非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 HXKM<E{j
function z = zernfun(n,m,r,theta,nflag) f
X[xZGV,
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4)w,gp
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N /=p[k^A
% and angular frequency M, evaluated at positions (R,THETA) on the y<FC7
% unit circle. N is a vector of positive integers (including 0), and P!+Gwm{
% M is a vector with the same number of elements as N. Each element @\?ubF
% k of M must be a positive integer, with possible values M(k) = -N(k) RD:G9[
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, a
-Pz<*
% and THETA is a vector of angles. R and THETA must have the same 0! 3. .5==
% length. The output Z is a matrix with one column for every (N,M) "++\6H<
% pair, and one row for every (R,THETA) pair. 6AJk6W^Z
% 4}m9,
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike JW[6
^Rw
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 6U ! P8q
% with delta(m,0) the Kronecker delta, is chosen so that the integral
d78 [(;
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, v'S]g^
% and theta=0 to theta=2*pi) is unity. For the non-normalized Wz'!stcp
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. F
`o9GLxM}
% $$m0mK
% The Zernike functions are an orthogonal basis on the unit circle. 1jd{AqHl
% They are used in disciplines such as astronomy, optics, and kAEq +{h
% optometry to describe functions on a circular domain. v]( Y n)#
% 0fewMS*
% The following table lists the first 15 Zernike functions. E_=F'sP?
% \~*<[.8~
% n m Zernike function Normalization 9PKXQp
% -------------------------------------------------- ~g=&wT11
% 0 0 1 1 0]SWyC
:
% 1 1 r * cos(theta) 2 3FR(gr$X
% 1 -1 r * sin(theta) 2 (O+d6oT=Z2
% 2 -2 r^2 * cos(2*theta) sqrt(6) `*vO8v
% 2 0 (2*r^2 - 1) sqrt(3) h]s6)tII
% 2 2 r^2 * sin(2*theta) sqrt(6) $Lj]NtO
% 3 -3 r^3 * cos(3*theta) sqrt(8) UAF$bR
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) by>%}#M
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 8S#$'2sT
% 3 3 r^3 * sin(3*theta) sqrt(8) 7_ix&oVI
% 4 -4 r^4 * cos(4*theta) sqrt(10) ooJxE\L
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rtS cQ
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ~k&b
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?IAu,s*u
% 4 4 r^4 * sin(4*theta) sqrt(10) DD=X{{;D\"
% -------------------------------------------------- oUnb-,8n
% 4JK6<Pk
% Example 1: 4N,[Gs<7
% <}WSYK,zUY
% % Display the Zernike function Z(n=5,m=1) 9 wR D=a
% x = -1:0.01:1; @LI;q
% [X,Y] = meshgrid(x,x); #[M^Q
h
% [theta,r] = cart2pol(X,Y); Q$U.vF7BnP
% idx = r<=1; PFp!T [)
% z = nan(size(X)); T@ESMPeU:X
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Nmx\qJUR(
% figure ~:JAWs$\V
% pcolor(x,x,z), shading interp E}4{{{r
% axis square, colorbar Mi.2
>
% title('Zernike function Z_5^1(r,\theta)') A]m*~Vj]
% R7rM$|n=o
% Example 2: |5(un#
% q}Po)IUT`5
% % Display the first 10 Zernike functions 4Vi*Qa_,y
% x = -1:0.01:1; D-@6 hWh~
% [X,Y] = meshgrid(x,x); gWHY7rv
% [theta,r] = cart2pol(X,Y); s;P _LaIp)
% idx = r<=1; #8t=vb3
% z = nan(size(X)); 9K}DmS
% n = [0 1 1 2 2 2 3 3 3 3]; WrwbLl E
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; MX~h>v3_R4
% Nplot = [4 10 12 16 18 20 22 24 26 28]; N_:!uR
% y = zernfun(n,m,r(idx),theta(idx)); by9UwM=gp
% figure('Units','normalized') &kdW(;`
% for k = 1:10 xb[yy}>"L
% z(idx) = y(:,k); gAvNm[=wD2
% subplot(4,7,Nplot(k)) $o+@}B0)
% pcolor(x,x,z), shading interp Q-h< av9
% set(gca,'XTick',[],'YTick',[]) @}UOm-M
% axis square Wp
=
]YO
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) RoHX0
% end M GC=L .
% _@\-`>J
% See also ZERNPOL, ZERNFUN2. Wx/PD=Sf&
8B6(SQp%
% Paul Fricker 11/13/2006 q ) 5s'(
T^8`ji
'GW~~UhdW
% Check and prepare the inputs: }:?_/$};
% ----------------------------- rr1,Ijh{D
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }}Q h_(
error('zernfun:NMvectors','N and M must be vectors.') y1Br4K5C
end #?M[Q:
KxmB$x5-=8
if length(n)~=length(m) sFfargl
error('zernfun:NMlength','N and M must be the same length.') )MN 6\v
end V+'zuX
"5,Cy3
n = n(:); B_c-@kl
m = m(:); Jk<b#SZ[b
if any(mod(n-m,2)) o9D#d\G
error('zernfun:NMmultiplesof2', ... +^,&z}(
Ak
'All N and M must differ by multiples of 2 (including 0).') {R~L7uR@O
end U&+lw=
l>Zp#+I-
if any(m>n) /ubGa6N
error('zernfun:MlessthanN', ... W}^>lM\8
'Each M must be less than or equal to its corresponding N.') 5n2}|V$VqP
end "8[Vb#=*e
Xs4G#QsAJ
if any( r>1 | r<0 ) Ag]Hk%
error('zernfun:Rlessthan1','All R must be between 0 and 1.') XKBQH(
end rYyEs
I#qo
A@EUH
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) F>q%~
error('zernfun:RTHvector','R and THETA must be vectors.') 4y9n,~Qgw
end aj]%c_])(
(@*#Pn|A
r = r(:); rI1;>/Ir
theta = theta(:); x6~`{N1N
M
length_r = length(r); CY8=prC
if length_r~=length(theta) w W;!L=j
error('zernfun:RTHlength', ... +(2mHS0_a
'The number of R- and THETA-values must be equal.') N5GQ2V
end 5zII4ukn*
Qte'f+
% Check normalization: FBK6{rLMc
% -------------------- uJHf6Ye
if nargin==5 && ischar(nflag) 9Lxa?Y1
isnorm = strcmpi(nflag,'norm'); 7b[vZNi_
if ~isnorm yn5yQ;
error('zernfun:normalization','Unrecognized normalization flag.') JS1''^G&.
end W 7Y5~%@
else {p(.ckze+
isnorm = false; hGvuA9d~
end 0/JusQ
B?J#NFUb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g"sW_y_O
% Compute the Zernike Polynomials Gvw:h9v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OL|UOG
miZ&9m
% Determine the required powers of r: Ey!+rq}
% ----------------------------------- Cuq=>J
m_abs = abs(m); p M:lg
rpowers = []; %g4G&My@J
for j = 1:length(n) H`;q@
rpowers = [rpowers m_abs(j):2:n(j)]; r4h4A w {
end #;6YADk2_
rpowers = unique(rpowers); 4b B)t#
BV X6
% Pre-compute the values of r raised to the required powers, %P2GQS-N
% and compile them in a matrix: c_li.]P
% ----------------------------- T8,?\7)S9
if rpowers(1)==0 :!\?yj{{
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); E}d@0C:
rpowern = cat(2,rpowern{:}); .>0j<|~
rpowern = [ones(length_r,1) rpowern]; ?6F\cl0.
else ^b]h4z$
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); s=&&gC1
rpowern = cat(2,rpowern{:}); 9"3 7va
end ]4m;NI d
)B86
% Compute the values of the polynomials: b Z0mK$B
% -------------------------------------- RG9YA&1ce
y = zeros(length_r,length(n)); O9#8%p%
)
for j = 1:length(n) /G`'9cD
s = 0:(n(j)-m_abs(j))/2; dBKL_'@@}
pows = n(j):-2:m_abs(j); WleE$ ,
for k = length(s):-1:1 [=[>1<L>
p = (1-2*mod(s(k),2))* ... owDp?Sy}E
prod(2:(n(j)-s(k)))/ ... ]_6w(>A@3#
prod(2:s(k))/ ... 18ApHp
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >YwvM=b"V
prod(2:((n(j)+m_abs(j))/2-s(k))); RjC3wO::
idx = (pows(k)==rpowers); OT[&a6