非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .5\@G b.8
function z = zernfun(n,m,r,theta,nflag) 2D:/.9= 8v
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. )xVf3l
pQ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N nReIi;pi
% and angular frequency M, evaluated at positions (R,THETA) on the P].Eb7I
% unit circle. N is a vector of positive integers (including 0), and S:z|"u:+
% M is a vector with the same number of elements as N. Each element r`-8+"P
% k of M must be a positive integer, with possible values M(k) = -N(k) !Ge;f/@
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 6?xF!VIL
% and THETA is a vector of angles. R and THETA must have the same 1L`V{\_0s
% length. The output Z is a matrix with one column for every (N,M) 5@RcAQb:
% pair, and one row for every (R,THETA) pair. 3[Q7'\
% .-YE(}^
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike GG%;~4#2
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), >K'dgJ245
% with delta(m,0) the Kronecker delta, is chosen so that the integral 0:Bpvl5
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @q!T,({kx
% and theta=0 to theta=2*pi) is unity. For the non-normalized B9,39rG/7+
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^Zvb3RJ g
% C[fefV9g2
% The Zernike functions are an orthogonal basis on the unit circle. sSh." H
% They are used in disciplines such as astronomy, optics, and -"zW"v)\
% optometry to describe functions on a circular domain. ;%0kzIvP
% ;39b.v\^
% The following table lists the first 15 Zernike functions. v2tVq_\AMx
% b~UWFX#U
% n m Zernike function Normalization :^W}$7$T
% -------------------------------------------------- :2KPvp7?
% 0 0 1 1 .RmFYV0,
% 1 1 r * cos(theta) 2 Y*#xo7#B
% 1 -1 r * sin(theta) 2 [4xZy5V
% 2 -2 r^2 * cos(2*theta) sqrt(6) ts<\n-f
% 2 0 (2*r^2 - 1) sqrt(3) +\["HS7+'0
% 2 2 r^2 * sin(2*theta) sqrt(6) @_t=0Rc
% 3 -3 r^3 * cos(3*theta) sqrt(8) 0e&&k
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 6&]Z'nW0k
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) y_>DszRN`u
% 3 3 r^3 * sin(3*theta) sqrt(8) HY_>sD
% 4 -4 r^4 * cos(4*theta) sqrt(10) \s[L=^!
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +@uA
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) q~#>MB}".
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !e<5JO;c
% 4 4 r^4 * sin(4*theta) sqrt(10) #)n$Q^9&
% -------------------------------------------------- 0,-]O=
% 9_==C"F
% Example 1:
{Y/0BS2D
% r]-n,
% % Display the Zernike function Z(n=5,m=1) xtCMK1#
x
% x = -1:0.01:1; ]gX8z#*k
% [X,Y] = meshgrid(x,x); _"x%s
% [theta,r] = cart2pol(X,Y); t{B@k[|
% idx = r<=1; J0vQqTaT
% z = nan(size(X)); P0; y
% z(idx) = zernfun(5,1,r(idx),theta(idx)); >VZxDJ$R
% figure ~)#E?:h5
% pcolor(x,x,z), shading interp =}tomN(F~[
% axis square, colorbar Kn3Xn`P?
% title('Zernike function Z_5^1(r,\theta)') vn*K\,
% DZmVm['l
% Example 2: s)E8}-v
% YJ6:O{AL1
% % Display the first 10 Zernike functions Y5 ;a
% x = -1:0.01:1; )?OdD7gd
% [X,Y] = meshgrid(x,x); cQxUEY('+
% [theta,r] = cart2pol(X,Y); uX!6:v]
% idx = r<=1; OLt0Q.{
% z = nan(size(X)); "6IZf>N@#
% n = [0 1 1 2 2 2 3 3 3 3]; Z&?4<-@6\p
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; y|+5R5}K
% Nplot = [4 10 12 16 18 20 22 24 26 28]; m+8:_0x "
% y = zernfun(n,m,r(idx),theta(idx)); [;aM8N
% figure('Units','normalized') b 1.S21
% for k = 1:10 LN(\B:wAY
% z(idx) = y(:,k); ";`jS&"=
% subplot(4,7,Nplot(k)) 1!V[fPJ
% pcolor(x,x,z), shading interp ah<p_qe9|
% set(gca,'XTick',[],'YTick',[]) |5`ecjb.
% axis square r[^.\&-
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \z6UWZ
% end uWClT):
% D=vw0Q_3Y3
% See also ZERNPOL, ZERNFUN2. A@_>9;
DazoY&AWE
% Paul Fricker 11/13/2006 ?fP3R':s
wT19m
'hWA&Xx+
% Check and prepare the inputs: 8a@k6OZ
% ----------------------------- 8EkzSe
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) \tvL<U"'
error('zernfun:NMvectors','N and M must be vectors.') 6/3E!8
end lb9?Uc@
lijTL-3
if length(n)~=length(m) #?r|6<4X
error('zernfun:NMlength','N and M must be the same length.') 1yz%ud-l
end [*It' J^
NwOV2E6@OW
n = n(:); y@$E5sz
m = m(:); 0+1!-Wo
if any(mod(n-m,2)) zJ(DO>,p&
error('zernfun:NMmultiplesof2', ... At<MY`ka
'All N and M must differ by multiples of 2 (including 0).') ZY7-.
end !^y;|9?O
9XQE5^
if any(m>n) @i(9k
error('zernfun:MlessthanN', ... e0TxJ*
'Each M must be less than or equal to its corresponding N.') QsxvA;7%
end mzM95yQ^Z
2G-"HOG
if any( r>1 | r<0 ) iex%$> "
error('zernfun:Rlessthan1','All R must be between 0 and 1.') F4-rPv
end 12L`Gi
[G|(E
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 3B%7SX
error('zernfun:RTHvector','R and THETA must be vectors.') h4KMhr
end Kv1~,j6
k ?6d\Q
r = r(:); Hc<@T_h+2
theta = theta(:); IQC[ewk
length_r = length(r); ^{IZpT3
if length_r~=length(theta) 'l!\2Wv2
error('zernfun:RTHlength', ...
%X\A|V&
'The number of R- and THETA-values must be equal.') S]%,g%6i
end SX'NFdY
C[%&;\3S@
% Check normalization: Va.TUz4
% -------------------- =$bF[3D
if nargin==5 && ischar(nflag) CDtL.a\
isnorm = strcmpi(nflag,'norm'); RuVk>(?WK%
if ~isnorm 1Zp/EYWa{
error('zernfun:normalization','Unrecognized normalization flag.') A9SL|9Q
end YWd2bRb
else ,)d`_AD+5
isnorm = false; w0nbL^f
end gn/]1NNfR
z<!A;.iD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bp?TO]LH
% Compute the Zernike Polynomials saZK+kD4I
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mYJ8O$
JBw2#ry
% Determine the required powers of r: sl$y&C-
% ----------------------------------- ,#;`f=aqTG
m_abs = abs(m); IMdp"
rpowers = []; G6>sAOf
for j = 1:length(n) 2P'Vp7f6 Y
rpowers = [rpowers m_abs(j):2:n(j)]; :O@n6%pSL
end bxxLAWQ(
rpowers = unique(rpowers); S?i^ ~
?(B}w*G~
% Pre-compute the values of r raised to the required powers, Glw|*{$
% and compile them in a matrix: $4ZV(j]
% ----------------------------- sVP\EF8PY
if rpowers(1)==0 Ufi#y<dP
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); O,^s)>c
rpowern = cat(2,rpowern{:}); Oz_CEMcy
rpowern = [ones(length_r,1) rpowern]; nIB eZof
else '
ZTRl+
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ho/tCU|w
rpowern = cat(2,rpowern{:}); b0h\l#6
end ;}S_ PnwC@
H@zv-{}T8
% Compute the values of the polynomials: mM/#(Ghl
% -------------------------------------- txnH~;(
y = zeros(length_r,length(n)); r^"sZk#
for j = 1:length(n) qR2cRepV
s = 0:(n(j)-m_abs(j))/2; x%@M*4:&
pows = n(j):-2:m_abs(j); |8k^jq
for k = length(s):-1:1 5Y`4%*$
p = (1-2*mod(s(k),2))* ...
}lPWA/
prod(2:(n(j)-s(k)))/ ... MU] F'6V
prod(2:s(k))/ ... o8E<_rei
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... d@*dbECG
prod(2:((n(j)+m_abs(j))/2-s(k))); x2I|iA =
idx = (pows(k)==rpowers); twldwuN
y(:,j) = y(:,j) + p*rpowern(:,idx); BOvJEs!UX
end V?^qW#AG
#LR6wEk
if isnorm KdHkX+-R
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); hTby:$aCg
end BBX/ &d8n
end c"`HKfL
% END: Compute the Zernike Polynomials (qc<'$o
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OH n~DL2
*qL2=2
% Compute the Zernike functions: K]>4*)A:
% ------------------------------ 9,Dw;|A]
idx_pos = m>0; MGwXZ7?E
idx_neg = m<0; Wx;%W"a
<daH0l0
z = y; H)*%e G~
if any(idx_pos) \KpJIHkBRy
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4TU\SP8sM
end '5T:*Yh
if any(idx_neg) #X!seQ7a
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5c%Fb:BW=
end ,T 3M
d*([!!i
% EOF zernfun