切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11036阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦  Y(  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ?KB] /gT^  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 aM xd"cTzx  
    function z = zernfun(n,m,r,theta,nflag) u|Oc+qA(  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ::+;PRy_E  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z ^}[CQ&Am  
    %   and angular frequency M, evaluated at positions (R,THETA) on the (t\U5-w  
    %   unit circle.  N is a vector of positive integers (including 0), and fdWqc_  
    %   M is a vector with the same number of elements as N.  Each element \>>P%EU,  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) piH0_7qr  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, pGfGGY>i%  
    %   and THETA is a vector of angles.  R and THETA must have the same dF09_nw  
    %   length.  The output Z is a matrix with one column for every (N,M) ,2 rfN"o  
    %   pair, and one row for every (R,THETA) pair. Ozhn`9L+1!  
    % z@ J>A![m  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike K@JaN/OM  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), [KFCc_:  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ByuBZ!m  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, RJUIB  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized D)pTE?@W'  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }zS5o [OE  
    % j:qexhtho  
    %   The Zernike functions are an orthogonal basis on the unit circle. Mo<q(_ZeRP  
    %   They are used in disciplines such as astronomy, optics, and  sa&`CEa  
    %   optometry to describe functions on a circular domain. WF-jy7+  
    % _si5z  
    %   The following table lists the first 15 Zernike functions. -%]1q#C>@  
    % +Z2XP76(4A  
    %       n    m    Zernike function           Normalization =E> P,"D  
    %       -------------------------------------------------- Y8^ WuN$  
    %       0    0    1                                 1 A^p{Cq@E  
    %       1    1    r * cos(theta)                    2 ^-Ygh[x  
    %       1   -1    r * sin(theta)                    2 K9.Gjw  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) :s&dn%5N"  
    %       2    0    (2*r^2 - 1)                    sqrt(3) _9t1 aP5  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) F~qZIggD  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) )`(]jx!  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ~b m'i%$k  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) oPF]]Imu  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) jDqG9]  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ,~&HL7 v  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7)Vbp--b#  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Z\Ur F0  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b>8TH-1t~  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @&E IH,c  
    %       -------------------------------------------------- xp'Q>%v  
    % !zx8I7e4  
    %   Example 1: ;Vc|3  
    % uDXV@;6<  
    %       % Display the Zernike function Z(n=5,m=1) 4bp})>}jB  
    %       x = -1:0.01:1; \lm]G7h  
    %       [X,Y] = meshgrid(x,x); fqY'Uq$=  
    %       [theta,r] = cart2pol(X,Y); ,c  ^nW  
    %       idx = r<=1; qljsoDG  
    %       z = nan(size(X)); $ ,]U~7S  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 9( q(;|;Hp  
    %       figure d23=WNn  
    %       pcolor(x,x,z), shading interp nDX Em6|e  
    %       axis square, colorbar TwI s _r:  
    %       title('Zernike function Z_5^1(r,\theta)') YI;iG[T,&  
    % TEY~E*=}$  
    %   Example 2: 'sH_^{V2  
    % {QylNC9  
    %       % Display the first 10 Zernike functions OqDP{X:  
    %       x = -1:0.01:1; 7L6L{~8 W  
    %       [X,Y] = meshgrid(x,x); mICEJ\`x  
    %       [theta,r] = cart2pol(X,Y); R'zi#FeP  
    %       idx = r<=1; HnKgD:  
    %       z = nan(size(X)); Wh| T3&  
    %       n = [0  1  1  2  2  2  3  3  3  3]; j}",+H v  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;m#4Q6k)V?  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ;>jEeIlT  
    %       y = zernfun(n,m,r(idx),theta(idx)); ;h+~xxu=X  
    %       figure('Units','normalized') sH;_U)ssH  
    %       for k = 1:10 ?#xm6oe#aH  
    %           z(idx) = y(:,k); \>Rfa+  
    %           subplot(4,7,Nplot(k)) =WW5H\?  
    %           pcolor(x,x,z), shading interp p> >H$t  
    %           set(gca,'XTick',[],'YTick',[]) RU4X#gP4Vh  
    %           axis square o.A:29KoU  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) sAqy(oy#M  
    %       end J](NCD  
    % 6(d6Uwc`  
    %   See also ZERNPOL, ZERNFUN2. 4Ex&AR8  
    e 9RYk:O  
    %   Paul Fricker 11/13/2006 mc8Q2eQat}  
    !pw )sO~  
    'xj5R=V  
    % Check and prepare the inputs: ;z.niX.fx  
    % ----------------------------- {~F|"v  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) F[Mwd &P@  
        error('zernfun:NMvectors','N and M must be vectors.') CAC4A   
    end S\N1qux{  
    z5]6"v -  
    if length(n)~=length(m) `}#rcDK  
        error('zernfun:NMlength','N and M must be the same length.') C&H'?0Y@  
    end >bze0`}Z  
    _8u TK%|  
    n = n(:); 2I}pX9  
    m = m(:); A8vd@0  
    if any(mod(n-m,2)) 4BCe;Q^6  
        error('zernfun:NMmultiplesof2', ... h Fv{?v  
              'All N and M must differ by multiples of 2 (including 0).') }rfikm  
    end N=<`|I  
    6d6cZGS[:  
    if any(m>n) 8R3{YJ6@T  
        error('zernfun:MlessthanN', ... mXp#6'a  
              'Each M must be less than or equal to its corresponding N.') O%\cRn8m  
    end e !jy6 t  
    7\2I>W  
    if any( r>1 | r<0 ) `hj,rF+4  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') A5yVxSF  
    end 2@6@|jRG  
    pvyEs|f=%  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) WSH[*jMA  
        error('zernfun:RTHvector','R and THETA must be vectors.') . &j+&  
    end z eT`kZ  
    J@I>m N1\  
    r = r(:); Q*>)W{H&)  
    theta = theta(:); ?<!q F:r:  
    length_r = length(r); f_S$CFa@  
    if length_r~=length(theta) ~?ezd0  
        error('zernfun:RTHlength', ... 6(`N!]e*L  
              'The number of R- and THETA-values must be equal.') FHr)xqo=~  
    end `w:kY9  
    vw2E$ya  
    % Check normalization: BjvQ6M{Y"+  
    % -------------------- 1 6zxPSTr}  
    if nargin==5 && ischar(nflag) M<w.q|P  
        isnorm = strcmpi(nflag,'norm'); +zMPkbP6  
        if ~isnorm |z=`Ur@)  
            error('zernfun:normalization','Unrecognized normalization flag.') /#Aw7F$Ey  
        end cr!W5+r  
    else ?^%[*OCCC!  
        isnorm = false; B&a{,.m&q6  
    end ``WTg4C(Y  
    "?3=FBp&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UGO;5!  
    % Compute the Zernike Polynomials _ f%s]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c]|vg=W  
    j;-Wf6h{  
    % Determine the required powers of r: }MRgNr'k  
    % ----------------------------------- |"SZpx  
    m_abs = abs(m); _:m70%i  
    rpowers = []; .pUB.l$)  
    for j = 1:length(n) )- 3~^Y#r_  
        rpowers = [rpowers m_abs(j):2:n(j)]; :.*Q@X}-I  
    end gS +X%  
    rpowers = unique(rpowers); .A< HM}   
    EE  1D>I  
    % Pre-compute the values of r raised to the required powers, QAV6{QShj  
    % and compile them in a matrix: aA|{r/.10K  
    % ----------------------------- OCx'cSs-=  
    if rpowers(1)==0 ;\0|1Eem`  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); HqWWWCWal  
        rpowern = cat(2,rpowern{:}); );.$  `0  
        rpowern = [ones(length_r,1) rpowern]; VxN#\D i&  
    else hH1Q:}a  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Z5q%L!4G  
        rpowern = cat(2,rpowern{:}); l[T-Ak  
    end E'f7=ChNF  
    U7x  
    % Compute the values of the polynomials: 9!n:hhJM  
    % -------------------------------------- 1$T`j2s  
    y = zeros(length_r,length(n)); 2X2Ax~d@  
    for j = 1:length(n) %]LoR$|Y  
        s = 0:(n(j)-m_abs(j))/2; |URfw5Hm  
        pows = n(j):-2:m_abs(j); M +OVqTsFU  
        for k = length(s):-1:1 bPOPoq1#  
            p = (1-2*mod(s(k),2))* ... daKZ*B|  
                       prod(2:(n(j)-s(k)))/              ... #'&-S@/nQs  
                       prod(2:s(k))/                     ... ` 7iA?;  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... QlGK+I>y;  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); K:U=Y$x  
            idx = (pows(k)==rpowers); _;PQt" ]  
            y(:,j) = y(:,j) + p*rpowern(:,idx); v"1&xe^4  
        end u;t<rEC2  
         0cHcBxdF  
        if isnorm h2zSOY{su  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7I[[S!((s  
        end R1LirZlzJ  
    end IE\RP!  
    % END: Compute the Zernike Polynomials nN{DO:_o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #!Cg$6%x9  
    >k"O3Pc@  
    % Compute the Zernike functions: i\IpS@/{-v  
    % ------------------------------ > V(C>^%->  
    idx_pos = m>0; 4xW~@m eNB  
    idx_neg = m<0; 66?`7j X  
    T/|!^qLF  
    z = y; HMUx/M.j  
    if any(idx_pos) /1LN\Eu  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6h/!,j0:t_  
    end D/=05E%[81  
    if any(idx_neg) P[ o"%NZ'  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !6|_`l>G,  
    end 2*D2jw  
    \5}PF+)|  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ,$Fh^KNo]  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ^r}Uu~A>  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated x}a?B  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive wrJQkven-  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ruagJS)+  
    %   and THETA is a vector of angles.  R and THETA must have the same vh Oh3  
    %   length.  The output Z is a matrix with one column for every P-value, ?5">50  
    %   and one row for every (R,THETA) pair. eJqx,W5MK]  
    % TQeIAy  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike uvl91~&G  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) o Rk'I  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) O8hx}dOjA  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 <6]Hj2  
    %   for all p. hRuiuGC  
    % ZOqA8#\  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ^e "4@O"  
    %   Zernike functions (order N<=7).  In some disciplines it is jR1^e$  
    %   traditional to label the first 36 functions using a single mode qX5]\nX&G  
    %   number P instead of separate numbers for the order N and azimuthal (1S9+H>g  
    %   frequency M. * g+v*q X  
    % ;woK96"{t  
    %   Example: dh]Hf,OLF  
    % u@D5SkT  
    %       % Display the first 16 Zernike functions ~jKIuO/  
    %       x = -1:0.01:1; q#Otp\f  
    %       [X,Y] = meshgrid(x,x); 5Zc  
    %       [theta,r] = cart2pol(X,Y); o$bQ-_B`  
    %       idx = r<=1; 2pHR$GZ2  
    %       p = 0:15; 5Qg*j/z?  
    %       z = nan(size(X)); :Dr4?6hdr  
    %       y = zernfun2(p,r(idx),theta(idx)); ,%m~OB #  
    %       figure('Units','normalized') t`&mszd~T  
    %       for k = 1:length(p) ce4rhtkV  
    %           z(idx) = y(:,k); "c~``i\G   
    %           subplot(4,4,k) \zcSfNE  
    %           pcolor(x,x,z), shading interp LkeYzQH/l  
    %           set(gca,'XTick',[],'YTick',[]) $igMk'%Nmb  
    %           axis square im>/$!&OyI  
    %           title(['Z_{' num2str(p(k)) '}']) Wsd_RT}ww  
    %       end &VjPdu57  
    % 6;I zw$X  
    %   See also ZERNPOL, ZERNFUN. 3mE8tTA$R  
    x2~fc  
    %   Paul Fricker 11/13/2006 5Q}HLjG8Z  
    ~>]Ie~E: (  
    o}36bi{  
    % Check and prepare the inputs: f3,Xb ]h  
    % ----------------------------- /q]fG  
    if min(size(p))~=1 vRmzjd~  
        error('zernfun2:Pvector','Input P must be vector.') 8f?o?c|  
    end ZnbpIJ8cV  
    j}h%, 7  
    if any(p)>35 HE4S%#bH>  
        error('zernfun2:P36', ... S-6i5H"B&  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... YS9)%F=X  
               '(P = 0 to 35).']) -K^(L #G  
    end /$8& r  
    2#`d:@r  
    % Get the order and frequency corresonding to the function number: K=sk1<>)m  
    % ---------------------------------------------------------------- f b8xs<  
    p = p(:); Oa5-^&I  
    n = ceil((-3+sqrt(9+8*p))/2); O>wGJ.  
    m = 2*p - n.*(n+2); ]~m=b` o  
    BaCzN;)  
    % Pass the inputs to the function ZERNFUN: }/xdHt  
    % ---------------------------------------- 00W_XhJ  
    switch nargin  Mv%B#J  
        case 3 _=5\$6  
            z = zernfun(n,m,r,theta); Y% [H:  
        case 4 IxlPpS9Wx  
            z = zernfun(n,m,r,theta,nflag); H'2o84$  
        otherwise sGMnm  
            error('zernfun2:nargin','Incorrect number of inputs.') )A;jBfr  
    end FP6Jf I8  
    0"@p|nAa  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) oA ]F`N=  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. (5^SL Y  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 7mS_Cz+cB  
    %   order N and frequency M, evaluated at R.  N is a vector of IC.R4-  
    %   positive integers (including 0), and M is a vector with the <daBP[  
    %   same number of elements as N.  Each element k of M must be a '^t(=02J  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) fVBu?<=d  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is =~ j S  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ]O M?e  
    %   with one column for every (N,M) pair, and one row for every ^W,x  
    %   element in R. !:dhK  
    % yH@2nAn  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- qB=%8$J  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is =$%_asQJ  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Q"{Q]IT  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 k$K>ml/h  
    %   for all [n,m]. A `=.F  
    % cA B^]j  
    %   The radial Zernike polynomials are the radial portion of the ^$\#aTyFK  
    %   Zernike functions, which are an orthogonal basis on the unit x@"`KiEUs  
    %   circle.  The series representation of the radial Zernike fL R.2vJ  
    %   polynomials is ^F$iD (f  
    % & MfnH  
    %          (n-m)/2 |G>Lud  
    %            __ 6?jSe<4x  
    %    m      \       s                                          n-2s H Ff9^  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ,Z]4`9c  
    %    n      s=0 Q-S5("  
    % ,`l8KRd  
    %   The following table shows the first 12 polynomials. RjQdlr6*  
    % !p"Ijz5  
    %       n    m    Zernike polynomial    Normalization ]a=Bc~g91  
    %       --------------------------------------------- fyt`$y_E[  
    %       0    0    1                        sqrt(2) 0f|nI8,z  
    %       1    1    r                           2 u'EzYJ7  
    %       2    0    2*r^2 - 1                sqrt(6) 5-X(K 'Q  
    %       2    2    r^2                      sqrt(6) E./Gt.Na  
    %       3    1    3*r^3 - 2*r              sqrt(8) |zSoA=7?  
    %       3    3    r^3                      sqrt(8) FZhjI 8+,~  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 0_-NE4SM/  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) nHi6$ } I  
    %       4    4    r^4                      sqrt(10) 3P2L phW  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) HvVS<Ke  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) c1Ta!p{%  
    %       5    5    r^5                      sqrt(12) W_N!f=HW  
    %       --------------------------------------------- O_wRI\ !  
    % :>otlI<0t  
    %   Example: ZYX(Cf  
    % `]:&h'  
    %       % Display three example Zernike radial polynomials v/lQ5R1  
    %       r = 0:0.01:1; (|<.7K N  
    %       n = [3 2 5]; u~a@:D/F{G  
    %       m = [1 2 1]; g{06d~Y  
    %       z = zernpol(n,m,r); 9gokTFoN  
    %       figure Arb-,[kwN  
    %       plot(r,z) Fs EPM"&?h  
    %       grid on Syj7K*,%bZ  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') KZ)p\p<1  
    % K2R[u#Q  
    %   See also ZERNFUN, ZERNFUN2. x,SzZ)l-9  
    L>EC^2\  
    % A note on the algorithm. #<|q4a{8  
    % ------------------------ ()v{HB i  
    % The radial Zernike polynomials are computed using the series !EQMTF=(  
    % representation shown in the Help section above. For many special %@d~)f  
    % functions, direct evaluation using the series representation can 0Bpix|mq  
    % produce poor numerical results (floating point errors), because B}y-zj; T  
    % the summation often involves computing small differences between $w$4RQk3n  
    % large successive terms in the series. (In such cases, the functions RGim):1e  
    % are often evaluated using alternative methods such as recurrence m^)h/s0A  
    % relations: see the Legendre functions, for example). For the Zernike e:  
    % polynomials, however, this problem does not arise, because the Ug^v ]B9  
    % polynomials are evaluated over the finite domain r = (0,1), and p$cSES>r:  
    % because the coefficients for a given polynomial are generally all J<{@D9r9<~  
    % of similar magnitude. |F 18j9  
    % yr /p3ys  
    % ZERNPOL has been written using a vectorized implementation: multiple isP4*g&%x  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] fXHN m$"n  
    % values can be passed as inputs) for a vector of points R.  To achieve Vi~F Q  
    % this vectorization most efficiently, the algorithm in ZERNPOL e/<Og\}P/  
    % involves pre-determining all the powers p of R that are required to A"@C }f  
    % compute the outputs, and then compiling the {R^p} into a single |H4/a;]~  
    % matrix.  This avoids any redundant computation of the R^p, and w<]Wg^dyQ  
    % minimizes the sizes of certain intermediate variables. b}[W[J}`  
    % YbrsXp"  
    %   Paul Fricker 11/13/2006 zF[>K4  
    #'-L`])7uw  
    G*|2qX"o  
    % Check and prepare the inputs: Qx mVImn"  
    % ----------------------------- sc! e$@U  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) e_BOzN~c  
        error('zernpol:NMvectors','N and M must be vectors.') <eq93  
    end IYy2EK[s  
    f&S,l3H<  
    if length(n)~=length(m) W1s4[rL!Ht  
        error('zernpol:NMlength','N and M must be the same length.') ^xGdRa U#  
    end ;Vad| -  
    &OiJJl[9  
    n = n(:); UEJX0=  
    m = m(:); `q 4%  
    length_n = length(n); [lsr[`SJ<  
    $e! i4pM  
    if any(mod(n-m,2)) v |XEC[F  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') >4.{|0%ut  
    end he/UvMu  
    S) [`Bm  
    if any(m<0) a"{tqNc  
        error('zernpol:Mpositive','All M must be positive.') sY t8NsQ  
    end @^vVou_  
    JeJc(e  
    if any(m>n) mb*L'y2r  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') rBP!RSl1  
    end ]OoqU-q  
    1e;^Mz B"  
    if any( r>1 | r<0 ) Zjt3U;Y  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') j"E_nV:Qc  
    end j0k"iv  
    e/WR\B'1  
    if ~any(size(r)==1) "YGs<)S  
        error('zernpol:Rvector','R must be a vector.') &Q^M[X  
    end IN!m  
    +>oVc\$  
    r = r(:); Frt_X%  
    length_r = length(r); G Cx]VN3 &  
    oSt-w{ !  
    if nargin==4 i+&*W{Re  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); O1@xF9<  
        if ~isnorm iuq-M?1  
            error('zernpol:normalization','Unrecognized normalization flag.') (i7]N[  
        end R tn.cSd  
    else MOyQ4<_  
        isnorm = false; zQ}:_  
    end +"a . ,-f!  
    16o3ER  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #zXkg[J6d  
    % Compute the Zernike Polynomials POc< G^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Gu&?Gn oc  
    I`2hxLwh+  
    % Determine the required powers of r: gQ*0Mk  
    % ----------------------------------- u(SdjLf:  
    rpowers = []; u(?  
    for j = 1:length(n) 'u$$scGt  
        rpowers = [rpowers m(j):2:n(j)]; LI?rz<H!D  
    end jjkiic+tDN  
    rpowers = unique(rpowers); ~;|  
    <?,o {  
    % Pre-compute the values of r raised to the required powers, &@A(8(%  
    % and compile them in a matrix: 5 %q26&  
    % ----------------------------- }}Eko7'^  
    if rpowers(1)==0 y1/$dn  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); G;FY2;adK  
        rpowern = cat(2,rpowern{:}); #P- S.b  
        rpowern = [ones(length_r,1) rpowern]; &&|*GAjJ  
    else jGd{*4{3+  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Rw*l#cr=.  
        rpowern = cat(2,rpowern{:}); 4_`+&  
    end ycRy! 0l  
    _I~W!8&w>  
    % Compute the values of the polynomials: ]E88zWDY`  
    % -------------------------------------- [z`U 9J  
    z = zeros(length_r,length_n); U=p,drF,A  
    for j = 1:length_n :=^JHE{  
        s = 0:(n(j)-m(j))/2; ^!1mChf  
        pows = n(j):-2:m(j); AU$W=Z*  
        for k = length(s):-1:1 I1 j-Q8  
            p = (1-2*mod(s(k),2))* ... #Z}\;a{vZ  
                       prod(2:(n(j)-s(k)))/          ... %K /=7  
                       prod(2:s(k))/                 ... J(h=@cw  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... d> `9!)  
                       prod(2:((n(j)+m(j))/2-s(k))); Ip( IGR"  
            idx = (pows(k)==rpowers); 2Q)"~3  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 91r#lDR  
        end L\5j"] }`  
         LqPn$rZ|$  
        if isnorm !Z,h5u\.w  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Io{)@H"f  
        end 3.?PdK&C  
    end W sQo+Ua  
    }f<.07  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  fCdd,,,}  
    r!N)pt<g  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 o4,fwPkB  
    6:O3>'n  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)