非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 k}]M`ad
function z = zernfun(n,m,r,theta,nflag) ha?M[Vyw4Q
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Xp[x O 0
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [`kk<$=,&
% and angular frequency M, evaluated at positions (R,THETA) on the ]
@:x<>
% unit circle. N is a vector of positive integers (including 0), and ckYT69U
% M is a vector with the same number of elements as N. Each element K%ptRj$
% k of M must be a positive integer, with possible values M(k) = -N(k) )&j@ ={0
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, }<^QW't_Y
% and THETA is a vector of angles. R and THETA must have the same _tRRIW"Vx"
% length. The output Z is a matrix with one column for every (N,M) ly#jl5wmT
% pair, and one row for every (R,THETA) pair. =&F~GCZ>
% Y @Ur}
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .(99f#2M:
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),
]0XlI;ah
% with delta(m,0) the Kronecker delta, is chosen so that the integral :gn&wi
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #$
4g&8
% and theta=0 to theta=2*pi) is unity. For the non-normalized 3EHB~rL/C
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. '+\t,>nRkl
% F*T$n"^
% The Zernike functions are an orthogonal basis on the unit circle. _2TL>1KZt
% They are used in disciplines such as astronomy, optics, and erhez
% optometry to describe functions on a circular domain. wC?$P
% qrf90F)
% The following table lists the first 15 Zernike functions. x\oSD1t,
% zpjE_|
% n m Zernike function Normalization ?a-5^{{
% -------------------------------------------------- nH<#MGBS
% 0 0 1 1 6{quO#!
% 1 1 r * cos(theta) 2 d(yTz&u)
% 1 -1 r * sin(theta) 2 GvZ[3GT
% 2 -2 r^2 * cos(2*theta) sqrt(6) Zo,066'+[.
% 2 0 (2*r^2 - 1) sqrt(3) "W~vSbn7
% 2 2 r^2 * sin(2*theta) sqrt(6) f]_'icP
% 3 -3 r^3 * cos(3*theta) sqrt(8) k{H7+;_
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 1|m%xX,[
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) JT&RaFX
% 3 3 r^3 * sin(3*theta) sqrt(8) L5'?.9]
% 4 -4 r^4 * cos(4*theta) sqrt(10) p| ?FA@ 3
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s(KSN/
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ^HxIy;EQ<z
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) CXi[$nF3
% 4 4 r^4 * sin(4*theta) sqrt(10) !hFhw1
% -------------------------------------------------- q[GDK^-g
% T.jCF~%7F
% Example 1: Nv^byWqu
% je5[.VT M
% % Display the Zernike function Z(n=5,m=1) Mi;Pv*
% x = -1:0.01:1; PW82
Vp.
% [X,Y] = meshgrid(x,x); A'.=SA2.Y
% [theta,r] = cart2pol(X,Y); zez|l
% idx = r<=1; ujzfy
% z = nan(size(X)); a|jZg
% z(idx) = zernfun(5,1,r(idx),theta(idx)); D*j^f7ab
% figure p{}4#+-<#H
% pcolor(x,x,z), shading interp oEX^U4/=
% axis square, colorbar (k8}9[3G
% title('Zernike function Z_5^1(r,\theta)') px*1 3"
% ,ga6
% Example 2: i4]oE&G
% g+5c"Yk+u~
% % Display the first 10 Zernike functions ({Pjz;xM
% x = -1:0.01:1; y/5GY,z%aL
% [X,Y] = meshgrid(x,x); s<rV1D
% [theta,r] = cart2pol(X,Y); TkJ[N4'0
% idx = r<=1; #?V rt,n
% z = nan(size(X)); [h8s0
% n = [0 1 1 2 2 2 3 3 3 3]; `<7!Rh,tS^
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; v+I-*,R
% Nplot = [4 10 12 16 18 20 22 24 26 28]; =~k
c7f{
% y = zernfun(n,m,r(idx),theta(idx)); ""Da2Md
% figure('Units','normalized') 6T4I,XrY_F
% for k = 1:10 ~USt&?
% z(idx) = y(:,k); Zazff@O *
% subplot(4,7,Nplot(k)) loO"[8i.k
% pcolor(x,x,z), shading interp Bp3E)l
% set(gca,'XTick',[],'YTick',[]) &!OEd]
% axis square cP D_=.&
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) JhfVm*,
% end yu)^s!UY;
% GB35o uE
% See also ZERNPOL, ZERNFUN2. 4l+!Z, b
.] sJl
% Paul Fricker 11/13/2006 76wNZv)9
7@
)
3+15
yEeA
% Check and prepare the inputs: |K"Q>V2y
% ----------------------------- =E5bM_P<K
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ]"lB!O~
error('zernfun:NMvectors','N and M must be vectors.') u '7h(1@
end y TD4![
r!+{In+Z
if length(n)~=length(m) T*f/M
error('zernfun:NMlength','N and M must be the same length.') bh<;px-
end \ l#eW
x
X!p`|i
n = n(:); PO`p.("h
m = m(:); aPVzOBp
if any(mod(n-m,2)) ~/]]H;;^u
error('zernfun:NMmultiplesof2', ... o`,~#P|
'All N and M must differ by multiples of 2 (including 0).') 0z8?6~M;<
end =9X1 +x
lI 4tW=
if any(m>n) 8HQ.MXKP
error('zernfun:MlessthanN', ... d51'[?(
'Each M must be less than or equal to its corresponding N.')
&cSVOsi
end ?9kC[4G
3o%vV*
if any( r>1 | r<0 ) {d'-1z"q
error('zernfun:Rlessthan1','All R must be between 0 and 1.') N+=|WeZ
end ,|{`(y/v
E4L?4>V@\
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) b,E ?{uG
error('zernfun:RTHvector','R and THETA must be vectors.') RZzHlZ
end du66a+@t
N-\N\uN
r = r(:); z*EV>Y[
theta = theta(:); s*ZE`/SM3
length_r = length(r); 4b`E/L}2
if length_r~=length(theta) #*'Qm
A
error('zernfun:RTHlength', ... T&?g)
'The number of R- and THETA-values must be equal.') 4,e'B-.
end (-21h0N[V
(?fU l$q\
% Check normalization: Y%.o
TB&
% -------------------- ,U z8 _r
if nargin==5 && ischar(nflag) ~v+kO~
isnorm = strcmpi(nflag,'norm'); HOR8Jwf:
if ~isnorm a%T`c/C
error('zernfun:normalization','Unrecognized normalization flag.') u4C9ZYN
end mb1mlsE
else q(?+01
isnorm = false; q 84*5-
end 1f`De`zXzr
:V(LBH0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5#,H&ui\
% Compute the Zernike Polynomials qq/>E*~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QB*,+u4
!6KX^j-
% Determine the required powers of r:
/MGapmqV9
% ----------------------------------- {^WK#$]
m_abs = abs(m); cZYy+
rpowers = []; &-3e3)
for j = 1:length(n) Xp:A;i9
rpowers = [rpowers m_abs(j):2:n(j)]; )G/bP!^+(
end &h-_|N
rpowers = unique(rpowers); BNfj0e 5b
m,k0 h%
% Pre-compute the values of r raised to the required powers, T/_u;My;
% and compile them in a matrix: ppyy0E^M
% ----------------------------- 42NfD/"g+s
if rpowers(1)==0 }QFL
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); u?=mh`
rpowern = cat(2,rpowern{:}); 'J,UKK\5
rpowern = [ones(length_r,1) rpowern]; L4>14D\
else o,*m,Qc
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); qGk.7wf%
rpowern = cat(2,rpowern{:}); ZnEgU}g<2
end uNN/o}Qx
JQV%W+-@
% Compute the values of the polynomials: g\q .
% -------------------------------------- |_;kQ(,
y = zeros(length_r,length(n)); _:r8UVAT.
for j = 1:length(n) UP-eKK'z
s = 0:(n(j)-m_abs(j))/2; p&(0e,`z/
pows = n(j):-2:m_abs(j); /Q1 b%C
for k = length(s):-1:1 'Z{`P0/^o`
p = (1-2*mod(s(k),2))* ... M| (VM=~
prod(2:(n(j)-s(k)))/ ... y%TqH\RKv
prod(2:s(k))/ ... C4mkt2Eb0a
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... C- YYG
prod(2:((n(j)+m_abs(j))/2-s(k))); h/Mt<5
idx = (pows(k)==rpowers); JtFq/&{i
y(:,j) = y(:,j) + p*rpowern(:,idx); 9q`Ewj R
end .>"xp6
$--8%gh dG
if isnorm +(+lbCW/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); u$\.aWol
end 1=5"j]0hY
end 8W&1"h`
% END: Compute the Zernike Polynomials mdc?~?? 8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F5*-HR
n!4}Hwz!
% Compute the Zernike functions: o?a2wY^_
% ------------------------------ 3r~8:F"g
idx_pos = m>0; 8-;.Ejz!\A
idx_neg = m<0; x6/u+Urn
$bE"3/uf
z = y; .x=abA$!9
if any(idx_pos) f7&ni#^Ztj
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4@{;z4*`
end {]IY;cL
if any(idx_neg) mS%4
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); AROHe
end 4Wl`hF
B&MDn']fV/
% EOF zernfun