切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11461阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Cv p#=x0  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! /q/^B> ]  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 0BOL0<Wq  
    function z = zernfun(n,m,r,theta,nflag) 4@-Wp]  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. \ow(4O#  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4XeO^#  
    %   and angular frequency M, evaluated at positions (R,THETA) on the E/E|*6R  
    %   unit circle.  N is a vector of positive integers (including 0), and Wx8;+!2Q/  
    %   M is a vector with the same number of elements as N.  Each element Z,F1n/7  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) J!'IkC$>  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, X0KUnxw  
    %   and THETA is a vector of angles.  R and THETA must have the same a$LoQ<f_  
    %   length.  The output Z is a matrix with one column for every (N,M) ?W&ajH_T  
    %   pair, and one row for every (R,THETA) pair. XK(aH~7xme  
    % O@rZ ^Aa  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike I#zL-RXT  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), U.|0y=  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral g#5t8w  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, .O PBET(gv  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Ba n^wX  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. YJwffV}nd  
    % }5?|iUH|  
    %   The Zernike functions are an orthogonal basis on the unit circle. Ft>,  
    %   They are used in disciplines such as astronomy, optics, and n$"B F\eM  
    %   optometry to describe functions on a circular domain. D,s[{RW+q  
    % u 0 K1n_  
    %   The following table lists the first 15 Zernike functions. /{Z<!7u;U  
    % -"xC\R  
    %       n    m    Zernike function           Normalization I>>X-}  
    %       -------------------------------------------------- w1= f\  
    %       0    0    1                                 1 9O:-q[K**  
    %       1    1    r * cos(theta)                    2 K*"Fpx{M  
    %       1   -1    r * sin(theta)                    2 XJ3aaMh"  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) VO*fC  
    %       2    0    (2*r^2 - 1)                    sqrt(3) mpl^LF[  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ` h1>rP  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ~@iYP/=/Q  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 'W[Nr  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) |%=c<z+8  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) "6iq_!#L  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ;7!u(XzN  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U[!wu]HMF  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) PMiG:bM  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v1E(K09h2  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) IPnx5#eB  
    %       -------------------------------------------------- .~4DlT  
    % RD*.n1N1  
    %   Example 1: w{Y:p[}  
    % @ds.)sKA>  
    %       % Display the Zernike function Z(n=5,m=1) Wt! NLlN8  
    %       x = -1:0.01:1; &>hln<a>  
    %       [X,Y] = meshgrid(x,x); L4Si0 K  
    %       [theta,r] = cart2pol(X,Y); 4[K6ZDBU  
    %       idx = r<=1; *&W1|Qkg_  
    %       z = nan(size(X)); NW?h~2  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); p,#**g:  
    %       figure 5U(ry6fI=  
    %       pcolor(x,x,z), shading interp T- lHlm  
    %       axis square, colorbar [2zS@p  
    %       title('Zernike function Z_5^1(r,\theta)') kL%o9=R1  
    % Je~<2EsQ  
    %   Example 2: ~ponYc.Y  
    % Yo2n [  
    %       % Display the first 10 Zernike functions m?<5-"hz  
    %       x = -1:0.01:1; 4i Z7BD  
    %       [X,Y] = meshgrid(x,x); `~ R%}ID  
    %       [theta,r] = cart2pol(X,Y); 1$ {Cwb/F  
    %       idx = r<=1; c(!{_+q"  
    %       z = nan(size(X)); B,ZLX/c9  
    %       n = [0  1  1  2  2  2  3  3  3  3]; u_ym=N57`  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; `z`"0;,7S  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; <ApzcyC  
    %       y = zernfun(n,m,r(idx),theta(idx)); )Ft>X9$  
    %       figure('Units','normalized') =tfS@o/n  
    %       for k = 1:10 ILXVyU  
    %           z(idx) = y(:,k); 7j\jOkl V  
    %           subplot(4,7,Nplot(k)) y Ide]  
    %           pcolor(x,x,z), shading interp Pb@9<NXm'  
    %           set(gca,'XTick',[],'YTick',[]) 7_AcvsdW  
    %           axis square 0p ZX_L'  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;=?KQq f  
    %       end [d,")Ng  
    % ngQ]  
    %   See also ZERNPOL, ZERNFUN2. dK?vg@|'  
    q|wwfPez7  
    %   Paul Fricker 11/13/2006 G+f@m,  
    qi-!iT(fe  
    swT/ tesj  
    % Check and prepare the inputs: -<WQ>mrB&  
    % ----------------------------- (8OaXif  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i.*Utm`1"e  
        error('zernfun:NMvectors','N and M must be vectors.') <YBA 7i  
    end JGKiVBN  
     -!z,t7!  
    if length(n)~=length(m) 0 6S-3bis  
        error('zernfun:NMlength','N and M must be the same length.') [1gWc`#  
    end .jC-&(R +  
    <hbxerg  
    n = n(:); or1D 6 *'  
    m = m(:); c_^-`7g  
    if any(mod(n-m,2)) fo30f =^Gi  
        error('zernfun:NMmultiplesof2', ... hM @F|t3  
              'All N and M must differ by multiples of 2 (including 0).') F;^GhiQVS  
    end t9B]V  
    :If1zB)  
    if any(m>n) X"qC&oZmf  
        error('zernfun:MlessthanN', ... .I&]G  
              'Each M must be less than or equal to its corresponding N.') +c^[[ K"  
    end 6Q.6  
    o Z#4<7K  
    if any( r>1 | r<0 ) -I#1xJU  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') S+EC!;@Xg  
    end J 4EG  
    L5tSS=  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) e$+?l~  
        error('zernfun:RTHvector','R and THETA must be vectors.') ^s&1,  
    end REvY`   
    l|P(S(ikh  
    r = r(:); H%:~&_D  
    theta = theta(:); H,H=y},  
    length_r = length(r); [LJ1wBMw  
    if length_r~=length(theta) {]w @s7E  
        error('zernfun:RTHlength', ... jI(}CT`g  
              'The number of R- and THETA-values must be equal.') n-7|{1U  
    end ^gpswhp 5  
    3,cZ*4('d  
    % Check normalization: c`(]j w  
    % -------------------- UlN+  
    if nargin==5 && ischar(nflag) <e 'S'  
        isnorm = strcmpi(nflag,'norm'); {$ghf"  
        if ~isnorm b4$-?f?V  
            error('zernfun:normalization','Unrecognized normalization flag.') H1FSN6'  
        end Gdd lB2L)x  
    else dfBTx6/F  
        isnorm = false; ]#N~r&hmQ  
    end SBY  
    ` qqUuFMM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k]=Yi;  
    % Compute the Zernike Polynomials @,RrAL }|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'K=n}}&:  
    [D=3:B&f  
    % Determine the required powers of r: ?-P]m&nh|  
    % ----------------------------------- H"H&uA9"  
    m_abs = abs(m); 5};Nv{km^2  
    rpowers = []; 4Y[uqn[  
    for j = 1:length(n) h<50jnH!  
        rpowers = [rpowers m_abs(j):2:n(j)]; p}j$p'D.RI  
    end 8%s_~Yc  
    rpowers = unique(rpowers); OA?? fb, b  
    mRT`'fxK  
    % Pre-compute the values of r raised to the required powers, (0Xgv3wd  
    % and compile them in a matrix: ! `yg bI.  
    % ----------------------------- ]R8}cbtU  
    if rpowers(1)==0 !'()QtvC<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); fCL5Et  
        rpowern = cat(2,rpowern{:}); 0?]*-wvp  
        rpowern = [ones(length_r,1) rpowern]; BK>uJv-qU  
    else  2L~[dn.s  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); |5 sI=?p&t  
        rpowern = cat(2,rpowern{:}); \h DH81L  
    end I |?zSFa  
    }>\+eG  
    % Compute the values of the polynomials: XAV|xlfm  
    % -------------------------------------- .6yC' 3~;o  
    y = zeros(length_r,length(n)); uX-]z3+  
    for j = 1:length(n) \7QAk4I~  
        s = 0:(n(j)-m_abs(j))/2; LY%`O#i.  
        pows = n(j):-2:m_abs(j); -,t2D/xK  
        for k = length(s):-1:1 ]urrAIK  
            p = (1-2*mod(s(k),2))* ... t'bzhPQO)f  
                       prod(2:(n(j)-s(k)))/              ... F^Yt\V~T  
                       prod(2:s(k))/                     ... ewYZ} "o  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... SbmakNWJ}  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 51Yq>'8  
            idx = (pows(k)==rpowers); Y3+GBqP  
            y(:,j) = y(:,j) + p*rpowern(:,idx); RzG<&a3B3s  
        end XY]|OZ7(  
         beyC't  
        if isnorm !xm87I  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5Uc!;Gd?b  
        end _u$X.5Q;  
    end [:geDk9O#'  
    % END: Compute the Zernike Polynomials "pb,|U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xyK_1n@b  
    je6H}eWTC6  
    % Compute the Zernike functions: t =ErJ  
    % ------------------------------ :zk69P3  
    idx_pos = m>0; t1,sG8Z  
    idx_neg = m<0; k\UDZ)TQV  
    K~p\B  
    z = y; W8:?y*6  
    if any(idx_pos) }v[*V   
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); I4kN4*d!N,  
    end t&+f:)n  
    if any(idx_neg) /79_3;^  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {O-,JCq/  
    end #!d@;= [\  
    u?[dy n  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ZOGH.`  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. HCHZB*r[  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated = 8F/]8_  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive \; Io  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, iGmBG1a\  
    %   and THETA is a vector of angles.  R and THETA must have the same TY[{)aH{S  
    %   length.  The output Z is a matrix with one column for every P-value, E5.3wOE  
    %   and one row for every (R,THETA) pair. 8YJ8_$Z  
    % UTw f!  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike f.ku v"  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Mq!03q6  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 5#+G7 'k  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 W]p)}#FR  
    %   for all p. J_A+)_  
    % iOI8'`mk  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Gp.+&\vi  
    %   Zernike functions (order N<=7).  In some disciplines it is e*w2u<HP  
    %   traditional to label the first 36 functions using a single mode j,")c'r&dD  
    %   number P instead of separate numbers for the order N and azimuthal HE0UcP1U  
    %   frequency M. zj.;O#hW  
    % 2 F3U,}  
    %   Example: a=*&OW  
    % ]t-_.E )F  
    %       % Display the first 16 Zernike functions zCxr]md  
    %       x = -1:0.01:1; @Y":DHF5q  
    %       [X,Y] = meshgrid(x,x); zmk#gk2H  
    %       [theta,r] = cart2pol(X,Y); &UtsI@Mu  
    %       idx = r<=1; tPh``o  
    %       p = 0:15; CO!K[ q#  
    %       z = nan(size(X)); )0Av:eF-+  
    %       y = zernfun2(p,r(idx),theta(idx)); ,B ]kX/W  
    %       figure('Units','normalized') Z6%Hhk[  
    %       for k = 1:length(p) J{"<Hgb  
    %           z(idx) = y(:,k); m'&^\7;D  
    %           subplot(4,4,k) [5$=G@ zf  
    %           pcolor(x,x,z), shading interp ]F[ V6`H  
    %           set(gca,'XTick',[],'YTick',[]) 2aiZ  
    %           axis square Z)B5g>  
    %           title(['Z_{' num2str(p(k)) '}']) o.-rdP0P>  
    %       end !"{+|heU9p  
    % NLZTIZCK  
    %   See also ZERNPOL, ZERNFUN. Gz)]1Z{%$  
    4$D:<8B  
    %   Paul Fricker 11/13/2006 gZQ,br*  
    |` gSkv  
    hawE2k0p(  
    % Check and prepare the inputs: |U}al[  
    % ----------------------------- / 0Z_$Q&e  
    if min(size(p))~=1 A%S6&!I:(  
        error('zernfun2:Pvector','Input P must be vector.') c%,~1l  
    end X2PQL"`  
    u\gPx4]4c  
    if any(p)>35 C"w>U   
        error('zernfun2:P36', ... ,<]X0;~oB  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... |ho|Kl `=  
               '(P = 0 to 35).']) ao>`[-  
    end K1c@]]y)  
    <a_Q1 l  
    % Get the order and frequency corresonding to the function number: f(Jz*el S  
    % ---------------------------------------------------------------- Y/Yp+W6n  
    p = p(:); %G!BbXlz  
    n = ceil((-3+sqrt(9+8*p))/2); ,#Y>nP0  
    m = 2*p - n.*(n+2); Wx&gI4~  
    gKK*` L~  
    % Pass the inputs to the function ZERNFUN: NIn#  
    % ---------------------------------------- gGl}~  
    switch nargin F.:B_t  
        case 3 ;  ntq%  
            z = zernfun(n,m,r,theta); X.V6v4  
        case 4 Aa^%_5  
            z = zernfun(n,m,r,theta,nflag); @ %LrpD  
        otherwise u Ey>7I  
            error('zernfun2:nargin','Incorrect number of inputs.') z& !n'N<C  
    end Ar@" K!TS  
    fg1_D  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Nrp0z:  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. $`L!2  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of md8r"  
    %   order N and frequency M, evaluated at R.  N is a vector of Kts#e:k@  
    %   positive integers (including 0), and M is a vector with the -X#Zn>#  
    %   same number of elements as N.  Each element k of M must be a Kfho:e,  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) E3X6-J|  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is >U/ m/H'  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ,A`.u\f(:  
    %   with one column for every (N,M) pair, and one row for every 1an?/j,  
    %   element in R. tz0_S7h  
    % rSGp]W|  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- o/uA_19  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is UOTM>d1P  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to \-A=??@H  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 k)+2+hX&>  
    %   for all [n,m]. ZMs$C3  
    % 7aAT  
    %   The radial Zernike polynomials are the radial portion of the !KiN} p  
    %   Zernike functions, which are an orthogonal basis on the unit D,FX&{TYU  
    %   circle.  The series representation of the radial Zernike G,+-}~$_  
    %   polynomials is SF?Ublc!   
    % :{za[,  
    %          (n-m)/2 l(;~9u0sa  
    %            __ US<bM@[  
    %    m      \       s                                          n-2s y%* hHnGd  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r :CH?,x^!@  
    %    n      s=0 EjZ_|Q  
    % 1\G S"4~P  
    %   The following table shows the first 12 polynomials. <3aiS?i.h  
    % [kfLT::mT  
    %       n    m    Zernike polynomial    Normalization 7g'jg7  
    %       --------------------------------------------- }A@op+0E  
    %       0    0    1                        sqrt(2) q'r(#,B<3  
    %       1    1    r                           2 nW1Obu8x|  
    %       2    0    2*r^2 - 1                sqrt(6) Y*!J +A#  
    %       2    2    r^2                      sqrt(6) GjDs,9@f  
    %       3    1    3*r^3 - 2*r              sqrt(8) !/pE6)a  
    %       3    3    r^3                      sqrt(8) #=~n>qn]  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) !RX7TYf  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ;| (_;d  
    %       4    4    r^4                      sqrt(10) D[d+lq#p  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ]w2nVC 3  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) //9M~qHa"  
    %       5    5    r^5                      sqrt(12) <[7 bUB  
    %       --------------------------------------------- AcF6p)@_  
    % i vy+e-)  
    %   Example: ANuIPF4NxP  
    % $LxfdSa  
    %       % Display three example Zernike radial polynomials qo2/?]  
    %       r = 0:0.01:1; 07L >@Gf  
    %       n = [3 2 5]; CxyL'k  
    %       m = [1 2 1]; =u M2l  
    %       z = zernpol(n,m,r); OMaG*fb=  
    %       figure AF-4b*oB  
    %       plot(r,z) xiv1y4(%  
    %       grid on -)S(eqq1  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 1: cD\  
    % Yv="oG!xL  
    %   See also ZERNFUN, ZERNFUN2. Q};g~b3  
    !3Xu#^Xxj  
    % A note on the algorithm. JA .J~3  
    % ------------------------ sj@B0R=Qo  
    % The radial Zernike polynomials are computed using the series J|vriI;  
    % representation shown in the Help section above. For many special lJe=z  
    % functions, direct evaluation using the series representation can ==$>M d  
    % produce poor numerical results (floating point errors), because 0taopDi ;d  
    % the summation often involves computing small differences between pq<302uBQ  
    % large successive terms in the series. (In such cases, the functions ~Q  q0  
    % are often evaluated using alternative methods such as recurrence AOvn<Q  
    % relations: see the Legendre functions, for example). For the Zernike {yPJYF_l  
    % polynomials, however, this problem does not arise, because the xMck A<E  
    % polynomials are evaluated over the finite domain r = (0,1), and Y!M&8;>  
    % because the coefficients for a given polynomial are generally all ?Q`u\G3.m  
    % of similar magnitude. X?p.U  
    % 3zV{cm0  
    % ZERNPOL has been written using a vectorized implementation: multiple *|Cmm>z"7  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] _FG?zE  
    % values can be passed as inputs) for a vector of points R.  To achieve i,77F!  
    % this vectorization most efficiently, the algorithm in ZERNPOL LV$@J  
    % involves pre-determining all the powers p of R that are required to 6xLLIby,  
    % compute the outputs, and then compiling the {R^p} into a single I/F3%'O  
    % matrix.  This avoids any redundant computation of the R^p, and cr;\;Ta_!W  
    % minimizes the sizes of certain intermediate variables. RtE2%d$JT  
    % &f2'cR  
    %   Paul Fricker 11/13/2006 Re`'dde=  
    !G`7T  
    #q[k"x=c  
    % Check and prepare the inputs: cjTV~(i'4A  
    % ----------------------------- 6Dx^$=Sa$  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) o;d><  
        error('zernpol:NMvectors','N and M must be vectors.') pA ,xDs@37  
    end C(t >ZR  
    (5-4`:1ux  
    if length(n)~=length(m) =Zg%& J  
        error('zernpol:NMlength','N and M must be the same length.') zjuU*$A4  
    end Lm-yTMNPn  
     X`REhvT  
    n = n(:); jJ(()EJ  
    m = m(:); {w,g~ew `  
    length_n = length(n); G-vBJlt=t  
    Iuh1tcc  
    if any(mod(n-m,2)) GIo7- 6kvm  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ,5tW|=0@  
    end ,-55*Rbi  
    H <gC{:S  
    if any(m<0) Rn"Raq7Cn*  
        error('zernpol:Mpositive','All M must be positive.') 8IX:XDEQ  
    end DH3.4EUWS  
    SHc<`M'+  
    if any(m>n) Qxw?D4/Y  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') %xa.{`}`U  
    end u{Z 4M3U  
    9e`.H0  
    if any( r>1 | r<0 ) H%}ro.u  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') O.ce"5Y^  
    end C(RZ09,.S  
    @raw8w\Zj+  
    if ~any(size(r)==1) st|;] q9?  
        error('zernpol:Rvector','R must be a vector.') >EMsBX  
    end -AJ$-y  
    @|N'V"*MT  
    r = r(:); qUZm6)p6[a  
    length_r = length(r); 2;82*0Y%  
    'dkKBLsx  
    if nargin==4 k^x[(gw  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); "kYzgi  
        if ~isnorm -uE2h[X|  
            error('zernpol:normalization','Unrecognized normalization flag.') *5kQ6#l  
        end M9 _G  
    else W .B>"u  
        isnorm = false; P|:*OM p  
    end Aqc Cb[1r  
    GT -(r+u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ezvm5~<  
    % Compute the Zernike Polynomials #_A <C+[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S:\a&+og  
    j@j%)CCM  
    % Determine the required powers of r: R')D~JJ<8a  
    % ----------------------------------- 72YL   
    rpowers = []; W(C\lSE0  
    for j = 1:length(n) .e^AS~4pl  
        rpowers = [rpowers m(j):2:n(j)]; M[;N6EJH  
    end 5W T^;J9V  
    rpowers = unique(rpowers); GzC=xXON  
    zF%'~S0{  
    % Pre-compute the values of r raised to the required powers, DE0gd ux8  
    % and compile them in a matrix: IQ&o%   
    % ----------------------------- i?*_-NAm  
    if rpowers(1)==0 (|{bZW}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); /SXms'C  
        rpowern = cat(2,rpowern{:}); :9_N Y"P  
        rpowern = [ones(length_r,1) rpowern]; 86]})H  
    else r`; "  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j-?zB .jAh  
        rpowern = cat(2,rpowern{:}); |Lq -vs?  
    end 0+i\j`O&  
    &ye,A(4  
    % Compute the values of the polynomials: FqvMi:F  
    % -------------------------------------- GN7\p)  
    z = zeros(length_r,length_n); vlHE\%{  
    for j = 1:length_n s+=JT+g  
        s = 0:(n(j)-m(j))/2; ZL0':7  
        pows = n(j):-2:m(j); \z/_vzz4  
        for k = length(s):-1:1 h-^7cHI}  
            p = (1-2*mod(s(k),2))* ... B\/"$"  
                       prod(2:(n(j)-s(k)))/          ... __FhuP P  
                       prod(2:s(k))/                 ... \:ELO[(#|{  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... FY^#%0~  
                       prod(2:((n(j)+m(j))/2-s(k))); +cDz`)N,,  
            idx = (pows(k)==rpowers); S.!0~KR: U  
            z(:,j) = z(:,j) + p*rpowern(:,idx); .^?^QH3  
        end Ws+Zmpk%  
         K*ZH<@o4  
        if isnorm BUuU#e5  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); w&M)ws;$  
        end WWO@ULGY  
    end SO}$96  
    :s Mc}k?9S  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  tlU&p'  
    ~=5vc''  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 pZR KM<k  
    $I%75IZ  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)