切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11308阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 hM": ?Rx  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! nWrkn m  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 (c{<JYEC  
    function z = zernfun(n,m,r,theta,nflag) tkN5 |95  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ypoJ4EZ(  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N B&tU~  
    %   and angular frequency M, evaluated at positions (R,THETA) on the z}Qt6na]-  
    %   unit circle.  N is a vector of positive integers (including 0), and ;NyX9&@  
    %   M is a vector with the same number of elements as N.  Each element {V> >a  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) `%8byy@$  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Y#'?3  
    %   and THETA is a vector of angles.  R and THETA must have the same f}4bnu3  
    %   length.  The output Z is a matrix with one column for every (N,M) CC(At.dd  
    %   pair, and one row for every (R,THETA) pair. |@}Yady@C  
    % zi^T?<t  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 6[-N})  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), H#/}FoBiS  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Z3ucJH/)V  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^|z  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized SA5 g~{"  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. p8%/T>hK  
    % ZDmBuf q  
    %   The Zernike functions are an orthogonal basis on the unit circle. :{iS0qJ  
    %   They are used in disciplines such as astronomy, optics, and ?m)3n0Uh  
    %   optometry to describe functions on a circular domain. Q%.V\8#|V  
    % XO*|P\#^  
    %   The following table lists the first 15 Zernike functions. RHV& m()Q  
    % G0Q8"]  
    %       n    m    Zernike function           Normalization 2#sJ`pdQ  
    %       -------------------------------------------------- <X7x  
    %       0    0    1                                 1 &^R0kCF`  
    %       1    1    r * cos(theta)                    2 "V|1w>s  
    %       1   -1    r * sin(theta)                    2 [LwmzmV+F  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) IF<?TYy=3B  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ;C1]gJZ,  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) *vx!twu1o  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 8vhg{L..  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) TFX*kk &R  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ])dq4\Bw  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 99'e)[\  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) gm**9]k^{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u$7o d$&S  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) n'<FH<x  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <&n\)R4C1  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Vb0((c%&  
    %       -------------------------------------------------- eq0&8/=  
    % p[E}:kak_-  
    %   Example 1: uG1)cm B}  
    % D^(Nijl9U  
    %       % Display the Zernike function Z(n=5,m=1) }L.xt88  
    %       x = -1:0.01:1; gO0X-fN8  
    %       [X,Y] = meshgrid(x,x); beLT4~Z=  
    %       [theta,r] = cart2pol(X,Y); :iWW2fY  
    %       idx = r<=1; JXG%Cx!2}  
    %       z = nan(size(X)); jhd&\z-  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); C_SJ4Sh  
    %       figure HZp}<7NR(7  
    %       pcolor(x,x,z), shading interp 2}Ga   
    %       axis square, colorbar aCu 8 D!  
    %       title('Zernike function Z_5^1(r,\theta)') K{eq'F5M  
    % Ga5O&`h  
    %   Example 2: IMaa#8,  
    % <cQ)*~hN  
    %       % Display the first 10 Zernike functions #0K122oY  
    %       x = -1:0.01:1; sdk%~RN0T  
    %       [X,Y] = meshgrid(x,x);  .;ptgX  
    %       [theta,r] = cart2pol(X,Y); <:[ P&Y  
    %       idx = r<=1; L: hEt  
    %       z = nan(size(X)); |7$F r[2d  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ZT*RD2,  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !(:R=J_h  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; *v+xKy#M  
    %       y = zernfun(n,m,r(idx),theta(idx)); AE1EZ#  
    %       figure('Units','normalized') RR,gC"cTi  
    %       for k = 1:10 #r\,oXTm  
    %           z(idx) = y(:,k); Ns?8N":  
    %           subplot(4,7,Nplot(k)) ^Ht!~So  
    %           pcolor(x,x,z), shading interp Gqe?CM  
    %           set(gca,'XTick',[],'YTick',[]) ?`wO \>y  
    %           axis square 2Zf} t  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) dso6ZRx  
    %       end V)[ta`9  
    % PQ6.1}  
    %   See also ZERNPOL, ZERNFUN2. [)K?e!c8  
    q)Qd+:a7{  
    %   Paul Fricker 11/13/2006 V`F]L^m=L  
    PL;PId<9w  
    wR)U&da`@  
    % Check and prepare the inputs: 6Fp}U  
    % ----------------------------- QWqEe|}6  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i98>=y~  
        error('zernfun:NMvectors','N and M must be vectors.') B=E<</i  
    end mmE!!J`B  
    Q-scL>IkCb  
    if length(n)~=length(m) Lye^G% {  
        error('zernfun:NMlength','N and M must be the same length.') [sxJ<  
    end R#D>m8&}3  
    Nqf6CPXE  
    n = n(:); xa7~{ E,  
    m = m(:); k!9LJ%Xh  
    if any(mod(n-m,2)) "eqNd"~  
        error('zernfun:NMmultiplesof2', ... j2@19YXe@  
              'All N and M must differ by multiples of 2 (including 0).') ]yc&ffe%  
    end t0^chlJP$  
    j c%  
    if any(m>n) u"WqI[IV  
        error('zernfun:MlessthanN', ... 9$]I3k  
              'Each M must be less than or equal to its corresponding N.') 0?x9.]  
    end XTzz/.T;Z  
    c34s(>AC  
    if any( r>1 | r<0 ) WA~PE` U  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 2P&KU%D)0s  
    end F 7v 1rf]  
    R^[b I;  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $2tPqZ>  
        error('zernfun:RTHvector','R and THETA must be vectors.') L?aaR %6#  
    end mmN!=mf*  
    W3AtO  
    r = r(:); _9y  
    theta = theta(:); 6p=OM=R  
    length_r = length(r); u\)2/~<]  
    if length_r~=length(theta) vKX6@eg"  
        error('zernfun:RTHlength', ... Kx8>  
              'The number of R- and THETA-values must be equal.') EbG`q!C  
    end gb_r <j:w  
    J5i$D0K[  
    % Check normalization: #YABb wH  
    % -------------------- 8`I/\8;H'p  
    if nargin==5 && ischar(nflag) p\>im+0oh  
        isnorm = strcmpi(nflag,'norm'); dV~d60jOF  
        if ~isnorm #kmZS/"  
            error('zernfun:normalization','Unrecognized normalization flag.') @<n8?"{5S  
        end ;+86q"&n  
    else ;%#.d$cU  
        isnorm = false; ,PmQ}1kGW  
    end MQ~OG9.  
    HB/q v IzB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Qp]-:b  
    % Compute the Zernike Polynomials t<UtSkE1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ym]Dlz,o  
    y2_^lW%  
    % Determine the required powers of r: S2^Ckg  
    % ----------------------------------- cH== OM7&-  
    m_abs = abs(m); Q!%C:b  
    rpowers = []; ITUwIpA E  
    for j = 1:length(n) LTof$4s  
        rpowers = [rpowers m_abs(j):2:n(j)];  !623;   
    end P&6hk6#  
    rpowers = unique(rpowers); 1u%e7  
    R)[ l 3  
    % Pre-compute the values of r raised to the required powers, o?9k{  
    % and compile them in a matrix: *5Mg^}ZC5  
    % ----------------------------- Qz[4M`M  
    if rpowers(1)==0 vk^/[eha  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Q')0 T>F-  
        rpowern = cat(2,rpowern{:}); $ts%SDM  
        rpowern = [ones(length_r,1) rpowern]; oo+nqc`,O  
    else &EZq%Sd  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); | e&v;48  
        rpowern = cat(2,rpowern{:}); BAJEn6f?  
    end }mhD2'E  
    BGe&c,feIc  
    % Compute the values of the polynomials: `S&$y4|Vs  
    % -------------------------------------- Za5bx,^  
    y = zeros(length_r,length(n)); CH`_4UAX%  
    for j = 1:length(n) xs'vd:l.Pp  
        s = 0:(n(j)-m_abs(j))/2; \W;+@w|c  
        pows = n(j):-2:m_abs(j); MO1t 0Myc  
        for k = length(s):-1:1 7aV(tMzd  
            p = (1-2*mod(s(k),2))* ... BLno/JK0}  
                       prod(2:(n(j)-s(k)))/              ... .b3c n  
                       prod(2:s(k))/                     ... e>GX]tK  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;$0)k(c9  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); nMBKZ  
            idx = (pows(k)==rpowers); SL j2/B0  
            y(:,j) = y(:,j) + p*rpowern(:,idx);  Z>O2  
        end F74^HQ*J  
         =Nc}XFq  
        if isnorm 3lZ5N@z69  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Z*M]AvO+#  
        end 0_A|K>7  
    end CP%?,\  
    % END: Compute the Zernike Polynomials 3ZAPcpB2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1TuN   
    e 1 yvvi  
    % Compute the Zernike functions: szDd!(&pv  
    % ------------------------------ u>YC4&  
    idx_pos = m>0; (,i&pgVZ  
    idx_neg = m<0; $_u9Y!  
    ZQ0R3=52r  
    z = y; O%Mi`\W@  
    if any(idx_pos) j9bn|p$DA  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |k3^ eeLk  
    end Bq20U:f  
    if any(idx_neg) R _c! ,y  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); (B0tgg^jj,  
    end ;QiSz=DyA  
    RTEzcJ>  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) +im>|  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. !n?8'eqWru  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated HZ+l){u  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive kt0ma/QpP  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 9A-=T>|of  
    %   and THETA is a vector of angles.  R and THETA must have the same '0\v[f{K3G  
    %   length.  The output Z is a matrix with one column for every P-value, d7*fP S  
    %   and one row for every (R,THETA) pair. =MsQ=:ZV  
    % lV*dQwa?i  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike .}O _5b(  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) UP})j.z  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) \d,wcL  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 A%zX LV=3O  
    %   for all p. Jw b'5[R  
    % S%sD#0l  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 T=kR!Gx  
    %   Zernike functions (order N<=7).  In some disciplines it is T08SGB]  
    %   traditional to label the first 36 functions using a single mode v{T%`WuPRf  
    %   number P instead of separate numbers for the order N and azimuthal FthrI  
    %   frequency M. &.ilku/  
    % ZliJc7lss  
    %   Example: J'=iEI  
    % Ei Yj`P  
    %       % Display the first 16 Zernike functions 9 :ubPqt  
    %       x = -1:0.01:1; Q, `:RF3  
    %       [X,Y] = meshgrid(x,x); $$tFP"pZ  
    %       [theta,r] = cart2pol(X,Y); X>$s>})Y  
    %       idx = r<=1; G%RL8HU  
    %       p = 0:15; w`Ss MI  
    %       z = nan(size(X)); zIeJ[J@  
    %       y = zernfun2(p,r(idx),theta(idx)); nc.(bb),  
    %       figure('Units','normalized') q9^6A90  
    %       for k = 1:length(p) RXbhuI  
    %           z(idx) = y(:,k); eL`}j9  
    %           subplot(4,4,k) \D<w:\P  
    %           pcolor(x,x,z), shading interp y-/,,,r  
    %           set(gca,'XTick',[],'YTick',[]) fGz++;b<S  
    %           axis square ,ezC}V0M  
    %           title(['Z_{' num2str(p(k)) '}']) oQS_rv\Ber  
    %       end :Nt_LsH  
    % ?C6DK{S(  
    %   See also ZERNPOL, ZERNFUN. G""L1?  
    a*g7uaoP  
    %   Paul Fricker 11/13/2006 ^s;xLGl]  
    }5??n~:*5  
    43HZ)3!me  
    % Check and prepare the inputs: Ul`~d !3zH  
    % ----------------------------- &-h z&/A,  
    if min(size(p))~=1  !=f$ [1  
        error('zernfun2:Pvector','Input P must be vector.') \@K KX  
    end w9W0j  
    W7 .Y`u[  
    if any(p)>35 |_ADG  
        error('zernfun2:P36', ... f0h^ULd  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... v[*&@aW0n  
               '(P = 0 to 35).']) p[J 8 r{'  
    end Xe J|Z)qZ  
    ;G=:>m~  
    % Get the order and frequency corresonding to the function number: O5lP92],  
    % ---------------------------------------------------------------- 2`ED?F68gH  
    p = p(:); GcpAj9  
    n = ceil((-3+sqrt(9+8*p))/2); {$ (X,E  
    m = 2*p - n.*(n+2); %_>+K;<  
    Z{".(?+}1  
    % Pass the inputs to the function ZERNFUN: @8jc|X<A  
    % ---------------------------------------- ,Q2?Z :l  
    switch nargin @#?w>38y  
        case 3 waYH_)Zx  
            z = zernfun(n,m,r,theta); ,m08t9F  
        case 4 nbhzLUK  
            z = zernfun(n,m,r,theta,nflag); "4,Zox{^  
        otherwise 9_07?`Jr  
            error('zernfun2:nargin','Incorrect number of inputs.') s.8]qQRr  
    end S7A[HG;  
    8!!iwmH{  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) eT4+O5t  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. #SR"Q`P  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of \i +=tGY  
    %   order N and frequency M, evaluated at R.  N is a vector of }$zJdf,\  
    %   positive integers (including 0), and M is a vector with the vA(')"DDT  
    %   same number of elements as N.  Each element k of M must be a u>cU*E4/  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) LM~,`#3 Ru  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is VHUOI64*  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ?Ww\D8yV&  
    %   with one column for every (N,M) pair, and one row for every sXmZ0Dv  
    %   element in R. x,3oa_'E  
    % 7LB#\2  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- oV 7A"8L^a  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ^&|$&7  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to R8ui LZd  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 u\]aUP e  
    %   for all [n,m]. QvF UFawN  
    % 7T)J{:+0!|  
    %   The radial Zernike polynomials are the radial portion of the A)X 'We  
    %   Zernike functions, which are an orthogonal basis on the unit j1LL[+G-"_  
    %   circle.  The series representation of the radial Zernike BwN>;g_  
    %   polynomials is ;h }^f-  
    % QCI-YJ&o  
    %          (n-m)/2 'za4c4b*u  
    %            __ j+p=ik  
    %    m      \       s                                          n-2s XP$1CWI  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r lk5}bnd5  
    %    n      s=0 0k];%HV|  
    % n<x NE %  
    %   The following table shows the first 12 polynomials. F>F&+63Q-  
    % dB^')-wA  
    %       n    m    Zernike polynomial    Normalization p4|Zz:f  
    %       --------------------------------------------- Ux2p qPb  
    %       0    0    1                        sqrt(2) "I|[m%\  
    %       1    1    r                           2 3j2% '$>E^  
    %       2    0    2*r^2 - 1                sqrt(6) (aO+7ykRuJ  
    %       2    2    r^2                      sqrt(6) X5@rPGc  
    %       3    1    3*r^3 - 2*r              sqrt(8) <.d0GD`^  
    %       3    3    r^3                      sqrt(8) &UWSf  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Tk'YpL#U  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) @'K+   
    %       4    4    r^4                      sqrt(10) C7]K9  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) quB .A7~^=  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) N o}Ly{  
    %       5    5    r^5                      sqrt(12) @jE<V=?  
    %       --------------------------------------------- }v[$uT-q  
    % {$<X\\&r  
    %   Example: ijYSYX@  
    % O?ZCX_R:L  
    %       % Display three example Zernike radial polynomials ((U-JeFW   
    %       r = 0:0.01:1; vM}oxhQ$n  
    %       n = [3 2 5]; 0!n6tz lT  
    %       m = [1 2 1]; !/w<F{cl  
    %       z = zernpol(n,m,r); 07T"alXf:A  
    %       figure <%(nF+rQA"  
    %       plot(r,z) /lQGFLZL  
    %       grid on )ow|n^D($M  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') & >AXB6  
    % zl: 5_u=T  
    %   See also ZERNFUN, ZERNFUN2. a9ab>2G?FR  
    RhG9Xw9  
    % A note on the algorithm. eeuTf  
    % ------------------------  \|Qx`-  
    % The radial Zernike polynomials are computed using the series 1RtbQ{2F;  
    % representation shown in the Help section above. For many special su}> >07  
    % functions, direct evaluation using the series representation can dpO ZqhRs.  
    % produce poor numerical results (floating point errors), because 29?{QJb  
    % the summation often involves computing small differences between ;[-dth  
    % large successive terms in the series. (In such cases, the functions m CFScT  
    % are often evaluated using alternative methods such as recurrence nQc]f*  
    % relations: see the Legendre functions, for example). For the Zernike k,xY\r$  
    % polynomials, however, this problem does not arise, because the !\a'GO[  
    % polynomials are evaluated over the finite domain r = (0,1), and Cwxy ~.mI  
    % because the coefficients for a given polynomial are generally all %Ot22a  
    % of similar magnitude. s|U=_,.  
    % i/nA(%_  
    % ZERNPOL has been written using a vectorized implementation: multiple 6xs_@Vk|d  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] pJ6Z/3]  
    % values can be passed as inputs) for a vector of points R.  To achieve Qwn/ ,  
    % this vectorization most efficiently, the algorithm in ZERNPOL ZB'/DO=i  
    % involves pre-determining all the powers p of R that are required to R=IZFwr  
    % compute the outputs, and then compiling the {R^p} into a single ~+{OSx<S  
    % matrix.  This avoids any redundant computation of the R^p, and [s-Km/  
    % minimizes the sizes of certain intermediate variables. ,C88%k  
    % "-Lbz)k  
    %   Paul Fricker 11/13/2006 x4cP%{n  
    }fW@8ji\  
    Z8P{Cr~U9  
    % Check and prepare the inputs: vdloh ,  
    % ----------------------------- x8Rmap@L.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) I| qoHN,g  
        error('zernpol:NMvectors','N and M must be vectors.') c|[:vin  
    end @Y'BqDFlZ  
    )8ejT6r  
    if length(n)~=length(m) 2T &<jt  
        error('zernpol:NMlength','N and M must be the same length.') ;E /:_DWPD  
    end ZPWY0&9  
    j4L ) D  
    n = n(:); HTK79 +  
    m = m(:); i DV.L  
    length_n = length(n); Gxu&o%x [  
    MP\$_;&xB  
    if any(mod(n-m,2)) `s (A&=g\  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') yjODa90!G  
    end &k+G^ !=s#  
    SF2A?L?}+  
    if any(m<0)  $j*j {}K  
        error('zernpol:Mpositive','All M must be positive.') zhbp"yju7  
    end UH1AT#?!W  
    TTaSg\K  
    if any(m>n) 'f9 fw^  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') cg$@x\fJ  
    end i $H aE)qZ  
    je1f\N45  
    if any( r>1 | r<0 ) wkK61a h6  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') [H5TtsQ[  
    end "$KU +?  
    \TS t  
    if ~any(size(r)==1) l/,O9ur-  
        error('zernpol:Rvector','R must be a vector.') E(A7DXzbR  
    end +U9Gj#  
    B#'TF?HUEn  
    r = r(:); CZ*c["x2  
    length_r = length(r); 6/@"K HHVe  
    lwhAF, '$  
    if nargin==4 (3`Q`o;  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 8munw  
        if ~isnorm Hzs]\%"  
            error('zernpol:normalization','Unrecognized normalization flag.') 5inmFT?9Z  
        end  *r Y6  
    else @BWroNg{  
        isnorm = false; A2VN% dB  
    end ^D8 YF  
    v]|^.x:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :nYl]Rm  
    % Compute the Zernike Polynomials 2'_xg~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !4cR&@[  
    *[jG^w0z8~  
    % Determine the required powers of r: ;o]'7qGb  
    % ----------------------------------- jPg8>Z&D  
    rpowers = []; rD)yEuYX  
    for j = 1:length(n) $lmbeW[0  
        rpowers = [rpowers m(j):2:n(j)]; S0nBX"$u  
    end [8AGW7_  
    rpowers = unique(rpowers); az@{O4  
    B Jp\a7`;  
    % Pre-compute the values of r raised to the required powers, <@xp. Y  
    % and compile them in a matrix: u9rlNmf$  
    % ----------------------------- =M^4T?{T  
    if rpowers(1)==0 =,&PD(.  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g#qt<d}j  
        rpowern = cat(2,rpowern{:}); h')@NnFP 1  
        rpowern = [ones(length_r,1) rpowern];  $6w[h7  
    else iEr Y2~?  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ss'#sPX  
        rpowern = cat(2,rpowern{:}); Ijq1ns_tx8  
    end s@sRdoTdF  
    4]O{Nko)  
    % Compute the values of the polynomials: &3l g\&"  
    % -------------------------------------- -o*IJQ_  
    z = zeros(length_r,length_n); O_aZ\28};C  
    for j = 1:length_n XL>v$7`#  
        s = 0:(n(j)-m(j))/2; (3YCe{  
        pows = n(j):-2:m(j); WCT}OiLsL  
        for k = length(s):-1:1 =jIB5".  
            p = (1-2*mod(s(k),2))* ... 7?<.L  
                       prod(2:(n(j)-s(k)))/          ... ^T`)ltI]V  
                       prod(2:s(k))/                 ... s7=CH   
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... _]8FCO  
                       prod(2:((n(j)+m(j))/2-s(k))); .w3.zZ0[  
            idx = (pows(k)==rpowers); d;O16xcM/  
            z(:,j) = z(:,j) + p*rpowern(:,idx); DJ;il)^  
        end ($EA/|z  
         HbQ `b  
        if isnorm 5BnO-[3  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); i:W.,w%8  
        end :xISS  
    end S 4uX utd  
    XB*)d 9'8  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  VtM:~|v  
    GFA D  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 cf\PG&S  
    :Q\Es:y  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)