非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 M~!DQ1u
function z = zernfun(n,m,r,theta,nflag) s.uw,x
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~#]$YoQ&O
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N VX'cFqrK3
% and angular frequency M, evaluated at positions (R,THETA) on the ' K\ $B_
% unit circle. N is a vector of positive integers (including 0), and PV(TDb:0
% M is a vector with the same number of elements as N. Each element /c4@QbB
% k of M must be a positive integer, with possible values M(k) = -N(k) )@hG #KMK
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, QBD\2VR
% and THETA is a vector of angles. R and THETA must have the same }#bX{?f
% length. The output Z is a matrix with one column for every (N,M) \9Yc2$dY
% pair, and one row for every (R,THETA) pair. $qp,7RW
% 2D vKW%;
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Shag4-*@hi
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), I_aSC 4
% with delta(m,0) the Kronecker delta, is chosen so that the integral <\6<-x(H5
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,
tqMOh R
% and theta=0 to theta=2*pi) is unity. For the non-normalized "TQ3{=j{
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _Pe,84Ro
% VNggDKS~K
% The Zernike functions are an orthogonal basis on the unit circle. QRw/d}8l
% They are used in disciplines such as astronomy, optics, and FCp\w1+
% optometry to describe functions on a circular domain. jb'AOs
% q\I2lZ
% The following table lists the first 15 Zernike functions. L2WH-XP=
% +<TnE+>j
% n m Zernike function Normalization qiyX{J7Z
% -------------------------------------------------- zEJZ, <
% 0 0 1 1 U%qE=u-
% 1 1 r * cos(theta) 2 [m+):q^
% 1 -1 r * sin(theta) 2 FVo_=O)
% 2 -2 r^2 * cos(2*theta) sqrt(6) %9HL"
% 2 0 (2*r^2 - 1) sqrt(3) Up*.z\|'y
% 2 2 r^2 * sin(2*theta) sqrt(6) <<iwJ
U%:
% 3 -3 r^3 * cos(3*theta) sqrt(8) pIbm)-
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ]hC6PKJU
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) id=:J7!QU
% 3 3 r^3 * sin(3*theta) sqrt(8) 7wA.:$
% 4 -4 r^4 * cos(4*theta) sqrt(10) 3{/Y&/\"'^
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JsY|Fv
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ,JVWn>s
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s<hl>vY_'
% 4 4 r^4 * sin(4*theta) sqrt(10)
]$=\zL
% -------------------------------------------------- P)9$}9i
% a}#8n^2
% Example 1: _
!r]**
% #|ILeby
% % Display the Zernike function Z(n=5,m=1) x<lY&KQ0
% x = -1:0.01:1; EsK.g/d
% [X,Y] = meshgrid(x,x); `(Eiu$h6V-
% [theta,r] = cart2pol(X,Y); 5p]Cwj<u
% idx = r<=1; mR|;}u;d
% z = nan(size(X)); -w3KBlo
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ZaKT~f%%z
% figure ob(S/t
% pcolor(x,x,z), shading interp J6s@}@R1
% axis square, colorbar dF#`_!4pbf
% title('Zernike function Z_5^1(r,\theta)') (h$[g"8
% X
8#Uk} /
% Example 2: xJemc3]2
% k __MYb
% % Display the first 10 Zernike functions }s>.Fh
% x = -1:0.01:1; A&8{0
% [X,Y] = meshgrid(x,x); _=*ph0nu
% [theta,r] = cart2pol(X,Y); a|u&N:v7B
% idx = r<=1; ab/^z0GT
% z = nan(size(X)); >$ok3-tuU
% n = [0 1 1 2 2 2 3 3 3 3]; iI
4XM>`a
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Kx<T;iJ}
% Nplot = [4 10 12 16 18 20 22 24 26 28]; QswbIP/>:'
% y = zernfun(n,m,r(idx),theta(idx)); D&C83^m
% figure('Units','normalized')
+.Cx.Nf(
% for k = 1:10 zc4l{+3
% z(idx) = y(:,k); 6vL+qOd x
% subplot(4,7,Nplot(k)) |OarE2
% pcolor(x,x,z), shading interp Ee0}Xv
% set(gca,'XTick',[],'YTick',[]) x } X1
O)
% axis square Q}(D^rGP3
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) C#3K.0a
% end 1:Dm,d;
% PS\n0
% See also ZERNPOL, ZERNFUN2. Ce~
a(J|"
898=9`7e
% Paul Fricker 11/13/2006 $ytlj1.
?K>=>bS^h
,2*x4Gycb
% Check and prepare the inputs: M
s5L7S
% ----------------------------- ;:l>Kac
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S1&Df%Ra
error('zernfun:NMvectors','N and M must be vectors.') ^PrG5|,s
end YVT\@+C'
p*l]I*x'<
if length(n)~=length(m) 0n('F
error('zernfun:NMlength','N and M must be the same length.') PZB_6!}2[F
end uu`G<n
'3'*VcL(
n = n(:); eJ2$DgB}t
m = m(:); cE SSSH!m
if any(mod(n-m,2)) A!n)Fpk
error('zernfun:NMmultiplesof2', ... sY*iRq
'All N and M must differ by multiples of 2 (including 0).')
{=A8kgt
end >?yxig:_
m:4Ec>?e
if any(m>n) o%1dbbh
error('zernfun:MlessthanN', ... T>e4Og"?
'Each M must be less than or equal to its corresponding N.') }p$@.+
end blHJhB&8
%hO/2u
if any( r>1 | r<0 ) tJgo%P1
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 25m6/Y
end \&Bvh4Q
~SD8#;v2
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Vub($
error('zernfun:RTHvector','R and THETA must be vectors.') =Ti[Q5SZ
end =bDy :yY}
`fm^#Nw
r = r(:); :^92B?q
theta = theta(:); k6|wiSyu
length_r = length(r); .*acw
if length_r~=length(theta) /ltGSl
error('zernfun:RTHlength', ... F `cuV
'The number of R- and THETA-values must be equal.') e/*T,ZJ
end |bWvQdN
D @bnm
s
% Check normalization: [\ALT8vC?m
% -------------------- )e6)~3[^
if nargin==5 && ischar(nflag) ER4j=O#
isnorm = strcmpi(nflag,'norm'); mYRW/8+g
if ~isnorm IJz=SV
error('zernfun:normalization','Unrecognized normalization flag.') f 3t&Bcw$
end N-cLp}D}WB
else 0ghW};[6
isnorm = false; g[ dI%
end B!X;T9^d
1NI%J B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GR ^d/
% Compute the Zernike Polynomials jXCSD@?]K
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pjVF^gv,*
5q Y+^jO]o
% Determine the required powers of r: x.ZW%P1
% ----------------------------------- QW[
gDc
m_abs = abs(m); \n}@}E L
rpowers = []; &Bfgvws;
for j = 1:length(n) Aq~}<qkIF+
rpowers = [rpowers m_abs(j):2:n(j)]; M,V~oc5
end :
#om6}
rpowers = unique(rpowers); m?4L>'
~EJ+<[/
% Pre-compute the values of r raised to the required powers, 7>sNjOt@M
% and compile them in a matrix: |MEu"pY)
% ----------------------------- gZ b+m
if rpowers(1)==0 WVa#nU^
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); P
g{/tMY
rpowern = cat(2,rpowern{:}); Iq%f*Zm<
rpowern = [ones(length_r,1) rpowern]; YA,vT[kX
else IA$)E
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7F!(60xY
rpowern = cat(2,rpowern{:}); %n7Y5|Uh
end F
)|0U~
S(nZ]QEG
% Compute the values of the polynomials: M`jqUg
% -------------------------------------- Hvj1R.I/
y = zeros(length_r,length(n)); t<