非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 eR(PY{
function z = zernfun(n,m,r,theta,nflag) 29g("(}TK
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,jyNV<dI
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N M:W9h+z
% and angular frequency M, evaluated at positions (R,THETA) on the byM/LE7)
% unit circle. N is a vector of positive integers (including 0), and dOq*W<%
% M is a vector with the same number of elements as N. Each element cpB$b C](
% k of M must be a positive integer, with possible values M(k) = -N(k) YJ]]6 K+
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, dL>0"UN}-
% and THETA is a vector of angles. R and THETA must have the same :8U=L'4
% length. The output Z is a matrix with one column for every (N,M) >Qc0g(w
% pair, and one row for every (R,THETA) pair. GLA,,i'i9
% GmN} +(
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike De[!^/f;T
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), F#@Mf?#2
% with delta(m,0) the Kronecker delta, is chosen so that the integral i\G@ kJNnF
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 1i9}mzy%
% and theta=0 to theta=2*pi) is unity. For the non-normalized 0@1AH<
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ;Gxp'y
% lyKV^7}
% The Zernike functions are an orthogonal basis on the unit circle. YMnG-'^Z
% They are used in disciplines such as astronomy, optics, and l%lkDh!$"
% optometry to describe functions on a circular domain. UaCEh?D+Y
% 3*64)Ol7t]
% The following table lists the first 15 Zernike functions. AV AF!Z
% R>[2}R30
% n m Zernike function Normalization L.lmbxn
% -------------------------------------------------- /iNCb&[
% 0 0 1 1 W'rft@J$
% 1 1 r * cos(theta) 2 O9oVx4=
% 1 -1 r * sin(theta) 2 ( }5k"9Z
% 2 -2 r^2 * cos(2*theta) sqrt(6) 2pH2s\r<UJ
% 2 0 (2*r^2 - 1) sqrt(3) 9*RfOdnNe
% 2 2 r^2 * sin(2*theta) sqrt(6) XCoN!~
% 3 -3 r^3 * cos(3*theta) sqrt(8) EbuOPa
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) #Qc[W +%
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) W}+Q!T=
% 3 3 r^3 * sin(3*theta) sqrt(8) fXvJ3w(
% 4 -4 r^4 * cos(4*theta) sqrt(10) bSU9sg\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #JeZA0r5
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ~HI|t2C
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .RH}/D
% 4 4 r^4 * sin(4*theta) sqrt(10) 7EOn4I2@[
% -------------------------------------------------- {l.) *#O
% V/$qD
% Example 1: "d/x`Dx
% G9:[W"P
% % Display the Zernike function Z(n=5,m=1) -lRXH7|X
% x = -1:0.01:1; LR]P?
% [X,Y] = meshgrid(x,x); ;n00kel$
% [theta,r] = cart2pol(X,Y); b)(#/}jMkD
% idx = r<=1;
;B o 2$
% z = nan(size(X)); POfvs]
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ,E$^i~OO
% figure uXxyw7\W
% pcolor(x,x,z), shading interp [m?eSq6e2b
% axis square, colorbar k+'Rh'>
% title('Zernike function Z_5^1(r,\theta)') WM*[+8h
% #n]js7
% Example 2: (ST/>")L
% .8uJ%'$)
% % Display the first 10 Zernike functions VzA~w`$d
% x = -1:0.01:1; L:IaJ?+?
% [X,Y] = meshgrid(x,x); 0yfmQ=,X
% [theta,r] = cart2pol(X,Y); R4 ;^R
% idx = r<=1; 36@)a5
% z = nan(size(X)); p
)etl5
% n = [0 1 1 2 2 2 3 3 3 3]; \kF}E3~+#
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; D@rOX (m
% Nplot = [4 10 12 16 18 20 22 24 26 28]; U`ey7
% y = zernfun(n,m,r(idx),theta(idx)); K%[Rv#>;q|
% figure('Units','normalized') UN'hnqC
% for k = 1:10 T-xcd
% z(idx) = y(:,k); T#DJQ"$
% subplot(4,7,Nplot(k)) Y\(Q
% pcolor(x,x,z), shading interp MlkTrKdGi
% set(gca,'XTick',[],'YTick',[]) bqJL@!T
% axis square R;.zS^LL
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) F[ N{7C3
% end p~J`}>yo
% 36,qh.LKn
% See also ZERNPOL, ZERNFUN2. ,}2M'DSWa
Bcg\p}
% Paul Fricker 11/13/2006 PPU,o8E+
y&-wb'==p
oZHsCQ %
% Check and prepare the inputs: )}\jbh>RH
% ----------------------------- uhSRl~tn
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) J
[J,
error('zernfun:NMvectors','N and M must be vectors.') 0$b)@
end 9n]zh-
DNcf2_m
if length(n)~=length(m) i=OPl
error('zernfun:NMlength','N and M must be the same length.') +e);lS"+/
end tH,}_Bp
u7ZSs-LuHw
n = n(:); JOS,>;;F4
m = m(:); 8G;
t[9
if any(mod(n-m,2)) cod__.
error('zernfun:NMmultiplesof2', ... JaoRkl?F
'All N and M must differ by multiples of 2 (including 0).') $YSAD\a<
end \-a^8{.^E
`of 5h*k
if any(m>n) v!27q*;8H
error('zernfun:MlessthanN', ... Qz2Yw `
'Each M must be less than or equal to its corresponding N.') PVH^yWi
n
end 3%{A"^S=}
~KHGh29
if any( r>1 | r<0 ) Pc#8~t}2
error('zernfun:Rlessthan1','All R must be between 0 and 1.') s%z\szd*
end <^snS,06
`9E:V=
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,l^; ZE
error('zernfun:RTHvector','R and THETA must be vectors.') MlaViw
end nd*9vxM
Kmc*z (Q
r = r(:); :@x24wN/
theta = theta(:); Nd'+s>d0
length_r = length(r); 649{\;*4
if length_r~=length(theta) Kq#\P
error('zernfun:RTHlength', ... o7 ^t-
L
'The number of R- and THETA-values must be equal.') *z
I@Htp
end ]Q1?Ox:'
qp3J/(F
% Check normalization: H_RV#BW&
% -------------------- 8*z)aB&f3
if nargin==5 && ischar(nflag) is}6cR
isnorm = strcmpi(nflag,'norm'); Y'7f"W
if ~isnorm C^9G \s'
error('zernfun:normalization','Unrecognized normalization flag.') %\Dvng6$
end C#{s[l \]
else x}v]JEIf[Q
isnorm = false; aVkgE>
end ]."~)
\GhL{Awv&a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /$
Gp<.z
% Compute the Zernike Polynomials )y>o;^5'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7|Z=#3INw
GF4k
% Determine the required powers of r: 6r
% ----------------------------------- v:/+OzY
m_abs = abs(m); ^6R
Sbi\
rpowers = []; X*f#S:kiNU
for j = 1:length(n) |,!]]YO.V
rpowers = [rpowers m_abs(j):2:n(j)]; R\DdU-k
end {2jetX`@h
rpowers = unique(rpowers); 7G6XK
}/)vOUcEd
% Pre-compute the values of r raised to the required powers, Dxp8^VL
% and compile them in a matrix: +,oEcCi
% ----------------------------- R(YhVW_l
if rpowers(1)==0 tYb8a
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2AYV9egZ
rpowern = cat(2,rpowern{:}); f@JMDJ
rpowern = [ones(length_r,1) rpowern]; w=e_@^Fkx
else o>Fc.$ngZ
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); =[A5qwyv
rpowern = cat(2,rpowern{:}); etnq{tE5
end RLy2d'DS
y$i^C: N
% Compute the values of the polynomials: d,%e?8x5
% -------------------------------------- QuB`}rfLf
y = zeros(length_r,length(n)); C8^h`B9z&I
for j = 1:length(n) Tt;h?
s = 0:(n(j)-m_abs(j))/2; [p& n]T
pows = n(j):-2:m_abs(j); ojmF:hR"
for k = length(s):-1:1 g=ehAg
p = (1-2*mod(s(k),2))* ... RN,5>.w
prod(2:(n(j)-s(k)))/ ... .qd/ft2
prod(2:s(k))/ ... ig-V^P
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ajM3Uwnr
prod(2:((n(j)+m_abs(j))/2-s(k))); p :v'"A}
idx = (pows(k)==rpowers); .Iu8bN(L`
y(:,j) = y(:,j) + p*rpowern(:,idx); 7LFJi@*8
end tfKf*Um
xX !`0T7Y
if isnorm D,3Kx ^
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Ee~<PDzB
end a-\M)}T
end eq"
eLk6h
% END: Compute the Zernike Polynomials \X*Es.;|x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]2_b_ok
w$)NW57[|
% Compute the Zernike functions: $q$G
% ------------------------------ 5n0B`A
idx_pos = m>0; +UM%6Z=+
idx_neg = m<0; 5wE+p<-KX
,J$XVvwxF
z = y; !=3Ce3-
if any(idx_pos) ;_K3/:
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); "y9]>9:$-
end W?:e4:Q
if any(idx_neg) ;],Js1m
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {i^F4A@=Z
end o#Viz:
|Wg!>g!
% EOF zernfun