切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11016阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 D'#,%4P,e\  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Iu^I?c[  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 "B9zQ,[Q  
    function z = zernfun(n,m,r,theta,nflag) OaY]}4tI$  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3wQ\L=  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N s !I I}'Je  
    %   and angular frequency M, evaluated at positions (R,THETA) on the M&e=LV  
    %   unit circle.  N is a vector of positive integers (including 0), and SQN{/")T  
    %   M is a vector with the same number of elements as N.  Each element C;ME"4,(  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ?P}) Qa  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, xXJzE|)1h!  
    %   and THETA is a vector of angles.  R and THETA must have the same fT<3~Z>m  
    %   length.  The output Z is a matrix with one column for every (N,M) $4kbOqn4  
    %   pair, and one row for every (R,THETA) pair. sosIu  
    % p*JP='p  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }:*?w>=  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), c~d*SDca  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral >b~Q%{1  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ES#q/yab5  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]SN5 &S  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. V'9OGn2v  
    % 1y eD-M"w  
    %   The Zernike functions are an orthogonal basis on the unit circle. J3'0^JP*  
    %   They are used in disciplines such as astronomy, optics, and 89W8cJ$yW  
    %   optometry to describe functions on a circular domain. T,B%iZgCh  
    % @[1,i~H  
    %   The following table lists the first 15 Zernike functions. \2Kl]G(w%y  
    % yKmHTjX=  
    %       n    m    Zernike function           Normalization s}DNu<"g  
    %       -------------------------------------------------- [7[$P.MS{  
    %       0    0    1                                 1 d8WEsQ+)A  
    %       1    1    r * cos(theta)                    2 R^.c  
    %       1   -1    r * sin(theta)                    2 . :(gg  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) <!X]$kvG  
    %       2    0    (2*r^2 - 1)                    sqrt(3) e)i-$0L"  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) u@zT~\ h*  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Iapzhy2l  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 3>^B%qg6  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) $:?=A5ttuo  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ON"V`_dq+M  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 2XeNE[  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y1BxRd?D  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) (e3?--~b6  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /FcwsD\=$  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) " j:15m5  
    %       -------------------------------------------------- \d w["k  
    % /!y3ZzL  
    %   Example 1: Tn$| Xa+:s  
    % =.9tRq  
    %       % Display the Zernike function Z(n=5,m=1) <q|eG\01S  
    %       x = -1:0.01:1; +:z%#D  
    %       [X,Y] = meshgrid(x,x); S7CD#Y[s  
    %       [theta,r] = cart2pol(X,Y); &<C&(g{Z  
    %       idx = r<=1; ^Ux*"\/Es  
    %       z = nan(size(X)); _3gF~qr  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); b~K-mjJI  
    %       figure 1$"wN z  
    %       pcolor(x,x,z), shading interp ,Ne v7X[0  
    %       axis square, colorbar eBW]hwhKzM  
    %       title('Zernike function Z_5^1(r,\theta)') BFn}~\wzK  
    % utw@5  
    %   Example 2: ;fv/s]X86I  
    % ;giT[KK  
    %       % Display the first 10 Zernike functions dr4m}v.  
    %       x = -1:0.01:1; Uq2Qh@B  
    %       [X,Y] = meshgrid(x,x); [_p&,$z8[  
    %       [theta,r] = cart2pol(X,Y); ' @j8tK  
    %       idx = r<=1; l,Ixz1S3e  
    %       z = nan(size(X)); N37#V s  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 3. g-V  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;'|t>'0_  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; }@g#S@o  
    %       y = zernfun(n,m,r(idx),theta(idx)); vu)V:y  
    %       figure('Units','normalized') sT"{ e7;F;  
    %       for k = 1:10 m*TJ@gI*t  
    %           z(idx) = y(:,k); i)d'l<RA  
    %           subplot(4,7,Nplot(k)) C#.d sl  
    %           pcolor(x,x,z), shading interp 71Mk!E=1  
    %           set(gca,'XTick',[],'YTick',[]) \"A~ks~  
    %           axis square =7U 8`]WA  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7ZgFCK,8m,  
    %       end F}#=qBa[  
    % <1E* wPm8  
    %   See also ZERNPOL, ZERNFUN2. f.u[!T  
    {I"d"'h  
    %   Paul Fricker 11/13/2006 a7l-kG=R;  
    6.GIUM%D  
    [Uu!:SZ  
    % Check and prepare the inputs: 0CUUgwA /  
    % ----------------------------- L+" 5g@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i52:<< 8a  
        error('zernfun:NMvectors','N and M must be vectors.') ,u<aKae  
    end w1|YR  
    affig  
    if length(n)~=length(m) !8>tT  
        error('zernfun:NMlength','N and M must be the same length.') `=~d^wKYJ3  
    end |70L h+  
    U}<;4Px]7v  
    n = n(:); _p=O*$b.  
    m = m(:); X2p9KC  
    if any(mod(n-m,2)) *HN0em  
        error('zernfun:NMmultiplesof2', ... b 7bbrR8  
              'All N and M must differ by multiples of 2 (including 0).') ws$!-t4<(  
    end vZpt}u  
    ^ $t7p 1  
    if any(m>n) ~*h` ?A0  
        error('zernfun:MlessthanN', ... d.uJ}=|  
              'Each M must be less than or equal to its corresponding N.') c~+l|r=u?  
    end $ OMGo`z  
    gb_k^wg~1'  
    if any( r>1 | r<0 ) N!F ;!  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') X+T +y>e a  
    end CzZm C]5  
    j5;eSL@ /  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) gyW##M@{  
        error('zernfun:RTHvector','R and THETA must be vectors.') }$|uIS  
    end kyc Z  
    za20Y?)[  
    r = r(:); ef=LPCi?  
    theta = theta(:); P:y M j&)  
    length_r = length(r); <<P& MObqj  
    if length_r~=length(theta) k;pTOj  
        error('zernfun:RTHlength', ... 0@ 9em~  
              'The number of R- and THETA-values must be equal.') ?gMxGH:B.&  
    end 6uf+,F  
    !fcr3x|Y~M  
    % Check normalization: 4X2/n  
    % -------------------- 3yu{Q z5y,  
    if nargin==5 && ischar(nflag) -\!"Kz/  
        isnorm = strcmpi(nflag,'norm'); TY3WP$u  
        if ~isnorm Td5;bg6Qy  
            error('zernfun:normalization','Unrecognized normalization flag.') fhAK^@h  
        end j6KGri  
    else p}NIZ)]$  
        isnorm = false; :8bz+3p  
    end .^S#h (A  
    J34lu{'if  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \P_1@sH=  
    % Compute the Zernike Polynomials ;$\d^i{N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )MZQ\8,)]  
    FU|c[u|z  
    % Determine the required powers of r: KN;b+`x;M  
    % ----------------------------------- PXk+Vi,%k  
    m_abs = abs(m); {%5tqF  
    rpowers = []; (!U5B Hnd  
    for j = 1:length(n) 37@_"  
        rpowers = [rpowers m_abs(j):2:n(j)]; X#mppMU  
    end 3cNF^?\=  
    rpowers = unique(rpowers); 47xJ(yO  
    ruLi "d  
    % Pre-compute the values of r raised to the required powers, ^t=Hl  
    % and compile them in a matrix: Oi=>Usd  
    % ----------------------------- t/K<fy 6  
    if rpowers(1)==0 EwcN$Ma  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); yD+)!q"  
        rpowern = cat(2,rpowern{:}); H1'`* }V  
        rpowern = [ones(length_r,1) rpowern]; eGS1% [  
    else E3\O?+ h#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); a(Bo.T<2@  
        rpowern = cat(2,rpowern{:}); A|V |vT7cb  
    end Pgs^#(^>  
    tdn[]|=  
    % Compute the values of the polynomials: \ qc 8;"@  
    % -------------------------------------- e}?#vTRI}  
    y = zeros(length_r,length(n)); O1Gd_wDC/i  
    for j = 1:length(n) -< jb>8  
        s = 0:(n(j)-m_abs(j))/2; ;K[`o/#4"  
        pows = n(j):-2:m_abs(j); ANy=f-V  
        for k = length(s):-1:1 >8~+[e  
            p = (1-2*mod(s(k),2))* ... m-lUgx7  
                       prod(2:(n(j)-s(k)))/              ... a3L]'E'*#  
                       prod(2:s(k))/                     ... :Xv3< rS<  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 93yJAao9  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); nKJJ7'$'3  
            idx = (pows(k)==rpowers); 9N|O*h1;u  
            y(:,j) = y(:,j) + p*rpowern(:,idx); b<qv /t)$  
        end g83!il\  
         iKa}@U  
        if isnorm <`sVu  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Ep0L51Q  
        end &%`IPhbT  
    end 9)Y]05us  
    % END: Compute the Zernike Polynomials rp.S4;=Q9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C:g2E[#  
    kDJ5x8Q#  
    % Compute the Zernike functions: h[%`'(  
    % ------------------------------ P8e1J0A  
    idx_pos = m>0; K3&v6 #]  
    idx_neg = m<0;  gM20n^  
    C_?L$3 U0  
    z = y; TSmuNCR  
    if any(idx_pos) uAR!JJ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); NjVuwIm+  
    end %O;"Z`I  
    if any(idx_neg) Zgo^M,g  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); SC`.VCfc.  
    end mCe,(/>l+  
    LWc}j`Wd  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Mi9A%ZmP  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ;14[)t$  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 4s~Y qP{K  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive oL#^=vid"  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 4QdY"s( n  
    %   and THETA is a vector of angles.  R and THETA must have the same s d>&6 R^  
    %   length.  The output Z is a matrix with one column for every P-value, JJq= {;  
    %   and one row for every (R,THETA) pair. 49~5U+x;  
    % ,2DKphh  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike U;:>vi3p  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) tS8*l2Y`   
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) afv? z  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 zF.rsNY  
    %   for all p. {LbNKjn  
    % -<sn+-uE:  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 !E,$@mvd  
    %   Zernike functions (order N<=7).  In some disciplines it is *j2P#et  
    %   traditional to label the first 36 functions using a single mode {bl&r?[y  
    %   number P instead of separate numbers for the order N and azimuthal bgqN&J)Jr)  
    %   frequency M. <g5Bt wo%  
    % ]nhLv!Co  
    %   Example: K5z*DYT  
    % 1j# ~:=I  
    %       % Display the first 16 Zernike functions BHOxwW{  
    %       x = -1:0.01:1; MQ5#6 vJ  
    %       [X,Y] = meshgrid(x,x); uI@:\Rss  
    %       [theta,r] = cart2pol(X,Y); m'XzZmI  
    %       idx = r<=1; 7m{ 'V`F  
    %       p = 0:15; nM34zVy  
    %       z = nan(size(X)); Z$kff-Y4  
    %       y = zernfun2(p,r(idx),theta(idx)); kdman nM  
    %       figure('Units','normalized') 1`r 4  
    %       for k = 1:length(p) Gn #5zx#l  
    %           z(idx) = y(:,k); u^|XQWR$:  
    %           subplot(4,4,k) K_bF)6"  
    %           pcolor(x,x,z), shading interp G/J5aj[  
    %           set(gca,'XTick',[],'YTick',[]) l|^p;z: d  
    %           axis square sb Z)z#Tr  
    %           title(['Z_{' num2str(p(k)) '}']) F(^vD_G  
    %       end \$T  
    % mMjY I1F  
    %   See also ZERNPOL, ZERNFUN. XU5/7 .  
    HvN!_}[  
    %   Paul Fricker 11/13/2006 Bjq1za  
    ZOK2BCoW  
    z 3fS+x:E{  
    % Check and prepare the inputs: {=PO`1H  
    % ----------------------------- X,:^})]  
    if min(size(p))~=1 g+t-<D"L5  
        error('zernfun2:Pvector','Input P must be vector.') 6A;V[3  
    end ;U<;R  
    @X?DHLM  
    if any(p)>35 IkFrzw p  
        error('zernfun2:P36', ... h^D? G2O  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... fAm^-uq[  
               '(P = 0 to 35).']) SGre[+m~m  
    end G`9Ud  
    !JzM<hyg3  
    % Get the order and frequency corresonding to the function number: qxf!]jm  
    % ---------------------------------------------------------------- #Gx%PQ`  
    p = p(:); rS\j9@=Y4  
    n = ceil((-3+sqrt(9+8*p))/2);  #8MA+  
    m = 2*p - n.*(n+2); L/_h5Q:'W  
    " JFx  
    % Pass the inputs to the function ZERNFUN: "}!|V)K  
    % ---------------------------------------- sI7d?+  
    switch nargin Xt^ldW  
        case 3 I;<0v@  
            z = zernfun(n,m,r,theta); 9u^PM  
        case 4 I'HPy.PV  
            z = zernfun(n,m,r,theta,nflag); ?OW 4J0B'  
        otherwise 7"@^JxYN  
            error('zernfun2:nargin','Incorrect number of inputs.') O`Er*-O  
    end 'FgBYy/  
    ExeD3Zj  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) I{tY;b'w  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. fqrQ1{%UH  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ?!^ow5"8  
    %   order N and frequency M, evaluated at R.  N is a vector of _HF66)X7  
    %   positive integers (including 0), and M is a vector with the _;!7:'J  
    %   same number of elements as N.  Each element k of M must be a h?R{5?RxK  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) .Ds d Q4Y  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is U;`C%vHff  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix w\,N}'G  
    %   with one column for every (N,M) pair, and one row for every k-IL%+U  
    %   element in R. 5{Q5?M]  
    % })W9=xO~  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- V5:ad  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 2 j.6  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to %]7'2  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 01=nS?  
    %   for all [n,m]. 7irpD7P>  
    % Z,zkm{9*  
    %   The radial Zernike polynomials are the radial portion of the <}75Xo  
    %   Zernike functions, which are an orthogonal basis on the unit ]l4\Tdz  
    %   circle.  The series representation of the radial Zernike W[c[ulY&  
    %   polynomials is #lAC:>s3U  
    % |j$r@  
    %          (n-m)/2 ]QKo>7%[  
    %            __ JguPXHa0  
    %    m      \       s                                          n-2s dUN{@a\R0  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r $mxm?7ZVR  
    %    n      s=0 bGw56s'R5~  
    % J^<Gi/:*^  
    %   The following table shows the first 12 polynomials. ebno:)  
    % `-t8ag 3  
    %       n    m    Zernike polynomial    Normalization :I_p4S.)  
    %       --------------------------------------------- 8tfM,.]_i  
    %       0    0    1                        sqrt(2) GDF/0-/Z  
    %       1    1    r                           2 M[  {O%!  
    %       2    0    2*r^2 - 1                sqrt(6) "DaE(S&  
    %       2    2    r^2                      sqrt(6) Zt_~Zxn3  
    %       3    1    3*r^3 - 2*r              sqrt(8) m`i_O0T  
    %       3    3    r^3                      sqrt(8) @)#EZQix  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) F m?j-'  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) v[;R(pt?  
    %       4    4    r^4                      sqrt(10) srPczVG*  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ^'9.VVyz  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) /RVwhA+c  
    %       5    5    r^5                      sqrt(12) PRJ  
    %       --------------------------------------------- ~c,CngeL0  
    % 8Q%g<jX*  
    %   Example: >|X )  
    % vB74r]'F  
    %       % Display three example Zernike radial polynomials |I[/Fl:  
    %       r = 0:0.01:1; yPrF2@#XZ/  
    %       n = [3 2 5]; e ,kxg^  
    %       m = [1 2 1]; :FTx#cZ  
    %       z = zernpol(n,m,r); (+yH   
    %       figure mT:NC'b<9  
    %       plot(r,z) GY>G}bfh  
    %       grid on @C-03`JWuK  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') NSawD.9mV  
    % 0$A^ .M;  
    %   See also ZERNFUN, ZERNFUN2. azz=,^U#  
    *\.8*6*$!  
    % A note on the algorithm. *b'4>U  
    % ------------------------ l-Be5?|{_  
    % The radial Zernike polynomials are computed using the series 3Ccy %;  
    % representation shown in the Help section above. For many special 3CzF@t;5  
    % functions, direct evaluation using the series representation can q9 :g  
    % produce poor numerical results (floating point errors), because X=+|(A,BdY  
    % the summation often involves computing small differences between @(bg#  
    % large successive terms in the series. (In such cases, the functions wz'=  
    % are often evaluated using alternative methods such as recurrence ({ O~O5k  
    % relations: see the Legendre functions, for example). For the Zernike 7fI2b,~  
    % polynomials, however, this problem does not arise, because the 0G31Kou  
    % polynomials are evaluated over the finite domain r = (0,1), and NbC2N)L4  
    % because the coefficients for a given polynomial are generally all )I#{\^  
    % of similar magnitude. qnCjNN  
    % ~NZL~p  
    % ZERNPOL has been written using a vectorized implementation: multiple ?3lA ogB  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] !&xci})7a  
    % values can be passed as inputs) for a vector of points R.  To achieve Ngj&1Ta&[  
    % this vectorization most efficiently, the algorithm in ZERNPOL +h@.P B^`~  
    % involves pre-determining all the powers p of R that are required to tr5j<O  
    % compute the outputs, and then compiling the {R^p} into a single Jd^Lnp6?  
    % matrix.  This avoids any redundant computation of the R^p, and HfZ^ED"}  
    % minimizes the sizes of certain intermediate variables. c]h@<wnv  
    % |Fz ^(US  
    %   Paul Fricker 11/13/2006 u^G Y7gah  
    (\D E1q  
    X%)~i[_DV  
    % Check and prepare the inputs: ^,0Lr$+  
    % ----------------------------- =z;]FauR!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RIQ-mpg~(k  
        error('zernpol:NMvectors','N and M must be vectors.') 3&>0'h  
    end HKr}"`I.  
    -)Bvx>8fq-  
    if length(n)~=length(m) NRny]!  
        error('zernpol:NMlength','N and M must be the same length.') l$1NI#&  
    end Nc &J%a  
    (i L*1f   
    n = n(:); DuNindo 8  
    m = m(:); e!PB3I  
    length_n = length(n); %&_^I*  
    w >2sr^!y  
    if any(mod(n-m,2)) .X qeO@z  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') +%v1X&_\  
    end ?"*JV1 9  
    <#J5.I 1  
    if any(m<0) jz`3xFy *]  
        error('zernpol:Mpositive','All M must be positive.') I?S t}Tl  
    end k_{?{:X;y  
    67hfve  
    if any(m>n) *L9v(Kc  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') F)KR8 (  
    end 0PqI^|!  
    'da 'WZG  
    if any( r>1 | r<0 ) V*ao@;sD  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.')  od{\z  
    end &&m3E=K!^  
    e@qH!.g)  
    if ~any(size(r)==1) 'B{FRK  
        error('zernpol:Rvector','R must be a vector.') ]iGeqwT  
    end E_En"r)y  
    `<yQ`Y_X  
    r = r(:); gs;^SRE I  
    length_r = length(r); +}N'Xa/Jt  
    $&&E[JY  
    if nargin==4 4xEw2F  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); E(j# R"  
        if ~isnorm  *<W8j[?  
            error('zernpol:normalization','Unrecognized normalization flag.') /zt M'  
        end CxeW5qc  
    else k'PvTWR  
        isnorm = false; =$Mf:F@  
    end p09p/  
    %2T i Rb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | bz%SB  
    % Compute the Zernike Polynomials #kASy 2t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6IG?t  
    6_4 B!  
    % Determine the required powers of r: Fu_I0z  
    % ----------------------------------- w+>+hq  
    rpowers = []; RzjUrt  
    for j = 1:length(n) ?T2>juf]5~  
        rpowers = [rpowers m(j):2:n(j)]; E#!!tH`lgg  
    end 5\MC5us3  
    rpowers = unique(rpowers); UPU$SZAIx  
    z,G_&5|f%  
    % Pre-compute the values of r raised to the required powers, kFwFPK%B  
    % and compile them in a matrix: ey=KAt  
    % ----------------------------- H:]cBk^[,  
    if rpowers(1)==0 P2a5<#_|  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [K.1 X=O}  
        rpowern = cat(2,rpowern{:}); >4jE[$p]"  
        rpowern = [ones(length_r,1) rpowern]; Bj1%}B  
    else LXK!4(xaW  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /j$=?Rp  
        rpowern = cat(2,rpowern{:}); GeTk/tU  
    end a&x:_vv  
    OQ&N]P2p  
    % Compute the values of the polynomials: VFL^-tXnA^  
    % -------------------------------------- 9Q%lS  
    z = zeros(length_r,length_n);  >Ua'*  
    for j = 1:length_n Sy|GM~  
        s = 0:(n(j)-m(j))/2; WJOoDS!i  
        pows = n(j):-2:m(j); N! 7}B  
        for k = length(s):-1:1 WHY/x /$  
            p = (1-2*mod(s(k),2))* ... R~4X?@ZB  
                       prod(2:(n(j)-s(k)))/          ... 80*hi)ux[  
                       prod(2:s(k))/                 ... n?.;*:  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... );h(D!D,  
                       prod(2:((n(j)+m(j))/2-s(k))); @|SeabN^-  
            idx = (pows(k)==rpowers); mkn1LzE|F  
            z(:,j) = z(:,j) + p*rpowern(:,idx); kun/KY  
        end 3T)rJEN A  
         .how@>:P+  
        if isnorm 8u+kA mI  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ixu*@{<Z(  
        end L'e^D|  
    end YpDJ(61+  
    '\I(n|\  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  4&*lpl*N  
    D2ggFxqe  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 3! P^?[p3  
    0F$|`v"0  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)