非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 e::5|6x
function z = zernfun(n,m,r,theta,nflag) #!#V!^ o
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ibzYY"D:
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @PwEom`a
% and angular frequency M, evaluated at positions (R,THETA) on the ZfT%EPoZ:
% unit circle. N is a vector of positive integers (including 0), and } Q1$v~
% M is a vector with the same number of elements as N. Each element `RGZ-Q{_
% k of M must be a positive integer, with possible values M(k) = -N(k) :^%soEi
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ?P`wLS^;
% and THETA is a vector of angles. R and THETA must have the same ^%_B'X9
% length. The output Z is a matrix with one column for every (N,M) q,nj|9z V
% pair, and one row for every (R,THETA) pair. R5]R
pW=G
% L*FmJ{Yf
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike sbK0OA
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), s^C*uP;R
% with delta(m,0) the Kronecker delta, is chosen so that the integral A!^K:S:@
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {(a@3m~a%
% and theta=0 to theta=2*pi) is unity. For the non-normalized a]X6) 6
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. N)poe2[
% 1<\cMY6
% The Zernike functions are an orthogonal basis on the unit circle. yWzvE:!)
% They are used in disciplines such as astronomy, optics, and u"T5m
% optometry to describe functions on a circular domain. LV8,nTYvE
% o\|dm."f
% The following table lists the first 15 Zernike functions. nt;A7pI`
% 0?p_|X'_
% n m Zernike function Normalization ,6t0w|@-k
% -------------------------------------------------- Fg#*rzA
% 0 0 1 1 }$qy_Esl
% 1 1 r * cos(theta) 2 W@wT,yJ8@
% 1 -1 r * sin(theta) 2 ; UrwK
% 2 -2 r^2 * cos(2*theta) sqrt(6) ?\vJ8H[bD
% 2 0 (2*r^2 - 1) sqrt(3) =Rb, `%
% 2 2 r^2 * sin(2*theta) sqrt(6) 00;=6q]TA
% 3 -3 r^3 * cos(3*theta) sqrt(8) ?-@hNrx
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) g<,v2A
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) E/U1g4S
% 3 3 r^3 * sin(3*theta) sqrt(8) o{-PT'
% 4 -4 r^4 * cos(4*theta) sqrt(10) AO']Kmm
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?WAlW,H>
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) &7@6Y{!/
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) P45q}v
% 4 4 r^4 * sin(4*theta) sqrt(10) JC =Bxv
% -------------------------------------------------- N#,4BU
% uN$X3Ls_
% Example 1: %J|EDf,M
% &q":o 'q
% % Display the Zernike function Z(n=5,m=1) #G*z{BRQ
% x = -1:0.01:1; $u3N ',&
% [X,Y] = meshgrid(x,x); i}wu+<Mk
% [theta,r] = cart2pol(X,Y); <EBp X
% idx = r<=1; H[>_LYZ8
% z = nan(size(X)); }1_gemlf
% z(idx) = zernfun(5,1,r(idx),theta(idx)); .mok.f<G_m
% figure c&0IJ7fZG
% pcolor(x,x,z), shading interp PKjA@+
% axis square, colorbar R8],}6,;E}
% title('Zernike function Z_5^1(r,\theta)') tY[y? DJ
% m2_&rjGz
% Example 2: q>Q|:g&:
% pM#:OlqC
% % Display the first 10 Zernike functions }*R"yp
% x = -1:0.01:1; Hfc^<q4a.
% [X,Y] = meshgrid(x,x); {g @
*jo&
% [theta,r] = cart2pol(X,Y); w:umr#
% idx = r<=1; " g_\W
% z = nan(size(X)); "\>3mVOb
% n = [0 1 1 2 2 2 3 3 3 3]; *K+*0_
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; dUe"qH29s
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 5mFi)0={y
% y = zernfun(n,m,r(idx),theta(idx)); ZnJnjW PQ
% figure('Units','normalized') =r_ SMTu
% for k = 1:10 l|&|+u#
% z(idx) = y(:,k); @8CD@SDv
% subplot(4,7,Nplot(k)) Vm6^'1CY
% pcolor(x,x,z), shading interp B'
:ZX-Q)
% set(gca,'XTick',[],'YTick',[]) hG
]j m
% axis square Cog:6Gnw
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) T.(SBP
% end J@Orrz2q#
% [{ zekF~)@
% See also ZERNPOL, ZERNFUN2. qlgh$9
<v2R6cj5
% Paul Fricker 11/13/2006 {;-$;\D
2XXEg>CU
>K
&b,o,[
% Check and prepare the inputs: u5,IH2BU
% ----------------------------- {K|{a
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $K,aLcu
error('zernfun:NMvectors','N and M must be vectors.') :JN3@NsK
end HFDg@@
nB:Bw8U"Q
if length(n)~=length(m) tjTF?>^6|
error('zernfun:NMlength','N and M must be the same length.') RV($G8U
end }>OE"#si
>)5vsqGZaK
n = n(:); ~z'0~3
m = m(:); H~$|y9>qI
if any(mod(n-m,2)) =k8A7P
error('zernfun:NMmultiplesof2', ... 9<YB&:<
'All N and M must differ by multiples of 2 (including 0).') R1wdQ8q
end '{+hti,Lh
+Rh'VZJs
if any(m>n) (&gCVf
error('zernfun:MlessthanN', ... %(e=Q^=
'Each M must be less than or equal to its corresponding N.') DMf9wB
end Bo0y"W[+
K{iayg!k
if any( r>1 | r<0 ) {Ise (>V
error('zernfun:Rlessthan1','All R must be between 0 and 1.') u(o @_6
end stDn{x.
Th8Q~*v
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -5qO}^i$a
error('zernfun:RTHvector','R and THETA must be vectors.') J\{)qJ*jp
end .DX#:?@4@Y
>Y,7>ahyt
r = r(:); l9jcoVo.
theta = theta(:); Hv=coS>g:
length_r = length(r);
h!Q>h7
if length_r~=length(theta) F-R`'{ ka
error('zernfun:RTHlength', ... ~q4y'dBy*
'The number of R- and THETA-values must be equal.') /#
eBDo
end rvG qUmSUs
XmnqZWB
% Check normalization: "s*{0'jo
% -------------------- q{@Wn]!k
if nargin==5 && ischar(nflag) Oh^X^*I$@
isnorm = strcmpi(nflag,'norm'); af_zZf!0
if ~isnorm F+6ZD5/
error('zernfun:normalization','Unrecognized normalization flag.') E`s_Dr}K
end 6RF01z|~_
else L"Gi~:z
isnorm = false;
V|D;7
end yjpjJ
f"tO*/|`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q,4F=b
% Compute the Zernike Polynomials 4a 5n*6G!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .d fTv/n
#[si.rv->
% Determine the required powers of r: a}
/Vu"
% ----------------------------------- *p-Fn$7\n
m_abs = abs(m); [X
I5Bu ~
rpowers = []; :.~a[\C@V<
for j = 1:length(n) !Q#b4 f
rpowers = [rpowers m_abs(j):2:n(j)]; 3xe8DD
end b^xf,`D
rpowers = unique(rpowers); wiVQMgi`
V.4j?\#%
% Pre-compute the values of r raised to the required powers, I*ej_cFQ^
% and compile them in a matrix: A/QVotcU
% ----------------------------- <|8l ;
if rpowers(1)==0 oaKf{$vg
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4/jY;YN,2
rpowern = cat(2,rpowern{:}); dbLX}>
rpowern = [ones(length_r,1) rpowern]; k`t'P6
bU
else j@ "`!uPz
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .
9
NS
rpowern = cat(2,rpowern{:}); 9,Mp/.T" \
end ELPJ}moWZ
cU>&E*wD
% Compute the values of the polynomials: 7^; OjO@8
% -------------------------------------- K c<z;
y = zeros(length_r,length(n)); ZChY:I$<
for j = 1:length(n) `8-aHPF-
s = 0:(n(j)-m_abs(j))/2; 5B2,=?+o
pows = n(j):-2:m_abs(j); (HF,p,h_
for k = length(s):-1:1 4"2/"D0
p = (1-2*mod(s(k),2))* ... 4Rm3'Ch
prod(2:(n(j)-s(k)))/ ... C0W~Tk\C2
prod(2:s(k))/ ... SQ!lgm1bA
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `SW
" RLS3
prod(2:((n(j)+m_abs(j))/2-s(k))); GKS y|z
idx = (pows(k)==rpowers); +wSm6*j7=
y(:,j) = y(:,j) + p*rpowern(:,idx); VB#31T#q?
end vP4Ij
cg.e(@(
if isnorm oL@ou{iQ
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >(CoXSV5
end :2My|3H\
end e^GW[lT
% END: Compute the Zernike Polynomials C{Ug ?hVP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B#MW`7c
d{hYT\7~1(
% Compute the Zernike functions: ]aRD6F:L
% ------------------------------ C]H <L#)ZU
idx_pos = m>0; $iPN5@F
idx_neg = m<0; TxvPfU?
Fdw[CYHz
z = y; O}-7 V5
if any(idx_pos) I3Lsj}69
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); h %s
end T/;hIX:R
if any(idx_neg) \.a .'l
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); nc~d*K\!
end [J`G`s!
Zsogx}i-
% EOF zernfun