非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Qp7h|<
function z = zernfun(n,m,r,theta,nflag) LI*=T
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. bFjH*~
P
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .do8\
% and angular frequency M, evaluated at positions (R,THETA) on the S4\a"WYg
% unit circle. N is a vector of positive integers (including 0), and `*6|2
% M is a vector with the same number of elements as N. Each element ClG\Kpirh
% k of M must be a positive integer, with possible values M(k) = -N(k) JR8|!Of@B
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, X$e*s\4
% and THETA is a vector of angles. R and THETA must have the same eSQkW
% length. The output Z is a matrix with one column for every (N,M) ^hXm=r4ozR
% pair, and one row for every (R,THETA) pair. "}MP {/
% NOg/rDs'{
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {0~\ T[qm
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), `WIZY33V
% with delta(m,0) the Kronecker delta, is chosen so that the integral \3OEC`
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~UJ.A<>Fh
% and theta=0 to theta=2*pi) is unity. For the non-normalized ~7 `,}) d
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. "AU.Eh"-1
% -0UR%R7q
% The Zernike functions are an orthogonal basis on the unit circle. R2v9gz;W
% They are used in disciplines such as astronomy, optics, and >TMd1?,
% optometry to describe functions on a circular domain. ;plBo%EBV
% $C.a@gm
% The following table lists the first 15 Zernike functions. EsGf+-}|!0
% ((C|&$@M
% n m Zernike function Normalization 58XZ]Mc0
% -------------------------------------------------- ^3[_4av
% 0 0 1 1 }4p)UX>aWT
% 1 1 r * cos(theta) 2 fX]`vjM{
% 1 -1 r * sin(theta) 2 Q7rBc
wm5
% 2 -2 r^2 * cos(2*theta) sqrt(6) \_WR:?l
% 2 0 (2*r^2 - 1) sqrt(3) EjL]#,QR
% 2 2 r^2 * sin(2*theta) sqrt(6) f";pfu_FZ
% 3 -3 r^3 * cos(3*theta) sqrt(8) Vm|KL3}NRv
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) iLch3[p%
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) )7 q"l3e"u
% 3 3 r^3 * sin(3*theta) sqrt(8) >MJ#|vO
% 4 -4 r^4 * cos(4*theta) sqrt(10) /cb`%"Z
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +}O -WX?
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) T?Kh'
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?HJh;96B
% 4 4 r^4 * sin(4*theta) sqrt(10) S=ZZ[E_~S
% -------------------------------------------------- s]%Cz \
% ~v%6*9
% Example 1: 4^uSW&`;/
% r[4n2Mys
% % Display the Zernike function Z(n=5,m=1) (IBT|K
% x = -1:0.01:1; @QV0l]H0+
% [X,Y] = meshgrid(x,x); GA[Ebzi
% [theta,r] = cart2pol(X,Y); "Yh;3tI4*
% idx = r<=1; Rjq Xz6
% z = nan(size(X)); &y5"0mA
% z(idx) = zernfun(5,1,r(idx),theta(idx)); &nP0T-T5y
% figure &EqLF
% pcolor(x,x,z), shading interp +9w[/n ^,G
% axis square, colorbar JD#x+~pb,8
% title('Zernike function Z_5^1(r,\theta)') iP0m1
% #h?IoB7
% Example 2: UB.1xcI
% 4d`YZNvZW/
% % Display the first 10 Zernike functions B~w$j/sWU
% x = -1:0.01:1; iqvLu{
% [X,Y] = meshgrid(x,x);
*[{j'7*cc
% [theta,r] = cart2pol(X,Y); 9a=Ll]=\
% idx = r<=1; nd]SI;<
% z = nan(size(X)); aOH|[
% n = [0 1 1 2 2 2 3 3 3 3]; l)9IgJ|<b
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; M@R"-$Z
% Nplot = [4 10 12 16 18 20 22 24 26 28]; j:h}ka/!p
% y = zernfun(n,m,r(idx),theta(idx)); zbmC?2$
% figure('Units','normalized') r }lGcG)
% for k = 1:10 eAf i!!Z<
% z(idx) = y(:,k); @j^R+F
% subplot(4,7,Nplot(k)) x="Wqcnj{
% pcolor(x,x,z), shading interp =p8uP5H
% set(gca,'XTick',[],'YTick',[]) tw_o?9
% axis square r,Uk)xa/^
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) kJJT`Ba&/
% end TI'v /=;)
% _K o#36.S
% See also ZERNPOL, ZERNFUN2. eR$@Q
j(=w4Sd_W
% Paul Fricker 11/13/2006 XVqOiv)
HU'Mi8xxy
f' ?/P~[
% Check and prepare the inputs: {V6&((E8
% ----------------------------- Ca|egQv
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |}z)>E
error('zernfun:NMvectors','N and M must be vectors.') wM+1/[7
end /W/e%.
Co1d44Q
if length(n)~=length(m) X:oOp=y]|
error('zernfun:NMlength','N and M must be the same length.') oX|T&"&
end G:<f(Gy
<rBW6o7
n = n(:); Y;/@[AwF
m = m(:); fB8, )&
if any(mod(n-m,2)) J].Oxch&y
error('zernfun:NMmultiplesof2', ... Ix- Mp
'All N and M must differ by multiples of 2 (including 0).') 'X;cgAq8(
end >Uw:cq
AELj"=RA
if any(m>n) dH y9
wU
error('zernfun:MlessthanN', ... o;$xN3f,
'Each M must be less than or equal to its corresponding N.') iFd
!ED
end 1&|]8=pG7
UzxL" `^7
if any( r>1 | r<0 ) PVI Oe}N
error('zernfun:Rlessthan1','All R must be between 0 and 1.') mtmC,jnD
end }bb,Iib
.9bi%=hP
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #EH=tJgO|J
error('zernfun:RTHvector','R and THETA must be vectors.') \ %Mcvb.?
end dua F?\vv
32wtN8kx
r = r(:); MgeC-XQM
theta = theta(:); KN}#8.'>3
length_r = length(r); x3q^}sj%
if length_r~=length(theta) RlOy,/-<
error('zernfun:RTHlength', ... !"N,w9MbD
'The number of R- and THETA-values must be equal.') 39v Bsc
end 7hHID>,o9%
(!*
l+}
% Check normalization: `?z('FV
% -------------------- }9^:(ty2A
if nargin==5 && ischar(nflag) _%e8GWf
isnorm = strcmpi(nflag,'norm'); =A'>1N
if ~isnorm t%:7W[_s
error('zernfun:normalization','Unrecognized normalization flag.') v\:AOY'
end 7m2iL#5[
else c,a8#Og
isnorm = false; 0Y8gUpe3P6
end o%_-u
+
1dN/H)]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 74([~Qs _M
% Compute the Zernike Polynomials L]=]/>jQ6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cfTT7O#Dc
w){B$X
% Determine the required powers of r: }b4 56J
% ----------------------------------- $MR1
*_\V
m_abs = abs(m); y!b"Cj
rpowers = []; SY,ns*>1F
for j = 1:length(n) o@)Fy51DD
rpowers = [rpowers m_abs(j):2:n(j)]; So ziFI
end Ti? "Hr<W
rpowers = unique(rpowers); A?MM9Y}K
P.Ntjz/B
% Pre-compute the values of r raised to the required powers, aT,WXW*
% and compile them in a matrix: ;P S4@,
% ----------------------------- sPNm.W$_
if rpowers(1)==0 /nO_e
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); e|tx`yA
rpowern = cat(2,rpowern{:}); $n<1D -0!r
rpowern = [ones(length_r,1) rpowern]; I#OZ:g^
else <WUgH6"
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); f#l9rV"@g
rpowern = cat(2,rpowern{:}); tR!C8:u
end !j $cBf4
a4s't%
P
% Compute the values of the polynomials: cxR.:LD}
% -------------------------------------- ef'kG"1
y = zeros(length_r,length(n)); H,D5)1Uu
for j = 1:length(n) Qb
{[xmc
s = 0:(n(j)-m_abs(j))/2; 7&id(&y/
pows = n(j):-2:m_abs(j); 6w%n$tiX
for k = length(s):-1:1 &k'<