切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10927阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 e]*=sp!T  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦!  e(;`9T  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 AJ#m6`M+EK  
    function z = zernfun(n,m,r,theta,nflag) $['7vcB^  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. gaw4NZd)0  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ( *9Ip  
    %   and angular frequency M, evaluated at positions (R,THETA) on the FV^4   
    %   unit circle.  N is a vector of positive integers (including 0), and =~\]3g  
    %   M is a vector with the same number of elements as N.  Each element W) 33;E/}  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 0tW<LR-}E  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, aW=By)S!Y  
    %   and THETA is a vector of angles.  R and THETA must have the same :PFx&  
    %   length.  The output Z is a matrix with one column for every (N,M) $/, BJ/9  
    %   pair, and one row for every (R,THETA) pair. h5&/hBN  
    % "^9[OgE:  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike y7M:b Uh  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0HHui7Yy>  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral y NrinYw  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Vedyy\TU  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized dq YDz  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. wUK7um  
    % >k&8el6h  
    %   The Zernike functions are an orthogonal basis on the unit circle. UK"}}nO@e  
    %   They are used in disciplines such as astronomy, optics, and Z p7yaz3y  
    %   optometry to describe functions on a circular domain. a@fE46o6<  
    % XDpfpJ,z"}  
    %   The following table lists the first 15 Zernike functions. ${eY9-r_%  
    % %ezb^O_6v  
    %       n    m    Zernike function           Normalization 4-7kS85  
    %       -------------------------------------------------- +9CEC1-l  
    %       0    0    1                                 1 B]^>GH  
    %       1    1    r * cos(theta)                    2 4?>18%7&  
    %       1   -1    r * sin(theta)                    2 XOysgX0g  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Ka]J^w;a  
    %       2    0    (2*r^2 - 1)                    sqrt(3) pKt-R07*  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) AezvBY0'`z  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Sc1+(z  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) :W.jNV{e\F  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) {J,6iP{>ZN  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) -,~;qSs  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) f {y]  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <`R|a *  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 2PVx++*]C  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |'V DI]p&  
    %       4    4    r^4 * sin(4*theta)             sqrt(10)  SwdC,  
    %       -------------------------------------------------- E /fw?7eQ  
    % ]ZzoJ7lr  
    %   Example 1: ^Yj"RM$;N  
    % K-J|/eB  
    %       % Display the Zernike function Z(n=5,m=1) ="uKWt6n'  
    %       x = -1:0.01:1; _\ .  
    %       [X,Y] = meshgrid(x,x); cS<TmS!  
    %       [theta,r] = cart2pol(X,Y); V#ndyUM;  
    %       idx = r<=1; PUbaS{J7  
    %       z = nan(size(X)); X}oj_zsy;^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 7"ylN"syZ  
    %       figure iD>G!\&  
    %       pcolor(x,x,z), shading interp )Vwj9WD  
    %       axis square, colorbar "| K f'/r  
    %       title('Zernike function Z_5^1(r,\theta)') `9.dgV  
    % 6m4Te|  
    %   Example 2: F,*2#:Ki  
    % ]>tq|R78  
    %       % Display the first 10 Zernike functions %mY|  
    %       x = -1:0.01:1; }qc#lz  
    %       [X,Y] = meshgrid(x,x); z>4 D~HX  
    %       [theta,r] = cart2pol(X,Y); 8AT;8I<K  
    %       idx = r<=1; JNh=fvO2i  
    %       z = nan(size(X)); Y)$52m5rM  
    %       n = [0  1  1  2  2  2  3  3  3  3]; <"* "1(wN  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 3c c1EQ9  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; mJ)tHv"7  
    %       y = zernfun(n,m,r(idx),theta(idx)); o_iEkn  
    %       figure('Units','normalized') 12idM*  
    %       for k = 1:10 C&=x3Cz  
    %           z(idx) = y(:,k); ecn}iN  
    %           subplot(4,7,Nplot(k)) O$a#2p&  
    %           pcolor(x,x,z), shading interp RnHQq'J|\  
    %           set(gca,'XTick',[],'YTick',[]) )T>8XCL\}  
    %           axis square ./$ <J6-J  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) b.QpHrnhtK  
    %       end x+4v s s  
    % &k1/Z*/  
    %   See also ZERNPOL, ZERNFUN2. ,{?wKXJ}L!  
    )))2f skZ  
    %   Paul Fricker 11/13/2006 XJe/tR  
    K} +S+ *_  
    S|HY+Z6n'  
    % Check and prepare the inputs: BsKbn@'uC  
    % ----------------------------- $4=Ne3 y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) z VdKYs i^  
        error('zernfun:NMvectors','N and M must be vectors.') xJ-*%'(KZ  
    end Bb~5& @M|N  
    M~-h-tG  
    if length(n)~=length(m) Sa Cx)8ul0  
        error('zernfun:NMlength','N and M must be the same length.') d7E7f  
    end hHpx?9O+!  
    B$ui:R/ t  
    n = n(:); ?4,@, ae&  
    m = m(:); dgXg kB'  
    if any(mod(n-m,2)) 2xDQ :=ec  
        error('zernfun:NMmultiplesof2', ... rsWQHHkO  
              'All N and M must differ by multiples of 2 (including 0).') 7R: WX:  
    end Yt{ji  
    h6g:(3t6m  
    if any(m>n) 6#E7!-u(-  
        error('zernfun:MlessthanN', ... ;d4 y{  
              'Each M must be less than or equal to its corresponding N.') d<#p %$A4  
    end D3y>iQd   
    OZ^h\m4  
    if any( r>1 | r<0 ) _ \l HI  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Q\|18wkW  
    end SZ/(\kQ6  
    H<,bq*@  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #pX8{Tf[  
        error('zernfun:RTHvector','R and THETA must be vectors.') glx2I_y  
    end ! tGiTzzp  
    n'yl)HA~>`  
    r = r(:); yxvjg\!&  
    theta = theta(:); k {a)gFH O  
    length_r = length(r); ilv_D~|  
    if length_r~=length(theta) ;u,rtEMy;  
        error('zernfun:RTHlength', ... I0iY+@^5  
              'The number of R- and THETA-values must be equal.') ,ijW(95{k  
    end  DwXU  
    U+} y %3l  
    % Check normalization: GMdI0jaG#  
    % -------------------- RJx{eck%  
    if nargin==5 && ischar(nflag) G,]z (%  
        isnorm = strcmpi(nflag,'norm'); Wab.|\c  
        if ~isnorm t@)my[!  
            error('zernfun:normalization','Unrecognized normalization flag.') .a,(pq Jg  
        end 9<l-NU9 _  
    else 4:U0f;Fs  
        isnorm = false; B7!;]'&d  
    end \-OC|\{32  
    &\k?xN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7/?DPwbx  
    % Compute the Zernike Polynomials V9T 4 +  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4 [1k\  
    >$uUuiyL4  
    % Determine the required powers of r: ^X &)'H  
    % ----------------------------------- "y$ qrN-  
    m_abs = abs(m); MqdB\OW&  
    rpowers = []; xl8#=qmCD  
    for j = 1:length(n) J)*8|E9P  
        rpowers = [rpowers m_abs(j):2:n(j)]; nW GR5*e:  
    end b =b :  
    rpowers = unique(rpowers); ufP Cx|x~  
    VjB*{,  
    % Pre-compute the values of r raised to the required powers, {2:d` fqD  
    % and compile them in a matrix: W`x)=y]Z  
    % ----------------------------- DWrbp  
    if rpowers(1)==0 PBrnzkoY  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); OR;&TbWF(R  
        rpowern = cat(2,rpowern{:}); /UHp [yod  
        rpowern = [ones(length_r,1) rpowern]; ;& ~929  
    else [D[D`gpjA  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); t#5:\U5r.  
        rpowern = cat(2,rpowern{:}); G3dh M#!  
    end <HF-2?`  
    K_#UZA< Y  
    % Compute the values of the polynomials: ln#\sA?iG  
    % -------------------------------------- &z>q#'X;.  
    y = zeros(length_r,length(n)); K/|  
    for j = 1:length(n) &XQZs`41+  
        s = 0:(n(j)-m_abs(j))/2; AS|Rd+ .  
        pows = n(j):-2:m_abs(j); ]fE3s{y &-  
        for k = length(s):-1:1 X$V|+lTk  
            p = (1-2*mod(s(k),2))* ... KjOi(YUnq7  
                       prod(2:(n(j)-s(k)))/              ... 6m[9b*s7  
                       prod(2:s(k))/                     ... X+iK<F$  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... tS<h8g_  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); %S`ik!K"I  
            idx = (pows(k)==rpowers); Hf%_}Du /`  
            y(:,j) = y(:,j) + p*rpowern(:,idx); C[8KlD  
        end {ma;G[!  
         t$ZkdF  
        if isnorm _|<BF  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); gz61FW  
        end v[&'k\  
    end \_VmY!I5\  
    % END: Compute the Zernike Polynomials 2~FPw{]j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rzu s  
    Spgg+;9  
    % Compute the Zernike functions: e4[) WNR  
    % ------------------------------ ZEGd4_ux  
    idx_pos = m>0; `6F +Rrn  
    idx_neg = m<0; 7'OPjt M  
    Rd%0\ B  
    z = y; (Es{la G  
    if any(idx_pos) Ttv'k*$cP  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); WZ?!!   
    end H]Wp%"L  
    if any(idx_neg) #ElejQ|?  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5pJ*1pfeo  
    end J]fS({(\I  
    Mr* |9h  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) yr{B5z,  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Jqru AW<  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ~E*d G  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive V`k8j-*s  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 4;*f1_;f~  
    %   and THETA is a vector of angles.  R and THETA must have the same A*'V+(  
    %   length.  The output Z is a matrix with one column for every P-value, If'2rE7J  
    %   and one row for every (R,THETA) pair. VXIQw' Cq  
    % LC-)'Z9}5  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike T~s}Nx#  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 3k' .(P|F  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Gzm$OHbn  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 cOku1 g8  
    %   for all p. A}G|Yfn  
    % ( v@jc8y  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 GDPo`# ~  
    %   Zernike functions (order N<=7).  In some disciplines it is x~/+RF XF  
    %   traditional to label the first 36 functions using a single mode B*@6xS[IL  
    %   number P instead of separate numbers for the order N and azimuthal |Td5l?  
    %   frequency M. inF6M8 A1  
    % O3%[dR  
    %   Example: daX*}Ix  
    % \##`pa(8  
    %       % Display the first 16 Zernike functions @J vZ[T/  
    %       x = -1:0.01:1; 2c:f<>r0y  
    %       [X,Y] = meshgrid(x,x); ]}LGbv"`A  
    %       [theta,r] = cart2pol(X,Y); Ze ? g  
    %       idx = r<=1; ~ FUa: KYD  
    %       p = 0:15; {4rQ7J4Ux  
    %       z = nan(size(X)); CV^c",b_  
    %       y = zernfun2(p,r(idx),theta(idx)); -x'e+zT  
    %       figure('Units','normalized') 2p:r`THvS5  
    %       for k = 1:length(p) +R[4\ hC0Y  
    %           z(idx) = y(:,k); bPd-D-R  
    %           subplot(4,4,k) 8A{6j  
    %           pcolor(x,x,z), shading interp ]d'^Xs  
    %           set(gca,'XTick',[],'YTick',[]) rt b*n~  
    %           axis square cZQu*K^j  
    %           title(['Z_{' num2str(p(k)) '}']) C6@t  
    %       end +?d}7zh  
    % dr })-R  
    %   See also ZERNPOL, ZERNFUN. x / XkD]Hq  
    -G b-^G  
    %   Paul Fricker 11/13/2006 -(;LQDG |  
    )U(u>SV(\  
    7+ XM3  
    % Check and prepare the inputs: K.DXJ UR  
    % ----------------------------- 77We;a  
    if min(size(p))~=1 -M61 Mw1  
        error('zernfun2:Pvector','Input P must be vector.') s AE9<(g&@  
    end D1X{:#|  
    3] 76fF\^[  
    if any(p)>35 H(qm>h$bU  
        error('zernfun2:P36', ... <qY5SV,  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... QN G&  
               '(P = 0 to 35).']) 6Rz[?-mkLO  
    end r nBOj#N  
    R&So4},B  
    % Get the order and frequency corresonding to the function number: DO^y;y>  
    % ---------------------------------------------------------------- aRwnRii  
    p = p(:); Ew4 g'A:H  
    n = ceil((-3+sqrt(9+8*p))/2); C\Ayv)S #2  
    m = 2*p - n.*(n+2); Hj~O49%j&  
    Lq0 4T0  
    % Pass the inputs to the function ZERNFUN: Q}P-$X+/ n  
    % ---------------------------------------- - L~Uu^o  
    switch nargin Qpu3(`d<  
        case 3 m6U8)!)T  
            z = zernfun(n,m,r,theta); l{%a&/  
        case 4 gq4 . d  
            z = zernfun(n,m,r,theta,nflag); {;k_!v{  
        otherwise IZ~.{UQ  
            error('zernfun2:nargin','Incorrect number of inputs.') mk=#\>  
    end (@Zcx9  
    4e9E' "8%  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ct0v$ct>f  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. z5EVG  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ( V4G<-jG  
    %   order N and frequency M, evaluated at R.  N is a vector of SDc" 4g`  
    %   positive integers (including 0), and M is a vector with the 3*WS"bt  
    %   same number of elements as N.  Each element k of M must be a  :]c=pH  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) >&hX&,hG  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is H#+xKYrp  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ]{Ek[Av  
    %   with one column for every (N,M) pair, and one row for every YMu)  
    %   element in R. btQet.  
    % j9xXKa5  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- fn1pa@P  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is :[?!\m%0  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to E@pFTvo  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 FpzP #;  
    %   for all [n,m]. 3!Bj{;A  
    % DHzkRCM  
    %   The radial Zernike polynomials are the radial portion of the Wk[)+\WQ?  
    %   Zernike functions, which are an orthogonal basis on the unit _,Q[2gQ5N  
    %   circle.  The series representation of the radial Zernike bp%S62Dj  
    %   polynomials is t w!.%_1^  
    % C*G/_`?9  
    %          (n-m)/2 :bv|Ah  
    %            __ Nza; O[  
    %    m      \       s                                          n-2s FpdHnu i1  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r k7T alR  
    %    n      s=0 *?N<S$m  
    % iQ{z6Qa  
    %   The following table shows the first 12 polynomials. ,n5a])Dg  
    % XRa#2 1pQ  
    %       n    m    Zernike polynomial    Normalization J wFned#T  
    %       --------------------------------------------- ':sTd^V  
    %       0    0    1                        sqrt(2) $8@+j[>  
    %       1    1    r                           2 hbnS~sva  
    %       2    0    2*r^2 - 1                sqrt(6) 'w6hW7"L  
    %       2    2    r^2                      sqrt(6) CB]l[hM$  
    %       3    1    3*r^3 - 2*r              sqrt(8) T6=-hA^A  
    %       3    3    r^3                      sqrt(8) %MuaW(I o  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) s##Ay{  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) SG`)PW?  
    %       4    4    r^4                      sqrt(10) F[`vH  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) /e<5Np\X  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Ff)@L-Y\K  
    %       5    5    r^5                      sqrt(12) [<Jp#&u6sb  
    %       --------------------------------------------- CWvlr nv  
    % _BwKY#09Zp  
    %   Example: 4W-"|Z_x  
    % i;]CL[#2e`  
    %       % Display three example Zernike radial polynomials 8m7;x/0ld  
    %       r = 0:0.01:1; % $.vOFP9  
    %       n = [3 2 5]; :<UtHf<=k  
    %       m = [1 2 1]; $WClpvVj  
    %       z = zernpol(n,m,r); >[P%Ty);  
    %       figure Yj3*)k  
    %       plot(r,z) G"C;A`6  
    %       grid on O+vcs4  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') s7M}NA 0  
    % \!4|tBKVY  
    %   See also ZERNFUN, ZERNFUN2. j%5a+(H,z;  
    mQ=sNZ-d]  
    % A note on the algorithm. m9Il\PoTq  
    % ------------------------ ol#yjrv  
    % The radial Zernike polynomials are computed using the series ]|y}\7Aa  
    % representation shown in the Help section above. For many special )-#i8?y3C  
    % functions, direct evaluation using the series representation can @Wz%KdXA  
    % produce poor numerical results (floating point errors), because .5z&CJDiIi  
    % the summation often involves computing small differences between ~4+8p9f  
    % large successive terms in the series. (In such cases, the functions D&f!( n  
    % are often evaluated using alternative methods such as recurrence %yKKUZ~  
    % relations: see the Legendre functions, for example). For the Zernike Z:c*!`F  
    % polynomials, however, this problem does not arise, because the Se/ss!If  
    % polynomials are evaluated over the finite domain r = (0,1), and Of&"U/^  
    % because the coefficients for a given polynomial are generally all HT-PWk>2  
    % of similar magnitude. l# BZzJ?~  
    % ;L$,gn5H  
    % ZERNPOL has been written using a vectorized implementation: multiple + "zYn!0  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] nUqL\(UuY  
    % values can be passed as inputs) for a vector of points R.  To achieve F;W'  
    % this vectorization most efficiently, the algorithm in ZERNPOL M#T#:wf~  
    % involves pre-determining all the powers p of R that are required to SlN"(nq  
    % compute the outputs, and then compiling the {R^p} into a single <k5`&X!+  
    % matrix.  This avoids any redundant computation of the R^p, and 7P c(<Ui+  
    % minimizes the sizes of certain intermediate variables. fOLnK y#  
    % jf8w7T  
    %   Paul Fricker 11/13/2006 vuW-}fY;  
    6qf-Y!D5  
    ;da4\bppt  
    % Check and prepare the inputs: c l9$g7  
    % ----------------------------- iAgOnk[  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Cg7)S[zl  
        error('zernpol:NMvectors','N and M must be vectors.') $i -zMa  
    end ]6q*)q:`  
    I[%M!_+  
    if length(n)~=length(m) $-e=tWkgv  
        error('zernpol:NMlength','N and M must be the same length.') |lY`9-M`I  
    end '?b\F~$8  
    N-xnenci  
    n = n(:); -FaaFw:Z;A  
    m = m(:); *cPN\Iu.W  
    length_n = length(n); .}`V I`z*  
    eq{ [?/  
    if any(mod(n-m,2)) lj Y  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ,k\/]9  
    end Zq^^|[)bA  
    5Vm Eyb  
    if any(m<0) T"IW Jpc  
        error('zernpol:Mpositive','All M must be positive.') sc9]sIb  
    end dt0T t  
    PQi }Evxa  
    if any(m>n) lqauk)(A0  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') k}#@8n|b  
    end ^SgN(-QH  
    d0Tg qO{  
    if any( r>1 | r<0 ) |MVV +.X  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 'Z y{mq\  
    end u!M& ;QL  
    =m7CJc  
    if ~any(size(r)==1) G$|G w  
        error('zernpol:Rvector','R must be a vector.') 0:jsV|5B8  
    end 50COL66:7  
    y _6r/z^  
    r = r(:); 9Il'E6 J  
    length_r = length(r); ,Io0ZE>`V  
    5%'o%`?i  
    if nargin==4 vu44!c@  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ?~{r f:Y  
        if ~isnorm tD865gi  
            error('zernpol:normalization','Unrecognized normalization flag.') r.?qEe8VV  
        end ta@ ISRK  
    else 3F;EE:  
        isnorm = false; *Gf&q  
    end 7(H ?k  
    /\nJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g^qz&;R]  
    % Compute the Zernike Polynomials `d.Gw+Un  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% av"Dljc  
    coW)_~U|  
    % Determine the required powers of r: y(V&z"wk[  
    % ----------------------------------- `Yg7,{A\J  
    rpowers = [];  MK<  
    for j = 1:length(n) uwmoM>I W^  
        rpowers = [rpowers m(j):2:n(j)]; Q=^ktKMeR  
    end C+DG+_%V*S  
    rpowers = unique(rpowers); bOi};/f  
    ?56~yQF/2  
    % Pre-compute the values of r raised to the required powers, }#1U D  
    % and compile them in a matrix: 3/SfUfWo  
    % ----------------------------- '9f6ZAnYpQ  
    if rpowers(1)==0 A{G5Plrh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); lp?i_p/z  
        rpowern = cat(2,rpowern{:}); F@B  
        rpowern = [ones(length_r,1) rpowern]; HI}pX{.\  
    else nZ"{y  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -/@|2!d  
        rpowern = cat(2,rpowern{:}); }_Tt1iai*  
    end h<+PP]l=  
    5`(((_Um+  
    % Compute the values of the polynomials: @?'t@P:4  
    % -------------------------------------- vd2uD2%con  
    z = zeros(length_r,length_n); LZgwIMd  
    for j = 1:length_n #(m `2Z`H  
        s = 0:(n(j)-m(j))/2; 0*/mc96  
        pows = n(j):-2:m(j); MA~|y_V  
        for k = length(s):-1:1 Pn~pej5'K  
            p = (1-2*mod(s(k),2))* ... :;|)/  
                       prod(2:(n(j)-s(k)))/          ... R>Z,TQU  
                       prod(2:s(k))/                 ... ORUWsl Mt  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... em f0sL  
                       prod(2:((n(j)+m(j))/2-s(k))); &*Q|d*CP  
            idx = (pows(k)==rpowers); 3?a0 +]  
            z(:,j) = z(:,j) + p*rpowern(:,idx); md1EJ1\14  
        end 9O(i+fM  
         eD>-`'7<  
        if isnorm <1;,B%_^  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); p.6$w:eV  
        end RTdD]pE8Q  
    end (O M?aW  
    L,s|gt v  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  .5[LQR  
    s>M~g,xTU  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 !>kv.`|7~  
    lJ>QTZH!wW  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)