非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Eh`7X=Z7E
function z = zernfun(n,m,r,theta,nflag) m,28u3@r
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1#g2A0U,
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N X56q-|
% and angular frequency M, evaluated at positions (R,THETA) on the T.F!+
% unit circle. N is a vector of positive integers (including 0), and 5<k"K^0QS
% M is a vector with the same number of elements as N. Each element yf)%%&
% k of M must be a positive integer, with possible values M(k) = -N(k) yF:1( 4
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, T~?Ff|qFC
% and THETA is a vector of angles. R and THETA must have the same S>+|OCl";
% length. The output Z is a matrix with one column for every (N,M) OKZV{Gja
% pair, and one row for every (R,THETA) pair. TprTWod2]t
% tIi&;tw]
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike eeg)N1\
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), R- wp9 ^
% with delta(m,0) the Kronecker delta, is chosen so that the integral mUC)gA/
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, H'5)UX@LP
% and theta=0 to theta=2*pi) is unity. For the non-normalized NX.6px17
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. f)rq%N &
% Ib!R D/
% The Zernike functions are an orthogonal basis on the unit circle. B
IEO,W|
% They are used in disciplines such as astronomy, optics, and 4B;=kL_f
% optometry to describe functions on a circular domain. s+Pq&<nV-
% F;EwQjTF
% The following table lists the first 15 Zernike functions. CkC^'V)
% atH*5X6d
% n m Zernike function Normalization Q} JOU
% -------------------------------------------------- XW H5d-
% 0 0 1 1 _ye |Y
% 1 1 r * cos(theta) 2 /62!cp/F/D
% 1 -1 r * sin(theta) 2 w"F
9l
% 2 -2 r^2 * cos(2*theta) sqrt(6) 5I;&mW`1,`
% 2 0 (2*r^2 - 1) sqrt(3) j;Gtu
% 2 2 r^2 * sin(2*theta) sqrt(6) 539>WyG5
% 3 -3 r^3 * cos(3*theta) sqrt(8) ]m q|w
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) g-k|>-h
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) @;4zrzQi7
% 3 3 r^3 * sin(3*theta) sqrt(8) `hm-.@f,9
% 4 -4 r^4 * cos(4*theta) sqrt(10) z9Mfd#5?>P
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s^TZXCyF o
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) \K{
z
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3*bU6$|5FP
% 4 4 r^4 * sin(4*theta) sqrt(10) >uB?rGcM
% -------------------------------------------------- ~/U1xk%
% P; no?
% Example 1: ;1=1:S8
%
XJB)rP
% % Display the Zernike function Z(n=5,m=1) dQX6(Jj
% x = -1:0.01:1; 0> E r=,e
% [X,Y] = meshgrid(x,x); O\tb R=
% [theta,r] = cart2pol(X,Y); ~P
qM]^
% idx = r<=1; M0"_^?
% z = nan(size(X)); nW:C/{n2tG
% z(idx) = zernfun(5,1,r(idx),theta(idx)); =%O6:YM
% figure MJ)RvNF
% pcolor(x,x,z), shading interp
8W7J3{d
% axis square, colorbar DfD&)tsMQ
% title('Zernike function Z_5^1(r,\theta)') B-Hrex]
% hfB%`x#akQ
% Example 2: ty!`T+3
% (,2SXV
% % Display the first 10 Zernike functions LOYk9m
% x = -1:0.01:1; BOX2O.Pm
% [X,Y] = meshgrid(x,x); |-ALklXr
% [theta,r] = cart2pol(X,Y); e%M;?0j
% idx = r<=1; d1T!+I
% z = nan(size(X)); ,qwuLBW
% n = [0 1 1 2 2 2 3 3 3 3]; R\f+SvE
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; cVpp-Z|s8
% Nplot = [4 10 12 16 18 20 22 24 26 28]; j;r-NCBnz
% y = zernfun(n,m,r(idx),theta(idx)); +`0k Fbx
% figure('Units','normalized') G_JA-@i%
% for k = 1:10 q?:dCFw$x5
% z(idx) = y(:,k); RB\uK
1+
% subplot(4,7,Nplot(k)) Jpq~
% pcolor(x,x,z), shading interp (9d &
% set(gca,'XTick',[],'YTick',[]) r5/0u(\LB
% axis square 29b9`NXt
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) f~[7t:WD*
% end gJ{)-\
% 6MW{,N
% See also ZERNPOL, ZERNFUN2. ajT*/L!0_
kTB0b*V
% Paul Fricker 11/13/2006 B6 ;|f'e!
n@i HFBb
r6qj7}\
% Check and prepare the inputs: X?',n
1
% ----------------------------- ?V=ZIGj
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) o|:b;\)b
error('zernfun:NMvectors','N and M must be vectors.') |df Pki{
end n>XdU%&
=WATyY:s
if length(n)~=length(m) #!#
l45p6
error('zernfun:NMlength','N and M must be the same length.') J8(lIk:e
end '<<t]kK[N
]m<$}
n = n(:); aXYY:;
m = m(:); G` A4|+W"
if any(mod(n-m,2)) e !Y~Qy
error('zernfun:NMmultiplesof2', ... P@B]
'All N and M must differ by multiples of 2 (including 0).') tNI^@xdim1
end GxxW&y
LL!Dx%JZ
if any(m>n) m
s\}
error('zernfun:MlessthanN', ... fr3d
'Each M must be less than or equal to its corresponding N.') WT=;: j
end <'*LRd$1
7$=InK
if any( r>1 | r<0 ) w@E3ZL^
error('zernfun:Rlessthan1','All R must be between 0 and 1.') eMsd37J
end aFYIM`?(
GVn!O1jio
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) IJ"q~r$
error('zernfun:RTHvector','R and THETA must be vectors.') ,"ZMRq
end a=2%4Wmz
Q
&JUt(
r = r(:); T8g$uFo
theta = theta(:); z:*|a+cy
length_r = length(r); ~?BXti<!
if length_r~=length(theta) ZE}}W_
error('zernfun:RTHlength', ... lo+A%\1
'The number of R- and THETA-values must be equal.') 8 Z~EwY*
end C'x&Py/#
ga +dt
% Check normalization: 3w'tH4C[Y
% -------------------- GTd,n=
if nargin==5 && ischar(nflag) 77Y/!~kd
isnorm = strcmpi(nflag,'norm'); f:}
x7_Q
if ~isnorm ]=BB#
error('zernfun:normalization','Unrecognized normalization flag.') z}
#JK?u
end 0 H:X3y+
else ;=z:F<Y
isnorm = false; ~DwpoeYX
end 1qA;/-Zr<o
U K!(G
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9'B `]/L
% Compute the Zernike Polynomials h_'*XWd@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9.#<b|g
h376Be{P
% Determine the required powers of r: z b3tIRH
% ----------------------------------- 75lA%|
*X
m_abs = abs(m); Bzf^ivT3L
rpowers = []; ^cWnF0)j.
for j = 1:length(n) ob]w;"
rpowers = [rpowers m_abs(j):2:n(j)]; R|(a@sL
end \FaP|28h
rpowers = unique(rpowers); ih3n<gXF
?r4>" [
% Pre-compute the values of r raised to the required powers, ^\m![T\bX
% and compile them in a matrix: !N^@4*
% ----------------------------- }SZd
if rpowers(1)==0 i%?* @uj
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +}AI@+
rpowern = cat(2,rpowern{:}); Kg]J/|0\
rpowern = [ones(length_r,1) rpowern]; ~xTt204S
else h(DTa
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <P<z N~i9j
rpowern = cat(2,rpowern{:}); x8|J-8A(
end y~V(aih}D
[}m[ )L\
% Compute the values of the polynomials: pxi3PY?
% -------------------------------------- !4!~Lk=
y = zeros(length_r,length(n)); 6y<EgYzdE
for j = 1:length(n) HzJz+ x:
s = 0:(n(j)-m_abs(j))/2; L~3Pm%{@A
pows = n(j):-2:m_abs(j); >$7B
wO
for k = length(s):-1:1 7tp36 TE
p = (1-2*mod(s(k),2))* ... <_+X 88
prod(2:(n(j)-s(k)))/ ... M6TD"-
prod(2:s(k))/ ... WIGi51yC.x
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... K
8O|?x]
prod(2:((n(j)+m_abs(j))/2-s(k))); E{(;@PzE
idx = (pows(k)==rpowers); eMzk3eOJ
y(:,j) = y(:,j) + p*rpowern(:,idx); *^`Vz?g<
end j>kqz>3
Zd+bx*rD
if isnorm t{>q|0
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); wd6owr
end D%Z|
end dh\P4
% END: Compute the Zernike Polynomials ,zc(t<|-y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |W^IlqTH
l,).p
% Compute the Zernike functions: cwL_tq
% ------------------------------ dRMx[7jVA
idx_pos = m>0; \)e'`29;
idx_neg = m<0; ,,r>,Xq6
5r0YA
IJ
z = y; KPki}'GO
if any(idx_pos) q(w(Sd)#L
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *1"+%Z^
end Vvo7C!$z
if any(idx_neg) Dv6}bx(
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +C)~bb*
end qP
,EBE
VEH>]-0K
% EOF zernfun