非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 UL0%oJ#
function z = zernfun(n,m,r,theta,nflag) RfP>V/jy5
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. fFG, ^;7-O
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N n[zP}YRr
% and angular frequency M, evaluated at positions (R,THETA) on the ]fH U/%
% unit circle. N is a vector of positive integers (including 0), and -eKi}e
% M is a vector with the same number of elements as N. Each element :r^c_Ui
% k of M must be a positive integer, with possible values M(k) = -N(k) 3JuWG\r)l
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, S"FIQ&n
% and THETA is a vector of angles. R and THETA must have the same 1i;-mYGaMn
% length. The output Z is a matrix with one column for every (N,M) <I.anIB:U
% pair, and one row for every (R,THETA) pair. N 3IF j
% RhM]OJd'
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike `I$'Lp#5
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \79KU
% with delta(m,0) the Kronecker delta, is chosen so that the integral 2#z 6= M~A
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,
t#s?:
% and theta=0 to theta=2*pi) is unity. For the non-normalized q'kZ3G
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _=RA-qZ"
% x \qS|q\N
% The Zernike functions are an orthogonal basis on the unit circle. nZ?BCO
% They are used in disciplines such as astronomy, optics, and M{Ss?G4H
% optometry to describe functions on a circular domain. as\6XW$;Q
% v,t&t9}/
% The following table lists the first 15 Zernike functions. !,}W|(P)
% A^+G
w\
% n m Zernike function Normalization J[9yQ
% -------------------------------------------------- =ogzq.+|
% 0 0 1 1 bH}6N>Fp
% 1 1 r * cos(theta) 2 4&r+K`C0
% 1 -1 r * sin(theta) 2 Kg0Vbzvb
% 2 -2 r^2 * cos(2*theta) sqrt(6) V|.3Z\(
% 2 0 (2*r^2 - 1) sqrt(3) H\ A!oB,sw
% 2 2 r^2 * sin(2*theta) sqrt(6) HC,YmO:df"
% 3 -3 r^3 * cos(3*theta) sqrt(8) ODn6%fp%
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) JZ6{W
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) XGE:ZVpW
% 3 3 r^3 * sin(3*theta) sqrt(8) M7"I]$|\
% 4 -4 r^4 * cos(4*theta) sqrt(10) /E'c y
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^p#f B4z
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) f$a%&X6"-
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) td^2gjr^5
% 4 4 r^4 * sin(4*theta) sqrt(10) Q+/:5Z
C
% -------------------------------------------------- %)[m bb
% QF/A-[V
% Example 1: h4CDZ
% 2XJn3wPi
% % Display the Zernike function Z(n=5,m=1) w[w{~`([",
% x = -1:0.01:1; ;2"#X2B
% [X,Y] = meshgrid(x,x); YH33E~f
% [theta,r] = cart2pol(X,Y); 55xv+|k
% idx = r<=1; KE\p|X i
% z = nan(size(X)); |B&KT
% z(idx) = zernfun(5,1,r(idx),theta(idx)); V6l*!R
% figure g]|K@sm
% pcolor(x,x,z), shading interp mIVnc`3s
% axis square, colorbar @/}{Trmg/
% title('Zernike function Z_5^1(r,\theta)') M0`nr}g
% 5Cxh>,k
% Example 2: BCV<( @c
% WjZJQK
% % Display the first 10 Zernike functions =T5vu~[J/e
% x = -1:0.01:1; )&di
c6r
% [X,Y] = meshgrid(x,x); wH1E7LY|R
% [theta,r] = cart2pol(X,Y); xq_%|p}y
% idx = r<=1; xlVQ[Mt
% z = nan(size(X)); "?_adot5v
% n = [0 1 1 2 2 2 3 3 3 3]; G)\s{qk
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; )@.bkzW
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Iu6KW :x
% y = zernfun(n,m,r(idx),theta(idx)); @AUx%:}0Y:
% figure('Units','normalized') !=C4=xv
% for k = 1:10 87%t=X
% z(idx) = y(:,k); ^_b+o
% subplot(4,7,Nplot(k)) qq}EXq ^
% pcolor(x,x,z), shading interp !}wJ+R ^2
% set(gca,'XTick',[],'YTick',[]) EqzS={Olj
% axis square a5WVDh,cR
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) >B$ZKE
% end ~Nf01,F
% \dj&4u3
% See also ZERNPOL, ZERNFUN2. ! *\)7D
MfUG@
% Paul Fricker 11/13/2006 N#{d_v^H?d
/km^IH
b Jt397
% Check and prepare the inputs: ]c{Zh?0
% -----------------------------
a9z|ef
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5;{d*L
error('zernfun:NMvectors','N and M must be vectors.') ,Iq+ v
end u2K{3+r`'
j &)Xi^^
if length(n)~=length(m) TF 6_4t6
error('zernfun:NMlength','N and M must be the same length.') x8%Q TTY
end a?6
r4u0
]d?`3{h9LD
n = n(:); :~loy'
m = m(:); T/G1v;]
if any(mod(n-m,2)) Z"Z&X0Oj
error('zernfun:NMmultiplesof2', ... $wU.GM$t~
'All N and M must differ by multiples of 2 (including 0).') p,}-8#K[
end &
Sy0Of
B9|!8V
if any(m>n) '5wa"/ ?w
error('zernfun:MlessthanN', ... V1Dwh@iS
'Each M must be less than or equal to its corresponding N.') dA>t
end #6'oor X
K^t M$l\
if any( r>1 | r<0 ) {EbR
=
error('zernfun:Rlessthan1','All R must be between 0 and 1.') G T#hqt'1x
end I z~#G6]M
N kp>yVj
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) tu6oa[s
error('zernfun:RTHvector','R and THETA must be vectors.') p3 I{
end b!SGQv(^M
Y2vzK;
r = r(:); cv;&ff2%?
theta = theta(:); w[\*\'Vm0
length_r = length(r); 'vj45b
if length_r~=length(theta) le yhiL<
error('zernfun:RTHlength', ... t3u"2B7oG
'The number of R- and THETA-values must be equal.') HZCEr6}(
end Nkn0G_
I<|)uK7
% Check normalization: * #e%3N05_
% -------------------- Da1BxbDeI
if nargin==5 && ischar(nflag) o%X_V!B{V
isnorm = strcmpi(nflag,'norm'); 7CYu"+Ea
if ~isnorm R'qB-v.
error('zernfun:normalization','Unrecognized normalization flag.') %1SA!1>j
end 1i#uKKwE
else ;YNN)P%"
isnorm = false; 0!veLXeK!
end G/_#zIN`8M
2<>n8 K
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E4[
|=<
% Compute the Zernike Polynomials ZH/^``[.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /A}3kTp
"C.'_H!Ex
% Determine the required powers of r: kt%9PGw
% ----------------------------------- "o#"u[W,
m_abs = abs(m); }$#e&&)n
rpowers = []; KCJ zE>
for j = 1:length(n) r4dG83qg
rpowers = [rpowers m_abs(j):2:n(j)]; pSkP8'
?
end K`* 8*k{
rpowers = unique(rpowers); &+6XdhX
#rMMOu9r2
% Pre-compute the values of r raised to the required powers, i0 {pm q
% and compile them in a matrix: !1+L0,I6
% ----------------------------- ma@ws,H
if rpowers(1)==0
dKDtj:
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); GZ/.eYE
rpowern = cat(2,rpowern{:}); I?dh"*Js&
rpowern = [ones(length_r,1) rpowern]; y/mxdPw
else ur={+0
y
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \D?6_
,O
rpowern = cat(2,rpowern{:}); T[U&Y`3g
end {=IK(H
(ZQ{%-i?qR
% Compute the values of the polynomials: GV6!`@<
% -------------------------------------- WRZi^B8@
y = zeros(length_r,length(n)); }cgEC-
for j = 1:length(n) WqqrfzlM
s = 0:(n(j)-m_abs(j))/2; n9gj{]%
pows = n(j):-2:m_abs(j); HKv:)h{?
for k = length(s):-1:1 tf|/_Y2
p = (1-2*mod(s(k),2))* ... $5r[YdnY<
prod(2:(n(j)-s(k)))/ ... GBu&2}
prod(2:s(k))/ ... |!8[Vg^Wh
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... f3lFpS
prod(2:((n(j)+m_abs(j))/2-s(k))); `B) ~
idx = (pows(k)==rpowers); {5-4^|!
y(:,j) = y(:,j) + p*rpowern(:,idx); pA"x4\s
end T({:Y. A;
T9KzVxHp5
if isnorm Z/sB72K1
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); m46Q%hwV
end AR`X2m '
end K6@QZc5.!
% END: Compute the Zernike Polynomials gR.zL>=_5e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;nji<
1d7oR`qr
% Compute the Zernike functions: s6OnHX\it7
% ------------------------------ Mr<2I
idx_pos = m>0; ~
61?nu
idx_neg = m<0; o; {
p&B98c
z = y; e{:P!r
aM
if any(idx_pos) H!4!1J.=xw
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Zq2dCp%
end n*CH,fih:
if any(idx_neg) g)!B};AA
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~;aSX1
end qC SJ=T;
yX$I<L<Suz
% EOF zernfun