非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 G}9f/$'3
function z = zernfun(n,m,r,theta,nflag) >6HGh#0(p
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6(rN(C
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "ayV8{m^3
% and angular frequency M, evaluated at positions (R,THETA) on the I<ohh`.
% unit circle. N is a vector of positive integers (including 0), and t>/x-{bH\
% M is a vector with the same number of elements as N. Each element brs`R#e \
% k of M must be a positive integer, with possible values M(k) = -N(k) b5LToy:
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 7J!s"|VS
% and THETA is a vector of angles. R and THETA must have the same 5l
3PAG
% length. The output Z is a matrix with one column for every (N,M) f?51sr
% pair, and one row for every (R,THETA) pair. [&PF ;)i
% Dzf\m>H[
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Dws)
4hH
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), RYjK4xT?Y/
% with delta(m,0) the Kronecker delta, is chosen so that the integral ]i@73h YT
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, S`U8\KTi
% and theta=0 to theta=2*pi) is unity. For the non-normalized UZ2_FP
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2Y23!hw
% 6UuN-7z!"
% The Zernike functions are an orthogonal basis on the unit circle. CV.|~K0O
% They are used in disciplines such as astronomy, optics, and xdgAu
% optometry to describe functions on a circular domain. ,>h"~X
% k#Sr; "
% The following table lists the first 15 Zernike functions. C| ~A]wc=
% .i
I{
% n m Zernike function Normalization >&KH!:OX|
% -------------------------------------------------- rZJJ\ , |
% 0 0 1 1 45sEhs[$
% 1 1 r * cos(theta) 2 $R/@8qnP
W
% 1 -1 r * sin(theta) 2 |HD>m'e
% 2 -2 r^2 * cos(2*theta) sqrt(6) 3HpqMz
% 2 0 (2*r^2 - 1) sqrt(3) hm! J@
% 2 2 r^2 * sin(2*theta) sqrt(6) c
'wRGMP
% 3 -3 r^3 * cos(3*theta) sqrt(8) Sv{n?BYq
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) )>:~XA|?
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) jRU:un4
% 3 3 r^3 * sin(3*theta) sqrt(8) 1>j,v+
% 4 -4 r^4 * cos(4*theta) sqrt(10) W~;Jsd=f
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !SW0iq[7j
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 1vj@qw3
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -je} PwT
% 4 4 r^4 * sin(4*theta) sqrt(10) XNWtX-[^@
% -------------------------------------------------- OW4j!W
% =wdh#{
% Example 1: 0BlEt1e2T
% 7,+eG">0
% % Display the Zernike function Z(n=5,m=1) W3tin3__
% x = -1:0.01:1; E5n7
<
% [X,Y] = meshgrid(x,x); kk-<+R2
% [theta,r] = cart2pol(X,Y); ;rT'~?q
% idx = r<=1; E=ijt3
% z = nan(size(X)); /B@{w-N
% z(idx) = zernfun(5,1,r(idx),theta(idx)); KHML!f=mu
% figure P);s0Y|@H
% pcolor(x,x,z), shading interp 5lG\Z?
% axis square, colorbar 0]|`*f&p;
% title('Zernike function Z_5^1(r,\theta)') YQG<Q
% :@[\(:
% Example 2: MF4(
% LUMbRrD-
% % Display the first 10 Zernike functions ?n`m
% x = -1:0.01:1; ~~OFymQ%?q
% [X,Y] = meshgrid(x,x); q5SPyfE[
% [theta,r] = cart2pol(X,Y); Kq3c Kp4
% idx = r<=1; &L+uu',M0c
% z = nan(size(X)); u]IbTJ'
% n = [0 1 1 2 2 2 3 3 3 3]; 8@m$(I+
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 5
3%>)gk:
% Nplot = [4 10 12 16 18 20 22 24 26 28]; kL*P 3
0
% y = zernfun(n,m,r(idx),theta(idx)); .d1ff];
% figure('Units','normalized') u[b |QR=5
% for k = 1:10 sE% $]Jp
% z(idx) = y(:,k); RhE~-b[X
% subplot(4,7,Nplot(k)) :snO*Zg
% pcolor(x,x,z), shading interp (SBhU:^h
% set(gca,'XTick',[],'YTick',[]) nnv|GnQST
% axis square &W@2n&U.q
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) QM0B6F
% end d&j
% ,0W^"f.g{m
% See also ZERNPOL, ZERNFUN2. ^<CVQ8R7
7Bp7d/R-
% Paul Fricker 11/13/2006 'E_~|C
1D*=ZkA)
LORcf 1X/
% Check and prepare the inputs: Z10Vx2B
% ----------------------------- 8z#Qp(he
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) z%wh|q
error('zernfun:NMvectors','N and M must be vectors.') 4nsJZo#S/
end ~5N}P>4*
nqyD>>
if length(n)~=length(m) 'o-4'
error('zernfun:NMlength','N and M must be the same length.') 7)lEZJK&T
end j]BRf A
5?7AzJl>
n = n(:); =u<:'\_
m = m(:); nq M7Is
if any(mod(n-m,2)) ==dKC;
error('zernfun:NMmultiplesof2', ... FH~:&;
'All N and M must differ by multiples of 2 (including 0).') {~U3|_"[pX
end bF"l0
jS
yaj dRU
if any(m>n) `L'g<VK;
error('zernfun:MlessthanN', ... 3_
'Each M must be less than or equal to its corresponding N.') -'&/7e6>y
end )'djqpM.
vY4sU@+V
if any( r>1 | r<0 ) npdljLN
error('zernfun:Rlessthan1','All R must be between 0 and 1.') sK}AS;:
end Qm%PpQ^Lz3
!zA@{gvEc
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Hb)FeGsd).
error('zernfun:RTHvector','R and THETA must be vectors.') %fj5;}E.
end %2\Hj0JQQ
2d&F<J<sU
r = r(:); C~ 1]
theta = theta(:); cM#rus?)+
length_r = length(r); b:dN )m
if length_r~=length(theta) p#@ #$u-
error('zernfun:RTHlength', ... 9kL,69d2
'The number of R- and THETA-values must be equal.') FZHA19Kb
end JVc{vSa!rm
#EPC]jFk
% Check normalization: zPby+BP
% -------------------- @aIgif+v
if nargin==5 && ischar(nflag) R/vHq36d
isnorm = strcmpi(nflag,'norm'); nKx)R^]k
if ~isnorm +,76|oMsQ%
error('zernfun:normalization','Unrecognized normalization flag.') }%|ewy9|CW
end GcBqe=/B!
else s4|\cY`b-
isnorm = false; l=~!'1@L}
end '75T2Ud
WK{`_c
U^
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^tB1Nu%
% Compute the Zernike Polynomials T c WCr
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $V~@w.-Z#
EQ1**[$
% Determine the required powers of r: >e;-$$e
% ----------------------------------- +?_!8N8
m_abs = abs(m); G@8)3 @
rpowers = []; #HUn~r
for j = 1:length(n) 5ya9VZ5#
rpowers = [rpowers m_abs(j):2:n(j)]; vSgT36ZF
end ?
#K|l*
rpowers = unique(rpowers); /v{+V/'+
/_C2O"h
% Pre-compute the values of r raised to the required powers, P'W} ]mCD
% and compile them in a matrix: 4V+bE$Wu
% ----------------------------- \[MAa:/
if rpowers(1)==0 M(-)\~9T
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =xI;D,@S
rpowern = cat(2,rpowern{:}); ;ArwEzo(
rpowern = [ones(length_r,1) rpowern]; !_Lmrs
else RZa/la*
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1Viz`y)^
rpowern = cat(2,rpowern{:}); ~ ld.I4
end qmrT dG
SDnl^a
% Compute the values of the polynomials: @^,q/%;
% -------------------------------------- LF dvz0
y = zeros(length_r,length(n)); AxEyXT( h5
for j = 1:length(n) 5zl+M`
s = 0:(n(j)-m_abs(j))/2; 8!_jZ f8
pows = n(j):-2:m_abs(j); T+Oqd\05.+
for k = length(s):-1:1 ,-UF5U
p = (1-2*mod(s(k),2))* ... vW+6_41ZM
prod(2:(n(j)-s(k)))/ ... Z\!,f.>g
prod(2:s(k))/ ... g3^s_*A
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ,.,8-In^
prod(2:((n(j)+m_abs(j))/2-s(k))); j\y;~
V
idx = (pows(k)==rpowers); =ZgueUz,
y(:,j) = y(:,j) + p*rpowern(:,idx); pBsb>wvej
end 3?93Pj3oPt
!<[+u
if isnorm 'Y?-."eKh
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); RY-iFydPc
end jv)+qmqo!
end 9CDei~
% END: Compute the Zernike Polynomials ipSMmpB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `4"8@>D
T4eJ:u* ;
% Compute the Zernike functions: 'xW=qboOp
% ------------------------------ u6|C3,!z"
idx_pos = m>0; ;n&95t1$
idx_neg = m<0; xT*'p&ap
J
En jc/
z = y; ]N>ZOV,>
if any(idx_pos) Y=S0|!u
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); IwyA4Ak Ru
end ]*0zir/
if any(idx_neg) QkrQM&Im
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); v+ $3
end Q):#6|u+
?ANWI8'_j
% EOF zernfun