切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11411阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 loC~wm%Ql  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! fm L8n<1  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ?^M,Mt  
    function z = zernfun(n,m,r,theta,nflag) 0y6M;"&~E  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Z %Ozzp/  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N uKd4+Km  
    %   and angular frequency M, evaluated at positions (R,THETA) on the eZaSV>27  
    %   unit circle.  N is a vector of positive integers (including 0), and Fs].Fa  
    %   M is a vector with the same number of elements as N.  Each element AYgXqmH~+  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) #c5jCy}n  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, R(`:~@ 3\6  
    %   and THETA is a vector of angles.  R and THETA must have the same ^lAM /  
    %   length.  The output Z is a matrix with one column for every (N,M) :aK?DtZ  
    %   pair, and one row for every (R,THETA) pair. 8! rdqI   
    % ! 5NuFLOf  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ZZ7qSyBs?  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), __2<v?\  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral h%krA<G9  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, LP=j/qf|  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized fT|A^  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. W*t] d  
    % i=cST8!8N  
    %   The Zernike functions are an orthogonal basis on the unit circle. X!p`|i  
    %   They are used in disciplines such as astronomy, optics, and PO`p.("h  
    %   optometry to describe functions on a circular domain. aPVzOBp  
    % -cM1]soT  
    %   The following table lists the first 15 Zernike functions. p,goYF??  
    % MDU#V  
    %       n    m    Zernike function           Normalization &CQO+Yr$l  
    %       -------------------------------------------------- V`1,s~"q  
    %       0    0    1                                 1 ;~EQS.Qp  
    %       1    1    r * cos(theta)                    2 D]]wJQU2  
    %       1   -1    r * sin(theta)                    2 @kqxN\DE  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) !: ^q_q4  
    %       2    0    (2*r^2 - 1)                    sqrt(3) L%T(H<G  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) d=PX}o^  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) "FWx;65CR  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) V}Y*Yv  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) !Aw^X} C  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) BVw2skOT  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ?: yz/9(  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %bAQ>E2;m  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) h 6Z:+  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A~2)ZdAN  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) O\ZC$XF  
    %       -------------------------------------------------- IWQ0I&tzdx  
    % yQiY:SH  
    %   Example 1: FfdB%  
    % (-21h0N[V  
    %       % Display the Zernike function Z(n=5,m=1) @kWL "yy,  
    %       x = -1:0.01:1; Y%.o TB&  
    %       [X,Y] = meshgrid(x,x); 9%"7~YCDas  
    %       [theta,r] = cart2pol(X,Y); #$I@V4O;#  
    %       idx = r<=1; j#1G?MF  
    %       z = nan(size(X)); "XR=P> xk  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx));  X0VS a{  
    %       figure %.Ma_4o Z  
    %       pcolor(x,x,z), shading interp vR!+ 8sy$  
    %       axis square, colorbar H#~gx_^U  
    %       title('Zernike function Z_5^1(r,\theta)') iT>u&0B-  
    % mGjB{Q+  
    %   Example 2: Io1j%T#ZT  
    % m2c'r3UEu  
    %       % Display the first 10 Zernike functions jYHnJ}<  
    %       x = -1:0.01:1; ^#Ha H  
    %       [X,Y] = meshgrid(x,x); >fH0>W+!  
    %       [theta,r] = cart2pol(X,Y); >R+-mP!nj  
    %       idx = r<=1; %S`& R5  
    %       z = nan(size(X)); ~U0%}Bbh  
    %       n = [0  1  1  2  2  2  3  3  3  3]; -&Z!b!jN  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; n#lbfN 4  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; h2ROQKL"B  
    %       y = zernfun(n,m,r(idx),theta(idx)); +e>SK!kB7  
    %       figure('Units','normalized') m/KaWrw/)  
    %       for k = 1:10 c*;oR$VW  
    %           z(idx) = y(:,k); #\0m(v  
    %           subplot(4,7,Nplot(k)) x]{P.7IO'  
    %           pcolor(x,x,z), shading interp wa"0`a:`;  
    %           set(gca,'XTick',[],'YTick',[]) 'D+xs}\  
    %           axis square ;W,* B.~  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) u>*a@3$f  
    %       end IT| h;NUG  
    % 2dD" ^z{  
    %   See also ZERNPOL, ZERNFUN2. cx\E40WD  
    /)ZjI W"|  
    %   Paul Fricker 11/13/2006 KD kGQh#9  
    DYf QlA  
    X:GRjoa  
    % Check and prepare the inputs: qyz%9 9  
    % ----------------------------- C/k#gLF`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) O[ma% E*0  
        error('zernfun:NMvectors','N and M must be vectors.') 5pCicwea#  
    end -9b=-K.y  
    _3`G ZeGV  
    if length(n)~=length(m) 4uXGp sL  
        error('zernfun:NMlength','N and M must be the same length.') $*C }iJsF  
    end Kxsd@^E  
    gP% <<yl  
    n = n(:); !j6 k]BgZ  
    m = m(:); JtFq/&{i  
    if any(mod(n-m,2)) QVT0.GzR  
        error('zernfun:NMmultiplesof2', ... 2{ F-@}=  
              'All N and M must differ by multiples of 2 (including 0).') u$\.aWol  
    end J67 thTGFq  
    %J*1F  
    if any(m>n) '.v;/[0  
        error('zernfun:MlessthanN', ... | .jWz.c  
              'Each M must be less than or equal to its corresponding N.') T9yI%;D  
    end {sw|bLo|+  
    ygz2bHpD~  
    if any( r>1 | r<0 ) [<@L`ki  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') mI&3y9; (  
    end `wi+/^);  
    OX;bA^+}P  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $<-a>~^Tp  
        error('zernfun:RTHvector','R and THETA must be vectors.') G#7*O`  
    end h4n~V:nNm  
    ,a5q62)q  
    r = r(:); >!fTWdD^  
    theta = theta(:); ie1~QQ  
    length_r = length(r); {QEvc  
    if length_r~=length(theta) Te+#  
        error('zernfun:RTHlength', ... C6>_ wl]  
              'The number of R- and THETA-values must be equal.') ]-wyZ +a  
    end rCo}^M4Pb  
    l"J#Pvi  
    % Check normalization: nAQ[ -NbW,  
    % --------------------  ]! ZZRe  
    if nargin==5 && ischar(nflag) (Nzh1ul\}  
        isnorm = strcmpi(nflag,'norm'); #?Ix6 {R  
        if ~isnorm JrBPx/?(,;  
            error('zernfun:normalization','Unrecognized normalization flag.') 2m$C;j!D  
        end $?ss5: S  
    else %s}{5Qcl/  
        isnorm = false; T>'w]wi  
    end 61_PSScSY  
    IR"C?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;-JF1p7;  
    % Compute the Zernike Polynomials =o~mZ/ 7=M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TTO8tT3[6}  
    -medD G  
    % Determine the required powers of r: /\,3AInLb  
    % ----------------------------------- :H>I`)bw  
    m_abs = abs(m); C#[P<=v  
    rpowers = []; ea{zL  
    for j = 1:length(n) NP3 e^  
        rpowers = [rpowers m_abs(j):2:n(j)]; Q0-gU+ig  
    end 26}3  
    rpowers = unique(rpowers); y=Eb->a){  
    ?0 cv  
    % Pre-compute the values of r raised to the required powers, zn/>t-Bc  
    % and compile them in a matrix: /QB;0PrE  
    % ----------------------------- e6*,MnqBh  
    if rpowers(1)==0 (<.\v@7HC  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); d v4~CW%Td  
        rpowern = cat(2,rpowern{:}); D<70rBf2  
        rpowern = [ones(length_r,1) rpowern]; C\{ KB@C\*  
    else H{*rV>%  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); X+{brvM<  
        rpowern = cat(2,rpowern{:}); jjrE8[  
    end Kf?:dF  
    C`ZU.|R  
    % Compute the values of the polynomials: bR}fj.gP  
    % -------------------------------------- 07=I&Pum  
    y = zeros(length_r,length(n)); D\;5{,:d  
    for j = 1:length(n) { Mf-?_%  
        s = 0:(n(j)-m_abs(j))/2; ,n%b~.$:v5  
        pows = n(j):-2:m_abs(j); J>M9t%f@  
        for k = length(s):-1:1 [zl4"|_`  
            p = (1-2*mod(s(k),2))* ... 83]m/Iz  
                       prod(2:(n(j)-s(k)))/              ... hKg +A  
                       prod(2:s(k))/                     ... r?~_^  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8_wh9   
                       prod(2:((n(j)+m_abs(j))/2-s(k))); |7KWa(V5I  
            idx = (pows(k)==rpowers); -k:x e:$  
            y(:,j) = y(:,j) + p*rpowern(:,idx); .(8 V  
        end %Cj_z  
         8 mOGEx  
        if isnorm K8&) kfyI  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); "3++S  
        end fVZ9 2Xw B  
    end ?x 0gI   
    % END: Compute the Zernike Polynomials r# oJch=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h=6D=6c  
    # bjK]+  
    % Compute the Zernike functions: a~R.">>$  
    % ------------------------------ 0)zJG |  
    idx_pos = m>0; OVxg9  
    idx_neg = m<0;  2rC&  
    YvuE:ia  
    z = y; |Y6;8e`H  
    if any(idx_pos) %TAS4hnu%  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); a >-qHX-l  
    end B[h^]k  
    if any(idx_neg) @@-TW`G7  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @*|UyK.   
    end .nNZ dta&=  
    IMM+g]#e  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) V )UtU L  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 9@IL547V  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ? F!c"+C  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive N(yd<M w  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Q}l~n)=  
    %   and THETA is a vector of angles.  R and THETA must have the same =vQ J2Rg  
    %   length.  The output Z is a matrix with one column for every P-value, cX4]ViXSr  
    %   and one row for every (R,THETA) pair. Z]tQmV8e  
    % ]9 _}S  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ?*xH HI/  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Y-st2r[,  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 5}w   
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 h6IXD N  
    %   for all p. L A A(2  
    % JKrS;J^97v  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 z$d<ep{6  
    %   Zernike functions (order N<=7).  In some disciplines it is &Ruq8n<  
    %   traditional to label the first 36 functions using a single mode 7TI6EKr  
    %   number P instead of separate numbers for the order N and azimuthal XR[=W(m}  
    %   frequency M. h<>yzr3fN  
    % '+vmC*-I(  
    %   Example: @OFxnF`  
    % xsPt  
    %       % Display the first 16 Zernike functions {,*vMQ<^  
    %       x = -1:0.01:1; -])=\n!=  
    %       [X,Y] = meshgrid(x,x); Q(q&(/  
    %       [theta,r] = cart2pol(X,Y); _/%,cYVc8!  
    %       idx = r<=1; gX-hYQrC  
    %       p = 0:15; bi",DKU{l  
    %       z = nan(size(X)); gJ9"$fIPc  
    %       y = zernfun2(p,r(idx),theta(idx)); 'DpJ#w\81  
    %       figure('Units','normalized') ZMiOKVl  
    %       for k = 1:length(p) T*=*$%  
    %           z(idx) = y(:,k); vp*+C kd  
    %           subplot(4,4,k) y:Of~ ]9@  
    %           pcolor(x,x,z), shading interp 9 6#]P  
    %           set(gca,'XTick',[],'YTick',[]) 5F ^VvzNn  
    %           axis square $)8,dS  
    %           title(['Z_{' num2str(p(k)) '}']) [Y@>,B!V  
    %       end Yc_(g0NK  
    % +w?R4Sxjn  
    %   See also ZERNPOL, ZERNFUN. tk=S4 /VWv  
    :Y1;= W  
    %   Paul Fricker 11/13/2006 Kdp($L9r  
    &(32s!qH  
    W-&V:S{<  
    % Check and prepare the inputs: XG C\6?L~  
    % -----------------------------  O&|<2Qr  
    if min(size(p))~=1 0jjtx'F  
        error('zernfun2:Pvector','Input P must be vector.') "&4r!2A  
    end Av5:/c.B  
    t8xXGWk0  
    if any(p)>35 NT5'U  
        error('zernfun2:P36', ... 02*qf:kTnA  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Qs59IZ  
               '(P = 0 to 35).']) vW vu&3tx  
    end VHl1f7%@H  
    c>^(=52Q  
    % Get the order and frequency corresonding to the function number: :|niFK4  
    % ---------------------------------------------------------------- vxI9|i  
    p = p(:); ]Zc|<f;  
    n = ceil((-3+sqrt(9+8*p))/2); 6X m'^T  
    m = 2*p - n.*(n+2); /"u37f?[^  
    Iapz,nuE  
    % Pass the inputs to the function ZERNFUN: u5glKE  
    % ---------------------------------------- cY_ke  
    switch nargin S5y.H  
        case 3 5Lej_uqF   
            z = zernfun(n,m,r,theta); B,w ZI4oi*  
        case 4 .1{{E8Fj  
            z = zernfun(n,m,r,theta,nflag); bDtb6hL  
        otherwise bP#!U'b"=  
            error('zernfun2:nargin','Incorrect number of inputs.') \i%mokfbc  
    end 1hGj?L0m.  
    |3@DCb T  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) <L#d <lx  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. p T8?z  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of <TRhnz  
    %   order N and frequency M, evaluated at R.  N is a vector of Hn(1_I%zF  
    %   positive integers (including 0), and M is a vector with the 'Uf?-t*LT@  
    %   same number of elements as N.  Each element k of M must be a k<^M >` $  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) LtMM89u  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is bP 9ly9FH  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix {a:05Y  
    %   with one column for every (N,M) pair, and one row for every Q[7i  
    %   element in R. 4r1\&sI$~  
    % GN(<$,~g  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Q]xkDr?   
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is .=#j dc/  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to K -rR)-rI  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Ytlzn%  
    %   for all [n,m]. YoKyiO!   
    % H,X|-B  
    %   The radial Zernike polynomials are the radial portion of the K ?!qNK  
    %   Zernike functions, which are an orthogonal basis on the unit fj5 g\m  
    %   circle.  The series representation of the radial Zernike ;J5z  
    %   polynomials is 5h#h>0F  
    % cu0IFNF}[  
    %          (n-m)/2  XTJD>  
    %            __ e}e8WR=B  
    %    m      \       s                                          n-2s -Qn7+?P  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r L EgP-s W  
    %    n      s=0 FoyYWj?,R  
    % w!7\wI[  
    %   The following table shows the first 12 polynomials. [!A[oK9i C  
    % zzQWHg]/  
    %       n    m    Zernike polynomial    Normalization `S@TiD*  
    %       --------------------------------------------- r<e%;S  
    %       0    0    1                        sqrt(2) 9RaO[j`  
    %       1    1    r                           2 ^QRg9s,T<  
    %       2    0    2*r^2 - 1                sqrt(6) }6c>BU}DF  
    %       2    2    r^2                      sqrt(6) J/?Nf2L4  
    %       3    1    3*r^3 - 2*r              sqrt(8) ~ y!'\d>q<  
    %       3    3    r^3                      sqrt(8) @yaFN>w  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) i/ilG 3m>  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) c~Ka) dF|  
    %       4    4    r^4                      sqrt(10) c[dzO .~  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) /9w>:i81  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) I9*cEZ!l=e  
    %       5    5    r^5                      sqrt(12) d!y*z  
    %       --------------------------------------------- =^nb+}Nz(  
    % +J X;T(T  
    %   Example: M<fhQJ  
    % ^"/^)Lb!@M  
    %       % Display three example Zernike radial polynomials >M,oyM" s  
    %       r = 0:0.01:1; Er~17$b  
    %       n = [3 2 5]; W<Uu.Y{sG  
    %       m = [1 2 1]; N,ht<l\  
    %       z = zernpol(n,m,r); l}{{7~C`  
    %       figure We+rFk1ddt  
    %       plot(r,z) e4X df>B  
    %       grid on h@)U,&  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') vccWe7rh  
    % )cf i@-J+#  
    %   See also ZERNFUN, ZERNFUN2. x_PO;  
    Z1Qz LvWs  
    % A note on the algorithm. 4" @<bKx  
    % ------------------------ ;D5>iek5  
    % The radial Zernike polynomials are computed using the series (su,= Z  
    % representation shown in the Help section above. For many special z,HhSW?&^  
    % functions, direct evaluation using the series representation can c? ::l+  
    % produce poor numerical results (floating point errors), because )W@u g,y  
    % the summation often involves computing small differences between  Xo^8o0xi  
    % large successive terms in the series. (In such cases, the functions +^I0> \  
    % are often evaluated using alternative methods such as recurrence :,BAw ,  
    % relations: see the Legendre functions, for example). For the Zernike D6SUzI1+H  
    % polynomials, however, this problem does not arise, because the  CB7dr&>  
    % polynomials are evaluated over the finite domain r = (0,1), and &|SWy 2 N  
    % because the coefficients for a given polynomial are generally all !U`&a=k  
    % of similar magnitude. {f*Y}/@  
    % AZ:7_4jz  
    % ZERNPOL has been written using a vectorized implementation: multiple DF%d/a{]  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] I-v} DuM  
    % values can be passed as inputs) for a vector of points R.  To achieve  ` Xc7b  
    % this vectorization most efficiently, the algorithm in ZERNPOL VA/2$5Wu  
    % involves pre-determining all the powers p of R that are required to 5f0M{J,KC  
    % compute the outputs, and then compiling the {R^p} into a single :]"5UY?oF  
    % matrix.  This avoids any redundant computation of the R^p, and /iW+<@Mas  
    % minimizes the sizes of certain intermediate variables. sYTz6-  
    % vz^ ] g  
    %   Paul Fricker 11/13/2006 e8a^"Z`a  
    T+8Yd(:hX  
    'Kelq$dn#  
    % Check and prepare the inputs: mq:k |w^6  
    % ----------------------------- @uSO~. 7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) D{9a'0J  
        error('zernpol:NMvectors','N and M must be vectors.') {9IRW\kn  
    end kuY^o,u-1e  
    whI{?NP  
    if length(n)~=length(m) ~Ps*i]n(  
        error('zernpol:NMlength','N and M must be the same length.') B5\l&4X  
    end +)jUA]hJ/  
    o<g?*"TRh  
    n = n(:); .5JIQWE(  
    m = m(:); 8jK=A2pTa  
    length_n = length(n); tldT(E6  
    .[={Yx0!I  
    if any(mod(n-m,2)) UBo0c?,4  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') lH fZw})d  
    end +Z#=z,.^  
    FlO?E3d  
    if any(m<0) SX3'|'-  
        error('zernpol:Mpositive','All M must be positive.') EPo)7<|>  
    end 8)B{x[?|  
    X)g X9DA  
    if any(m>n) A#>wbHjWF  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ]+lT*6P*  
    end =D zrM%  
    a%go[_w  
    if any( r>1 | r<0 ) P0N/bp2Uy  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') f/\!=sa:  
    end vgW(l2,@  
    hvt]VC]]  
    if ~any(size(r)==1) L F?/60  
        error('zernpol:Rvector','R must be a vector.') MmJMx  
    end Nr4Fp`b8  
    @Z]0c=-+  
    r = r(:); ] 0i[=  
    length_r = length(r); _z_YJ7A>  
    ui]iO p  
    if nargin==4 5nPvEN/  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); >N3X/8KL%  
        if ~isnorm L5hF-Ek! 3  
            error('zernpol:normalization','Unrecognized normalization flag.') TtJX(N~  
        end ,Csdon  
    else vbJ<|#|r-  
        isnorm = false; eDd& vf  
    end eI-fH  
    k?cX f j&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cT(nKHL  
    % Compute the Zernike Polynomials zU5@~J  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e]<Syrk  
    %6ckau1_;  
    % Determine the required powers of r: 3qV^RW&  
    % ----------------------------------- 'm0WPS/6E  
    rpowers = []; XT0-"-q  
    for j = 1:length(n) RXRbW%b  
        rpowers = [rpowers m(j):2:n(j)]; 5{ap  
    end }#zL)+XI  
    rpowers = unique(rpowers); m?-)SA  
    ~XUUrg;  
    % Pre-compute the values of r raised to the required powers, EXdX%T\  
    % and compile them in a matrix: 9G6)ja?W  
    % ----------------------------- jLFaf#G]  
    if rpowers(1)==0 VnuG^)S  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _0[z xOI  
        rpowern = cat(2,rpowern{:}); |\bNFnn(  
        rpowern = [ones(length_r,1) rpowern]; hu-]SGb6  
    else x ]VycS  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 51:5rN(_  
        rpowern = cat(2,rpowern{:}); HSud$(w  
    end O!PGZuF  
    G-CL \G\n  
    % Compute the values of the polynomials: .J.}}"+U  
    % -------------------------------------- gd[muR ~  
    z = zeros(length_r,length_n); S 1k*"><  
    for j = 1:length_n *gmc6xY  
        s = 0:(n(j)-m(j))/2; <v ub Q4  
        pows = n(j):-2:m(j); [,bJKz)a  
        for k = length(s):-1:1 azZ|T{S  
            p = (1-2*mod(s(k),2))* ... ImQ -kz?b  
                       prod(2:(n(j)-s(k)))/          ... mR.j8pi  
                       prod(2:s(k))/                 ... [KUkv  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... t{,$?}  
                       prod(2:((n(j)+m(j))/2-s(k))); gvVy0nJI~  
            idx = (pows(k)==rpowers); {9J|\Zz3  
            z(:,j) = z(:,j) + p*rpowern(:,idx); K-YxZAf  
        end nA Nl9;G  
         hl[<o<`Q  
        if isnorm u%L6@M2  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); A._CCou  
        end J^t0M\  
    end ~N /%R>(v  
    ^uX"04>;  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ZjJEjw  
    cYTX)]^u  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 C44 Dz.rs  
    K`1\3J)  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)