非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 k9ThWo/#u
function z = zernfun(n,m,r,theta,nflag) T7!"gJ
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. jJxV)AIY
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ^ MUSq(
% and angular frequency M, evaluated at positions (R,THETA) on the ,(6U3W*bu
% unit circle. N is a vector of positive integers (including 0), and IU8/B+hM~
% M is a vector with the same number of elements as N. Each element "AzA|zk')"
% k of M must be a positive integer, with possible values M(k) = -N(k) oP$l( k
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, oTPPYi[r
% and THETA is a vector of angles. R and THETA must have the same I}#_Jt3R
% length. The output Z is a matrix with one column for every (N,M) d&dp#)._8
% pair, and one row for every (R,THETA) pair. %)Pn<! L
% 4|9c+^%^
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 8%dE$smH
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Tw!]N%E
% with delta(m,0) the Kronecker delta, is chosen so that the integral \UdHN=A&
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, CO`%eL~
% and theta=0 to theta=2*pi) is unity. For the non-normalized 2&f]v`|M|
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. VZ`L-P$AF
% OKo39 A\fu
% The Zernike functions are an orthogonal basis on the unit circle. L@"1d.k_
% They are used in disciplines such as astronomy, optics, and Yy$GfjJtL]
% optometry to describe functions on a circular domain. TfD]`v`]
% LG0z|x(
% The following table lists the first 15 Zernike functions. /$
-^k[%
% #sn2Vmi
% n m Zernike function Normalization &:i|;^^2
% -------------------------------------------------- *vL2n>HH
% 0 0 1 1
Fo=hL
% 1 1 r * cos(theta) 2 vgc#IEx@
% 1 -1 r * sin(theta) 2 1 h.=c
% 2 -2 r^2 * cos(2*theta) sqrt(6) WW'8&:x
% 2 0 (2*r^2 - 1) sqrt(3) PhHBmMGL
% 2 2 r^2 * sin(2*theta) sqrt(6) y&HfF~
% 3 -3 r^3 * cos(3*theta) sqrt(8) (~R [K,G
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) T+O Qa+E@P
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) _%M5
T
% 3 3 r^3 * sin(3*theta) sqrt(8) =@ '>|-w|
% 4 -4 r^4 * cos(4*theta) sqrt(10) {Lex((
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JF%eC}[d
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) O>Vb7`z0<
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U4J9bp|
% 4 4 r^4 * sin(4*theta) sqrt(10) 5AvbKT
% -------------------------------------------------- eY)JuJ?
% 7IrbwAGZ3
% Example 1: {9tKq--@E9
% HC4vet
% % Display the Zernike function Z(n=5,m=1) y<Hka'(%
% x = -1:0.01:1; @l7~Zn
% [X,Y] = meshgrid(x,x); td:GZ %
% [theta,r] = cart2pol(X,Y); E4a`cGb
% idx = r<=1; )575JY `6K
% z = nan(size(X)); MeXzWLH
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 0w0\TWz*
% figure CCCd=s.
% pcolor(x,x,z), shading interp %S G**7
% axis square, colorbar Ow0-}Im~
% title('Zernike function Z_5^1(r,\theta)') "f/Su(6{0
%
O
"jX|5
% Example 2: G:W4<w
% P8hA<{UFS\
% % Display the first 10 Zernike functions wABaNB=9;
% x = -1:0.01:1; 82S?@%}#J
% [X,Y] = meshgrid(x,x); [Yo3=(7J
% [theta,r] = cart2pol(X,Y); O]"3o,/]G
% idx = r<=1; &n_aMZ;
% z = nan(size(X)); ?-40bb
% n = [0 1 1 2 2 2 3 3 3 3]; Pc+8CuN?
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; k 8C[fRev
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Ck71N3~W
% y = zernfun(n,m,r(idx),theta(idx)); f`zH#{u
% figure('Units','normalized') ,G";ny[$
% for k = 1:10 cs'ylGH
% z(idx) = y(:,k); ' }G!D
% subplot(4,7,Nplot(k)) 8VbHZ9Q
% pcolor(x,x,z), shading interp :xn/9y+s
% set(gca,'XTick',[],'YTick',[]) <r6e23
% axis square zh5$$*\
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 85>WK+=
% end (zW;&A
% 8<,b5
% See also ZERNPOL, ZERNFUN2. /%E l0X
F\' ^DtB
% Paul Fricker 11/13/2006 $$UMc-Pq
~hubh!d=
7+I%0U}m
% Check and prepare the inputs: wz!a;]agg
% ----------------------------- 0*G5Vd
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }LXS!Ff:
error('zernfun:NMvectors','N and M must be vectors.') aNZJs<3;'D
end yZ
{H
~i`@
if length(n)~=length(m) cY%[UK $l
error('zernfun:NMlength','N and M must be the same length.') -JL
end <ejWl%4
S >E|A%
n = n(:); BUH~aV
m = m(:); $U,`M"
if any(mod(n-m,2)) G8c 8`~t
error('zernfun:NMmultiplesof2', ... s[{L.9Y
'All N and M must differ by multiples of 2 (including 0).') DU_38tz
end ',?9\xEB
JsNqijVC
if any(m>n) bU`Ih# q
error('zernfun:MlessthanN', ... 1-_op!N
'Each M must be less than or equal to its corresponding N.') 3j{VpacZY
end ('!{kVLT-
qT`sPEs;V
if any( r>1 | r<0 ) B;SN}I
error('zernfun:Rlessthan1','All R must be between 0 and 1.') S@AHI!"h=V
end DP2 ^(d<
vmI2o'zi
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]ne&`uO
error('zernfun:RTHvector','R and THETA must be vectors.') zzf;3S?
end %bM^/7
3t
r = r(:); pdcP;.
theta = theta(:); Ka[@-XH
length_r = length(r); LnQm2uF
if length_r~=length(theta) @agW{%R:.
error('zernfun:RTHlength', ... //c<p
'The number of R- and THETA-values must be equal.') 13oR-Stj|
end 9zdp8?T
8no_xFA
% Check normalization: ?k lV;+
% -------------------- n@pm5f
if nargin==5 && ischar(nflag) HGuY-f
isnorm = strcmpi(nflag,'norm'); +r7uIwi$@
if ~isnorm C$X
)I~M
error('zernfun:normalization','Unrecognized normalization flag.') N3P!<J/tc
end O34'c_ fZ
else \Mk;Y
isnorm = false; IUX~dO
end mZ;W$y SO
"=l<%em
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \;0J6LBc
% Compute the Zernike Polynomials y'(bp=Nq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .@0 i,7S
Dq/ _#&S
% Determine the required powers of r: K`!q1g`
% ----------------------------------- >|<8QomD
m_abs = abs(m); xrbDqA.b
rpowers = []; (mq 7{;7y
for j = 1:length(n) =}S*]Me5
rpowers = [rpowers m_abs(j):2:n(j)]; 65FdA-4
end :Jp$_T&E
rpowers = unique(rpowers); 5#~ARk*?a
j%%l$i~
% Pre-compute the values of r raised to the required powers, #JAU5d
% and compile them in a matrix: NB]T~_?]*
% ----------------------------- v:s.V>{"S
if rpowers(1)==0 m?;aTSa
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); lk $S"OH!
rpowern = cat(2,rpowern{:}); \0%)eJ
rpowern = [ones(length_r,1) rpowern]; vkE[Ur>
else ZN)a}\]
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); '</
rpowern = cat(2,rpowern{:}); OtuOT=%
end o'.6gZ gk
|RqCw7
% Compute the values of the polynomials: 'T54k
% -------------------------------------- ]A}'jP
y = zeros(length_r,length(n)); w7Nb+/,sg
for j = 1:length(n) @";z?xj
s = 0:(n(j)-m_abs(j))/2; }{*((@GY}
pows = n(j):-2:m_abs(j); /p~Wk4'
for k = length(s):-1:1 Qh%(yL!
p = (1-2*mod(s(k),2))* ... ]JQk,<l5E
prod(2:(n(j)-s(k)))/ ... w yO@oi
Vn
prod(2:s(k))/ ... 5m")GWQaP@
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]Xcqf9k
prod(2:((n(j)+m_abs(j))/2-s(k))); -Z&6PT7
idx = (pows(k)==rpowers); \LB =_W$
y(:,j) = y(:,j) + p*rpowern(:,idx); H27J kZ&
end x1)G!i
oD,f5Ci-
if isnorm B 95}_q
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Fy-+? ~
end *JXiOs
end DKL< "#.7
% END: Compute the Zernike Polynomials xw-x<7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )L#C1DP#
Wt+aW
% Compute the Zernike functions: kvh}{@|-
% ------------------------------ 1
O+4A[cr
idx_pos = m>0; >8;Co]::kx
idx_neg = m<0; gO-C[j/
TRG(W^<F
z = y; !pI)i*V|
if any(idx_pos) Xz5 aTJ&
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); CQfrAk4mu
end q#B^yk|Y
if any(idx_neg) &F"Mkyf
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4cK6B)X
end qPdNI1 |
0 1[LPN
% EOF zernfun