切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11109阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 XB5DPx  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 8a"%0d#  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 8}| (0mC  
    function z = zernfun(n,m,r,theta,nflag) k|d+#u[Mj@  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. =odFmF  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :*\Pn!r  
    %   and angular frequency M, evaluated at positions (R,THETA) on the x-3\Ls[I  
    %   unit circle.  N is a vector of positive integers (including 0), and ,zY$8y]  
    %   M is a vector with the same number of elements as N.  Each element i~J'%a<Qp  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) HyWCMK6b  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, PwLZkr@4^  
    %   and THETA is a vector of angles.  R and THETA must have the same M =r)I~  
    %   length.  The output Z is a matrix with one column for every (N,M) MFk5K  
    %   pair, and one row for every (R,THETA) pair. V~5jfcd  
    % G'A R`"F  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?5 7Sk+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), [q #\D  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral @sC`!Rmy'-  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <e</m)j  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized @I!0-OjL  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. k\GcHI-  
    % !Q0w\j h  
    %   The Zernike functions are an orthogonal basis on the unit circle. ZzT9j~  
    %   They are used in disciplines such as astronomy, optics, and j8lb~0JD  
    %   optometry to describe functions on a circular domain. y_lU=(%Jd  
    % ;;N9>M?b  
    %   The following table lists the first 15 Zernike functions. s,&Z=zt0R  
    % v^ V itLC  
    %       n    m    Zernike function           Normalization z~ /` 1  
    %       -------------------------------------------------- v z '&%(  
    %       0    0    1                                 1 W|63Ir67  
    %       1    1    r * cos(theta)                    2 |_@>*Vmg  
    %       1   -1    r * sin(theta)                    2 j+  0I-p  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) b}TS0+TF  
    %       2    0    (2*r^2 - 1)                    sqrt(3) j HJ`,#  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) P\rg" 3  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Zba2d,8/  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) U|Ta4W`k\  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) `&ckZiq  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) {[?(9u7R  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) q9r[$%G  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i6Emhji  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) lp%pbx43s  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~%kkeh\j  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) H*'IK'O  
    %       -------------------------------------------------- JO6)-U$7UG  
    % N~zdWnSZ@G  
    %   Example 1: Od,qbU4O  
    % PP33i@G  
    %       % Display the Zernike function Z(n=5,m=1) [ ~c|mOk  
    %       x = -1:0.01:1; SbrecZ  
    %       [X,Y] = meshgrid(x,x); o9yJf#-En  
    %       [theta,r] = cart2pol(X,Y); z/2//mM  
    %       idx = r<=1; '$]97b7G  
    %       z = nan(size(X)); O)n~](sC\  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); y(yHt= r  
    %       figure !9VY|&fHe  
    %       pcolor(x,x,z), shading interp !Pfr,a  
    %       axis square, colorbar 2B&3TLO  
    %       title('Zernike function Z_5^1(r,\theta)') w;:*P  
    % `% "\@<  
    %   Example 2: ( 2E\p  
    % u.m[u)HQ  
    %       % Display the first 10 Zernike functions ~/iKh1 1  
    %       x = -1:0.01:1; ?ri?GmI|  
    %       [X,Y] = meshgrid(x,x); u(F_oZ~  
    %       [theta,r] = cart2pol(X,Y); k|PN0&J  
    %       idx = r<=1; :vQrOn18p  
    %       z = nan(size(X)); U@)eTHv}6  
    %       n = [0  1  1  2  2  2  3  3  3  3]; _FU_Ubkr  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; '"/=f\)u  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; .glA gt  
    %       y = zernfun(n,m,r(idx),theta(idx)); bSi%2Onj  
    %       figure('Units','normalized') BLf>_b Uk  
    %       for k = 1:10 S3*`jF>q  
    %           z(idx) = y(:,k); a;qryUyG  
    %           subplot(4,7,Nplot(k)) -[9JJ/7y  
    %           pcolor(x,x,z), shading interp 3-qr)h  
    %           set(gca,'XTick',[],'YTick',[]) P90yI  
    %           axis square S8wLmd>  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])  JWhdMU  
    %       end ;oKZ!ND  
    % l<LP&  
    %   See also ZERNPOL, ZERNFUN2. "W7K"=X  
    f<fXsSv(  
    %   Paul Fricker 11/13/2006 mCsMqDH  
    )D5"ap]fX  
    t?-n*9,#S  
    % Check and prepare the inputs: n&;85IF1  
    % ----------------------------- .B]MpmpK  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) c%2QZC  
        error('zernfun:NMvectors','N and M must be vectors.') Xq]w<$  
    end Vvn2 Ep  
    G )trG9 .a  
    if length(n)~=length(m) R'bTN|Cq  
        error('zernfun:NMlength','N and M must be the same length.') k}kQI~S9  
    end 3G)#5 Lf<  
    2G67NC?+  
    n = n(:); :I j{s  
    m = m(:); hz;G$cuEE  
    if any(mod(n-m,2)) u~M q*  
        error('zernfun:NMmultiplesof2', ... 1R{!]uh  
              'All N and M must differ by multiples of 2 (including 0).') LqoB 10Kc\  
    end +,T RfP Fb  
    8>2.UrC  
    if any(m>n) fcRxp{*zO  
        error('zernfun:MlessthanN', ... .779pT!,M  
              'Each M must be less than or equal to its corresponding N.') \:# L)   
    end Sz)' ogl  
    /yDz/>ID\  
    if any( r>1 | r<0 ) 6y%qVx#!  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') UqFO|r"M  
    end BOb">6C  
    @w#-aGJO  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) p*R;hU  
        error('zernfun:RTHvector','R and THETA must be vectors.') Fh?gNSWq6  
    end Z58 X5"  
    (Du@ S  
    r = r(:); _JzEGpeG  
    theta = theta(:); gq4Tb c oA  
    length_r = length(r); M)J5;^["  
    if length_r~=length(theta) U2tV4_ e  
        error('zernfun:RTHlength', ... ?/wm(uL  
              'The number of R- and THETA-values must be equal.') [64:4/<}  
    end '1P2$#  
    `quw9j9`C\  
    % Check normalization: 9|^2",V  
    % -------------------- APn|\  
    if nargin==5 && ischar(nflag) . oF &Ff/[  
        isnorm = strcmpi(nflag,'norm'); qTRsZz@  
        if ~isnorm ''A_[J `>  
            error('zernfun:normalization','Unrecognized normalization flag.') O40?{v'  
        end dc+>m,3$  
    else &&5aM  
        isnorm = false; BA@lk+aW  
    end *<$*"p  
    G)AqbY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !j8FIY'[  
    % Compute the Zernike Polynomials 7cuE7"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a{L%7  
    |%BOZT  
    % Determine the required powers of r: >2Y=*K,:  
    % ----------------------------------- AwCcK6N1  
    m_abs = abs(m); =Pyj%4Rs  
    rpowers = []; Yj<a" Gr4[  
    for j = 1:length(n) I {SjlN}d  
        rpowers = [rpowers m_abs(j):2:n(j)]; Ij7p' a  
    end H9Gh>u]}  
    rpowers = unique(rpowers); v8wq,CYV  
    k`cfG\;r  
    % Pre-compute the values of r raised to the required powers, 8 v6(qBK  
    % and compile them in a matrix: 3xy<tqfr  
    % ----------------------------- 8$] 1M,$r  
    if rpowers(1)==0 kl" hBK#D%  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;_XFo&@  
        rpowern = cat(2,rpowern{:}); a)!o @  
        rpowern = [ones(length_r,1) rpowern]; 3RUy, s  
    else Yz9owe8}[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^23~ZHu  
        rpowern = cat(2,rpowern{:}); ~kV/!=  
    end t"sBPLU\  
    M+oHtX$  
    % Compute the values of the polynomials: 1Te %F+7  
    % -------------------------------------- U%-A?5  
    y = zeros(length_r,length(n)); UklUw  
    for j = 1:length(n) m 1b?J3   
        s = 0:(n(j)-m_abs(j))/2; z,RhYm  
        pows = n(j):-2:m_abs(j); }ZYd4h|g\z  
        for k = length(s):-1:1 UB@Rs|)  
            p = (1-2*mod(s(k),2))* ... $+Z[K.2J  
                       prod(2:(n(j)-s(k)))/              ... e b"VE%+Hu  
                       prod(2:s(k))/                     ... UJUEYG  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \eTwXe]Pv  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); m5n #v  
            idx = (pows(k)==rpowers); '(6z. toQ  
            y(:,j) = y(:,j) + p*rpowern(:,idx); #Bze,?@  
        end oE @a'*.\  
         +SzU  
        if isnorm x%=si[P  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); a9e>iU  
        end T}Tp$.gB  
    end i%iL[id:w  
    % END: Compute the Zernike Polynomials $V;i '(&7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fy1|$d{'  
    thh. A  
    % Compute the Zernike functions: Ng&%o  
    % ------------------------------ m[osg< CR_  
    idx_pos = m>0; DDQx g  
    idx_neg = m<0; Xfc-UP|}  
    ]|pe>:gf'  
    z = y; te`$%NRl  
    if any(idx_pos) yZ7&b&2nLn  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 'ycJMYP8  
    end MR7}s4o  
    if any(idx_neg) DPY}?dC  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ]OhiYU4  
    end Jumgb  
    *tFHM &a  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) pQ">UL*  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ]EbM9Fo-U  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated G't$Qx,IC  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ;O5zUl-`  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, B IEO,W|  
    %   and THETA is a vector of angles.  R and THETA must have the same JG. y,<xW  
    %   length.  The output Z is a matrix with one column for every P-value, P8 c`fbkX2  
    %   and one row for every (R,THETA) pair. A  'be8  
    % YqD=>P[O  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike +/7?HGf  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) XX!%RE`M8  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Ny7S  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ,t744k')  
    %   for all p. #zy :a%  
    % DK~xrU'  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 @;4zrzQi7  
    %   Zernike functions (order N<=7).  In some disciplines it is 7+cO_3AB  
    %   traditional to label the first 36 functions using a single mode E~T-=ocKE  
    %   number P instead of separate numbers for the order N and azimuthal %0?KMRr  
    %   frequency M. qZh/IW  
    % zk+9'r`-D  
    %   Example: }#+^{P3;  
    % dQX6(J j  
    %       % Display the first 16 Zernike functions v~C Czg  
    %       x = -1:0.01:1; L{\8!51L  
    %       [X,Y] = meshgrid(x,x); :Ov6_x]*  
    %       [theta,r] = cart2pol(X,Y); Oszj$C(jF  
    %       idx = r<=1; =%O6:YM   
    %       p = 0:15; 'oVx#w^mf  
    %       z = nan(size(X)); # w4-aJ  
    %       y = zernfun2(p,r(idx),theta(idx)); >6-`}G+|  
    %       figure('Units','normalized') Uc>lGo1j  
    %       for k = 1:length(p) 4"ZP 'I;  
    %           z(idx) = y(:,k); SulY1,  
    %           subplot(4,4,k) 2pCaX\t  
    %           pcolor(x,x,z), shading interp t}4, ]m s  
    %           set(gca,'XTick',[],'YTick',[]) ,qwuLBW  
    %           axis square 9=tIz  
    %           title(['Z_{' num2str(p(k)) '}']) 3=[mP, pLh  
    %       end !BF; >f`  
    % 372rbY  
    %   See also ZERNPOL, ZERNFUN. (WJRi:NP?  
    _f,C[C[e&  
    %   Paul Fricker 11/13/2006 c6]U E@A  
    0mVNQxHI  
    gJ{)-\  
    % Check and prepare the inputs: P+sW[:  
    % ----------------------------- ]EAO+x9  
    if min(size(p))~=1 ]W!0$'o  
        error('zernfun2:Pvector','Input P must be vector.') "k@/ 3  
    end Q&;9 x?e  
    (t|Zn@uY  
    if any(p)>35 #{6/ (X  
        error('zernfun2:P36', ... :Yl-w-oe  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... #!# l45p6  
               '(P = 0 to 35).']) B9 uoVcW  
    end L*+@>3mu)  
    p l0\2e)  
    % Get the order and frequency corresonding to the function number: +'a^f5  
    % ---------------------------------------------------------------- AT3Mlz~7#  
    p = p(:); X_h}J=33Q  
    n = ceil((-3+sqrt(9+8*p))/2); t:Q*gW Rh  
    m = 2*p - n.*(n+2); Il 'fL'3  
    WT=;:j  
    % Pass the inputs to the function ZERNFUN: \2$|Ei7  
    % ---------------------------------------- KpGhQdR#  
    switch nargin vE?G7%,  
        case 3 oc`H}Wvn  
            z = zernfun(n,m,r,theta); IJ"q~r$  
        case 4 oPM96 (  
            z = zernfun(n,m,r,theta,nflag); T8g$uFo  
        otherwise =H8;iS2R  
            error('zernfun2:nargin','Incorrect number of inputs.') 0,")C5j  
    end :I#V.  
    .q>iXE_c  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) l/5 hp.  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ^2rN>k,?  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Pq$n5fZC !  
    %   order N and frequency M, evaluated at R.  N is a vector of 8s@3hXD&  
    %   positive integers (including 0), and M is a vector with the (bS&D/N.  
    %   same number of elements as N.  Each element k of M must be a YmG("z  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 8oGRLYU N  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ;_=&-mz  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix .%-8 t{dt  
    %   with one column for every (N,M) pair, and one row for every *-X[u:  
    %   element in R. #'}*dy/  
    % -{vD: Il=6  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 8@R|Km5h  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 4qa.1j(R/  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to zt%Mx>V@  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 zQ PQ  
    %   for all [n,m]. kx^/*~ex  
    % \U_@S.  
    %   The radial Zernike polynomials are the radial portion of the rm_Nn8p,  
    %   Zernike functions, which are an orthogonal basis on the unit ]M3yLYK/P  
    %   circle.  The series representation of the radial Zernike %iB,IEw  
    %   polynomials is b,@/!ia  
    % !r-F>!~  
    %          (n-m)/2 *zLMpL_  
    %            __ KPki}'GO  
    %    m      \       s                                          n-2s I1J-)R+  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r t JmTBsn  
    %    n      s=0 Y:`&=wjP~  
    % <3 uNl  
    %   The following table shows the first 12 polynomials. 05R@7[GWq  
    % wuBPfb  
    %       n    m    Zernike polynomial    Normalization k7^5Bp8=  
    %       --------------------------------------------- {`_i`  
    %       0    0    1                        sqrt(2) 4ppz,L,4  
    %       1    1    r                           2 zm#  ?W  
    %       2    0    2*r^2 - 1                sqrt(6) 9H~n _   
    %       2    2    r^2                      sqrt(6) ->jDb/a{C  
    %       3    1    3*r^3 - 2*r              sqrt(8) VN.Je: Ju  
    %       3    3    r^3                      sqrt(8) sos5Y}  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) dWW.Y*339  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) O&&~NXI\  
    %       4    4    r^4                      sqrt(10) HKeK<V  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) =|9!vzG4  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) F[MFx^sT{  
    %       5    5    r^5                      sqrt(12) {)Xy%QV  
    %       --------------------------------------------- Xc.`-J~Il  
    % cb bFw  
    %   Example: zeRyL3fnmb  
    % 8EY:t zw  
    %       % Display three example Zernike radial polynomials q\)-BXw:  
    %       r = 0:0.01:1; L.IlBjD  
    %       n = [3 2 5]; 2zpr~cB=  
    %       m = [1 2 1]; ULW~90  
    %       z = zernpol(n,m,r); =u;MCQ[  
    %       figure d5d@k  
    %       plot(r,z) h];I{crh  
    %       grid on AwN!;t_0+N  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ]^]wP]R_  
    % u:EiwRW  
    %   See also ZERNFUN, ZERNFUN2. }7X%'Bg=M  
    >d6|^h'0  
    % A note on the algorithm. Gh$^{  
    % ------------------------ 11lsf/IP  
    % The radial Zernike polynomials are computed using the series EV?z`jE9  
    % representation shown in the Help section above. For many special j.YA 2mr  
    % functions, direct evaluation using the series representation can 28nFRr  
    % produce poor numerical results (floating point errors), because v>56~AJ  
    % the summation often involves computing small differences between "5 A! jq  
    % large successive terms in the series. (In such cases, the functions n:X y6H  
    % are often evaluated using alternative methods such as recurrence '<M{)?  
    % relations: see the Legendre functions, for example). For the Zernike  3CJwj  
    % polynomials, however, this problem does not arise, because the -YE^zzh  
    % polynomials are evaluated over the finite domain r = (0,1), and ~5g~;f[4  
    % because the coefficients for a given polynomial are generally all <uJ@:oWG7  
    % of similar magnitude. 8_F1AU? u  
    %  @8 6f  
    % ZERNPOL has been written using a vectorized implementation: multiple / j^  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] n*$ g]G$  
    % values can be passed as inputs) for a vector of points R.  To achieve 'VbiVLWD  
    % this vectorization most efficiently, the algorithm in ZERNPOL UI#h&j5pW  
    % involves pre-determining all the powers p of R that are required to [!z,lY>  
    % compute the outputs, and then compiling the {R^p} into a single B1STGL`nK  
    % matrix.  This avoids any redundant computation of the R^p, and _j3fAr(V  
    % minimizes the sizes of certain intermediate variables. M_8{]uo  
    % |^aKs#va  
    %   Paul Fricker 11/13/2006 kP"9&R`E  
    VE24ToI?W"  
    =Uh$&m  
    % Check and prepare the inputs: nK,w]{<wG!  
    % ----------------------------- v1[29t<I!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *or(1DXP8  
        error('zernpol:NMvectors','N and M must be vectors.') "fI6Cpc  
    end @VBcJ{e,  
    !?XC1xe~R  
    if length(n)~=length(m) <m m[S  
        error('zernpol:NMlength','N and M must be the same length.') >bxS3FCX  
    end .h[:xYm  
    ?0SEMmp`H  
    n = n(:); R@0R`Zs  
    m = m(:); /mMV{[  
    length_n = length(n); '7/)Ot(  
    :t[_:3@  
    if any(mod(n-m,2)) ,>M[@4`,U  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Gq6*SaTk  
    end \8 ":]EU  
    ?CZd Ol  
    if any(m<0) <[v[ci  
        error('zernpol:Mpositive','All M must be positive.') U(Zq= M  
    end ]yu:i-SfP  
    y2v^-q3  
    if any(m>n) _&x%^&{  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ;*N5Y}?j'  
    end XuTD\g3)  
    @,}UWU  
    if any( r>1 | r<0 ) u y+pP!<  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') =vPj%oLp'a  
    end So;<6~  
    yX5\gO6G  
    if ~any(size(r)==1) B[}6-2<>?C  
        error('zernpol:Rvector','R must be a vector.') N;R^h? '  
    end =v\.h=~~  
    K'xV;r7Nt  
    r = r(:); O2+6st  
    length_r = length(r); lFk R=!?=  
    5N]"~w*  
    if nargin==4 FsPw1A$y  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); /efUjkP  
        if ~isnorm i@q&5;%%  
            error('zernpol:normalization','Unrecognized normalization flag.') #z(]xI)"  
        end Fcx&hj1gQ  
    else [KQi.u  
        isnorm = false; jo7\`#(Q  
    end o4;(Zi#Z  
    vX>)je5#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b$7 +;I;  
    % Compute the Zernike Polynomials ~,Qp^"rlW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ni>[D"|  
    NHt\ U9l'  
    % Determine the required powers of r: [;N'=]`  
    % ----------------------------------- h;Qk @F  
    rpowers = []; `XKLU  
    for j = 1:length(n) N mG#   
        rpowers = [rpowers m(j):2:n(j)]; [Pp'Ye~K@c  
    end 8|^7ai[am  
    rpowers = unique(rpowers); m~|40)   
    [UR-I0 s!/  
    % Pre-compute the values of r raised to the required powers, JJnH%Q  
    % and compile them in a matrix: )+^+s d  
    % ----------------------------- W)/#0*7  
    if rpowers(1)==0 wL1MENzp*z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); CITc2v3a  
        rpowern = cat(2,rpowern{:}); iscz}E,Y  
        rpowern = [ones(length_r,1) rpowern]; o-\[,}T)M  
    else V9vTsmo(  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); $qiya[&G4  
        rpowern = cat(2,rpowern{:}); x;S @bY  
    end #_1`)VS  
    ~u{uZ(~  
    % Compute the values of the polynomials: OI*H,Z "  
    % -------------------------------------- t1".0  
    z = zeros(length_r,length_n); 3$tdwe$S  
    for j = 1:length_n v19-./H^ j  
        s = 0:(n(j)-m(j))/2; 3Vwh|1?  
        pows = n(j):-2:m(j); 7$b1<.WX  
        for k = length(s):-1:1 +vH4MwG$.&  
            p = (1-2*mod(s(k),2))* ... H}!r|nG  
                       prod(2:(n(j)-s(k)))/          ... #WuBL_nZ~  
                       prod(2:s(k))/                 ... 29rX%09T]  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... K'bP@y_cq  
                       prod(2:((n(j)+m(j))/2-s(k))); >z03{=sAN  
            idx = (pows(k)==rpowers); \zY!qpX<  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ZNoDFf*h  
        end ,}PgOJZ  
         XX@ZQcN  
        if isnorm Y73C5.dNcE  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); [GR; ?R5  
        end eRYK3W  
    end ok[i<zl; '  
    9Na$W:P c  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  MgZ/(X E  
    dtDFoETz  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 w;M#c Y  
    \bXa&Lq  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)