非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 7Haa;2
T'
function z = zernfun(n,m,r,theta,nflag) >:74%D0UF
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6KXtcXQ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F+YZE[h%
% and angular frequency M, evaluated at positions (R,THETA) on the ~qiJR`Jj
% unit circle. N is a vector of positive integers (including 0), and ity & v9
% M is a vector with the same number of elements as N. Each element 6dq(T_eG
% k of M must be a positive integer, with possible values M(k) = -N(k) J{.{f
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 5V?&8GTe
% and THETA is a vector of angles. R and THETA must have the same 5Yg'BkEr
% length. The output Z is a matrix with one column for every (N,M) @6Y?\Wx$w
% pair, and one row for every (R,THETA) pair. j8v8uZ;x
% F|SXn\
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5bRJS70M
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |XaIx#n
% with delta(m,0) the Kronecker delta, is chosen so that the integral pj\u9
L_
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ep!Rf:
% and theta=0 to theta=2*pi) is unity. For the non-normalized h9t$Uz^N
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. = 6j&4p
`
% Mo|;'+
% The Zernike functions are an orthogonal basis on the unit circle. [T8WThs
% They are used in disciplines such as astronomy, optics, and u(z$fG:g
% optometry to describe functions on a circular domain. L7n D|
% ;,hwZZA
% The following table lists the first 15 Zernike functions. F|'>NL-=
% kjTduZ/3"
% n m Zernike function Normalization Yxr>"KH6a
% -------------------------------------------------- 8r*E-akuyr
% 0 0 1 1 %6|nb:Oa
% 1 1 r * cos(theta) 2 52@C9Q,
% 1 -1 r * sin(theta) 2 |UkR'Ma
% 2 -2 r^2 * cos(2*theta) sqrt(6) EEEh~6?-e
% 2 0 (2*r^2 - 1) sqrt(3) { }:#G
% 2 2 r^2 * sin(2*theta) sqrt(6) :NhO2L
% 3 -3 r^3 * cos(3*theta) sqrt(8) iowTLq!?
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 0pZ4BZdT|
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ]N~2 .h
% 3 3 r^3 * sin(3*theta) sqrt(8) z 9vInf@M
% 4 -4 r^4 * cos(4*theta) sqrt(10) fe\mL mK9
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QVv#fy1"6
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) hCi 60%g/n
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) dH;8mb|#'
% 4 4 r^4 * sin(4*theta) sqrt(10) W =D4r
% -------------------------------------------------- !]"@kl%
% /MIe(,>Uh
% Example 1: >BV^H.SO|1
% .N,bIQnj
% % Display the Zernike function Z(n=5,m=1) W/=.@JjI
% x = -1:0.01:1; B7VH<;Z
% [X,Y] = meshgrid(x,x); Sgeh %f
% [theta,r] = cart2pol(X,Y); [zH:1Zhl&
% idx = r<=1; g?c
xp+
% z = nan(size(X)); ^PDJ0k/u1
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 3(="YbZ
% figure [u
=+3b
% pcolor(x,x,z), shading interp 8+~
>E
% axis square, colorbar 6gL#C&
% title('Zernike function Z_5^1(r,\theta)') S.mG?zbw
% #Vnkvvv
% Example 2: 5GI,o|[s6
% pI1-cV,`
% % Display the first 10 Zernike functions x!?u^
% x = -1:0.01:1; $POu\TO
% [X,Y] = meshgrid(x,x); WltQ63u
% [theta,r] = cart2pol(X,Y); qFicBpB
% idx = r<=1; HCIU!4rH
% z = nan(size(X)); ]tim,7s
% n = [0 1 1 2 2 2 3 3 3 3]; `}D,5^9]
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; c/:b.>W
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ])[[ V!1
% y = zernfun(n,m,r(idx),theta(idx)); Z]A{ d[
% figure('Units','normalized') 0%32=k7O[
% for k = 1:10 Mc?Qx
% z(idx) = y(:,k); L 8c0lx}Nn
% subplot(4,7,Nplot(k)) e|g5=2(Pr&
% pcolor(x,x,z), shading interp ]V[q(-Jk
% set(gca,'XTick',[],'YTick',[]) R6 y#S&]x
% axis square sSr&:BOsi
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) a]$1D!Anc
% end |5X^u+_
% V )3KS-
% See also ZERNPOL, ZERNFUN2. `jDTzhO~
_jvxc'6
% Paul Fricker 11/13/2006 /{EP*,/*
o5u3Fjz3
n"h`5p5'
% Check and prepare the inputs: ({ +!`}GY
% ----------------------------- `:ArT}F
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) EZgq ?l~5O
error('zernfun:NMvectors','N and M must be vectors.') GiJ *Wp
end -$t{>gO#Y
C>]0YO
k2
if length(n)~=length(m) k)i3
error('zernfun:NMlength','N and M must be the same length.')
kq?Ms|h
end ^dI424
?3/qz(bM
n = n(:); L{#IT.
m = m(:); ,A9]CQ
if any(mod(n-m,2)) q?H|o(
error('zernfun:NMmultiplesof2', ... S~<$Hy*kh
'All N and M must differ by multiples of 2 (including 0).') $1SPy|y
end |sa]F5
.zr-:L5{
if any(m>n) kc2PoJ
error('zernfun:MlessthanN', ... _H9 MwJ
'Each M must be less than or equal to its corresponding N.') .fn\]rUv
end ;p.v]0]is
9-sw!tKx
if any( r>1 | r<0 ) M5i%jZk
error('zernfun:Rlessthan1','All R must be between 0 and 1.') .14~J6
end H(H<z,$}T
k}S :RK
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) oF vfCrd
error('zernfun:RTHvector','R and THETA must be vectors.') hl;u'_AB
end @Rg/~\ K
c|f<u{'
r = r(:); 0}<