切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10900阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 b <z)4  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 6%a:^f]  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 k}] M`ad  
    function z = zernfun(n,m,r,theta,nflag) ha?M[Vyw4Q  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Xp[xO0  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [`kk<$=,&  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ] @:x<>  
    %   unit circle.  N is a vector of positive integers (including 0), and ckYT69U  
    %   M is a vector with the same number of elements as N.  Each element K%ptRj$  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) )&j@={0  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, }<^QW't_Y  
    %   and THETA is a vector of angles.  R and THETA must have the same _tRRIW"Vx"  
    %   length.  The output Z is a matrix with one column for every (N,M) ly#jl5wmT  
    %   pair, and one row for every (R,THETA) pair. =&F~GC Z>  
    % Y@Ur}  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .(99f#2M:  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),  ]0XlI;ah  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral :gn&wi  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #$ 4g&8  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 3EHB~rL/C  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. '+\t,>nRkl  
    % F*T$n"^  
    %   The Zernike functions are an orthogonal basis on the unit circle. _2TL>1KZt  
    %   They are used in disciplines such as astronomy, optics, and erh ez  
    %   optometry to describe functions on a circular domain. wC?$P  
    % qrf90F)  
    %   The following table lists the first 15 Zernike functions. x\oSD1t,  
    % zpjE_|  
    %       n    m    Zernike function           Normalization ?a-5^{{  
    %       -------------------------------------------------- nH<#MG BS  
    %       0    0    1                                 1 6{quO# !  
    %       1    1    r * cos(theta)                    2 d( yTz&u)  
    %       1   -1    r * sin(theta)                    2 GvZ[3GT  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Zo,066'+[.  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "W~vSbn7  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) f] _'icP  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) k{H7+;_  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 1|m%xX,[  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) JT&RaFX  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) L5'?.9]  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) p|?FA@ 3  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s (K SN/  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ^HxIy;EQ<z  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) CXi[$nF3  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) !hFhw1  
    %       -------------------------------------------------- q[GD K^-g  
    % T.jCF~%7F  
    %   Example 1: Nv^b yWqu  
    % je5[.VTM  
    %       % Display the Zernike function Z(n=5,m=1) Mi;Pv*  
    %       x = -1:0.01:1; PW82 Vp.  
    %       [X,Y] = meshgrid(x,x); A'.=SA2.Y  
    %       [theta,r] = cart2pol(X,Y); zez|l  
    %       idx = r<=1; ujzfy  
    %       z = nan(size(X)); a|jZg  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); D*j^f7ab  
    %       figure p{}4#+-<#H  
    %       pcolor(x,x,z), shading interp oEX^U4/=  
    %       axis square, colorbar (k8}9[3G  
    %       title('Zernike function Z_5^1(r,\theta)') px*1 3"  
    % ,ga6   
    %   Example 2: i4]oE&G  
    % g+5c"Yk+u~  
    %       % Display the first 10 Zernike functions ({Pjz;xM  
    %       x = -1:0.01:1; y/5GY,z%aL  
    %       [X,Y] = meshgrid(x,x); s<rV1D  
    %       [theta,r] = cart2pol(X,Y); TkJ[N4'0  
    %       idx = r<=1; #?V rt,n  
    %       z = nan(size(X)); [h8s0  
    %       n = [0  1  1  2  2  2  3  3  3  3]; `<7!Rh,tS^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; v+I-*,R  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; =~k c7f{  
    %       y = zernfun(n,m,r(idx),theta(idx)); ""Da 2Md  
    %       figure('Units','normalized') 6T4I,XrY_F  
    %       for k = 1:10 ~USt&?  
    %           z(idx) = y(:,k); Zazff@O *  
    %           subplot(4,7,Nplot(k)) loO"[8i.k  
    %           pcolor(x,x,z), shading interp Bp3E)l  
    %           set(gca,'XTick',[],'YTick',[]) &!OEd ]  
    %           axis square cPD_=.&  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) JhfVm*,  
    %       end yu)^s!UY;  
    % GB35ouE  
    %   See also ZERNPOL, ZERNFUN2. 4l+!Z,b  
    .] sJl  
    %   Paul Fricker 11/13/2006 76wNZv) 9  
    7 @ )  
    3+15 yEeA  
    % Check and prepare the inputs: |K"Q>V2y  
    % ----------------------------- =E5bM_P<K  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ]"lB!O~  
        error('zernfun:NMvectors','N and M must be vectors.') u '7h(1@  
    end y TD4![  
    r!+{In+Z  
    if length(n)~=length(m) T*f/M  
        error('zernfun:NMlength','N and M must be the same length.') bh<;px-  
    end \ l#eW x  
    X!p`|i  
    n = n(:); PO`p.("h  
    m = m(:); aPVzOBp  
    if any(mod(n-m,2)) ~/]]H;;^u  
        error('zernfun:NMmultiplesof2', ... o`,~#P|  
              'All N and M must differ by multiples of 2 (including 0).') 0z8?6~M;<  
    end =9X1+x  
    lI 4tW=  
    if any(m>n) 8HQ.MXKP  
        error('zernfun:MlessthanN', ... d51'[?(  
              'Each M must be less than or equal to its corresponding N.') & cSVOsi  
    end ?9kC[4G  
    3o%vV*  
    if any( r>1 | r<0 ) {d'-1z"q  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') N+=|WeZ  
    end ,|{`(y/v  
    E4L?4>V@\  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) b,E?{uG  
        error('zernfun:RTHvector','R and THETA must be vectors.') RZzHlZ  
    end du66a+@t  
    N-\N\uN  
    r = r(:); z* EV>Y[  
    theta = theta(:); s*ZE`/SM3  
    length_r = length(r); 4b`E/L}2  
    if length_r~=length(theta) #*'Qm  A  
        error('zernfun:RTHlength', ... T&?g)  
              'The number of R- and THETA-values must be equal.') 4,e'B-.  
    end (-21h0N[V  
    (?fU l$q\  
    % Check normalization: Y%.o TB&  
    % -------------------- ,Uz8_r  
    if nargin==5 && ischar(nflag) ~v+kO~  
        isnorm = strcmpi(nflag,'norm'); H OR8Jwf:  
        if ~isnorm a%T`c/C  
            error('zernfun:normalization','Unrecognized normalization flag.') u4C9ZYN  
        end mb1mlsE  
    else q(?+01  
        isnorm = false; q 84*5-  
    end 1f`De`zXzr  
    :V(LBH0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5#,H&ui\  
    % Compute the Zernike Polynomials qq/>E*~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QB*,+u4  
    !6KX^j-  
    % Determine the required powers of r: /MGapmqV9  
    % ----------------------------------- {^WK#$]  
    m_abs = abs(m); c ZYy+  
    rpowers = []; &-3 e3)  
    for j = 1:length(n) Xp:A;i9  
        rpowers = [rpowers m_abs(j):2:n(j)]; )G/bP!^+(  
    end &h-_|N  
    rpowers = unique(rpowers); BNfj0e5b  
    m,k 0 h%  
    % Pre-compute the values of r raised to the required powers, T/_u;My;  
    % and compile them in a matrix: ppyy0E^M  
    % ----------------------------- 42NfD/"g+s  
    if rpowers(1)==0  }QFL  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); u?=mh`  
        rpowern = cat(2,rpowern{:}); 'J,UKK\5  
        rpowern = [ones(length_r,1) rpowern]; L4>14D\  
    else o,*m,Qc  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); q Gk.7wf%  
        rpowern = cat(2,rpowern{:}); ZnEgU}g<2  
    end uNN/o}Qx  
    JQV%W +-@  
    % Compute the values of the polynomials:  g\q .  
    % -------------------------------------- |_;kQ(,  
    y = zeros(length_r,length(n)); _:r8UVAT.  
    for j = 1:length(n) UP-eKK'z  
        s = 0:(n(j)-m_abs(j))/2; p&(0e,`z/  
        pows = n(j):-2:m_abs(j); /Q1 b%C  
        for k = length(s):-1:1 'Z{`P0/^o`  
            p = (1-2*mod(s(k),2))* ... M|(VM=~  
                       prod(2:(n(j)-s(k)))/              ... y%TqH\RKv  
                       prod(2:s(k))/                     ... C4mkt2Eb0a  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... C-YYG   
                       prod(2:((n(j)+m_abs(j))/2-s(k))); h/Mt<5  
            idx = (pows(k)==rpowers); JtFq/&{i  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 9q`Ewj R  
        end . >"xp6  
         $--8%gh dG  
        if isnorm +(+lbCW/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); u$\.aWol  
        end 1=5"j]0hY  
    end 8W&1"h`  
    % END: Compute the Zernike Polynomials mdc?~??8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F5*-HR  
    n!4}Hwz!  
    % Compute the Zernike functions: o?a2wY^_  
    % ------------------------------ 3r~8:F"g  
    idx_pos = m>0; 8-;.Ejz!\A  
    idx_neg = m<0; x6/u+Urn  
    $bE" 3/uf  
    z = y; .x=abA$!9  
    if any(idx_pos) f7&ni#^Ztj  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4@{;z4*`  
    end {]IY; cL  
    if any(idx_neg) mS%4  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); AROHe  
    end 4Wl`hF  
    B&MDn']fV/  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ?8753{wk  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. W%rUa&00  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated E?]$Y[KJKs  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive e/4C` J-  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, FO>?>tK 0  
    %   and THETA is a vector of angles.  R and THETA must have the same @kSfF[4H  
    %   length.  The output Z is a matrix with one column for every P-value, P,8TO-e7  
    %   and one row for every (R,THETA) pair. zW`Hqt;  
    % |K. I%B  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ~vYFQKrb  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ` 0 @m,  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Lum=5zDo  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 p4uzw  
    %   for all p. @Ov}X]ELi  
    % c6b51)sQ"  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ~JRq :  
    %   Zernike functions (order N<=7).  In some disciplines it is CL7_3^2qI  
    %   traditional to label the first 36 functions using a single mode /Igz[P^\9  
    %   number P instead of separate numbers for the order N and azimuthal ?jmL4V2-f  
    %   frequency M. 2a-]TVL3  
    % 0=+feB1T  
    %   Example: eJf]"-  
    %  qbc=kP  
    %       % Display the first 16 Zernike functions U^}7DJ  
    %       x = -1:0.01:1; l>|scs;TI  
    %       [X,Y] = meshgrid(x,x); zSA"f_e  
    %       [theta,r] = cart2pol(X,Y);  3B]E2  
    %       idx = r<=1; ByE@4+9  
    %       p = 0:15; ,OrrGwp&  
    %       z = nan(size(X)); ?yG[VW  
    %       y = zernfun2(p,r(idx),theta(idx)); #bcZ:D@FC  
    %       figure('Units','normalized') WXo bh  
    %       for k = 1:length(p) sw9ri}oc  
    %           z(idx) = y(:,k); 3Z~_6P^ +N  
    %           subplot(4,4,k) n3? msY(*  
    %           pcolor(x,x,z), shading interp B W)@.!C  
    %           set(gca,'XTick',[],'YTick',[]) 1Y"9<ry  
    %           axis square uNEl]Q]<e]  
    %           title(['Z_{' num2str(p(k)) '}']) SWtqp(h]'  
    %       end <0Y<9+g!  
    % sMLXn]m  
    %   See also ZERNPOL, ZERNFUN. vMY!Z1.*  
    jp "Q[gR##  
    %   Paul Fricker 11/13/2006 7`7M4  
    XlXt,  
     Mp js  
    % Check and prepare the inputs: bp" @ p:  
    % ----------------------------- %INkuNa8\  
    if min(size(p))~=1 e)s l  
        error('zernfun2:Pvector','Input P must be vector.') -~RGjx  
    end K#6@sas  
    EajJv>X7  
    if any(p)>35 | oOAy  
        error('zernfun2:P36', ... Q e/XEW  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... $U/lm;{%  
               '(P = 0 to 35).']) 7m%12=Im5  
    end w)&4i$Lk6  
    Z0M,YSnz  
    % Get the order and frequency corresonding to the function number: P B-x_D  
    % ---------------------------------------------------------------- CL`+\ .  
    p = p(:); v2r|) c,h  
    n = ceil((-3+sqrt(9+8*p))/2); 48S NI  
    m = 2*p - n.*(n+2); o[RwK  
    PZ#up{[o  
    % Pass the inputs to the function ZERNFUN: _PGd\>Ve  
    % ---------------------------------------- UlNiH  
    switch nargin J8@.qC'!  
        case 3 [zq2h3r  
            z = zernfun(n,m,r,theta); = [: E  
        case 4 kVCWyZh4  
            z = zernfun(n,m,r,theta,nflag); _Wk*h}x  
        otherwise -ON-0L  
            error('zernfun2:nargin','Incorrect number of inputs.') FSz<R*2  
    end QrFKjmD<  
    R'vNJDFY  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) z`$c4p6G6  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. qQ3pe:n?  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Qv'x+GVW]  
    %   order N and frequency M, evaluated at R.  N is a vector of 8D@Jd  
    %   positive integers (including 0), and M is a vector with the JC9$"0d7  
    %   same number of elements as N.  Each element k of M must be a  ~H   
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) VpB)5>  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is K1R?Qt,qDF  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 79}jK"Gc  
    %   with one column for every (N,M) pair, and one row for every -F*vN'  
    %   element in R. A n`*![  
    % @^ti*`  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ? * ,  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is _Yp~Oj  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ]xoG{%vgb  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 XjP;O,x  
    %   for all [n,m].  f}*:wj  
    % Ndb7>"W  
    %   The radial Zernike polynomials are the radial portion of the 5a@9PX^.J  
    %   Zernike functions, which are an orthogonal basis on the unit E^ c *x^  
    %   circle.  The series representation of the radial Zernike 9;\mq'v%  
    %   polynomials is r_,;[+!  
    % X6(s][Wn  
    %          (n-m)/2 )[M:#;,L  
    %            __ 3iX\):4  
    %    m      \       s                                          n-2s |6^%_kO!|  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r cPAR.h,b?  
    %    n      s=0 <-N2<s l  
    % u3,O)[qV  
    %   The following table shows the first 12 polynomials. lsOfpJ  
    % v[8+fd)}S  
    %       n    m    Zernike polynomial    Normalization /K1cP>oE  
    %       --------------------------------------------- 53a^9  
    %       0    0    1                        sqrt(2) q~W:W}z  
    %       1    1    r                           2 UuF(n$B  
    %       2    0    2*r^2 - 1                sqrt(6) "dDrw ]P;  
    %       2    2    r^2                      sqrt(6) ; Ad5Jk  
    %       3    1    3*r^3 - 2*r              sqrt(8) nu~]9~)I  
    %       3    3    r^3                      sqrt(8) }P{Wk7#Jq  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) N#-pl:J(  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) :{lP9%J-  
    %       4    4    r^4                      sqrt(10) \weg%a  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) v*dw'i  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ~7*2Jp'  
    %       5    5    r^5                      sqrt(12) SZ$WC8AX  
    %       --------------------------------------------- Qr7v^H~E4.  
    % ^[Ka+E^Q  
    %   Example: =8<~pr-NO  
    % ^->S7[N?  
    %       % Display three example Zernike radial polynomials %8xRT@Q  
    %       r = 0:0.01:1; woP j>M  
    %       n = [3 2 5]; ybJwFZ80  
    %       m = [1 2 1]; w7Y@wa!  
    %       z = zernpol(n,m,r); B {:a,V7  
    %       figure #qDm)zCM  
    %       plot(r,z) +Y~5197V  
    %       grid on fxr#T'i  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') qnj'*]ysBC  
    % =EA:fq  
    %   See also ZERNFUN, ZERNFUN2. qz (x  
    2ag8?#  
    % A note on the algorithm. &TA{US3~  
    % ------------------------ 6(4d3}F  
    % The radial Zernike polynomials are computed using the series Q3&q%n|<  
    % representation shown in the Help section above. For many special g; ] '  
    % functions, direct evaluation using the series representation can nM b@  B  
    % produce poor numerical results (floating point errors), because j4!O,.!T  
    % the summation often involves computing small differences between cY_ke  
    % large successive terms in the series. (In such cases, the functions p:Lmf8EI  
    % are often evaluated using alternative methods such as recurrence N8#j|yf  
    % relations: see the Legendre functions, for example). For the Zernike aVc{ aP  
    % polynomials, however, this problem does not arise, because the L*A-&9.p3  
    % polynomials are evaluated over the finite domain r = (0,1), and Z f\~Cl  
    % because the coefficients for a given polynomial are generally all *`Vmncv3  
    % of similar magnitude. A0k?$ko  
    % b7Zo~ Z  
    % ZERNPOL has been written using a vectorized implementation: multiple vI5lp5( -3  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] DmLx"%H3  
    % values can be passed as inputs) for a vector of points R.  To achieve zB`woI28  
    % this vectorization most efficiently, the algorithm in ZERNPOL uXh:/KO  
    % involves pre-determining all the powers p of R that are required to pxd=a!(  
    % compute the outputs, and then compiling the {R^p} into a single d,JDfG)  
    % matrix.  This avoids any redundant computation of the R^p, and Y-YuY  
    % minimizes the sizes of certain intermediate variables. ja';NIO-  
    % ow3.jHsLA  
    %   Paul Fricker 11/13/2006 y5m2u8+  
    fZ7AGP   
    9N}\>L)_  
    % Check and prepare the inputs: oR=i5lAU  
    % ----------------------------- RLnL9)`W  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !.$L=>:V  
        error('zernpol:NMvectors','N and M must be vectors.') 8SKrpwy  
    end 0C/ZcfFU~  
    "W(Ae="60  
    if length(n)~=length(m) S\&3t}_  
        error('zernpol:NMlength','N and M must be the same length.') !#O [RS  
    end ~:bdS 4w  
    '"\M`G  
    n = n(:); M] /aW  
    m = m(:); |9c~kTjK  
    length_n = length(n); /]xa}{^B  
    cpltTJFg  
    if any(mod(n-m,2)) "yaxHd  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Q,xL8i M,  
    end gaY&2  
    M }d:B)cz  
    if any(m<0) 71c[ `h*0{  
        error('zernpol:Mpositive','All M must be positive.') qEST[S V  
    end mSxn7LG  
    6- i.*!I 8  
    if any(m>n) CPP~,E_  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') SE]5cJ'>  
    end Jd>~gA}l  
    J @"#  
    if any( r>1 | r<0 ) lZcNio  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ;X,u   
    end &P|[YP37_  
    E s5: S#  
    if ~any(size(r)==1) xZ9:9/Vg  
        error('zernpol:Rvector','R must be a vector.') 'cXdc  
    end :/;/mHG]  
    \%=\4%:  
    r = r(:); `NsjtT'_  
    length_r = length(r); D%YgS$p[M$  
    &&X,1/  
    if nargin==4 !SQcV'  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); s3Vb2C*  
        if ~isnorm '+cI W(F?  
            error('zernpol:normalization','Unrecognized normalization flag.') {q?&h'#y  
        end ~ y!'\d>q<  
    else $>XeC}"x68  
        isnorm = false; i/ilG 3m>  
    end c~Ka) dF|  
    c[dzO .~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /9w>:i81  
    % Compute the Zernike Polynomials I9*cEZ!l=e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d!y*z  
    =^nb+}Nz(  
    % Determine the required powers of r: _8VP'S=  
    % ----------------------------------- RP&bb{Y  
    rpowers = []; `Z?wj@H1`  
    for j = 1:length(n) Cl}nP UoL  
        rpowers = [rpowers m(j):2:n(j)]; f&^(f1WO  
    end 5yy:JTAH5  
    rpowers = unique(rpowers); i<m(neX[H  
    FRBu8WW0L  
    % Pre-compute the values of r raised to the required powers, N6U d(8*  
    % and compile them in a matrix: KQdIG9O+6  
    % ----------------------------- V)`2 Kw  
    if rpowers(1)==0 L[ G O6l  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); S\e&xUA;|  
        rpowern = cat(2,rpowern{:}); Z4j6z>qE  
        rpowern = [ones(length_r,1) rpowern]; t;&XIG~  
    else SiratkP9n7  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); I &t~o  
        rpowern = cat(2,rpowern{:}); g{65QP  
    end ,fVD`RR(W?  
    11[lc2  
    % Compute the values of the polynomials: :S+K\  
    % -------------------------------------- #< im?  
    z = zeros(length_r,length_n); %BqaVOKJ"f  
    for j = 1:length_n x*Lt]]A  
        s = 0:(n(j)-m(j))/2; )h!cOEt  
        pows = n(j):-2:m(j); N@q}eGe  
        for k = length(s):-1:1 jVj5; }  
            p = (1-2*mod(s(k),2))* ... #o.e (C  
                       prod(2:(n(j)-s(k)))/          ... RLB3 -=9t  
                       prod(2:s(k))/                 ... RK>Pe3<  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... {4Of.  
                       prod(2:((n(j)+m(j))/2-s(k))); {meX2Z4  
            idx = (pows(k)==rpowers); 0B NLTRv  
            z(:,j) = z(:,j) + p*rpowern(:,idx); NO"PO @&Wk  
        end wl Oeoi  
         EdJL&*  
        if isnorm *z=_sD?1  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); l]nt@0+  
        end p*Bty@CRi  
    end ;?-AFd\i  
    XpQOl  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  \u=d`}E  
    8&QST!JGSX  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 C*`WMP*  
    :cpj{v;s  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)