切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11516阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 FbMtor  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Xe:rPxZf~  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 :x5O1Zn/t  
    function z = zernfun(n,m,r,theta,nflag) IC8%E3  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ypGt6t(;  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N =-r); d  
    %   and angular frequency M, evaluated at positions (R,THETA) on the  /d!  
    %   unit circle.  N is a vector of positive integers (including 0), and fE)o-q6Z  
    %   M is a vector with the same number of elements as N.  Each element XpkOCo02  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ~b X~_\  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, \o72VHG66  
    %   and THETA is a vector of angles.  R and THETA must have the same mvTp,^1  
    %   length.  The output Z is a matrix with one column for every (N,M) 5a@9PX^.J  
    %   pair, and one row for every (R,THETA) pair. E^ c *x^  
    % 9;\mq'v%  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike r_,;[+!  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), X6(s][Wn  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral )[M:#;,L  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3iX\):4  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized |6^%_kO!|  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. cPAR.h,b?  
    % }a9G,@:k  
    %   The Zernike functions are an orthogonal basis on the unit circle. P,3w b  
    %   They are used in disciplines such as astronomy, optics, and |#SZd Xg  
    %   optometry to describe functions on a circular domain. wYV>Qd Z  
    % aHYISjZ]>  
    %   The following table lists the first 15 Zernike functions. [.Kp/,JY  
    % IFS_DW  
    %       n    m    Zernike function           Normalization y5O &9Ckw  
    %       -------------------------------------------------- Ar,n=obG  
    %       0    0    1                                 1 f.66N9BHL,  
    %       1    1    r * cos(theta)                    2 7OG:G z+)x  
    %       1   -1    r * sin(theta)                    2 Su? cC/  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) rMZuiRz*  
    %       2    0    (2*r^2 - 1)                    sqrt(3) XQfmD;U  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) <;~u@^>  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) b8YdONdy  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ~7*2Jp'  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Q@NFfJJ  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) o59$v X,  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) `JPkho  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V?wV*]c  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 1^= QIX  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f38e(Q];m  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) d(ypFd9z  
    %       -------------------------------------------------- 3/Z>W|w#w  
    % +`{OOp=  
    %   Example 1: a@q c?  
    % 2u!&Te(!9  
    %       % Display the Zernike function Z(n=5,m=1) v0E6i!D/  
    %       x = -1:0.01:1; DC-d@N+  
    %       [X,Y] = meshgrid(x,x); #C?M-  
    %       [theta,r] = cart2pol(X,Y); 66" 6>  
    %       idx = r<=1; $8HiX6r  
    %       z = nan(size(X)); %Pt){9b  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); SUUN_w~  
    %       figure 9:VUtx#}2  
    %       pcolor(x,x,z), shading interp xb9+-{<J  
    %       axis square, colorbar :N$-SV  
    %       title('Zernike function Z_5^1(r,\theta)') >-<iY4|[d  
    % 1TGRIe)  
    %   Example 2:  <9yh:1"X  
    % 1,bE[_  
    %       % Display the first 10 Zernike functions [?KGLUmTAI  
    %       x = -1:0.01:1; "UNFB3  
    %       [X,Y] = meshgrid(x,x); pb)8?1O|s  
    %       [theta,r] = cart2pol(X,Y); SZHgXl3:  
    %       idx = r<=1; b"N!#&O]  
    %       z = nan(size(X)); S**eI<QFSk  
    %       n = [0  1  1  2  2  2  3  3  3  3]; * zyik[o  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; )S2yU<6oOt  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; h3k>WNT7  
    %       y = zernfun(n,m,r(idx),theta(idx)); KAFR.h:p9  
    %       figure('Units','normalized') 1nskf*Z  
    %       for k = 1:10 x4H#8ZK!  
    %           z(idx) = y(:,k); q=BljSX  
    %           subplot(4,7,Nplot(k)) Uza '%R  
    %           pcolor(x,x,z), shading interp JDE_*xaUV  
    %           set(gca,'XTick',[],'YTick',[]) KbvMp1'9P  
    %           axis square @CL#B98jl  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) g]2L[4  
    %       end f6`GU$H  
    % C=r2fc~w  
    %   See also ZERNPOL, ZERNFUN2. M %!;5  
    'OziP  
    %   Paul Fricker 11/13/2006 }>u `8'2v  
    BU/A\4xQ,Y  
    !#O [RS  
    % Check and prepare the inputs: ~:bdS 4w  
    % ----------------------------- '"\M`G  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &.*UVc2+Y  
        error('zernfun:NMvectors','N and M must be vectors.') }a6t<m`V  
    end bP 9ly9FH  
    {a:05Y  
    if length(n)~=length(m) Q[7i  
        error('zernfun:NMlength','N and M must be the same length.') PLc5m5  
    end x2#JD|0  
    Ms(xQ[#+  
    n = n(:); A:r?#7 Ma  
    m = m(:); Zg(Y$ h\  
    if any(mod(n-m,2)) FHSoj=  
        error('zernfun:NMmultiplesof2', ... ~dRstH7u  
              'All N and M must differ by multiples of 2 (including 0).') r8Pd}ptPU  
    end ,=m.WmXE  
    EaO@I.[  
    if any(m>n) X&qx4 DL  
        error('zernfun:MlessthanN', ... 1I9v`eT4  
              'Each M must be less than or equal to its corresponding N.') ]zSFX =~(S  
    end s.}K?)mH  
    .="X vVdkp  
    if any( r>1 | r<0 ) :BF? r  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') P#~B @d  
    end p?rlx#M  
    != ,4tg`  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _]>1(8_N  
        error('zernfun:RTHvector','R and THETA must be vectors.') N"ga -u  
    end Lqj Qv$  
    )O~[4xV~  
    r = r(:); 5XZ! yYB?  
    theta = theta(:); y!77gx?-  
    length_r = length(r); xLz=)k[''  
    if length_r~=length(theta) (hzN(Dh  
        error('zernfun:RTHlength', ... Yv;s3>r  
              'The number of R- and THETA-values must be equal.') 1q;v|F  
    end G:=hg6 '  
    ?0VR2Yb${b  
    % Check normalization: LmF,en5  
    % -------------------- #dA$k+3  
    if nargin==5 && ischar(nflag) vjGQ!xF  
        isnorm = strcmpi(nflag,'norm'); )#}>,,S  
        if ~isnorm -1g :3'% P  
            error('zernfun:normalization','Unrecognized normalization flag.') 3yZmW$E.  
        end dw bR,K  
    else @LKQ-<dZG  
        isnorm = false; yLX $SR  
    end EiW|+@1  
    R2~Tr$:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% []>'Dw_r  
    % Compute the Zernike Polynomials #@S%?`4,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 86r5!@WN  
    !Lf<hS^  
    % Determine the required powers of r: x%G3L\ 5  
    % ----------------------------------- B[t^u\Fk  
    m_abs = abs(m); %iN>4;T8  
    rpowers = []; W7i|uTM  
    for j = 1:length(n)  }vd*eexA  
        rpowers = [rpowers m_abs(j):2:n(j)]; g7*)|FOb  
    end ,^#Jw`w^  
    rpowers = unique(rpowers); ut{T:kT  
    kXMp()N8`  
    % Pre-compute the values of r raised to the required powers, NB"S ,\M0  
    % and compile them in a matrix: (\9`$   
    % ----------------------------- M ?$[WS  
    if rpowers(1)==0 ~U9K<_U  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &XP(D5lf`B  
        rpowern = cat(2,rpowern{:}); -u2i"I730  
        rpowern = [ones(length_r,1) rpowern]; B`5<sW  
    else G6sK3K  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `Lf'/q   
        rpowern = cat(2,rpowern{:}); !'7fOP-J]  
    end ;;Q^/rkC  
    l4Xz r:]  
    % Compute the values of the polynomials: 6o 3 bq|  
    % -------------------------------------- La26"C"X  
    y = zeros(length_r,length(n)); ~GaGDS\V  
    for j = 1:length(n) ly[LF1t   
        s = 0:(n(j)-m_abs(j))/2; 4q$~3C[  
        pows = n(j):-2:m_abs(j); /Rp]"S vt  
        for k = length(s):-1:1 D6sw"V#  
            p = (1-2*mod(s(k),2))* ... ?Ec9rM\ze  
                       prod(2:(n(j)-s(k)))/              ... N%y i4  
                       prod(2:s(k))/                     ... U@lc 1#  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... lfGyK4:  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); u2V-V#jS  
            idx = (pows(k)==rpowers); mP(3[a_Q  
            y(:,j) = y(:,j) + p*rpowern(:,idx); n/H OP  
        end Qw5nfg3T  
         3dShznlf_*  
        if isnorm (L_-!=e  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); NWBYpGZx  
        end qt GJJ#^,  
    end ;SR ESW  
    % END: Compute the Zernike Polynomials y}Ky<%A!P  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <#63tN9  
    EP;/[O  
    % Compute the Zernike functions: v\0G`&^1  
    % ------------------------------ QFyL2Xes/  
    idx_pos = m>0; &K)8  
    idx_neg = m<0; ::L2zVq5V  
    R`?l .0  
    z = y; +jN}d=N-  
    if any(idx_pos) |m19fg3u  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =lXj%V^8N  
    end fn#8=TIDf  
    if any(idx_neg) B{-7  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 'm%{Rz>j  
    end 73WSW/^F  
    dn6B43w  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) BEZ~<E&0H  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. D+8d^-:  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated SpH|<L3  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive tz1@s nes  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, B`tq*T%  
    %   and THETA is a vector of angles.  R and THETA must have the same }v(wjD  
    %   length.  The output Z is a matrix with one column for every P-value, c? ::l+  
    %   and one row for every (R,THETA) pair. ia6 jiW x  
    % Y~~Dg?e  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike :WhJDx`j  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ;yH>A ;,K%  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) tMr7d  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 rK~-Wzwu  
    %   for all p. *% -<Ldv  
    % +vc+9E.?9  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ,|%KlHo^  
    %   Zernike functions (order N<=7).  In some disciplines it is ~{x1/eH  
    %   traditional to label the first 36 functions using a single mode `CK~x =  
    %   number P instead of separate numbers for the order N and azimuthal ~W'DEpq_  
    %   frequency M. hW7u#PY  
    % [%IOB/{N  
    %   Example: !3Dq)ebBz  
    % ;qx#]Z0 <  
    %       % Display the first 16 Zernike functions l![M,8  
    %       x = -1:0.01:1; C*`WMP*  
    %       [X,Y] = meshgrid(x,x);  yCX5 5:  
    %       [theta,r] = cart2pol(X,Y); p l)":}/)  
    %       idx = r<=1; g/?Vl2W  
    %       p = 0:15; %V_ XY+o  
    %       z = nan(size(X)); #-az]s|N  
    %       y = zernfun2(p,r(idx),theta(idx)); $ m`Dyu  
    %       figure('Units','normalized') G,8mFH  
    %       for k = 1:length(p) dg D-"-O  
    %           z(idx) = y(:,k); 0AZ9I!&i  
    %           subplot(4,4,k) :4AQhn^;"  
    %           pcolor(x,x,z), shading interp w+$$uz  
    %           set(gca,'XTick',[],'YTick',[]) PZ[-a-p40  
    %           axis square ZvY"yl?e  
    %           title(['Z_{' num2str(p(k)) '}']) U#<d",I  
    %       end fif;n[<  
    % 0 _!0\d#c  
    %   See also ZERNPOL, ZERNFUN. ?pL|eS7  
    q|5WHB  
    %   Paul Fricker 11/13/2006 VO#rJ1J  
    dT`nR"  
    AvL /gt:  
    % Check and prepare the inputs: Za.}bR6?Y  
    % ----------------------------- q 4BXrEOw  
    if min(size(p))~=1 tqZ91QpW  
        error('zernfun2:Pvector','Input P must be vector.') MmJMx  
    end .0Ud?v>=  
    _/[qBe  
    if any(p)>35 s>9I#_4]  
        error('zernfun2:P36', ... :?f<tNU$  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... )L<.;`g4x  
               '(P = 0 to 35).']) 2%/F`_XbP  
    end +\dVC,,=^g  
    lp*5;Ls'q  
    % Get the order and frequency corresonding to the function number: /%YW[oY{V  
    % ---------------------------------------------------------------- l&& i`  
    p = p(:); ^Ks1[xc*`  
    n = ceil((-3+sqrt(9+8*p))/2); &Vj @){  
    m = 2*p - n.*(n+2); o!xCM:+J  
    qw+ 7.h#V  
    % Pass the inputs to the function ZERNFUN: lyL6w1  
    % ---------------------------------------- @Y~gdK  
    switch nargin +:A `e+\  
        case 3 &0 QUObK  
            z = zernfun(n,m,r,theta); t%@iF U;}  
        case 4 |dIR v  
            z = zernfun(n,m,r,theta,nflag); 9FEhl~&  
        otherwise S iNgV\('U  
            error('zernfun2:nargin','Incorrect number of inputs.') !&%KJS6p4  
    end w+m7jn!$  
    j)i c7 b  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Ie;}k;?-  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ?3i-wpzMp  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of K31rt-IIt  
    %   order N and frequency M, evaluated at R.  N is a vector of pKSVT  
    %   positive integers (including 0), and M is a vector with the Vi>kK|\b  
    %   same number of elements as N.  Each element k of M must be a 7,"1%^tU  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 2\!.w^7'^T  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Ih95&HsdC  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix J_mpI.^Bsf  
    %   with one column for every (N,M) pair, and one row for every _zO,VL  
    %   element in R. M:(k7a+[^  
    % VuW&CnZ  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ^Sr`)vP  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Z5{M_^  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to g<{W\VOPm  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 #6JCm!s  
    %   for all [n,m]. akQtre`5sd  
    % ^Q_0Zq^H  
    %   The radial Zernike polynomials are the radial portion of the IV:Knh+ ?  
    %   Zernike functions, which are an orthogonal basis on the unit -OuMC&  
    %   circle.  The series representation of the radial Zernike L*VGdZ  
    %   polynomials is cj<j *(ZZ  
    % TM':G9n  
    %          (n-m)/2 GRj{*zs  
    %            __ S?=2GY  
    %    m      \       s                                          n-2s UeT"v?zP  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r _B|g)Rdv  
    %    n      s=0 @*l}2W  
    % U07n7`2w  
    %   The following table shows the first 12 polynomials. ]?Ru~N}  
    % I#f<YbzD  
    %       n    m    Zernike polynomial    Normalization JWrvAM$O  
    %       --------------------------------------------- y#Ch /Jg?|  
    %       0    0    1                        sqrt(2) y?aOk-TaRA  
    %       1    1    r                           2 s\Cl3  
    %       2    0    2*r^2 - 1                sqrt(6) ~GS`@IU}  
    %       2    2    r^2                      sqrt(6) n4CzReG  
    %       3    1    3*r^3 - 2*r              sqrt(8) U]ouBG8/  
    %       3    3    r^3                      sqrt(8) @v2kAOw[  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) eGLLh_V"  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) J(-#(kMyf  
    %       4    4    r^4                      sqrt(10) G(4:yK0  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Qo{^jDe,c*  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) B69NL  
    %       5    5    r^5                      sqrt(12) .)u,sYZA|  
    %       --------------------------------------------- 4- 6'  
    % "$:nz}  
    %   Example: mrd(\&EhA  
    % R{6.O+j`  
    %       % Display three example Zernike radial polynomials -acW[$t  
    %       r = 0:0.01:1; hgKs[ySo,3  
    %       n = [3 2 5]; <v[,A8Q  
    %       m = [1 2 1]; Z)7 {e"5d  
    %       z = zernpol(n,m,r); !Nl"y'B|  
    %       figure 0  x"3  
    %       plot(r,z) 6576RT  
    %       grid on g[@]OsX   
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') *+qXX CA  
    % 8X*6i-j5E  
    %   See also ZERNFUN, ZERNFUN2. OBN]bvCJ  
    1/w['d4l!  
    % A note on the algorithm. Cg21-G .  
    % ------------------------ >&U]j*'4  
    % The radial Zernike polynomials are computed using the series |TEf? <"c  
    % representation shown in the Help section above. For many special m=NX;t  
    % functions, direct evaluation using the series representation can ";",r^vr\  
    % produce poor numerical results (floating point errors), because rMf& HX  
    % the summation often involves computing small differences between 3r^i>r8B  
    % large successive terms in the series. (In such cases, the functions rmR7^Ycv/  
    % are often evaluated using alternative methods such as recurrence bUz7!M$  
    % relations: see the Legendre functions, for example). For the Zernike ~`mOs1d  
    % polynomials, however, this problem does not arise, because the U#,2et6  
    % polynomials are evaluated over the finite domain r = (0,1), and @ZK|k  
    % because the coefficients for a given polynomial are generally all g4j?E{M?  
    % of similar magnitude. d%4!d_I<  
    % a*S4rq@  
    % ZERNPOL has been written using a vectorized implementation: multiple }L@!TWR-Qu  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] -jFt4Q7}8  
    % values can be passed as inputs) for a vector of points R.  To achieve qz(0iZ]Y  
    % this vectorization most efficiently, the algorithm in ZERNPOL r#3_F=xL5  
    % involves pre-determining all the powers p of R that are required to HK5\i@G+<  
    % compute the outputs, and then compiling the {R^p} into a single PGu6hV{  
    % matrix.  This avoids any redundant computation of the R^p, and &gcKv1a\  
    % minimizes the sizes of certain intermediate variables. v*l1"0$  
    % \nPa>2r  
    %   Paul Fricker 11/13/2006 oe4Fy}Y_;  
    X )g <F  
    =1yU& PJ  
    % Check and prepare the inputs: Y R#_<o  
    % ----------------------------- $xlI"-(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) qV^,muyoG  
        error('zernpol:NMvectors','N and M must be vectors.') (+bk +0  
    end RNp3lXf O  
    #$X_,P|D  
    if length(n)~=length(m) f#/v^Ql*  
        error('zernpol:NMlength','N and M must be the same length.') &kRkOjuk  
    end x@Z?DS$)  
    i4v7x;m_p  
    n = n(:); SgFyv<6>:  
    m = m(:); ;wgm 'jr  
    length_n = length(n); }N*6xr*X+  
    %nP13V]  
    if any(mod(n-m,2)) mTYEK4}  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') [|xHXcW  
    end 0b~5i-zM/  
    8GV$L~i  
    if any(m<0) 70a7}C\/o  
        error('zernpol:Mpositive','All M must be positive.') ?7/n s>}  
    end !YsL x[+  
    2\lUaC#E  
    if any(m>n) X]tjT   
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') hf8 =r5j=  
    end m(XcPb  
    M8:gHjwsx  
    if any( r>1 | r<0 ) kiZA$:V8  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') tlQ3 BKp  
    end \O^b|0zc  
    6|rqsk  
    if ~any(size(r)==1) T Jp(  
        error('zernpol:Rvector','R must be a vector.') ZVR0Kzu?Ra  
    end D#1'#di*t  
     o-_0  
    r = r(:); h$G&4_O  
    length_r = length(r); 2 Do^N5y  
    iO,0Sb <y  
    if nargin==4 =sPY+~<o  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); C5\bnk{  
        if ~isnorm |\*7J!Liv  
            error('zernpol:normalization','Unrecognized normalization flag.')  }aRV)F  
        end mH}/QfUlq  
    else OTl\^!  
        isnorm = false; mBhG"0:  
    end ABSA le  
    ;KWR/?ec  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d /+sR@\  
    % Compute the Zernike Polynomials w t? 8-_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N9r02c  
    CY? ]o4IV  
    % Determine the required powers of r: 5Q^ L"&0  
    % ----------------------------------- nMNAn}~*M  
    rpowers = []; ~2beVQ(U  
    for j = 1:length(n) l&dHH_m3  
        rpowers = [rpowers m(j):2:n(j)]; Jb#*QJ=  
    end MP-A^QT  
    rpowers = unique(rpowers); M6jP>fbV*  
    /Tv=BXL-  
    % Pre-compute the values of r raised to the required powers, r3mB"("Z'  
    % and compile them in a matrix: qDxz`}Ly=  
    % ----------------------------- & %ej=O  
    if rpowers(1)==0 #9,!IW]l  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); E%:!* 9  
        rpowern = cat(2,rpowern{:}); vHcB ^Z  
        rpowern = [ones(length_r,1) rpowern]; o) `zb?  
    else WOZf4X`[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); cYF R.~p  
        rpowern = cat(2,rpowern{:}); l[.*X  
    end ;<1O86!  
    i44UqEb  
    % Compute the values of the polynomials: 9TjAEeU  
    % -------------------------------------- .taJCE  
    z = zeros(length_r,length_n); ?g&6l0 n`  
    for j = 1:length_n z1aApS  
        s = 0:(n(j)-m(j))/2; zU:zzT}|TZ  
        pows = n(j):-2:m(j); 3Wrl_V  
        for k = length(s):-1:1 HWxk>F0  
            p = (1-2*mod(s(k),2))* ... "Q`{+|'=E  
                       prod(2:(n(j)-s(k)))/          ... 1 M7=*w,  
                       prod(2:s(k))/                 ... ;_R;P;<  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... KFor~A# D  
                       prod(2:((n(j)+m(j))/2-s(k))); D9B?9Qt2[  
            idx = (pows(k)==rpowers); [R)?93  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ;'{:}K=h  
        end 8c\mm 0n  
         R|% 3JE0  
        if isnorm $g$~TuA w  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 4f ~CG r  
        end 6|r` k75.  
    end 8XD9fB^  
    DKqFe5rw  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Tr)a6Cf  
    v!t*Ng  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 .!KlN%As  
    _S8]W !c  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)