
        rpowern = cat(2,rpowern{:}); qMUqd}=P  
        rpowern = [ones(length_r,1) rpowern]; u( o@_6  
    else stDn{x .  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Th8Q ~*v  
        rpowern = cat(2,rpowern{:}); [cH/Y2[  
    end J\{)qJ*jp  
    gTq-\k(  
    % Compute the values of the polynomials: ~kHir]jc  
    % -------------------------------------- %EpK=;51U  
    y = zeros(length_r,length(n)); ^Uf`w7"iY  
    for j = 1:length(n) 3dM6zOK  
        s = 0:(n(j)-m_abs(j))/2; YW'Y=*  
        pows = n(j):-2:m_abs(j); 'v,W gPe  
        for k = length(s):-1:1 "d#s|_n,d)  
            p = (1-2*mod(s(k),2))* ... givK{Yt<B  
                       prod(2:(n(j)-s(k)))/              ... >2|#b  
                       prod(2:s(k))/                     ... ]6aM %r=c  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... k]JLk"K  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Oh^X^*I$@  
            idx = (pows(k)==rpowers);  [:k'VXL  
            y(:,j) = y(:,j) + p*rpowern(:,idx); F+6ZD5/  
        end E`s_Dr}K  
         v_ J.M]  
        if isnorm /qCYNwWH9  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); H{V-C_  
        end G]SE A  
    end PU>;4l  
    % END: Compute the Zernike Polynomials m=K XMX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >}I}9y+  
    3}+/\:q*  
    % Compute the Zernike functions: H z6H,h  
    % ------------------------------ jn7} jWA  
    idx_pos = m>0; }Q%>Fv  
    idx_neg = m<0; Cse0!7_T  
    jTqba:q@  
    z = y; l:ED_env:  
    if any(idx_pos) 0g+@WK6y  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ~ U1iB  
    end V?"^Ff3m!  
    if any(idx_neg) vW_A.iI"e  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4EpzCaEZ  
    end Cam}:'a/`  
    Cb13Qz  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) \XN5))  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ]UI+6}r  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 2mO#vTX4  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Q.XsY.{  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, iF0a  
    %   and THETA is a vector of angles.  R and THETA must have the same g5Vr2  
    %   length.  The output Z is a matrix with one column for every P-value, s,k1KTXg<B  
    %   and one row for every (R,THETA) pair. $SXxAS1  
    % -7$'* V9$  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike vz:0"y  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) U,M,E@  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) YUb,5Y0  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 OT[m g4&  
    %   for all p. s,v#lJ]d0W  
    % d{hYT\7~1(  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ]aRD6F:L  
    %   Zernike functions (order N<=7).  In some disciplines it is S=g-&lK  
    %   traditional to label the first 36 functions using a single mode 5%`Ul  
    %   number P instead of separate numbers for the order N and azimuthal J9FNjM[qe  
    %   frequency M. ZX;k*OrW  
    % 55DzBV  
    %   Example: aX%Zuyny  
    % nnNg^<[k3  
    %       % Display the first 16 Zernike functions w'0M>2   
    %       x = -1:0.01:1; I`TD*D  
    %       [X,Y] = meshgrid(x,x); r8%,xA&  
    %       [theta,r] = cart2pol(X,Y); ,m?D\Pru  
    %       idx = r<=1; E?mp6R]}%  
    %       p = 0:15; B|=maz:_  
    %       z = nan(size(X)); 5r<(Z0  
    %       y = zernfun2(p,r(idx),theta(idx)); e W)I}z +{  
    %       figure('Units','normalized') S7/v ,E  
    %       for k = 1:length(p) ws?s   
    %           z(idx) = y(:,k); D,j5k3< #  
    %           subplot(4,4,k) zjS:;!8em  
    %           pcolor(x,x,z), shading interp mv?H]i`N  
    %           set(gca,'XTick',[],'YTick',[]) kA;Tr4EA6  
    %           axis square 4 .B*B3  
    %           title(['Z_{' num2str(p(k)) '}']) ;cn.s,  
    %       end ls\E%d  
    % t)Q @sKT6  
    %   See also ZERNPOL, ZERNFUN. !#I/be]  
    U_;J.{n  
    %   Paul Fricker 11/13/2006 =k= 2~ j  
    /VO@>Hoh  
    '?gI cWM  
    % Check and prepare the inputs: [0ffOTy  
    % ----------------------------- ].P(/~FS9  
    if min(size(p))~=1 h&M RQno  
        error('zernfun2:Pvector','Input P must be vector.') _ 1> 4Q%  
    end 5b`xN!c  
    ONq/JW$?LV  
    if any(p)>35 (+8xUc(w  
        error('zernfun2:P36', ... #Rx"L&3Ue  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... <`_OpNxqW  
               '(P = 0 to 35).']) r&3o~!  
    end Fg\| e%  
    ^s~n[  
    % Get the order and frequency corresonding to the function number: E9B*K2l^{  
    % ---------------------------------------------------------------- `ab\i`g9  
    p = p(:); ([CnYv  
    n = ceil((-3+sqrt(9+8*p))/2); B=bI'S8\  
    m = 2*p - n.*(n+2); "E|r3cN  
    ,e FQ}&^A  
    % Pass the inputs to the function ZERNFUN: UxcDDa/j2T  
    % ---------------------------------------- 9>&tMq  
    switch nargin hAr[atu87  
        case 3 @Du}   
            z = zernfun(n,m,r,theta); EKd3$(^   
        case 4 a!y,!EB+Qu  
            z = zernfun(n,m,r,theta,nflag); Wj j2J8B  
        otherwise ,Q=)$ `%  
            error('zernfun2:nargin','Incorrect number of inputs.') JM-ce8U  
    end bjPbl2K  
    zt[4_;2Y  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) B221}t  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. F!)M<8jL&9  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of wyrI8UY  
    %   order N and frequency M, evaluated at R.  N is a vector of xZP>g  
    %   positive integers (including 0), and M is a vector with the HZDaV&)@  
    %   same number of elements as N.  Each element k of M must be a ].-J.  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) G/fP(o-Wd  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is (K*/Vp  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix J+@MzkpK  
    %   with one column for every (N,M) pair, and one row for every {\svV 0)~  
    %   element in R. c}IX"  
    % GSGyF  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- \,l.p_<  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is [ZKtbPHb  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to m@G<ZCMZ  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 )l#%.Z9  
    %   for all [n,m]. (ET ;LH3  
    % <+T\F;   
    %   The radial Zernike polynomials are the radial portion of the `J>E9p<  
    %   Zernike functions, which are an orthogonal basis on the unit s%N`  
    %   circle.  The series representation of the radial Zernike {=bg5I0|a  
    %   polynomials is Q{AZ'XV  
    % Y ]~ HAv '  
    %          (n-m)/2 "Ju /[#VCJ  
    %            __ vo(g0Au)  
    %    m      \       s                                          n-2s ;wJ7oj<  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 0i8[=  
    %    n      s=0 /nC{)s?S'  
    % ?W[J[cb  
    %   The following table shows the first 12 polynomials. YN,y0t/cQ  
    % 5q5 )uv"  
    %       n    m    Zernike polynomial    Normalization JrCf,?L^  
    %       --------------------------------------------- L$Hx?^3  
    %       0    0    1                        sqrt(2) UAsF0&]  
    %       1    1    r                           2 ~\IF9!  
    %       2    0    2*r^2 - 1                sqrt(6) UF&0 & `@  
    %       2    2    r^2                      sqrt(6) ny12U;'s,  
    %       3    1    3*r^3 - 2*r              sqrt(8) r5MxjuOB1  
    %       3    3    r^3                      sqrt(8) E rr4 %-  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) v<L=!-b^  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) $ q%mu  
    %       4    4    r^4                      sqrt(10) y,MPGW_  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) H_VEPp,T  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) To3^L_v"  
    %       5    5    r^5                      sqrt(12) z%OuI 8"'  
    %       --------------------------------------------- $Mdbt o~<  
    % R'rTE  
    %   Example: ;tJWOm  
    % %lN2n,AK  
    %       % Display three example Zernike radial polynomials /_]ltXD  
    %       r = 0:0.01:1; IikG /8lP  
    %       n = [3 2 5]; L ;6b+I  
    %       m = [1 2 1]; dZPW2yf  
    %       z = zernpol(n,m,r); }1 $hxfb  
    %       figure 10mK}HT>4B  
    %       plot(r,z) ov8 ByJc  
    %       grid on ToV6lS"  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') js~tKUvg  
    % ]JH64~a  
    %   See also ZERNFUN, ZERNFUN2. "[k1D_PZ  
    T YYp"wx  
    % A note on the algorithm. *D2Nm9sl  
    % ------------------------ WrNLGkt  
    % The radial Zernike polynomials are computed using the series X4a^m w\"  
    % representation shown in the Help section above. For many special M|d={o9Hp  
    % functions, direct evaluation using the series representation can IE2CRBfs  
    % produce poor numerical results (floating point errors), because ]fj-`==  
    % the summation often involves computing small differences between KE<kj$  
    % large successive terms in the series. (In such cases, the functions " jT#bIm  
    % are often evaluated using alternative methods such as recurrence _IWxYp  
    % relations: see the Legendre functions, for example). For the Zernike "u_i[[y  
    % polynomials, however, this problem does not arise, because the 1!vPc93 $$  
    % polynomials are evaluated over the finite domain r = (0,1), and ',GV6kt_k  
    % because the coefficients for a given polynomial are generally all aR _NyA  
    % of similar magnitude. Bz?l{4".  
    % N#4N?BBP"  
    % ZERNPOL has been written using a vectorized implementation: multiple GD!- qH  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] `ruNA>M  
    % values can be passed as inputs) for a vector of points R.  To achieve Q $]YD pCM  
    % this vectorization most efficiently, the algorithm in ZERNPOL t-WjL@$F/  
    % involves pre-determining all the powers p of R that are required to NetYg]8`  
    % compute the outputs, and then compiling the {R^p} into a single Av o|v>  
    % matrix.  This avoids any redundant computation of the R^p, and PY?8 [A+  
    % minimizes the sizes of certain intermediate variables. k'Gw!p}  
    % C6|(ktt  
    %   Paul Fricker 11/13/2006 pV7N byb4  
    $/+so;KD  
    F|Q H  
    % Check and prepare the inputs: 61} i5o  
    % ----------------------------- /prYSRn8  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) {6h|6.S2  
        error('zernpol:NMvectors','N and M must be vectors.') i\)3l%AK]T  
    end >)NQH9'1  
    T?n -x?e  
    if length(n)~=length(m) e # 5BPI  
        error('zernpol:NMlength','N and M must be the same length.') YGp)Oy}:  
    end zzJja/mp  
    Fi4UaJ3K  
    n = n(:); )s)_XL  
    m = m(:); %m eLW&  
    length_n = length(n); <C'Z H'p  
    ?sXG17~Bm  
    if any(mod(n-m,2)) :lgi>^  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') "k:=Y7Dx  
    end 9cG<hX9`F  
    ^ q?1U?4  
    if any(m<0) s5&=Bsv  
        error('zernpol:Mpositive','All M must be positive.') )MSZ2)(  
    end y(5:}x&E  
    l1A5Y5x9=  
    if any(m>n) "UG K8x  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') bAEg$A  
    end e\F} q)_  
    QB&BTT=!  
    if any( r>1 | r<0 ) XN#&NT{t}  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ~jN'J+_$  
    end n-J2/j  
    x GH1epf  
    if ~any(size(r)==1) (RE2I  
        error('zernpol:Rvector','R must be a vector.') O,s.D,S  
    end .TpsJXF  
    Q`ME@vz  
    r = r(:); T2=HG Z  
    length_r = length(r); =rFN1M/n{E  
    p=Y>i 'CG  
    if nargin==4 N|K4{Frm  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); vWjnI*6T#  
        if ~isnorm MsOs{2 )2  
            error('zernpol:normalization','Unrecognized normalization flag.') t Rm+?  
        end nlc.u}#  
    else G$bJ+  
        isnorm = false; RLVAT M5  
    end pHC /(6?  
    Da.G4,vLh  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q.Aa{d9e  
    % Compute the Zernike Polynomials )nfEQ)L;h}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mJ5H=&Z  
    skg|>R,kE  
    % Determine the required powers of r: nP3  E  
    % ----------------------------------- +ulagE|7  
    rpowers = []; "rhYCZ B  
    for j = 1:length(n) -c*\o3)  
        rpowers = [rpowers m(j):2:n(j)]; I G ~`i I  
    end "_1)CDqP  
    rpowers = unique(rpowers); k N7Bd}  
    5(m(xo6  
    % Pre-compute the values of r raised to the required powers, li oc`C:  
    % and compile them in a matrix: R2<s0l  
    % ----------------------------- BuOgOYh9  
    if rpowers(1)==0 6.WceWBR  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 'b&yrBFD  
        rpowern = cat(2,rpowern{:}); P8Qyhc  
        rpowern = [ones(length_r,1) rpowern]; K> g[k_  
    else =r2]uW9  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); L2UsqVU  
        rpowern = cat(2,rpowern{:}); x;s0j"`Jb  
    end % Zjdl  
    j<<3Pr  
    % Compute the values of the polynomials: q5DEw&UZJ  
    % -------------------------------------- tc+WWDP#"  
    z = zeros(length_r,length_n); LeOP;#  
    for j = 1:length_n 88s/Q0l  
        s = 0:(n(j)-m(j))/2; U8$4 R,+  
        pows = n(j):-2:m(j); 80OtO#1y  
        for k = length(s):-1:1 ^h' Sla  
            p = (1-2*mod(s(k),2))* ... ULJmSe  
                       prod(2:(n(j)-s(k)))/          ... V!_71x\-Q  
                       prod(2:s(k))/                 ... u\yVR$pQ  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... !]yO^Ob.E  
                       prod(2:((n(j)+m(j))/2-s(k))); .B2]xfo"`  
            idx = (pows(k)==rpowers); g4p  
            z(:,j) = z(:,j) + p*rpowern(:,idx); )kXhtjOl|  
        end $;N*cH~  
         ^TY ;Zp  
        if isnorm 'a6<ixgo0  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); V~G`kkNy  
        end : 18KR*;p  
    end Q4*?1`IsR  
    b;sVls  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  @HOBRRm`  
    Z,=7Tu bR#  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 '#k0a,<N  
    zzxGAVu  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)