切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10964阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 R<YYf^y  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! \(v_",  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ll09j Ef  
    function z = zernfun(n,m,r,theta,nflag) Cb-E<W&2D  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. vaZZzv{H  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Ax*~[$$~%  
    %   and angular frequency M, evaluated at positions (R,THETA) on the j}*+-.YF  
    %   unit circle.  N is a vector of positive integers (including 0), and @h,$&=HY  
    %   M is a vector with the same number of elements as N.  Each element !Qzp!k9d  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) (:x"p{  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 291|KG  
    %   and THETA is a vector of angles.  R and THETA must have the same W>nb9Isp  
    %   length.  The output Z is a matrix with one column for every (N,M) 6x{IY  
    %   pair, and one row for every (R,THETA) pair. {\zr_v`g  
    % OFbg]{ub?  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [![ (h %  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), .p}Kl$K]  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral c/U6K yiK  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ZHasDZ8  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ;VRR=p%,  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }O  
    % ~]M"  
    %   The Zernike functions are an orthogonal basis on the unit circle. mkA|gM[g7  
    %   They are used in disciplines such as astronomy, optics, and eR`<9KBH  
    %   optometry to describe functions on a circular domain. L|w-s4L  
    % J@iN':l-  
    %   The following table lists the first 15 Zernike functions. N Z`hy>LF^  
    % oy: MM  
    %       n    m    Zernike function           Normalization D.`\ ^a  
    %       -------------------------------------------------- 0&@ pX~h:  
    %       0    0    1                                 1 F k;su,]_  
    %       1    1    r * cos(theta)                    2 fk1f'M)/8  
    %       1   -1    r * sin(theta)                    2 Y cpO;md  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) !g"9P7p  
    %       2    0    (2*r^2 - 1)                    sqrt(3) t7FQ.E,T  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ppKCY4  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]E^f8s0#V  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) I1O?)x~  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) wP"|$HN  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) UULL:vqq  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 9YhsJ~"Q  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F DX+  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) KW^aARJ)  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Lm#d.AD)  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) \'*`te:{  
    %       -------------------------------------------------- taaAwTtk?A  
    % yfQE8v+  
    %   Example 1: :X*LlN  
    % !@k@7~i  
    %       % Display the Zernike function Z(n=5,m=1) ulJYJ+CC!  
    %       x = -1:0.01:1; sb.SpF>   
    %       [X,Y] = meshgrid(x,x); yG$@!*|  
    %       [theta,r] = cart2pol(X,Y); mC(t;{  
    %       idx = r<=1; \}NWR{=  
    %       z = nan(size(X)); vI}S6-"<  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); _1Gut"!{\  
    %       figure XtdLKYET  
    %       pcolor(x,x,z), shading interp W[<":NX2  
    %       axis square, colorbar _!p3M3"$B  
    %       title('Zernike function Z_5^1(r,\theta)') cLC7U?-  
    % VTfaZ/e.  
    %   Example 2: olh3 R.M<  
    % |/s2AzDD  
    %       % Display the first 10 Zernike functions RGI6W{\  
    %       x = -1:0.01:1; e/jM+%  
    %       [X,Y] = meshgrid(x,x); yt: V+qdv  
    %       [theta,r] = cart2pol(X,Y); ODA#vAc!  
    %       idx = r<=1; <OSvRWP)  
    %       z = nan(size(X)); #2ASzCe  
    %       n = [0  1  1  2  2  2  3  3  3  3]; <W') ~o}  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; z}&C(m:al  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ){6)?[G  
    %       y = zernfun(n,m,r(idx),theta(idx)); l{m~d!w`a  
    %       figure('Units','normalized') LlY*r+Cgl1  
    %       for k = 1:10 aZGDtzNG5h  
    %           z(idx) = y(:,k); yUwgRj  
    %           subplot(4,7,Nplot(k)) utJVuJw:t  
    %           pcolor(x,x,z), shading interp bMOM`At>z  
    %           set(gca,'XTick',[],'YTick',[]) :P~& b P  
    %           axis square M 8j(1&(:  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) C_ZD<UPA\  
    %       end *oX]=u&  
    % "`*a)'.'^c  
    %   See also ZERNPOL, ZERNFUN2. *u;">H*BW  
    "u8o?8+q~  
    %   Paul Fricker 11/13/2006 *@n3>$  
    'qF3,Rw  
    BI.k On=  
    % Check and prepare the inputs: S*m`'  
    % ----------------------------- n!eqzr{  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) t^_{5  
        error('zernfun:NMvectors','N and M must be vectors.') &}6ES{Nr8  
    end <kXV1@>  
    iVi3 :7*  
    if length(n)~=length(m) avt>saR  
        error('zernfun:NMlength','N and M must be the same length.') ?}3PJVy?  
    end syW9Hlm  
    KWh M  
    n = n(:); L+~YCat|$U  
    m = m(:); j*La ,iF  
    if any(mod(n-m,2)) $,e?X}4  
        error('zernfun:NMmultiplesof2', ... P 5qa:<  
              'All N and M must differ by multiples of 2 (including 0).') qM1)3.)[:  
    end Q f+p0E;  
    >4|c7z4  
    if any(m>n) `zzKD2y  
        error('zernfun:MlessthanN', ... )}Rfa}MD  
              'Each M must be less than or equal to its corresponding N.') >)n4s Mq  
    end ,bVS.A'o  
    si^4<$Nr%j  
    if any( r>1 | r<0 ) u JQaHL!  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Hw?2XDv j  
    end ||=[kjG~  
    P!FEh'.  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) iF [?uF  
        error('zernfun:RTHvector','R and THETA must be vectors.') aVQSN  
    end b'7z DZI]  
    hg?j)jl|  
    r = r(:); 1tc]rC4h  
    theta = theta(:); FJ{,=@  
    length_r = length(r); ~_ u*\]-  
    if length_r~=length(theta) Q%& _On  
        error('zernfun:RTHlength', ... .:{h{@a  
              'The number of R- and THETA-values must be equal.') la\zaKC;>  
    end h"%|\o+3  
    axK6sIxx  
    % Check normalization: *L%6qxl`V  
    % -------------------- K\{b!Cfr^  
    if nargin==5 && ischar(nflag) ?Oy'awf_  
        isnorm = strcmpi(nflag,'norm'); lAdDu  
        if ~isnorm H96BqNoO  
            error('zernfun:normalization','Unrecognized normalization flag.') pk-yj~F}  
        end OUEI~b1  
    else |SGgy|/a#  
        isnorm = false; r]A" Og_U  
    end de> ?*%<  
    g .64Id  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]2Sfkl0  
    % Compute the Zernike Polynomials <^lJr82  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t"<s}~  
    Lw*;tL<,  
    % Determine the required powers of r: }JRP,YNh  
    % ----------------------------------- +>JdYV<?0  
    m_abs = abs(m); PX;Vo~6  
    rpowers = []; "pt+Fe|@c;  
    for j = 1:length(n) \Sg<='/{L;  
        rpowers = [rpowers m_abs(j):2:n(j)]; kf<c, 3A  
    end pv$mZi4i  
    rpowers = unique(rpowers); q5Fs)B  
    _p\629`  
    % Pre-compute the values of r raised to the required powers, mDE'<c`b4  
    % and compile them in a matrix: k@#5$Ejc2  
    % ----------------------------- _eGT2,D5r  
    if rpowers(1)==0 94\t1fE  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4|`Yz%'  
        rpowern = cat(2,rpowern{:}); ~A6"sb=  
        rpowern = [ones(length_r,1) rpowern]; / /'Tck  
    else 7_-w_"X  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); c! @F  
        rpowern = cat(2,rpowern{:}); l71 gf.4g  
    end /RGNAHtIi  
    MU'@2c  
    % Compute the values of the polynomials: qz9tr  
    % -------------------------------------- &-M]xo ^  
    y = zeros(length_r,length(n));  9:5:`' b  
    for j = 1:length(n) 6xoq;=o  
        s = 0:(n(j)-m_abs(j))/2; '0:i<`qv#g  
        pows = n(j):-2:m_abs(j); UfO7+_2  
        for k = length(s):-1:1 K%MW6y  
            p = (1-2*mod(s(k),2))* ... IS BV%^la|  
                       prod(2:(n(j)-s(k)))/              ... Bn?:w\%Ue  
                       prod(2:s(k))/                     ... 'Hw4j:pS  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [$\z'}  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9I`Y-D  
            idx = (pows(k)==rpowers); HG%Z "d  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Q6IQV0{p  
        end XX6 T$pA6  
         0)|Q6*E>  
        if isnorm I;7nb4]AmF  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); u=r`t(Z1H  
        end WZZ4]cC  
    end [mUBHYD7OI  
    % END: Compute the Zernike Polynomials `TtXZ[gP}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {f/]5x(_  
    |E@djosyC  
    % Compute the Zernike functions: ,e`'4H  
    % ------------------------------ J:j<"uPm  
    idx_pos = m>0; la <npX  
    idx_neg = m<0; M+`H g_#Q  
    s%pfkoOY%  
    z = y; Gi FXX  
    if any(idx_pos) cK`"lxO  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); B[5r|d'  
    end *[+)7  
    if any(idx_neg) &<pKx!  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ?7MqeR4/E  
    end 27F~(!n  
    "xRBE\B  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ^D`v3d  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 6r: ?;j~l  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated #@@Mxr'F  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive K$K^=> I"o  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, *'Y@3vKE  
    %   and THETA is a vector of angles.  R and THETA must have the same Eodn/  
    %   length.  The output Z is a matrix with one column for every P-value, vDl- "!G1  
    %   and one row for every (R,THETA) pair. #GDe0 8rOw  
    % <<](XgR(  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike vx_o(wof  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ae"]\a\&1o  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) n+lOb  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 lv vs%@b>  
    %   for all p. >>aq,pH  
    % 5zFR7/p{  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 bl_H4  
    %   Zernike functions (order N<=7).  In some disciplines it is PHA-9\jC{  
    %   traditional to label the first 36 functions using a single mode Yt|6 X:l  
    %   number P instead of separate numbers for the order N and azimuthal 7\*FEjRM]  
    %   frequency M. W^3uEm&l!)  
    % .q&'&~!_  
    %   Example: FOq1>>a0  
    % !T](Udf  
    %       % Display the first 16 Zernike functions 3^s/bm$g  
    %       x = -1:0.01:1; 5_XV%-wM  
    %       [X,Y] = meshgrid(x,x); >.dWjb6t  
    %       [theta,r] = cart2pol(X,Y); Z2im@c67{  
    %       idx = r<=1; >``MR%E:<  
    %       p = 0:15; JXyM\}9-X  
    %       z = nan(size(X)); 5M9 I,  
    %       y = zernfun2(p,r(idx),theta(idx)); rQ7+q;[J  
    %       figure('Units','normalized') U|g:`v7  
    %       for k = 1:length(p) \P1S|ufv  
    %           z(idx) = y(:,k); >A@Y$.  
    %           subplot(4,4,k) }Tf9S<xpq3  
    %           pcolor(x,x,z), shading interp WVY\&|)$  
    %           set(gca,'XTick',[],'YTick',[]) E ;<l(.Ar  
    %           axis square Gs3LB/8?  
    %           title(['Z_{' num2str(p(k)) '}']) gY@N~'f;"  
    %       end 3e(ehLc4DJ  
    % 1Bpv"67  
    %   See also ZERNPOL, ZERNFUN. /z BxJT0  
    gUeuUj  
    %   Paul Fricker 11/13/2006 X^WrccNX  
    271&i  
    2(/g}  
    % Check and prepare the inputs: y#XbJuN/  
    % ----------------------------- :O(^w}sle  
    if min(size(p))~=1 5 Kkdo!z  
        error('zernfun2:Pvector','Input P must be vector.') lkBdl#]9  
    end vap,y $C  
    H"qOSf{  
    if any(p)>35 ^a#X9  
        error('zernfun2:P36', ... 1&e} ms  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 8>7& E-  
               '(P = 0 to 35).']) gB<3-J1R  
    end s+Q~~]HJM  
    x:nKfY5  
    % Get the order and frequency corresonding to the function number: F+@5C:<?  
    % ---------------------------------------------------------------- 6H'HxB4  
    p = p(:); 8O Soel  
    n = ceil((-3+sqrt(9+8*p))/2); Kw#i),M  
    m = 2*p - n.*(n+2); S%Us5`sd  
    '{(UW.Awo  
    % Pass the inputs to the function ZERNFUN: 8HP6+c%  
    % ---------------------------------------- 9k6r_G"  
    switch nargin KG=h&  
        case 3 ezMI \r6  
            z = zernfun(n,m,r,theta); ?yj6CL(,  
        case 4 P><o,s"v  
            z = zernfun(n,m,r,theta,nflag); e/^=U7:io  
        otherwise AhNq/?Q Q~  
            error('zernfun2:nargin','Incorrect number of inputs.') Hbpqyl%O>  
    end v.]Q$q^  
    4)("v-p  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) _~T!9  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. B4mR9HMh  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of (t4&,W_spA  
    %   order N and frequency M, evaluated at R.  N is a vector of ]X^rU`":  
    %   positive integers (including 0), and M is a vector with the s%W<dDINl  
    %   same number of elements as N.  Each element k of M must be a /;utcc  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) AqV7\gdOC  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is di>cMS 4 c  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Ck!VV2U#  
    %   with one column for every (N,M) pair, and one row for every 8A+SjJ4$  
    %   element in R. T16{_  
    % 2^l[(N  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Bn(W"=1  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is r}jGUe}d  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to !H}vu]R  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 nTz6LVF  
    %   for all [n,m]. <Ce2r"U1e  
    % <0PT"ij  
    %   The radial Zernike polynomials are the radial portion of the 9s_,crq5  
    %   Zernike functions, which are an orthogonal basis on the unit yfC^x%d7G  
    %   circle.  The series representation of the radial Zernike k+DR]icv  
    %   polynomials is zBe8,, e  
    % Q J7L7S  
    %          (n-m)/2 G3{=@Z1  
    %            __ |K|h+fgG6*  
    %    m      \       s                                          n-2s a@0BBihz  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r aM$W*- Y  
    %    n      s=0 I;1lX L  
    % ?|ZTaX6A  
    %   The following table shows the first 12 polynomials. 1M}&ZH  
    % 1 %,a =,v  
    %       n    m    Zernike polynomial    Normalization .fdL&z  
    %       --------------------------------------------- 44F`$.v96  
    %       0    0    1                        sqrt(2) hjQ~uqbg  
    %       1    1    r                           2 @`,1:  
    %       2    0    2*r^2 - 1                sqrt(6) Y "VY%S^  
    %       2    2    r^2                      sqrt(6) S*,rGCt'T  
    %       3    1    3*r^3 - 2*r              sqrt(8) izx#3u$P  
    %       3    3    r^3                      sqrt(8) Yp:KI7  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) jvQ*t_L  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ]7/ b/J  
    %       4    4    r^4                      sqrt(10) Bdu&V*0g  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) //4Xq8y  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) /mK?E5H'r1  
    %       5    5    r^5                      sqrt(12) FSRj4e1y1  
    %       --------------------------------------------- "&%#!2  
    % VV9_`myN7  
    %   Example: nM0[P6p  
    % ?K3(D;5 &i  
    %       % Display three example Zernike radial polynomials -c}, :G"  
    %       r = 0:0.01:1; ,yTjU{<"  
    %       n = [3 2 5]; uZ=NSbYsA  
    %       m = [1 2 1]; =lu/9 i6  
    %       z = zernpol(n,m,r); Ck /F9(  
    %       figure kn/Ao}J74z  
    %       plot(r,z) t2r?N}"P  
    %       grid on -@Uqz781  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') }YHX-e<Yx]  
    % 25&J7\P*  
    %   See also ZERNFUN, ZERNFUN2. 51QRM32Y  
    "kA*Vc#  
    % A note on the algorithm. UDL RCS8i  
    % ------------------------ A.5i"Ci[ie  
    % The radial Zernike polynomials are computed using the series 3ux0 Jr2yT  
    % representation shown in the Help section above. For many special c?%(Dp E  
    % functions, direct evaluation using the series representation can Dxk+P!!K  
    % produce poor numerical results (floating point errors), because ykFJ%sw3X  
    % the summation often involves computing small differences between Z*FrB58  
    % large successive terms in the series. (In such cases, the functions %b^OeWip  
    % are often evaluated using alternative methods such as recurrence j6g[N4xr  
    % relations: see the Legendre functions, for example). For the Zernike oaK%Ww6~  
    % polynomials, however, this problem does not arise, because the chEn|>~  
    % polynomials are evaluated over the finite domain r = (0,1), and Wy%s1iu  
    % because the coefficients for a given polynomial are generally all y7|P-3[ 4w  
    % of similar magnitude. SM^-Z|d?  
    % &< !Ufa&  
    % ZERNPOL has been written using a vectorized implementation: multiple JXj8Br?Z@  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ymNnkFv  
    % values can be passed as inputs) for a vector of points R.  To achieve _fwb!T}$  
    % this vectorization most efficiently, the algorithm in ZERNPOL 36n>jS&  
    % involves pre-determining all the powers p of R that are required to .&x}NYX4  
    % compute the outputs, and then compiling the {R^p} into a single )nd\7|5#  
    % matrix.  This avoids any redundant computation of the R^p, and X7g3  
    % minimizes the sizes of certain intermediate variables. Rtjqx6-B;  
    % 0j_bh,zG#  
    %   Paul Fricker 11/13/2006 & V)6!,rb  
    0n/gd"M  
    9Mgq1Z  
    % Check and prepare the inputs: NxLXm,  
    % ----------------------------- ?r2#.W  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2z@\R@F  
        error('zernpol:NMvectors','N and M must be vectors.') fkSwD(  
    end vhb)2n  
    Gxa x2o  
    if length(n)~=length(m) q SejLh6  
        error('zernpol:NMlength','N and M must be the same length.') @;?T~^nGj  
    end $v b,P(  
    o#[ KS:Y  
    n = n(:); (S^8UV  
    m = m(:); &k8vWXMGk%  
    length_n = length(n); 3or\:  
    ;2m<CSv!D  
    if any(mod(n-m,2)) 1+7GUSIb  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') SI6B#u-i  
    end $@i"un;  
    2:LHy[{5  
    if any(m<0) Hp|}~xjn  
        error('zernpol:Mpositive','All M must be positive.') j.:h5Y^N  
    end J/6`oh?,Q  
    i7LJ&g/)  
    if any(m>n) |0z;K:5s  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') !SKV!xH9  
    end =KT7nl  
    /Ky__l!bu  
    if any( r>1 | r<0 ) s[Ur~Wvn  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 6yy;JQAke  
    end }!i` 0p  
    qSx(X!YS  
    if ~any(size(r)==1) pZZf[p^s|  
        error('zernpol:Rvector','R must be a vector.') p*l$Wj  
    end ]/cd;u  
    4m-I5!=O  
    r = r(:); /1`cRyS  
    length_r = length(r); |7@O( $b  
    0ji q-3V)  
    if nargin==4 5yVkb*8HS  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); -]:G L>b  
        if ~isnorm x#C@8Bxq=  
            error('zernpol:normalization','Unrecognized normalization flag.') Ay{t254/  
        end ]h9!ei [  
    else X _$a,"'~)  
        isnorm = false; eb|i 3.  
    end w-$[>R[hw  
    G9g6.8*&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +([!A6:  
    % Compute the Zernike Polynomials ,1/}^f6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NcM>{{8  
    |3? 8)z\n  
    % Determine the required powers of r: :"o o>  
    % ----------------------------------- )$Z(|M4  
    rpowers = []; rbqo"g`  
    for j = 1:length(n) 4l8BQz}sb  
        rpowers = [rpowers m(j):2:n(j)]; Vc3mp;6"  
    end y/c%+ Ca/  
    rpowers = unique(rpowers); Ov82ibp_1  
    rp7W }P+uU  
    % Pre-compute the values of r raised to the required powers, XUV!C 7  
    % and compile them in a matrix: b @;.F!x  
    % -----------------------------  Zt E##p  
    if rpowers(1)==0 P6U%=xaC  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?nKF6 f  
        rpowern = cat(2,rpowern{:}); nkeI60  
        rpowern = [ones(length_r,1) rpowern]; N6Z{BLZ  
    else vs&8wbS)  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8n?kZY$,  
        rpowern = cat(2,rpowern{:}); %zo= K}u  
    end G.U 5)4_^  
    5 ZfP  
    % Compute the values of the polynomials: m W`oq  
    % -------------------------------------- g\M5:Qm  
    z = zeros(length_r,length_n); hh.Q\qhubB  
    for j = 1:length_n DHfB@/q#  
        s = 0:(n(j)-m(j))/2; t"s5\;IJ  
        pows = n(j):-2:m(j); %kU'hzLg  
        for k = length(s):-1:1 Bo\D.a(T  
            p = (1-2*mod(s(k),2))* ... q'(z #h,cv  
                       prod(2:(n(j)-s(k)))/          ... 5^)_B;.f  
                       prod(2:s(k))/                 ... Ygkv7>?,  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... fUcLfnr  
                       prod(2:((n(j)+m(j))/2-s(k))); 8V5a%2eV  
            idx = (pows(k)==rpowers); xX@FWAj  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 5 d ;|=K  
        end E20 :uZ7\  
         x,Y 5U+]E  
        if isnorm # .q#O C  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); u3ds QU  
        end XT||M)#  
    end ?y-s20Kd  
    30 7fBa  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  {$3j/b  
    Ko]QCLL  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 xp~YIeSg  
    z( *]'Y  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)