非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ,o}!pQ
function z = zernfun(n,m,r,theta,nflag) SB1\SNB
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. /s>ZT8vaAs
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N qTnfiYG}
% and angular frequency M, evaluated at positions (R,THETA) on the zlmb_akJ
% unit circle. N is a vector of positive integers (including 0), and 'Lft\.C
% M is a vector with the same number of elements as N. Each element AfG!(AF`
% k of M must be a positive integer, with possible values M(k) = -N(k) |*0oz=
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, `Njv#K} U
% and THETA is a vector of angles. R and THETA must have the same 1o7
pMp=
% length. The output Z is a matrix with one column for every (N,M) AAkdwo
% pair, and one row for every (R,THETA) pair. zm}4=Kz}
% %Ysu613mz
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 2P8JLT*Tj
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $Xw .iN]g
% with delta(m,0) the Kronecker delta, is chosen so that the integral W
xyQA:3s
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 7'_zJI^
% and theta=0 to theta=2*pi) is unity. For the non-normalized O^I~d{M 5I
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. wxARD3%
% P. P3/,
% The Zernike functions are an orthogonal basis on the unit circle. x"~F=jT
% They are used in disciplines such as astronomy, optics, and LMWcF'l
% optometry to describe functions on a circular domain. SI3ek9|XU
% lztPexyXZ
% The following table lists the first 15 Zernike functions. HHD4#XcU
% _JA.~edqM
% n m Zernike function Normalization Zr_{Z@IpU
% -------------------------------------------------- 2f>lgZ!
% 0 0 1 1 gEtDqq~y@
% 1 1 r * cos(theta) 2 Xd>4n7nb$`
% 1 -1 r * sin(theta) 2 p%CAicn
% 2 -2 r^2 * cos(2*theta) sqrt(6) N\Byg jw|
% 2 0 (2*r^2 - 1) sqrt(3) =*qu:f\y
% 2 2 r^2 * sin(2*theta) sqrt(6) 6#On .Q
% 3 -3 r^3 * cos(3*theta) sqrt(8) vbmSbZ"y
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 0 ]U
;5
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Xvm.Un<N
% 3 3 r^3 * sin(3*theta) sqrt(8) Gd`qZqx#
% 4 -4 r^4 * cos(4*theta) sqrt(10) A5tY4?|
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Nhn5 iN1*
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 'i_od|19~h
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /] ce?PPC
% 4 4 r^4 * sin(4*theta) sqrt(10) Qv,|*bf
% -------------------------------------------------- =M)>w4-
% +/7UM x1
% Example 1: D{h1"q
% zTBr<:
% % Display the Zernike function Z(n=5,m=1) x`w
4LF
% x = -1:0.01:1; [[QrGJr
% [X,Y] = meshgrid(x,x); X^#48*"a
% [theta,r] = cart2pol(X,Y); *'vX:n&t
% idx = r<=1; ;14[)t$
% z = nan(size(X)); /s(/6~D|
% z(idx) = zernfun(5,1,r(idx),theta(idx)); QP)-O*+AA
% figure ,IxAt&kN
% pcolor(x,x,z), shading interp ~d ~$fR
% axis square, colorbar 3'O+
% title('Zernike function Z_5^1(r,\theta)') PkQu N;a
% 3k5OYUk
% Example 2: eCMcr !.
% ]x?9lQ1&
% % Display the first 10 Zernike functions zF.rsNY
% x = -1:0.01:1; RS#)uC5/%
% [X,Y] = meshgrid(x,x); gAC}
% [theta,r] = cart2pol(X,Y); >IC.Zt@
% idx = r<=1; ||cG/I&,
% z = nan(size(X)); Wu<
% n = [0 1 1 2 2 2 3 3 3 3]; BQmg$N,F
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; QS,IM>Nr
% Nplot = [4 10 12 16 18 20 22 24 26 28]; VjSb>k
% y = zernfun(n,m,r(idx),theta(idx)); @3c5"
% figure('Units','normalized') y'xB? >|
% for k = 1:10 3zp)!QJi
% z(idx) = y(:,k); Y<X%'Wd\
% subplot(4,7,Nplot(k)) li8l+5d q
% pcolor(x,x,z), shading interp Am%zEt$c
% set(gca,'XTick',[],'YTick',[]) EQ8jxr<p
% axis square hAHl+q)w?
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;#P@(ZVT
% end ^.&uYF&
% _+N*4
% See also ZERNPOL, ZERNFUN2. HlBw:D(z:^
dY68wW>d|
% Paul Fricker 11/13/2006 .6+j&{WNo!
bdk"7N
9kuL1tcY
% Check and prepare the inputs: U")~bU
% ----------------------------- 7gfNe kr~W
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }k.-xaj
error('zernfun:NMvectors','N and M must be vectors.') )}hp[*C
end I1BVqIt1i
ez&v"J
if length(n)~=length(m) |8c3%jve
error('zernfun:NMlength','N and M must be the same length.')
vr/V_
end n'v[[bmu
a[]=*(AZI
n = n(:); *4Y1((1k
m = m(:); N\l\ M
if any(mod(n-m,2)) Zk"'x,]#
error('zernfun:NMmultiplesof2', ... 6E{HNPMb>
'All N and M must differ by multiples of 2 (including 0).') Uc>kCBCd
end SN(:\|f
2
ZK1d3
if any(m>n) EA|*|o4)
error('zernfun:MlessthanN', ... "n,">
'Each M must be less than or equal to its corresponding N.') IkFrzw p
end WW\u}z.QJ
'U.)f@L#w
if any( r>1 | r<0 ) n'9Wl'
error('zernfun:Rlessthan1','All R must be between 0 and 1.') / @X!
end T=(/n=
rS\j9@=Y4
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) "6 |j
0?Q
error('zernfun:RTHvector','R and THETA must be vectors.') tq H7M0Ry
end v{Al>v}}n
P {i\x#
r = r(:); #wK { G)J
theta = theta(:); vm"LPwSk>
length_r = length(r); c [sydl
if length_r~=length(theta) 5,})x]'x
error('zernfun:RTHlength', ... -;20|US)u
'The number of R- and THETA-values must be equal.') Zy|B~.@<j
end 9+nB;vA
C$(US8:{
% Check normalization: }pdn-#
% -------------------- NQz*P.q
if nargin==5 && ischar(nflag) K#_&}C^-jY
isnorm = strcmpi(nflag,'norm'); Gole7I
if ~isnorm Bha#=>4FU
error('zernfun:normalization','Unrecognized normalization flag.') zsFzF`[k
end u,AP$+Qk
else a\>+!Vq
isnorm = false; Xyy;BO:
end HC(Vu
Q@?8-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C]414Ibi
% Compute the Zernike Polynomials < aJl
i
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0uV3J
g5M=$y/H
% Determine the required powers of r: Yz]c'M@
% ----------------------------------- ADK)p?
m_abs = abs(m); `qnp
rpowers = []; 7aRtw:PQn
for j = 1:length(n) S"'0lS
rpowers = [rpowers m_abs(j):2:n(j)]; qmqWMLfC
end 0b6jGa
rpowers = unique(rpowers); TwlX'iI_;
FlGU1%]m
% Pre-compute the values of r raised to the required powers, 6D|[3rXr
% and compile them in a matrix: 0`c|ZzY
% ----------------------------- SQ8xfD*
if rpowers(1)==0 vz5x{W
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5{Q5?M]
rpowern = cat(2,rpowern{:}); })W9=xO~
rpowern = [ones(length_r,1) rpowern]; V5:ad
else 2 j.6
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8C]K36q
rpowern = cat(2,rpowern{:}); h ` qlI1]
end */c4b:s
>*s_)IH2
% Compute the values of the polynomials: k%uR!cL
% -------------------------------------- WX
.Ax$fT
y = zeros(length_r,length(n)); %"-bG'Yc
for j = 1:length(n) "| Oj!&0
s = 0:(n(j)-m_abs(j))/2; m}A| W[p<
pows = n(j):-2:m_abs(j); A12EUr5$
for k = length(s):-1:1 A,67)li3
p = (1-2*mod(s(k),2))* ... 9gq+,g>E_
prod(2:(n(j)-s(k)))/ ... 2[|52+zhc
prod(2:s(k))/ ... `#HtVI
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... V=^B7a.;>
prod(2:((n(j)+m_abs(j))/2-s(k))); F!7dGa$
idx = (pows(k)==rpowers); ezimQ
y(:,j) = y(:,j) + p*rpowern(:,idx); (P!r^87
end r$[`A_
'41'Gn
if isnorm aeZ$Wu>]W
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); YI+ clh;%9
end "&Hr)yyWG
end (4o<U%3kGq
% END: Compute the Zernike Polynomials 88Nx/:#Y*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8\WV.+
#[f]-c(!
% Compute the Zernike functions: Z(j"\d!y
% ------------------------------ Hg&.U;n
idx_pos = m>0; ^'9.VVyz
idx_neg = m<0; /RVwhA+c
PRJ
z = y; ~c,CngeL0
if any(idx_pos) 8Q%g<jX*
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); >|X )
end vB74r]'F
if any(idx_neg) |I[/Fl:
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); yPrF2@#XZ/
end 6VUs:iO1j5
\?v?%}x
% EOF zernfun