切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11129阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 d\]KG(T  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! |<,qnf | -  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 F8-GnT xa  
    function z = zernfun(n,m,r,theta,nflag) q*&H  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. %eDSo9Y  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7gf(5p5ZV  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 'fU#v`i  
    %   unit circle.  N is a vector of positive integers (including 0), and k37?NoT  
    %   M is a vector with the same number of elements as N.  Each element _D{A`z  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Gkuqe3  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, >o1dc*  
    %   and THETA is a vector of angles.  R and THETA must have the same u.X]K:Yow  
    %   length.  The output Z is a matrix with one column for every (N,M) <?7qI85OT  
    %   pair, and one row for every (R,THETA) pair. -z`FKej   
    % \[3~*eX6  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike v3Vve:}+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), EO)JMV?6  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral "D.<~!  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +=E\sEe  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized hO8xH +;  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. yk?bz  
    % HC$%"peN1b  
    %   The Zernike functions are an orthogonal basis on the unit circle. aJ(/r.1G  
    %   They are used in disciplines such as astronomy, optics, and C;m"W5+  
    %   optometry to describe functions on a circular domain. r 1r@TG\  
    % qBBCnT  
    %   The following table lists the first 15 Zernike functions. s oY\6mHio  
    % <7 U~0@<Y  
    %       n    m    Zernike function           Normalization rk1,LsZVS  
    %       -------------------------------------------------- b=lJ`|  
    %       0    0    1                                 1 .|[{$&B  
    %       1    1    r * cos(theta)                    2 ]?=87w  
    %       1   -1    r * sin(theta)                    2 NRtH?&7  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) SDC|>e9i  
    %       2    0    (2*r^2 - 1)                    sqrt(3) *G.vY#h  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) J "I,]  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) >b2!&dm  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) `r1}:`.m,  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) g0zzDv7~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) n%F _ 3`  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) h}SZ+G/L  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i RrUIWx  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) gDU!dT  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) fVn4=d6X  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Bz }nP9  
    %       -------------------------------------------------- ~NK $rHwi%  
    % )&O2l  
    %   Example 1: F&wAre<  
    % 9Q,>I6`l  
    %       % Display the Zernike function Z(n=5,m=1) O`y3H lc  
    %       x = -1:0.01:1; j_g(6uZhz3  
    %       [X,Y] = meshgrid(x,x); %.=}v7&<z  
    %       [theta,r] = cart2pol(X,Y); ~4~r  
    %       idx = r<=1; D?_K5a&v,  
    %       z = nan(size(X)); Ps@']]4>W  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); DehjV6t  
    %       figure B%\&Q @X  
    %       pcolor(x,x,z), shading interp bI ;I<Qa  
    %       axis square, colorbar Cik1~5iF  
    %       title('Zernike function Z_5^1(r,\theta)') i24k ]F  
    %  _ VuWo  
    %   Example 2: `r SOt *<  
    % f9K7^qwkiz  
    %       % Display the first 10 Zernike functions .@)vJtH)  
    %       x = -1:0.01:1; #[jS&rr(  
    %       [X,Y] = meshgrid(x,x); VVSt,/SO  
    %       [theta,r] = cart2pol(X,Y); GxzO|vFQ  
    %       idx = r<=1; 4q]6[/  
    %       z = nan(size(X)); "e"#k}z9  
    %       n = [0  1  1  2  2  2  3  3  3  3]; rNV3-#kU  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; C,+  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; X?t;uZI^  
    %       y = zernfun(n,m,r(idx),theta(idx)); .4v?/t1  
    %       figure('Units','normalized') q~> +x?30  
    %       for k = 1:10 fhN\AjB6Td  
    %           z(idx) = y(:,k); nRBS&&V  
    %           subplot(4,7,Nplot(k)) OS#aYER~/  
    %           pcolor(x,x,z), shading interp 3/]1m9x  
    %           set(gca,'XTick',[],'YTick',[]) kZG=C6a  
    %           axis square Sa<(F[p`  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9jImuSZ  
    %       end !nl-}P,  
    % A4f"v)vM  
    %   See also ZERNPOL, ZERNFUN2. -OJ<Lf+"=  
    *>W<n1r@]  
    %   Paul Fricker 11/13/2006 }T$BU>z33N  
    D'!JV1Q  
    r =x"E$  
    % Check and prepare the inputs: A2gFY}  
    % ----------------------------- < +*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) WOj}+?/3 R  
        error('zernfun:NMvectors','N and M must be vectors.') iHNQxLkk{:  
    end +m./RlQ{  
    >s/_B//[  
    if length(n)~=length(m) ({rcH.:  
        error('zernfun:NMlength','N and M must be the same length.') j.]]VA  
    end lU!_V%n  
    h.K"v5I*  
    n = n(:); -sA&1n"W&5  
    m = m(:); _<f%== I'  
    if any(mod(n-m,2)) yJ!26  
        error('zernfun:NMmultiplesof2', ... !$l<'K$  
              'All N and M must differ by multiples of 2 (including 0).') @@*x/"GJG  
    end w` +,  
    VX&g[5zr  
    if any(m>n) \Ebh6SRp\  
        error('zernfun:MlessthanN', ... =aB+|E  
              'Each M must be less than or equal to its corresponding N.') a%c <3'  
    end % WDTnEm  
    <J%Z?3@ T  
    if any( r>1 | r<0 ) #EUT"^:d  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') wA$?e}  
    end r4P%.YO+X  
    T&[6  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) L@O>;zp;  
        error('zernfun:RTHvector','R and THETA must be vectors.') C<teZz8/w  
    end ]a/dvj}  
    i45.2,  
    r = r(:); S}rEQGGR{  
    theta = theta(:); T P#Ncqh  
    length_r = length(r); g8E5"jpXx3  
    if length_r~=length(theta) pBe1:  
        error('zernfun:RTHlength', ... NpGi3>5  
              'The number of R- and THETA-values must be equal.') %iNgHoH  
    end }^$#vJ(a7K  
    =XQGg`8<LB  
    % Check normalization: EoutB Vm  
    % -------------------- 873 bg|^hs  
    if nargin==5 && ischar(nflag) v\bWQs1  
        isnorm = strcmpi(nflag,'norm'); }JtcAuQt  
        if ~isnorm \2+ngq)  
            error('zernfun:normalization','Unrecognized normalization flag.') 8!35 K  
        end rNhS\1-  
    else l@SV!keQ  
        isnorm = false; Eg1TF oIWl  
    end vKW!;U9~P  
    ^|oI^"I Q=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )6%*=-  
    % Compute the Zernike Polynomials #f(tzPD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;/V])4=  
    $hCS-9%&  
    % Determine the required powers of r: tt-ci,X+  
    % ----------------------------------- Kh4rl)L*+%  
    m_abs = abs(m); ,? <;zq  
    rpowers = []; <= _!8A  
    for j = 1:length(n) 6I(Y<LZ5  
        rpowers = [rpowers m_abs(j):2:n(j)]; h{"SV*Xpk/  
    end Z0H_l/g  
    rpowers = unique(rpowers); +pSo(e(  
    Q*Jb0f  
    % Pre-compute the values of r raised to the required powers, 0= bXL!]  
    % and compile them in a matrix: 1E!.E=Y ?M  
    % ----------------------------- .s"Og;g  
    if rpowers(1)==0 *MfH\X379  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); A-B>VX  
        rpowern = cat(2,rpowern{:}); cg^~P-i@*  
        rpowern = [ones(length_r,1) rpowern]; 4xT /8>v2|  
    else :mDOqlXW/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); WYRC_U7  
        rpowern = cat(2,rpowern{:}); ?IQDk|<%  
    end kK4+K74B  
    3d;J"e+?  
    % Compute the values of the polynomials: PUD8  
    % -------------------------------------- 61QA<Wb  
    y = zeros(length_r,length(n)); :Nf(:D8  
    for j = 1:length(n) 19[oXyFI  
        s = 0:(n(j)-m_abs(j))/2; %I`'it2d  
        pows = n(j):-2:m_abs(j); zQO 1%g  
        for k = length(s):-1:1 fz VN;h  
            p = (1-2*mod(s(k),2))* ... 9Bpb?  
                       prod(2:(n(j)-s(k)))/              ... WF~x`w&\  
                       prod(2:s(k))/                     ... )$1j"mV  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... wbr$w>n  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); UxB3/!<5g3  
            idx = (pows(k)==rpowers); 2s,cyCw&  
            y(:,j) = y(:,j) + p*rpowern(:,idx); z@ZI$.w  
        end vq9O|E3  
         Ki:t!vAO  
        if isnorm zN5};e}^v  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); +8 "8s  
        end 4gEw }WiP  
    end *!%n`BR '  
    % END: Compute the Zernike Polynomials ,hJx3g5#n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (gE<`b  
    9 4bDJy1  
    % Compute the Zernike functions: dg*xo9Xi`  
    % ------------------------------ hN0h'JJ[7  
    idx_pos = m>0; _7u&.l<;  
    idx_neg = m<0; ~ m vv :u  
    bUy!hS;s  
    z = y; SR.xI:}4  
    if any(idx_pos) H/ ejO_{  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); S{ F\_'%  
    end K&{ _s  
    if any(idx_neg) '-~J.8-</  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); m@I}$  
    end XmwR^  
    OU/3U(%n]e  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 9T$%^H9  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. >}0H5Q8@  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Zn*W2s^^{  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive )B-[Q#*A-  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, MYxuQ|w  
    %   and THETA is a vector of angles.  R and THETA must have the same rK;<-RE<[:  
    %   length.  The output Z is a matrix with one column for every P-value, *\iXU//^)  
    %   and one row for every (R,THETA) pair. R vU'8Y?>w  
    % .bV^u  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike xr Ne:Aj  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2)  L`Ys`7  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) %@aC5^Ovy+  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 'tQp&p j  
    %   for all p. [*C~BM  
    % kDR5kDiS  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 k $ SMQ6  
    %   Zernike functions (order N<=7).  In some disciplines it is GqP02P'2  
    %   traditional to label the first 36 functions using a single mode y'oH>l+n  
    %   number P instead of separate numbers for the order N and azimuthal (<H@W/0$  
    %   frequency M. XfIsf9  
    % F$|d#ny  
    %   Example: )"tM[~e`  
    % 3T 0'zJ2f  
    %       % Display the first 16 Zernike functions w!d(NA<|0]  
    %       x = -1:0.01:1; p? VDBAx  
    %       [X,Y] = meshgrid(x,x); S;#7B?j  
    %       [theta,r] = cart2pol(X,Y); UT 7'-  
    %       idx = r<=1; e!w{ap8u  
    %       p = 0:15; vkYiO]y  
    %       z = nan(size(X)); Y2ON!Rno  
    %       y = zernfun2(p,r(idx),theta(idx)); gCL}Ba  
    %       figure('Units','normalized') ?< Ma4yl</  
    %       for k = 1:length(p) |hDN$By  
    %           z(idx) = y(:,k); YiL^KK  
    %           subplot(4,4,k) L&|^y8  
    %           pcolor(x,x,z), shading interp ZRr.kN+F  
    %           set(gca,'XTick',[],'YTick',[]) QQ =tiW  
    %           axis square %l%2 hvGZ  
    %           title(['Z_{' num2str(p(k)) '}']) w&hCt c  
    %       end d?/g5[  
    % #?>p l.  
    %   See also ZERNPOL, ZERNFUN. v}!^RW 'X  
    (v0Q.Q@ <  
    %   Paul Fricker 11/13/2006 3:OqD~,zy  
    >B$ IrM7J  
    S]e;p\8$Z  
    % Check and prepare the inputs: 6pQo_l}  
    % ----------------------------- elD|b=(-  
    if min(size(p))~=1 ]h`d>#Hw!  
        error('zernfun2:Pvector','Input P must be vector.') pgv, Su  
    end 5@W63!N  
    f& Sovuuh  
    if any(p)>35 0d 0ga^O  
        error('zernfun2:P36', ... &g8Xjx&zj  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... #>z!ns  
               '(P = 0 to 35).']) TOvsW<cM  
    end !,J] 5$M  
    E;k$ICOXA  
    % Get the order and frequency corresonding to the function number: :"i2`y;u  
    % ---------------------------------------------------------------- %?/vC 6  
    p = p(:); mZnsr@KF  
    n = ceil((-3+sqrt(9+8*p))/2); T#H-GOY:  
    m = 2*p - n.*(n+2); SapVS*yx@  
    Y$ KR\ m  
    % Pass the inputs to the function ZERNFUN: wr>6Go%  
    % ---------------------------------------- [KW)z#`*  
    switch nargin 0@ vzQ$  
        case 3 DoN]v  
            z = zernfun(n,m,r,theta); 3r?T|>|  
        case 4 {uqP+Cs  
            z = zernfun(n,m,r,theta,nflag); %Go/\g   
        otherwise G}]'}FUp  
            error('zernfun2:nargin','Incorrect number of inputs.') *iSE)[W  
    end  T#Z#YMk  
    vNm4xa%  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) $?OQtz@  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. _~y-?(46K  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of /1+jQS  
    %   order N and frequency M, evaluated at R.  N is a vector of !H9zd\wc  
    %   positive integers (including 0), and M is a vector with the !Okl3 !fC  
    %   same number of elements as N.  Each element k of M must be a #)%X0%9.*<  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) T!1XL7  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is J8&0l&~ 6  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix FaaxfcIfkw  
    %   with one column for every (N,M) pair, and one row for every E6?0/"  
    %   element in R. BMn`t@!x  
    % raR=k!3i  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 9G[t &r  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is SU.$bsu  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to wZj`V_3  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 e "Tr0k  
    %   for all [n,m]. J[\8:qE  
    % iW[%|ddk  
    %   The radial Zernike polynomials are the radial portion of the fz+dOIU3\L  
    %   Zernike functions, which are an orthogonal basis on the unit ?:7$c  
    %   circle.  The series representation of the radial Zernike Ma ]*Pled  
    %   polynomials is  {C%f~j  
    % e,*@+E\4  
    %          (n-m)/2 Jg6@)<n  
    %            __ -_>E8PhM  
    %    m      \       s                                          n-2s z E\~Oa;  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r cfc=a  
    %    n      s=0 X09i+/ICK  
    % %(r.`I$  
    %   The following table shows the first 12 polynomials. }l5Q0'  
    % aOmQ<N]a  
    %       n    m    Zernike polynomial    Normalization :SN/fY  
    %       --------------------------------------------- ERfSJ  
    %       0    0    1                        sqrt(2) 5^N` ~  
    %       1    1    r                           2 ?oU5H  
    %       2    0    2*r^2 - 1                sqrt(6) .ITTYQHv)  
    %       2    2    r^2                      sqrt(6) ]OC?g2&6  
    %       3    1    3*r^3 - 2*r              sqrt(8) j Oxnf%jl  
    %       3    3    r^3                      sqrt(8) j__l'?s  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ?|GwuG8g  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) I%mGb$ Q  
    %       4    4    r^4                      sqrt(10) @CA{uP;  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 6PLdzZ{  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) cu4|!s`#  
    %       5    5    r^5                      sqrt(12) Lv-M.  
    %       --------------------------------------------- 6^z):d#u  
    % ~01t_Xp qc  
    %   Example: \Bl`;uXb  
    % 0E^S!A 7  
    %       % Display three example Zernike radial polynomials oLt%i:,A  
    %       r = 0:0.01:1; V"A* B  
    %       n = [3 2 5]; 2'}/aL|G  
    %       m = [1 2 1]; fLuOxYQbf  
    %       z = zernpol(n,m,r); Htce<H-P  
    %       figure .R&jRtb/E  
    %       plot(r,z) 2-rfFqpe  
    %       grid on Ol X otp8  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') TcH7!fUj  
    % B~u`bn,iQ  
    %   See also ZERNFUN, ZERNFUN2. ,'@t .XP  
    KY9@2JG  
    % A note on the algorithm. &C6*"JZ4  
    % ------------------------ a=*JyZ.2  
    % The radial Zernike polynomials are computed using the series gV-A+;u  
    % representation shown in the Help section above. For many special {fn1sGA  
    % functions, direct evaluation using the series representation can C=DC g  
    % produce poor numerical results (floating point errors), because mzn#4;m$  
    % the summation often involves computing small differences between 2Jt*s$  
    % large successive terms in the series. (In such cases, the functions AN+S6t  
    % are often evaluated using alternative methods such as recurrence vgKdhN2kI  
    % relations: see the Legendre functions, for example). For the Zernike Yo,n#<37  
    % polynomials, however, this problem does not arise, because the I=7 YAm[W  
    % polynomials are evaluated over the finite domain r = (0,1), and }J_#N.y  
    % because the coefficients for a given polynomial are generally all gnw?Y 2  
    % of similar magnitude. v.>95|8  
    % (6i. >%|_  
    % ZERNPOL has been written using a vectorized implementation: multiple =gO4B-[  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] knRs{1}Pw{  
    % values can be passed as inputs) for a vector of points R.  To achieve ;sY n=r  
    % this vectorization most efficiently, the algorithm in ZERNPOL [f`7+RHrd  
    % involves pre-determining all the powers p of R that are required to k1HCPj  
    % compute the outputs, and then compiling the {R^p} into a single t0 )XdIl8  
    % matrix.  This avoids any redundant computation of the R^p, and {br6*  
    % minimizes the sizes of certain intermediate variables. TL: 6Pe  
    % G]gc*\4  
    %   Paul Fricker 11/13/2006 OsgjSJrf  
    ;Lk07+3G  
    uVzvUz{b  
    % Check and prepare the inputs: +?GsIp@>jh  
    % ----------------------------- MJy(B><  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) j2=|,AmC  
        error('zernpol:NMvectors','N and M must be vectors.') 2:;;  
    end v=E(U4v9e  
    7~nuFJaTI  
    if length(n)~=length(m) otdm r w|  
        error('zernpol:NMlength','N and M must be the same length.') C]ef `5NR]  
    end ulNMqz\.  
    4&G #Bi  
    n = n(:); r!/<%\S  
    m = m(:); {,e-; 2q  
    length_n = length(n); 9QEK|x`8  
    Pr#uV3\  
    if any(mod(n-m,2)) c6MMI]+8  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') k6(0:/C  
    end lZ?YyRsa6&  
    o}y(T07n  
    if any(m<0) T}Ve:S  
        error('zernpol:Mpositive','All M must be positive.') HD>UTX`&mc  
    end Gw+pjSJL`  
    h|OWtf4  
    if any(m>n) \ 9#X]H  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ?~tx@k$;Es  
    end mIv}%hD  
    PgYIQpV  
    if any( r>1 | r<0 ) !u|s8tN.U  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') #bGYd}BfD  
    end #F'8vf'r  
    Lm'+z97  
    if ~any(size(r)==1) axz.[L_elB  
        error('zernpol:Rvector','R must be a vector.') xtzkgb,0[  
    end & DhdB0Hjf  
    x,TnYqT^  
    r = r(:); c2:oM<6|  
    length_r = length(r); ma@!"Z8 S  
    !>EK %OO  
    if nargin==4 }z-6,i)'k  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); +3]V>Mv  
        if ~isnorm v>0} v)<v  
            error('zernpol:normalization','Unrecognized normalization flag.') YZ6" s-  
        end mi@ni+2Tn  
    else oH(=T/{  
        isnorm = false; % \Mc6  
    end | &/_{T  
    $Ao'mT  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RhkTN'vO  
    % Compute the Zernike Polynomials "&@{f:+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z+<ofZ(.  
    'CCAuN>J  
    % Determine the required powers of r: B{>x  
    % ----------------------------------- [R<>3}50Y  
    rpowers = []; > O~   
    for j = 1:length(n) X u2+TK  
        rpowers = [rpowers m(j):2:n(j)]; ]E#W[6'VtB  
    end =4gPoS  
    rpowers = unique(rpowers); )&qr2Cm*  
    Ht|"91ZC5  
    % Pre-compute the values of r raised to the required powers, u=7 #_ZC9L  
    % and compile them in a matrix: y-mjfW`n  
    % ----------------------------- nBwDq^  
    if rpowers(1)==0 3 5/ s\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )C0d*T0i  
        rpowern = cat(2,rpowern{:}); |mT1\O2a  
        rpowern = [ones(length_r,1) rpowern]; p;~oIy\,  
    else x;A.Ll  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GIhFOK  
        rpowern = cat(2,rpowern{:}); m+xub*/  
    end JthU' "K  
     vPAL,  
    % Compute the values of the polynomials: ,>Dpt <  
    % -------------------------------------- @Y!B~  
    z = zeros(length_r,length_n); YmLpGqNv  
    for j = 1:length_n &FWz7O>1  
        s = 0:(n(j)-m(j))/2; Ey{p;;H  
        pows = n(j):-2:m(j); `@{(ijg.  
        for k = length(s):-1:1 se*k56,  
            p = (1-2*mod(s(k),2))* ... uo bQS!  
                       prod(2:(n(j)-s(k)))/          ... #szIYyk  
                       prod(2:s(k))/                 ... |\W~+}'g~  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... F:8@ ]tA&  
                       prod(2:((n(j)+m(j))/2-s(k))); Xq}}T%jcd  
            idx = (pows(k)==rpowers); u-*z#e_L0  
            z(:,j) = z(:,j) + p*rpowern(:,idx); &ju.5v|  
        end rA}mp]  
         JA4}B wn  
        if isnorm X2'XbG 3  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); M"6J"s  
        end g!^mewtd  
    end p5l|qs  
    ,h<x Y>  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  K9yZG  
    ynZEJKo  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 E7hs+Mh  
    >AY9 F|:  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)