切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11615阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 } gyj0  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! /M1ob:m  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 7Haa;2 T'  
    function z = zernfun(n,m,r,theta,nflag) >:74%D0UF  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6KXtcXQ  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F+YZE[h%  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ~qiJR`Jj  
    %   unit circle.  N is a vector of positive integers (including 0), and ity & v 9  
    %   M is a vector with the same number of elements as N.  Each element 6dq(T_eG  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) J{.{f  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 5V?& 8GTe  
    %   and THETA is a vector of angles.  R and THETA must have the same 5Yg'BkEr  
    %   length.  The output Z is a matrix with one column for every (N,M) @6Y?\Wx$w  
    %   pair, and one row for every (R,THETA) pair. j8v8uZ;x  
    % F|S Xn\  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5bRJS70M  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |XaIx#n  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral pj\u9 L_  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ep!Rf:  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized h9t$Uz^N  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =6j&4p `  
    % Mo|;'+  
    %   The Zernike functions are an orthogonal basis on the unit circle. [T8WThs  
    %   They are used in disciplines such as astronomy, optics, and u(z$fG:g  
    %   optometry to describe functions on a circular domain. L7n D|  
    % ;,hwZZA  
    %   The following table lists the first 15 Zernike functions. F|'>NL-=  
    % kjTduZ/3 "  
    %       n    m    Zernike function           Normalization Y xr>"KH6a  
    %       -------------------------------------------------- 8r*E-akuyr  
    %       0    0    1                                 1 %6|nb:Oa  
    %       1    1    r * cos(theta)                    2 52@C9Q,  
    %       1   -1    r * sin(theta)                    2 |UkR'Ma  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) EEEh~6?-e  
    %       2    0    (2*r^2 - 1)                    sqrt(3) { }:#G  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) :NhO2L  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) iowTLq!?  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 0pZ4BZdT|  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ]N~2 .h  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) z 9vInf@M  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) fe\mL mK9  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QVv#fy1"6  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) hCi60%g/n  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) dH;8mb|#'  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) W =D4r  
    %       -------------------------------------------------- !]"@kl%  
    % /MIe(,>Uh  
    %   Example 1: >BV^H.SO|1  
    % .N,bIQnj  
    %       % Display the Zernike function Z(n=5,m=1) W/=.@JjI  
    %       x = -1:0.01:1; B7VH<;Z  
    %       [X,Y] = meshgrid(x,x); Sgeh %f  
    %       [theta,r] = cart2pol(X,Y); [zH:1Zhl&  
    %       idx = r<=1; g?c xp +  
    %       z = nan(size(X)); ^PDJ0k/u1  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 3(="YbZ  
    %       figure [u =+3b  
    %       pcolor(x,x,z), shading interp 8+~ >E  
    %       axis square, colorbar 6gL #C&  
    %       title('Zernike function Z_5^1(r,\theta)') S.mG?zbw  
    % #Vnkvvv  
    %   Example 2: 5GI,o|[s6  
    % pI1-cV,`  
    %       % Display the first 10 Zernike functions x!?u^  
    %       x = -1:0.01:1; $POu\TO  
    %       [X,Y] = meshgrid(x,x); WltQ63u  
    %       [theta,r] = cart2pol(X,Y); qFicBpB  
    %       idx = r<=1; HCIU!4rH  
    %       z = nan(size(X)); ]tim,7s  
    %       n = [0  1  1  2  2  2  3  3  3  3]; `}D,5^9]  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; c/:b.>W  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ])[[ V!1  
    %       y = zernfun(n,m,r(idx),theta(idx)); Z]A{ d[  
    %       figure('Units','normalized') 0%32=k7O[  
    %       for k = 1:10 Mc? Qx  
    %           z(idx) = y(:,k); L 8c0lx}Nn  
    %           subplot(4,7,Nplot(k)) e|g5=2(Pr&  
    %           pcolor(x,x,z), shading interp ]V[q(-Jk  
    %           set(gca,'XTick',[],'YTick',[]) R6 y#S&]x  
    %           axis square sSr&:BOsi  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) a]$1D!Anc  
    %       end |5X^u+_  
    % V)3KS-  
    %   See also ZERNPOL, ZERNFUN2. `jDTzhO~  
    _jvxc'6  
    %   Paul Fricker 11/13/2006 /{EP*,/*  
    o5u3Fjz3  
    n"h `5p5'  
    % Check and prepare the inputs: ({ +!`}GY  
    % ----------------------------- `:ArT}F  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) EZgq ?l~5O  
        error('zernfun:NMvectors','N and M must be vectors.') GiJ *Wp  
    end -$t{>gO#Y  
    C>]0YO k2  
    if length(n)~=length(m) k)i3   
        error('zernfun:NMlength','N and M must be the same length.') kq?Ms|h  
    end ^dI424  
    ?3/qz(bM  
    n = n(:); L{#IT.  
    m = m(:); ,A9]CQ  
    if any(mod(n-m,2)) q?H|o(  
        error('zernfun:NMmultiplesof2', ... S~<$H y*kh  
              'All N and M must differ by multiples of 2 (including 0).') $1SPy|y  
    end |sa]F5  
    .zr-:L5{  
    if any(m>n) kc2 PoJ  
        error('zernfun:MlessthanN', ... _H9 MwJ  
              'Each M must be less than or equal to its corresponding N.') .fn \]rUv  
    end ;p.v]0]is  
    9-sw!tKx  
    if any( r>1 | r<0 ) M5i%jZk  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') .14~J6  
    end H(H<z,$}T  
    k}S :RK  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) oF vfCrd  
        error('zernfun:RTHvector','R and THETA must be vectors.') hl;u'_AB  
    end @Rg/~\K  
    c|f<u{'  
    r = r(:); 0}<|7?  
    theta = theta(:); C2.HMgL  
    length_r = length(r); :Oy%a'w   
    if length_r~=length(theta) &C:IX\  
        error('zernfun:RTHlength', ... oxr#7Ei0d  
              'The number of R- and THETA-values must be equal.') 'Oxy$U   
    end O6@j &*jS  
    .[YuRLGz  
    % Check normalization: H h4WMZJG  
    % -------------------- ]z;P9B3@&  
    if nargin==5 && ischar(nflag) 87=&^.~`  
        isnorm = strcmpi(nflag,'norm'); y$;/Vm_'  
        if ~isnorm LhN|1f:9:  
            error('zernfun:normalization','Unrecognized normalization flag.') ,t3wp#E2#  
        end P i=+/}  
    else zlyS}x@p  
        isnorm = false; aasoW\UG  
    end },uF 4M.K  
    f0!))/rSD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,yC-+VL  
    % Compute the Zernike Polynomials SfA\}@3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 97Lte5c6r  
    j 'FVz&  
    % Determine the required powers of r: G `+T+  
    % ----------------------------------- K~uXO  
    m_abs = abs(m); {ba q+  
    rpowers = []; W'els)WJ|x  
    for j = 1:length(n) u\a#{G;Z  
        rpowers = [rpowers m_abs(j):2:n(j)]; ?xA:@:l/  
    end XWDL5K  
    rpowers = unique(rpowers); "_P;2N6  
    AJt+p&I[J  
    % Pre-compute the values of r raised to the required powers, }I2wjO  
    % and compile them in a matrix: w}L]X1#sF  
    % ----------------------------- >u>5{4  
    if rpowers(1)==0 N%kt3vmQ_  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ; a/X<  
        rpowern = cat(2,rpowern{:}); w2Us!<x  
        rpowern = [ones(length_r,1) rpowern]; `CBZhI%%  
    else dMPc:tJT  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Q_1:tW &  
        rpowern = cat(2,rpowern{:}); Gq+z/Be  
    end FO+Zue.RS  
    >~#yu&*D  
    % Compute the values of the polynomials: Ha(c'\T (\  
    % -------------------------------------- @X%C>iYa9  
    y = zeros(length_r,length(n)); \@Ts+7%  
    for j = 1:length(n) _uWpJhCT  
        s = 0:(n(j)-m_abs(j))/2; Q`~jw>x  
        pows = n(j):-2:m_abs(j); Amp#GR1CA  
        for k = length(s):-1:1 v5/~-uRL%  
            p = (1-2*mod(s(k),2))* ... ,%6P0#-  
                       prod(2:(n(j)-s(k)))/              ... ;m0~L=w  
                       prod(2:s(k))/                     ... -O1>|y2rU  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ng[Ar`  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); u$h 4lIl  
            idx = (pows(k)==rpowers); .RE:;<|w  
            y(:,j) = y(:,j) + p*rpowern(:,idx); XywE1}3  
        end 67VL@ ]  
         V n7*JS  
        if isnorm \jh'9\  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); &[_g6OL  
        end  R(!s  
    end 3("_Z%  
    % END: Compute the Zernike Polynomials d<% z 1Dj2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I+BHstF5um  
    UGD2  
    % Compute the Zernike functions: oin$-i|Xp!  
    % ------------------------------ 6,o~\8ia  
    idx_pos = m>0; " f <Z=c  
    idx_neg = m<0; pyH:#5  
    !_"@^?,q  
    z = y; w&X<5'GM  
    if any(idx_pos) |)nZ^Cc  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M.Y~1c4f  
    end 3?[dE<  
    if any(idx_neg) Y}x>t* I  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); cU RkP`  
    end bmJ5MF]_fG  
    ;QWIsVz  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 5)FJ:1-  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ,3?Q(=j  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 3XL#0\im?s  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive |h-QP#]/  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ^]7}YF2|  
    %   and THETA is a vector of angles.  R and THETA must have the same q_TR q:&.  
    %   length.  The output Z is a matrix with one column for every P-value, FQm`~rA~zt  
    %   and one row for every (R,THETA) pair. 9`wZz~hL"  
    % %Qc La//  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike `rgn<I"  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) |s'Po^Sy  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) t=|evOz]  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 9zZr^{lUl  
    %   for all p. lH-/L(h2  
    % ./,/y"x  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 B{|8#jqY  
    %   Zernike functions (order N<=7).  In some disciplines it is C3*gn}[  
    %   traditional to label the first 36 functions using a single mode 4~y(`\0?4  
    %   number P instead of separate numbers for the order N and azimuthal $AfM>+GQ`n  
    %   frequency M. <%($7VMev  
    % =5Q]m6-SgV  
    %   Example: ?>hPO73{  
    % }B8IBveu  
    %       % Display the first 16 Zernike functions IHe/xQ@  
    %       x = -1:0.01:1; }M1`di4e  
    %       [X,Y] = meshgrid(x,x); 1HXjN~XF  
    %       [theta,r] = cart2pol(X,Y); * vflscgt  
    %       idx = r<=1; :QpuO1Gu  
    %       p = 0:15; }x@2]juJ  
    %       z = nan(size(X)); X<i^qoV  
    %       y = zernfun2(p,r(idx),theta(idx)); ]gmexa=(i  
    %       figure('Units','normalized') s@9vY\5[9  
    %       for k = 1:length(p) mk1bcK9  
    %           z(idx) = y(:,k); ~R_ztD+C(  
    %           subplot(4,4,k) PfreAEv,  
    %           pcolor(x,x,z), shading interp +,2:g}5  
    %           set(gca,'XTick',[],'YTick',[]) 'd.EC#  
    %           axis square 2HpHxVJ  
    %           title(['Z_{' num2str(p(k)) '}']) t?q@H8  
    %       end s8-<m,*  
    % m5L-67[sB  
    %   See also ZERNPOL, ZERNFUN. .l>77zM6  
    KB%"bqB|  
    %   Paul Fricker 11/13/2006 Ey_" ~OB  
    U@gn;@\  
    E5)b  
    % Check and prepare the inputs: FuVnk~gq  
    % ----------------------------- =+ytTQc*ot  
    if min(size(p))~=1 Zw*v  
        error('zernfun2:Pvector','Input P must be vector.') KAC6Snu1  
    end ]e^c=O`$  
    bu |a0h7e  
    if any(p)>35 8dZ0rPd?  
        error('zernfun2:P36', ... gg[WlRQK4A  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... :A1{d?B  
               '(P = 0 to 35).']) '$|[R98  
    end ?3*l{[@J  
    {p;zuCF1  
    % Get the order and frequency corresonding to the function number:  /<HRwG\w  
    % ---------------------------------------------------------------- v5By:z  
    p = p(:); /4c\K-Z;  
    n = ceil((-3+sqrt(9+8*p))/2); QrfG^GID  
    m = 2*p - n.*(n+2); L{hnU7sY  
    I|>^1kr8w  
    % Pass the inputs to the function ZERNFUN: yHs- h   
    % ---------------------------------------- `wus\&!W  
    switch nargin MZlk0o2  
        case 3 \]=7!RQ\  
            z = zernfun(n,m,r,theta); 99}(~B  
        case 4 Qk\A c  
            z = zernfun(n,m,r,theta,nflag); dik:4;  
        otherwise 7]9 a<  
            error('zernfun2:nargin','Incorrect number of inputs.') ?mWw@6G,  
    end ZkAU17f  
    V\u>"3BQw  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) T-5nB>)  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. U}MXT <6  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 5$wpL(:R(  
    %   order N and frequency M, evaluated at R.  N is a vector of JS*m65e  
    %   positive integers (including 0), and M is a vector with the bKrhIU[  
    %   same number of elements as N.  Each element k of M must be a 3jlh}t>$l  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) h&Efg   
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Svc|0Ad&  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix )=AHf?hn  
    %   with one column for every (N,M) pair, and one row for every <FWF<r3F  
    %   element in R. pcT:]d[1)  
    % fcNL$U&-,i  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- }z\_;\7  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is QAvir%Y9Q  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to .a._NW  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 87=^J xy  
    %   for all [n,m]. mf}O-Igte  
    % CAcS~ "  
    %   The radial Zernike polynomials are the radial portion of the e'0{?B  
    %   Zernike functions, which are an orthogonal basis on the unit e XfZ5(na  
    %   circle.  The series representation of the radial Zernike 5dB'&8DX  
    %   polynomials is ai nG6Y<O`  
    % %n hm  
    %          (n-m)/2 {@tv>!WW  
    %            __ d!:6[7X6  
    %    m      \       s                                          n-2s 1jc, Y.mP  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r du)~kU>l  
    %    n      s=0 Dh5X/y  
    % \/1<E?Q f  
    %   The following table shows the first 12 polynomials. }; f#^gz'  
    % T}"6wywM  
    %       n    m    Zernike polynomial    Normalization  ^}:#  
    %       --------------------------------------------- .h9l7 nZt  
    %       0    0    1                        sqrt(2) 91$]Qg,lB  
    %       1    1    r                           2 :_t}QP"  
    %       2    0    2*r^2 - 1                sqrt(6) i K12 pw  
    %       2    2    r^2                      sqrt(6) emdoA:w+   
    %       3    1    3*r^3 - 2*r              sqrt(8) P#fM:z@[  
    %       3    3    r^3                      sqrt(8) TZ2=O<Kj  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) -u? S=h}  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) x\J#]d.  
    %       4    4    r^4                      sqrt(10) d)pV;6%[$q  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) P&b19K'  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ]p;FZ4-T  
    %       5    5    r^5                      sqrt(12) xo&]RYG[<  
    %       --------------------------------------------- 'Er:a?88l  
    % (HSgEs1d  
    %   Example: zOGU8Wg  
    % DSt]{fl`P  
    %       % Display three example Zernike radial polynomials RB+N IoQQ|  
    %       r = 0:0.01:1; R1& [S/  
    %       n = [3 2 5]; ds&e|VSH;  
    %       m = [1 2 1]; '3<fsK=  
    %       z = zernpol(n,m,r); Pv<24:ao  
    %       figure Ay !G1;  
    %       plot(r,z) cCa|YW^j  
    %       grid on 7^Ns&Q  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') LrAT Sq@  
    % \mV'mZ9>  
    %   See also ZERNFUN, ZERNFUN2. XK: 9r{r{  
    HO[wTB|D]  
    % A note on the algorithm. +3&z N(  
    % ------------------------ Q4*fc^?u  
    % The radial Zernike polynomials are computed using the series Y_]De3:V0B  
    % representation shown in the Help section above. For many special 2 ho>eRX  
    % functions, direct evaluation using the series representation can Fr%d}g  
    % produce poor numerical results (floating point errors), because =IUUeFv +r  
    % the summation often involves computing small differences between \#rIQOPl?  
    % large successive terms in the series. (In such cases, the functions 9Ffp2NW`;  
    % are often evaluated using alternative methods such as recurrence Dgx8\~(E'  
    % relations: see the Legendre functions, for example). For the Zernike xY$iz)^0&  
    % polynomials, however, this problem does not arise, because the \TF!S"V  
    % polynomials are evaluated over the finite domain r = (0,1), and #?XQ7Im  
    % because the coefficients for a given polynomial are generally all 3q`)*  
    % of similar magnitude. 8P"_#M?!  
    % }sx_Yj  
    % ZERNPOL has been written using a vectorized implementation: multiple BSkDpr1C  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] gt/zpiKmV  
    % values can be passed as inputs) for a vector of points R.  To achieve ,9P:Draxs`  
    % this vectorization most efficiently, the algorithm in ZERNPOL U-:ieao@  
    % involves pre-determining all the powers p of R that are required to Z*])6=2Q  
    % compute the outputs, and then compiling the {R^p} into a single ?_ dIIQ  
    % matrix.  This avoids any redundant computation of the R^p, and |=EZ1<KzD  
    % minimizes the sizes of certain intermediate variables. H<QT3RF2  
    % BbRBT@  
    %   Paul Fricker 11/13/2006 :Dd$i_3=  
    5r?m&28X  
    XfKo A0  
    % Check and prepare the inputs: 6: ]*c[7  
    % ----------------------------- ;/0 Q1-  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ) /v6l  
        error('zernpol:NMvectors','N and M must be vectors.') f}L*uw  
    end /"?HZ% W  
    UK{irU|\  
    if length(n)~=length(m) VL[kJi   
        error('zernpol:NMlength','N and M must be the same length.')  ru`U'  
    end nN~~cV  
    (D 9Su^:1  
    n = n(:); #_B-4sm  
    m = m(:); P1zdK0TM  
    length_n = length(n); 5BR2?hO4  
    8&Myva  
    if any(mod(n-m,2)) u-1;'a  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 'oN\hy($,h  
    end !gLkJ)  
    DaH?@Q  
    if any(m<0) NWd<+-pC6  
        error('zernpol:Mpositive','All M must be positive.') ?X-)J=XG  
    end 2jbIW*  
    af |5n><~A  
    if any(m>n) 3b YCOqG  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Y $u9%0q|?  
    end :d8W +|1u  
    a"av#Y  
    if any( r>1 | r<0 ) J|3E-p\o  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') up2+ s#  
    end r|*&GHo L  
    UYA_jpIP  
    if ~any(size(r)==1) zFQ&5@43  
        error('zernpol:Rvector','R must be a vector.') O8] 'o*<]  
    end bT6sb#"W  
    j Y6MjZI  
    r = r(:); NjE</Empb%  
    length_r = length(r); QW_agm  
    &vovA} F  
    if nargin==4 {}o>{&X  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 'u4ezwF;  
        if ~isnorm ZvGgmLN  
            error('zernpol:normalization','Unrecognized normalization flag.') j,d*?'X  
        end CAT.4GM  
    else >|Q:g,I  
        isnorm = false; 9]'($:LF08  
    end ^>?CMcN4*  
    __@zTSVb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eh*6cQ.0  
    % Compute the Zernike Polynomials E1&b#TE 6O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]MtFf6&  
    $^ 'aCU0C  
    % Determine the required powers of r: dx,=Rd5'  
    % ----------------------------------- $ \*` }Y  
    rpowers = []; |BZDhd9<{  
    for j = 1:length(n) D^U: ih  
        rpowers = [rpowers m(j):2:n(j)]; z^nvMTC  
    end Gq#~vr  
    rpowers = unique(rpowers); !'=15&5@  
    |KYEK|  
    % Pre-compute the values of r raised to the required powers, O|cu.u|  
    % and compile them in a matrix: 65,(4Udz!  
    % ----------------------------- +fKtG]$  
    if rpowers(1)==0 >%Ee#m  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); I NSkgOo  
        rpowern = cat(2,rpowern{:}); P%Ay3cR+E  
        rpowern = [ones(length_r,1) rpowern]; f-2$ L  
    else `N/RHb%  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); % p?b rc  
        rpowern = cat(2,rpowern{:}); !}M,  
    end mgZf3?,)  
    qP*}.Sqk7  
    % Compute the values of the polynomials: 0(8H;T  
    % -------------------------------------- ]+DI.%   
    z = zeros(length_r,length_n); _U| 7'^|  
    for j = 1:length_n XH7xT@  
        s = 0:(n(j)-m(j))/2; l_/C65%.:  
        pows = n(j):-2:m(j); %m{U& -(l@  
        for k = length(s):-1:1 f]8I64  
            p = (1-2*mod(s(k),2))* ... qIwV q!=  
                       prod(2:(n(j)-s(k)))/          ... ,%#   
                       prod(2:s(k))/                 ... .wrL3z_  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... bVr*h2 p  
                       prod(2:((n(j)+m(j))/2-s(k))); !SHj$Jwa'  
            idx = (pows(k)==rpowers); ']o od!  
            z(:,j) = z(:,j) + p*rpowern(:,idx); qu6DQ@ ~YC  
        end vOI[Z0Lq9h  
         %qsvtc`  
        if isnorm 9O,,m~B  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ALd;$fd qf  
        end smAC,-6 ]~  
    end qBk``!|s]  
    fvo<(c#Y#  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  .\4l'THn,0  
    ?H0m<jO8~  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 >nNl^ yqW  
    ~h|m&XK+Q  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)