切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11331阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 45W:b/n\  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 's(0>i  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 GmcxN<  
    function z = zernfun(n,m,r,theta,nflag) F C2oP,  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @|j`I1r.A  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ACU0  
    %   and angular frequency M, evaluated at positions (R,THETA) on the B@63=a*kG  
    %   unit circle.  N is a vector of positive integers (including 0), and nv2Y6e}dG  
    %   M is a vector with the same number of elements as N.  Each element |rq~.cA  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) u> %r(  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, +wY3E*hU  
    %   and THETA is a vector of angles.  R and THETA must have the same a+{YTR>0m  
    %   length.  The output Z is a matrix with one column for every (N,M) ;KbnaUAS8  
    %   pair, and one row for every (R,THETA) pair. qWy{{ A+  
    % ~lzV=c$t  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ra;e#)7 X  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2Qc&6-;`  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral /ZvNgaH5M  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #OJsu  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized M#=woj&[  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Bb}JyT  
    % 7Aq4YjbX  
    %   The Zernike functions are an orthogonal basis on the unit circle. 6K[s),rdv  
    %   They are used in disciplines such as astronomy, optics, and X:j&+d2g0/  
    %   optometry to describe functions on a circular domain. 9 /t}S6b{  
    % H) m!)=\'  
    %   The following table lists the first 15 Zernike functions. n 'ZlIh  
    % U :J~O y_Z  
    %       n    m    Zernike function           Normalization @>ONp|}@qI  
    %       -------------------------------------------------- U@BVVH?,o  
    %       0    0    1                                 1 VS%8f.7ep  
    %       1    1    r * cos(theta)                    2 D4c}z#}*0  
    %       1   -1    r * sin(theta)                    2 MP w@O0QS  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) q~;P^i<Y  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 8T&m{s  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ~*LH[l>K  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) r&o%n5B  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) S;Lqx5Cd  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 1&i!92:E  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) tCI8 \~  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) shYcfLJ  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?N,a {#w  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) RVXRF_I  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {SqY77  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Lyt6DvAp"  
    %       -------------------------------------------------- ,HUs MCXQ  
    % S]K^wj[  
    %   Example 1: B5=L</Aj  
    % |jEKUTv,G  
    %       % Display the Zernike function Z(n=5,m=1) r\'3q '7p  
    %       x = -1:0.01:1; M\enjB7k  
    %       [X,Y] = meshgrid(x,x); ;}.jRmnJ  
    %       [theta,r] = cart2pol(X,Y); R+]Fh4t  
    %       idx = r<=1; pZlBpGQf  
    %       z = nan(size(X)); f$*M;|c1c/  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); f*NtnD=rJ  
    %       figure a_x$I? ,  
    %       pcolor(x,x,z), shading interp K{x<zv&,  
    %       axis square, colorbar NV36Q^Am[  
    %       title('Zernike function Z_5^1(r,\theta)') "h2;65@  
    % zp% MK+x  
    %   Example 2: rZKv:x}{6  
    % I@pnZ-5  
    %       % Display the first 10 Zernike functions 7M3q|7 ?  
    %       x = -1:0.01:1; jdXkU  
    %       [X,Y] = meshgrid(x,x); jMW|B  
    %       [theta,r] = cart2pol(X,Y); !+U#^2Gz  
    %       idx = r<=1; :2 QA#  
    %       z = nan(size(X)); ##}a0\x|  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Af5In9WB5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; uLe+1`Y5Ux  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; %/1`"M5ko  
    %       y = zernfun(n,m,r(idx),theta(idx)); HR['y9 U  
    %       figure('Units','normalized') h&h]z[r R  
    %       for k = 1:10 u'yePJTE  
    %           z(idx) = y(:,k); Pkc4=i,`A  
    %           subplot(4,7,Nplot(k)) qW?^_  
    %           pcolor(x,x,z), shading interp ~AjbF(Ad  
    %           set(gca,'XTick',[],'YTick',[]) jM2gu~  
    %           axis square B&-;w_K  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) v@Otp  
    %       end qW;nWfkYC  
    % 0EPF; Xx  
    %   See also ZERNPOL, ZERNFUN2. _L%/NXu,  
    q'C'S#qqn  
    %   Paul Fricker 11/13/2006 .zBSjh_=H  
    Da?0B9'  
    {7Dc(gNS  
    % Check and prepare the inputs: OWtN=Gk  
    % ----------------------------- ~qFi0<-M  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) gAv?\9=a)W  
        error('zernfun:NMvectors','N and M must be vectors.') ~uzu*7U  
    end @^k$`W;  
    "%,zB_ng\<  
    if length(n)~=length(m) @zsr.d6Q  
        error('zernfun:NMlength','N and M must be the same length.') _.?$~;7  
    end h8pc<t\6  
    FZj tQ{M  
    n = n(:); 3zs~ Y3M?i  
    m = m(:); mEyZ<U9  
    if any(mod(n-m,2)) {BJ[h  
        error('zernfun:NMmultiplesof2', ... KXicy_@DC`  
              'All N and M must differ by multiples of 2 (including 0).') BCsW03sQ  
    end SV6Np?U  
    34s:|w6y  
    if any(m>n) A' dt WD  
        error('zernfun:MlessthanN', ... 5OpK~f5  
              'Each M must be less than or equal to its corresponding N.') { F. Ihw  
    end \-V  
    Pg*ZQE[ME8  
    if any( r>1 | r<0 ) Xa9G;J$  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') jUW{Z@{U  
    end zcIZJVYA  
    5#QB&A>  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -bZ^A~<O,  
        error('zernfun:RTHvector','R and THETA must be vectors.') 42Kzdo|}  
    end -qid.  
    s7a\L=#p(  
    r = r(:); 9R'rFI  
    theta = theta(:); pZjyzH{~  
    length_r = length(r); z~z.J ]  
    if length_r~=length(theta) xV<NeU  
        error('zernfun:RTHlength', ... Rqvm%sAi  
              'The number of R- and THETA-values must be equal.') xU67ztS'E'  
    end ec"L*l"  
    QVzLf+R~  
    % Check normalization: Bz /NFNi[p  
    % -------------------- XK(<N<Z@|e  
    if nargin==5 && ischar(nflag) &W".fRH_O  
        isnorm = strcmpi(nflag,'norm'); mgH4)!Z*56  
        if ~isnorm KY2xKco  
            error('zernfun:normalization','Unrecognized normalization flag.') (nvSB}?  
        end j&Z:|WniK  
    else h r*KDT^!  
        isnorm = false; LL kAA?P  
    end NrS1y"#d9  
    lFI"U^xC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *k=Pk  
    % Compute the Zernike Polynomials L7a+ #mGE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Vj~R6   
    iFS ?nZ~.  
    % Determine the required powers of r: |iO2,99i  
    % ----------------------------------- tao3Xr^?  
    m_abs = abs(m); ph^qQDA  
    rpowers = []; @}aK\  
    for j = 1:length(n) dIIsO{Zqv  
        rpowers = [rpowers m_abs(j):2:n(j)]; 3ywBq9FGhp  
    end bLaD1rnGi  
    rpowers = unique(rpowers); 0D$+WX  
    U/0NN>V  
    % Pre-compute the values of r raised to the required powers, ]2K>#sn-]  
    % and compile them in a matrix: mxP{"6  
    % ----------------------------- 9I^_n+E  
    if rpowers(1)==0 2{@: :JZ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); - DL/Hk_r  
        rpowern = cat(2,rpowern{:}); ]7'Q2OU7  
        rpowern = [ones(length_r,1) rpowern]; r(i<H%"Z  
    else .o.@cLdU  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); uop_bJ  
        rpowern = cat(2,rpowern{:}); 1 *;?uC\  
    end F}i rCi47c  
    pwU]r  
    % Compute the values of the polynomials:  {l_R0  
    % -------------------------------------- D[;6xJ  
    y = zeros(length_r,length(n)); ]'2p"A0U  
    for j = 1:length(n) IxgnZX4N  
        s = 0:(n(j)-m_abs(j))/2; _%Mu{Ni&  
        pows = n(j):-2:m_abs(j); UmInAH4  
        for k = length(s):-1:1 y(6&90cr  
            p = (1-2*mod(s(k),2))* ... *A c~   
                       prod(2:(n(j)-s(k)))/              ... v|QFUa`  
                       prod(2:s(k))/                     ... AB}Qd\  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... a] >|2JN<&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); v_)cp9d]  
            idx = (pows(k)==rpowers); 6q6&N'We  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ]<W1edr  
        end !>9*$E |  
         V,|9$A;  
        if isnorm ^ /:]HG  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); K& 2p<\2  
        end &<.Z4GxS  
    end P%B1dRa  
    % END: Compute the Zernike Polynomials 6t/})Xv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |WubIj*\{  
    (WN'wp  
    % Compute the Zernike functions: |w /txn8G|  
    % ------------------------------ /KlA7MH6  
    idx_pos = m>0; ,7/un8:%c  
    idx_neg = m<0; r/3 !~??x  
    x1mxM#ql  
    z = y; +zz9u?2C`  
    if any(idx_pos) 98o;_tU'  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Ldt7?Y(V(  
    end &v3r#$Hj[  
    if any(idx_neg) #;}IHAR  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 7{az %I$h  
    end YfF&: "-NU  
    gEU)UIJ  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) % k$+t  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. JR7~|ov  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated R>pa? tQgK  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Mt@K01MI%  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ,,BNUj/:  
    %   and THETA is a vector of angles.  R and THETA must have the same  s.GTY@t  
    %   length.  The output Z is a matrix with one column for every P-value, w[4SuD  
    %   and one row for every (R,THETA) pair. O aF+Z@s  
    % v6f$N+4c  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Wc`Vcn1  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Vy-S9=  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Nmi#$K[x  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 7^|3T TK  
    %   for all p. ua7I K~8l  
    % 5:n&G[Md  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 r=&PUT+vt  
    %   Zernike functions (order N<=7).  In some disciplines it is :*c@6;2@  
    %   traditional to label the first 36 functions using a single mode u$<FKp;I  
    %   number P instead of separate numbers for the order N and azimuthal vc^PXjX  
    %   frequency M. R+!2 j  
    % Kau*e8  
    %   Example: L=HL1Qe$G]  
    % .=^h@C*   
    %       % Display the first 16 Zernike functions Wuc,Cjm9(!  
    %       x = -1:0.01:1; .fD k5uo  
    %       [X,Y] = meshgrid(x,x); V!FzVl=G  
    %       [theta,r] = cart2pol(X,Y); E8NIH!dI  
    %       idx = r<=1; jX+LI  
    %       p = 0:15; 7Dm^49H  
    %       z = nan(size(X)); TU[f"!z^  
    %       y = zernfun2(p,r(idx),theta(idx)); _DJ0 MR~3  
    %       figure('Units','normalized') \?qXscq  
    %       for k = 1:length(p) 8 LaZ5  
    %           z(idx) = y(:,k); -P'>~W,~  
    %           subplot(4,4,k) zq1&MXR)l  
    %           pcolor(x,x,z), shading interp {-17;M $  
    %           set(gca,'XTick',[],'YTick',[]) cJE2z2uW0  
    %           axis square }[i35f[w  
    %           title(['Z_{' num2str(p(k)) '}']) LGod"8~U  
    %       end kN>d5q9b%X  
    % 4eIu@ ";!  
    %   See also ZERNPOL, ZERNFUN. W"!nf  
    DC/CUKE.d  
    %   Paul Fricker 11/13/2006 dWm[#,Q?  
    jh8%Xu]t  
    Y|B/(  
    % Check and prepare the inputs: @uH7GW}$g  
    % ----------------------------- h)A+5^:^  
    if min(size(p))~=1 L{gFk{@W  
        error('zernfun2:Pvector','Input P must be vector.') * ?KQ\ Y  
    end tbOe,-U-@  
    U*a!Gn7l  
    if any(p)>35 !7bC\ {  
        error('zernfun2:P36', ... c+4SGWmO  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 7g&_`(  
               '(P = 0 to 35).']) q{ctHsQ(9  
    end \nxt\KD  
    lbv, jS  
    % Get the order and frequency corresonding to the function number: AA05wpu8  
    % ---------------------------------------------------------------- m41n5T`  
    p = p(:); Po^2+s(fY  
    n = ceil((-3+sqrt(9+8*p))/2); a`|/*{  
    m = 2*p - n.*(n+2); 1U"Y'y2  
    53(m9YLk  
    % Pass the inputs to the function ZERNFUN: 0/] @#G2  
    % ---------------------------------------- 9`09.`U9[  
    switch nargin KE5f`h  
        case 3 K5 w22L^=+  
            z = zernfun(n,m,r,theta); $X\BO&  
        case 4 @H{$,\\  
            z = zernfun(n,m,r,theta,nflag); _n{N3da  
        otherwise EB> RY+\  
            error('zernfun2:nargin','Incorrect number of inputs.') i [j`'.fj  
    end &"^A  
    w"l8M0$m  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 9r8{9h:  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Tzk8y 7$[  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of n*O/ X  
    %   order N and frequency M, evaluated at R.  N is a vector of 2%@j<yS  
    %   positive integers (including 0), and M is a vector with the !P:hf/l[B  
    %   same number of elements as N.  Each element k of M must be a F^ Q  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) XhIgzaGVu  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is `*N0 Lbl]  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 4Y)3<=kDG  
    %   with one column for every (N,M) pair, and one row for every L)w& f  
    %   element in R. r/{VL3}F_e  
    % ,cm2uY  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 2nEj X\BY  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ;^ /9sLW?#  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to RcHyePuF)R  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 O~t5qnu/}  
    %   for all [n,m]. wCI.jGSBW  
    % 3cfkJ|fuwe  
    %   The radial Zernike polynomials are the radial portion of the o#+!H!C.O  
    %   Zernike functions, which are an orthogonal basis on the unit Nq9(O#}  
    %   circle.  The series representation of the radial Zernike |]`+@K,S  
    %   polynomials is NGxii$F  
    % l YZHM,"  
    %          (n-m)/2 ^qk$W? pX  
    %            __ D(r|sw  
    %    m      \       s                                          n-2s VKs$J)6  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r /Fv1Z=:r  
    %    n      s=0 [I^SKvM  
    % ]XP[tLY Y  
    %   The following table shows the first 12 polynomials. $9l3 DJ  
    % <~Y4JMr"  
    %       n    m    Zernike polynomial    Normalization MWB uMF  
    %       --------------------------------------------- VvltVYOZA  
    %       0    0    1                        sqrt(2) Hu'c )|~f  
    %       1    1    r                           2 Az.Y-O<$\  
    %       2    0    2*r^2 - 1                sqrt(6) TvQAy/Y0  
    %       2    2    r^2                      sqrt(6) eFeeloH?e*  
    %       3    1    3*r^3 - 2*r              sqrt(8) AX1\L |tJS  
    %       3    3    r^3                      sqrt(8) RCmPZ  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) gB0)ec 0  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) c`t1:%S  
    %       4    4    r^4                      sqrt(10) x/4lD}Pw]  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) v =u|D$  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Y&j6;2-Z  
    %       5    5    r^5                      sqrt(12) iYnw?4Y  
    %       --------------------------------------------- I{RktO;1  
    % 2'x_zMV  
    %   Example: y k#:.5H  
    % .<j8>1  
    %       % Display three example Zernike radial polynomials /`'50C j  
    %       r = 0:0.01:1; P,v}Au( UI  
    %       n = [3 2 5]; gZPJZN/cpz  
    %       m = [1 2 1]; $[>wJXj3R  
    %       z = zernpol(n,m,r); wIY#TBu  
    %       figure h`vM+,I  
    %       plot(r,z) n@%'Nbc>b  
    %       grid on / _cOg? o  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 3'']q3H  
    % ,O-lDzcw  
    %   See also ZERNFUN, ZERNFUN2. !?+3 jzG  
    -9Can4  
    % A note on the algorithm. :]//{HF  
    % ------------------------ gF%ad=xm  
    % The radial Zernike polynomials are computed using the series - jyD!(  
    % representation shown in the Help section above. For many special yV]-![`D  
    % functions, direct evaluation using the series representation can j&&^PH9ZY  
    % produce poor numerical results (floating point errors), because .*zQ\P  
    % the summation often involves computing small differences between F_-yT[i  
    % large successive terms in the series. (In such cases, the functions :7`,dyIqT  
    % are often evaluated using alternative methods such as recurrence G's/Q-'[\  
    % relations: see the Legendre functions, for example). For the Zernike MDB}G '  
    % polynomials, however, this problem does not arise, because the J*;t{M5  
    % polynomials are evaluated over the finite domain r = (0,1), and OE[/sv  
    % because the coefficients for a given polynomial are generally all Z os~1N]3  
    % of similar magnitude. '<Vvv^Er  
    % #A))#sT'R  
    % ZERNPOL has been written using a vectorized implementation: multiple M9N|Ql  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 2+^#<Uok  
    % values can be passed as inputs) for a vector of points R.  To achieve $rlIJwqn  
    % this vectorization most efficiently, the algorithm in ZERNPOL :4Y|%7[  
    % involves pre-determining all the powers p of R that are required to 7v?Ygtv  
    % compute the outputs, and then compiling the {R^p} into a single x/Ds`\  
    % matrix.  This avoids any redundant computation of the R^p, and q&N&n%rbm  
    % minimizes the sizes of certain intermediate variables. gr2zt&Z4  
    % J]~3{Mi  
    %   Paul Fricker 11/13/2006 N2~z&y8.  
    c^=:]^  
    kO5KZ;+N-  
    % Check and prepare the inputs: B02~/9*Y"  
    % ----------------------------- 9S<W~# zz  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <D 5QlAN  
        error('zernpol:NMvectors','N and M must be vectors.') hrW.TwK  
    end Zkz:h7GUG-  
    HD`%Ma Yhc  
    if length(n)~=length(m) \l[5U3{  
        error('zernpol:NMlength','N and M must be the same length.') "Fke(?X'  
    end j`#|z9`(pB  
    Z$pR_dazU  
    n = n(:); D ,)~j6OG8  
    m = m(:); SZ0Zi\W  
    length_n = length(n); `"bm Hs7  
    XRz.R/  
    if any(mod(n-m,2)) lz>5bR'  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Lr+2L_/v`  
    end ^6`R:SV4Gx  
    x7/2e{p uu  
    if any(m<0) # ._!.P  
        error('zernpol:Mpositive','All M must be positive.') dk.da&P  
    end 2.x3^/  
    [&39Yv.k,7  
    if any(m>n) 8"4`W~ 3  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ``Nj Nd  
    end xE9s=}  
    2z-&Ya Qu  
    if any( r>1 | r<0 ) 0 @ ,@  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 0J_x*k6  
    end {6KU.'#iF  
    s_kI\w4(x1  
    if ~any(size(r)==1) w S;(u[W  
        error('zernpol:Rvector','R must be a vector.') qS7*.E~j|]  
    end sX=!o})0  
    crmnh4-  
    r = r(:); SC!IQ80H#D  
    length_r = length(r); 7IvCMb&%R  
    PffwNj/l  
    if nargin==4 GRs;-Jt  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); d }]b  
        if ~isnorm e;gf??8}  
            error('zernpol:normalization','Unrecognized normalization flag.') YV2^eGr.  
        end %+'&$  
    else CsE|pXVG  
        isnorm = false; n XQg(!  
    end ~L1N1Z)Kk  
    9 np<r82  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tG{Vn+~/  
    % Compute the Zernike Polynomials G3e%~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8pk5[=3Z  
    Llzowlfe  
    % Determine the required powers of r: A 7sej  
    % ----------------------------------- mg 3jm  
    rpowers = []; -Pvt+I>  
    for j = 1:length(n) RJ-CWt [LG  
        rpowers = [rpowers m(j):2:n(j)]; [0rG"$(0Y  
    end =CJs&Qa2  
    rpowers = unique(rpowers); ;1y\!f3#V~  
    q`{.2yV  
    % Pre-compute the values of r raised to the required powers, )XNcy"   
    % and compile them in a matrix: $iB(N ZV  
    % ----------------------------- BpK P]V  
    if rpowers(1)==0 9R E;50h  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {vU '>pp  
        rpowern = cat(2,rpowern{:}); ;3-ssF}k*  
        rpowern = [ones(length_r,1) rpowern]; 0(..]\p^d  
    else GC{Ys|s  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Nd0Wt4=  
        rpowern = cat(2,rpowern{:}); v(0vP}[Q7E  
    end aRV!0?fS  
    U%#=d@?  
    % Compute the values of the polynomials: AfY(+w6!K  
    % -------------------------------------- /@ OGYYH,M  
    z = zeros(length_r,length_n); SnXLjJe  
    for j = 1:length_n !K@y B)9  
        s = 0:(n(j)-m(j))/2; |n~v_V2.0  
        pows = n(j):-2:m(j); InDR\=o  
        for k = length(s):-1:1 "C.$qk]  
            p = (1-2*mod(s(k),2))* ... SY{J  
                       prod(2:(n(j)-s(k)))/          ... fHgfI@{=j  
                       prod(2:s(k))/                 ... d#W[<,  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... %?g]{  
                       prod(2:((n(j)+m(j))/2-s(k))); K}zw%!ex  
            idx = (pows(k)==rpowers); `ybZE+S.  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 44]ae~@a  
        end |)lo<}{  
         d*G $qUiX  
        if isnorm m]%cNxS  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); /)G9w]|T  
        end Z86[sQBg  
    end RXP"v-  
    d p?uq'  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  A?Uyj  
    Y68oBUd_E  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 %\CsP!  
    `rQA9;Tn2  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)