切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11581阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 |h.he_B+7  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 3&}wfK]X  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 3 bGpK9M~  
    function z = zernfun(n,m,r,theta,nflag) cp[k[7XGD  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. KbSIKj  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N BLfoU_Z  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Cvq2UNz(R  
    %   unit circle.  N is a vector of positive integers (including 0), and U2!9Tl9".  
    %   M is a vector with the same number of elements as N.  Each element voCQ_~*)9  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 3<?#*z4]_  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, eFbr1IV  
    %   and THETA is a vector of angles.  R and THETA must have the same Zs)HzOP)9  
    %   length.  The output Z is a matrix with one column for every (N,M) RBiDU}j  
    %   pair, and one row for every (R,THETA) pair. 3%'$AM}+s  
    % }F**!%4d  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 'R?;T[s%  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), h@/c76}f6p  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ->:G+<  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, f5^[`b3H  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized l3-;z)SgH  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {B uh5U,  
    % Fn$EP:>  
    %   The Zernike functions are an orthogonal basis on the unit circle. TDA+ rl  
    %   They are used in disciplines such as astronomy, optics, and ,+%$vV .g\  
    %   optometry to describe functions on a circular domain. |5`z;u7V  
    %  H 2\KI(  
    %   The following table lists the first 15 Zernike functions. =((#kDrN  
    % E[^66(KR  
    %       n    m    Zernike function           Normalization ;E(%s=i  
    %       -------------------------------------------------- StA5h+[m  
    %       0    0    1                                 1 *tO7A$LDT  
    %       1    1    r * cos(theta)                    2 oj[Wzeg%  
    %       1   -1    r * sin(theta)                    2 4w\cS&X~C  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) (Z;-u+ }.  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 5q}680s9+  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 1]m]b4]  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) h )fi9  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) {088j?[hzk  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) do C8!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Mo0+"`   
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Jah~h44&  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *EvnN:  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 5L%A5C&|  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +m]$P,yMt  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) +t})tDPXw  
    %       -------------------------------------------------- >y &9!G  
    % mn)kd  
    %   Example 1: C1Slx !}  
    % vn9_tL&  
    %       % Display the Zernike function Z(n=5,m=1) ZV$qv=X  
    %       x = -1:0.01:1; sTU`@}}  
    %       [X,Y] = meshgrid(x,x); t[Xx LG*  
    %       [theta,r] = cart2pol(X,Y);  _p<s!  
    %       idx = r<=1; $RfM}!7?  
    %       z = nan(size(X)); X~T"n<:a>  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); kTL{?-  
    %       figure _t_X`  
    %       pcolor(x,x,z), shading interp Nl"< $/  
    %       axis square, colorbar .'saUcVg:  
    %       title('Zernike function Z_5^1(r,\theta)') 5^~%10=  
    % Uo#% f+t  
    %   Example 2: BC=U6>`/  
    % ri<E[8\  
    %       % Display the first 10 Zernike functions 4N|^Joi  
    %       x = -1:0.01:1; ]'3e#Cqeh  
    %       [X,Y] = meshgrid(x,x); Y.$ '<1  
    %       [theta,r] = cart2pol(X,Y); s `B"qw  
    %       idx = r<=1; }Zu>?U  
    %       z = nan(size(X)); y2bL!Y<s9  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ^F"Q~?D)  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; yZE"t[q#O  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; >gtKyn]  
    %       y = zernfun(n,m,r(idx),theta(idx)); >jD,%yG  
    %       figure('Units','normalized') QWp,(Mv:r  
    %       for k = 1:10 SQ9s  
    %           z(idx) = y(:,k); &'uFy0d,  
    %           subplot(4,7,Nplot(k)) /p+ (_Y  
    %           pcolor(x,x,z), shading interp I ww.Nd2  
    %           set(gca,'XTick',[],'YTick',[]) - &Aw] +  
    %           axis square T0J"Wr>WY  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) u=JI 1  
    %       end M^JRHpTn  
    % HS =qK  
    %   See also ZERNPOL, ZERNFUN2. q{gt2OWqX  
    &=oW=g2  
    %   Paul Fricker 11/13/2006 S-&[Tp+N  
    :Y`cgi0vkd  
    g} 7FR({b  
    % Check and prepare the inputs: CZcn X8P'8  
    % ----------------------------- +P2f<~  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Z[[ou?c  
        error('zernfun:NMvectors','N and M must be vectors.') g!;k$`@{E'  
    end ]PJb 9$f2  
    mojD  
    if length(n)~=length(m) @.T(\Dq^  
        error('zernfun:NMlength','N and M must be the same length.') .]}kOw:(#  
    end # Y/ .%ch.  
    P~$FgAV  
    n = n(:); MQ>.^]B]o  
    m = m(:); l=G=J(G  
    if any(mod(n-m,2)) UE33e(Q<  
        error('zernfun:NMmultiplesof2', ... L5=Tj4`  
              'All N and M must differ by multiples of 2 (including 0).') `@eo <6  
    end Ch8w_Jf1yx  
    WX$mAQDV  
    if any(m>n) f|G,pDL x  
        error('zernfun:MlessthanN', ... OoL#8R  
              'Each M must be less than or equal to its corresponding N.') H7bdL 8/  
    end 7714}%Z  
    *F| j%]k~  
    if any( r>1 | r<0 ) lX$6U| !  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ICwhqH&  
    end `oQ)qa_  
    hyqsMkW|  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) U9GmkXRix  
        error('zernfun:RTHvector','R and THETA must be vectors.')  yG -1g0  
    end __<u!;f  
    SEsc"l8  
    r = r(:); *IL x-D5qr  
    theta = theta(:); Rd7[e^HSN  
    length_r = length(r); tr3Rn :0]  
    if length_r~=length(theta) Bwv@D4bii  
        error('zernfun:RTHlength', ... ma@3BiM  
              'The number of R- and THETA-values must be equal.') <>\s#Jf/  
    end c^0Yu Bps[  
    ns`|G;1vv  
    % Check normalization: Ln/6]CMl  
    % -------------------- U%oh ?g  
    if nargin==5 && ischar(nflag) 3";Rw9  
        isnorm = strcmpi(nflag,'norm'); s *$Re)}S  
        if ~isnorm rrBu6\D  
            error('zernfun:normalization','Unrecognized normalization flag.') Esh3 cn4  
        end S0?4}7`A  
    else dm;H0v+Y'  
        isnorm = false; .XD7};g  
    end *((wp4b  
    q2v:lSFY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3J t_=!qlo  
    % Compute the Zernike Polynomials ZNb;2 4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GQ<]Sd}[  
    r~ gjn`W  
    % Determine the required powers of r: W'2T7ha Es  
    % ----------------------------------- 9+<%74|,  
    m_abs = abs(m); BZAeg">3  
    rpowers = []; nd)Z0%xo  
    for j = 1:length(n) A$*#n8 ,  
        rpowers = [rpowers m_abs(j):2:n(j)]; <WXO].^  
    end $50rj  
    rpowers = unique(rpowers); ~&-8lD];LM  
    g$C-G5/bjD  
    % Pre-compute the values of r raised to the required powers, 5)X;q-  
    % and compile them in a matrix: Bx R% \  
    % -----------------------------  z.fh4p  
    if rpowers(1)==0 C? pi8Xg  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); c`:hEQs  
        rpowern = cat(2,rpowern{:}); 7w}D2|+  
        rpowern = [ones(length_r,1) rpowern]; {ctEjgiE  
    else ~x<nz/^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jIY    
        rpowern = cat(2,rpowern{:}); "-aak )7w  
    end *Z0Y:"  
    1,cd[^`.  
    % Compute the values of the polynomials: c)H (w  
    % -------------------------------------- .yz-o\,gF%  
    y = zeros(length_r,length(n)); ~AbnksR  
    for j = 1:length(n) 3#fu; ??1.  
        s = 0:(n(j)-m_abs(j))/2; Hg)5c!F7  
        pows = n(j):-2:m_abs(j); 3V")~ m  
        for k = length(s):-1:1 GA&mM   
            p = (1-2*mod(s(k),2))* ... ]3.Un,F  
                       prod(2:(n(j)-s(k)))/              ... VayU   
                       prod(2:s(k))/                     ... 97"dOi!Wh  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...  LW?Zd=  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 2+KOUd&jS  
            idx = (pows(k)==rpowers); u`E24~  
            y(:,j) = y(:,j) + p*rpowern(:,idx); $*)??uU  
        end ^/;W;C{4  
         cd8ZZ 8L  
        if isnorm JTT"t@__  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);  y!6+jrI  
        end |~'D8 g:Ak  
    end (hywT)#+  
    % END: Compute the Zernike Polynomials p^^Ai  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s|3@\9\  
    YG2rJY+*  
    % Compute the Zernike functions: 7%rSo^t,L  
    % ------------------------------ f.f5f%lO~  
    idx_pos = m>0; $lkd9r1   
    idx_neg = m<0; [~&C6pR  
    k~|nU  
    z = y; %9.] bd|%F  
    if any(idx_pos) Eyw)f>  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -9BKa~ DVQ  
    end V>#iR>w_4,  
    if any(idx_neg) ZLA&<]Ad"$  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H^jFvAI,8  
    end ucm 3'j  
    tPO\e]  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) dZ!Wj7K)  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ]a% *$TF  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated y<YVb@O.  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive \jn[kQ+pJ  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, !Ju?REH   
    %   and THETA is a vector of angles.  R and THETA must have the same .8is! TT  
    %   length.  The output Z is a matrix with one column for every P-value, !O$*/7  
    %   and one row for every (R,THETA) pair. G9\Bi-'ul  
    % Zl]Zy}p*+  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike {8M=[4_`l  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) xG<H${ k;  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 9%\<x  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 TQ&%SMCn  
    %   for all p. 7> -y,?&  
    % 2,Y8ML<  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 =YX/]g|9K  
    %   Zernike functions (order N<=7).  In some disciplines it is W5-p0,?[6  
    %   traditional to label the first 36 functions using a single mode 3j.Ft*SV  
    %   number P instead of separate numbers for the order N and azimuthal ~CRr)(M  
    %   frequency M. bAeN>~WvY  
    % _I_Sq,Z#  
    %   Example: 0pYz8OB  
    % +3e(psdg  
    %       % Display the first 16 Zernike functions 52B ye   
    %       x = -1:0.01:1; #bPio  
    %       [X,Y] = meshgrid(x,x); {! RW*B  
    %       [theta,r] = cart2pol(X,Y); iV#JJ-OBq  
    %       idx = r<=1; 9vL`|`Vau  
    %       p = 0:15; p7(xk6W  
    %       z = nan(size(X)); 7Z>u|L($m  
    %       y = zernfun2(p,r(idx),theta(idx)); 76[aOC2Ad  
    %       figure('Units','normalized') Ygn"7  
    %       for k = 1:length(p) p}.P^`~j  
    %           z(idx) = y(:,k); CAY^ `K!  
    %           subplot(4,4,k) ]sO})  
    %           pcolor(x,x,z), shading interp YZ\$b=-  
    %           set(gca,'XTick',[],'YTick',[]) =mCUuY#  
    %           axis square KdF QlQaj  
    %           title(['Z_{' num2str(p(k)) '}']) "ffwh  
    %       end `"[VkQFB/  
    % iR4CY-  
    %   See also ZERNPOL, ZERNFUN. x Mtl<Na   
    MxxYMR  
    %   Paul Fricker 11/13/2006 K&"Yv~h  
    KtHh--j`  
     ;9c3IK@  
    % Check and prepare the inputs: Rs)tf|`/  
    % ----------------------------- 5(>m=ef"  
    if min(size(p))~=1 ]M{SM`Ya  
        error('zernfun2:Pvector','Input P must be vector.') 2uw%0r3Vi6  
    end ;^:~xJFx|  
    'q1)W'  
    if any(p)>35 J),7ukLu^  
        error('zernfun2:P36', ... .CI]8O"3y  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... }"fP,:n"KN  
               '(P = 0 to 35).']) 'jcDfv(v<  
    end  >0+m  
     yyk[oH-Q  
    % Get the order and frequency corresonding to the function number: @okC":Fw,  
    % ---------------------------------------------------------------- E?z 3&C  
    p = p(:); [?W3XUJ,Y  
    n = ceil((-3+sqrt(9+8*p))/2); m&,d8Gss^  
    m = 2*p - n.*(n+2); I Jq$GR  
    [x!T<jJ  
    % Pass the inputs to the function ZERNFUN: U_!"&O5lr  
    % ---------------------------------------- KK]AX;  
    switch nargin 8NeP7.U<w  
        case 3 Mim 9C]h(  
            z = zernfun(n,m,r,theta); Du$kDCU  
        case 4 gU>Y  
            z = zernfun(n,m,r,theta,nflag); xm~ff+(&@S  
        otherwise 60~{sk~E  
            error('zernfun2:nargin','Incorrect number of inputs.') (W3R3>;  
    end 9|jIrS%/~  
    (0D0G-r:  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag)  +aP %H  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. :BMUc-[  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 4x8mJ4[H^  
    %   order N and frequency M, evaluated at R.  N is a vector of QwOQS %  
    %   positive integers (including 0), and M is a vector with the 9jaYmY]~  
    %   same number of elements as N.  Each element k of M must be a IIop"6Ko  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) a+\ Gz  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is f`WmRx]K  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix P; hjr;  
    %   with one column for every (N,M) pair, and one row for every FjiLc=RXXz  
    %   element in R. 9]NsWd^^  
    % /;HytFP  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- +t.T+` EG  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is v.r$]O  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to S)g5Tu)  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 axU!o /m>  
    %   for all [n,m]. ^N Et{]x  
    % z RvYN  
    %   The radial Zernike polynomials are the radial portion of the e"^1- U\  
    %   Zernike functions, which are an orthogonal basis on the unit nkN]z ^j  
    %   circle.  The series representation of the radial Zernike B+zq!+ HJ  
    %   polynomials is pPQ]#v  
    % !n uXK  
    %          (n-m)/2 +|#sF,,X4g  
    %            __ 1Lj\"+.  
    %    m      \       s                                          n-2s .fo.mC@a  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r .vpQ3m>  
    %    n      s=0 B TcxBh  
    % /^/'9}7  
    %   The following table shows the first 12 polynomials. %*}JDx#@  
    % Fdc bmQ  
    %       n    m    Zernike polynomial    Normalization Zpu>T2Tp  
    %       --------------------------------------------- VJ_E]}H  
    %       0    0    1                        sqrt(2) Qt>yRt  
    %       1    1    r                           2 puXJ:yo(  
    %       2    0    2*r^2 - 1                sqrt(6) 2vj)3%:7#E  
    %       2    2    r^2                      sqrt(6) K3 ]hUe#  
    %       3    1    3*r^3 - 2*r              sqrt(8) %K ]u"  
    %       3    3    r^3                      sqrt(8) _Seiwk &  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 3kYUO-qw  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) X*S|aNaLWW  
    %       4    4    r^4                      sqrt(10) !7%L%~z^  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) qY14LdC}~  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) d8]6<\g  
    %       5    5    r^5                      sqrt(12) =9pFb!KX  
    %       --------------------------------------------- xO?~@5  
    % r T* :1  
    %   Example: 7!MW`L/`  
    % $: Qi9N   
    %       % Display three example Zernike radial polynomials FpW{=4yk  
    %       r = 0:0.01:1; p(0!TCBs  
    %       n = [3 2 5]; h+Dg"j<[  
    %       m = [1 2 1]; >DbG$V<v'  
    %       z = zernpol(n,m,r); Z71"d"  
    %       figure d>vGx  
    %       plot(r,z) Q`19YX  
    %       grid on |L`w4;  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 2^qY, dL  
    % _|6{(  
    %   See also ZERNFUN, ZERNFUN2.  d(v )SS  
    fep#Kb%"e  
    % A note on the algorithm. S4?ss I  
    % ------------------------ xhqIE3gd  
    % The radial Zernike polynomials are computed using the series TAzhD.6C  
    % representation shown in the Help section above. For many special FirmzB Il5  
    % functions, direct evaluation using the series representation can 9.%{M#j  
    % produce poor numerical results (floating point errors), because c>DAR  
    % the summation often involves computing small differences between AV&W&$  
    % large successive terms in the series. (In such cases, the functions EzG7RjW  
    % are often evaluated using alternative methods such as recurrence t5eux&C  
    % relations: see the Legendre functions, for example). For the Zernike ~@sx}u  
    % polynomials, however, this problem does not arise, because the `7N[rs9|S  
    % polynomials are evaluated over the finite domain r = (0,1), and 8Cm^#S,+  
    % because the coefficients for a given polynomial are generally all Sm,%>  
    % of similar magnitude. .[O*bk  
    % gCwg ;c-  
    % ZERNPOL has been written using a vectorized implementation: multiple M>T#MDK\(  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Bxm^Arc>  
    % values can be passed as inputs) for a vector of points R.  To achieve 6Ajiz_~U  
    % this vectorization most efficiently, the algorithm in ZERNPOL -?e~S\JH  
    % involves pre-determining all the powers p of R that are required to Q) FL|   
    % compute the outputs, and then compiling the {R^p} into a single Xb;CY9&  
    % matrix.  This avoids any redundant computation of the R^p, and "t\rjFw  
    % minimizes the sizes of certain intermediate variables. gQ/zk3?k  
    % jRq>Sz{8  
    %   Paul Fricker 11/13/2006 o.k#|q  
    \h #vL  
    \ =83#*KK  
    % Check and prepare the inputs: L'[ '7  
    % ----------------------------- cQ+V 4cW Z  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [_H9l)  
        error('zernpol:NMvectors','N and M must be vectors.') i>e75`9  
    end .GS|H d  
    T8qG9)~3  
    if length(n)~=length(m) P7@q vg  
        error('zernpol:NMlength','N and M must be the same length.') %A64 Y<K  
    end 1>|p1YZ"  
    Wxp^*._q3I  
    n = n(:); <cWo]T`X!  
    m = m(:); dd$\Q  
    length_n = length(n); O gycP4z[  
    9prG@  
    if any(mod(n-m,2)) J.O;c5wL  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 1` 9/[2z  
    end q .?D{[2  
    y)(@  
    if any(m<0) AY *  
        error('zernpol:Mpositive','All M must be positive.') :Eob"WH  
    end VDQ&Bm JE  
    kuUH 2:L  
    if any(m>n) F]Y Pq  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') =#>P !  
    end s'5 jvlG  
     ExnszFX*  
    if any( r>1 | r<0 ) w|$;$a7)  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') eL-92]]e  
    end *!nS4 [d  
    3HfT9  
    if ~any(size(r)==1) Q>z0?%B  
        error('zernpol:Rvector','R must be a vector.') sQt@B#;  
    end dn5T7a~   
    d5u,x.R  
    r = r(:); ^(6.P)$  
    length_r = length(r); T`vj6F  
    g=Qj9Z  
    if nargin==4 `d8$OC  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ~%GUc ~  
        if ~isnorm } RM?gE  
            error('zernpol:normalization','Unrecognized normalization flag.') NP|U |zn  
        end [% 3{mAd  
    else [;tbNVZK  
        isnorm = false; q 2= ^l  
    end `Y+p7*Qr2  
    U8.DPRa  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )_f "[m%  
    % Compute the Zernike Polynomials t,RR\S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sg9ZYWcL  
    p%,JWZ[  
    % Determine the required powers of r: O0~[]3Y[=  
    % ----------------------------------- i@d!g"tot  
    rpowers = []; KXR  
    for j = 1:length(n) 2#|Q =rWB  
        rpowers = [rpowers m(j):2:n(j)]; L x(Y=  
    end !m^WtF  
    rpowers = unique(rpowers); /~AajLxu3W  
    @3b0hi4  
    % Pre-compute the values of r raised to the required powers, i;Gl-b\_h  
    % and compile them in a matrix: WI~';dK2]  
    % ----------------------------- PRf2@0ZV  
    if rpowers(1)==0 " $m3xO  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @dO~0dF  
        rpowern = cat(2,rpowern{:}); +fKLCzj  
        rpowern = [ones(length_r,1) rpowern]; 1k "*@Z<  
    else f$/Daq <M  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,wnF]K 2D0  
        rpowern = cat(2,rpowern{:}); ;.m"y-  
    end 6IeHZ)jGj  
    'm-s8]-W  
    % Compute the values of the polynomials: (8{h I  
    % -------------------------------------- n {^D_S  
    z = zeros(length_r,length_n); ucB<  
    for j = 1:length_n H?O*  
        s = 0:(n(j)-m(j))/2; 80 p7+W2m  
        pows = n(j):-2:m(j); :@kSDy+*Q  
        for k = length(s):-1:1 MbjH\XRB  
            p = (1-2*mod(s(k),2))* ... oSTGs@EK  
                       prod(2:(n(j)-s(k)))/          ... GndF!#?N(  
                       prod(2:s(k))/                 ... 5a4;d+  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 3<?(1kSo>>  
                       prod(2:((n(j)+m(j))/2-s(k))); .!=2#<  
            idx = (pows(k)==rpowers); LD#]"k  
            z(:,j) = z(:,j) + p*rpowern(:,idx); @YV-8;hO  
        end |?{Zx&yUw  
         'N'EC`R  
        if isnorm G9^!= v@  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); b+3{ bE  
        end 'rU 5VrK  
    end R%54!f0 %  
    8'/vW~f  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  w~{NN K;"j  
    {ss^L  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 &FHzd/  
    !VBl/ aU@  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)