切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11265阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 $!Qv f  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! '>"riEk  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 M~!DQ1u  
    function z = zernfun(n,m,r,theta,nflag) s.uw,x  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~#]$YoQ&O  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N VX'cFqrK3  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ' K\ $B_  
    %   unit circle.  N is a vector of positive integers (including 0), and PV(TDb:0  
    %   M is a vector with the same number of elements as N.  Each element /c4@QbB  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) )@hG#KMK  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, QBD\2VR  
    %   and THETA is a vector of angles.  R and THETA must have the same }#bX{?f  
    %   length.  The output Z is a matrix with one column for every (N,M) \9Yc2$dY  
    %   pair, and one row for every (R,THETA) pair. $qp,7RW  
    % 2 D vKW%;  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Shag4-*@hi  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), I_aS C4  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral <\6<-x(H5  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, tqMOh R  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized "TQ3{=j{  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _Pe,84Ro  
    % VNggDKS~K  
    %   The Zernike functions are an orthogonal basis on the unit circle. QRw/d}8l  
    %   They are used in disciplines such as astronomy, optics, and F Cp\w1+  
    %   optometry to describe functions on a circular domain. jb'A Os  
    % q\I2lZ  
    %   The following table lists the first 15 Zernike functions. L2WH-XP=  
    % +<TnE+>j  
    %       n    m    Zernike function           Normalization qiyX{J7Z  
    %       -------------------------------------------------- zEJZ,<  
    %       0    0    1                                 1 U%qE=u-  
    %       1    1    r * cos(theta)                    2 [m+):q^  
    %       1   -1    r * sin(theta)                    2 FVo_=O)  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) %9HL "  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Up*.z\|'y  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) <<iwJ U%:  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) pIbm)-  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ]hC6PKJU  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) id=:J7!QU  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 7wA.:$  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 3{/Y&/\"'^  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JsY|Fv  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ,JVWn>s  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s<hl>vY_'  
    %       4    4    r^4 * sin(4*theta)             sqrt(10)  ]$=\zL  
    %       -------------------------------------------------- P)9$}9i  
    % a}#8n^2  
    %   Example 1: _ !r]**  
    % #|ILeby  
    %       % Display the Zernike function Z(n=5,m=1) x<lY&KQ0  
    %       x = -1:0.01:1; EsK.g/d  
    %       [X,Y] = meshgrid(x,x); `(Eiu$h6V-  
    %       [theta,r] = cart2pol(X,Y); 5p]Cwj<u  
    %       idx = r<=1; m R|;}u;d  
    %       z = nan(size(X)); -w3KBlo  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ZaKT~f%%z  
    %       figure ob(S/t  
    %       pcolor(x,x,z), shading interp J6s@}@R1  
    %       axis square, colorbar dF#`_!4pbf  
    %       title('Zernike function Z_5^1(r,\theta)') (h $[g"8  
    % X 8#Uk}/  
    %   Example 2: xJemc3]2  
    % k  __MYb  
    %       % Display the first 10 Zernike functions }s>.Fh  
    %       x = -1:0.01:1;  A&8{0  
    %       [X,Y] = meshgrid(x,x); _=*ph0nu  
    %       [theta,r] = cart2pol(X,Y); a|u&N:v7B  
    %       idx = r<=1; ab/^z0GT  
    %       z = nan(size(X)); >$ok3-tuU  
    %       n = [0  1  1  2  2  2  3  3  3  3]; iI 4XM>`a  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Kx<T;iJ}  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; QswbIP/>:'  
    %       y = zernfun(n,m,r(idx),theta(idx)); D&C83^m  
    %       figure('Units','normalized') +.Cx.Nf(  
    %       for k = 1:10 z c4l{+3  
    %           z(idx) = y(:,k); 6vL+qOdx  
    %           subplot(4,7,Nplot(k)) |OarE2  
    %           pcolor(x,x,z), shading interp Ee0}Xv  
    %           set(gca,'XTick',[],'YTick',[]) x } X1 O)  
    %           axis square Q}(D^rGP3  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) C#3K.0a  
    %       end 1:Dm, d;  
    % PS\n0  
    %   See also ZERNPOL, ZERNFUN2. Ce~ a(J|"  
    898=9`7e  
    %   Paul Fricker 11/13/2006 $ytlj1.  
    ?K>=>bS^h  
    ,2*x4Gycb  
    % Check and prepare the inputs: M s5L7S  
    % ----------------------------- ;:l>Kac  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S1&Df%Ra  
        error('zernfun:NMvectors','N and M must be vectors.') ^PrG5|,s  
    end YVT\@+C'  
    p*l]I *x'<  
    if length(n)~=length(m) 0n('F  
        error('zernfun:NMlength','N and M must be the same length.') PZB_6!}2[F  
    end uu`G<n  
    '3'*VcL(  
    n = n(:); eJ2$DgB}t  
    m = m(:); cE SSSH!m  
    if any(mod(n-m,2)) A!n)Fpk  
        error('zernfun:NMmultiplesof2', ... sY*iRq  
              'All N and M must differ by multiples of 2 (including 0).') {=A8kgt  
    end >?yxig:_  
    m:4Ec>?e  
    if any(m>n) o%1dbbh  
        error('zernfun:MlessthanN', ... T>e4Og"?  
              'Each M must be less than or equal to its corresponding N.') }p$@.+  
    end blHJhB&8  
    %hO/2u  
    if any( r>1 | r<0 ) tJgo% P1  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 25m6/Y  
    end \&Bvh4Q  
    ~SD8#;v2  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Vub ($  
        error('zernfun:RTHvector','R and THETA must be vectors.') =Ti[Q5SZ  
    end =bDy :yY}  
    ` fm^#Nw  
    r = r(:); :^92B?q  
    theta = theta(:); k6|wiSyu  
    length_r = length(r); .*acw  
    if length_r~=length(theta) /ltGSl  
        error('zernfun:RTHlength', ... F `cuV  
              'The number of R- and THETA-values must be equal.') e/* T,ZJ  
    end | bWvQdN  
    D @bnm s  
    % Check normalization: [\ALT8vC?m  
    % -------------------- )e6)~3[^  
    if nargin==5 && ischar(nflag) ER4j=O#  
        isnorm = strcmpi(nflag,'norm'); mYRW/8+g  
        if ~isnorm IJz=SV  
            error('zernfun:normalization','Unrecognized normalization flag.') f 3t&Bcw$  
        end N-cLp}D}WB  
    else 0g&#hW};[6  
        isnorm = false; g[ dI%  
    end B!X;T9^d  
    1NI%J B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GR ^d/  
    % Compute the Zernike Polynomials jXCSD@?]K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pjVF^gv,*  
    5q Y+^jO]o  
    % Determine the required powers of r: x.ZW%P1  
    % ----------------------------------- QW[ gDc  
    m_abs = abs(m); \n}@}E L  
    rpowers = []; &Bfgvws;  
    for j = 1:length(n) Aq~}<qkIF+  
        rpowers = [rpowers m_abs(j):2:n(j)]; M,V~oc5  
    end : #om6}   
    rpowers = unique(rpowers); m?4L>'  
    ~E J+<[/  
    % Pre-compute the values of r raised to the required powers, 7>sNjOt@M  
    % and compile them in a matrix: |MEu"pY)  
    % ----------------------------- gZ b +m  
    if rpowers(1)==0 WVa#nU^  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); P g{/tM Y  
        rpowern = cat(2,rpowern{:}); Iq%f*Zm<  
        rpowern = [ones(length_r,1) rpowern]; YA,vT[kX  
    else IA$)E  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7F!(60xY  
        rpowern = cat(2,rpowern{:}); %n7Y5|Uh  
    end F )|0U~  
    S( nZ]QEG  
    % Compute the values of the polynomials: M`jqU g  
    % -------------------------------------- Hvj1R.I/  
    y = zeros(length_r,length(n)); t<%S_J\  
    for j = 1:length(n) w,/&oe5M+  
        s = 0:(n(j)-m_abs(j))/2; md.#n  
        pows = n(j):-2:m_abs(j); EqB3f_  
        for k = length(s):-1:1 gqCDF H  
            p = (1-2*mod(s(k),2))* ... ZA>p~Zt  
                       prod(2:(n(j)-s(k)))/              ...  I0v$3BQ4  
                       prod(2:s(k))/                     ... dYP-QUM$7  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... qC;1ND  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); JxlU=7cF  
            idx = (pows(k)==rpowers); 93+p~?  
            y(:,j) = y(:,j) + p*rpowern(:,idx); |1z?#@BH  
        end WhU-^`[*  
         yv&VK ht  
        if isnorm ud}B#{6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); XC NM  
        end :p6.v>s8  
    end N=hhuKt]  
    % END: Compute the Zernike Polynomials {y0`p1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Kq. MmR!gl  
    XX])B%*  
    % Compute the Zernike functions: [ S_8;j  
    % ------------------------------ p l.D h  
    idx_pos = m>0; n@"h^-  
    idx_neg = m<0; gXzp$#  
    :% o32  
    z = y; !~Am1\02  
    if any(idx_pos) 2S`D7R#6s  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Ln2dD>{2  
    end O F|3y~z  
    if any(idx_neg) NjL^FqA[  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ={GYJ. *Ah  
    end rEl bzL"&<  
    >AsrPU[  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) #UO#kC<2(B  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. MK*WStY  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 6)QJms  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive .@(+.G  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, P%-@AmO^_  
    %   and THETA is a vector of angles.  R and THETA must have the same qit D{;  
    %   length.  The output Z is a matrix with one column for every P-value, ^{vf|zZ _  
    %   and one row for every (R,THETA) pair. g'F{;Ur  
    % i5QG_^X&  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ?uq7K"B  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) s?j` _ B  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) e{8j(` (;#  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ATdK)gG  
    %   for all p. ~gjREl,+D#  
    % tBZ&h` V  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ]I|3v]6qR  
    %   Zernike functions (order N<=7).  In some disciplines it is e!:/enQo  
    %   traditional to label the first 36 functions using a single mode W)0y+H\% r  
    %   number P instead of separate numbers for the order N and azimuthal 3*DwXH+  
    %   frequency M. y].vll8R  
    % Ckelr  
    %   Example: ;g0p`wV  
    % tc_D8Q_  
    %       % Display the first 16 Zernike functions pX nY=  
    %       x = -1:0.01:1; yLo{^4a.  
    %       [X,Y] = meshgrid(x,x);  ?Cu1"bl  
    %       [theta,r] = cart2pol(X,Y); 7Z(F-B +j  
    %       idx = r<=1; bg8<}~zg  
    %       p = 0:15; n$ri:~s  
    %       z = nan(size(X)); ikSm;.  
    %       y = zernfun2(p,r(idx),theta(idx)); ]Gm $0uS  
    %       figure('Units','normalized') cvf@B_iN9  
    %       for k = 1:length(p) u)DhkF|  
    %           z(idx) = y(:,k); |kUxTe  
    %           subplot(4,4,k) A=v^`a03I  
    %           pcolor(x,x,z), shading interp KvFGwq"X  
    %           set(gca,'XTick',[],'YTick',[]) ;U +;NsCH  
    %           axis square RawK9K_1  
    %           title(['Z_{' num2str(p(k)) '}']) :OF:(,J  
    %       end _>G=v!  
    % 3M nm2*\  
    %   See also ZERNPOL, ZERNFUN. /<HEcB  
    ON(H7  
    %   Paul Fricker 11/13/2006 Llf |fayq  
    m]1= o7  
    &*}NN5Sv  
    % Check and prepare the inputs: GS%i<HQ3  
    % ----------------------------- cR0RJ$[d  
    if min(size(p))~=1 QFI8|i@  
        error('zernfun2:Pvector','Input P must be vector.') <eObQ[mQ  
    end +&W%]KEh  
    {|}tp<:2  
    if any(p)>35 iaqhP7!  
        error('zernfun2:P36', ... a:PS}_.  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... VtR?/+8X  
               '(P = 0 to 35).']) RaK fYLw  
    end f PoC yl  
    0L34)W  
    % Get the order and frequency corresonding to the function number: O};U3=^0f  
    % ---------------------------------------------------------------- ]7QRelMiz+  
    p = p(:); )C @W_cfMN  
    n = ceil((-3+sqrt(9+8*p))/2); mulK(mp  
    m = 2*p - n.*(n+2); xZ51iD $  
    0hKF)b  
    % Pass the inputs to the function ZERNFUN: FkdG@7Xf  
    % ---------------------------------------- p0KkPE">p4  
    switch nargin \haJe~  
        case 3 #?xhfSgr  
            z = zernfun(n,m,r,theta); %$b)l? !  
        case 4 U&fOsx?"  
            z = zernfun(n,m,r,theta,nflag); f6 zT  
        otherwise c2}?[\U]  
            error('zernfun2:nargin','Incorrect number of inputs.') {gE19J3  
    end >K{/Jx&  
    iOB]72dh  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) '`q&UPg]  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. c9\jELO  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of J4qFU^  
    %   order N and frequency M, evaluated at R.  N is a vector of *rO#UE2  
    %   positive integers (including 0), and M is a vector with the n*6b*fl  
    %   same number of elements as N.  Each element k of M must be a +/60$60[z  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) n'D1s:W^B  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ]HP aM  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix qp*C%U  
    %   with one column for every (N,M) pair, and one row for every }&d@6m]  
    %   element in R. fX).A`  
    % %eCbH`  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- w/r wE  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is <4z |"(  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to OWsK>egD  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 &B uO-  
    %   for all [n,m]. 3^l@!Qw  
    % ql5NSQ>{  
    %   The radial Zernike polynomials are the radial portion of the 'c 0]8Y 4  
    %   Zernike functions, which are an orthogonal basis on the unit Rh-e C6P  
    %   circle.  The series representation of the radial Zernike A4.Q \0  
    %   polynomials is *TY?*H  
    % $LLkYOwI  
    %          (n-m)/2 cq`v8  
    %            __ !Q!= =*1H  
    %    m      \       s                                          n-2s &g R+D  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r $:V'+s4o  
    %    n      s=0 `_C4L=q"  
    % dEU +\NY  
    %   The following table shows the first 12 polynomials. 2xvTijO0  
    % Qvh: hkR  
    %       n    m    Zernike polynomial    Normalization +]-~UsM  
    %       --------------------------------------------- <A +VS  
    %       0    0    1                        sqrt(2) :T(3!}4  
    %       1    1    r                           2 1.YDIB||  
    %       2    0    2*r^2 - 1                sqrt(6) (]0JI1 d  
    %       2    2    r^2                      sqrt(6) lz.ta!6  
    %       3    1    3*r^3 - 2*r              sqrt(8) ~=~|@K  
    %       3    3    r^3                      sqrt(8) |Id0+-V ?  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) d@~Hp?  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) X4LU/f<f  
    %       4    4    r^4                      sqrt(10) 62~8>71;'  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ,$ L>  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ]6NpHDip1  
    %       5    5    r^5                      sqrt(12) 5y;texsj[  
    %       --------------------------------------------- [k-Q89  
    % ].=&^0cg  
    %   Example: aMQfg51W:  
    % HV@ C@wmg  
    %       % Display three example Zernike radial polynomials 8SII>iL{  
    %       r = 0:0.01:1; pIBL85Xe  
    %       n = [3 2 5]; rf_(pp)  
    %       m = [1 2 1]; fQcJyX  
    %       z = zernpol(n,m,r); cl kL)7RQ  
    %       figure Zq7Y('=`t@  
    %       plot(r,z) Q[EpE,  
    %       grid on &GF@9BXI3  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') XlP q>@4p  
    % +jQHf-l  
    %   See also ZERNFUN, ZERNFUN2. 2mj?&p?  
    wlk{V  
    % A note on the algorithm. \^O&){q(9  
    % ------------------------ Z _W.iBF  
    % The radial Zernike polynomials are computed using the series qScc~i Oq  
    % representation shown in the Help section above. For many special K*^3FO}JG  
    % functions, direct evaluation using the series representation can NuZiLtC  
    % produce poor numerical results (floating point errors), because IzPnbnS}  
    % the summation often involves computing small differences between D?ojxHe  
    % large successive terms in the series. (In such cases, the functions Fd!Np7xw  
    % are often evaluated using alternative methods such as recurrence (/TYET_H  
    % relations: see the Legendre functions, for example). For the Zernike )Y.H*ca  
    % polynomials, however, this problem does not arise, because the 7.Df2_)  
    % polynomials are evaluated over the finite domain r = (0,1), and Lky<L96  
    % because the coefficients for a given polynomial are generally all 8i:E$7etH  
    % of similar magnitude. w1tWyKq  
    % E(]39B"i  
    % ZERNPOL has been written using a vectorized implementation: multiple [\eh$r\   
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] jroR 2*  
    % values can be passed as inputs) for a vector of points R.  To achieve Aw#@}TGT  
    % this vectorization most efficiently, the algorithm in ZERNPOL bzYj`t?  
    % involves pre-determining all the powers p of R that are required to 6 axe  
    % compute the outputs, and then compiling the {R^p} into a single QP HibPP:  
    % matrix.  This avoids any redundant computation of the R^p, and 8$)xxV_zp  
    % minimizes the sizes of certain intermediate variables. oPP`)b$x  
    % ?wM{NVt#-  
    %   Paul Fricker 11/13/2006 +/+:D9j ,  
    Z !HQ|')N5  
    a`/\0~  
    % Check and prepare the inputs: kucH=96  
    % ----------------------------- ndW]S7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) o@T-kAEf-.  
        error('zernpol:NMvectors','N and M must be vectors.') 44@yQ?  
    end Lg6;FbY?  
    KV&4Ep#  
    if length(n)~=length(m) `^_c&y K  
        error('zernpol:NMlength','N and M must be the same length.') C8dC_9  
    end g~ubivl2  
    ;5S'?fj  
    n = n(:); :Y4 m3|  
    m = m(:); |.]sL0; 4Z  
    length_n = length(n); Q`= ,&;T>  
    Lt'FA  
    if any(mod(n-m,2)) [%?ViKW  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') lqaOLZH  
    end p;nRxi7'  
    ^HiI   
    if any(m<0) EhWYFQ  
        error('zernpol:Mpositive','All M must be positive.') b { M'aV  
    end r@WfZ  Z  
    U+[ p>iP  
    if any(m>n) dMw7UJ  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') W"3YA+qpI  
    end eHX;*~e6)  
    Uw!N;QsC  
    if any( r>1 | r<0 ) qnO>F^itF  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') qS|ns'[  
    end *WzvPl$e  
    /+ yIcE(&3  
    if ~any(size(r)==1) I \Luw*:  
        error('zernpol:Rvector','R must be a vector.') 8%\0v?a5  
    end e-E0Bp  
    hiT&QJB` _  
    r = r(:); b+/z,c6w  
    length_r = length(r); 1 r9.JS  
    TmEJ!)*  
    if nargin==4 >U7{EfUJdx  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 5Z]]xR[  
        if ~isnorm 6B8g MO  
            error('zernpol:normalization','Unrecognized normalization flag.') ,S V34+(  
        end MP6Py@J45  
    else +H**VdM6s  
        isnorm = false; c9/&A  
    end cqd}.D  
    n.l7V<1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tX.fbL@ T  
    % Compute the Zernike Polynomials fVvB8[(;~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z%4w{T+[  
    UlD]!5NO  
    % Determine the required powers of r: ;${_eab ]  
    % ----------------------------------- n=iL6Yu(  
    rpowers = []; goje4;  
    for j = 1:length(n) 0wE)1w<C~  
        rpowers = [rpowers m(j):2:n(j)]; 1}/37\  
    end -\I".8"YE  
    rpowers = unique(rpowers); *]K/8MbiF  
    7;rf$\-&  
    % Pre-compute the values of r raised to the required powers, v!WkPvU  
    % and compile them in a matrix:  8 ?4/  
    % ----------------------------- a<CJ#B2K  
    if rpowers(1)==0 Fi8#r)G.  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); GNX`~%3KYc  
        rpowern = cat(2,rpowern{:}); /RBIZ_  
        rpowern = [ones(length_r,1) rpowern]; ;!:@3c  
    else @AfC$T  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); J#) %{k_  
        rpowern = cat(2,rpowern{:}); ~ !7!Y~(+  
    end o |"iW" +  
    $ISx0l~  
    % Compute the values of the polynomials: fN_Ilg)t?5  
    % -------------------------------------- 6` 4,  
    z = zeros(length_r,length_n); c2~oPUj  
    for j = 1:length_n oR@1/lV  
        s = 0:(n(j)-m(j))/2; f+V^q4  
        pows = n(j):-2:m(j); "QLp%B,A  
        for k = length(s):-1:1 u5I#5  
            p = (1-2*mod(s(k),2))* ... cM Z-  
                       prod(2:(n(j)-s(k)))/          ... ]yV,lp  
                       prod(2:s(k))/                 ... rp_Aw  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... @!KG;d:l  
                       prod(2:((n(j)+m(j))/2-s(k))); h=o%\F4  
            idx = (pows(k)==rpowers); iPK:gK3Q  
            z(:,j) = z(:,j) + p*rpowern(:,idx); $,8}3R5}  
        end >k9W+mk  
         YgR}y+q^6  
        if isnorm HLb`'TC3r+  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); W8N__  
        end Wu@v%!0  
    end KYM%U" jD  
    <d~IdK'\x  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  '-vzQd@y  
    u8Oo@xf0Fr  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 T}y@ a^#  
    w/Y6m.i1  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)