非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ed\,FWR
function z = zernfun(n,m,r,theta,nflag) _^&oNm1
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. frGUT#9?n
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )OjbmU!7
% and angular frequency M, evaluated at positions (R,THETA) on the ]G|@F
:
% unit circle. N is a vector of positive integers (including 0), and I<[(hPQUf
% M is a vector with the same number of elements as N. Each element Do2y7,jv
% k of M must be a positive integer, with possible values M(k) = -N(k) iW |]-Ba\
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, .l#Pmd!
% and THETA is a vector of angles. R and THETA must have the same D:.^]o[
% length. The output Z is a matrix with one column for every (N,M) mv30xcc
% pair, and one row for every (R,THETA) pair. )NyGV!Zuu
% Zsf<)Vx
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike G. <9K9K
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), QW~o+N~~
% with delta(m,0) the Kronecker delta, is chosen so that the integral +.>O%pNj
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, KZD&Ih(vC
% and theta=0 to theta=2*pi) is unity. For the non-normalized M5P63=1+
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. uOougSBV,
% hi.{
% The Zernike functions are an orthogonal basis on the unit circle. N<:Ra~Ay
% They are used in disciplines such as astronomy, optics, and eZg31.
% optometry to describe functions on a circular domain. $ g1p!
% Dw.>4bA.
% The following table lists the first 15 Zernike functions. $dwv1@M2
% ;39{iU.m
% n m Zernike function Normalization '# (lq 5
c
% -------------------------------------------------- TxxW/f9D
% 0 0 1 1 ^z)lEO
% 1 1 r * cos(theta) 2 ;#f%vs>Y7i
% 1 -1 r * sin(theta) 2 egP3q5~
% 2 -2 r^2 * cos(2*theta) sqrt(6) jp[QA\
% 2 0 (2*r^2 - 1) sqrt(3) j-A
S {w
% 2 2 r^2 * sin(2*theta) sqrt(6) %81tVhg
% 3 -3 r^3 * cos(3*theta) sqrt(8) aD3$z;E
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) lXB_HDY
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) .X:{s,@
% 3 3 r^3 * sin(3*theta) sqrt(8) v,>q]!
|a
% 4 -4 r^4 * cos(4*theta) sqrt(10) (&
~`!]
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^g~-$ t<!
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) poXkH@[O
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4)XN1r:
% 4 4 r^4 * sin(4*theta) sqrt(10) jhg!K.A
% -------------------------------------------------- G&