切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10956阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 zyB>peAp6j  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Ce/D[%  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 U ]7;K>.T  
    function z = zernfun(n,m,r,theta,nflag)  +F~B"a  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. l=L(pS3 ~  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :jJ0 +Q  
    %   and angular frequency M, evaluated at positions (R,THETA) on the jW{bP_,"  
    %   unit circle.  N is a vector of positive integers (including 0), and xwj{4fzpk{  
    %   M is a vector with the same number of elements as N.  Each element +U iJWO  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) .LGA0  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, w,j;XPp  
    %   and THETA is a vector of angles.  R and THETA must have the same }@~+%_;  
    %   length.  The output Z is a matrix with one column for every (N,M) g>g*1oS  
    %   pair, and one row for every (R,THETA) pair. UgD)O:xaU  
    % zYM0?O8pJ~  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike j8%Y[:~D  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5lyHg{iqD  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral wRZS+^hx  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, /]of @  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized u $B24Cy.  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. xEv?2n@A  
    % a`zHx3Yg  
    %   The Zernike functions are an orthogonal basis on the unit circle. eIOMW9Ivt  
    %   They are used in disciplines such as astronomy, optics, and $W9dUR0  
    %   optometry to describe functions on a circular domain. C}ASVywc,1  
    % z /nW; ow  
    %   The following table lists the first 15 Zernike functions. |E;+j\   
    % 30<_`  
    %       n    m    Zernike function           Normalization 6!8uZ>u%Vg  
    %       -------------------------------------------------- ""m/?TZq'  
    %       0    0    1                                 1 ,t!I%r  
    %       1    1    r * cos(theta)                    2 Oc-ia)v1G  
    %       1   -1    r * sin(theta)                    2 oi8M6l  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Ua4P@#cU  
    %       2    0    (2*r^2 - 1)                    sqrt(3) E= .clA  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) L* ScSxw  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) |XMWi/p  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 7I*rtc&Kb  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) >qUD_U3A  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) pD }b$  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) g?K? Fn.}  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m}]QP\  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 2`> (LH  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) c7R&/JV  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) jUDE)~h  
    %       -------------------------------------------------- uJ8FzS>[V  
    % \FF|b"E_=  
    %   Example 1: cQsSJBZ[v5  
    % y'n<oSB}  
    %       % Display the Zernike function Z(n=5,m=1) GIfs]zVr`  
    %       x = -1:0.01:1; [^XD @  
    %       [X,Y] = meshgrid(x,x); FC  
    %       [theta,r] = cart2pol(X,Y); L0w2qF  
    %       idx = r<=1; PnL?zae  
    %       z = nan(size(X)); G&`5o*).bb  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); R^]a<g,  
    %       figure [{#n?BT  
    %       pcolor(x,x,z), shading interp rDu?XJA  
    %       axis square, colorbar g|h;*  
    %       title('Zernike function Z_5^1(r,\theta)') n57mh5mixM  
    % WI.+9$1:P  
    %   Example 2: s@Loax6@B  
    % a&dP@)  
    %       % Display the first 10 Zernike functions nFe  
    %       x = -1:0.01:1; ;iJ}[HUo  
    %       [X,Y] = meshgrid(x,x); kBY#= e).  
    %       [theta,r] = cart2pol(X,Y); 3>=G-AH/$K  
    %       idx = r<=1; !3o/c w9  
    %       z = nan(size(X)); P7REE_<1  
    %       n = [0  1  1  2  2  2  3  3  3  3]; b,'rz04^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; um\A  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ]7RK/Zu i  
    %       y = zernfun(n,m,r(idx),theta(idx)); 9*Fc+/  
    %       figure('Units','normalized') bjN"H`Q  
    %       for k = 1:10 )Y"t$Iw"  
    %           z(idx) = y(:,k); )i\foSbB`V  
    %           subplot(4,7,Nplot(k)) +ZV?yR2yn  
    %           pcolor(x,x,z), shading interp )bpdj,  
    %           set(gca,'XTick',[],'YTick',[]) J7~Kjl  
    %           axis square KXUJ*l-5  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #qJ6iA6{  
    %       end |uX&T`7?-  
    % ''k}3o.K[  
    %   See also ZERNPOL, ZERNFUN2. Uo[`AzD3  
    VTi; y{  
    %   Paul Fricker 11/13/2006 t+jdV  
    3E>]6  
    Tz7R:S.  
    % Check and prepare the inputs: ,S~A]uH'  
    % ----------------------------- 'b+ Tio  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) I;9DG8C&v*  
        error('zernfun:NMvectors','N and M must be vectors.') Fl"LK:)  
    end 6 \ %#=GG  
    zE7)4!  
    if length(n)~=length(m) A-eCc#I  
        error('zernfun:NMlength','N and M must be the same length.') O<XNI(@  
    end L:jv%;DM  
    ZB5NTNf>  
    n = n(:); h*sL' fJ]  
    m = m(:); 5j _[z|W2  
    if any(mod(n-m,2)) w"A>mEex<  
        error('zernfun:NMmultiplesof2', ... .e}`n)z  
              'All N and M must differ by multiples of 2 (including 0).') \tdYTb.  
    end ;)sC{ "Jb  
    2#' "<n,G  
    if any(m>n) ENf(E9O  
        error('zernfun:MlessthanN', ... : %U lNk  
              'Each M must be less than or equal to its corresponding N.') Xj:\B] v]  
    end (D\`:1g  
    mk6>}z*  
    if any( r>1 | r<0 ) u0$}VO5/a  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') *O-m:M!eA  
    end (&/~q:a>   
    C4|79UG>s  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) j'UW gwB  
        error('zernfun:RTHvector','R and THETA must be vectors.') c{jTCkzq  
    end 4=|oOIhgb  
    B;Co`o2  
    r = r(:); a JQ_V  
    theta = theta(:); xDmwiVy  
    length_r = length(r); X"T)X#:)  
    if length_r~=length(theta) )xTu|V   
        error('zernfun:RTHlength', ... 0X%#9s ~  
              'The number of R- and THETA-values must be equal.') p,\(j  
    end gNh4c{Al9  
    F_V/&OV  
    % Check normalization: f6#1sO4"  
    % -------------------- ]YB,K)WQ  
    if nargin==5 && ischar(nflag) X C '|  
        isnorm = strcmpi(nflag,'norm'); qi8~bQ{rH  
        if ~isnorm ;]2d%Qt  
            error('zernfun:normalization','Unrecognized normalization flag.') Gk|T1%  
        end MnptC 1N  
    else a%wa3N=v  
        isnorm = false; lK#uya g  
    end MhN 8'y(  
    +@\=v}: F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EsLtC5]  
    % Compute the Zernike Polynomials `V?NS,@$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 85+w\KuEY  
    #?bOAWAwLh  
    % Determine the required powers of r: !Eb!y`jK  
    % ----------------------------------- DWU(ld:_  
    m_abs = abs(m); :n oZ p:a  
    rpowers = []; H8!lSRq  
    for j = 1:length(n) $XFFNE`%  
        rpowers = [rpowers m_abs(j):2:n(j)]; Vv>hr+e  
    end uecjR8\e  
    rpowers = unique(rpowers); <@qJsRbhK  
    ?lIh&C8]X  
    % Pre-compute the values of r raised to the required powers, 8ZDWaq8^2N  
    % and compile them in a matrix: gy/bA  
    % ----------------------------- qn` \g  
    if rpowers(1)==0 qvRs1yr?q  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4n2*2 yTg  
        rpowern = cat(2,rpowern{:}); 8b+%:eJ  
        rpowern = [ones(length_r,1) rpowern]; l D]?9K29  
    else ;oRgg'k<  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4aG}ex-s|  
        rpowern = cat(2,rpowern{:}); ='HLA-uT  
    end Ewo6Q){X  
    DXfQy6k'  
    % Compute the values of the polynomials: 7:OF>**  
    % -------------------------------------- [<#`@Kr  
    y = zeros(length_r,length(n)); l/bZE.GJ  
    for j = 1:length(n) ,uS}wJAX  
        s = 0:(n(j)-m_abs(j))/2; kT&GsR/  
        pows = n(j):-2:m_abs(j); 2Vg+Aly4D  
        for k = length(s):-1:1 r6}-EYq=  
            p = (1-2*mod(s(k),2))* ... u:\DqdlU`  
                       prod(2:(n(j)-s(k)))/              ... ]DI%7kw'  
                       prod(2:s(k))/                     ... !A"-9OS2  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... M V~3~h8  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); n*N`].r#{=  
            idx = (pows(k)==rpowers); CSMx]jbb  
            y(:,j) = y(:,j) + p*rpowern(:,idx); \2)~dV:6+  
        end _Ns_$_  
         AJt4I W@  
        if isnorm E^V4O l<  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); dxF)) Z  
        end 2;YL+v2  
    end ] U[4r9V  
    % END: Compute the Zernike Polynomials /U"3LX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2sT\+C&H  
    BE," lX  
    % Compute the Zernike functions: 9 H~OC8R:  
    % ------------------------------ fb|lWEw5h.  
    idx_pos = m>0; P64< O 5l/  
    idx_neg = m<0; 6"jV>CNc@  
    f15n ~d  
    z = y; I>spJ5ls  
    if any(idx_pos) -&r A<j  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); . AX6xc6  
    end  76EMS?e  
    if any(idx_neg) -2*Pm1\Z  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); UN`O*(k[  
    end >/DlxYG?  
    R"[U<^  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) %8T"h  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. r7n-Xe  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated nL&[R}@W  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Y%)@)$sK  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, x)^t5"F  
    %   and THETA is a vector of angles.  R and THETA must have the same 8hm|9  
    %   length.  The output Z is a matrix with one column for every P-value, zX ?@[OT  
    %   and one row for every (R,THETA) pair. ?DKwKt  
    % G,h=5y9_J  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike E=8$*YUW(g  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) wdTjJf r  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Cw&U*H  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ma(E}s  
    %   for all p. R(N5K4J  
    % {/SLDyf%Z  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 w&^_2<a2  
    %   Zernike functions (order N<=7).  In some disciplines it is ".T&nS[z  
    %   traditional to label the first 36 functions using a single mode cAc>p-y%  
    %   number P instead of separate numbers for the order N and azimuthal G,JNUok  
    %   frequency M. 8^6dK  
    % @b"J FB|  
    %   Example: )%]`uj>*[  
    % Q{+N{/tF  
    %       % Display the first 16 Zernike functions uO;_T/^u  
    %       x = -1:0.01:1; 8.4+4Vxh   
    %       [X,Y] = meshgrid(x,x); 'J"m`a8no  
    %       [theta,r] = cart2pol(X,Y); W4o$J4IX{  
    %       idx = r<=1; b6A]/290x  
    %       p = 0:15; \1b!I)T9  
    %       z = nan(size(X)); tgB\;nbB  
    %       y = zernfun2(p,r(idx),theta(idx)); ;33LuD<h.  
    %       figure('Units','normalized') \w\{x0u  
    %       for k = 1:length(p) 0x]W W|se*  
    %           z(idx) = y(:,k); x7 l3&;yDv  
    %           subplot(4,4,k) yCT:U&8%F  
    %           pcolor(x,x,z), shading interp Y1Qg|U o  
    %           set(gca,'XTick',[],'YTick',[]) h#!u"'JW  
    %           axis square O+Qt8,  
    %           title(['Z_{' num2str(p(k)) '}']) S8$kxQg  
    %       end 2dUVHu= +  
    % rYYAZ(\8  
    %   See also ZERNPOL, ZERNFUN. |T@\ -8Ok  
    C|W\qXCqu  
    %   Paul Fricker 11/13/2006 TwZASn]o  
    J}UG{RttI  
    {(,[  
    % Check and prepare the inputs: ]5}C@W@_  
    % ----------------------------- '8b/TL  
    if min(size(p))~=1 w0i v\yIRQ  
        error('zernfun2:Pvector','Input P must be vector.') 1hn4YcHb  
    end "=97:H{!  
    o<r|YRzQl  
    if any(p)>35 ` kG}NJf  
        error('zernfun2:P36', ... Vx6/Rehj  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... nR1QS_@{L  
               '(P = 0 to 35).']) _H+|Ic  
    end }+1Y>W7q  
    EgT2a  
    % Get the order and frequency corresonding to the function number: Q(\U'|%J  
    % ---------------------------------------------------------------- Rg!Fu  
    p = p(:); O8drR4 Pt  
    n = ceil((-3+sqrt(9+8*p))/2); xF4>G0  
    m = 2*p - n.*(n+2); vS{zLXg  
    D L0i  
    % Pass the inputs to the function ZERNFUN: M{ mdh\  
    % ---------------------------------------- ~ :\QC  
    switch nargin VaIFE~>E&  
        case 3 "/&_B  
            z = zernfun(n,m,r,theta); I*Q^$YnM  
        case 4 XJG "Zr9  
            z = zernfun(n,m,r,theta,nflag); "+6:vhP5  
        otherwise "5,tEP!  
            error('zernfun2:nargin','Incorrect number of inputs.') x!08FL)  
    end VdZmrq;?/  
    v0yaFP#kG  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 0 =2D 90  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. _'yN4>=6u  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of l<]@5"wN  
    %   order N and frequency M, evaluated at R.  N is a vector of $H9+>Z0(  
    %   positive integers (including 0), and M is a vector with the KfO$bmwmx  
    %   same number of elements as N.  Each element k of M must be a %$)[qa3  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) *P#okwp  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is d&dp#)._8  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix %)Pn<! L  
    %   with one column for every (N,M) pair, and one row for every  4|9c+^%^  
    %   element in R. 8%dE$smH  
    % T w!]N%E  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- lAxbF  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is )L*6xTa~  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to {p{TG5rwX  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 hf/6VlZ  
    %   for all [n,m]. \m3;<A/3n  
    % cZ@z]LY.g  
    %   The radial Zernike polynomials are the radial portion of the a5v}w7vL  
    %   Zernike functions, which are an orthogonal basis on the unit ;<JyA3i^V,  
    %   circle.  The series representation of the radial Zernike | Vtd !9  
    %   polynomials is |]d A`e&y  
    % 7g}lg8M  
    %          (n-m)/2 N6"b Ox J(  
    %            __ aIrQ=}  
    %    m      \       s                                          n-2s 6[dLj9 G%  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r )}-,4Iu%  
    %    n      s=0 pohA??t2:  
    % SIBNU3;DL  
    %   The following table shows the first 12 polynomials. n( |~z   
    % CLb~6LD  
    %       n    m    Zernike polynomial    Normalization C6=P(%y  
    %       --------------------------------------------- y|BRAk&n  
    %       0    0    1                        sqrt(2) ^ di[J^  
    %       1    1    r                           2 _%M5 T  
    %       2    0    2*r^2 - 1                sqrt(6) d+1q[,-  
    %       2    2    r^2                      sqrt(6) y5d=r]_S:  
    %       3    1    3*r^3 - 2*r              sqrt(8) E^:8Jehq  
    %       3    3    r^3                      sqrt(8) u7_IO  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) vPm&0,R*y:  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) v&hQ;v  
    %       4    4    r^4                      sqrt(10) _B@=fY(g!  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) QEe\1>1"&  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) /B $9B  
    %       5    5    r^5                      sqrt(12) -R^OYgF  
    %       --------------------------------------------- #}/YnVk  
    % Xndgs}zz  
    %   Example: 4,8=0[eRG  
    % r[ UZHX5+S  
    %       % Display three example Zernike radial polynomials (vq0Gl  
    %       r = 0:0.01:1; qUH02" z@9  
    %       n = [3 2 5]; +1Qa7 \  
    %       m = [1 2 1]; wUGSM"~ |  
    %       z = zernpol(n,m,r); WOW:$.VO^  
    %       figure tOJK~%'  
    %       plot(r,z) rOt`5_2f  
    %       grid on -6URM`y'j  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') cmpT_51~O  
    % }@kD&2  
    %   See also ZERNFUN, ZERNFUN2. {*gO1TZt9  
    d|^cKLu  
    % A note on the algorithm. PSOW}Y|q  
    % ------------------------ [Yo3=(7J  
    % The radial Zernike polynomials are computed using the series O]"3o,/]G  
    % representation shown in the Help section above. For many special E?{{z4  
    % functions, direct evaluation using the series representation can E8[{U8)[;5  
    % produce poor numerical results (floating point errors), because K,uTO7Mk[  
    % the summation often involves computing small differences between |v,5s=} 7  
    % large successive terms in the series. (In such cases, the functions %^e~;i=2  
    % are often evaluated using alternative methods such as recurrence %\5 wHT+)  
    % relations: see the Legendre functions, for example). For the Zernike ra="4T$va  
    % polynomials, however, this problem does not arise, because the y\=(;]S'  
    % polynomials are evaluated over the finite domain r = (0,1), and l98.Hb7  
    % because the coefficients for a given polynomial are generally all >/*wlY!E  
    % of similar magnitude. !H,_*u.  
    % T=/GFg'  
    % ZERNPOL has been written using a vectorized implementation: multiple YL(7l|^!  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 2E V M*^A  
    % values can be passed as inputs) for a vector of points R.  To achieve S,9}p 1  
    % this vectorization most efficiently, the algorithm in ZERNPOL LaI(  
    % involves pre-determining all the powers p of R that are required to _/@VV5Mq  
    % compute the outputs, and then compiling the {R^p} into a single 'z'q)vcr  
    % matrix.  This avoids any redundant computation of the R^p, and I%.96V  
    % minimizes the sizes of certain intermediate variables. e(;1XqLM  
    % h/I'9&J>*  
    %   Paul Fricker 11/13/2006 c6IFt4)g  
    D}n&`^1X+  
    u/`jb2eEU:  
    % Check and prepare the inputs: c$X0C&m  
    % ----------------------------- ']nB_x7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) cY%[UK$l  
        error('zernpol:NMvectors','N and M must be vectors.') -JL  
    end ]_cBd)3P}  
    'ZyHp=RN)  
    if length(n)~=length(m) JfJUOaL  
        error('zernpol:NMlength','N and M must be the same length.') G k'j<a  
    end Dj=OUo[[d  
    HPc7Vo(  
    n = n(:); R|7yhsJq,  
    m = m(:); K\Oz ~,z  
    length_n = length(n); 4vri=P 2%  
    h'{}eYb+   
    if any(mod(n-m,2)) 5F@7A2ZR  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 9fk@C/$  
    end VieX 5  
    |K},f,  
    if any(m<0) czMu<@c [  
        error('zernpol:Mpositive','All M must be positive.') 7qfo%n"  
    end 6pkZ8Vp:  
    %s.hqr,I  
    if any(m>n) 4@,d{qp~  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') %bM^/7  
    end {@T8i ^EI  
    ("2ukHc  
    if any( r>1 | r<0 ) r 5!ie!5gE  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') yo)a_rY  
    end ~vD7BO`  
    44H#8kV  
    if ~any(size(r)==1) Qr`WPTQr"  
        error('zernpol:Rvector','R must be a vector.') T6s~f$G  
    end U.7;:W}c  
    GF6c6TXF@  
    r = r(:); Pn)^mt  
    length_r = length(r); t;P%&:"@M  
    m'Jk!eo  
    if nargin==4 Yjv[rH5v  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); =NyN.^bwT  
        if ~isnorm a6K1-SR^6)  
            error('zernpol:normalization','Unrecognized normalization flag.') >>lT-w  
        end %@IZ41<C  
    else q 6Q;9,  
        isnorm = false; j M%qv  
    end #"}Z'|X*  
    G~Xh4*#J  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (2H e]M\  
    % Compute the Zernike Polynomials s>E u[ uA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P8DT2|Z6f]  
    4:$?u}9[:[  
    % Determine the required powers of r: j%%l$i~  
    % ----------------------------------- )|>LSKT El  
    rpowers = []; 28l",j)S  
    for j = 1:length(n) yVe<[!hJ  
        rpowers = [rpowers m(j):2:n(j)]; (k?,+jnR  
    end /1X0h  
    rpowers = unique(rpowers); /yHM =&Vg]  
    K*uFqdLL!  
    % Pre-compute the values of r raised to the required powers, QJFx/zU  
    % and compile them in a matrix: uq;,h46ki  
    % ----------------------------- b*4[)Yg4  
    if rpowers(1)==0 rvT7 5dV0  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >S /Zd  
        rpowern = cat(2,rpowern{:}); TGxspmY6  
        rpowern = [ones(length_r,1) rpowern]; u@SE)qg  
    else 1x+Y gL5  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !ndc <],  
        rpowern = cat(2,rpowern{:}); x{u7#s1|/  
    end -a`EL]NX  
    yb BLBJb  
    % Compute the values of the polynomials: &wj;:f  
    % -------------------------------------- Zf<M14iM  
    z = zeros(length_r,length_n); {Y{*(5YV  
    for j = 1:length_n HjTK/x'_'L  
        s = 0:(n(j)-m(j))/2; YH`/;H=$G/  
        pows = n(j):-2:m(j); azMrY<  
        for k = length(s):-1:1 RYMOLX84  
            p = (1-2*mod(s(k),2))* ... x1)G!i  
                       prod(2:(n(j)-s(k)))/          ... ZOl =zn  
                       prod(2:s(k))/                 ... q_Td!?2?  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... >'#G$f  
                       prod(2:((n(j)+m(j))/2-s(k))); {.9phW4Vr?  
            idx = (pows(k)==rpowers); |xaJv:96%  
            z(:,j) = z(:,j) + p*rpowern(:,idx); (;=:QjaoZ  
        end kzCD>m  
         u/FnA-L4  
        if isnorm (80#{4kl  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); \(_FGa4j  
        end =Haqr*PDx  
    end 4ew|5Zex.~  
    ~:ddTv?F  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  (y^oGY;  
    Y_>z"T  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 8_>\A= E  
    K%qunjv  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)