切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11093阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Ybg- "w  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! [U\(G  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 qeaA&(|5  
    function z = zernfun(n,m,r,theta,nflag) O|v (5 8A  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. VRS 2cc  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cfoYnM  
    %   and angular frequency M, evaluated at positions (R,THETA) on the }++5_Z_  
    %   unit circle.  N is a vector of positive integers (including 0), and [{F%LRCo-  
    %   M is a vector with the same number of elements as N.  Each element 6Dm+'y]l  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) l+ T, 2sd  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, {^&@g kYY  
    %   and THETA is a vector of angles.  R and THETA must have the same bY#;E;'7  
    %   length.  The output Z is a matrix with one column for every (N,M) 2eok@1  
    %   pair, and one row for every (R,THETA) pair. [}""@?  
    % q#1X[A()  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike D6=HYqdj  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), & 5 <**  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral %"7WXOv&z  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {y);vHf$  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ` %' z  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. R "E<8w  
    % ^o%_W0_r  
    %   The Zernike functions are an orthogonal basis on the unit circle. (zah890//  
    %   They are used in disciplines such as astronomy, optics, and ]G1R0 Q  
    %   optometry to describe functions on a circular domain. jmW^`%;7  
    % \ sf!  
    %   The following table lists the first 15 Zernike functions. ~%aJFs  
    % irFc}.dI  
    %       n    m    Zernike function           Normalization rycJyiw<-  
    %       -------------------------------------------------- _:,.yRez  
    %       0    0    1                                 1 ag]*DsBt  
    %       1    1    r * cos(theta)                    2 Pc4R!Tc  
    %       1   -1    r * sin(theta)                    2 nGZ \<-  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) =49o U  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Ve:&'~F2 s  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ib50LCm  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) $y6rvQ 2>S  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8)  Rkv  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) j6X LyeG7  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Qg>L,ZO  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ]I XAucI]  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X\G)81Q.S  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) wG:$6  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -><QFJ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Dh8(HiXf:  
    %       -------------------------------------------------- -R@JIe_28f  
    % jlRS:$|R0  
    %   Example 1: oQBiPN+v.3  
    % !d|8'^gc  
    %       % Display the Zernike function Z(n=5,m=1) 9L=;KtE1  
    %       x = -1:0.01:1; nh.b/\o  
    %       [X,Y] = meshgrid(x,x); ho|  8U  
    %       [theta,r] = cart2pol(X,Y); (+$ol'i  
    %       idx = r<=1; qnTi_c  
    %       z = nan(size(X)); tBTJmih"  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); j/`Up  
    %       figure b.6ZfB,+G  
    %       pcolor(x,x,z), shading interp o~}1 oN  
    %       axis square, colorbar oYg/*k7EDX  
    %       title('Zernike function Z_5^1(r,\theta)') 45r|1<Ro  
    % YZ{jP?x  
    %   Example 2: vu>YH)N_h  
    % |?|K\UF(Y  
    %       % Display the first 10 Zernike functions wV %8v\  
    %       x = -1:0.01:1; :D^Y?  
    %       [X,Y] = meshgrid(x,x); johmJLC  
    %       [theta,r] = cart2pol(X,Y); Ku&*`dME  
    %       idx = r<=1; Ahd\TH  
    %       z = nan(size(X));  xLLC)~  
    %       n = [0  1  1  2  2  2  3  3  3  3]; xtu]F  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Kd TE{].d  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; B{N=0 cSi  
    %       y = zernfun(n,m,r(idx),theta(idx)); w+3>DEfz  
    %       figure('Units','normalized') sMN>wbHwh[  
    %       for k = 1:10 Y"s )u7  
    %           z(idx) = y(:,k); &:C{/QnA  
    %           subplot(4,7,Nplot(k)) B[Ix?V4yy  
    %           pcolor(x,x,z), shading interp zv|M*Wu  
    %           set(gca,'XTick',[],'YTick',[]) Bd.Z+#%l"  
    %           axis square `J]<_0kX}%  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) t{[gKV-b  
    %       end ^$8Vh =D  
    % 1riBvBT  
    %   See also ZERNPOL, ZERNFUN2. g8rp|MOH  
    KWtu,~O_u  
    %   Paul Fricker 11/13/2006 ;*"!:GR%h  
    olHH9R9:  
    $]Rl__;  
    % Check and prepare the inputs: L;4[ k;5  
    % ----------------------------- tu7+LwF7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?L8&(&1@VD  
        error('zernfun:NMvectors','N and M must be vectors.') $:PF9pY(  
    end %f>X-*}NI-  
    8Yo-~,Gb  
    if length(n)~=length(m) DXt]b,  
        error('zernfun:NMlength','N and M must be the same length.') )#)nBM2\  
    end 1mY+0  
    (0X,Qwx  
    n = n(:); JgxE|#*7U  
    m = m(:); Y>(ZsHu  
    if any(mod(n-m,2)) HDa~7wE  
        error('zernfun:NMmultiplesof2', ... RCoeJ|  
              'All N and M must differ by multiples of 2 (including 0).') :QxL 9&"  
    end 0,;E.Py?.  
    0zlM.rjEZ  
    if any(m>n) 0~(\lkh*!9  
        error('zernfun:MlessthanN', ... H-;&xzAI  
              'Each M must be less than or equal to its corresponding N.') ev)rOcOU  
    end ',L{CQA?c  
    kQqBHA  
    if any( r>1 | r<0 ) "sz.v<F0:s  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6#OL ;Y]_  
    end $'WapxF  
    16a_GwfM  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) W?SP .-I  
        error('zernfun:RTHvector','R and THETA must be vectors.') =# k<Kw#  
    end BUcaj.S  
    R>/QA RX  
    r = r(:); M"k3zK,  
    theta = theta(:); fF8a 1XV  
    length_r = length(r); :;" aUHU'  
    if length_r~=length(theta) Eqz4{\   
        error('zernfun:RTHlength', ... .Z(S4wV  
              'The number of R- and THETA-values must be equal.') Xtu:  
    end KK&<Vw|O\  
    EX+={U|ua$  
    % Check normalization: Vy?R/ Uu  
    % -------------------- q[PD  
    if nargin==5 && ischar(nflag) s_S<gR  
        isnorm = strcmpi(nflag,'norm'); < fojX\}3  
        if ~isnorm B FzcoBu-  
            error('zernfun:normalization','Unrecognized normalization flag.') v9j4|w  
        end "N?%mCPI  
    else +YGw4{\EL  
        isnorm = false; VEFwqB1l  
    end $|`t9-EA/  
    z5|e\Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3i@ "D  
    % Compute the Zernike Polynomials 7yq7a[Ra  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >N+bU{s  
    ]Ssw32yn  
    % Determine the required powers of r: 0U>t>&,"  
    % ----------------------------------- 3p?<iVE  
    m_abs = abs(m); F20wf1^  
    rpowers = [];  kg/+vJ  
    for j = 1:length(n) (>!]A6^L~  
        rpowers = [rpowers m_abs(j):2:n(j)]; 0)6i~MglY  
    end fD3jwPL  
    rpowers = unique(rpowers); fg>B  
    pmow[e  
    % Pre-compute the values of r raised to the required powers, ~$?y1Yv  
    % and compile them in a matrix: []2$rJZD9  
    % ----------------------------- 73^ T*  
    if rpowers(1)==0 m>Yo 9/XpZ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =sUl`L+w,L  
        rpowern = cat(2,rpowern{:}); ';;p8bv+  
        rpowern = [ones(length_r,1) rpowern]; i-:8TfI,  
    else L&!g33J&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,w9#%=xE  
        rpowern = cat(2,rpowern{:}); 7\\~xSXh  
    end A-Q{*{^#  
    `uM0,Z  
    % Compute the values of the polynomials: ] dm1Qm  
    % -------------------------------------- ]<\;d B  
    y = zeros(length_r,length(n)); |d B1R%  
    for j = 1:length(n) )JY_eG&2Dx  
        s = 0:(n(j)-m_abs(j))/2; i&}zcGC  
        pows = n(j):-2:m_abs(j); 1Rb XM n  
        for k = length(s):-1:1 ^.Ih,@N6  
            p = (1-2*mod(s(k),2))* ... ,E/Y@sajn+  
                       prod(2:(n(j)-s(k)))/              ... @^y?Bh9jQ  
                       prod(2:s(k))/                     ... =,>TpE  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... zDvP7hl  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 7 BnenHD  
            idx = (pows(k)==rpowers); [6&CloY3  
            y(:,j) = y(:,j) + p*rpowern(:,idx);  xnRp/I  
        end AihL>a%  
         P- `~]]  
        if isnorm 3gV&`>@  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); YjX!q]56  
        end r:WgjjA%  
    end IQk#  
    % END: Compute the Zernike Polynomials t=E|RYC(k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c:@OX[##  
    >^a"Z[s[  
    % Compute the Zernike functions: R+kZLOE  
    % ------------------------------ 8}pcanPg  
    idx_pos = m>0; >XXMIz:  
    idx_neg = m<0; k8x&aH  
    O yH!V&w  
    z = y; FVC2XxP  
    if any(idx_pos) mSk :7ozZ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); o {Xw Li  
    end |U#w?eE=  
    if any(idx_neg) &JXHDpd$a^  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); C#**)  
    end eUKl Co  
    _;J9q}X  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) X%9xuc  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. -o!,,XYj .  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated MVeQ5c(  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive R !%m5Q?5  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, \'LCC-  
    %   and THETA is a vector of angles.  R and THETA must have the same  oRbYna?J  
    %   length.  The output Z is a matrix with one column for every P-value, @Y&9S)xcE  
    %   and one row for every (R,THETA) pair. H;t8(-F@'  
    % ^; V>}08  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 0h@%q;g  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) +/>YH-P=  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) MMA@J  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 JbC\l  
    %   for all p. xu?QK6D:  
    % ^9*|_\3N  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 xXU/m|  
    %   Zernike functions (order N<=7).  In some disciplines it is qn"T? O  
    %   traditional to label the first 36 functions using a single mode *UL|{_)c  
    %   number P instead of separate numbers for the order N and azimuthal iUG/   
    %   frequency M. A%m `LKV~@  
    % U_{JM`JY  
    %   Example: Obc3^pV&  
    % rLw[y$2  
    %       % Display the first 16 Zernike functions yxP?O@(  
    %       x = -1:0.01:1; K7O? {/  
    %       [X,Y] = meshgrid(x,x); 4tTZkJc  
    %       [theta,r] = cart2pol(X,Y); vYt:}$AE  
    %       idx = r<=1; 8rG&CxI  
    %       p = 0:15; rDx],O _  
    %       z = nan(size(X)); o&F.mYnqX  
    %       y = zernfun2(p,r(idx),theta(idx)); XX[Wwt  
    %       figure('Units','normalized') j_WF38o  
    %       for k = 1:length(p) e$^!~+J7  
    %           z(idx) = y(:,k); POg0=32  
    %           subplot(4,4,k) &N7:k+E  
    %           pcolor(x,x,z), shading interp _TN$c  
    %           set(gca,'XTick',[],'YTick',[]) 'TN{8~Gt*  
    %           axis square 8}#Lo9:,d  
    %           title(['Z_{' num2str(p(k)) '}']) }.$ B1%2  
    %       end 8m[L]6F(-z  
    % pvR& ~g  
    %   See also ZERNPOL, ZERNFUN. KZ}4<{3  
    u4+uGYr*@  
    %   Paul Fricker 11/13/2006 Okg8Ve2  
    &CmkNm_B  
    >T*g'954xF  
    % Check and prepare the inputs: rnhf(K.{3  
    % ----------------------------- VaI P  
    if min(size(p))~=1 Q fyERa\rb  
        error('zernfun2:Pvector','Input P must be vector.') KP7RrgOan&  
    end -Us% g  
    e(\S,@VN2  
    if any(p)>35 ;)]zv\fC  
        error('zernfun2:P36', ... PZhZK VZx  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... +95dz?~  
               '(P = 0 to 35).']) H$z+gbjJ  
    end 3cFLU^  
    5'-9?-S"  
    % Get the order and frequency corresonding to the function number: ;F(01  
    % ---------------------------------------------------------------- ?jm2|:  
    p = p(:); 6:z&ukq E  
    n = ceil((-3+sqrt(9+8*p))/2); %y\7  
    m = 2*p - n.*(n+2);  Y*}>tD;  
    f EiEfu  
    % Pass the inputs to the function ZERNFUN: !cq| g  
    % ---------------------------------------- # +]! u%n  
    switch nargin \q1%d.\X  
        case 3 %` [`I>  
            z = zernfun(n,m,r,theta); . _t,OX$  
        case 4 x,c68Q)g  
            z = zernfun(n,m,r,theta,nflag); JI,hy <3l0  
        otherwise _r|yt Q)  
            error('zernfun2:nargin','Incorrect number of inputs.') 7%!KAtc  
    end Kcdd=2 [T  
    r8?Lr-;  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 0_pwY=P  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. uWj-tzu  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of H&IP>8Dk  
    %   order N and frequency M, evaluated at R.  N is a vector of [:S F(*}  
    %   positive integers (including 0), and M is a vector with the Q%1;{5   
    %   same number of elements as N.  Each element k of M must be a G&3<rT3Ib  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) x2wWp-Z  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is [eP]8G\ W  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix km^+ mK  
    %   with one column for every (N,M) pair, and one row for every ,VsCRp  
    %   element in R. s? #lhI  
    % L^s;kkB  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- r8 >?-P  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ~(]DNXB8I`  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to  /?xn  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 +rP<m  
    %   for all [n,m]. *)D*iU&  
    % HZ=yfJs nc  
    %   The radial Zernike polynomials are the radial portion of the |?=1tS{iT  
    %   Zernike functions, which are an orthogonal basis on the unit Cjk AQ(9  
    %   circle.  The series representation of the radial Zernike ppP?1Il`kb  
    %   polynomials is =V 7w CW  
    % k ,(:[3J  
    %          (n-m)/2 B[X6A Qj}d  
    %            __ ADz|Y~V!  
    %    m      \       s                                          n-2s ,!4_Uc  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r DP]|}8~L  
    %    n      s=0 C$gLi8|m  
    % obolDh a  
    %   The following table shows the first 12 polynomials. #7ZBbq3=  
    % Tou~U[V+  
    %       n    m    Zernike polynomial    Normalization AR3=G>hO,  
    %       --------------------------------------------- |c/rHEZ  
    %       0    0    1                        sqrt(2) ?EAqv]  
    %       1    1    r                           2 k>hZ  
    %       2    0    2*r^2 - 1                sqrt(6)  y-#tU>P  
    %       2    2    r^2                      sqrt(6) IpmREl $j  
    %       3    1    3*r^3 - 2*r              sqrt(8) o2jB~}VMl  
    %       3    3    r^3                      sqrt(8) BZshTP[`  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 9Wrcl ai  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) -h`0v  
    %       4    4    r^4                      sqrt(10) )^sfEYoA  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) * ?fBmq[j  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) f BOG#-a}  
    %       5    5    r^5                      sqrt(12) HI 61rXNF  
    %       --------------------------------------------- Y|nTc.A  
    % gMn)<u>  
    %   Example: a $:N9&P  
    % Lr:K0A.Ch  
    %       % Display three example Zernike radial polynomials ^%JWc 3jZ  
    %       r = 0:0.01:1; #JucOWxjY  
    %       n = [3 2 5]; rnE'gH(V'  
    %       m = [1 2 1]; V=~dgy ~@  
    %       z = zernpol(n,m,r); %b6wo?%*  
    %       figure GXVGU-br  
    %       plot(r,z) mH .I!  
    %       grid on 6si-IJ  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') h+(s/o?\  
    % blv6  
    %   See also ZERNFUN, ZERNFUN2. ]:fHvx_?`7  
    D I[Ee?  
    % A note on the algorithm. 9t1_"{'N1  
    % ------------------------ JH#+E04#  
    % The radial Zernike polynomials are computed using the series 9k&$bC+Q  
    % representation shown in the Help section above. For many special Y;>'~V#R  
    % functions, direct evaluation using the series representation can 8<!9mgh  
    % produce poor numerical results (floating point errors), because FG\?_G  
    % the summation often involves computing small differences between C:{'0m*jKs  
    % large successive terms in the series. (In such cases, the functions ,#l oVLy  
    % are often evaluated using alternative methods such as recurrence iI0'z=J  
    % relations: see the Legendre functions, for example). For the Zernike [4yQ-L)]e  
    % polynomials, however, this problem does not arise, because the =`H( `2  
    % polynomials are evaluated over the finite domain r = (0,1), and ]du~V?N   
    % because the coefficients for a given polynomial are generally all n0q(EQy1U  
    % of similar magnitude. b87o6"j  
    % YeJdkt  
    % ZERNPOL has been written using a vectorized implementation: multiple Ip x:k+J  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] f *vziC<m  
    % values can be passed as inputs) for a vector of points R.  To achieve VuW19-G  
    % this vectorization most efficiently, the algorithm in ZERNPOL |t_2AV  
    % involves pre-determining all the powers p of R that are required to fHi+PEbR  
    % compute the outputs, and then compiling the {R^p} into a single ?dYDfyFfB  
    % matrix.  This avoids any redundant computation of the R^p, and is$d<Y&F  
    % minimizes the sizes of certain intermediate variables. )j'b7)W\  
    % n>UvRn.7kz  
    %   Paul Fricker 11/13/2006 A )cb  
    NYeg,{q  
    uItKsu  
    % Check and prepare the inputs: +6*I9R  
    % ----------------------------- ):@B1 yR  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) H@:@zD!G[  
        error('zernpol:NMvectors','N and M must be vectors.') ZHJzh\?  
    end RP9||PFS~~  
    /2@@v|QL  
    if length(n)~=length(m) }1wuH  
        error('zernpol:NMlength','N and M must be the same length.') P.Bk-#}$  
    end x&d<IU)5  
    _G|6xlO  
    n = n(:); MNzq}(p  
    m = m(:); :.,I4>b2  
    length_n = length(n); j3>< J  
    y8@!2O4  
    if any(mod(n-m,2)) ;D:v@I$I  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') )UJMmw\  
    end 5{> cfN\q  
    P}jr 8Z  
    if any(m<0) 5cU8GgN`  
        error('zernpol:Mpositive','All M must be positive.') P$bo8*  
    end :`K;0`C +  
    ^BZdR<;  
    if any(m>n) iu'yB  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') /<@tbZJ*8  
    end .+<K-'&=  
    >/*\x g&J  
    if any( r>1 | r<0 ) VbjFQ@[l!  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ?:E;C<Ar  
    end Syk^7l  
    w#XJ!f6*_9  
    if ~any(size(r)==1) VWi-)  
        error('zernpol:Rvector','R must be a vector.') ` T!O )5  
    end `xSXGI  
    O_ c K 4  
    r = r(:); "Xqj%\  
    length_r = length(r); jcj)9;n=!  
    B06/mKZ7  
    if nargin==4 $f+9svq  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); .1@5*xQ5O  
        if ~isnorm -l",!sV  
            error('zernpol:normalization','Unrecognized normalization flag.') = 4If7  
        end cmTZ))m  
    else ?2M15Q  
        isnorm = false; qv:WC TAn  
    end .jCdJ =z  
    e|I5Nx2)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ll#PCgIm  
    % Compute the Zernike Polynomials 3Wiu`A  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sYz:(hZS  
    _heQ|'(  
    % Determine the required powers of r: 8P .! q  
    % ----------------------------------- Umqm5*P(  
    rpowers = []; Lv_>cFJ}[  
    for j = 1:length(n) w3*JVIQC  
        rpowers = [rpowers m(j):2:n(j)]; <1y%ch;  
    end u1uY*p  
    rpowers = unique(rpowers); /mb| %U]~  
    AA66^/t  
    % Pre-compute the values of r raised to the required powers, VbN]z:  
    % and compile them in a matrix: G~JQcJFj  
    % ----------------------------- O/Fzw^  
    if rpowers(1)==0 JwO+Dd  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); `27? f$,  
        rpowern = cat(2,rpowern{:}); ?$ 3=m)s  
        rpowern = [ones(length_r,1) rpowern]; aU3&=aN+  
    else [L8gG.wy  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); FUDM aI  
        rpowern = cat(2,rpowern{:}); NY CkYI  
    end |y]#-T?)t  
    6ugBbP +^  
    % Compute the values of the polynomials: yY1&h op  
    % -------------------------------------- |peZ`O^ ~  
    z = zeros(length_r,length_n); %spR7J\"/  
    for j = 1:length_n |$D^LY  
        s = 0:(n(j)-m(j))/2; D@2Tx  
        pows = n(j):-2:m(j); y]Y)?])  
        for k = length(s):-1:1 i_MDLS>-  
            p = (1-2*mod(s(k),2))* ... `:8&m  
                       prod(2:(n(j)-s(k)))/          ... { "/@,!9rJ  
                       prod(2:s(k))/                 ... AIE)q]'Q  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... A81kb  
                       prod(2:((n(j)+m(j))/2-s(k))); X \h]N  
            idx = (pows(k)==rpowers); ,xGlWH wrY  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 4[6A~iC_  
        end "8-]6p3u  
         9 Hm!B )Y  
        if isnorm Tkd4nRo~  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); _uRgKoiy  
        end O9opX\9  
    end bNqjjg  
     bSmRo  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ^LX1&yT@  
    H~e;S#3_v  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ]8<;,}#  
    V)oUSHillH  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)