切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10969阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 T:5%sN;#O  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! f3B8,>  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 rJj~cPwL"  
    function z = zernfun(n,m,r,theta,nflag) POs~xaZ`H  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Rj= Om  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N fdHxrH >*  
    %   and angular frequency M, evaluated at positions (R,THETA) on the g+*[CKO{  
    %   unit circle.  N is a vector of positive integers (including 0), and 6[7k}9`alz  
    %   M is a vector with the same number of elements as N.  Each element d69VgLg  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) wB"Gw` D  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ;Nij*-U4~  
    %   and THETA is a vector of angles.  R and THETA must have the same y$NG..S  
    %   length.  The output Z is a matrix with one column for every (N,M) ;wB  3H  
    %   pair, and one row for every (R,THETA) pair. :E*U*#h/  
    % &|] ^ u/  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike mr.DP~O:9p  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 4/_|Qy  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral pBLO  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Gjr2]t;E  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized yK3z3"1M?  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. lNAHn<ht  
    % r U5'hK  
    %   The Zernike functions are an orthogonal basis on the unit circle. }C}_ I:=C  
    %   They are used in disciplines such as astronomy, optics, and %Ski5q  
    %   optometry to describe functions on a circular domain. Z Z7U^#RT  
    % ![%,pip2/&  
    %   The following table lists the first 15 Zernike functions. G> >_G<x  
    % W -&5 v  
    %       n    m    Zernike function           Normalization l0)uu4|  
    %       -------------------------------------------------- H skN(Ho  
    %       0    0    1                                 1 HbVLL`06*  
    %       1    1    r * cos(theta)                    2 7 i/Cax  
    %       1   -1    r * sin(theta)                    2 l[k$O$jo  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) O2f2Fb$B7  
    %       2    0    (2*r^2 - 1)                    sqrt(3) {c; 3$  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Ymom 0g+ f  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 37Y]sJrs$  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) =ndKG5  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Hc9pWr "N  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ]9Hy "#Fz  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) W[s>TDc`v  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g(k|"g`*  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) /G;yxdb  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) cK&oC$[r-  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 0 HmRl  
    %       -------------------------------------------------- ,jmG!qJb  
    % lH.2H  
    %   Example 1: $EF@x}h:A  
    % _(foJRr  
    %       % Display the Zernike function Z(n=5,m=1) v!Z9T  
    %       x = -1:0.01:1; _!7o   
    %       [X,Y] = meshgrid(x,x); 9j`-fs@:  
    %       [theta,r] = cart2pol(X,Y); @@jdF-Utj;  
    %       idx = r<=1; 605|*(  
    %       z = nan(size(X)); q0wVV  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 2X_ef  
    %       figure >.|gmo>b  
    %       pcolor(x,x,z), shading interp hLRQ)  
    %       axis square, colorbar xJCpWU3wM  
    %       title('Zernike function Z_5^1(r,\theta)') /&yT2p  
    % t=AR>M!w~  
    %   Example 2: tUQ)q  
    % CggEAi~  
    %       % Display the first 10 Zernike functions #eYVZ=E  
    %       x = -1:0.01:1; }^muAr  
    %       [X,Y] = meshgrid(x,x); Sls> OIc  
    %       [theta,r] = cart2pol(X,Y); Pp2 )P7  
    %       idx = r<=1; Npqbxb  
    %       z = nan(size(X)); VM[8w`  
    %       n = [0  1  1  2  2  2  3  3  3  3]; *rLs!/[Z_  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; pC6_ jIZ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; $$a"A(Y  
    %       y = zernfun(n,m,r(idx),theta(idx)); s><co]  
    %       figure('Units','normalized') e 3K  
    %       for k = 1:10 Cp%|Q.?  
    %           z(idx) = y(:,k); 8{C3ijR  
    %           subplot(4,7,Nplot(k)) $4&Ql  
    %           pcolor(x,x,z), shading interp q<VhP2R  
    %           set(gca,'XTick',[],'YTick',[]) |w DCIHzQ  
    %           axis square ry'(m M  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) :&m(WZ \  
    %       end =>G A_  
    % ,v"A}g0"  
    %   See also ZERNPOL, ZERNFUN2. Ty=}A MMyE  
    S4w/ kml3  
    %   Paul Fricker 11/13/2006 =R05H2hs  
    amRtFrc|  
    |($pXVLH`  
    % Check and prepare the inputs: Q*he%@w  
    % ----------------------------- k;sUDmrO  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) YdFCYSiS  
        error('zernfun:NMvectors','N and M must be vectors.') V;"'!dVX  
    end ^|Y!NHYH$Z  
     X_lNnk  
    if length(n)~=length(m) DxlX-  
        error('zernfun:NMlength','N and M must be the same length.') ]9' \<uR  
    end SZ_hGD0  
    <$ 5\^y,V  
    n = n(:); V+^\SiM  
    m = m(:); $[Fk>d  
    if any(mod(n-m,2)) =["GnL*!0  
        error('zernfun:NMmultiplesof2', ... y ;;@T X  
              'All N and M must differ by multiples of 2 (including 0).') ^N]*Zf~N?  
    end %9j]N$.V  
    STI8[e7{  
    if any(m>n) %^S1 fUwT  
        error('zernfun:MlessthanN', ... LE;c+(CAU  
              'Each M must be less than or equal to its corresponding N.') ,0~=9dR  
    end W;=ZQ5Lw  
    /vu7;xVG  
    if any( r>1 | r<0 ) PJ'l:IU  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6vDgM fw  
    end fRiHs\+  
    FW2} 9#R  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) y3x_B@}BY  
        error('zernfun:RTHvector','R and THETA must be vectors.') 9:1ZL_yf  
    end -8]$a6`{_  
    | !Knd ^}  
    r = r(:); %\A~w3E  
    theta = theta(:); i[B%:q:&  
    length_r = length(r); M-n +3E9  
    if length_r~=length(theta) D3]_AS&\  
        error('zernfun:RTHlength', ... 'G&w[8mqY  
              'The number of R- and THETA-values must be equal.') d$!ibL#o  
    end YJ6Xq||_  
    Cd4G&(=  
    % Check normalization: v"`w'+  
    % -------------------- n'SnqJ&}  
    if nargin==5 && ischar(nflag) s^cHR1^  
        isnorm = strcmpi(nflag,'norm'); {'/8{dS  
        if ~isnorm Y9ru~&/o$  
            error('zernfun:normalization','Unrecognized normalization flag.') zQ6otDZx  
        end m 9r X  
    else k{; 2*6b0  
        isnorm = false; % 74}H8q_z  
    end .k}h'nE  
    7>#74oy  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #(OL!B  
    % Compute the Zernike Polynomials ]c08`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Hg]r5Fe/c  
    cG.4%Va@s_  
    % Determine the required powers of r: 'Ag?#vB  
    % ----------------------------------- vV%w#ULxE~  
    m_abs = abs(m); [L:,A{rve  
    rpowers = []; -{HA+YL H  
    for j = 1:length(n) OmsNo0OA  
        rpowers = [rpowers m_abs(j):2:n(j)]; % _N-:.S  
    end LVX.stN#p  
    rpowers = unique(rpowers); A," u~6Bn  
    2QdqVwm  
    % Pre-compute the values of r raised to the required powers, BRzrtK  
    % and compile them in a matrix: n;[d{bU  
    % ----------------------------- ^5OR%N)  
    if rpowers(1)==0 4h-tR  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); O9bIo]B  
        rpowern = cat(2,rpowern{:}); W 5-=,t  
        rpowern = [ones(length_r,1) rpowern]; |Gz(q4  
    else ,#nyEE  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); YH@^6Be9  
        rpowern = cat(2,rpowern{:}); H8X{!/,^  
    end G22u+ua  
    *&XOzaVU  
    % Compute the values of the polynomials: `j9 ;9^  
    % -------------------------------------- A\LMmg  
    y = zeros(length_r,length(n)); I=0`xF|4K-  
    for j = 1:length(n) T< D&%)  
        s = 0:(n(j)-m_abs(j))/2; l4RZ!K*X_"  
        pows = n(j):-2:m_abs(j); O|d"0P  
        for k = length(s):-1:1 W2'u]1bs  
            p = (1-2*mod(s(k),2))* ... idEhxvAo  
                       prod(2:(n(j)-s(k)))/              ... U<K)'l6#2n  
                       prod(2:s(k))/                     ... J.$N<.  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... f<<1.4)oSV  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); H>X:#xOA_  
            idx = (pows(k)==rpowers); 3v\}4)A[  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Ko: <@h  
        end m9 1Gc?c  
         |cs]98FEf  
        if isnorm EN^5 Hppb  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); A{MMY{K3  
        end ZwM(H[iqL  
    end HQX.oW  
    % END: Compute the Zernike Polynomials yhc}*BMZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !c W6dc^  
    Qhy!:\&1  
    % Compute the Zernike functions: <- L}N '  
    % ------------------------------ Y'*oW+K  
    idx_pos = m>0; Q\rf J||  
    idx_neg = m<0; f3^Anaa]l  
    xPCRT*Pd  
    z = y; l|v`B6(  
    if any(idx_pos) WUrE1%u  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); E6XDn`:  
    end gamE^Ee  
    if any(idx_neg) ?fW['%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -!q^/ux  
    end 8 kvF~d ;  
    42M_  %l_  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) MX? *jYl  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. {8>g?4Q#  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ,BUrZA2\U$  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive (\ge7sE-oo  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 1*" 7q9x  
    %   and THETA is a vector of angles.  R and THETA must have the same e>6|# d  
    %   length.  The output Z is a matrix with one column for every P-value, E5!vw@,  
    %   and one row for every (R,THETA) pair. /yHjd s  
    % ":0u%E?s  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike }ZK%@b>  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Bv<aB(c  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) tk]D)+{u&c  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1  & .0A%  
    %   for all p. Z_[ P7P  
    % T*:w1*:  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 9 ,:#Q<UM  
    %   Zernike functions (order N<=7).  In some disciplines it is `JO>g=,4  
    %   traditional to label the first 36 functions using a single mode ? X6M8`  
    %   number P instead of separate numbers for the order N and azimuthal p#).;\M   
    %   frequency M. R2v9gz;W  
    % p[w! SR%=  
    %   Example:  9u^M{6  
    % _V 4O#;%?  
    %       % Display the first 16 Zernike functions 7HkFDI()1  
    %       x = -1:0.01:1; nfbR"E jXr  
    %       [X,Y] = meshgrid(x,x); ! ui   
    %       [theta,r] = cart2pol(X,Y); 9dq"x[  
    %       idx = r<=1; eZEk$W%  
    %       p = 0:15; ").gPmC  
    %       z = nan(size(X)); XwUa|"X6  
    %       y = zernfun2(p,r(idx),theta(idx)); ~P#mvQE)  
    %       figure('Units','normalized') /v^ '5j1o  
    %       for k = 1:length(p) Vbt!, 2_)  
    %           z(idx) = y(:,k); C7ug\_,s  
    %           subplot(4,4,k) D%~tU70a  
    %           pcolor(x,x,z), shading interp w i[9RD@  
    %           set(gca,'XTick',[],'YTick',[]) y_X jY  
    %           axis square o2X95NiH  
    %           title(['Z_{' num2str(p(k)) '}']) c ef[T(>  
    %       end ?h6|N%U'  
    % 9 wZ?")2  
    %   See also ZERNPOL, ZERNFUN. g3].STz6w  
    Ie(i1?`A8  
    %   Paul Fricker 11/13/2006 ele@xl  
    4XNheP;b  
    s> m2qSu  
    % Check and prepare the inputs: Ly&+m+Gwu  
    % ----------------------------- & ?xR  
    if min(size(p))~=1 jB(+9?;1${  
        error('zernfun2:Pvector','Input P must be vector.') =B9-}]DDO  
    end PQDLbSe)\  
    ss[`*89  
    if any(p)>35 &nP0T-T5y  
        error('zernfun2:P36', ... &EqLF  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... +9w[/n^,G  
               '(P = 0 to 35).']) JD#x+~pb,8  
    end iP0m1  
    >*RU:X  
    % Get the order and frequency corresonding to the function number: K_;vqi^1^&  
    % ---------------------------------------------------------------- S7)qq  
    p = p(:); SK lvZ  
    n = ceil((-3+sqrt(9+8*p))/2); 4d`YZNvZW/  
    m = 2*p - n.*(n+2); B~w$j/sWU  
    iqvLu{  
    % Pass the inputs to the function ZERNFUN: *[{j'7*cc  
    % ---------------------------------------- 9a=Ll]=\  
    switch nargin nd]SI;<  
        case 3 aOH|[  
            z = zernfun(n,m,r,theta); C< 9x\JY%  
        case 4 M@R"-$Z  
            z = zernfun(n,m,r,theta,nflag); j:h}ka/!p  
        otherwise i'm<{ v  
            error('zernfun2:nargin','Incorrect number of inputs.') C3}:DIn"w  
    end iX$G($[l(  
    {1)A"lQu  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) D5,]E`jwu  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. riDb !oC  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of & Q3Fgj  
    %   order N and frequency M, evaluated at R.  N is a vector of 5dePpFD5  
    %   positive integers (including 0), and M is a vector with the <0})%V?-  
    %   same number of elements as N.  Each element k of M must be a sp,-JZD  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) r[S(VPo[()  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Vh^y6U<  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 1Cw]~jh  
    %   with one column for every (N,M) pair, and one row for every e$Ksn_wEq  
    %   element in R. 4j#y?^s  
    % vqSpF6F q  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- h3o'T=`Sm  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is d=D-s  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to $*ff]>#  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 jr=9.=jI8k  
    %   for all [n,m]. hzo> :U  
    % x4WCAqi/2  
    %   The radial Zernike polynomials are the radial portion of the ubwM*P  
    %   Zernike functions, which are an orthogonal basis on the unit aV\i3\da  
    %   circle.  The series representation of the radial Zernike n9B5D:.G  
    %   polynomials is X' `n>1z  
    %  0k (-  
    %          (n-m)/2 rYb5#aT[  
    %            __ wZ(1\ M(  
    %    m      \       s                                          n-2s lq-KM8j  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r }u_D{bz  
    %    n      s=0 A NhqS  
    % 8A#,*@V[  
    %   The following table shows the first 12 polynomials. W/qXQORv  
    % cnu&!>8V  
    %       n    m    Zernike polynomial    Normalization Tn&_ >R  
    %       --------------------------------------------- j%6p:wDl  
    %       0    0    1                        sqrt(2) fx;rMGa  
    %       1    1    r                           2 W'C>Fn}lO?  
    %       2    0    2*r^2 - 1                sqrt(6) ~/L:$  
    %       2    2    r^2                      sqrt(6) "wgPPop  
    %       3    1    3*r^3 - 2*r              sqrt(8) OG5{oH#K  
    %       3    3    r^3                      sqrt(8) J :O!4gI  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 8,U~ p<Gz  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) #_DpiiS,.Q  
    %       4    4    r^4                      sqrt(10) Fi i(dmn  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) riIubX#  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ~<[+!&<U  
    %       5    5    r^5                      sqrt(12) `NIb? /!f  
    %       --------------------------------------------- 2 R\K!e  
    % 2P"643tz  
    %   Example: UD-+BUV  
    % r8EJ@pOF2w  
    %       % Display three example Zernike radial polynomials Jh-yIk  
    %       r = 0:0.01:1; C m:AU;  
    %       n = [3 2 5]; ~O}r<PQ  
    %       m = [1 2 1]; hIV9.{J  
    %       z = zernpol(n,m,r); Ca~8cQ  
    %       figure Wd'}YbC  
    %       plot(r,z) 7h\is  
    %       grid on \@@G\\)er  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') In?rQiD9  
    % MSCH6R"5  
    %   See also ZERNFUN, ZERNFUN2. 2+&;jgBP  
    xm{?h,U,  
    % A note on the algorithm. JN8Rh  
    % ------------------------ Nw"df=,{  
    % The radial Zernike polynomials are computed using the series sl$6Zv-l%0  
    % representation shown in the Help section above. For many special Oe Q[-e  
    % functions, direct evaluation using the series representation can ntIR#fB  
    % produce poor numerical results (floating point errors), because Bl+\|[yd  
    % the summation often involves computing small differences between -5*OSA:8x  
    % large successive terms in the series. (In such cases, the functions 1)~|{X+~  
    % are often evaluated using alternative methods such as recurrence QBa+xI_ J  
    % relations: see the Legendre functions, for example). For the Zernike g:!U,<C^a  
    % polynomials, however, this problem does not arise, because the [A~?V.G  
    % polynomials are evaluated over the finite domain r = (0,1), and )<QX2~m<  
    % because the coefficients for a given polynomial are generally all - |p eD L  
    % of similar magnitude. =X'[r  
    % /` M#  
    % ZERNPOL has been written using a vectorized implementation: multiple _g Mr]%Q  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] o33t~@RX  
    % values can be passed as inputs) for a vector of points R.  To achieve vv)q&,<c  
    % this vectorization most efficiently, the algorithm in ZERNPOL z?DCQ  
    % involves pre-determining all the powers p of R that are required to lf-.c$.>  
    % compute the outputs, and then compiling the {R^p} into a single t^&hG7L_m,  
    % matrix.  This avoids any redundant computation of the R^p, and .s\lfBo9  
    % minimizes the sizes of certain intermediate variables. H^'%$F?Ss  
    % 1tY+0R  
    %   Paul Fricker 11/13/2006 oaj.5hM  
    >a975R*g  
    #H6YI3 `G  
    % Check and prepare the inputs: |Ua);B~F  
    % ----------------------------- Fx!D:.)/G  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) N_92,xI#  
        error('zernpol:NMvectors','N and M must be vectors.') ;gL{*gR]S  
    end `%\CO `  
    XVN JK-B  
    if length(n)~=length(m) {>km]CG  
        error('zernpol:NMlength','N and M must be the same length.') .c>6}:ye  
    end qb;b.P?~D$  
    ?$`kT..j,u  
    n = n(:); /[?} LrDO  
    m = m(:); >K'dgJ245  
    length_n = length(n); &B5&:ib1D  
    @q!T,({kx  
    if any(mod(n-m,2)) |[~ S&  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') fTpG>*{p  
    end '`;=d<'  
    g(zeOS]q}  
    if any(m<0) ^zTe9:hz/\  
        error('zernpol:Mpositive','All M must be positive.') r\QV%09R  
    end Fa h6 &a  
    B.=n U  
    if any(m>n) @|cHDltH  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 2c]751  
    end 8Dl(zYK;  
    ekY)?$v3  
    if any( r>1 | r<0 ) _# Hd2h  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') yT:2*sZRc  
    end P$z%:Q  
    Ytc[ kp  
    if ~any(size(r)==1) PK|qiu-O&*  
        error('zernpol:Rvector','R must be a vector.') Zrwd  
    end --diG$x.  
    auGK2i  
    r = r(:); =?W7OV^BE  
    length_r = length(r); \A^8KVE!  
    LL);Ym9d  
    if nargin==4 bp/l~h.7W  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); /t`|3Mw  
        if ~isnorm 5mV!mn:H:  
            error('zernpol:normalization','Unrecognized normalization flag.') ^X6e\]yj  
        end iz^a Qx/  
    else V5-!w0{  
        isnorm = false; b5MU$}:  
    end (gY W iz  
    xtCMK1# x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <o9i;[+H-  
    % Compute the Zernike Polynomials t ]Ln(r  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X*MK(aV3  
    M]X!D7  
    % Determine the required powers of r: B#hvw'}  
    % ----------------------------------- j=U"t\{  
    rpowers = []; 4S*ifl  
    for j = 1:length(n) ">!pos`<C  
        rpowers = [rpowers m(j):2:n(j)]; E,\)tZ;,  
    end CAx$A[f<  
    rpowers = unique(rpowers); ELV~ ayp5  
    ZD]{HxGL!  
    % Pre-compute the values of r raised to the required powers, T}z? i  
    % and compile them in a matrix: U]+IP;YS  
    % ----------------------------- E$z-|-{>  
    if rpowers(1)==0 e}-fGtFx  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (;=|2N>7  
        rpowern = cat(2,rpowern{:}); e wT K2  
        rpowern = [ones(length_r,1) rpowern]; a e-tAA[1Y  
    else 3]'ab-,Vp  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); b&@]f2 /  
        rpowern = cat(2,rpowern{:}); _t"[p_llo  
    end P<Z` 8a[  
    6:S, {@G  
    % Compute the values of the polynomials: F,)+9/S&  
    % -------------------------------------- G6{'|CV  
    z = zeros(length_r,length_n); ^w%%$9=:r  
    for j = 1:length_n UrciCOQf  
        s = 0:(n(j)-m(j))/2; PX?%}~ v  
        pows = n(j):-2:m(j); h}'Hst  
        for k = length(s):-1:1 *tT}N@<%  
            p = (1-2*mod(s(k),2))* ... UW}@oP$r  
                       prod(2:(n(j)-s(k)))/          ... $?!]?{K  
                       prod(2:s(k))/                 ... \>*.+?97  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... LH}9&FfjU  
                       prod(2:((n(j)+m(j))/2-s(k))); _vb'3~'S  
            idx = (pows(k)==rpowers); ts(u7CJd  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 2o9B >f&g  
        end m;4ti9  
         u4T$  
        if isnorm eD(5+bm  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); s* u1n+Zq  
        end yKrb GK*=_  
    end N LQ".mM+  
    (Nz`w  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  U{l f$  
    N`N=}&v ]  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 F+R1}5-3cl  
    8,+T[S  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)