切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11573阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 +'oX  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! e1q"AOV6  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 {)K](S ~  
    function z = zernfun(n,m,r,theta,nflag) {8NwFN.  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. d$;/T('  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N s'_,:R\VM>  
    %   and angular frequency M, evaluated at positions (R,THETA) on the PCfo  
    %   unit circle.  N is a vector of positive integers (including 0), and Ttv9" z  
    %   M is a vector with the same number of elements as N.  Each element 4Nmea-!*  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) \3PE+$  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]HvZ$  
    %   and THETA is a vector of angles.  R and THETA must have the same AZZRa69=  
    %   length.  The output Z is a matrix with one column for every (N,M) 0\a8}b||  
    %   pair, and one row for every (R,THETA) pair. G?V"SU.  
    % %%g-GyP 1  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike h[=nx^  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YL5>V$i  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral .RRlUWu  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, p#H]\ P'  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized vD=%`G[m  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. j Selop>N  
    % *_)E6Y?9  
    %   The Zernike functions are an orthogonal basis on the unit circle. MEU[%hty_  
    %   They are used in disciplines such as astronomy, optics, and |f NMs  
    %   optometry to describe functions on a circular domain. {j6g@Vd6lx  
    % vg^Myn   
    %   The following table lists the first 15 Zernike functions. #@_ 1fE  
    % |< N frz  
    %       n    m    Zernike function           Normalization v*P[W_.  
    %       -------------------------------------------------- x N`T  
    %       0    0    1                                 1 .C5@QKU  
    %       1    1    r * cos(theta)                    2 |NEd@  
    %       1   -1    r * sin(theta)                    2 .[f;(WR  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 4r*Pa(;y  
    %       2    0    (2*r^2 - 1)                    sqrt(3) f9'] jJ+  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) .xpmp6-  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) k|#Zy,  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ?~)Ak`=  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ~n]NyVFP  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) R{<Y4C2~  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) BW71 s  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) t:9 ZCu ay  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) F aWl,}]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v>at/ef  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 3'@&c?F ye  
    %       -------------------------------------------------- $- w5o`e  
    % [.U^Wrd  
    %   Example 1: t F/nah  
    % (9z|a ,  
    %       % Display the Zernike function Z(n=5,m=1) GYqJ!,  
    %       x = -1:0.01:1; BkT-m'I?  
    %       [X,Y] = meshgrid(x,x); 9cOx@c+/  
    %       [theta,r] = cart2pol(X,Y); 5bBCpNa  
    %       idx = r<=1; %O/d4  
    %       z = nan(size(X)); ITn;m  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); _m7c o :  
    %       figure 6UI>GQ  
    %       pcolor(x,x,z), shading interp LR\zy8y]  
    %       axis square, colorbar ZeTL$E[E}  
    %       title('Zernike function Z_5^1(r,\theta)') N ^f}ui i  
    % xA9V$#d|  
    %   Example 2: ._ih$=   
    % 5Jw"{V?Ak  
    %       % Display the first 10 Zernike functions h60\ Y 8  
    %       x = -1:0.01:1; >p |yf. G  
    %       [X,Y] = meshgrid(x,x); j]HE>  
    %       [theta,r] = cart2pol(X,Y); Zsk?QS FE  
    %       idx = r<=1; CK Mv7  
    %       z = nan(size(X)); pVz pN8!  
    %       n = [0  1  1  2  2  2  3  3  3  3]; (uT^Nn9L=  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; CKN8z  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; q]+)c2M  
    %       y = zernfun(n,m,r(idx),theta(idx)); zP|*(*  
    %       figure('Units','normalized') :f]!O@.~  
    %       for k = 1:10 um}N%5GAa  
    %           z(idx) = y(:,k); qSR? ,G  
    %           subplot(4,7,Nplot(k)) X}?ESjZJ  
    %           pcolor(x,x,z), shading interp @>CG3`?}  
    %           set(gca,'XTick',[],'YTick',[]) )BB%4=u@~.  
    %           axis square xBt<Yt"  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +/}_%Cf8  
    %       end Fu mn9  
    % iBS0rT_  
    %   See also ZERNPOL, ZERNFUN2. L77EbP`P  
    }JH`' &3  
    %   Paul Fricker 11/13/2006 @[0jFjK  
    VlV)$z_  
    WRY~fM  
    % Check and prepare the inputs: gTuX *7w  
    % ----------------------------- 6yp+h  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) oX#9RW/ >I  
        error('zernfun:NMvectors','N and M must be vectors.') 9yDFHz w  
    end ,NDxFy;d  
    7Qt2gf  
    if length(n)~=length(m) @n>{&^-c  
        error('zernfun:NMlength','N and M must be the same length.') BQuRHi IV  
    end wYa0hNd  
    ?U$}Rsk{#  
    n = n(:); 0|GpZuGO9  
    m = m(:); oq243\?Y  
    if any(mod(n-m,2)) U* 4{"  
        error('zernfun:NMmultiplesof2', ... q?1yE@th  
              'All N and M must differ by multiples of 2 (including 0).') o\:$V   
    end 9ec0^T  
    GPMrs)J*!  
    if any(m>n) wd"TM  
        error('zernfun:MlessthanN', ... Mo~ki"9.  
              'Each M must be less than or equal to its corresponding N.') BZ2nDW*%  
    end /5jKX 5r  
    jjYM3LQcdP  
    if any( r>1 | r<0 ) G^ K*+  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8>2&h  
    end xp~YIeSg  
    .Dc28F~t  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Th_Q owk  
        error('zernfun:RTHvector','R and THETA must be vectors.') #`r(zI[  
    end OA!R5sOz"  
    tx gvVQ  
    r = r(:); F ZM2   
    theta = theta(:); ]v<d0" 2  
    length_r = length(r); ^zKt{a  
    if length_r~=length(theta) `D4oAx d9  
        error('zernfun:RTHlength', ... iJEB ?y  
              'The number of R- and THETA-values must be equal.') _w\Y{(k  
    end c{^i$  
    G OH  
    % Check normalization: 56"#Syj  
    % -------------------- ,I/2.Q})[  
    if nargin==5 && ischar(nflag) VjC*(6<Gj  
        isnorm = strcmpi(nflag,'norm'); ?rky6  
        if ~isnorm Nvi Fq  
            error('zernfun:normalization','Unrecognized normalization flag.') 0`V3s]%iu  
        end @< wYT$  
    else xq#U 4E  
        isnorm = false;  { VS''Lv  
    end B:B8"ODV  
    w9/nVu  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^).WW  
    % Compute the Zernike Polynomials H&~5sEGa  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dK[*  
    N[#iT&@T}/  
    % Determine the required powers of r: "xL;(Fqu  
    % ----------------------------------- =X)Q7u".7  
    m_abs = abs(m); X\o/i\ C}  
    rpowers = []; ~8XX3+]z:X  
    for j = 1:length(n) pp*bqY  
        rpowers = [rpowers m_abs(j):2:n(j)]; ;Fx')  
    end R.91v4 J  
    rpowers = unique(rpowers); JZW gr&O<  
    MF f05\aDu  
    % Pre-compute the values of r raised to the required powers, 'bZMh9|  
    % and compile them in a matrix: V"w`!  
    % -----------------------------  $&ex\_W  
    if rpowers(1)==0 #;5[('&[  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); IXbdS9,>F  
        rpowern = cat(2,rpowern{:}); nYI/&B{p  
        rpowern = [ones(length_r,1) rpowern]; 4 *Bp  
    else (45NZBs  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3'?h;`v\Lo  
        rpowern = cat(2,rpowern{:}); C/{nr-V3u  
    end @SKO~?7T  
    sN6 0o 7.  
    % Compute the values of the polynomials: IyrZez  
    % -------------------------------------- w{_e"N  
    y = zeros(length_r,length(n)); 2$o2.$i81  
    for j = 1:length(n) d9`3EP)n  
        s = 0:(n(j)-m_abs(j))/2; 3~cS}N T  
        pows = n(j):-2:m_abs(j); :5TXA  
        for k = length(s):-1:1 z*Myokhf  
            p = (1-2*mod(s(k),2))* ... H arFo  
                       prod(2:(n(j)-s(k)))/              ... ?l)}E  
                       prod(2:s(k))/                     ... C1ZFA![  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... X{0ax.  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); hEyX~f  
            idx = (pows(k)==rpowers); Y{%4F%Oy  
            y(:,j) = y(:,j) + p*rpowern(:,idx); UgF)J  
        end m1^dT_7Z  
         W HlD %u  
        if isnorm K[iY{  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); e8~62O^  
        end <7vIh0  
    end D)H?=G  
    % END: Compute the Zernike Polynomials j\XX:uU_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b5iIV1g  
    4@/q_*3o  
    % Compute the Zernike functions: [(D}%+2   
    % ------------------------------ *Gk<"pEeS  
    idx_pos = m>0; 9s;!iDFn  
    idx_neg = m<0; H]% mP|  
    <Z\MZ&{k{*  
    z = y; bqZ?uvc3  
    if any(idx_pos) "@c';".|  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ef;& Y>/  
    end r6O7&Me<  
    if any(idx_neg) syWv'Y[k?  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); SX_kr^#  
    end %4|n-`:  
    $Nt=gSWw5  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) zVc7q7E  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. T!=20!I  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated #VQGN2bK.  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive +(I`@5  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, .236d^l  
    %   and THETA is a vector of angles.  R and THETA must have the same )|{1&F1  
    %   length.  The output Z is a matrix with one column for every P-value, < tu[cA>  
    %   and one row for every (R,THETA) pair. ]AFM Y<mB  
    % s60:0>  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 6]@|7|N>X  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) *oX  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) i#M a -0#  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 :o.x=c B  
    %   for all p. 8 ACY uN\  
    % S,wj[;cv4  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Q C\,  
    %   Zernike functions (order N<=7).  In some disciplines it is "a0u-}/D  
    %   traditional to label the first 36 functions using a single mode 7{kpx$:_  
    %   number P instead of separate numbers for the order N and azimuthal bgzT3KZ  
    %   frequency M. w{:Oa7_A  
    % ZVL- o<6  
    %   Example: <u x*r#a!d  
    % :YRzI(4J  
    %       % Display the first 16 Zernike functions Vtz yB  
    %       x = -1:0.01:1; s5zGg]0  
    %       [X,Y] = meshgrid(x,x); 764}yV>  
    %       [theta,r] = cart2pol(X,Y); u]]5p[ |S  
    %       idx = r<=1; -NflaV~  
    %       p = 0:15; l_YdIUl  
    %       z = nan(size(X)); cvs"WX3  
    %       y = zernfun2(p,r(idx),theta(idx)); v'bd.eqw  
    %       figure('Units','normalized') "zeJ4f  
    %       for k = 1:length(p) WDH[kJ  
    %           z(idx) = y(:,k); 08K.\3  
    %           subplot(4,4,k) FB =  
    %           pcolor(x,x,z), shading interp -}N\REXE  
    %           set(gca,'XTick',[],'YTick',[]) nuQLq^e  
    %           axis square o+X'(!Trw  
    %           title(['Z_{' num2str(p(k)) '}']) Z_^Kl76D  
    %       end k^dCX+  
    % d_W nK{  
    %   See also ZERNPOL, ZERNFUN. } ^GV(]K  
    TgQ|T57  
    %   Paul Fricker 11/13/2006 ?%za:{  
    Z:B Y*#B  
    4|@FO}rK[l  
    % Check and prepare the inputs: ko+M,kjwR  
    % ----------------------------- Og;$P 'U  
    if min(size(p))~=1 [y=$2  
        error('zernfun2:Pvector','Input P must be vector.') 53u.p c  
    end I 3zitI;  
    ZoNNM4M+  
    if any(p)>35 R/Dy05nloe  
        error('zernfun2:P36', ... 9tc@   
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Vm1c-,)3  
               '(P = 0 to 35).']) #Zavdkw=d  
    end  I^(o3B  
    1:;&wf  
    % Get the order and frequency corresonding to the function number: 0JZq:hUd  
    % ---------------------------------------------------------------- 4}_w4@(  
    p = p(:); ^K 77V$v  
    n = ceil((-3+sqrt(9+8*p))/2); R SWB!-  
    m = 2*p - n.*(n+2); ;cm{4%=Iqe  
    1(;33),P8  
    % Pass the inputs to the function ZERNFUN: #Mem2cz  
    % ---------------------------------------- Kt* za  
    switch nargin i2ml[;*,N  
        case 3 c;~Llj P  
            z = zernfun(n,m,r,theta); |_xiG~  
        case 4 A Fm*60C  
            z = zernfun(n,m,r,theta,nflag); Jn:GA@[I  
        otherwise :jKXKY+T  
            error('zernfun2:nargin','Incorrect number of inputs.') Mi/'4~0Y  
    end .&yWHdQC:  
    ubCJZ"!  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) \FY De  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. fi4/@tV?$L  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of q}A3"$-F  
    %   order N and frequency M, evaluated at R.  N is a vector of oJp_c  
    %   positive integers (including 0), and M is a vector with the }9Dv\"t5  
    %   same number of elements as N.  Each element k of M must be a UCj#t!Mw  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) \utH*;J|x  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is k#r7&Y  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix  { e  
    %   with one column for every (N,M) pair, and one row for every xo 'w+Av  
    %   element in R. i K[8At"Xo  
    % N8(x),  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- NizJq*V>  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Rw=E_q{  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to =$zr t  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 .6/p4OR|  
    %   for all [n,m]. +#db_k  
    % 8}0y)aJ  
    %   The radial Zernike polynomials are the radial portion of the np>!lF:  
    %   Zernike functions, which are an orthogonal basis on the unit WI 4_4  
    %   circle.  The series representation of the radial Zernike kuud0VWJ  
    %   polynomials is HY|SLk/E  
    % -Jrc'e4K  
    %          (n-m)/2 sF3 l##Wv  
    %            __ qlT:9*&g  
    %    m      \       s                                          n-2s 0|Ft0y`+  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r R]s jG <  
    %    n      s=0 l45F*v]^  
    % :Du{8rV  
    %   The following table shows the first 12 polynomials. d@4=XSj  
    % -^ ayJ73  
    %       n    m    Zernike polynomial    Normalization I%|s  
    %       --------------------------------------------- VQ;- dCV  
    %       0    0    1                        sqrt(2) &J@ZF<Ib  
    %       1    1    r                           2 #YVDOR{z  
    %       2    0    2*r^2 - 1                sqrt(6) knZd}?I*  
    %       2    2    r^2                      sqrt(6) VzM@DM]=~  
    %       3    1    3*r^3 - 2*r              sqrt(8) v=WDs#"  
    %       3    3    r^3                      sqrt(8) ]Oh>ECA|D  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10)  !3M!p&  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) F7Yuky  
    %       4    4    r^4                      sqrt(10) cW/~4.v$  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 'u%;6'y  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) L`@&0Zk  
    %       5    5    r^5                      sqrt(12) _r)nbQm&  
    %       --------------------------------------------- EMH}VigR  
    % { 3P!b|V>  
    %   Example: Y k6WSurw  
    % h4xdE 0  
    %       % Display three example Zernike radial polynomials sh3}0u+  
    %       r = 0:0.01:1; }33Au-%*  
    %       n = [3 2 5]; Ds5&5&af  
    %       m = [1 2 1]; 8>+eGz|  
    %       z = zernpol(n,m,r); mYRR==iDL  
    %       figure B>L^XGq  
    %       plot(r,z) ky"7 ^  
    %       grid on au~gJW-  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') jo:p*Q "F  
    % w8Vzx8  
    %   See also ZERNFUN, ZERNFUN2. S%|' /cFo  
    NPq2C8:  
    % A note on the algorithm. uV\#J{'*  
    % ------------------------ {lw ec"{  
    % The radial Zernike polynomials are computed using the series Ek\Zi#f<  
    % representation shown in the Help section above. For many special $jL.TraV7  
    % functions, direct evaluation using the series representation can  7cQw?C  
    % produce poor numerical results (floating point errors), because yE/I)GOQjs  
    % the summation often involves computing small differences between TK1M mL  
    % large successive terms in the series. (In such cases, the functions KDzIarC  
    % are often evaluated using alternative methods such as recurrence t)b>f~  
    % relations: see the Legendre functions, for example). For the Zernike }z@hx@N/  
    % polynomials, however, this problem does not arise, because the |'(IWU  
    % polynomials are evaluated over the finite domain r = (0,1), and nW[aPQ[R   
    % because the coefficients for a given polynomial are generally all p`C5jfI  
    % of similar magnitude. ~_6rD`2cJ  
    % #jR?C9&!(  
    % ZERNPOL has been written using a vectorized implementation: multiple ld0WZj  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] /;[')RO`  
    % values can be passed as inputs) for a vector of points R.  To achieve Jx,s.Z0@7,  
    % this vectorization most efficiently, the algorithm in ZERNPOL VAz+J  
    % involves pre-determining all the powers p of R that are required to C u5 - w  
    % compute the outputs, and then compiling the {R^p} into a single ]vG)lY.=  
    % matrix.  This avoids any redundant computation of the R^p, and %|||M=akk  
    % minimizes the sizes of certain intermediate variables. 4^A'A.0  
    % <CdO& xUY  
    %   Paul Fricker 11/13/2006 3KZ h?~B  
    v7RDoO]I  
    zoXF"Nz  
    % Check and prepare the inputs: V!4E(sX  
    % ----------------------------- #6nA^K}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) p_5+L@%Gb  
        error('zernpol:NMvectors','N and M must be vectors.') -rrg?4  
    end 6 >2! kM7  
    x6]?}Q>>D  
    if length(n)~=length(m) ENr&k(>0HQ  
        error('zernpol:NMlength','N and M must be the same length.') f:>jH+o.S  
    end Il[WXt<S  
    7hQl,v< 5  
    n = n(:); {643Dz<e  
    m = m(:); ;* Jd#O  
    length_n = length(n); o qTh )  
    4+Kc  
    if any(mod(n-m,2)) L T!X|O.  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') v\Gu  
    end P=GM7  
    :I8t}Wg  
    if any(m<0) owB)+  
        error('zernpol:Mpositive','All M must be positive.') NiF*h~ q  
    end uW|y8 BP $  
    Obm\h*$  
    if any(m>n) `W=JX2I  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ?2a gU  
    end >U]. k8a)  
    e78}  
    if any( r>1 | r<0 ) %r!-*p<i|  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') j(hC't-  
    end T/nRc_I+^B  
    KA7nncg;,  
    if ~any(size(r)==1) w ;O '6"  
        error('zernpol:Rvector','R must be a vector.') ]cK@nq)  
    end )XWL'':bF  
    q^)(p' X  
    r = r(:); %\u>%s <9  
    length_r = length(r); v}U;@3W8U  
    /nNHI34  
    if nargin==4 iW)Ou?aS  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ?UzHQr  
        if ~isnorm "7d_$.Z  
            error('zernpol:normalization','Unrecognized normalization flag.') ;F- kE4w  
        end .)Q'j94Q  
    else 7>TG ]&  
        isnorm = false; NoT oLt\  
    end #N:o)I  
    ofV{SeD67  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C\Rd]P8\  
    % Compute the Zernike Polynomials 60m1 >"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Qoc-ZC"<6  
    }_S]!AWz  
    % Determine the required powers of r: :\Dm=Q\  
    % ----------------------------------- (<t)5?@%  
    rpowers = []; 5 X rn]  
    for j = 1:length(n) xo}hu %XL  
        rpowers = [rpowers m(j):2:n(j)]; & |r)pl0$  
    end )!Bv8&;e  
    rpowers = unique(rpowers); lEJTd3dMi  
    ?:,j9:m?  
    % Pre-compute the values of r raised to the required powers,  zcc]5>  
    % and compile them in a matrix: fjf\/%  
    % ----------------------------- wcO_;1_ H  
    if rpowers(1)==0 ;)*Drk*t,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); `%VrT`  
        rpowern = cat(2,rpowern{:}); #F kdcY  
        rpowern = [ones(length_r,1) rpowern]; K(hf)1q  
    else l)zS}"F,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); d+kIof,  
        rpowern = cat(2,rpowern{:}); fa)G$Q  
    end +Z+]Tqo  
    FTn[$q  
    % Compute the values of the polynomials: >:.Bn8-  
    % -------------------------------------- QAr1U7{(.  
    z = zeros(length_r,length_n); 2Ig.hnHj  
    for j = 1:length_n @d)6LA9Ec  
        s = 0:(n(j)-m(j))/2; DY%E&Vd:h  
        pows = n(j):-2:m(j); gC?k6)p$N  
        for k = length(s):-1:1 D n^RZLRhy  
            p = (1-2*mod(s(k),2))* ...   ~*RNJ  
                       prod(2:(n(j)-s(k)))/          ... Ha<(~qf  
                       prod(2:s(k))/                 ... #u>JCPz  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... \;~>AL*  
                       prod(2:((n(j)+m(j))/2-s(k))); 7@:uVowQ  
            idx = (pows(k)==rpowers); w%htY.-  
            z(:,j) = z(:,j) + p*rpowern(:,idx); sXAXHZ{  
        end 9d v+u6)  
         \ FA7 +Q  
        if isnorm ^ `!6Yax?  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Xln'~5~)  
        end 6+>q1,<  
    end jl@xcs]#  
    ]P-;]*&=  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  x`9IQQ  
    @,kR<1  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 LlbRr.wL  
    bMU0h,|]  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)