非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 >
^zNKgSQ
function z = zernfun(n,m,r,theta,nflag) pZopdEFDK|
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. BJb,
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3N-
'{c6]U
% and angular frequency M, evaluated at positions (R,THETA) on the q4w]9b/
% unit circle. N is a vector of positive integers (including 0), and iKV|~7nwO
% M is a vector with the same number of elements as N. Each element `ovMfL.u
% k of M must be a positive integer, with possible values M(k) = -N(k) "qF/7`e[
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, du$M
% and THETA is a vector of angles. R and THETA must have the same H`fJ<So?
% length. The output Z is a matrix with one column for every (N,M) F nXm;k,9*
% pair, and one row for every (R,THETA) pair. L&)e}"
% ! J<Xel{
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike RV_I&HD!
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), K mH))LIv
% with delta(m,0) the Kronecker delta, is chosen so that the integral E;s_=j1f
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &z40l['4bz
% and theta=0 to theta=2*pi) is unity. For the non-normalized .=Oww
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Z8FgxR
% Nv.
% The Zernike functions are an orthogonal basis on the unit circle. P ?f${t+
% They are used in disciplines such as astronomy, optics, and :%J;[bS+
% optometry to describe functions on a circular domain. xok
T
% aReJ@
% The following table lists the first 15 Zernike functions. He'VqUw_
% Z81;Y=(
% n m Zernike function Normalization )Cj1VjAg
% -------------------------------------------------- T=u"y;&L
% 0 0 1 1 ?xH{7)dO
% 1 1 r * cos(theta) 2 4V4S5V
% 1 -1 r * sin(theta) 2 yOQae m^O
% 2 -2 r^2 * cos(2*theta) sqrt(6) rf|Nu3AJ
% 2 0 (2*r^2 - 1) sqrt(3) ^gx~{9`RR
% 2 2 r^2 * sin(2*theta) sqrt(6) {+_p?8X
% 3 -3 r^3 * cos(3*theta) sqrt(8) ^
'|y^t
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ]58~b%s
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) r'#!w3*Cy
% 3 3 r^3 * sin(3*theta) sqrt(8) ,)*[Xa_n
% 4 -4 r^4 * cos(4*theta) sqrt(10) jQm~F`z
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) aV|VC$
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) OYt_i'Q
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \RR`
F .7
% 4 4 r^4 * sin(4*theta) sqrt(10) K/Yeh<_&
% -------------------------------------------------- Z3c\}HLY
% -hW>1s<
% Example 1: (0Br`%!F
% s<# BxN
% % Display the Zernike function Z(n=5,m=1) 3e^0W_>6
% x = -1:0.01:1;
rn(
drG
% [X,Y] = meshgrid(x,x); H!7?#tRU
% [theta,r] = cart2pol(X,Y); *,CJ 3<>
% idx = r<=1; #z&R9$
% z = nan(size(X)); }JST(d&
% z(idx) = zernfun(5,1,r(idx),theta(idx)); :Bt,.uNC
% figure eL"'-d+]
% pcolor(x,x,z), shading interp WO9vOS>
% axis square, colorbar z(Uz<*h8
% title('Zernike function Z_5^1(r,\theta)') mMl len
% GqsV6kH
% Example 2: 8g)$%Fy+N
% d2i?FT>
% % Display the first 10 Zernike functions e8dZR3JL
% x = -1:0.01:1; $mKExW
% [X,Y] = meshgrid(x,x); ;}f {o^ ]'
% [theta,r] = cart2pol(X,Y); 5<`83;R9
% idx = r<=1; hy;V~J#
% z = nan(size(X)); eDP&W$s#
% n = [0 1 1 2 2 2 3 3 3 3]; +U
J~/XV
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; uwI"V|g%a&
% Nplot = [4 10 12 16 18 20 22 24 26 28]; tzd!r7
% y = zernfun(n,m,r(idx),theta(idx)); C.#Ha-@uz
% figure('Units','normalized') H'udxPF
% for k = 1:10 $eT[`r
% z(idx) = y(:,k); 6l2O>V
% subplot(4,7,Nplot(k)) l3^'b p6HQ
% pcolor(x,x,z), shading interp 8$]SvfX
% set(gca,'XTick',[],'YTick',[]) x?B`p"ifS
% axis square q:M'|5P
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %hBwc#^
% end n(# yGzq
% w/ZP.B
% See also ZERNPOL, ZERNFUN2. b|k^
zQ,M795@EA
% Paul Fricker 11/13/2006 "{E%Y*
9eHqOmz
E A55!
% Check and prepare the inputs: PE6,9i0ee
% ----------------------------- {g[kn^|
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) vs+aUT C\
error('zernfun:NMvectors','N and M must be vectors.') 9pj6`5Zn@6
end <>$CYTb
4zhh**]B
if length(n)~=length(m) jPz1W4pk
error('zernfun:NMlength','N and M must be the same length.') p ]jLs|tat
end .
4RU'9M
^fO9oPM|
n = n(:); j~.tyxOq#
m = m(:); o-&0_Zq_
if any(mod(n-m,2)) *v(Q-FW
error('zernfun:NMmultiplesof2', ... l44QB8
9
'All N and M must differ by multiples of 2 (including 0).') rrE f<A}
end o[eZ"}~
HbPn<x^7
if any(m>n) ADOA&r[
error('zernfun:MlessthanN', ... u' kG(<0Y
'Each M must be less than or equal to its corresponding N.') %zY5'$v `
end \v=@'
Crj7n/mp]s
if any( r>1 | r<0 ) GNuIcy
error('zernfun:Rlessthan1','All R must be between 0 and 1.') +3XaAk
end =a+
} 6
9* 3;v;F
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) JJg;X :p
error('zernfun:RTHvector','R and THETA must be vectors.') b?,%M^9\`
end ^jRX6
3HcduJntl
r = r(:); #ucb
theta = theta(:); \I}EWI
length_r = length(r); 9(!AKKrr;
if length_r~=length(theta) NySa%7@CD
error('zernfun:RTHlength', ... \JR^uJ{Y
'The number of R- and THETA-values must be equal.') [742s]j
end ]o=ON95ja
P {n*X
% Check normalization: umnQ$y
0
% -------------------- 'xnI Nu
if nargin==5 && ischar(nflag) v{"yrC
isnorm = strcmpi(nflag,'norm'); q=`n3+N_H~
if ~isnorm YjL'GmL<
error('zernfun:normalization','Unrecognized normalization flag.') 2,g4yXws5
end h* 1T3U$
else W)T'?b'.
isnorm = false; /uR/,R++
end H =~7g3
eGpKoq7a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \Z42EnJ
% Compute the Zernike Polynomials )'RaMo` 4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [ "3s
IqepR
>5t
% Determine the required powers of r: #XqCz>Z
% ----------------------------------- :IJ<Mmb
m_abs = abs(m); U~?mW,iRL
rpowers = []; o%;ly
for j = 1:length(n) ,3-^EfccW
rpowers = [rpowers m_abs(j):2:n(j)]; K*,,j\Q.
end KDGrX[L:6
rpowers = unique(rpowers); uHmvHA~/c8
q`L)^In"
% Pre-compute the values of r raised to the required powers, o_k)x3I?
% and compile them in a matrix: |sFd5X
% ----------------------------- ns\I Y<Yo
if rpowers(1)==0 /)K;XtcN
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); EN/t5d
rpowern = cat(2,rpowern{:}); IDos4nM27]
rpowern = [ones(length_r,1) rpowern]; 's5rl
else < Mu`,Kv*
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Jn|i!
rpowern = cat(2,rpowern{:}); vV9vB3K5?
end T2azHo7
Qhc;Zl
% Compute the values of the polynomials: olxxs(
% -------------------------------------- gCG#?f
y = zeros(length_r,length(n)); Kj3Gm>B<y
for j = 1:length(n) QT%vrXzz
s = 0:(n(j)-m_abs(j))/2; 6H U*,
pows = n(j):-2:m_abs(j); TKGaGMx6@
for k = length(s):-1:1 >35w"a7S
p = (1-2*mod(s(k),2))* ... I''n1v?N
prod(2:(n(j)-s(k)))/ ... <pHm=q/U
prod(2:s(k))/ ... eu_ZsseZ
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... VEIct{
prod(2:((n(j)+m_abs(j))/2-s(k))); f#GMJ mCQs
idx = (pows(k)==rpowers); ?r8hl.Z>
y(:,j) = y(:,j) + p*rpowern(:,idx); $2i@@#g8
end (&v|,.c^)1
sb8bCEm-\
if isnorm > 3(,s^
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5%fWX'mS
end GU@#\3
end yx4pQL7
% END: Compute the Zernike Polynomials N#e9w3Rli
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h qjjd-S0
e?+-~]0
% Compute the Zernike functions: n9J{f"`m
% ------------------------------ i+~BVb
idx_pos = m>0; Tt{z_gU6
idx_neg = m<0; 0}`-vOLd-
EleJ$ `/
z = y; D g0rVV6c
if any(idx_pos) W
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); P\6:euI
end 0wV9Trp
if any(idx_neg) <)(W7#Ks
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); [Eu)~J*
end 5n}<V-yJ*m
BQg3+w:>
% EOF zernfun