非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 7.Kc:7
function z = zernfun(n,m,r,theta,nflag) 23!;}zHp
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. X2|Y
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N nH|,T%
% and angular frequency M, evaluated at positions (R,THETA) on the D*PYr{z'
% unit circle. N is a vector of positive integers (including 0), and qZv
=
% M is a vector with the same number of elements as N. Each element +rXF{@
l
% k of M must be a positive integer, with possible values M(k) = -N(k) !7bw5H
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, p d[ncL
% and THETA is a vector of angles. R and THETA must have the same V'Kgdj
% length. The output Z is a matrix with one column for every (N,M) )D&M2CUw"f
% pair, and one row for every (R,THETA) pair. AK!hK>u`
% =sJ
_yq0#R
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike x%+{VStA
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), epHJ@ W@#
% with delta(m,0) the Kronecker delta, is chosen so that the integral j@gMbiu
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, "syh=BC
v
% and theta=0 to theta=2*pi) is unity. For the non-normalized g7V8D
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?>c=}I#Ui-
% F>je4S;
% The Zernike functions are an orthogonal basis on the unit circle. tR0pH8?e"
% They are used in disciplines such as astronomy, optics, and H5CR'Rp
% optometry to describe functions on a circular domain. dy__e ^qi
% _@mRb^
% The following table lists the first 15 Zernike functions. )tHaB,
% J7D}%
% n m Zernike function Normalization cJo\#cr
% -------------------------------------------------- OO dSKf8
% 0 0 1 1 >_dx_<75&
% 1 1 r * cos(theta) 2 ?3ig)J,e[
% 1 -1 r * sin(theta) 2 E/&Rb*3
% 2 -2 r^2 * cos(2*theta) sqrt(6) 9E2j!
% 2 0 (2*r^2 - 1) sqrt(3) >(w2GD?
% 2 2 r^2 * sin(2*theta) sqrt(6) 4/ kv3rv
% 3 -3 r^3 * cos(3*theta) sqrt(8) ?bZovRx
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) p(;U@3G
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) {rfF'@[
% 3 3 r^3 * sin(3*theta) sqrt(8) 2kAx>R
% 4 -4 r^4 * cos(4*theta) sqrt(10) YJg,B\z}
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) GZS1zTwBL
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) h&.wo !
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &AVpLf:?
% 4 4 r^4 * sin(4*theta) sqrt(10) X"gCRn%tn
% -------------------------------------------------- /+*#pDx/zW
% Z/x*Y#0@n
% Example 1: " 96yp4v@
% W?yd#j
% % Display the Zernike function Z(n=5,m=1) ^-mRP\5
% x = -1:0.01:1; ah
@uUHB
% [X,Y] = meshgrid(x,x); a?|vQ*W
% [theta,r] = cart2pol(X,Y);
~>O)
% idx = r<=1; UJ-?k&j,
% z = nan(size(X)); WW+l' 6.
% z(idx) = zernfun(5,1,r(idx),theta(idx)); nJ4@I7Sk;
% figure 5D M"0
% pcolor(x,x,z), shading interp T=hh oGn
% axis square, colorbar 7Dnp'*H
% title('Zernike function Z_5^1(r,\theta)') &l$Q^g
% |qZko[W}=
% Example 2: }$MN|s
% +3s%E{
% % Display the first 10 Zernike functions M8H5K
% x = -1:0.01:1; JN^&S
% [X,Y] = meshgrid(x,x); j!7`]
% [theta,r] = cart2pol(X,Y); PH"hn]
% idx = r<=1; (feTk72XX
% z = nan(size(X)); &g2 Eptx#
% n = [0 1 1 2 2 2 3 3 3 3];
!fBF|*/
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; p!]6ll^
% Nplot = [4 10 12 16 18 20 22 24 26 28]; hcVJBK
% y = zernfun(n,m,r(idx),theta(idx)); i)#:qAtP*
% figure('Units','normalized') $^u}a
% for k = 1:10 ,q(&)L$S
% z(idx) = y(:,k); ycFio ,
% subplot(4,7,Nplot(k)) V8eB$in
% pcolor(x,x,z), shading interp ^pM+A6
XY
% set(gca,'XTick',[],'YTick',[]) 988]}{w
% axis square Oj<S.fi
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) zlR?,h-[3
% end VG/3xR&y
% AiD[SR
% See also ZERNPOL, ZERNFUN2. BpX6aAx
%| G"-%_E
% Paul Fricker 11/13/2006 \{Q?^E
Y#!h9F
XqM3<~$
% Check and prepare the inputs: 2pdvWWh3l
% ----------------------------- u?sVcD[
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) olLfko4$*V
error('zernfun:NMvectors','N and M must be vectors.') XZw6Xtn
end Y>jiXl?&
JG{j)O|L
if length(n)~=length(m) L
8{\r$
error('zernfun:NMlength','N and M must be the same length.') eY{+~|KZ
end 7JSNYTH
.9O$G2'oh
n = n(:); EUsI%p
m = m(:); D&HV6#
if any(mod(n-m,2)) '+j} >Q
error('zernfun:NMmultiplesof2', ... nQ|r"|g
'All N and M must differ by multiples of 2 (including 0).') vkLC-Mzm<
end gm9mg*aM
!n6wWl
if any(m>n) 5U_H>oD
error('zernfun:MlessthanN', ... h*u`X>!!
'Each M must be less than or equal to its corresponding N.') pm{|?R
end \M'-O YH_[
64:fs?H
if any( r>1 | r<0 ) /%lZu^
error('zernfun:Rlessthan1','All R must be between 0 and 1.') fib}b?vk
end qY 4#V k
dg4vc][
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) OT'[:|x ;
error('zernfun:RTHvector','R and THETA must be vectors.') };'\~g,1
end vM_:&j_?``
tpuYiL
r = r(:); ioPUUUb)
theta = theta(:); !bV5Sr^
length_r = length(r); h$L"8#
if length_r~=length(theta) #p[',$cC
error('zernfun:RTHlength', ... y\{%\ $
'The number of R- and THETA-values must be equal.') NH_<q"gT
end {nU=%w"\
eW|^tH
% Check normalization: %kgkXc~6|x
% -------------------- [@4rjGwB
if nargin==5 && ischar(nflag) NWxUn.Gy9
isnorm = strcmpi(nflag,'norm'); Le%ZV%,
if ~isnorm pKi& [
error('zernfun:normalization','Unrecognized normalization flag.') y!]CJigpZ
end ,]b~t0|B
else }jill+]
isnorm = false; WOh|U4vt
end &HSq(te
)Wb0u0)_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %u;~kP|S%
% Compute the Zernike Polynomials ,]T2$?|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XV^1tX>f{
SM@QUAXO
% Determine the required powers of r: tnLAJ+-M
% ----------------------------------- ^wS5>lf7p
m_abs = abs(m); "--t e
rpowers = []; /> 4"~q)
for j = 1:length(n) 0@AAulRl
rpowers = [rpowers m_abs(j):2:n(j)]; "W(Q%1!Wi
end |g*XK6
rpowers = unique(rpowers); H*9~yT'Q
qoAj]
")
% Pre-compute the values of r raised to the required powers, '}Ri`
% and compile them in a matrix: I"KN"v^
% ----------------------------- \}]!)}G
if rpowers(1)==0 K(q-?n`<
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <I"S#M7-s
rpowern = cat(2,rpowern{:}); FN[{s
rpowern = [ones(length_r,1) rpowern]; 1IVuSp`{FU
else |<O9Sb_
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2YDM9`5xs\
rpowern = cat(2,rpowern{:}); a5w:u5
end )Y)pmjZaG
tr7<]Hm:
% Compute the values of the polynomials: $HJwb-I
% -------------------------------------- gJM`[x`T
y = zeros(length_r,length(n)); QD%L0;j
for j = 1:length(n) ]7e =fM9V;
s = 0:(n(j)-m_abs(j))/2; uIZWO.OdU
pows = n(j):-2:m_abs(j); q/n,,!
for k = length(s):-1:1 \_B[{e7z
p = (1-2*mod(s(k),2))* ... K#"O
a
h
prod(2:(n(j)-s(k)))/ ... 5<w g8y
prod(2:s(k))/ ... )&!&AlLn
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... :^(>YAyHj^
prod(2:((n(j)+m_abs(j))/2-s(k))); p QizJ6
idx = (pows(k)==rpowers); >KJ+-QuO&
y(:,j) = y(:,j) + p*rpowern(:,idx); yiO.z
end ){UcS/GI=
RSo&