切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10984阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 aYeR{Y]  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! U(Zq= M  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 YR70BOxK  
    function z = zernfun(n,m,r,theta,nflag) Om<a<q  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @CoIaUVP  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N V+\Wb[zDJ  
    %   and angular frequency M, evaluated at positions (R,THETA) on the TvM~y\s  
    %   unit circle.  N is a vector of positive integers (including 0), and WAqINLdX  
    %   M is a vector with the same number of elements as N.  Each element K:M8h{Ua  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) +t.b` U`-  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, RFGffA&  
    %   and THETA is a vector of angles.  R and THETA must have the same l]vm=7:  
    %   length.  The output Z is a matrix with one column for every (N,M) +_!QSU,@  
    %   pair, and one row for every (R,THETA) pair. @W<m 4fi  
    % VUc%4U{Cti  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike RCrCs  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), =M1I>  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral #Z#-Ht  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #mT"gs  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized A,]h),b  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. hP h-+Hb  
    % 9sP0D  
    %   The Zernike functions are an orthogonal basis on the unit circle. `L zPotz  
    %   They are used in disciplines such as astronomy, optics, and =I<R!ZSN  
    %   optometry to describe functions on a circular domain. ,uvRi)O>a  
    % bcyzhK=  
    %   The following table lists the first 15 Zernike functions. .}t e>]A*  
    % VVZ'i.*_3?  
    %       n    m    Zernike function           Normalization GyIV Hby  
    %       -------------------------------------------------- @~e5<:|5#  
    %       0    0    1                                 1 hxx.9x>ow  
    %       1    1    r * cos(theta)                    2 6863xOv{T  
    %       1   -1    r * sin(theta)                    2 mw!F{pw  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) _t$sgz&  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ?[AD=rUC  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) wJ]d&::@h  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) SBpL6~NW  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) sK{e*[I>W  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) x:;kSh  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 8}[).d160  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) XSDpRo  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y73C5.dNcE  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) IPk4 ;,  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )4OxY[2J  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ixFi{_  
    %       -------------------------------------------------- +0&/g&a\R  
    % ` A>@]d  
    %   Example 1: AdEMa}u 6  
    % x Ar\gu  
    %       % Display the Zernike function Z(n=5,m=1) -~0^P,yQ  
    %       x = -1:0.01:1; S!UaH>Rh  
    %       [X,Y] = meshgrid(x,x); ^c<Ve'-  
    %       [theta,r] = cart2pol(X,Y); R5D1w+  
    %       idx = r<=1; )UR7i8]!0  
    %       z = nan(size(X)); %;_MGae  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ZH8,K Y"  
    %       figure  &HW9Jn  
    %       pcolor(x,x,z), shading interp CY1Z'  
    %       axis square, colorbar t!XwW$@  
    %       title('Zernike function Z_5^1(r,\theta)') WLT"ji0w2  
    % (e~Nq  
    %   Example 2: +2{Lh7Ks  
    % Oz95  
    %       % Display the first 10 Zernike functions 6 N4~~O  
    %       x = -1:0.01:1; L_T5nD^D  
    %       [X,Y] = meshgrid(x,x); p'%s=TGwv  
    %       [theta,r] = cart2pol(X,Y); N['  .BN  
    %       idx = r<=1; yAt ^;  
    %       z = nan(size(X)); [~HN<>L@C  
    %       n = [0  1  1  2  2  2  3  3  3  3]; siI;"?  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; bw7@5=?;  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; DU S6SO  
    %       y = zernfun(n,m,r(idx),theta(idx)); QV!up^Zso  
    %       figure('Units','normalized') ,F|f. 7;  
    %       for k = 1:10 (HVGlw'`  
    %           z(idx) = y(:,k); Ew N}l  
    %           subplot(4,7,Nplot(k)) zfU{Kd  
    %           pcolor(x,x,z), shading interp ;I}fBZ 3  
    %           set(gca,'XTick',[],'YTick',[]) K-4PI+qQ\  
    %           axis square dH!*!r>  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) HfVZ~PP  
    %       end &ncvGDGi  
    % L,\Iasv  
    %   See also ZERNPOL, ZERNFUN2. }7Uoh(d  
    r@V!,k#S  
    %   Paul Fricker 11/13/2006 ^W ^OfY  
    >6T8^Nt  
    >7|VR:U?B  
    % Check and prepare the inputs: eFgA 8kY)  
    % ----------------------------- 3BI1fXT4=j  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) K0~rN.C!0  
        error('zernfun:NMvectors','N and M must be vectors.') It(_v  
    end 4 KiY6)  
    dN q$}  
    if length(n)~=length(m) K1KreYlF  
        error('zernfun:NMlength','N and M must be the same length.') By |4 m  
    end Xvu(vA  
    3`g^  
    n = n(:); *@5@,=d  
    m = m(:); =bOW~0Z1  
    if any(mod(n-m,2)) dd;~K&_Q/i  
        error('zernfun:NMmultiplesof2', ... fC`&g~yK'  
              'All N and M must differ by multiples of 2 (including 0).') 4x34u}l  
    end 4s- !7  
    e6*8K@LHB  
    if any(m>n) dPlV>IM$z  
        error('zernfun:MlessthanN', ... @JMiO^  
              'Each M must be less than or equal to its corresponding N.') .#gzP2 [q  
    end Ui~>SN>s  
    54 T`OE =  
    if any( r>1 | r<0 ) !L(^(;$Kgr  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') (QEG4&9  
    end QRUz`|U  
    ^qs $v06  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) SUiOJ[5,  
        error('zernfun:RTHvector','R and THETA must be vectors.') D*jM1w_`  
    end )9g2D`a4  
    X ?O[r3<  
    r = r(:); .v K-LHs  
    theta = theta(:); /^ts9:  
    length_r = length(r); I7onX,U+  
    if length_r~=length(theta) ytImB`'\  
        error('zernfun:RTHlength', ... Txu/{ M,  
              'The number of R- and THETA-values must be equal.') $Sq:q0  
    end !$ JT e  
    kiEa<-]  
    % Check normalization: HMXE$d=[  
    % -------------------- -7ep{p-  
    if nargin==5 && ischar(nflag) 5pX6t  
        isnorm = strcmpi(nflag,'norm'); {}9a6.V;}  
        if ~isnorm YK_ 7ip.a[  
            error('zernfun:normalization','Unrecognized normalization flag.') =_CzH(=f#  
        end %9"H  
    else /ZX }Nc g  
        isnorm = false; hN_]6,<\  
    end OUnA;_  
    4W75T2q#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F9^S"qv$  
    % Compute the Zernike Polynomials E .h*g8bXe  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F,kZU$  
    a?1Wq  
    % Determine the required powers of r: KNl$3nX  
    % ----------------------------------- >*bvw~y,  
    m_abs = abs(m); +{]j]OP  
    rpowers = []; ^iA9%zp  
    for j = 1:length(n) }>\C{ClI  
        rpowers = [rpowers m_abs(j):2:n(j)]; [),ige  
    end q.vIc ?a  
    rpowers = unique(rpowers); kJU2C=m@e2  
    P}iE+Z 3  
    % Pre-compute the values of r raised to the required powers, G@0&8  
    % and compile them in a matrix: lE;!TQj:X  
    % ----------------------------- ;uW FHc5@B  
    if rpowers(1)==0 gYj'(jB  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); rv;3~'V  
        rpowern = cat(2,rpowern{:}); y =@N|f!  
        rpowern = [ones(length_r,1) rpowern]; GgU/ !@  
    else _1^'(5f$  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~DWl s.  
        rpowern = cat(2,rpowern{:}); *8q.YuZ  
    end )7@0[>  
    UiWg<_<t  
    % Compute the values of the polynomials: 2wn2.\v M  
    % -------------------------------------- 9WHddDA  
    y = zeros(length_r,length(n)); iU-j"&L5  
    for j = 1:length(n) %O<BfIZ  
        s = 0:(n(j)-m_abs(j))/2; 1C.VnzRnJ  
        pows = n(j):-2:m_abs(j); jIyQ]:*p  
        for k = length(s):-1:1  _F{C\}  
            p = (1-2*mod(s(k),2))* ... 2%1hdA<  
                       prod(2:(n(j)-s(k)))/              ... [QTV9  
                       prod(2:s(k))/                     ... ?2a$*(  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... V&i;\9  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); GbyJ:  
            idx = (pows(k)==rpowers); Efe 7gE'  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 5;?yCWc  
        end y(Td/rY.  
         ^Cmyx3O^  
        if isnorm 0:+E-^X  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); zDp2g)  
        end J,G lIv.A  
    end 8t`?#8D}  
    % END: Compute the Zernike Polynomials z#N@ 0R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -&f$GUTJ  
    `/g UV  
    % Compute the Zernike functions: ^aQ"E9  
    % ------------------------------ K,]=6 Rj  
    idx_pos = m>0; jpOp.  
    idx_neg = m<0; +p^u^a  
    <#.g=ay  
    z = y; =sFTxd_"iQ  
    if any(idx_pos) !wNO8;(  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); <VcQ{F  
    end d _ e WcI  
    if any(idx_neg) iE{&*.q_}>  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @;kSx":b  
    end BY*Q_Et  
    >p/`;Kq@  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) y]im Z4{/  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. :EH=_"  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated "ta x?  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive fh{`Mz,o  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, C?Ucu]cW  
    %   and THETA is a vector of angles.  R and THETA must have the same H-%v3d>3  
    %   length.  The output Z is a matrix with one column for every P-value, KG@8RtHsQ  
    %   and one row for every (R,THETA) pair. F"< v aqT2  
    % <Qq*p  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike oE~RyS X  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) {t!!Uz 7  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ,47qw0=C  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 @KA4N`  
    %   for all p. eq"]%s  
    % nie%eC&U  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ]d`VT)~vje  
    %   Zernike functions (order N<=7).  In some disciplines it is PX99uWx5]  
    %   traditional to label the first 36 functions using a single mode `kr?j:g  
    %   number P instead of separate numbers for the order N and azimuthal uocGbi:V';  
    %   frequency M. i&k7-<  
    % a6H%5N  
    %   Example: - DCbko  
    % qVPeB,kIz  
    %       % Display the first 16 Zernike functions 8D].MI^  
    %       x = -1:0.01:1; 8] ikygt"  
    %       [X,Y] = meshgrid(x,x); aP`P)3O6)1  
    %       [theta,r] = cart2pol(X,Y); 5?L<N:;J_  
    %       idx = r<=1; V+~Nalm O  
    %       p = 0:15; 7 ?t6UPf  
    %       z = nan(size(X)); Ha#>G<;n  
    %       y = zernfun2(p,r(idx),theta(idx)); 2[CdZ(k]5  
    %       figure('Units','normalized') '2O\_Uz  
    %       for k = 1:length(p) d\Zng!Z'  
    %           z(idx) = y(:,k); +*^H#|!  
    %           subplot(4,4,k) tjnIN?YT  
    %           pcolor(x,x,z), shading interp I0a<%;JJW  
    %           set(gca,'XTick',[],'YTick',[]) s <Fl p  
    %           axis square \?N2=jsu$  
    %           title(['Z_{' num2str(p(k)) '}']) ??T#QQ  
    %       end d %#b:(,  
    % wAd9  
    %   See also ZERNPOL, ZERNFUN. Bj~+WwD)QR  
    {iLT/i%  
    %   Paul Fricker 11/13/2006 go"Hf_  
    qFNes)_r  
    9/7u*>:  
    % Check and prepare the inputs: iX\X>W$P  
    % ----------------------------- |CzSU1ma  
    if min(size(p))~=1 !a<ng&H^U  
        error('zernfun2:Pvector','Input P must be vector.') ]~nKK@Rw  
    end Rh |nP&6  
    Z)\@i=m  
    if any(p)>35 T^v}mWCZ  
        error('zernfun2:P36', ...  *,m;  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ERt{H3eCcJ  
               '(P = 0 to 35).']) E!#WnSpnK  
    end ]fD} ^s3G  
    p^_yU_  
    % Get the order and frequency corresonding to the function number: AK#1]i~  
    % ---------------------------------------------------------------- wT\49DT"7  
    p = p(:); 9S-9.mvop  
    n = ceil((-3+sqrt(9+8*p))/2); -]=@s  
    m = 2*p - n.*(n+2); <|\Lm20 G]  
    $\! 7 {6a  
    % Pass the inputs to the function ZERNFUN: RGU\h[  
    % ---------------------------------------- 39|MX21k  
    switch nargin )Beiu*  
        case 3 kxRV )G  
            z = zernfun(n,m,r,theta); &w~d_</  
        case 4 ukY"+&  
            z = zernfun(n,m,r,theta,nflag); +U.I( 83F  
        otherwise "Yca%:  
            error('zernfun2:nargin','Incorrect number of inputs.') w\brVnt  
    end BCcjK6'  
    |&[EZ+[  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) "x /OIf  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. V#}kwON  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of uXq. ]ub  
    %   order N and frequency M, evaluated at R.  N is a vector of +&"zU GTIc  
    %   positive integers (including 0), and M is a vector with the y#$CMf -q^  
    %   same number of elements as N.  Each element k of M must be a zkdetrR  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 8'r[te4,  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is HX{`Vah E  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix * +wW(#[  
    %   with one column for every (N,M) pair, and one row for every K}U-w:{  
    %   element in R. f>Jr|#k  
    % I,'k>@w{s  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- !7&5` q7  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 0,8okA H  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to HOh!Xcu  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ^w06<m  
    %   for all [n,m]. 7( 2{'r  
    % g|Fn7]G  
    %   The radial Zernike polynomials are the radial portion of the FjI`uP  
    %   Zernike functions, which are an orthogonal basis on the unit (NnH:J`  
    %   circle.  The series representation of the radial Zernike C C^'@~)?  
    %   polynomials is A$xF$l  
    % b,%C{mC  
    %          (n-m)/2 d$AWu{y  
    %            __ ?8Cq{  
    %    m      \       s                                          n-2s *C=>X193U  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r :Qf '2.h)  
    %    n      s=0 fe#\TNeQJ[  
    % rI-%be==  
    %   The following table shows the first 12 polynomials. mcX/GO}  
    % e01epVR;  
    %       n    m    Zernike polynomial    Normalization om-omo&,X=  
    %       --------------------------------------------- Oh\<VvZuN  
    %       0    0    1                        sqrt(2) N<KS(@v y  
    %       1    1    r                           2 ,$+V  
    %       2    0    2*r^2 - 1                sqrt(6) klR|6u]%  
    %       2    2    r^2                      sqrt(6) *%t^;&x?  
    %       3    1    3*r^3 - 2*r              sqrt(8) 3K/MvNI>  
    %       3    3    r^3                      sqrt(8) JO"<{ngsQ  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Q7COQ2~K   
    %       4    2    4*r^4 - 3*r^2            sqrt(10) l/ ;  
    %       4    4    r^4                      sqrt(10) usL* x9i  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) #3 pb(fbw  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 1,!(0 5H  
    %       5    5    r^5                      sqrt(12) 1&(V   
    %       --------------------------------------------- )sp4Ie  
    % fku<,SV$O4  
    %   Example: ~Ti'FhN  
    % ["e3Ez  
    %       % Display three example Zernike radial polynomials v(D;PS3r 7  
    %       r = 0:0.01:1; zeC RK+-  
    %       n = [3 2 5]; @Sbe^x  
    %       m = [1 2 1]; c+nq] xOs'  
    %       z = zernpol(n,m,r); t=O8f5Pf{  
    %       figure hJ#xB6  
    %       plot(r,z) 2WVka  
    %       grid on gH7|=W  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 'V=P*#|SR  
    % 'B0{_RaTb  
    %   See also ZERNFUN, ZERNFUN2. -JjM y X  
    q,eVjtF  
    % A note on the algorithm. 1.9}_4!  
    % ------------------------ \:ak ''  
    % The radial Zernike polynomials are computed using the series Nf"r4%M<6  
    % representation shown in the Help section above. For many special i`$*T y"x  
    % functions, direct evaluation using the series representation can VsE9H]v   
    % produce poor numerical results (floating point errors), because {_Rr 6  
    % the summation often involves computing small differences between Jrpx}2'9:a  
    % large successive terms in the series. (In such cases, the functions Z//+Gw<'  
    % are often evaluated using alternative methods such as recurrence //<nr\oP  
    % relations: see the Legendre functions, for example). For the Zernike ,.1Psz^U  
    % polynomials, however, this problem does not arise, because the QR0Q{}wbqU  
    % polynomials are evaluated over the finite domain r = (0,1), and )vb*Ef  
    % because the coefficients for a given polynomial are generally all CxG#"{&  
    % of similar magnitude. % pd,%pg  
    % f-n1I^|  
    % ZERNPOL has been written using a vectorized implementation: multiple  K;z7/[%  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 364`IC( a  
    % values can be passed as inputs) for a vector of points R.  To achieve | Aw%zw1@  
    % this vectorization most efficiently, the algorithm in ZERNPOL iv;Is[<o  
    % involves pre-determining all the powers p of R that are required to }n2M G  
    % compute the outputs, and then compiling the {R^p} into a single m~d]a$KQ5-  
    % matrix.  This avoids any redundant computation of the R^p, and EbE-}>7OO  
    % minimizes the sizes of certain intermediate variables. B1C-J/J  
    % #(JNn'fzq  
    %   Paul Fricker 11/13/2006 c+$*$|t=v`  
    j; y#[|  
    Vq?p|wy  
    % Check and prepare the inputs: ?fjuh}Q5h  
    % ----------------------------- q $tUH)0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '*w00  
        error('zernpol:NMvectors','N and M must be vectors.') EYEnN  
    end ~W+kiTsD?  
    /%TI??PGu  
    if length(n)~=length(m) FZ,#0ZYJGP  
        error('zernpol:NMlength','N and M must be the same length.') W=vP]x >J  
    end hB>oJC  
    _i|t Y4L  
    n = n(:); E!l!OtFL  
    m = m(:); Te wb?:  
    length_n = length(n); a$"Hvrj  
    w6GyBo{2O_  
    if any(mod(n-m,2)) E5xzy/ZQ  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 2Yn <2U/^R  
    end p@5`& Em,  
    _5# y06Q  
    if any(m<0) qHrA%k^!2O  
        error('zernpol:Mpositive','All M must be positive.') &c:Ad% z  
    end YSh+pr  
    W$OG( m!W>  
    if any(m>n) L3--r  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') U4-g^S[  
    end \$\ENQ;Nk  
    TbGn46!:  
    if any( r>1 | r<0 ) ^,8)iV0j_  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') *q".-u!D[  
    end | >htvDL  
    TDNQu_E  
    if ~any(size(r)==1) pd7NF-KD  
        error('zernpol:Rvector','R must be a vector.')  L0@SCt  
    end RyK\uv  
    (>GK \=:<  
    r = r(:); Vz)`nmO}5\  
    length_r = length(r); .#Z%1U%P.  
    %$ Z7x\_  
    if nargin==4 7-T{a<g  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); I`LuRl w  
        if ~isnorm `_{`l4i 5  
            error('zernpol:normalization','Unrecognized normalization flag.') WKIoS"?-F  
        end T}P".kpbS  
    else V=V:SlS9|  
        isnorm = false; Nkl_Ho,  
    end ;YX4:OBqr  
    mfo1+owT  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5nO% Ke=  
    % Compute the Zernike Polynomials w1#gOwA,$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?5 cI'  
    wl$h4 {L7  
    % Determine the required powers of r: ?)X,0P'  
    % ----------------------------------- 3G~@H>j  
    rpowers = []; u r@Z|5  
    for j = 1:length(n) w1"nffhO  
        rpowers = [rpowers m(j):2:n(j)]; yA(K=?sq  
    end *B{j.{ p(  
    rpowers = unique(rpowers); rZ^v?4Z\  
    1/-43B  
    % Pre-compute the values of r raised to the required powers,  <**y !2  
    % and compile them in a matrix: +0q>fp_K(+  
    % ----------------------------- 4^Q :  
    if rpowers(1)==0 fKeT~z{~  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); pg%aI,  
        rpowern = cat(2,rpowern{:}); x{c/$+Z[  
        rpowern = [ones(length_r,1) rpowern]; WjwLM2<nK7  
    else o1Q7Th  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); a|=x5`h04~  
        rpowern = cat(2,rpowern{:}); {0^&SI"5`E  
    end `zXO_@C  
    Y=n4K<  
    % Compute the values of the polynomials: /&{$ pM|?  
    % -------------------------------------- $3uKw!z  
    z = zeros(length_r,length_n); xz{IH,?IG  
    for j = 1:length_n $Gv9m  
        s = 0:(n(j)-m(j))/2; xD[Gq%  
        pows = n(j):-2:m(j); .]7Qu;L  
        for k = length(s):-1:1 ?Ovqp-sw  
            p = (1-2*mod(s(k),2))* ... S'B|>!z@  
                       prod(2:(n(j)-s(k)))/          ... eT8}  
                       prod(2:s(k))/                 ... ?6jkI2w  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ~\3kx]^10  
                       prod(2:((n(j)+m(j))/2-s(k))); (B-43!C  
            idx = (pows(k)==rpowers); JEgx@};O  
            z(:,j) = z(:,j) + p*rpowern(:,idx); |{ PI102  
        end %ck]S!}6  
         `zt_7MD  
        if isnorm z,:a8LB#[  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); `o?Ph&p}  
        end f'{]"^e=  
    end D HT&,=  
    @%lBrM  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  0D(cXzQP  
    8"vwU@cfC  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 uC]Z8&+obb  
    ^Dx#7bsDZR  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)