非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 \w{fq+G
function z = zernfun(n,m,r,theta,nflag) oB}rd9
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. uUG &At
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N
C%Op[H3
% and angular frequency M, evaluated at positions (R,THETA) on the uUpOa+t
% unit circle. N is a vector of positive integers (including 0), and c*>SZ'T\
% M is a vector with the same number of elements as N. Each element /z,+W9`
% k of M must be a positive integer, with possible values M(k) = -N(k) a<D]Gz^h
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, n-lDE}K9%B
% and THETA is a vector of angles. R and THETA must have the same o648
xUP
% length. The output Z is a matrix with one column for every (N,M) ;{>-K8=>$
% pair, and one row for every (R,THETA) pair. lFM'F [-?-
% %eqL)pC]
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Q#$dp
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YC~kq?
% with delta(m,0) the Kronecker delta, is chosen so that the integral j~9,Ct
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 1T7;=<g`
% and theta=0 to theta=2*pi) is unity. For the non-normalized u"r1RG'
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2!bE|
% [Hp"a^~r|
% The Zernike functions are an orthogonal basis on the unit circle. h|=&a0
% They are used in disciplines such as astronomy, optics, and [@t 6,g
% optometry to describe functions on a circular domain. /`VtW$9-
% (V~PYf%
% The following table lists the first 15 Zernike functions. .We"j_
}
% =gr3a,2
% n m Zernike function Normalization &5wM`
% -------------------------------------------------- )/<\|mR
% 0 0 1 1 I:#Es.
% 1 1 r * cos(theta) 2 s%qK<U4@;Q
% 1 -1 r * sin(theta) 2 qg@Wzs7c~
% 2 -2 r^2 * cos(2*theta) sqrt(6) %g&i.2v
% 2 0 (2*r^2 - 1) sqrt(3) e_pyjaY!s
% 2 2 r^2 * sin(2*theta) sqrt(6) GwVSRI:[N
% 3 -3 r^3 * cos(3*theta) sqrt(8) C,m
o4,Q
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) jG3i
)ALx
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) |[lM2
% 3 3 r^3 * sin(3*theta) sqrt(8) e6?h4}[+*
% 4 -4 r^4 * cos(4*theta) sqrt(10) s8N\cOd#i
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gobqS+c
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) M%2F7 FY
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 68LB745
% 4 4 r^4 * sin(4*theta) sqrt(10) \uV;UH7qe
% -------------------------------------------------- o93A:f c
% Z-+p+34ytq
% Example 1: ztS'Dp}q<
% d<v>C-nk%
% % Display the Zernike function Z(n=5,m=1) f)+fdc
% x = -1:0.01:1; 9WuKW***
% [X,Y] = meshgrid(x,x); .sDVBT'%
% [theta,r] = cart2pol(X,Y); V+l>wMeo
% idx = r<=1; e$^ O_e
% z = nan(size(X)); "8"7AoE
% z(idx) = zernfun(5,1,r(idx),theta(idx)); z_J"Qk
% figure i'%:z]hp9
% pcolor(x,x,z), shading interp 8V(#S:G35
% axis square, colorbar s],+]<qX
% title('Zernike function Z_5^1(r,\theta)') n300kpv
% ,Mwj`fgh
% Example 2: $fY4amX6Z
% RSY{IY
% % Display the first 10 Zernike functions U:`g12
% x = -1:0.01:1; @`ttyI^1f
% [X,Y] = meshgrid(x,x); %G$Kahx V>
% [theta,r] = cart2pol(X,Y); U>^-Db]
% idx = r<=1; vxo iPqo
% z = nan(size(X)); )S|}de/a2
% n = [0 1 1 2 2 2 3 3 3 3]; T(^<sjOs
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; "rr,P0lgX
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 0Kjm:x9T
% y = zernfun(n,m,r(idx),theta(idx)); jn#
% figure('Units','normalized') *r+i=i8{
% for k = 1:10 |:tFQ.Z'2
% z(idx) = y(:,k); Au,}5=+`P
% subplot(4,7,Nplot(k)) kN>AY'1
% pcolor(x,x,z), shading interp @&]j[if(s
% set(gca,'XTick',[],'YTick',[]) Ss&R!w9p
% axis square J~:/,'Ea
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 3L4lk8Dd
% end $N=A, S
% ![iAALPNl
% See also ZERNPOL, ZERNFUN2. ;ePmN|rq;
cV5Lp4wY?
% Paul Fricker 11/13/2006 t\]CdH`+
o=2y`Eq
xgt dmv%
% Check and prepare the inputs: _~DFZt@T
% ----------------------------- %
j7lLSusX
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %9=^#e+pE
error('zernfun:NMvectors','N and M must be vectors.') rj*4ZA?
end 81/Bn!
~'HwNzDQc
if length(n)~=length(m) 0bpl3Fh.v
error('zernfun:NMlength','N and M must be the same length.') '@Y@H,
end gRKmfJ*u
>"S'R9t
n = n(:); M,PZ|=V6a
m = m(:); Xt /muV
if any(mod(n-m,2)) ])a?ri
error('zernfun:NMmultiplesof2', ... yKa}U!$
'All N and M must differ by multiples of 2 (including 0).') fdzD6KZI
end ^c^9kK'
h.g11xa
if any(m>n) rBkf @
error('zernfun:MlessthanN', ... Kig.hHj@
'Each M must be less than or equal to its corresponding N.') s0.yPA
end *Rj>// A
}
CJQC
if any( r>1 | r<0 ) Zi2NgVF
error('zernfun:Rlessthan1','All R must be between 0 and 1.') JB'q_dS}
end ?4_^}B9
\p.Byso,
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ][6$$Lz
error('zernfun:RTHvector','R and THETA must be vectors.') L$@^EENS
end KC?h sID{
H4 &
d,8:m
r = r(:); <<w $Ur
theta = theta(:); vBQ5-00YY=
length_r = length(r); M0 x5s@
if length_r~=length(theta) ZqkP# ]+Y'
error('zernfun:RTHlength', ... I
[0od+K
'The number of R- and THETA-values must be equal.') L;5jhVy
end C&3#'/&
ev#d1s|<S
% Check normalization: @
MNL
% -------------------- VE6T&fz`
if nargin==5 && ischar(nflag) i3*?fMxhu)
isnorm = strcmpi(nflag,'norm'); IJo`O
if ~isnorm pR&cdORsP
error('zernfun:normalization','Unrecognized normalization flag.') <i~ (
8F\
end 0: h;ots'
else d^Ra1@0"q2
isnorm = false; x-U:T.+{
end ^QB/{9 #
0d:t$2~C
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sxO_K^eD
% Compute the Zernike Polynomials o]}b#U8S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6k42>e*p
=5%jKHo+9z
% Determine the required powers of r: Cr4shdN34
% ----------------------------------- jY:(Tv3~
m_abs = abs(m); Fx0K.Q2Y0
rpowers = []; r1-?mMSU&
for j = 1:length(n) %zd1\We
rpowers = [rpowers m_abs(j):2:n(j)]; //e.p6"8h
end H<%7aOwO2
rpowers = unique(rpowers); *2 4P T7
5gGYG]*l
% Pre-compute the values of r raised to the required powers, ?Hf^&yo
% and compile them in a matrix: y*\ M7}](
% ----------------------------- GfJm&'U&
if rpowers(1)==0 %6L!JN
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _"a(vfl#
rpowern = cat(2,rpowern{:}); ;#3!ZB:}
rpowern = [ones(length_r,1) rpowern]; =a?l@dI]
else p4W->AVv$
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); sryujb.,
rpowern = cat(2,rpowern{:}); K,|Gtaa~
end h}z^NX
!;'U5[}8
% Compute the values of the polynomials: (Y,
@-V
% -------------------------------------- =35EG{W(
y = zeros(length_r,length(n)); y= cBpC
for j = 1:length(n) @6
gA4h
s = 0:(n(j)-m_abs(j))/2; >Bskw2
pows = n(j):-2:m_abs(j);
=^q:h<
for k = length(s):-1:1 0l.+yr}PE
p = (1-2*mod(s(k),2))* ... # u^F B
prod(2:(n(j)-s(k)))/ ... 6N~~:Gt
prod(2:s(k))/ ... R7x4v
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \[]36|$LS
prod(2:((n(j)+m_abs(j))/2-s(k))); /_x?PiL
idx = (pows(k)==rpowers); isDBNXV:
y(:,j) = y(:,j) + p*rpowern(:,idx); :5U(}\dL{
end ;'}1
4zpprh+`K
if isnorm f Nm
Sx
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); /Kwo^Q{
end SG8|xoL
end BA A)IQF
% END: Compute the Zernike Polynomials _
97F
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DD"]as"#
Tp)-L0kD_k
% Compute the Zernike functions: lb{*,S
% ------------------------------ b&HA_G4
idx_pos = m>0; bH3-#mw5w
idx_neg = m<0; %Ni)^
/]F3t]FlC
z = y; j@ UIN3
if any(idx_pos) *vCJTz
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i)+@'!6
end }j+ZF'#
if any(idx_neg) B6MMn.
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,hT t]w
end r$=iM:kERC
4}W*,&_
% EOF zernfun