非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 U)dcemQY
function z = zernfun(n,m,r,theta,nflag) + }"+
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. aQoB1qd8
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @Z/jaAjUC
% and angular frequency M, evaluated at positions (R,THETA) on the +c8`N'~
% unit circle. N is a vector of positive integers (including 0), and 7#JnQ|
]
% M is a vector with the same number of elements as N. Each element ,X/j6\VBO
% k of M must be a positive integer, with possible values M(k) = -N(k) AYf}=t|
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, eX\v;~W*
% and THETA is a vector of angles. R and THETA must have the same r 2:{r`ocM
% length. The output Z is a matrix with one column for every (N,M) ue8 @=}
% pair, and one row for every (R,THETA) pair. -gGw_w?)(
%
TX5??o
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike p7\LLJ y
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), xn, u$@F
% with delta(m,0) the Kronecker delta, is chosen so that the integral !v2/sq$G
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?Nt( sZ-
% and theta=0 to theta=2*pi) is unity. For the non-normalized .7.1JT#@A7
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. qz-
tXc,
% ql9n`?Q
% The Zernike functions are an orthogonal basis on the unit circle. 'n h^;
% They are used in disciplines such as astronomy, optics, and JOuy_n
% optometry to describe functions on a circular domain. Um/l{:S
% (pH)QG
% The following table lists the first 15 Zernike functions. /@
emE0
% M?8sy
% n m Zernike function Normalization '7oR|I
% -------------------------------------------------- pYcs4f!?p
% 0 0 1 1 zsQ]U!*rD
% 1 1 r * cos(theta) 2 cQ1[x>OcU
% 1 -1 r * sin(theta) 2 QE/kR!r
% 2 -2 r^2 * cos(2*theta) sqrt(6) l|+$4 Nb2
% 2 0 (2*r^2 - 1) sqrt(3) _L=-z*a\
% 2 2 r^2 * sin(2*theta) sqrt(6) ;):;H?WS|A
% 3 -3 r^3 * cos(3*theta) sqrt(8) '-myOM7
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) T=/c0#Q|q
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 8$c) ]Bv
% 3 3 r^3 * sin(3*theta) sqrt(8) e<+)IW:
% 4 -4 r^4 * cos(4*theta) sqrt(10) nHF66,7t
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A*BN
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 'g<"@SS+
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }bihlyB&Q
% 4 4 r^4 * sin(4*theta) sqrt(10) !>'A2V~F
% -------------------------------------------------- nt"\FZ*;3
% ku/vV+&O
% Example 1: 6
JI8l`S
% ")9 ^
% % Display the Zernike function Z(n=5,m=1) qbQdxKk
% x = -1:0.01:1; X\BFvSv8C
% [X,Y] = meshgrid(x,x); u~,hTY(%
% [theta,r] = cart2pol(X,Y); 1Ov oW Nx
% idx = r<=1; ("(wap~<nD
% z = nan(size(X)); 4-HBXG9#/
% z(idx) = zernfun(5,1,r(idx),theta(idx)); xrXfZ>$5bM
% figure ^KD1dy3(
% pcolor(x,x,z), shading interp P#3J@aRC
% axis square, colorbar f#Ud=& >j
% title('Zernike function Z_5^1(r,\theta)') 9e.v[K~
% qsEFf(9G
% Example 2: Dy5&-yk
% },X.a@:
% % Display the first 10 Zernike functions Mq\?J{E
% x = -1:0.01:1; 7[ n
|3
% [X,Y] = meshgrid(x,x); )" Z|x
% [theta,r] = cart2pol(X,Y); <iH
% idx = r<=1; 16N|
% z = nan(size(X)); !r6Yq,3
% n = [0 1 1 2 2 2 3 3 3 3]; XFWE^*e=B
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 'k}w|gNB
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ltrti.&
% y = zernfun(n,m,r(idx),theta(idx)); H`k
YDp
% figure('Units','normalized') V:t{mu5j
% for k = 1:10 e34g=]"
% z(idx) = y(:,k); :RDk{^b)
% subplot(4,7,Nplot(k)) t(vyi
% pcolor(x,x,z), shading interp -`\n/"#X6i
% set(gca,'XTick',[],'YTick',[]) 3QXsr<
% axis square nm_taER
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) YHY*dk*|C
% end nxEC6Vh'
% g0QYBrp
% See also ZERNPOL, ZERNFUN2. 'xG{q+jj'
./zzuKO8XK
% Paul Fricker 11/13/2006 ;FuST
KbciRRf!k
Id8MXdV
% Check and prepare the inputs: 4Q1R:Ra
% ----------------------------- X%og}Cfi
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7wY0JS$fz
error('zernfun:NMvectors','N and M must be vectors.') iZ/iMDfC
end [5!{>L`
4Wvefq"
if length(n)~=length(m) `|&0j4(Pg
error('zernfun:NMlength','N and M must be the same length.') ,y-!h@(
end =eS?`|
cM,g,E}
n = n(:); 3me&isKL
m = m(:); `H9+]TWj<
if any(mod(n-m,2)) .qf~t/o
error('zernfun:NMmultiplesof2', ... Xwu&K8q21
'All N and M must differ by multiples of 2 (including 0).') Z;tWV%F5
end Z<=L
BaUuDo/ZO
if any(m>n) U|QP]6v
error('zernfun:MlessthanN', ... ;gAL_/_
'Each M must be less than or equal to its corresponding N.') 6wbH{}\ll
end vxi_Y\r=T
'~7zeZ'
if any( r>1 | r<0 ) AuM}L&`i^
error('zernfun:Rlessthan1','All R must be between 0 and 1.') A42!%>PB
end _d^d1Q}V
\J#&]o)Y
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) FI$
-."F
error('zernfun:RTHvector','R and THETA must be vectors.') xDPR^xY
end Hj `\Fm*A
7 _"G@h
r = r(:); $*:$-
theta = theta(:); 92C; a5s
length_r = length(r); 6f
t6;*,
if length_r~=length(theta) .!+7|us8l\
error('zernfun:RTHlength', ... k}qCkm27
'The number of R- and THETA-values must be equal.') f<oU"WM
end 0`v-pL0|
z TPNQ0=|
% Check normalization: 'R-g:X\{
% -------------------- \"L0d1DK)
if nargin==5 && ischar(nflag) Zz QLbCV
isnorm = strcmpi(nflag,'norm'); xTH3g^E
if ~isnorm K W
ZEi?
error('zernfun:normalization','Unrecognized normalization flag.') 3xdJ<Lrq
end k=d0%}
`M(
else V[Sj+&e&
isnorm = false; sX}#L
end Wi,)a{
O.\\)8xA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <R~;|&o,$
% Compute the Zernike Polynomials !) `*e>]x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DSq?|H
p&4n"hC
% Determine the required powers of r: o=Mm=;H
% ----------------------------------- v046
m_abs = abs(m); ;n|%W,b-
rpowers = []; Hr7pcz/#l
for j = 1:length(n) r1}1lJ>7H
rpowers = [rpowers m_abs(j):2:n(j)]; 3Of!Ykf=
end ^K4?uABc
rpowers = unique(rpowers); C(8!("tU
m],.w M8
% Pre-compute the values of r raised to the required powers, Nz*,m'-1e
% and compile them in a matrix: f#7=N{wm
% ----------------------------- jaavh6h)
if rpowers(1)==0 lOe|]pQ.,
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); lF40n4}
rpowern = cat(2,rpowern{:}); ^j10
f$B
rpowern = [ones(length_r,1) rpowern]; ZSD7%gE<D
else f/\S:x-B
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ufw[Ei$I:
rpowern = cat(2,rpowern{:}); .yD
6$!6
end <$a-.C5
Y7I\<JG<
% Compute the values of the polynomials: d%nX;w,
% -------------------------------------- } *C
y = zeros(length_r,length(n)); X8R:9q_
for j = 1:length(n) %XZhSmlf
s = 0:(n(j)-m_abs(j))/2; Di}M\!-[
pows = n(j):-2:m_abs(j); !;d>}iE
for k = length(s):-1:1 7`^Y*:(
p = (1-2*mod(s(k),2))* ... 3)2{c
prod(2:(n(j)-s(k)))/ ... _V0%JE'
prod(2:s(k))/ ... 6-g>(g
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... cq3Z}Cp
prod(2:((n(j)+m_abs(j))/2-s(k))); .=d40m
idx = (pows(k)==rpowers); )~ &gBX
y(:,j) = y(:,j) + p*rpowern(:,idx); {X_I>)Wg
end fBz|-I:k
+
:qj;f];|
if isnorm \1n (Jr.<
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); `
vFD O$K
end JL{fW>5y|
end $<&_9T#&w
% END: Compute the Zernike Polynomials )^"V}z
t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3 p?nQ
O)L
]%FP*YU4O
% Compute the Zernike functions: f4F%\ "
% ------------------------------ $d4&H/u^
idx_pos = m>0; F+ RE
idx_neg = m<0; qK2jJ3)>
C@zG(?X
z = y; PBFpV8P,
if any(idx_pos) SXO.|"M
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ue@W@pj
end ?UOaqcL
if any(idx_neg) 2Qh)/=8lM
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _iEnS4$A8
end yJ ljCu)f
njO~^Hl7
% EOF zernfun