非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 xTf|u
function z = zernfun(n,m,r,theta,nflag) `rb}"V+
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. *;[g Ga~
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N nd~O*-uYg
% and angular frequency M, evaluated at positions (R,THETA) on the dU&hM<.|
% unit circle. N is a vector of positive integers (including 0), and T&^b~T(y
% M is a vector with the same number of elements as N. Each element zI"1.^Trn
% k of M must be a positive integer, with possible values M(k) = -N(k) szGGw
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, c\OLf_Uf
% and THETA is a vector of angles. R and THETA must have the same mr>dZ)
% length. The output Z is a matrix with one column for every (N,M) p|Qn?^C:
% pair, and one row for every (R,THETA) pair. e#!p6+#"
% @:t2mz:^i
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3|PV.
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ud)2Mq1#M
% with delta(m,0) the Kronecker delta, is chosen so that the integral t6Nkv;)>@
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, s9,Z}]Th
% and theta=0 to theta=2*pi) is unity. For the non-normalized {
t@7r
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [F+*e=wjN>
% KJ
cuZ."wX
% The Zernike functions are an orthogonal basis on the unit circle. 5xhYOwQBo
% They are used in disciplines such as astronomy, optics, and Q!{,^Qb
% optometry to describe functions on a circular domain. 5M\bH'1
% " TC:O^X
% The following table lists the first 15 Zernike functions. Qv]>L4PO
% LwcAF g|
% n m Zernike function Normalization rmeGk&*R8
% -------------------------------------------------- @#"6_{!j_X
% 0 0 1 1 xM?tdQ~VHY
% 1 1 r * cos(theta) 2 upiYo(sN.
% 1 -1 r * sin(theta) 2 oZ>2Tt%
% 2 -2 r^2 * cos(2*theta) sqrt(6) B/I1<%Yk
% 2 0 (2*r^2 - 1) sqrt(3) L:7 kp<E
% 2 2 r^2 * sin(2*theta) sqrt(6) HL%|DCo
% 3 -3 r^3 * cos(3*theta) sqrt(8) K"8!
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) {_ {zs!r
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) H18pVh
% 3 3 r^3 * sin(3*theta) sqrt(8) Dlg9PyQ
% 4 -4 r^4 * cos(4*theta) sqrt(10) S|]\q-qA&
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) GHpP
*x
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) IHv>V9yiG
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <=%=,Yk
% 4 4 r^4 * sin(4*theta) sqrt(10) ZhFlR*EQ
% -------------------------------------------------- > ,x``-
% \?vn0;R4
% Example 1: f@0Km^a Uc
% 5=Il2
% % Display the Zernike function Z(n=5,m=1) XA\wZV
|{
% x = -1:0.01:1; O@a7MzJ
% [X,Y] = meshgrid(x,x); f1|&umJ$
% [theta,r] = cart2pol(X,Y); 7n7UL0Oc1
% idx = r<=1; 2E0oLl[
% z = nan(size(X)); uQg&