切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11599阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 W voIh4]  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! xls US'Eo  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 - K"L6m|  
    function z = zernfun(n,m,r,theta,nflag) M?<iQxtyb}  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. mq(K_  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N hYA1N&yz@  
    %   and angular frequency M, evaluated at positions (R,THETA) on the cg_tJ^vrY  
    %   unit circle.  N is a vector of positive integers (including 0), and !c0x^,iE  
    %   M is a vector with the same number of elements as N.  Each element \<y|[  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) >}C:EnECy  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, muBl~6_mb2  
    %   and THETA is a vector of angles.  R and THETA must have the same 1Mx2%  
    %   length.  The output Z is a matrix with one column for every (N,M) hv#LKyp%  
    %   pair, and one row for every (R,THETA) pair. vS:=%@c>ta  
    % qC=ZH#  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike e(OKE7  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), uKJo5%>  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral $bBUL C  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 2$2@?]|?  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized zP@\rZ@4  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. P8 w56  
    % jd "YaZOQ  
    %   The Zernike functions are an orthogonal basis on the unit circle. V,\}|_GY  
    %   They are used in disciplines such as astronomy, optics, and \[8uE,=|  
    %   optometry to describe functions on a circular domain. An,TunX  
    % DGz}d,ie  
    %   The following table lists the first 15 Zernike functions. Lm0q/d2|\X  
    % bIk4?S  
    %       n    m    Zernike function           Normalization 63t'|9^5  
    %       -------------------------------------------------- V4W(> g  
    %       0    0    1                                 1 S3QX{5t\  
    %       1    1    r * cos(theta)                    2 DIhV;[\  
    %       1   -1    r * sin(theta)                    2 /R( .7N  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) w2`JFxQ^x  
    %       2    0    (2*r^2 - 1)                    sqrt(3) _?bF;R  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) {t:*Xu  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) O\@0o|NM  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Tv% Z|%*  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) JiXN"s^mcb  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Z%SDN"+'g  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 9/R=_y-  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3#F"UG2,_  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [W dxMU  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) wNh\pWA  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) sd*NY  
    %       -------------------------------------------------- w'mn O'%  
    % [LbCG  
    %   Example 1: wc}4:~  
    % Oek$f,J-  
    %       % Display the Zernike function Z(n=5,m=1) aLQ]2m  
    %       x = -1:0.01:1; xP'"!d4^i  
    %       [X,Y] = meshgrid(x,x); g\aq#QV  
    %       [theta,r] = cart2pol(X,Y); &>ykkrY  
    %       idx = r<=1; 1nE`Wmo.2  
    %       z = nan(size(X)); CzmB76zy.  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); TF,([p*  
    %       figure Bv6~!p  
    %       pcolor(x,x,z), shading interp d#I; e  
    %       axis square, colorbar P4s,N|bs`  
    %       title('Zernike function Z_5^1(r,\theta)') >[P`$XkXd4  
    % id1gK(F8H  
    %   Example 2: =Zaw>p*H  
    % T@r%~z  
    %       % Display the first 10 Zernike functions 'W~6-c9y  
    %       x = -1:0.01:1; n3s  
    %       [X,Y] = meshgrid(x,x); XIp>PcU^  
    %       [theta,r] = cart2pol(X,Y); E/>kvs%  
    %       idx = r<=1; uC 2{ Mmy  
    %       z = nan(size(X)); [>:9 #n  
    %       n = [0  1  1  2  2  2  3  3  3  3]; TO] cZZ<  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; A_5M\iN\  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ~eekv5  
    %       y = zernfun(n,m,r(idx),theta(idx));  .V l  
    %       figure('Units','normalized') {9nH#yv  
    %       for k = 1:10 A$::|2~  
    %           z(idx) = y(:,k); (Lkcx06e  
    %           subplot(4,7,Nplot(k)) MQo/R,F }  
    %           pcolor(x,x,z), shading interp h)X"<a++N  
    %           set(gca,'XTick',[],'YTick',[]) 1X#gHstD  
    %           axis square *p^*>~i9)  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 8fb<hq<  
    %       end @dvb%A&Pur  
    % )zo:Bo .<  
    %   See also ZERNPOL, ZERNFUN2. y,$zSPJCi  
    V_=7q=9mV  
    %   Paul Fricker 11/13/2006 f;,^ ]mw  
    wD $sKd  
    tI+P&L"  
    % Check and prepare the inputs: 9Pdol!  
    % ----------------------------- -W1Apd%>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) SD1M`PI  
        error('zernfun:NMvectors','N and M must be vectors.') JZoH -  
    end cGv`%  
    p+xjYU4^C  
    if length(n)~=length(m) j\uPOn8k  
        error('zernfun:NMlength','N and M must be the same length.') g6;a2  
    end XWf1c ~J  
    A04E <nr  
    n = n(:); lXu6=r  
    m = m(:); l9F]Lw  
    if any(mod(n-m,2)) [R{%r^"2p  
        error('zernfun:NMmultiplesof2', ... |@pn=wW  
              'All N and M must differ by multiples of 2 (including 0).') p-2PC{% t|  
    end N7dI}ju  
    !u=A9i!  
    if any(m>n) ?w>-ya  
        error('zernfun:MlessthanN', ... Hni?r!8r  
              'Each M must be less than or equal to its corresponding N.') q,.@<sW  
    end (L !#2Jy  
    !sh>`AF  
    if any( r>1 | r<0 ) .2QZe8"  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') D+CP?} /  
    end =(p]L  
    n4DKLAl  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]+@I] \S4  
        error('zernfun:RTHvector','R and THETA must be vectors.') 80Z'1'u0  
    end I{uwT5QT-  
    })5I/   
    r = r(:); Jm]P,jaLc  
    theta = theta(:); JnXVI!+JDL  
    length_r = length(r); &K-0ld(;  
    if length_r~=length(theta) t@3y9U$  
        error('zernfun:RTHlength', ... > ZKHjw  
              'The number of R- and THETA-values must be equal.') FYX" q-Z  
    end ?9:~d#p  
    L(_bf/ @3  
    % Check normalization: DkeFDzQ5  
    % -------------------- :Wd@Qy?;  
    if nargin==5 && ischar(nflag) ^,6c9Dxy  
        isnorm = strcmpi(nflag,'norm'); ;Zw? tU  
        if ~isnorm asKAHVT(  
            error('zernfun:normalization','Unrecognized normalization flag.') |HA1.Y=  
        end ]5:0.$5  
    else &4jc3_UKV  
        isnorm = false; HkdBPMs79  
    end Ks\\2$Cm7  
    ,?`Zrxe[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H{VJ S Jc{  
    % Compute the Zernike Polynomials ,*d<hBGbh  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^?-wov$  
    >4]y)df5  
    % Determine the required powers of r: \'-E[xNcWI  
    % ----------------------------------- d9.~W5^fC  
    m_abs = abs(m); !6l}s$1i|  
    rpowers = []; T<K/bzB3z  
    for j = 1:length(n) th`pf   
        rpowers = [rpowers m_abs(j):2:n(j)]; aW;DfH  
    end &a?k1R>  
    rpowers = unique(rpowers); ,]_<8@R  
    9; `E,w  
    % Pre-compute the values of r raised to the required powers, UA(&_-C\  
    % and compile them in a matrix: Q> J9M` a  
    % ----------------------------- HAdDr!/`  
    if rpowers(1)==0 u/(~ew I  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); rqz`F\A;%  
        rpowern = cat(2,rpowern{:}); 6QG"~>v7'(  
        rpowern = [ones(length_r,1) rpowern]; u E<1PgW  
    else 8Ao pI3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _tR?WmNH=  
        rpowern = cat(2,rpowern{:}); V[ 'lB.&t  
    end Y [%<s/  
    L(t!C~3  
    % Compute the values of the polynomials: sz+%4T  
    % -------------------------------------- cE+Y#jB  
    y = zeros(length_r,length(n)); ['Y"6[1  
    for j = 1:length(n) in#lpDa[  
        s = 0:(n(j)-m_abs(j))/2; ;U]Ym48  
        pows = n(j):-2:m_abs(j); B*AB@  
        for k = length(s):-1:1 D2 X~tl5<  
            p = (1-2*mod(s(k),2))* ... [SU;U['7  
                       prod(2:(n(j)-s(k)))/              ... %ZM"c  
                       prod(2:s(k))/                     ... J *;= f8  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... pI1IDu*_Z  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); G?<uw RV  
            idx = (pows(k)==rpowers); H_>9'(  
            y(:,j) = y(:,j) + p*rpowern(:,idx); X|dlVNL8p  
        end QyD(@MFxb  
         (DY&{vudF  
        if isnorm T$*#q('1"}  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); rBZ0Fx$/[  
        end c)4L3W-x=  
    end IH3Nkpsg  
    % END: Compute the Zernike Polynomials PM`iqn)@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Wg\MaZ6Di  
    e3,@prr  
    % Compute the Zernike functions: "2z&9`VIY  
    % ------------------------------ R^&.:;Wi>  
    idx_pos = m>0; "X \Yp_g  
    idx_neg = m<0; Hb3t|<z  
    )LTX.Kg  
    z = y; e5#?@}?  
    if any(idx_pos) 9Xh1i`.D  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *> E_lWW.  
    end YT}ZLx  
    if any(idx_neg) i'p6#  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); xiOAj"}~  
    end dF$&fo%  
    1 RVs!;  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) & tjL*/  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ,0f^>3&n>e  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated h?p!uQ  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive !GnwE  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, @6b4YV h  
    %   and THETA is a vector of angles.  R and THETA must have the same jEn 9T  
    %   length.  The output Z is a matrix with one column for every P-value, mcTC'. 9  
    %   and one row for every (R,THETA) pair. GD% qrK?  
    % Q7-'5s   
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike x27$h)R0v  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 2=7:6Fw  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) pgBIYeY,  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 X 4\V4_  
    %   for all p. -J>f,zA  
    % ~d-Q3n?zR  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 9r> iP L2H  
    %   Zernike functions (order N<=7).  In some disciplines it is 'LYN{  
    %   traditional to label the first 36 functions using a single mode :9f 9Z7M  
    %   number P instead of separate numbers for the order N and azimuthal Pq1j  
    %   frequency M. b9VI(s>  
    % Cz6bD$5  
    %   Example: ySHpN>U  
    % Zn:]?%afdO  
    %       % Display the first 16 Zernike functions V/tl-;W  
    %       x = -1:0.01:1; Hi^ Z`97c  
    %       [X,Y] = meshgrid(x,x); 08/Tk+  
    %       [theta,r] = cart2pol(X,Y); T?CQgVR  
    %       idx = r<=1; o1thGttVDg  
    %       p = 0:15; BmaY&?  
    %       z = nan(size(X));  PZj}]d `  
    %       y = zernfun2(p,r(idx),theta(idx)); ;H9 W:_ahE  
    %       figure('Units','normalized') = u&dU'@q  
    %       for k = 1:length(p) SgkW-#  
    %           z(idx) = y(:,k); eoJ*?v  
    %           subplot(4,4,k) <?%49  
    %           pcolor(x,x,z), shading interp ~:*V'/2k  
    %           set(gca,'XTick',[],'YTick',[]) OZ/"W)  
    %           axis square 'p)DJUwt  
    %           title(['Z_{' num2str(p(k)) '}']) {LT2^gy=  
    %       end 2 ,krVb?<  
    % >sQf{uL  
    %   See also ZERNPOL, ZERNFUN. }\1V%c  
    nfh<3v|kvR  
    %   Paul Fricker 11/13/2006 \d3~kq3  
    qB+OxyT&  
    "n{JH9sA:  
    % Check and prepare the inputs: ~MP/[,j`  
    % ----------------------------- W6):IW(E  
    if min(size(p))~=1 89t"2|9 u  
        error('zernfun2:Pvector','Input P must be vector.') j Q8 T  
    end tMXNi\Bj  
    O&sUPv  
    if any(p)>35 @2`nBtk  
        error('zernfun2:P36', ... %vbov}R  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... &3SmTg %  
               '(P = 0 to 35).']) z\YLO%Mm  
    end 5Rp mR  
    ErFt5%FN.O  
    % Get the order and frequency corresonding to the function number: eN`G2eE  
    % ---------------------------------------------------------------- X9?0`6Li  
    p = p(:); C3~O6<,Jh  
    n = ceil((-3+sqrt(9+8*p))/2); FGeKhA 8jT  
    m = 2*p - n.*(n+2); {REGoe=W%  
    h-x~:$Z,  
    % Pass the inputs to the function ZERNFUN: , eSpt#M  
    % ---------------------------------------- -j1]H"-  
    switch nargin UzW]kY[A<  
        case 3 TP/bX&bjCy  
            z = zernfun(n,m,r,theta); `aA)n;{/2u  
        case 4 0QyL}y2  
            z = zernfun(n,m,r,theta,nflag); . BX*C  
        otherwise ?!.J 0q  
            error('zernfun2:nargin','Incorrect number of inputs.') B~b ='jN  
    end i~)EU F  
    1$^r@rP  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) h iK}&  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ZE1${QFkG  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of C0 /G1\  
    %   order N and frequency M, evaluated at R.  N is a vector of {s8g;yU5  
    %   positive integers (including 0), and M is a vector with the JB=L{P J  
    %   same number of elements as N.  Each element k of M must be a s(e1kk}"  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) wWSE[S$V  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is SR_ -wD  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix {,?Gj@$  
    %   with one column for every (N,M) pair, and one row for every O}j@+p%M  
    %   element in R. Bwu?DK  
    % JY,oXA6O  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 0k4XVd+Nv  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is +}Mm5^6*  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to B?Rkz  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 8iM:ok  
    %   for all [n,m]. sbFIKq]  
    % T0.sL9  
    %   The radial Zernike polynomials are the radial portion of the ooP{Q r  
    %   Zernike functions, which are an orthogonal basis on the unit D&pX0  
    %   circle.  The series representation of the radial Zernike P*OT&q  
    %   polynomials is }J2f$l>R  
    % hh2&FI  
    %          (n-m)/2 7Jd&9&O U  
    %            __ (f~}5O<  
    %    m      \       s                                          n-2s p["pGsf  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ="P FCxi  
    %    n      s=0 F8M};&=*1r  
    % cr?ZXu_  
    %   The following table shows the first 12 polynomials. K$B~vy6E`  
    % M@p<L VP  
    %       n    m    Zernike polynomial    Normalization @ScC32X  
    %       --------------------------------------------- Xq"Es  
    %       0    0    1                        sqrt(2) [57`V &c5  
    %       1    1    r                           2 P"Z1K5>2L  
    %       2    0    2*r^2 - 1                sqrt(6) Dtyw]|L\H  
    %       2    2    r^2                      sqrt(6) T)Q_dF.N  
    %       3    1    3*r^3 - 2*r              sqrt(8) !89hO4 0r  
    %       3    3    r^3                      sqrt(8) fzAkUvo  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) N P5K1:  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) JXR]G  
    %       4    4    r^4                      sqrt(10) UPPlm\wb*  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) [HQ/MkP-Z  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) oa[O~z{~  
    %       5    5    r^5                      sqrt(12) kV8qpw}K  
    %       ---------------------------------------------  +ZFN8  
    % KTAQ6k  
    %   Example: '(ZT }N  
    % ~y whl'"k  
    %       % Display three example Zernike radial polynomials B|{E[]iK  
    %       r = 0:0.01:1; @X9T"  
    %       n = [3 2 5]; n36iY'<)G  
    %       m = [1 2 1]; 8o.|P8%  
    %       z = zernpol(n,m,r); u yE#EnsH  
    %       figure @x;(yqOb  
    %       plot(r,z) _'^_9u G  
    %       grid on +8"P*z,  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') uD[T l  
    % H\a\xCP3  
    %   See also ZERNFUN, ZERNFUN2. \'|t>|zhp  
    g1]bI$;  
    % A note on the algorithm. 2OqEyXh  
    % ------------------------ D G&aFmC  
    % The radial Zernike polynomials are computed using the series a:4!z;2 |  
    % representation shown in the Help section above. For many special aSgKh  
    % functions, direct evaluation using the series representation can (T&(PCw|  
    % produce poor numerical results (floating point errors), because u:B=lZ[  
    % the summation often involves computing small differences between ml!c0<  
    % large successive terms in the series. (In such cases, the functions &5G@YQD1e  
    % are often evaluated using alternative methods such as recurrence tZFpxyF  
    % relations: see the Legendre functions, for example). For the Zernike .RyuWh!5  
    % polynomials, however, this problem does not arise, because the uc|ej9N  
    % polynomials are evaluated over the finite domain r = (0,1), and O`aNNy  
    % because the coefficients for a given polynomial are generally all =)*Z rD  
    % of similar magnitude. Lr= ^0  
    % $Zkk14  
    % ZERNPOL has been written using a vectorized implementation: multiple yJ6g{#X4K<  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] u g;~dhe~  
    % values can be passed as inputs) for a vector of points R.  To achieve AS[j)x!  
    % this vectorization most efficiently, the algorithm in ZERNPOL 6Ypc]ym=J  
    % involves pre-determining all the powers p of R that are required to p _3xW{I  
    % compute the outputs, and then compiling the {R^p} into a single ![J_6 f}!  
    % matrix.  This avoids any redundant computation of the R^p, and {wDe#c{_  
    % minimizes the sizes of certain intermediate variables. <'7s3  
    % ,dVJAV7v  
    %   Paul Fricker 11/13/2006 ! CJ*zZ*  
    }U4mXkZF  
    ={;+0Wjb8  
    % Check and prepare the inputs: ?IoA;GBg  
    % ----------------------------- 4gUx#_AaG  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) u0g"x_3  
        error('zernpol:NMvectors','N and M must be vectors.') j |o&T41  
    end y9=<q%Kc-  
    "CREls,  
    if length(n)~=length(m) VUz+ _)  
        error('zernpol:NMlength','N and M must be the same length.') b):aqRwP  
    end ; qr?[{G  
    zE?dQD^OD  
    n = n(:); +Yc@<$4  
    m = m(:); Q&"oh  
    length_n = length(n); Dca,IaT'  
    GCv1x->  
    if any(mod(n-m,2)) s#")hMJQ  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') rw0s$~'  
    end cRNVqMpg  
    6o5,d]  
    if any(m<0) 2iOYC0`!  
        error('zernpol:Mpositive','All M must be positive.') :Gx5vo  
    end >J_ P[v  
    ya,-Lt  
    if any(m>n) Iek ] /=  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') [X8EfU}  
    end D,(:))DmR  
    *Tr{a_{~C  
    if any( r>1 | r<0 ) HS\'{4P  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') U\-.u3/  
    end Dk8@x8  
    v\?l+-A? y  
    if ~any(size(r)==1) !;hp  
        error('zernpol:Rvector','R must be a vector.') Mm9*$g!R  
    end 5@I/+D  
    !(Q@1 c&z  
    r = r(:); )@y7 qb  
    length_r = length(r); v-Q>I5D;:  
    J |UFuD  
    if nargin==4 oEj$xm_}  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); GMoz$c6n_  
        if ~isnorm B7.&yXWgn  
            error('zernpol:normalization','Unrecognized normalization flag.') <E^;RG  
        end xe3Jxo !U  
    else Rtl 1eJ-  
        isnorm = false; ZA@zs,o%  
    end 2 &_>2"=<@  
    @e$EwCV,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )p:+!sX(  
    % Compute the Zernike Polynomials 'm-5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?U1Nm~'UZ  
    t%f>*}*P*  
    % Determine the required powers of r: tAujm*|&  
    % ----------------------------------- C',uY7}<  
    rpowers = []; ez5>V7Y  
    for j = 1:length(n) 2k&Voa  
        rpowers = [rpowers m(j):2:n(j)]; >Ad`_g6Wew  
    end -pQ?ybQ  
    rpowers = unique(rpowers); pEX Q  
    `gJ$fTi&  
    % Pre-compute the values of r raised to the required powers, 5l%g3F  
    % and compile them in a matrix: u|D L?c>W  
    % ----------------------------- ]k+(0qxG  
    if rpowers(1)==0 k5+ Fxf  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); e+>$4Jq  
        rpowern = cat(2,rpowern{:}); D*sL&Rt][Y  
        rpowern = [ones(length_r,1) rpowern]; x{Dw?6TP  
    else eYUq0~3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;ZP!:,  
        rpowern = cat(2,rpowern{:}); Xh/BVg7$  
    end ^<   
    kr!>rqN5  
    % Compute the values of the polynomials: yF+mJ >kj  
    % -------------------------------------- DNyt_5j&:  
    z = zeros(length_r,length_n); ,wv>G]v  
    for j = 1:length_n Ra:UnA  
        s = 0:(n(j)-m(j))/2; @uG/2'B(  
        pows = n(j):-2:m(j); x;LO{S4Z  
        for k = length(s):-1:1 G{Uqp'=G  
            p = (1-2*mod(s(k),2))* ... Vh]=sd<F  
                       prod(2:(n(j)-s(k)))/          ... H6`zzH0"  
                       prod(2:s(k))/                 ... Y@T$O<*  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... :7(d 6gEL  
                       prod(2:((n(j)+m(j))/2-s(k))); pigu]mj  
            idx = (pows(k)==rpowers); P:1eWP  
            z(:,j) = z(:,j) + p*rpowern(:,idx); TB84}  
        end +"~*L,ken0  
         F5M|QX@-  
        if isnorm #cb9g   
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); vu*9(t)EC  
        end ,_=LV  
    end lE8_Q*ev  
    cHVu6I?h  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  gO]8hLT  
    + ^4HCyW  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Q:Y`^jP   
    9*CRMkPrd  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)