切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11119阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 h;jIYxj  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! SvR7e C  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 AL5Vu$V~n}  
    function z = zernfun(n,m,r,theta,nflag) 7w1wr)qSB  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. i{I~mrm/'\  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 98.>e  
    %   and angular frequency M, evaluated at positions (R,THETA) on the gqWupL  
    %   unit circle.  N is a vector of positive integers (including 0), and /W<>G7%.  
    %   M is a vector with the same number of elements as N.  Each element 0D8K=h&e  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Y-0?a?q2Fr  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, "U \JV)N  
    %   and THETA is a vector of angles.  R and THETA must have the same ,<:!NF9  
    %   length.  The output Z is a matrix with one column for every (N,M) #Eb5:;  
    %   pair, and one row for every (R,THETA) pair. D13Rx 6b  
    % ^V %rag  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike xTGxvGv8  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @JW@-9/  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral *Y@nVi  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, o!~Jzd.=h  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ltFq/M  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. +t2SzQ j>  
    % 0 u?{ \  
    %   The Zernike functions are an orthogonal basis on the unit circle. F_bF  
    %   They are used in disciplines such as astronomy, optics, and HV/cc"  
    %   optometry to describe functions on a circular domain. 7r{83_B  
    % +D1d=4  
    %   The following table lists the first 15 Zernike functions. srV.)Ur  
    % 2!Bd2  
    %       n    m    Zernike function           Normalization -rKO )}  
    %       -------------------------------------------------- )z8!f}:De=  
    %       0    0    1                                 1 "k Te2iS  
    %       1    1    r * cos(theta)                    2 FW"^99mrnb  
    %       1   -1    r * sin(theta)                    2 $#|gLVOQ  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 4^<6r*  
    %       2    0    (2*r^2 - 1)                    sqrt(3) r",]Voibd  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 6DZ),F,M  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) d(:3   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) -8N|xQ378  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) zX#%{#9  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 45&8weXO:'  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) %okzOKKX  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rDdzxrKg{  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ^2wLxXO6  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `nO71mo  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) e:AHVep j{  
    %       -------------------------------------------------- ,&4qgp{)  
    % r 6eb}z!i  
    %   Example 1: "KJ%|pg_C  
    % }Yv\0\~'W|  
    %       % Display the Zernike function Z(n=5,m=1) VxFOYC>p  
    %       x = -1:0.01:1; MV=9!{`  
    %       [X,Y] = meshgrid(x,x); ESoAz o,u  
    %       [theta,r] = cart2pol(X,Y); B4XZko(  
    %       idx = r<=1; mQ}ny(K'  
    %       z = nan(size(X)); kw`WH)+F  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); S^Au#1e   
    %       figure +wW@'X  
    %       pcolor(x,x,z), shading interp _hG;.=sr  
    %       axis square, colorbar iE.-FZc  
    %       title('Zernike function Z_5^1(r,\theta)') *;|`E(   
    % V Yw%01#  
    %   Example 2: {7Mj P+\  
    % *1@:'rJ  
    %       % Display the first 10 Zernike functions j6(?D*x  
    %       x = -1:0.01:1; ~ 7)A"t  
    %       [X,Y] = meshgrid(x,x); HMY@F_qY`u  
    %       [theta,r] = cart2pol(X,Y); E VQ0l@K  
    %       idx = r<=1; L_em')  
    %       z = nan(size(X)); 1b9hE9a{j  
    %       n = [0  1  1  2  2  2  3  3  3  3]; [ $fJRR  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; U1_&gy @y  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; T#Z%y!6  
    %       y = zernfun(n,m,r(idx),theta(idx)); YK{a  
    %       figure('Units','normalized') xLZd!>C  
    %       for k = 1:10 q8ImrC.'^  
    %           z(idx) = y(:,k); @ d"wAZzD?  
    %           subplot(4,7,Nplot(k)) ]S 7^ITn  
    %           pcolor(x,x,z), shading interp k n8N,,+  
    %           set(gca,'XTick',[],'YTick',[]) I?Q+9Rmm`J  
    %           axis square zX{.^|  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /HZumV?  
    %       end z<]bv7V  
    %  BGzI  
    %   See also ZERNPOL, ZERNFUN2. ]TstSF=  
    mKq"3 4F  
    %   Paul Fricker 11/13/2006 &W }<:WH~  
    _~aG|mAj  
    ;3C:%!CdA]  
    % Check and prepare the inputs: s~26  
    % ----------------------------- p4VSm a_(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~YCuO0t  
        error('zernfun:NMvectors','N and M must be vectors.') N_75-S7Cm  
    end >NV=LOO  
    z1,tJH0  
    if length(n)~=length(m) mCKk*5ws5"  
        error('zernfun:NMlength','N and M must be the same length.') 5(&xNT-n8  
    end A<YsfDa_d  
    3]JZu9#  
    n = n(:); <@bA?FY  
    m = m(:); NE|[o0On  
    if any(mod(n-m,2)) 1@XgTL4  
        error('zernfun:NMmultiplesof2', ... (sw-~U%  
              'All N and M must differ by multiples of 2 (including 0).') ;LJ3c7$@lf  
    end 6@4n'w{"  
    [RU NuO  
    if any(m>n) ELa ja87  
        error('zernfun:MlessthanN', ... I_ "Z:v{  
              'Each M must be less than or equal to its corresponding N.') pw'wWZE'  
    end :6;e\UE  
    @LLTB(@wR  
    if any( r>1 | r<0 ) &S74mV  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6-,m}Ce\  
    end IPA*-I57  
    !D.0 (J  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) TA}UY7v  
        error('zernfun:RTHvector','R and THETA must be vectors.') o4=Yu7L  
    end hv)7H)|l~]  
    Qu{c B^Ga*  
    r = r(:); Uedvc5><t  
    theta = theta(:); oUW<4l  
    length_r = length(r); INMP"1  
    if length_r~=length(theta)  [~Hg}-c  
        error('zernfun:RTHlength', ... gp|1?L 54  
              'The number of R- and THETA-values must be equal.') B94 &elu  
    end qg,Nb  
    @Z\2*1y6  
    % Check normalization: X`20f1c6q>  
    % -------------------- rPq<Xb\  
    if nargin==5 && ischar(nflag) g{pQ4jKF  
        isnorm = strcmpi(nflag,'norm'); r>qA $zD^  
        if ~isnorm ipKG!  
            error('zernfun:normalization','Unrecognized normalization flag.') ,&a`d}g&G  
        end )wf\F6jN  
    else :7;[`bm(G  
        isnorm = false; <d$A)S};W  
    end tGqCt9;<  
     5) lW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {sS_|sX  
    % Compute the Zernike Polynomials (N U0T w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5A_4\YpDR  
    9F_6}.O  
    % Determine the required powers of r: Z^tGu7x  
    % ----------------------------------- <Dw]yGK@  
    m_abs = abs(m); oP$kRfXS!<  
    rpowers = []; |ViU4&d*  
    for j = 1:length(n) &`:rp!Lc  
        rpowers = [rpowers m_abs(j):2:n(j)]; `B#Z;R  
    end 4'At.<]jL  
    rpowers = unique(rpowers); s j9D  
    -gKpL\  
    % Pre-compute the values of r raised to the required powers, B7 "Fp  
    % and compile them in a matrix: \K`jCsT  
    % ----------------------------- l`rC0kJ]  
    if rpowers(1)==0 8&a_A:h  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <lld*IH  
        rpowern = cat(2,rpowern{:}); {$TZ}z"DA  
        rpowern = [ones(length_r,1) rpowern]; J@bW^>g*6u  
    else /(%Ig,<"JC  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 44C+h    
        rpowern = cat(2,rpowern{:}); +Hyk'=.W  
    end FP;": iRL  
    .98.G4J>  
    % Compute the values of the polynomials: Lpm?# g uR  
    % --------------------------------------  1KJZWZy  
    y = zeros(length_r,length(n)); dF2@q@\.+  
    for j = 1:length(n) Y. TYc;  
        s = 0:(n(j)-m_abs(j))/2; G)+Ff5e0L[  
        pows = n(j):-2:m_abs(j); dIK{MA  
        for k = length(s):-1:1 H'Iq~Ft1  
            p = (1-2*mod(s(k),2))* ... $HRed|*.C  
                       prod(2:(n(j)-s(k)))/              ... ^-L{/'[8M  
                       prod(2:s(k))/                     ... ]GS ~i+=M  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ^uBwj }6  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); .;%q/hP  
            idx = (pows(k)==rpowers); 8?Wgawx  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 9}n,@@  
        end {W'8T}q  
         |LFUzq>j  
        if isnorm  oWrE2U;  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); D{svR-~T  
        end \L#QR  
    end <[8@5?&&  
    % END: Compute the Zernike Polynomials pDhY%w#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]|BojSL_  
    C@)pmSQ  
    % Compute the Zernike functions: |J?:91  
    % ------------------------------ AgI>  
    idx_pos = m>0; WJcVQM s  
    idx_neg = m<0; '8Qw:fh  
    z"av|(?d  
    z = y; K!7q!%Ju  
    if any(idx_pos) )[ w&C_>]  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Gx;xj0-"  
    end ,]U[W  
    if any(idx_neg) h+xA?[ c=  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4[_L=zD  
    end D@5s8xv  
    iha9!kf  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) qTS @D  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 7 {nl..`  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 3~:0?Zuq  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 4y1>  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, kI<Wvgo L  
    %   and THETA is a vector of angles.  R and THETA must have the same (`F|nG=X  
    %   length.  The output Z is a matrix with one column for every P-value, (>mi!:  
    %   and one row for every (R,THETA) pair. >KKeV(Ur  
    % v*vn<nPAQ>  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Q;Q%SI`yT  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) [Ek42%  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ;raz6DRO  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 @kz!{g]Sn  
    %   for all p. ]79~:m[C  
    % )7k&`?Mh  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 JxnuGkE0[#  
    %   Zernike functions (order N<=7).  In some disciplines it is D{Oq\*  
    %   traditional to label the first 36 functions using a single mode RrKfTiK H  
    %   number P instead of separate numbers for the order N and azimuthal TbMdQbj}  
    %   frequency M. hR!}u}ECd  
    % T0YDfo  
    %   Example: TZ:34\u   
    % A3z/Bz4]:#  
    %       % Display the first 16 Zernike functions nW~$ (Qnd  
    %       x = -1:0.01:1; gA{'Q\  
    %       [X,Y] = meshgrid(x,x); Yg[ v/[]  
    %       [theta,r] = cart2pol(X,Y); 0~qf-x  
    %       idx = r<=1; %V31B\]Nz7  
    %       p = 0:15; %v_IX2'  
    %       z = nan(size(X)); RZW$!tyI=  
    %       y = zernfun2(p,r(idx),theta(idx)); amMjuyW  
    %       figure('Units','normalized') C1KfXC*|L  
    %       for k = 1:length(p) qw5&Y$((  
    %           z(idx) = y(:,k); "Wo.8  
    %           subplot(4,4,k) E(% XVr0W  
    %           pcolor(x,x,z), shading interp 6g}^Q?cpV#  
    %           set(gca,'XTick',[],'YTick',[]) \QliHm!  
    %           axis square <D~6v2$  
    %           title(['Z_{' num2str(p(k)) '}']) *}>Bkq9h  
    %       end J6eJIKK  
    % kkT3 wP  
    %   See also ZERNPOL, ZERNFUN. O+p]3u  
    Mm "Wk  
    %   Paul Fricker 11/13/2006 B*y;>q "{U  
     NvUu.  
    stX'yya  
    % Check and prepare the inputs: `'kc|!%MUq  
    % ----------------------------- x)j/  
    if min(size(p))~=1 n"mJEkHE  
        error('zernfun2:Pvector','Input P must be vector.') D!X>O}  
    end :G^"e  
    K?9WY ]Ot  
    if any(p)>35 kmmL>fCV"M  
        error('zernfun2:P36', ... :-w@^mli  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... {cmo^~[L$  
               '(P = 0 to 35).']) ,wEM Jh  
    end `E{;85bDH  
    -T2~W!  
    % Get the order and frequency corresonding to the function number: s`;0 t YG  
    % ---------------------------------------------------------------- C5>{Q:.`e'  
    p = p(:); m~##q}LZ  
    n = ceil((-3+sqrt(9+8*p))/2); KLG6QBkj  
    m = 2*p - n.*(n+2); M`)s>jp@w  
    7X(rLd 6#  
    % Pass the inputs to the function ZERNFUN: Rl y jOf{0  
    % ---------------------------------------- )!N2'Ld  
    switch nargin y=-{Q  
        case 3 tceIA8d6  
            z = zernfun(n,m,r,theta); W"W@WG9X0  
        case 4 BHF{-z  
            z = zernfun(n,m,r,theta,nflag); \H,V 9!B  
        otherwise 9@( O\xr  
            error('zernfun2:nargin','Incorrect number of inputs.') 's=Q.s  
    end C]yvK}  
    tU9rCL:P  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) vs5 D:cZ}  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. on]\J  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of D /,|pC  
    %   order N and frequency M, evaluated at R.  N is a vector of L@C >-F|p  
    %   positive integers (including 0), and M is a vector with the N5:D8oWWXR  
    %   same number of elements as N.  Each element k of M must be a K~7'@\2 ?  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) lH6Cd/a  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is [37f#p  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix I'KR'1z 9  
    %   with one column for every (N,M) pair, and one row for every Xulh.: N}  
    %   element in R. 1.hOE>A%  
    % ZkJY.H-F  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- fMWXo)rzj  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ,m #@%fa  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to OU0xZ=G  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 vG'vgUo  
    %   for all [n,m]. ^U0apI  
    % y}(_SU  
    %   The radial Zernike polynomials are the radial portion of the [VfL v.8w  
    %   Zernike functions, which are an orthogonal basis on the unit sq8tv]  
    %   circle.  The series representation of the radial Zernike 7VEt4  
    %   polynomials is /ChJ~g"  
    % OlD7-c2L]  
    %          (n-m)/2 ,U|u-.~ZU  
    %            __  @oe3i  
    %    m      \       s                                          n-2s pHI%jHHJ  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ')5jllxv  
    %    n      s=0 v :'P"uU;4  
    % ')C _An>X6  
    %   The following table shows the first 12 polynomials. S&4w`hdD>~  
    % &%_y6}xIw  
    %       n    m    Zernike polynomial    Normalization S*~Na]nS0  
    %       --------------------------------------------- LM'*OtpDG  
    %       0    0    1                        sqrt(2) pl1EJ <  
    %       1    1    r                           2 Li?{e+g  
    %       2    0    2*r^2 - 1                sqrt(6) S>/I?(J  
    %       2    2    r^2                      sqrt(6) jzu l{'g  
    %       3    1    3*r^3 - 2*r              sqrt(8) Og&0Z)%  
    %       3    3    r^3                      sqrt(8) n:}MULy;  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) d\1:1ucV  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) IkE'_F  
    %       4    4    r^4                      sqrt(10) x|~D(zo  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) &?`d8\z  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) _umO)]Si  
    %       5    5    r^5                      sqrt(12) 1xFhhncf  
    %       --------------------------------------------- P:zEx]Y%  
    % .R<s<]  
    %   Example: PBP J/puW  
    % } (GQDJp  
    %       % Display three example Zernike radial polynomials 6`$,-(J=  
    %       r = 0:0.01:1; :5q*46n  
    %       n = [3 2 5]; Z3u""oM/  
    %       m = [1 2 1]; *;\ K5  
    %       z = zernpol(n,m,r); X*p:&=o  
    %       figure hg86#jq%  
    %       plot(r,z) %r}KvJgd  
    %       grid on f|[5&,2<  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') $fU/9jTa  
    % R - ?0k:  
    %   See also ZERNFUN, ZERNFUN2. J^<j=a|D  
    R&-W_v+  
    % A note on the algorithm. .DV#-tUh  
    % ------------------------ Qbe{/  
    % The radial Zernike polynomials are computed using the series Z{R=h7P  
    % representation shown in the Help section above. For many special `5~o=g  
    % functions, direct evaluation using the series representation can cbg3bi  
    % produce poor numerical results (floating point errors), because :,J86#S)  
    % the summation often involves computing small differences between `P)64So-1  
    % large successive terms in the series. (In such cases, the functions {F{[!.  
    % are often evaluated using alternative methods such as recurrence .Q6{$Y%l  
    % relations: see the Legendre functions, for example). For the Zernike y(p:)Iv  
    % polynomials, however, this problem does not arise, because the N;Gf,pE  
    % polynomials are evaluated over the finite domain r = (0,1), and \gPNHL*  
    % because the coefficients for a given polynomial are generally all { &JurZ  
    % of similar magnitude. ,y{fqa4  
    % (WU~e!}  
    % ZERNPOL has been written using a vectorized implementation: multiple {(zL"g46  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] S)AE   
    % values can be passed as inputs) for a vector of points R.  To achieve qLktMp_  
    % this vectorization most efficiently, the algorithm in ZERNPOL %y^ Kw  
    % involves pre-determining all the powers p of R that are required to fb S.  
    % compute the outputs, and then compiling the {R^p} into a single kY |=a  
    % matrix.  This avoids any redundant computation of the R^p, and \2LA%ZU  
    % minimizes the sizes of certain intermediate variables. #@OKp,LJ  
    % w|U@jr*H]  
    %   Paul Fricker 11/13/2006 D3 Ea2}8  
    d'eM(4R@  
    |GLn 9vw7S  
    % Check and prepare the inputs: ,r)d#8  
    % ----------------------------- !z&seG]@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) f~(^|~ZT  
        error('zernpol:NMvectors','N and M must be vectors.') 0aq-drl5\  
    end mm9S#Ya  
    TlZlE^EE<  
    if length(n)~=length(m) '5+, lRu  
        error('zernpol:NMlength','N and M must be the same length.') ;{)@ghD  
    end P)o[p(  
    u+i/CE#w  
    n = n(:); w `9GygS  
    m = m(:); *~aI>7H  
    length_n = length(n); zYl+BM-j,6  
    ,;- cz-,  
    if any(mod(n-m,2)) Sv]"Y/N  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') {&AT}7  
    end :\HN?_?{4  
    oFx gR9  
    if any(m<0) @X / =.  
        error('zernpol:Mpositive','All M must be positive.') X]qp~:4G  
    end L bK1CGyA  
    KgkB)1s@n  
    if any(m>n) S>zKD  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') T)?@E/VaS  
    end O8}s*}]  
    C3`.-/{D"  
    if any( r>1 | r<0 ) Lm2cW$s  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ynz5Dy.d;  
    end q\b9e&2Y  
    9"v ox   
    if ~any(size(r)==1) UgBY ){<  
        error('zernpol:Rvector','R must be a vector.') Dl!'_u  
    end |H I A[.q  
    J+Y|# U  
    r = r(:); a\.?{/  
    length_r = length(r); cyn]>1ZM  
    X!'Xx8  
    if nargin==4 !{- 3:N7  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); S)1:*>@  
        if ~isnorm 8XXTN@&,  
            error('zernpol:normalization','Unrecognized normalization flag.') C]@B~X1H^  
        end u(Q(UuI  
    else "e?#c<p7  
        isnorm = false; 6 v#sq  
    end 7VD7di=D  
    |6G5  ?|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l%V}'6T  
    % Compute the Zernike Polynomials 5 BG&r*U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G5@@m-  
    _34YH5  
    % Determine the required powers of r: #nL0Hx7]E  
    % ----------------------------------- {twf7.eY  
    rpowers = []; Y{B_OoTun  
    for j = 1:length(n) W5yu`Br  
        rpowers = [rpowers m(j):2:n(j)]; M%LwC/h:,  
    end w4/)r-Z4I  
    rpowers = unique(rpowers); {;gWn' aq  
    `9)2nkJk'z  
    % Pre-compute the values of r raised to the required powers, Fgq*3t  
    % and compile them in a matrix: w'j]Y%  
    % ----------------------------- ?~9X:~6\  
    if rpowers(1)==0 KPK!'4,cu  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); P =Gb  
        rpowern = cat(2,rpowern{:}); 0L-g'^nn  
        rpowern = [ones(length_r,1) rpowern]; MA QY/s~F  
    else {?_)m/\  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); J*k=|+[  
        rpowern = cat(2,rpowern{:}); 0([jD25J!  
    end T"lqPbK  
    "lya|;  
    % Compute the values of the polynomials: =I3U.^ :  
    % -------------------------------------- P?-44m#  
    z = zeros(length_r,length_n); S;kc{?   
    for j = 1:length_n 7q=xW6  
        s = 0:(n(j)-m(j))/2; (8/xSOZ[  
        pows = n(j):-2:m(j); !KW)*  
        for k = length(s):-1:1 Vi~+C@96  
            p = (1-2*mod(s(k),2))* ... tG&B D\  
                       prod(2:(n(j)-s(k)))/          ... clV/i&]Qa  
                       prod(2:s(k))/                 ... dXN&<Q,  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ;0{*V5A  
                       prod(2:((n(j)+m(j))/2-s(k))); oMf h|B  
            idx = (pows(k)==rpowers); 2(xKE_|  
            z(:,j) = z(:,j) + p*rpowern(:,idx); IKj1{nZvDc  
        end k!rz8S"  
         0{uX2h  
        if isnorm }z:=b8}  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); mSp7H!  
        end B*Xh$R  
    end <o`]wOrl  
    "6h.6_bTw  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  R *U>T$  
    )`)cB)s  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 j'W)Nyw$[  
    -(jcsqDk  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)