非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 kSI,Q!e\
function z = zernfun(n,m,r,theta,nflag) EoOrA@N
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. KNK0w 5
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N hcN$p2-
% and angular frequency M, evaluated at positions (R,THETA) on the gu"Agct4
% unit circle. N is a vector of positive integers (including 0), and xt3IR0
% M is a vector with the same number of elements as N. Each element u 6%56 %^f
% k of M must be a positive integer, with possible values M(k) = -N(k) y XS/3_A{
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, { !FrI@
% and THETA is a vector of angles. R and THETA must have the same ]-ZD;kOr
% length. The output Z is a matrix with one column for every (N,M) Dnd
% pair, and one row for every (R,THETA) pair. ZZeqOu7^
% Gt 2rJ<>
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike M8g=t[\
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), HVk3F|]V
% with delta(m,0) the Kronecker delta, is chosen so that the integral n
P 69W
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^U`[P@T
% and theta=0 to theta=2*pi) is unity. For the non-normalized 8:0l5cZE
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. AE<AEq
% YJ:CqTy
% The Zernike functions are an orthogonal basis on the unit circle. xDVzHgbf
% They are used in disciplines such as astronomy, optics, and IWMqmCbv
% optometry to describe functions on a circular domain. E^|b3G6T
% IAtc^'l#
% The following table lists the first 15 Zernike functions. 7p~@S4
% =-vk}O0C
% n m Zernike function Normalization ^ 0TJys%
% -------------------------------------------------- j.m-6
% 0 0 1 1 !UgJ^v
% 1 1 r * cos(theta) 2 rW1>t+
% 1 -1 r * sin(theta) 2 ls/:/x(5d
% 2 -2 r^2 * cos(2*theta) sqrt(6) R)<>} y
% 2 0 (2*r^2 - 1) sqrt(3) 2 3>lE}^G
% 2 2 r^2 * sin(2*theta) sqrt(6) [F6=JZ
% 3 -3 r^3 * cos(3*theta) sqrt(8) jo"[$%0`
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) vKI,|UD&-
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) g0ug:- R
% 3 3 r^3 * sin(3*theta) sqrt(8) ^:DlrI$
% 4 -4 r^4 * cos(4*theta) sqrt(10) GLk7#Y
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -R:1-0I$
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) D6v0n6w
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .oSKSld
% 4 4 r^4 * sin(4*theta) sqrt(10) CBO8^M<K
% -------------------------------------------------- JBg",2w |C
% MiRMjQ2
% Example 1: -@i2]o
% 6?hv,^
% % Display the Zernike function Z(n=5,m=1) 8LkC/
% x = -1:0.01:1; m&;
t;
% [X,Y] = meshgrid(x,x); K` U\+AE
% [theta,r] = cart2pol(X,Y); ~v<r\8`OI2
% idx = r<=1; 6o{anHBB
% z = nan(size(X)); l
"d&Sgnj
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Mg;;o
% figure )6!SFj>.O
% pcolor(x,x,z), shading interp N;ssO,
% axis square, colorbar /n:s9eq
% title('Zernike function Z_5^1(r,\theta)') Gz6FwU8L
% ~_h4|vG
% Example 2: D0-C:gz
% Que)kjp
% % Display the first 10 Zernike functions op}x}Ioz
% x = -1:0.01:1; }3vB_0[r
% [X,Y] = meshgrid(x,x); aY"qEH7]
% [theta,r] = cart2pol(X,Y); .
vYGJ8(P
% idx = r<=1; M,mj{OY~x
% z = nan(size(X)); bz<wihZj
% n = [0 1 1 2 2 2 3 3 3 3]; W_M]fjL.
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; k*^.-v
% Nplot = [4 10 12 16 18 20 22 24 26 28]; qWr`cO~hc
% y = zernfun(n,m,r(idx),theta(idx)); 5oORwOP
% figure('Units','normalized') SHhg&~B
% for k = 1:10 }*?e w
% z(idx) = y(:,k); 5*4P_q(AxD
% subplot(4,7,Nplot(k)) m;[z)-&"
% pcolor(x,x,z), shading interp ~L 4"t_-
% set(gca,'XTick',[],'YTick',[]) bt~-=\
% axis square 3>?ip;
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) }3N8EmS
% end Hm4lR{A
% q9!5J2P
% See also ZERNPOL, ZERNFUN2. EB>laZy>
5#:tL&q
% Paul Fricker 11/13/2006 NUm3E4
W.H_G.C%
ts)0+x
% Check and prepare the inputs: ?#]c{Tlpz
% ----------------------------- MR8-xO'w
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,g^Bu{?
error('zernfun:NMvectors','N and M must be vectors.') EStHl(DUPq
end /&ph-4\i
@tp/0E?
if length(n)~=length(m) pY-izML
error('zernfun:NMlength','N and M must be the same length.') Ry/NfF=
end 8/=[mYn`-
^3*gf}
n = n(:); h=)Im)
m = m(:); V ;>{-p
if any(mod(n-m,2)) {J|P2a[
error('zernfun:NMmultiplesof2', ... 1w\Y._jK
'All N and M must differ by multiples of 2 (including 0).') kv) LH{
end x6F\|nb
zRsA[F#
if any(m>n) IK}T.*[
error('zernfun:MlessthanN', ... G::6?+S
'Each M must be less than or equal to its corresponding N.') 9E
(>mN
end R?X9U.AcW
V+D "_
if any( r>1 | r<0 ) b8QW^Z
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Jbs:}]2
end Qaagi
`
tD>m%1'&
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) L{(r@Vu
error('zernfun:RTHvector','R and THETA must be vectors.') Sw(%j1uL
end ydlH6 >
z<@$$Z=0UF
r = r(:); *TMg.
theta = theta(:); $ar:5kif
length_r = length(r); sW=@G'}3
if length_r~=length(theta) R HF;AX n
error('zernfun:RTHlength', ... : l]>nF4
'The number of R- and THETA-values must be equal.') ;z%& 3u/
end 0BE%~W
G+5G,|}
% Check normalization: xD_jfAH'
% -------------------- "~FXmKcX
if nargin==5 && ischar(nflag) YQ?|Vb
U
isnorm = strcmpi(nflag,'norm'); yy#Xs:/
if ~isnorm vtvr{Uqo@
error('zernfun:normalization','Unrecognized normalization flag.') }Efp{E
end 5^%^8o
else -"a]) -
j
isnorm = false; bfa5X<8
end \HH|{
JWxPH5L
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4.VEE~sH$
% Compute the Zernike Polynomials blp )a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6+LXoR'
SX
FF
% Determine the required powers of r: EA8(_}
% ----------------------------------- =`/X
Wem
m_abs = abs(m); I5 2wTl0
rpowers = []; 89 SsS b
for j = 1:length(n) U&B~GJT+
rpowers = [rpowers m_abs(j):2:n(j)]; B,gQeW&
end @MN>ye'T
rpowers = unique(rpowers); j*6!7u.,K
Q'\jm=k
% Pre-compute the values of r raised to the required powers, !`aodz*PO
% and compile them in a matrix: `|PxEif+J
% ----------------------------- K1eoZ8=!
if rpowers(1)==0 `zep`j&8^
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); i.fDH57
rpowern = cat(2,rpowern{:}); q].C>R*ux8
rpowern = [ones(length_r,1) rpowern]; QZwRg&d<o
else xw?G?(WO
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~" $9auQtC
rpowern = cat(2,rpowern{:}); Kfj*#)SZ
end -7+Fb^"L
-<<!eH
% Compute the values of the polynomials: B3yn:=80
% -------------------------------------- :F<a~_k
y = zeros(length_r,length(n)); E8-p
,e,
for j = 1:length(n) r[\47cG
s = 0:(n(j)-m_abs(j))/2; Pb~S{):
pows = n(j):-2:m_abs(j); Riw>cVi~
for k = length(s):-1:1 !$d:k|b
p = (1-2*mod(s(k),2))* ... MM5#B!BB
prod(2:(n(j)-s(k)))/ ... gjs-j{*
prod(2:s(k))/ ... As>po+T*
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... oVsl,V
prod(2:((n(j)+m_abs(j))/2-s(k))); 95(VY)_6#A
idx = (pows(k)==rpowers); &7<~Q\XZbI
y(:,j) = y(:,j) + p*rpowern(:,idx); XRNL;X%}7
end |L+GM"hg
pF8'S{y
if isnorm $iF7hyZ
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1w5p*U0 ;
end 8[y7(Xw
end _c #P
% END: Compute the Zernike Polynomials F,EHZ,<V
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i>w>UA*t
lX7#3ti:
% Compute the Zernike functions: UbuxD })
% ------------------------------ (8>k_
idx_pos = m>0; V5A7w
V3~
idx_neg = m<0; 9GQTe1[t4
S@*@*>s^
z = y; ,f1+jC
if any(idx_pos) "n05y}
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); o-(jSaH :;
end o@>5[2b4
if any(idx_neg) %R_8`4IQ
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @{$SjR8Q $
end ',CcL N
F'h[g.\}
% EOF zernfun