切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11556阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 #Py\'  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! a";xG,U  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 YTo^Q&  
    function z = zernfun(n,m,r,theta,nflag) Z d]2>h  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Qx%]u8s  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N r" )zR,  
    %   and angular frequency M, evaluated at positions (R,THETA) on the sxBRg=  
    %   unit circle.  N is a vector of positive integers (including 0), and xgQ]#{ tG  
    %   M is a vector with the same number of elements as N.  Each element sJ(q.FRM'  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) .wv!;  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, i <%  
    %   and THETA is a vector of angles.  R and THETA must have the same }^/;8cfLY  
    %   length.  The output Z is a matrix with one column for every (N,M) qf qp}g\  
    %   pair, and one row for every (R,THETA) pair. QW_QizR>|  
    % H@R2mw  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike B,dHhwO*l  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %=O$@.%Zc  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral U~Ai'1?xz  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, c6NCy s  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized *;I F^u1  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. WP-'gC6K=  
    % }:5>1FfX=  
    %   The Zernike functions are an orthogonal basis on the unit circle. }hjJt,m  
    %   They are used in disciplines such as astronomy, optics, and Q, !b  
    %   optometry to describe functions on a circular domain. Gr a(DGX  
    % 3M&IMf,/@  
    %   The following table lists the first 15 Zernike functions. LpJ_HU7@lk  
    % ,B<Tt|'  
    %       n    m    Zernike function           Normalization c*"TmDY  
    %       -------------------------------------------------- J&IFn/JK$  
    %       0    0    1                                 1 D|Tv`47ntu  
    %       1    1    r * cos(theta)                    2 cKj6tT"=O  
    %       1   -1    r * sin(theta)                    2 fWBI}~e  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) A -dL_3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) (n~ e2tZ/  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ZoiCdXvTN  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) m )2t<  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) = +uUWJ&1G  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) K)!?np{km  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) q&-A}]  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) z Dk^^'  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8;YN`S!o  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) w C0fPPeA  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F;IG@ &  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) TZ7{cekQ  
    %       -------------------------------------------------- 8'2lc  
    % ~!,Q<?  
    %   Example 1: #6tb{ws3  
    % ~la=rh3  
    %       % Display the Zernike function Z(n=5,m=1) E&/D%}Wl  
    %       x = -1:0.01:1; 3d{v5. C#X  
    %       [X,Y] = meshgrid(x,x); gJy Ft8Z<  
    %       [theta,r] = cart2pol(X,Y); w:z@!<  
    %       idx = r<=1; 35;)O -  
    %       z = nan(size(X)); =9 TAs? =  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); #@m*yJg<  
    %       figure at/v.U |F  
    %       pcolor(x,x,z), shading interp %rQ5 <U  
    %       axis square, colorbar PUUBn"U-  
    %       title('Zernike function Z_5^1(r,\theta)') ;n*N9-|.  
    % AUnRr+o  
    %   Example 2: *XmOWV2Y_  
    % ({cgak  
    %       % Display the first 10 Zernike functions 3mIX9&/  
    %       x = -1:0.01:1; TA}z3!-y*  
    %       [X,Y] = meshgrid(x,x); N.q4Ar[x#p  
    %       [theta,r] = cart2pol(X,Y); N[j7^q7Xt  
    %       idx = r<=1; ]u_^~  
    %       z = nan(size(X)); b&g9A{t  
    %       n = [0  1  1  2  2  2  3  3  3  3]; N b(f  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; bp6 La`+  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; %<e\s6|P:  
    %       y = zernfun(n,m,r(idx),theta(idx)); p;VqkSQ76  
    %       figure('Units','normalized') C.{*|#&GAt  
    %       for k = 1:10 t Ib?23K0  
    %           z(idx) = y(:,k); Y962rZ  
    %           subplot(4,7,Nplot(k)) =L$};ko  
    %           pcolor(x,x,z), shading interp #[*e$C  
    %           set(gca,'XTick',[],'YTick',[]) )S$!36Ni[  
    %           axis square Osb"$8im  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) P Z-|W  
    %       end t%Z_*mIfmE  
    % H{x}gBQ  
    %   See also ZERNPOL, ZERNFUN2. /|y3M/;F  
    *g5df[  
    %   Paul Fricker 11/13/2006 twx8TQ9  
    VG'oy  
    V9"Kro  
    % Check and prepare the inputs: o(~>a  
    % ----------------------------- }0uSm%,"  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) : H<u@%  
        error('zernfun:NMvectors','N and M must be vectors.') ?Z] }G  
    end J%xp1/= 2  
    O'm&S?>  
    if length(n)~=length(m) <W vuW6  
        error('zernfun:NMlength','N and M must be the same length.') Y[;Pl$  
    end qJW>Y}  
    C["^%0lj  
    n = n(:); Z>a_vC  
    m = m(:); 4(&00#Yxg2  
    if any(mod(n-m,2)) doXd6q4H  
        error('zernfun:NMmultiplesof2', ... #JZf]rtp  
              'All N and M must differ by multiples of 2 (including 0).') [*?P2.bf  
    end G`w,$:,  
    Ydmz!CEu  
    if any(m>n) x}1(okc  
        error('zernfun:MlessthanN', ... <l5{!g  
              'Each M must be less than or equal to its corresponding N.') f+s'.z%  
    end <HG~#oBRq  
    -z0,IYG }  
    if any( r>1 | r<0 ) < V"'j  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') K;-:C9@  
    end " %|CD"@  
    +:It1`A~]  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Np|i Xwl1  
        error('zernfun:RTHvector','R and THETA must be vectors.') pZGs o  
    end 8pDJz_F!{  
    3Du&KZ  
    r = r(:); nI.#A  
    theta = theta(:); r7*[k[^[^  
    length_r = length(r); g@nk0lQewj  
    if length_r~=length(theta) [fR<#1Z  
        error('zernfun:RTHlength', ... X\$|oiR  
              'The number of R- and THETA-values must be equal.') <g,k[  
    end 8.jd'yp*J  
    zv#i\8h^p  
    % Check normalization: u bP2ws  
    % -------------------- ?Dm!;Z+7  
    if nargin==5 && ischar(nflag) KfWVz*DC!  
        isnorm = strcmpi(nflag,'norm'); $F G4wA  
        if ~isnorm PpU : 4;en  
            error('zernfun:normalization','Unrecognized normalization flag.') J;"XRE[%5  
        end Z/;rM8[{&  
    else yYdXAenQ  
        isnorm = false; Ko''G5+  
    end 15U=2j*.b  
    pPh_p @3I  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?e]4HHgU]  
    % Compute the Zernike Polynomials R) @ k|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TmX~vZ  
    q.<q(r  
    % Determine the required powers of r: wqE ]o= k  
    % ----------------------------------- `p#A2Ap A  
    m_abs = abs(m); fb`VYD9[^  
    rpowers = []; kHz3_B9 [  
    for j = 1:length(n) 2E2J=Do  
        rpowers = [rpowers m_abs(j):2:n(j)]; {Fb)Z"8]  
    end (: ZOoL  
    rpowers = unique(rpowers); #wM0p:<  
    (eO0 Ic[c  
    % Pre-compute the values of r raised to the required powers, sur2Mw(M"  
    % and compile them in a matrix: %7 J  
    % ----------------------------- 3O#7OL68v  
    if rpowers(1)==0 2U|Nkm  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); mW8CqW\Q5  
        rpowern = cat(2,rpowern{:}); KD Qux  
        rpowern = [ones(length_r,1) rpowern]; %Si3t2W/  
    else tinN$o Xy  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); A%+~   
        rpowern = cat(2,rpowern{:}); \=yg@K?"AJ  
    end {b/AOR o  
    i,4JS,82I  
    % Compute the values of the polynomials: k92X)/ll'  
    % -------------------------------------- 8 (.<  
    y = zeros(length_r,length(n)); M9f*7{c  
    for j = 1:length(n) z=ppNP0  
        s = 0:(n(j)-m_abs(j))/2; u3k+Xg:  
        pows = n(j):-2:m_abs(j); },i?3dSvl  
        for k = length(s):-1:1 } doj4  
            p = (1-2*mod(s(k),2))* ... wc__g8?'  
                       prod(2:(n(j)-s(k)))/              ... _|tg#i|Om  
                       prod(2:s(k))/                     ... 7* `ldao~  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &I!2gf  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); &LL81u6=S  
            idx = (pows(k)==rpowers);  6f1;4Jfp  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ?;{A@icr  
        end @KS:d\l}U  
         Y =` 3L  
        if isnorm Vx0V6{JX  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); MQG$J!N  
        end :K8T\  
    end t 8M3VGN  
    % END: Compute the Zernike Polynomials ojIh;e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %eT/:I  
    w$B7..r  
    % Compute the Zernike functions: Y$Uvt_  
    % ------------------------------ Yhlk#>I  
    idx_pos = m>0; R [uo:.  
    idx_neg = m<0; 1^Caz-  
    P_ ZguNH  
    z = y; Vq<|DM3z<  
    if any(idx_pos) KqtI^qC8  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); MESQAsx%  
    end qx!IlO  
    if any(idx_neg) Rwy:.)7B$q  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ' GW@P  
    end Hpsg[d)!  
    TR%?U/_4;r  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 49kY]z|"w  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. { aB_t%`w  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ] 2b@mX  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 0 /H1INve  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, /aPq9B@  
    %   and THETA is a vector of angles.  R and THETA must have the same j`tUx# h  
    %   length.  The output Z is a matrix with one column for every P-value, d5],O48A  
    %   and one row for every (R,THETA) pair. {9=U6m^R2  
    % 8vP d~te  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike [%h^qJ  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) j<gnh  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) #pVk%5N  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 dm 2_Fj  
    %   for all p. RE7[bM3a  
    % uV\=EDno  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Lh,<q >t  
    %   Zernike functions (order N<=7).  In some disciplines it is P.fgt>v]  
    %   traditional to label the first 36 functions using a single mode BF@VgozW  
    %   number P instead of separate numbers for the order N and azimuthal % -SP  
    %   frequency M. VtmUK$k}I  
    % U  *I52$  
    %   Example: kO9yei  
    % ^1nf|Xj [  
    %       % Display the first 16 Zernike functions yT,UM^'  
    %       x = -1:0.01:1; 9c?izpA  
    %       [X,Y] = meshgrid(x,x); S_WY91r  
    %       [theta,r] = cart2pol(X,Y); \m\.+q]  
    %       idx = r<=1; Df4n9m}E  
    %       p = 0:15; 7u}r^+6_o  
    %       z = nan(size(X)); 6Q>w\@lF  
    %       y = zernfun2(p,r(idx),theta(idx)); J7maG|S(DF  
    %       figure('Units','normalized') 6D+k[oHZm  
    %       for k = 1:length(p) o^NQ]BdH8  
    %           z(idx) = y(:,k); 9wwvh'T&NK  
    %           subplot(4,4,k) Y{S/A*X  
    %           pcolor(x,x,z), shading interp i4-L!<bJ  
    %           set(gca,'XTick',[],'YTick',[]) N0Y!  
    %           axis square ew0 )  
    %           title(['Z_{' num2str(p(k)) '}']) vTP_vsdeG  
    %       end \:#b9t{B-  
    % h?O-13v   
    %   See also ZERNPOL, ZERNFUN. < 37vWK1+  
    H _2hr[  
    %   Paul Fricker 11/13/2006 Gm%[@7-  
    ht-6_]+ME  
    -y AIrvO1q  
    % Check and prepare the inputs: Ue\&  
    % ----------------------------- 7oWv'  
    if min(size(p))~=1 C/w;g3  
        error('zernfun2:Pvector','Input P must be vector.') /bb4nM_E/  
    end LRI_s>7  
    ML]?`qv '  
    if any(p)>35 0O:TKgb&C.  
        error('zernfun2:P36', ... b9vKux  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... xv ja  
               '(P = 0 to 35).']) |~/{lE=I  
    end  {jl4`  
    Vy?w,E0^:  
    % Get the order and frequency corresonding to the function number: MaEh8*  
    % ---------------------------------------------------------------- jgYiuM3c\  
    p = p(:); 5_O.p3$tV  
    n = ceil((-3+sqrt(9+8*p))/2); AsLAm#zq  
    m = 2*p - n.*(n+2); 'X?`+2wK   
    4VooU [Ka(  
    % Pass the inputs to the function ZERNFUN: qd.b&i  
    % ---------------------------------------- `rcjZ^n  
    switch nargin r9%W?fEBp  
        case 3 [DE8s[i-  
            z = zernfun(n,m,r,theta); 6xOR,p>E  
        case 4 Y'Af I^K  
            z = zernfun(n,m,r,theta,nflag); #8RQ7|7b|  
        otherwise UxW>hbzr&V  
            error('zernfun2:nargin','Incorrect number of inputs.') dYsqF 3f  
    end m ;KP  
    `b2 I)xC#  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) }C'z$i( y  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. h{! @^Q  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of gC3{:MC-G  
    %   order N and frequency M, evaluated at R.  N is a vector of YcGqT2oLP  
    %   positive integers (including 0), and M is a vector with the XJlun l)(K  
    %   same number of elements as N.  Each element k of M must be a %'>. R  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ?;*mSQA`J  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 55;xAsG  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix $v^F>*I1  
    %   with one column for every (N,M) pair, and one row for every ,4\vi|  
    %   element in R. |%tR#!&[:g  
    % v-l):TL+=  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Y,8M[UIK  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is F|PYDC  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to FCI T+ 8K  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 >GjaA1,  
    %   for all [n,m]. Y3-P*  
    % 7Ua Ll  
    %   The radial Zernike polynomials are the radial portion of the Pc$<Cv|vz  
    %   Zernike functions, which are an orthogonal basis on the unit `$i`i'S  
    %   circle.  The series representation of the radial Zernike fer'2(G?W  
    %   polynomials is 9LFg":  
    % J#D!J8KP7  
    %          (n-m)/2 L*5&hPU  
    %            __ tf/ f-S  
    %    m      \       s                                          n-2s nc31X  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r H7{ 6t(0j  
    %    n      s=0 auO^v;s  
    % QQ?` 1W  
    %   The following table shows the first 12 polynomials. s=6w-'; V  
    % >2wjV"W?  
    %       n    m    Zernike polynomial    Normalization # v v k7  
    %       --------------------------------------------- xLGAP-mx]  
    %       0    0    1                        sqrt(2) ZSbD4 |_  
    %       1    1    r                           2 2L,e\]2Z  
    %       2    0    2*r^2 - 1                sqrt(6) #fFEo)YG  
    %       2    2    r^2                      sqrt(6) +/Z:L$C6  
    %       3    1    3*r^3 - 2*r              sqrt(8) O@ "6)/  
    %       3    3    r^3                      sqrt(8) ?W#! S  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10)  b'ew Od=  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) eLt6Hg)s`9  
    %       4    4    r^4                      sqrt(10) MVTU$ 65  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) *mBEF"  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) <:ZN  
    %       5    5    r^5                      sqrt(12) VE GUhI/d  
    %       --------------------------------------------- r67 3+  
    % ;%%=G;b9  
    %   Example: 5%W3&F6 %  
    % \V&ly/\ )  
    %       % Display three example Zernike radial polynomials ;hKn$' '  
    %       r = 0:0.01:1; e0hT  
    %       n = [3 2 5]; ;`xu)08a  
    %       m = [1 2 1]; lh5k@\X  
    %       z = zernpol(n,m,r); lI D5mg3 1  
    %       figure ` "9Y.KU  
    %       plot(r,z) !,1~:*:  
    %       grid on B[Tw0rQ  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') XL"e<P;t  
    % *D\nsJ*g  
    %   See also ZERNFUN, ZERNFUN2. =|jOio=s:  
    c s hZR(b  
    % A note on the algorithm. )kd PAw  
    % ------------------------ H!xBFiOH$n  
    % The radial Zernike polynomials are computed using the series &QE* V  
    % representation shown in the Help section above. For many special %fxGdzu7.  
    % functions, direct evaluation using the series representation can #7g~U m%p  
    % produce poor numerical results (floating point errors), because 0 ">#h  
    % the summation often involves computing small differences between k|BEAdQ%M  
    % large successive terms in the series. (In such cases, the functions ^beW*O!  
    % are often evaluated using alternative methods such as recurrence |_ ;-~bmb  
    % relations: see the Legendre functions, for example). For the Zernike )\s:.<?EQ  
    % polynomials, however, this problem does not arise, because the ]{;K|rCR-  
    % polynomials are evaluated over the finite domain r = (0,1), and y[}BFUy  
    % because the coefficients for a given polynomial are generally all {UwJg  
    % of similar magnitude. H{+U; 6b  
    % mWigy` V^~  
    % ZERNPOL has been written using a vectorized implementation: multiple .*y{[."!  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] n ,H;PB  
    % values can be passed as inputs) for a vector of points R.  To achieve 'QkL%z0  
    % this vectorization most efficiently, the algorithm in ZERNPOL x-q er-  
    % involves pre-determining all the powers p of R that are required to m6JIq}CMb  
    % compute the outputs, and then compiling the {R^p} into a single 45_zO#  
    % matrix.  This avoids any redundant computation of the R^p, and !Dun<\  
    % minimizes the sizes of certain intermediate variables. 0tl  
    % yyZjMnuD  
    %   Paul Fricker 11/13/2006 NW~n+uk5v  
    8IVKS>  
    / P{f#rV5  
    % Check and prepare the inputs: )ll}hGS  
    % ----------------------------- @jjp\~  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6C   
        error('zernpol:NMvectors','N and M must be vectors.') n2T vPt\  
    end fEM8/bhq  
    tFb49zbk  
    if length(n)~=length(m) *WOA",gZ  
        error('zernpol:NMlength','N and M must be the same length.') V&qXsyg  
    end lM?P8#3  
    u(d>R5}'  
    n = n(:); ;B tRDKn  
    m = m(:); gBrIqM i5  
    length_n = length(n); %Uuhi&PA-l  
    jd~r~.y  
    if any(mod(n-m,2)) w8>p[F5`O  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') .'SM|r$  
    end & 8e~<  
    :e gSW2"5S  
    if any(m<0) a-O9[?G/x  
        error('zernpol:Mpositive','All M must be positive.') TCB<fS~U-  
    end 0WQ0-~wx  
    5vY1 XZt{  
    if any(m>n) fv)-o&Q#  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') l&E-H@Pe  
    end /X8b=:h  
    o%CBSm]  
    if any( r>1 | r<0 ) ;g?5V  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') \z<'6,b  
    end EV]exYWB  
    z07!i@ue~  
    if ~any(size(r)==1) )M}bc1 _  
        error('zernpol:Rvector','R must be a vector.') cITQ,ah  
    end LkJ3 :3O  
    !a?o9<V  
    r = r(:); As78yfK  
    length_r = length(r); -6Cxz./#yS  
    R0{n0Br  
    if nargin==4 P3(u+UI3  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); u\>Ed9^  
        if ~isnorm v!40>[?|p  
            error('zernpol:normalization','Unrecognized normalization flag.') ptrLnJ|%  
        end ?^k-)V  
    else *bwLi h!}H  
        isnorm = false; U<o,`y[Tn  
    end zYF'XB]4  
    #&&^5r-b-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KWU#Swa`  
    % Compute the Zernike Polynomials X%39cXM C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (\M&/X~q  
    ~I2 IgEj>]  
    % Determine the required powers of r: C9({7[k^%  
    % ----------------------------------- 2Xgn[oI{  
    rpowers = []; !%]]lxi  
    for j = 1:length(n) !MQo= k  
        rpowers = [rpowers m(j):2:n(j)]; `}Q+:  
    end ~"{Kjr#R  
    rpowers = unique(rpowers); t5[{ihv~:  
    YdIV_&-W  
    % Pre-compute the values of r raised to the required powers, ~pwp B2c  
    % and compile them in a matrix: jG8 ihi  
    % ----------------------------- R (4 :_ xc  
    if rpowers(1)==0 2I6c7H s  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); AVHn7olG  
        rpowern = cat(2,rpowern{:}); #jK{)%}mA  
        rpowern = [ones(length_r,1) rpowern]; Fb[<YX"  
    else oZP:}= F  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /zPN9 db  
        rpowern = cat(2,rpowern{:}); dIMs{!  
    end O:#t> ;  
    Gz$DsaG  
    % Compute the values of the polynomials: %xkqiI3Ff  
    % -------------------------------------- ~99Ta]U  
    z = zeros(length_r,length_n); 42 8kC,  
    for j = 1:length_n LWf+H 4iZ}  
        s = 0:(n(j)-m(j))/2; ,SS@]9A &  
        pows = n(j):-2:m(j); I)9;4lix  
        for k = length(s):-1:1 Vh4z+JOC  
            p = (1-2*mod(s(k),2))* ... J'Gn M?M  
                       prod(2:(n(j)-s(k)))/          ... b8Y1.y"#  
                       prod(2:s(k))/                 ... 2'_Oi-&  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 3fn6W)v?  
                       prod(2:((n(j)+m(j))/2-s(k))); *#dXW\8qu  
            idx = (pows(k)==rpowers); # 1I<qK  
            z(:,j) = z(:,j) + p*rpowern(:,idx); u!X[xe;  
        end _9""3O  
         y}nM'$p  
        if isnorm (m~MyT#S  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ] E`J5o}op  
        end ,7k)cNstW  
    end [Gysx  
    h}rrsVj3  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  W5HC7o\4  
    '!b1~+PV  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 2{| U  
    ;~tKNytD`B  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)