切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10827阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 pe$" nUy|  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! %Ez=  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 nP`#z&C  
    function z = zernfun(n,m,r,theta,nflag) 9XtR8MH  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?t<yk(q  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %%`Q5I  
    %   and angular frequency M, evaluated at positions (R,THETA) on the b#\i]2b:  
    %   unit circle.  N is a vector of positive integers (including 0), and #mu3`,9V  
    %   M is a vector with the same number of elements as N.  Each element :f<:>"<  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) klSzmi4M  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, o"h* @.  
    %   and THETA is a vector of angles.  R and THETA must have the same 17IT:T,'  
    %   length.  The output Z is a matrix with one column for every (N,M) _Q&O#f  
    %   pair, and one row for every (R,THETA) pair. x[XN;W&  
    % O*% 1   
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike XL!\Lx  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), NQb!?w  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral l0AVyA4RFV  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, sXe=4`O  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 7i(U?\A;.  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `-Yo$b;:  
    % fePt[U)2  
    %   The Zernike functions are an orthogonal basis on the unit circle. ?[<C,w~$`  
    %   They are used in disciplines such as astronomy, optics, and I !\;NVhv  
    %   optometry to describe functions on a circular domain. ^|Bpo(  
    % 7bcl^~lY  
    %   The following table lists the first 15 Zernike functions. 4rX jso|  
    % qu>5 rg-  
    %       n    m    Zernike function           Normalization ;&="aD  
    %       -------------------------------------------------- q]PeS~PjF\  
    %       0    0    1                                 1 vm,/?]P  
    %       1    1    r * cos(theta)                    2 N=4`jy =  
    %       1   -1    r * sin(theta)                    2 xnz(hz6  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) \~j6}4XS1.  
    %       2    0    (2*r^2 - 1)                    sqrt(3) #"PI%&  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) "^?|=sQ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) A\Ax5eeL  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) m3o+iYkMD  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) s^O>PEX&<I  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) H{&o_  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) _Nze="Pt  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (jQ]<q%P  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5)  -w7g}  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Hzos$1DJ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) T2Duz,  
    %       -------------------------------------------------- 8M9LY9C  
    % . Y@)3  
    %   Example 1: `8 Q3=^)3  
    % |n9q 4*dN  
    %       % Display the Zernike function Z(n=5,m=1) s+mNr3  
    %       x = -1:0.01:1; #f *,mY|>  
    %       [X,Y] = meshgrid(x,x); <qGVOAnz+  
    %       [theta,r] = cart2pol(X,Y); mv%Zh1khn/  
    %       idx = r<=1; ZAK NyA2  
    %       z = nan(size(X)); L H>oG$a  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); z x e6M~+  
    %       figure V s/Z8t  
    %       pcolor(x,x,z), shading interp MSef2|"P#  
    %       axis square, colorbar W PDL$y  
    %       title('Zernike function Z_5^1(r,\theta)') Z{' .fq2A  
    % 1w30Vj2<  
    %   Example 2: <W$Ig@4[.d  
    % KDt@Xi 6||  
    %       % Display the first 10 Zernike functions t,CC~  
    %       x = -1:0.01:1; MXQ S6F#  
    %       [X,Y] = meshgrid(x,x); A'jw;{8NpF  
    %       [theta,r] = cart2pol(X,Y); WziX1%0$n  
    %       idx = r<=1; hU 3z4|~+  
    %       z = nan(size(X)); A4kYE A  
    %       n = [0  1  1  2  2  2  3  3  3  3]; jGp|:!'w  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; zYL</!6a[  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; _PI w""ssr  
    %       y = zernfun(n,m,r(idx),theta(idx)); I $5*Puy#  
    %       figure('Units','normalized') ?/EyfTex  
    %       for k = 1:10 T[$! ^WT  
    %           z(idx) = y(:,k); aWtyY[=  
    %           subplot(4,7,Nplot(k)) Kzv*`  
    %           pcolor(x,x,z), shading interp hvc%6A\nm  
    %           set(gca,'XTick',[],'YTick',[]) _b ~XBn  
    %           axis square ;'\#+GZ9p  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .bwKG`F  
    %       end k{{iF  
    % Ng;K-WB\  
    %   See also ZERNPOL, ZERNFUN2. Stq [[S5P  
    !;[cm|<E  
    %   Paul Fricker 11/13/2006 DA0{s  
    #gHs!b-g@  
     xr }jw  
    % Check and prepare the inputs: z3 zN^ZT  
    % ----------------------------- R^nkcLFb/q  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8ec6J*b  
        error('zernfun:NMvectors','N and M must be vectors.') oH[4<K>  
    end xlJ8n+  
    h`1{tu  
    if length(n)~=length(m) "CS {fyJ  
        error('zernfun:NMlength','N and M must be the same length.') e~wuoE:M3  
    end X={n9*Sd8  
    9PpPAF  
    n = n(:); $U{ \T4  
    m = m(:); ,g2oqq ?  
    if any(mod(n-m,2)) vCPiT2G  
        error('zernfun:NMmultiplesof2', ... ]w)*8 w.)  
              'All N and M must differ by multiples of 2 (including 0).') Q@7-UIV|q  
    end `2 vv8cg^  
    t1y hU"(J  
    if any(m>n) /1h 0 l;  
        error('zernfun:MlessthanN', ... 0Q2P"1>KT/  
              'Each M must be less than or equal to its corresponding N.') R0 g-  
    end )$h<9e  
    ;bC163[  
    if any( r>1 | r<0 ) s'4S,  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6$d3Ap@Gl  
    end pi'w40!:  
    FIB 9W@oao  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) uk8vecj  
        error('zernfun:RTHvector','R and THETA must be vectors.') ZTq"SQ>ym  
    end GMY"*J<E  
    q. %[!O  
    r = r(:); B{:JD^V!  
    theta = theta(:); > xc7Hr~  
    length_r = length(r); -Qt>yzD3  
    if length_r~=length(theta) q~3dbj  
        error('zernfun:RTHlength', ... [&Kn&bdKW  
              'The number of R- and THETA-values must be equal.') 7y4!K$c$  
    end Rf &~7h'+  
    5#v  
    % Check normalization: r9x.c7=O  
    % -------------------- :HDl-8]Lw  
    if nargin==5 && ischar(nflag) `M "O #  
        isnorm = strcmpi(nflag,'norm'); LI>tN R~  
        if ~isnorm o6FSSKM  
            error('zernfun:normalization','Unrecognized normalization flag.') SiD [54OM  
        end U%swqle4  
    else %&c+} m  
        isnorm = false; sCX 8  
    end Zcaec#  
    \= M*x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F2;k6M@  
    % Compute the Zernike Polynomials 7?@s.Sz|fV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9~6FWBt  
    (s/hK  
    % Determine the required powers of r: g$qNK`y  
    % ----------------------------------- \]uo^@$bm  
    m_abs = abs(m); PMDx5-{A/t  
    rpowers = []; QzjLKjl7p4  
    for j = 1:length(n) m=Z1DJG  
        rpowers = [rpowers m_abs(j):2:n(j)]; ~*Fbs! ;,  
    end ?a8 o.&`l  
    rpowers = unique(rpowers); w8|38m  
    rt\i@}  
    % Pre-compute the values of r raised to the required powers, -y8?"WB(b  
    % and compile them in a matrix: =:T pH>f*  
    % ----------------------------- sqAZjfy@  
    if rpowers(1)==0 YTiXU Oj  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); gFJ. p  
        rpowern = cat(2,rpowern{:}); rKlu+/G  
        rpowern = [ones(length_r,1) rpowern]; Ms^U`P^V~P  
    else {Z>OAR#   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); HG(J+ocn   
        rpowern = cat(2,rpowern{:}); +="?[:  
    end &dqC =oK]  
    S7tc  
    % Compute the values of the polynomials: =WaZy>n}7  
    % -------------------------------------- k<mfBNvuo  
    y = zeros(length_r,length(n)); /V66P@[>  
    for j = 1:length(n) ,W"[q~  
        s = 0:(n(j)-m_abs(j))/2; wS Ty2Oyo;  
        pows = n(j):-2:m_abs(j); MuzlUW]  
        for k = length(s):-1:1 gNon*\a,-B  
            p = (1-2*mod(s(k),2))* ... :G&tM   
                       prod(2:(n(j)-s(k)))/              ... `"N56  
                       prod(2:s(k))/                     ... [4V{~`sF  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... U5uO|\+)  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ;a]2hd"6  
            idx = (pows(k)==rpowers); o% ZtE  
            y(:,j) = y(:,j) + p*rpowern(:,idx); NaeG2>1  
        end CzP?J36W^  
         %3L4&W _T  
        if isnorm 3},0b8};  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); oy I8}s:  
        end y.$/niQ%  
    end #G[S  
    % END: Compute the Zernike Polynomials +|#lUXC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |sf&t  
    -)biSU,  
    % Compute the Zernike functions: MfJ;":]O!  
    % ------------------------------ V%F^6ds$]0  
    idx_pos = m>0; u n{LwZH  
    idx_neg = m<0; -;/;dz;  
    F iZe4{(p  
    z = y; Qh4@Nl#Ncf  
    if any(idx_pos) R`? '|G]P  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); fi5x0El  
    end D%L}vugxK  
    if any(idx_neg) ('H[[YODh  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); jV83%%e  
    end H Aq  
    'CE3 |x\%K  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) :A+nmz!z  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. W{pyU \  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 05]y*I  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive $)UMRG  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, >LvQ&fAo  
    %   and THETA is a vector of angles.  R and THETA must have the same M4MO)MYJ  
    %   length.  The output Z is a matrix with one column for every P-value, L>4!@L5)  
    %   and one row for every (R,THETA) pair. tOQ2947zk  
    % l~|x*JTq  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike  58S>B'  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) )Sz2D[@n  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) f{s}[p~  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1  y5"b(nb  
    %   for all p. azEN_oUV  
    % >_R,^iH"  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 [^oTC;  
    %   Zernike functions (order N<=7).  In some disciplines it is cV=0)'&<`_  
    %   traditional to label the first 36 functions using a single mode FU;b8{Y  
    %   number P instead of separate numbers for the order N and azimuthal SSoD}N  
    %   frequency M. @xKfqKoqg  
    % I_QWdxn  
    %   Example: 0A]+9@W;  
    % 5somoV B  
    %       % Display the first 16 Zernike functions X\\c=[#8-  
    %       x = -1:0.01:1; N*Is_V\R  
    %       [X,Y] = meshgrid(x,x); lCyBdY9n  
    %       [theta,r] = cart2pol(X,Y); =f FTi1]/h  
    %       idx = r<=1; XsOz {?G  
    %       p = 0:15; L[Z SgRTu  
    %       z = nan(size(X)); NeG$;z7  
    %       y = zernfun2(p,r(idx),theta(idx)); #0;H'GO?c  
    %       figure('Units','normalized') PWavq?SR  
    %       for k = 1:length(p) bSK> p3  
    %           z(idx) = y(:,k); -w>2!@8  
    %           subplot(4,4,k) vvWje:H  
    %           pcolor(x,x,z), shading interp 9E@}@ZV(  
    %           set(gca,'XTick',[],'YTick',[]) Z@Tb3N/[  
    %           axis square \=3fO(  
    %           title(['Z_{' num2str(p(k)) '}']) )GbVgYkk  
    %       end hv]}b'M$  
    % lWiC$  
    %   See also ZERNPOL, ZERNFUN. @ V_@r@A  
    nnw5 !q_  
    %   Paul Fricker 11/13/2006 "Uk "  
    N;\G=q] 9  
    khXp}p!Zm  
    % Check and prepare the inputs: ,PmQ}1kGW  
    % ----------------------------- 5eP0W#  
    if min(size(p))~=1 P#gY-k&Nr  
        error('zernfun2:Pvector','Input P must be vector.') 0j'H5>m"  
    end t<UtSkE1  
    Ym]Dlz,o  
    if any(p)>35 mVSaC  
        error('zernfun2:P36', ... |._9;T-Yde  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 0=WZ 8|R  
               '(P = 0 to 35).']) W*S !}ZT`  
    end GS<aXh k  
    Zze(Ik  
    % Get the order and frequency corresonding to the function number: !F^j\  
    % ---------------------------------------------------------------- qGAb h  
    p = p(:); F:3*i^ L  
    n = ceil((-3+sqrt(9+8*p))/2); ".@}]z8  
    m = 2*p - n.*(n+2); "s?!1v(v  
    _0razNk  
    % Pass the inputs to the function ZERNFUN: dg(fD>+  
    % ---------------------------------------- "OdR"M(G\  
    switch nargin 2r 0u[  
        case 3 Y{Yp N  
            z = zernfun(n,m,r,theta); ~qjnV  
        case 4 )P)Zds@F  
            z = zernfun(n,m,r,theta,nflag); {}Q A#:V  
        otherwise  q#=}T~4j  
            error('zernfun2:nargin','Incorrect number of inputs.') #iZ%CY\  
    end Q?1' JF!G  
    [~%\:of70n  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) xn=/SIS  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. =Nc}XFq  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of K~U5jp c  
    %   order N and frequency M, evaluated at R.  N is a vector of 0/vmj,&B(  
    %   positive integers (including 0), and M is a vector with the ;:^^Qfp  
    %   same number of elements as N.  Each element k of M must be a !8z,}HUdK  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) nc0!ag  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is DGQGV[9%4C  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ]V`L\  
    %   with one column for every (N,M) pair, and one row for every LKEf#mp  
    %   element in R. fD1a)Az  
    % M^e;WY@ D  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 9q4%s?)j  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is *h H\H  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to |z5`h  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 9"jhS0M  
    %   for all [n,m]. |3h-F5V)  
    % M?3N h;  
    %   The radial Zernike polynomials are the radial portion of the nWyn}+C-  
    %   Zernike functions, which are an orthogonal basis on the unit 1R e5)Y:i  
    %   circle.  The series representation of the radial Zernike t/3t69\x  
    %   polynomials is "< c,I=A  
    % *[QFIDn:  
    %          (n-m)/2 ?xb4y=P7  
    %            __ Jxq;Uu9  
    %    m      \       s                                          n-2s tlz+!>  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 5Y#W$Fx($R  
    %    n      s=0 l1EI4Y9KG  
    % K).Gj2 $  
    %   The following table shows the first 12 polynomials. 2brxV'tk  
    % 2,3pmb  
    %       n    m    Zernike polynomial    Normalization +TWk}#G   
    %       --------------------------------------------- $4&%<'l3I  
    %       0    0    1                        sqrt(2) HqZ3]  
    %       1    1    r                           2 $z"1&y)  
    %       2    0    2*r^2 - 1                sqrt(6)  MoFAQe  
    %       2    2    r^2                      sqrt(6) kt0ma/QpP  
    %       3    1    3*r^3 - 2*r              sqrt(8) 9A-=T>|of  
    %       3    3    r^3                      sqrt(8) Q)$RE{*-  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) "E6*.EtTN#  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) da,Bnze0  
    %       4    4    r^4                      sqrt(10) \MY`R  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) _UqE -+&  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) P`HDQ/^O  
    %       5    5    r^5                      sqrt(12) saj%[Gsy  
    %       --------------------------------------------- ?_VoO  
    % _@gd9Fi7J  
    %   Example: B F,8[|%#  
    % %+{[%?xh  
    %       % Display three example Zernike radial polynomials }%@q; "9`  
    %       r = 0:0.01:1; !97k  
    %       n = [3 2 5]; k'(eQ5R3L  
    %       m = [1 2 1]; (sfy14>\  
    %       z = zernpol(n,m,r); S]O0zv^}  
    %       figure a9"1a'  
    %       plot(r,z) zD9gE  
    %       grid on ZSUbPz  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ;4!,19AT  
    % 3Aqw )B'"_  
    %   See also ZERNFUN, ZERNFUN2. 'Y%@fZf x  
    REj<2Lo  
    % A note on the algorithm. ,8Yc@P_O  
    % ------------------------ s9p~  
    % The radial Zernike polynomials are computed using the series j$5S_]2  
    % representation shown in the Help section above. For many special 2jUEL=+Y  
    % functions, direct evaluation using the series representation can CHojF+e  
    % produce poor numerical results (floating point errors), because `> :^c  
    % the summation often involves computing small differences between [ljC S  
    % large successive terms in the series. (In such cases, the functions ]c=nkS  
    % are often evaluated using alternative methods such as recurrence t 5{Y'  
    % relations: see the Legendre functions, for example). For the Zernike  u51%~  
    % polynomials, however, this problem does not arise, because the RM(MCle}  
    % polynomials are evaluated over the finite domain r = (0,1), and ?c;T4@mB  
    % because the coefficients for a given polynomial are generally all TJhzyJ"t  
    % of similar magnitude. n$03##pf  
    % BS@x&DB  
    % ZERNPOL has been written using a vectorized implementation: multiple {j!jm5  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] YWXY4*G  
    % values can be passed as inputs) for a vector of points R.  To achieve ,1!~@dhs  
    % this vectorization most efficiently, the algorithm in ZERNPOL 8F;f&&L"y  
    % involves pre-determining all the powers p of R that are required to |RA|nu   
    % compute the outputs, and then compiling the {R^p} into a single keMfK ]9  
    % matrix.  This avoids any redundant computation of the R^p, and CU7WK}2h2C  
    % minimizes the sizes of certain intermediate variables. !gKz=-C  
    %  el"XD"*  
    %   Paul Fricker 11/13/2006 [l7 G9T}/[  
    >cV^f6fH  
    !VXs yH3r5  
    % Check and prepare the inputs: 6iZ:0y0t+6  
    % ----------------------------- Xe J|Z)qZ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) J,&B   
        error('zernpol:NMvectors','N and M must be vectors.') NF0=t}e  
    end 2`ED?F68gH  
    {$ (X,E  
    if length(n)~=length(m) %_>+K;<  
        error('zernpol:NMlength','N and M must be the same length.') Z{".(?+}1  
    end @8jc|X<A  
    pT ;{05  
    n = n(:); #zL0P>P'a  
    m = m(:); waYH_)Zx  
    length_n = length(n); ,m08t9F  
    pp!>:%  
    if any(mod(n-m,2)) OfAh? ^R  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') [Dv6z t>  
    end VY#:IE:T  
    S7A[HG;  
    if any(m<0) OSDx  
        error('zernpol:Mpositive','All M must be positive.') ^-Knx!z  
    end ]\8{z"  
    [&B}{6wry  
    if any(m>n) U&\2\z3{  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') fho$:S  
    end |*5QFp  
    }p <p(  
    if any( r>1 | r<0 ) -eA3o2'  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') >.fN@8[  
    end ,O;+fhUJ(  
    / >As9|%  
    if ~any(size(r)==1) )}KQtkU8:  
        error('zernpol:Rvector','R must be a vector.') QSNLo_z  
    end gEBwn2  
    qOi3`6LCV  
    r = r(:); 82q_"y>6  
    length_r = length(r); FX6 *`  
    J(s%"d  
    if nargin==4 a BHV  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Z\)emps  
        if ~isnorm _]Ei,Ua  
            error('zernpol:normalization','Unrecognized normalization flag.') yVP 1=pz_[  
        end 4 <&8`Q  
    else 'g$a.75/-  
        isnorm = false; G|"`kAa  
    end c/g"/ICs  
    cHG>iW9C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @6~OQN  
    % Compute the Zernike Polynomials ~Xf&<&5d T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !N:: 1c@C  
    u{@b_7 5Y  
    % Determine the required powers of r: ~H0WHqcy  
    % ----------------------------------- %NI'PXpI  
    rpowers = []; 0aF&5Lk`y  
    for j = 1:length(n) wU|Y`wJmF  
        rpowers = [rpowers m(j):2:n(j)]; !{L6 4qI  
    end *"% MT:  
    rpowers = unique(rpowers); NyJ=^=F#  
    >;ucwLi  
    % Pre-compute the values of r raised to the required powers, ?D^l&`S  
    % and compile them in a matrix: g@ ZZcBx  
    % ----------------------------- E7*z.3  
    if rpowers(1)==0 B_B~Y8=3`  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _*.Wo"[%[X  
        rpowern = cat(2,rpowern{:}); zg3q\ ~  
        rpowern = [ones(length_r,1) rpowern]; kp+\3z_  
    else n,Z B-"dW  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x7s75  
        rpowern = cat(2,rpowern{:}); r}gp{Pf7e  
    end ON$^_l/c  
    n-cz xq%n  
    % Compute the values of the polynomials: #Moju  
    % -------------------------------------- b ~Qd9 Nf  
    z = zeros(length_r,length_n); ">? y\#O A  
    for j = 1:length_n y?|JBf  
        s = 0:(n(j)-m(j))/2; _a"\g9{%*  
        pows = n(j):-2:m(j); 415 95x:  
        for k = length(s):-1:1 6^L4wd7)  
            p = (1-2*mod(s(k),2))* ... Y^?J3[@  
                       prod(2:(n(j)-s(k)))/          ... \mt0mv;c  
                       prod(2:s(k))/                 ... 7@.UkBOx  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... .&53WL[D|  
                       prod(2:((n(j)+m(j))/2-s(k))); h4xRRyK  
            idx = (pows(k)==rpowers); JvHGu&Nr!  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 4Qr16,Us  
        end J% B(4`  
         NA,)FmQjk  
        if isnorm 4g.y$  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); >^@/Ba$h  
        end "[.adiw  
    end V9 pKb X  
    && }'  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    853
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  :9N~wd  
    w*[i!i  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 n.]K"$230  
    `T2RaWR4=  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)