非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _|jEuif
function z = zernfun(n,m,r,theta,nflag) @js`$
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ^tFlA)
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ~~r7TPq
% and angular frequency M, evaluated at positions (R,THETA) on the utzf7?nIS
% unit circle. N is a vector of positive integers (including 0), and Yj"{aFK#u@
% M is a vector with the same number of elements as N. Each element ^vw[z2"
% k of M must be a positive integer, with possible values M(k) = -N(k) dkWV/DAm
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, #W9{3JGUY
% and THETA is a vector of angles. R and THETA must have the same EQ [K
% length. The output Z is a matrix with one column for every (N,M) ls({{34NF
% pair, and one row for every (R,THETA) pair. 0}mVP
% g|Tkl
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ZyX+V?4
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9;Qgby
% with delta(m,0) the Kronecker delta, is chosen so that the integral J7pF*2
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, !&adO,jN+=
% and theta=0 to theta=2*pi) is unity. For the non-normalized {zIcEN$ ~
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. +aQM %~
% 2WUl8?f2Y
% The Zernike functions are an orthogonal basis on the unit circle. oM^VtH=>
% They are used in disciplines such as astronomy, optics, and .^xQtnq
% optometry to describe functions on a circular domain. Vd;NT$S$
% a)S{9q}%
% The following table lists the first 15 Zernike functions. 6o.Dgt/f
% cv5+[;(b
% n m Zernike function Normalization XUVBD;"f!
% -------------------------------------------------- uCHM
% 0 0 1 1 }ijFvIHV
% 1 1 r * cos(theta) 2 "_0sW3rG
% 1 -1 r * sin(theta) 2 9\Md.>
% 2 -2 r^2 * cos(2*theta) sqrt(6) B7.<A#y2
% 2 0 (2*r^2 - 1) sqrt(3) G){A&F
% 2 2 r^2 * sin(2*theta) sqrt(6) o&$Of
% 3 -3 r^3 * cos(3*theta) sqrt(8) 14`S9SL{V
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) \E1CQP-
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) .6c
Bx
% 3 3 r^3 * sin(3*theta) sqrt(8) p`Ok(C_
% 4 -4 r^4 * cos(4*theta) sqrt(10) 6!@p$ pm)a
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]+5Y\~I
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) G0u
H6x?
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [(; .D
% 4 4 r^4 * sin(4*theta) sqrt(10) T"DG$R,Aj
% -------------------------------------------------- |JiN;
O+K
% /Yj; '\3
% Example 1: !{F\\D/
% XnKf<|j6k
% % Display the Zernike function Z(n=5,m=1) uHuL9Q^
% x = -1:0.01:1; &,QBJx<#
% [X,Y] = meshgrid(x,x); qzWnl[3
% [theta,r] = cart2pol(X,Y); \I7&F82e
% idx = r<=1; I@kMM12>c
% z = nan(size(X)); _D{{C
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 4}t$Lf_
% figure ]P2Wa
% pcolor(x,x,z), shading interp /~{fPS
% axis square, colorbar YRu/KUT$ 7
% title('Zernike function Z_5^1(r,\theta)') -n:;/ere7-
% *-3*51 jW
% Example 2: Iv{uk$^7S
% $\aJ.N6rb
% % Display the first 10 Zernike functions IK,aA;d
% x = -1:0.01:1; })?KpYk
% [X,Y] = meshgrid(x,x); G%dzJpC(
% [theta,r] = cart2pol(X,Y); {>d\
% idx = r<=1; #iT3aou
% z = nan(size(X)); Cy5M0{
% n = [0 1 1 2 2 2 3 3 3 3]; `^)oVs
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 8aY}b($*ZI
% Nplot = [4 10 12 16 18 20 22 24 26 28]; M1eM^m8U
% y = zernfun(n,m,r(idx),theta(idx)); w x,gth*p
% figure('Units','normalized') n[7=
% for k = 1:10 (Bss%\
% z(idx) = y(:,k); c^~R%Bx
% subplot(4,7,Nplot(k)) 6n^vG/.M
% pcolor(x,x,z), shading interp ;m"R.Q9*
% set(gca,'XTick',[],'YTick',[]) `pXPF}T
% axis square '/fueku
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) bLC+73BjC
% end QSvgbjdE
% +
7nA; C
% See also ZERNPOL, ZERNFUN2. yW;]J87*
} DjbVYH
% Paul Fricker 11/13/2006 >L^2Z*
qdZo
cTf'
Sr-!-eC
% Check and prepare the inputs: #"TL*p
% ----------------------------- `L"l{^cH
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (wp?tMN5#
error('zernfun:NMvectors','N and M must be vectors.') gFxa UrZA
end Cp]q>lM"
T*#< p;
if length(n)~=length(m) O/ZyWT
error('zernfun:NMlength','N and M must be the same length.') `o%Ua0x2
end fn.}LeeS>
Gu%}B@ 4^
n = n(:); AE4>pzBe
m = m(:); Zv8G[(
if any(mod(n-m,2)) b\+9#)Up@
error('zernfun:NMmultiplesof2', ... F"a31`L>H
'All N and M must differ by multiples of 2 (including 0).') k&o1z'<C
end 9]|G-cyt
+|Mi lwr
if any(m>n) $u{ 8wF/)
error('zernfun:MlessthanN', ... #.<(/D+
'Each M must be less than or equal to its corresponding N.') ig?Tj4kD
end Gl5W4gW;&
88+J(^y>
if any( r>1 | r<0 ) B3yp2tncj
error('zernfun:Rlessthan1','All R must be between 0 and 1.') BoXGoFn
end 6zJ>n~&(
Nk shJ2
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) rY(^6[ !
error('zernfun:RTHvector','R and THETA must be vectors.') ,IG?(CK|
end ^/jALA9!
?N@p~
*x
r = r(:); 6n'XRfQp)&
theta = theta(:); fg8U*7
length_r = length(r); x2z%J,z@4
if length_r~=length(theta) k&3'[&$I*,
error('zernfun:RTHlength', ... Sv03="&
'The number of R- and THETA-values must be equal.') M-NY&