非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 t,=@hs
hN
function z = zernfun(n,m,r,theta,nflag) 28T\@zi
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5W[3_P+
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N j8[`~pb
% and angular frequency M, evaluated at positions (R,THETA) on the ]cF1c90%
% unit circle. N is a vector of positive integers (including 0), and t+=1 2{9;f
% M is a vector with the same number of elements as N. Each element x{NNx:T1
% k of M must be a positive integer, with possible values M(k) = -N(k) U`bC>sCp
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, cg(QjH"
% and THETA is a vector of angles. R and THETA must have the same +CnyK(V
% length. The output Z is a matrix with one column for every (N,M) <qbZG}u
% pair, and one row for every (R,THETA) pair. 8!u/
% E8T"{
R80
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,+ns
{ppn
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gdoJ4b
% with delta(m,0) the Kronecker delta, is chosen so that the integral Y!++CMzU
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, s{(ehP.Dd
% and theta=0 to theta=2*pi) is unity. For the non-normalized H$~M`Y9I~
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. WF ?/GN
% -yX.Jv
% The Zernike functions are an orthogonal basis on the unit circle. \6`v.B&v
% They are used in disciplines such as astronomy, optics, and S2J#b"Y
% optometry to describe functions on a circular domain. do:QH.q8)
% T&9`?QD
% The following table lists the first 15 Zernike functions. ps"/}u l
% O"
%Hprx
% n m Zernike function Normalization +(;8@"u
% -------------------------------------------------- k~0#'I9
% 0 0 1 1 ? .c?Pu
% 1 1 r * cos(theta) 2 OJMvn'y
% 1 -1 r * sin(theta) 2 0zeUP{MQ
% 2 -2 r^2 * cos(2*theta) sqrt(6) Bz~ -2#l
% 2 0 (2*r^2 - 1) sqrt(3) LQh^;
]^(
% 2 2 r^2 * sin(2*theta) sqrt(6) M*d-z
% 3 -3 r^3 * cos(3*theta) sqrt(8) 2Ryp@c&r^
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) jg~_'4f#
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) HA$Y1}
% 3 3 r^3 * sin(3*theta) sqrt(8) +VSZhg,Np8
% 4 -4 r^4 * cos(4*theta) sqrt(10) ?Wwh
_TO
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rs[?v*R74
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ^F>4~68d
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |n+#1_t%
% 4 4 r^4 * sin(4*theta) sqrt(10) LWD.
% -------------------------------------------------- 7<^'DOs
% 0(wf{5
% Example 1: pU
M&"V
% CXBzX:T?#
% % Display the Zernike function Z(n=5,m=1) OZG0AX+=#
% x = -1:0.01:1; @(Z( /P;:
% [X,Y] = meshgrid(x,x); ;5<P|:^
% [theta,r] = cart2pol(X,Y); pp(H
PKs=}
% idx = r<=1; 2*+3RrJ
% z = nan(size(X)); 6H0W`S0a
% z(idx) = zernfun(5,1,r(idx),theta(idx)); {5SfE$r
% figure +Qt[1Xq
% pcolor(x,x,z), shading interp a lrt*V|=
% axis square, colorbar #-,g&)`]
% title('Zernike function Z_5^1(r,\theta)') !]yQ1@)*'
% |-|jf
% Example 2: e[s5N:IUd3
% ICk(z~D~
% % Display the first 10 Zernike functions [d}qG#N
% x = -1:0.01:1; |,3l`o
k
% [X,Y] = meshgrid(x,x); mn.`qfMh
% [theta,r] = cart2pol(X,Y); ])C>\@c6Gm
% idx = r<=1; h9)RJSF4
% z = nan(size(X)); Po> e kz_E
% n = [0 1 1 2 2 2 3 3 3 3]; LaDY`u0G%
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ` "B^{o
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ; VBpp<
% y = zernfun(n,m,r(idx),theta(idx)); s,w YlVYf!
% figure('Units','normalized') J=):+F=
% for k = 1:10 C(s\LI!r
% z(idx) = y(:,k); \4aKLr
% subplot(4,7,Nplot(k)) M2dmG<
% pcolor(x,x,z), shading interp *.8JP
% set(gca,'XTick',[],'YTick',[]) IK3qE!,&U
% axis square j$+gq*I&E
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) A]j}'
% end g&bwtEZ
% e[}],W
% See also ZERNPOL, ZERNFUN2. IdF$Ml#[h
Bq *[c=(2
% Paul Fricker 11/13/2006 0vDg8i\
@m?{80;uQ
R3?:\d{
% Check and prepare the inputs: +lKrj\Xj
% ----------------------------- i *B:El1
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l]$40 j
error('zernfun:NMvectors','N and M must be vectors.') }C_|gd
end ]/_G-2.R
Wk}D]o0^@
if length(n)~=length(m) -Un=TX
error('zernfun:NMlength','N and M must be the same length.') AeaPK
end E3f9<hm
P% Q@9kO>
n = n(:); (`pNXQ0n
m = m(:); ~5ubh2{
if any(mod(n-m,2)) QF.3c6O@
error('zernfun:NMmultiplesof2', ... D
M}s0O$0
'All N and M must differ by multiples of 2 (including 0).') JR)/c6j
end 7
5|pp
EI\v
if any(m>n) XIRR Al(,
error('zernfun:MlessthanN', ... 2 h<U
'Each M must be less than or equal to its corresponding N.') [fxuUmU
end ;R!*I%
gQ>2!Qc a-
if any( r>1 | r<0 ) lbS?/f
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6JH56
end ]n5"Z,K
a.DX%C/5
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) E=kw)<X2
error('zernfun:RTHvector','R and THETA must be vectors.') EE]=f=3
end .H2qs{N!
?q!FG(
r = r(:); #k9<
theta = theta(:); {5-zyE
length_r = length(r); @!<d0_dnC
if length_r~=length(theta) YjLe(+WQ
error('zernfun:RTHlength', ... U CRAw3=
'The number of R- and THETA-values must be equal.') sAYV)w3u"
end 7)J6/('
{zP#woz2Q
% Check normalization: |sf*hlrJ
% -------------------- i3PKqlp.
if nargin==5 && ischar(nflag) 5V @&o`!=h
isnorm = strcmpi(nflag,'norm'); %iJ|H(P
if ~isnorm vCb]%sd-U
error('zernfun:normalization','Unrecognized normalization flag.') W2eAhz&
end ] H&c'
else [(|v`qMv/g
isnorm = false; b+@D_E-RJ
end *d>vR1
`(DJs-xD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rY,PSK/j
% Compute the Zernike Polynomials 8bOT*^b$H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^PqMi:htc
:}9j^}"c3
% Determine the required powers of r: o@/xPo|
% ----------------------------------- SY1GR n
m_abs = abs(m); `c(\i$1JY)
rpowers = []; ?4G(N=/&
for j = 1:length(n) ,J(lJ,c
rpowers = [rpowers m_abs(j):2:n(j)]; :#$F)]y'\
end =Ndli>x}1
rpowers = unique(rpowers); .X'<
D*
ia4k :\
% Pre-compute the values of r raised to the required powers, #s2B%X
% and compile them in a matrix: [AR>?6G-
% ----------------------------- AmcC:5
if rpowers(1)==0 .X
`C^z]+
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); OOB^gf}$'
rpowern = cat(2,rpowern{:}); =yqHC<8:
rpowern = [ones(length_r,1) rpowern]; 6Cc7ejt|u
else A-wRah.M
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); tZA:
rpowern = cat(2,rpowern{:}); qC@Ar)T
end T2weAk#J
XP?*=Z]
% Compute the values of the polynomials: l67KJ
% -------------------------------------- |RhM| i
y = zeros(length_r,length(n)); \[#t<dD
for j = 1:length(n) kus}WJ
s = 0:(n(j)-m_abs(j))/2; ;6m;M63 z
pows = n(j):-2:m_abs(j); 6I |A-h
for k = length(s):-1:1 #?&0D>E?k
p = (1-2*mod(s(k),2))* ... 8h.V4/?
prod(2:(n(j)-s(k)))/ ... {TAw)!R~
prod(2:s(k))/ ... M{Gxjmdx
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Y=2Un).&
prod(2:((n(j)+m_abs(j))/2-s(k))); C1QV[bJK
idx = (pows(k)==rpowers); EJm4xkYLj1
y(:,j) = y(:,j) + p*rpowern(:,idx);
c Zvf"cIs
end uGCp#>+
YaL]>.;Z:"
if isnorm Hwu4:^OL|
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); -9o{vmB{
end C_->u4-
end <KQ(c`KW7
% END: Compute the Zernike Polynomials MzTW8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s".HEP~]=
j*zD0I]
% Compute the Zernike functions: 9%!dNnUk
% ------------------------------ Mqv[XHfB
idx_pos = m>0; nPA@h
idx_neg = m<0; Q_O*oT(0
nvyB/
z = y; T20VX 8gX
if any(idx_pos) r:9gf?(&
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); $j*Qo/xd
end g1|w? pI1
if any(idx_neg) N.hzKq][
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Zdn!qyR`
end YYUe)j{T
3&*'6D
Tg
% EOF zernfun