非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 h^1!8oOYD
function z = zernfun(n,m,r,theta,nflag) "Y4glomR[
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. o-AF_N
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N e{XzUY6
% and angular frequency M, evaluated at positions (R,THETA) on the JR&yaOws
% unit circle. N is a vector of positive integers (including 0), and -XK;B--c
% M is a vector with the same number of elements as N. Each element p&)d]oV>
% k of M must be a positive integer, with possible values M(k) = -N(k) R?tjobk!
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, gf9U<J#&C
% and THETA is a vector of angles. R and THETA must have the same Je2&7uR0
% length. The output Z is a matrix with one column for every (N,M) `CBXz!v!O
% pair, and one row for every (R,THETA) pair. L
8;H_:~_'
% Tow! 5VAM
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?_p!teb
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 02NVdpo[wU
% with delta(m,0) the Kronecker delta, is chosen so that the integral J~oxqw}
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, G%zJ4W%
% and theta=0 to theta=2*pi) is unity. For the non-normalized K)+]as
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \DBEs02
% q"DHMZB
% The Zernike functions are an orthogonal basis on the unit circle. 19pFNg'kA
% They are used in disciplines such as astronomy, optics, and ^K_FGE0ec
% optometry to describe functions on a circular domain. b353+7"|
% Hi/[
% The following table lists the first 15 Zernike functions. n\<7`,
% "68X+!
% n m Zernike function Normalization PX2b(fR8_O
% -------------------------------------------------- #Q-#7|0&
% 0 0 1 1 @#-\BQ;
% 1 1 r * cos(theta) 2 5ug|crX
% 1 -1 r * sin(theta) 2 H!OX1F
% 2 -2 r^2 * cos(2*theta) sqrt(6) wi+L4v
% 2 0 (2*r^2 - 1) sqrt(3) L%<]gJtrO
% 2 2 r^2 * sin(2*theta) sqrt(6) %B1)m A;
% 3 -3 r^3 * cos(3*theta) sqrt(8) 9k6/D.Dz
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) H Vhd#Q;
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) )UTjP/\gN
% 3 3 r^3 * sin(3*theta) sqrt(8) Qb55q`'z
% 4 -4 r^4 * cos(4*theta) sqrt(10) f1elzANy
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7zA+UWr
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 2+S+Y%~
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Doq}UWp
% 4 4 r^4 * sin(4*theta) sqrt(10) ^;9l3P{
% -------------------------------------------------- bAN>\zG+
% 3^-R_
% Example 1: JP5en
% $/5\Hg1
% % Display the Zernike function Z(n=5,m=1) kzNRRs\e
% x = -1:0.01:1; nm]lPK U+Y
% [X,Y] = meshgrid(x,x); i "X" -)#
% [theta,r] = cart2pol(X,Y); YjJ^SU`*
% idx = r<=1; Am*lx
% z = nan(size(X)); I|>.&nb
% z(idx) = zernfun(5,1,r(idx),theta(idx)); , /jHhKW
% figure kumo%TXB&
% pcolor(x,x,z), shading interp }bdoJ5
% axis square, colorbar {D :WXvI
% title('Zernike function Z_5^1(r,\theta)') kdx06'4o
% 2Oyw#1tdn
% Example 2: +RR6gAma}<
% bb\XZ~)F
% % Display the first 10 Zernike functions ZU`~@.`i
% x = -1:0.01:1; i+< v7?:`#
% [X,Y] = meshgrid(x,x); rnp; R
% [theta,r] = cart2pol(X,Y); [e@m-/B
% idx = r<=1; A{k1MA<F6
% z = nan(size(X)); 8;c\}D
% n = [0 1 1 2 2 2 3 3 3 3]; O@W/s!&lFa
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 6#K.n&=*
% Nplot = [4 10 12 16 18 20 22 24 26 28]; P>)J:.tr0
% y = zernfun(n,m,r(idx),theta(idx)); VAUd^6Xdwx
% figure('Units','normalized') &2[Xu4*
% for k = 1:10 #R31VQwK5
% z(idx) = y(:,k); 2G!z/OAj
% subplot(4,7,Nplot(k)) 2EN}"Du]mj
% pcolor(x,x,z), shading interp {hN<Ot
% set(gca,'XTick',[],'YTick',[]) &y|Ps eH"
% axis square ycki0&n3
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !g}@xwWax
% end zSk`Ou8M
% *B{]
% See also ZERNPOL, ZERNFUN2. e Y^zs0
NV?XZ[<*<
% Paul Fricker 11/13/2006 f8qDmk5s
9=/4}!.
?p 4iXHE
% Check and prepare the inputs: .0gfP4{1{
% ----------------------------- 7bRfkKD
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) kTT%<
e
error('zernfun:NMvectors','N and M must be vectors.') u*uHdV5
end nnE'zk<"
LjW32>B
if length(n)~=length(m) R+e)TR7+
error('zernfun:NMlength','N and M must be the same length.') b\o>4T
end c9Cc%EK
*)I^+zN
n = n(:); ].aFdy
m = m(:); ht>/7.p]
if any(mod(n-m,2)) iycceZ
error('zernfun:NMmultiplesof2', ... yD.(j*bMK;
'All N and M must differ by multiples of 2 (including 0).') Jg{K!P|i
end E]g6|,4~-
@p^EXc*|
if any(m>n) DTo"{!
error('zernfun:MlessthanN', ... GBR$k P
'Each M must be less than or equal to its corresponding N.') T"C.>G'[B
end omy3<6
<gH-`3J6
if any( r>1 | r<0 ) S
Te8*=w
error('zernfun:Rlessthan1','All R must be between 0 and 1.') -b8SaLak
end }U5$~,*p
$v e$Sq
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @(E6P;+{
error('zernfun:RTHvector','R and THETA must be vectors.') F`(;@LO
end \T<F#a
Qy4Pw\
r = r(:); qxHn+O!h
theta = theta(:); kRb JK
length_r = length(r); QfPw50N;
if length_r~=length(theta) pr4y*!|Y$
error('zernfun:RTHlength', ... a|4D6yUw|
'The number of R- and THETA-values must be equal.') 3="vOSJ6&
end T \- x3i
Lyn{Uag
% Check normalization: Fn4yx~0
% -------------------- T3"'`Sd9;
if nargin==5 && ischar(nflag) 45<gO1
isnorm = strcmpi(nflag,'norm'); C\Yf]J
if ~isnorm sMUpkU-
error('zernfun:normalization','Unrecognized normalization flag.') L ed{#+
end T;{:a-8
else n6Uf>5
isnorm = false; [P ;fv
end }0@@_Y]CC
u(f;4`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QXL .4r%
% Compute the Zernike Polynomials P0hr=/h4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n4 N6]W\5
]>k8v6*=
% Determine the required powers of r: Q!=`|X|:
% ----------------------------------- bT
T>
m_abs = abs(m); Xppb|$qp4H
rpowers = []; ev+H{5W8
for j = 1:length(n) )Td{}vbIh
rpowers = [rpowers m_abs(j):2:n(j)]; I!1+#0SG
end =OPX9oG
rpowers = unique(rpowers); ~Jw84U{$
|F<iu2\
% Pre-compute the values of r raised to the required powers, HUCJA-OZGL
% and compile them in a matrix: u#^l9/tl
% ----------------------------- Fi;OZ>;a
if rpowers(1)==0 vZ$E
[EG}
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5|Z8UzL
rpowern = cat(2,rpowern{:}); cwtlOg
rpowern = [ones(length_r,1) rpowern]; VSV]6$~H
else `l.bU3C
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7w8UnPuM
rpowern = cat(2,rpowern{:}); mQ`2c:Rn&7
end em )%U
wxPl[)E
% Compute the values of the polynomials: \ )>#`X
% -------------------------------------- YN<vOv
y = zeros(length_r,length(n)); J:ka@2>|
for j = 1:length(n) t#y,9>6
s = 0:(n(j)-m_abs(j))/2; A<TYt
M
pows = n(j):-2:m_abs(j); 1ZYo-a;)
for k = length(s):-1:1 h# Z,ud_
p = (1-2*mod(s(k),2))* ... +(afO~9
prod(2:(n(j)-s(k)))/ ... (pP.*`JRv
prod(2:s(k))/ ... K[/L!.Ag
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... )uR_d=B&
prod(2:((n(j)+m_abs(j))/2-s(k))); $Zw+"AA
idx = (pows(k)==rpowers); uW FyI"
y(:,j) = y(:,j) + p*rpowern(:,idx); Jmg9|g!f
end f5un7,m
ZUS5z+o
if isnorm >#l:]T
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .\ya
end 3^fwDt}
end pYr+n9)^
% END: Compute the Zernike Polynomials PE/uB,Wl
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d8+@K&z|
J=: \b
% Compute the Zernike functions: ~OvbMWu
% ------------------------------ [uHC
AP
idx_pos = m>0; t?PqfVSq
idx_neg = m<0; :&'jh/vRN
UQ7]hX9
z = y; a8ouk7G
if any(idx_pos) }BL7P-km
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); >b=."i
end cS:O|R#%t
if any(idx_neg) T{m) = (q
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )X|)X,~+-
end $@]
xi
"$o>_+U
% EOF zernfun