非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Y2~{q Y
function z = zernfun(n,m,r,theta,nflag) {nWtNyJpS
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. )bJ6{&
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N
r3K:
% and angular frequency M, evaluated at positions (R,THETA) on the , 0ja _
% unit circle. N is a vector of positive integers (including 0), and }|,\?7,
% M is a vector with the same number of elements as N. Each element =njj.<BO
% k of M must be a positive integer, with possible values M(k) = -N(k) .}op mI
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, YS6az0ie
% and THETA is a vector of angles. R and THETA must have the same aj~@r3E;
% length. The output Z is a matrix with one column for every (N,M) U*l>8
% pair, and one row for every (R,THETA) pair. DO*C]
% LA3,e (e
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0pG(+fN_9
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7Et(p'
% with delta(m,0) the Kronecker delta, is chosen so that the integral ~DS9{Y
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, lJ2/xE ]
% and theta=0 to theta=2*pi) is unity. For the non-normalized jYx(
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. s_+XSH[=f
% >}tG^ )os
% The Zernike functions are an orthogonal basis on the unit circle. \M^4Dd Ay
% They are used in disciplines such as astronomy, optics, and BAed [
% optometry to describe functions on a circular domain. }tq9 /\
% OF}_RGKg3
% The following table lists the first 15 Zernike functions. :jCaDhK
% ;0{*V5A
% n m Zernike function Normalization oMf h|B
% -------------------------------------------------- 2(x KE_|
% 0 0 1 1 IKj1{nZvDc
% 1 1 r * cos(theta) 2 q&x#S_!
% 1 -1 r * sin(theta) 2 0{uX2h
% 2 -2 r^2 * cos(2*theta) sqrt(6) }z:=b8}
% 2 0 (2*r^2 - 1) sqrt(3) mSp7H!
% 2 2 r^2 * sin(2*theta) sqrt(6) ?Cl"jcQ*
% 3 -3 r^3 * cos(3*theta) sqrt(8) msJn;(Pn
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) "6h.6_bTw
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) jt*@,+e|
% 3 3 r^3 * sin(3*theta) sqrt(8) wN.Jyb
% 4 -4 r^4 * cos(4*theta) sqrt(10) yQ2[[[@k@
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `84yGXLK
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) :RG6gvz
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )8PL7P84
% 4 4 r^4 * sin(4*theta) sqrt(10) o*8 pM`uw
% -------------------------------------------------- 6n g9 o6
% s_Gp +-
% Example 1: WVFy Zp B
% D7wWk
,B
% % Display the Zernike function Z(n=5,m=1) %oQj^r!Xd
% x = -1:0.01:1; m#P&Yd4T
% [X,Y] = meshgrid(x,x); :a`m9s 4
% [theta,r] = cart2pol(X,Y); J]e&z5c
% idx = r<=1; @[lr
F7`o
% z = nan(size(X)); ObnB6ShKi
% z(idx) = zernfun(5,1,r(idx),theta(idx)); |'#NDFI>}
% figure ru
Lcu]
% pcolor(x,x,z), shading interp ->UrWW^
% axis square, colorbar .$;GVJ-:5
% title('Zernike function Z_5^1(r,\theta)') 0cVXUTJ|W
% <taW6=;c
% Example 2: *O2j<3CHf
% jiDYPYx;I
% % Display the first 10 Zernike functions oyY,uB.|
% x = -1:0.01:1; [sRQd;+
% [X,Y] = meshgrid(x,x); '-qc\6UY
% [theta,r] = cart2pol(X,Y); C7:Ry)8'I
% idx = r<=1;
~I74'
% z = nan(size(X)); -0Ek&"=Z^
% n = [0 1 1 2 2 2 3 3 3 3]; nXjUTSGa)
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ,\IZ/1
% Nplot = [4 10 12 16 18 20 22 24 26 28]; L|Iq#QX|
% y = zernfun(n,m,r(idx),theta(idx)); I_Qnq4Sk(
% figure('Units','normalized') x~.U,,1
% for k = 1:10 8V=o%[t
% z(idx) = y(:,k); N:.bnF(
% subplot(4,7,Nplot(k)) a gzG
% pcolor(x,x,z), shading interp {I
,'
% set(gca,'XTick',[],'YTick',[]) {DR+sE
% axis square QO%K`}Q}
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) V8/o@I{U[
% end bC|~N0b
% TMrmyvv
% See also ZERNPOL, ZERNFUN2. r` @Dgo}
Z^'; xn
% Paul Fricker 11/13/2006 9"e!0Q4 0
fi)ypv*
([|M,P6e)U
% Check and prepare the inputs: i`X{pEKP+
% ----------------------------- Nx"?'-3Hm
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h2nyP
error('zernfun:NMvectors','N and M must be vectors.') {iRNnh
end *gnL0\*
B5hGzplS
if length(n)~=length(m) !ibp/:x
error('zernfun:NMlength','N and M must be the same length.') %WR
end $A,=z
]z,?{S
n = n(:); C*$/J\6xy
m = m(:); >8##~ZuF+
if any(mod(n-m,2)) ^AN9m]P
error('zernfun:NMmultiplesof2', ... 1,E/So
'All N and M must differ by multiples of 2 (including 0).') ?w+T_EH
end bYz:gbs]4|
M:~#"lfK
if any(m>n) [,c>-jA5
error('zernfun:MlessthanN', ... =J,:j[D(
'Each M must be less than or equal to its corresponding N.') Z=xrjE
end nz(OHh!}u
9"rATgN1
if any( r>1 | r<0 ) _Cxs"to
error('zernfun:Rlessthan1','All R must be between 0 and 1.') g!8-yri
end KLk37IY2\
$I'ES#8P6
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) cG<?AR?wDT
error('zernfun:RTHvector','R and THETA must be vectors.') 1DX=\BWp
end c09 uCito
q#Bdq8
r = r(:); xc!"?&\*
theta = theta(:); ;tHF$1!J
length_r = length(r); /1Eg6hf9B
if length_r~=length(theta) +$%o#~
error('zernfun:RTHlength', ... 1@am'#<
'The number of R- and THETA-values must be equal.') @M1U)JoQ
end V\
|b#?KL
(b(iL\B$D=
% Check normalization: #q\C"N5ip
% -------------------- @c/~qP4
if nargin==5 && ischar(nflag) )3 ;S;b
isnorm = strcmpi(nflag,'norm'); *StJ5c_kg2
if ~isnorm TPrwC~\B/
error('zernfun:normalization','Unrecognized normalization flag.') *ce h
]v
end =0Nd\
else bNXT*HOZb3
isnorm = false; /as1
end qZ4DO*%b3
TY?Fs-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P%1s6fjU
% Compute the Zernike Polynomials O @l `D`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7&X^y+bMe6
/t816,i
% Determine the required powers of r: [u<1DR
% ----------------------------------- Uu
G;z5
m_abs = abs(m); Ij"`pdp
rpowers = []; _ZJP]5
for j = 1:length(n) B"G;"X
rpowers = [rpowers m_abs(j):2:n(j)]; O%)w!0
end )#1@@\< ^T
rpowers = unique(rpowers); 8^O|Aa$IF:
HH>]"mv
% Pre-compute the values of r raised to the required powers, Z
yIn>]{
% and compile them in a matrix: Pd>hd0!.%
% ----------------------------- >]Y`-*vw&
if rpowers(1)==0 I(C_}I>Wb
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *dGW=aM#C
rpowern = cat(2,rpowern{:}); =x=#Etj|
rpowern = [ones(length_r,1) rpowern]; mp}ZHuf G
else P!:D2zSH_
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); L='GsjF0}
rpowern = cat(2,rpowern{:}); Ra.<D.
end CYz]tv}g:
=E{1QA0
% Compute the values of the polynomials: 'l2`05
% -------------------------------------- xK
/NzVt
y = zeros(length_r,length(n)); Zd042
%
for j = 1:length(n) ucyxvhH^-
s = 0:(n(j)-m_abs(j))/2; |Kb-oM&^#
pows = n(j):-2:m_abs(j); @dGj4h.
for k = length(s):-1:1 p!173y,nL
p = (1-2*mod(s(k),2))* ... NKO5c?ds
prod(2:(n(j)-s(k)))/ ... r6"t`M
prod(2:s(k))/ ... H$Q_K<V
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... XmLHZ,/
prod(2:((n(j)+m_abs(j))/2-s(k))); 7,Nd[
oL*7
idx = (pows(k)==rpowers); kZfO`BVL
y(:,j) = y(:,j) + p*rpowern(:,idx); |NL$? %I
end Z>'.+OW
^IY1^x
if isnorm st~f}w@
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7n5bI\
end {R\ "x|
end O]`CSTv'_
% END: Compute the Zernike Polynomials '\P6NszY~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H>k=V<
jrG@
+" }
% Compute the Zernike functions: a>6!?:Rj
% ------------------------------ qHklu2_%
idx_pos = m>0; //g~1(
idx_neg = m<0; Q@nxGm
g?)9zJ9
z = y; v:eVK!O
if any(idx_pos) xrp%b1Sy
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ! p458~|
end VQ2)qJ#l
if any(idx_neg) Mvu!
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %
?@PlQ
end [{L4~(uU8
UJ2Tj+
% EOF zernfun