非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 i$ L]X[
function z = zernfun(n,m,r,theta,nflag) y"\,%.
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 16QbB;
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N jAK{<7v4U
% and angular frequency M, evaluated at positions (R,THETA) on the ,%h!% nz!
% unit circle. N is a vector of positive integers (including 0), and B#aH\$_U
% M is a vector with the same number of elements as N. Each element -(w~LT$ "
% k of M must be a positive integer, with possible values M(k) = -N(k)
F4rKFMr
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, sJb)HQ,7x
% and THETA is a vector of angles. R and THETA must have the same A$~xG(
% length. The output Z is a matrix with one column for every (N,M) <s8?
Z1
% pair, and one row for every (R,THETA) pair. 5$oewjLO
% "Py Wo
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ~g1, !Wl
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^$IZLM?E~
% with delta(m,0) the Kronecker delta, is chosen so that the integral V-_/(xt*
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, p08kZ
% and theta=0 to theta=2*pi) is unity. For the non-normalized ns#~}2"d
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]iDJ*!I
% VI24+h'J
% The Zernike functions are an orthogonal basis on the unit circle. NLQE"\#a
% They are used in disciplines such as astronomy, optics, and poD\C;o"
% optometry to describe functions on a circular domain. 7%9)C[6NSs
% Ka]@[R6e
% The following table lists the first 15 Zernike functions. 8lOI\-
% f<89$/w
% n m Zernike function Normalization w(/DTQc~d
% -------------------------------------------------- mP pvZ
% 0 0 1 1 e40udLH~x
% 1 1 r * cos(theta) 2 .Z=Ce!
% 1 -1 r * sin(theta) 2 PW%1xHLfk
% 2 -2 r^2 * cos(2*theta) sqrt(6) / Mod=/e
% 2 0 (2*r^2 - 1) sqrt(3) BWUt{,?KU
% 2 2 r^2 * sin(2*theta) sqrt(6) cJ(BiL-uF
% 3 -3 r^3 * cos(3*theta) sqrt(8) u 1ZJHry
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Xsd$*F@<
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) /vjGjb=3U
% 3 3 r^3 * sin(3*theta) sqrt(8) ;1W6"3t-Y
% 4 -4 r^4 * cos(4*theta) sqrt(10) gYatsFyL
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (kIz
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) lC#RNjDp/~
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bD35JG^&i
% 4 4 r^4 * sin(4*theta) sqrt(10) Xb}!0k/{
% -------------------------------------------------- &%^K,Q"
% nr OqH
% Example 1: DVI7]+=nV
% sVu k
% % Display the Zernike function Z(n=5,m=1) 3AURzU
% x = -1:0.01:1; {odA[H
% [X,Y] = meshgrid(x,x); Wo{K}
% [theta,r] = cart2pol(X,Y); HZ
}6Q
% idx = r<=1; ]pnYvXf>!
% z = nan(size(X)); 9x=3W?K:,
% z(idx) = zernfun(5,1,r(idx),theta(idx)); "B#Y-
% figure nbGoJC:U
% pcolor(x,x,z), shading interp .Gh%p`<
% axis square, colorbar Fn!SGX~kx$
% title('Zernike function Z_5^1(r,\theta)') P@gtdi(Q
% '[nmFCG%m*
% Example 2: -Q$b7*"z(
% =}v ;1m
% % Display the first 10 Zernike functions 66Gx.tE
% x = -1:0.01:1; ^agj4$
% [X,Y] = meshgrid(x,x); \~>e_;
% [theta,r] = cart2pol(X,Y); OV[`|<C '
% idx = r<=1; ?E<c[*F05
% z = nan(size(X)); R:/ha(+
% n = [0 1 1 2 2 2 3 3 3 3]; p<KIF>rf|
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 3B{[%#vO
% Nplot = [4 10 12 16 18 20 22 24 26 28]; nUc;/
% y = zernfun(n,m,r(idx),theta(idx)); KCUU#t|8V\
% figure('Units','normalized') BwxnDe G)
% for k = 1:10 3OP.12^
% z(idx) = y(:,k); \jyjQ,v)
% subplot(4,7,Nplot(k)) QU/fT_ORw
% pcolor(x,x,z), shading interp O8lFx_N7Q
% set(gca,'XTick',[],'YTick',[]) ,
T\- ;7
% axis square Uoji@
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) sTkkM9
% end IU#x[P!
% p@ygne4
% See also ZERNPOL, ZERNFUN2. :l,OalO
%d;<2b0
% Paul Fricker 11/13/2006 \a))
y-9+a7j
Ei5 wel6!
% Check and prepare the inputs: ;`(R7X
*3
% ----------------------------- 3c #s|qW
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;YyXT"6/p
error('zernfun:NMvectors','N and M must be vectors.') >72JV;W]
end !aNh!
qX#MV>1
if length(n)~=length(m) CO^Jz
error('zernfun:NMlength','N and M must be the same length.') =Z,5$6%)
end ".U^ifF
[}2Z/
n = n(:); '6-$Xq0^E
m = m(:); p
&(OZJT
if any(mod(n-m,2)) kV&9`c+
error('zernfun:NMmultiplesof2', ... mdbp8,O
'All N and M must differ by multiples of 2 (including 0).') 1n=_y o
end 60}! LmL
/ T
c=
if any(m>n) ^3]UZ@
error('zernfun:MlessthanN', ... ?jO 5 9n
'Each M must be less than or equal to its corresponding N.') lr@#^
end -YGbfd<wq
_.V?A*
if any( r>1 | r<0 ) FjFMR
63
error('zernfun:Rlessthan1','All R must be between 0 and 1.') OJO!FH)
end {~Tg7<\L
|L6&Gf]#5
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 1zxq^BI
error('zernfun:RTHvector','R and THETA must be vectors.') Shr,#wwM`B
end EbY,N:LK
}8K4-[\
r = r(:); [bz T&o
theta = theta(:); MCTsi:V>+
length_r = length(r); w.{&=WTr
if length_r~=length(theta) 1bnBji
error('zernfun:RTHlength', ... t=
#&fSR
'The number of R- and THETA-values must be equal.') *fMpZ+;[m
end uQ1@b-e`5
}_'IE1bA
% Check normalization: 4u;9J*r4
% -------------------- }T2xXbU
if nargin==5 && ischar(nflag) A7_4.VH
isnorm = strcmpi(nflag,'norm'); =8Jfgq9E
if ~isnorm "r4AY
error('zernfun:normalization','Unrecognized normalization flag.') b}^S.;vNj
end BaI $S>/Q
else }|OaL*|u
isnorm = false; uA tV".
end /1=4"|q>h'
C*=Xk/0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f"G-
% Compute the Zernike Polynomials |~`as(@Ih
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 96cJ8I8
B(a-k?
% Determine the required powers of r: 5@IB39
% ----------------------------------- 2"P99$"
m_abs = abs(m); E907fX[R~
rpowers = []; =uk0@hy9b
for j = 1:length(n) G'2#9<c*
rpowers = [rpowers m_abs(j):2:n(j)]; K5ZC:Ks
end q\Q{sv_
rpowers = unique(rpowers); =!O*/6rz
0]KraLu"N
% Pre-compute the values of r raised to the required powers, KH)D08
% and compile them in a matrix: <~}7Mxn%x@
% ----------------------------- +d+@u)6
if rpowers(1)==0 ;{i'#rn{
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); t"hYcnC
rpowern = cat(2,rpowern{:}); H1<>NWm!v7
rpowern = [ones(length_r,1) rpowern]; q"O.Cbk
else !TZhQiorC
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )vmA^nU>
rpowern = cat(2,rpowern{:}); _Jwq`]Z
end EXP%Mk/
s]m o$ _na
% Compute the values of the polynomials: E$W{8?:{
% -------------------------------------- }I3gU
y = zeros(length_r,length(n)); Cm$.<CV
for j = 1:length(n) h\plQ[T
s = 0:(n(j)-m_abs(j))/2; JnHo 9K2.
pows = n(j):-2:m_abs(j); >fH=DOz$&
for k = length(s):-1:1 a+hd(JX0~
p = (1-2*mod(s(k),2))* ... -.g|l\
prod(2:(n(j)-s(k)))/ ... |mdi]TL
prod(2:s(k))/ ... g{W;I_P^9
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 3qY K_M^[
prod(2:((n(j)+m_abs(j))/2-s(k))); KD/V aN
idx = (pows(k)==rpowers); [V4 {c@
y(:,j) = y(:,j) + p*rpowern(:,idx); : ^ 8
end USFDy
K3\#E/Ox
if isnorm u:aW 8
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,J`'Y+7W
end p>_;^&>&
end P&Pj>!T5
% END: Compute the Zernike Polynomials Vd=yr'?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c/_+o;Bc
YeF1C/'hy
% Compute the Zernike functions: LH:i| I
% ------------------------------ @ym/27cRE
idx_pos = m>0; p{PE@KO:
idx_neg = m<0; Q}S_%I}u:
}K8/-d6
z = y; Y?ez9o:/#
if any(idx_pos) ID.n1i3
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Q5%#^ZdsTd
end %*#n d
if any(idx_neg) E~LTb)
!
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %lg=YGLQB
end _-5,zPR
z&V+#Ws/
% EOF zernfun