非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 bHPYp5UwN
function z = zernfun(n,m,r,theta,nflag) ^M3~^lV
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. V `b2TS
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N W0(_~
% and angular frequency M, evaluated at positions (R,THETA) on the fdxLAC
% unit circle. N is a vector of positive integers (including 0), and Ky|88~}:C9
% M is a vector with the same number of elements as N. Each element Y,GU%[+
% k of M must be a positive integer, with possible values M(k) = -N(k) u}>#Eb
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, LUG;(Fko
% and THETA is a vector of angles. R and THETA must have the same XxT#X3D/,"
% length. The output Z is a matrix with one column for every (N,M) O!zV)^r
% pair, and one row for every (R,THETA) pair. bBu,#Mc
%
*-+&[P]m
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [DJ flCR&
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <A<{,:5C
% with delta(m,0) the Kronecker delta, is chosen so that the integral iocI:b<
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, pA`+hQNN
% and theta=0 to theta=2*pi) is unity. For the non-normalized
:l~ I
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Ot:CPm@
% q`|LRz&al
% The Zernike functions are an orthogonal basis on the unit circle. *YW/_
% They are used in disciplines such as astronomy, optics, and r>dwDBE
% optometry to describe functions on a circular domain. &J55P]7w
% ZtV9&rd7
% The following table lists the first 15 Zernike functions. YsG%6&zEq
% 3b*cU}go
% n m Zernike function Normalization /d0K7F
% -------------------------------------------------- \qR7mI/*
% 0 0 1 1 oE<`VY|
% 1 1 r * cos(theta) 2 vh"R'o
% 1 -1 r * sin(theta) 2 ]p*l%(dhY
% 2 -2 r^2 * cos(2*theta) sqrt(6) +~'865 {
% 2 0 (2*r^2 - 1) sqrt(3) cmBB[pk\
% 2 2 r^2 * sin(2*theta) sqrt(6) w ihH?~]
% 3 -3 r^3 * cos(3*theta) sqrt(8) ~Cl){8o
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) `kOD[*
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) lwHzj&/ ~
% 3 3 r^3 * sin(3*theta) sqrt(8) P#pn*L*"T
% 4 -4 r^4 * cos(4*theta) sqrt(10) rJPb 3F
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |s)Rxq){"V
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) &/mA7Vf>eR
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 09dK0H3(
% 4 4 r^4 * sin(4*theta) sqrt(10) 0FGe=$vD
% -------------------------------------------------- l-K9LTd
% "XB[|#&
% Example 1: _Bj)r}~7#
% SLO%7%>p
% % Display the Zernike function Z(n=5,m=1) q:l>O5
% x = -1:0.01:1; aki_RG>U'
% [X,Y] = meshgrid(x,x); Ae
mDJ8Y
% [theta,r] = cart2pol(X,Y); =3|O%\
% idx = r<=1; MA;1;uI,
% z = nan(size(X)); Q&MZN);.
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 2}YOcnB
% figure zEs>b(5u
% pcolor(x,x,z), shading interp |\QgX%
% axis square, colorbar #rxVd
7f
% title('Zernike function Z_5^1(r,\theta)') umD!2
w
% M9EfU
% Example 2: N U|d
% NZ;{t\
% % Display the first 10 Zernike functions Fkvl%n
% x = -1:0.01:1; ^m?KRm2
% [X,Y] = meshgrid(x,x); /3A^I{e74
% [theta,r] = cart2pol(X,Y); Em?d*z
% idx = r<=1; :q=%1~Idla
% z = nan(size(X)); +lJG(Qd
% n = [0 1 1 2 2 2 3 3 3 3]; cU0s
p
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Xg<*@4RD8
% Nplot = [4 10 12 16 18 20 22 24 26 28]; !v X D
% y = zernfun(n,m,r(idx),theta(idx)); 5V5%/FUm
% figure('Units','normalized') *_R]*o!W'
% for k = 1:10 `jzTmt
% z(idx) = y(:,k); I([!]z
% subplot(4,7,Nplot(k)) ulu9'ch
% pcolor(x,x,z), shading interp ?dD&p8{
% set(gca,'XTick',[],'YTick',[]) ~7Ts_:E-
% axis square C3< m7h
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Wi[ ~fI8^!
% end R16'?,
% hc~s"Atck
% See also ZERNPOL, ZERNFUN2. {S,l_d+(
(ohq0Y
% Paul Fricker 11/13/2006 Y3r%B9~
wB.Nn/p
)ap_Z6
% Check and prepare the inputs: b`)){LR
% ----------------------------- $rz=6h
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8#(Q_
error('zernfun:NMvectors','N and M must be vectors.') T?:glp[4I
end ojQI7 Uhw
1"/He ` 4
if length(n)~=length(m) A/s>PhxV
error('zernfun:NMlength','N and M must be the same length.') ,oaw0Vw
end e_s&L,ze
#[zI5)Meh
n = n(:); \]P!.}nX#
m = m(:); &8%e\W\K:/
if any(mod(n-m,2)) V6t,BJjS
error('zernfun:NMmultiplesof2', ... b8LoIY*
'All N and M must differ by multiples of 2 (including 0).') -:30:oq
end .u:81I=w(
N-I5X2
if any(m>n) 'rMN=1:iu"
error('zernfun:MlessthanN', ... /I)yU>o
'Each M must be less than or equal to its corresponding N.') }
@K FB
end vk*=4}:
1QmH{jM
if any( r>1 | r<0 ) Y2d;E.DH8
error('zernfun:Rlessthan1','All R must be between 0 and 1.') p3]_}Y
D[#
end >Y_*%QGH_
MS0Fl|YA
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 0KMctPT]p
error('zernfun:RTHvector','R and THETA must be vectors.') `)GrwfC
end PZ{Dv'C
0j30LXI_
r = r(:); [%9noB
theta = theta(:); /%0<p,T
length_r = length(r); C0S^h<iSe*
if length_r~=length(theta) %=?cZfFqO
error('zernfun:RTHlength', ... 9:`(Q3Ei
'The number of R- and THETA-values must be equal.') F%i^XA]a*
end -8r
TJ:]SB
% Check normalization: Ku\Y'ub
% -------------------- ~_Lr=C D;4
if nargin==5 && ischar(nflag) Nluv/?<
isnorm = strcmpi(nflag,'norm'); ({JHZ6uZ
if ~isnorm @J5Jpt*IE
error('zernfun:normalization','Unrecognized normalization flag.') TF 'U
end 4'-|UPhx
else Si_%Rr&jW
isnorm = false; 'XzXZJ[uq
end s3]?8hXd
4hAl-8~Q6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b&=5m
% Compute the Zernike Polynomials EhO|~A*R
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -O&CI)`;B
+)j1.X
% Determine the required powers of r: u0#}9UKQ
% ----------------------------------- 'ihhoW8
m_abs = abs(m); AX= 1b,s
rpowers = []; 4O;OjUI0a
for j = 1:length(n) mt5KbA>nU
rpowers = [rpowers m_abs(j):2:n(j)]; 6ezS {Q
end z]2]XTmWs
rpowers = unique(rpowers); %I-+Ead0i
;x:rZV/
% Pre-compute the values of r raised to the required powers, LJOr!rWi
% and compile them in a matrix: {_Lgtu
% ----------------------------- Ya;9]k8,
if rpowers(1)==0 =e gW
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Nnk@h
rpowern = cat(2,rpowern{:}); Ea?XT&,
rpowern = [ones(length_r,1) rpowern]; *P 3V
else /}Lt,9
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); DK=cVpN%s
rpowern = cat(2,rpowern{:}); nK$X[KrV'
end K-f1{ 0
Pfm_@'8
% Compute the values of the polynomials: '0\@Mc U]
% -------------------------------------- K"b`#xN(t
y = zeros(length_r,length(n)); %e`$p=m
for j = 1:length(n) WBN w~|DO]
s = 0:(n(j)-m_abs(j))/2; +&Hr4@pgW
pows = n(j):-2:m_abs(j); rHf&:~
for k = length(s):-1:1 CBDG./
p = (1-2*mod(s(k),2))* ... Rb%%?*|
prod(2:(n(j)-s(k)))/ ... $&"V^@
prod(2:s(k))/ ... 52b*[tZ
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... YKbaf(K)9
prod(2:((n(j)+m_abs(j))/2-s(k))); ?UK|>9y}Z
idx = (pows(k)==rpowers); 7lS#f1E
y(:,j) = y(:,j) + p*rpowern(:,idx); ovwQ2TuK
end f)g7
3=
Fe.t/amS/
if isnorm MB%Q WU
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); wtT}V=_
end N? 5x9duK
end f+|$&p%
% END: Compute the Zernike Polynomials {
.*y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z0`T\ay
&AlJ "N|
% Compute the Zernike functions: % ,N<
% ------------------------------ f>s?4
idx_pos = m>0; S.Z9$k%
idx_neg = m<0; =
pI?A^
2P]L9'N{Y
z = y; @"Z7nJX
if any(idx_pos) 7T"XPV|W6
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); h Xb%;GL
end n!')wIk
if any(idx_neg) K9vIm4::d$
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Qj3a_p$)P
end r?CI)Y;
*26334B.R
% EOF zernfun