非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 hT6:7_UD
function z = zernfun(n,m,r,theta,nflag) 3ojK2F(1D
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. b~06-dk1
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "?,3O2t
% and angular frequency M, evaluated at positions (R,THETA) on the 1!/+~J[#
% unit circle. N is a vector of positive integers (including 0), and |Hn[XRsf
% M is a vector with the same number of elements as N. Each element 9[DQ[bL
% k of M must be a positive integer, with possible values M(k) = -N(k) )6)|PzMQ'
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, BOJh-(>I
% and THETA is a vector of angles. R and THETA must have the same TRz~rW
k
% length. The output Z is a matrix with one column for every (N,M) 3(P^PP8
% pair, and one row for every (R,THETA) pair. Pb?H cg
% `XYT:'
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ';V(sRU@
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), i]GBu
% with delta(m,0) the Kronecker delta, is chosen so that the integral Gb61X6
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, jIE>t5 fy
% and theta=0 to theta=2*pi) is unity. For the non-normalized Wq)'0U;{$
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~J2-B2S!
% Z_' %'&Y
% The Zernike functions are an orthogonal basis on the unit circle. o^RdVSkU;
% They are used in disciplines such as astronomy, optics, and n ! qm
% optometry to describe functions on a circular domain. cb&y8!ci~
% QxnP+U~N
% The following table lists the first 15 Zernike functions. N&NOh|YS
% R+]p
-NI^
% n m Zernike function Normalization D,xWc|V
% -------------------------------------------------- Z{#^lhHx
% 0 0 1 1 DjOFfD\MF
% 1 1 r * cos(theta) 2 .Q"3[
% 1 -1 r * sin(theta) 2 y- k?_$M
% 2 -2 r^2 * cos(2*theta) sqrt(6) )xQxc.
% 2 0 (2*r^2 - 1) sqrt(3) J'9&dt
% 2 2 r^2 * sin(2*theta) sqrt(6) 4W9!_:j(j
% 3 -3 r^3 * cos(3*theta) sqrt(8) q`1t*<sk
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) qU8UKI P
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) > 0 !J]gK
% 3 3 r^3 * sin(3*theta) sqrt(8) =\4w" /Y
% 4 -4 r^4 * cos(4*theta) sqrt(10) jbIWdHZ/US
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) js`zQx'
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) zq!2);,
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?f']*pD8
% 4 4 r^4 * sin(4*theta) sqrt(10) %fP^Fh
% -------------------------------------------------- W3UK[_qK
% 6AUzS4O
% Example 1: R,Zuy(g
% u4VQx,,
% % Display the Zernike function Z(n=5,m=1) lk.Q6saI1
% x = -1:0.01:1; ]p'Qk
% [X,Y] = meshgrid(x,x); fH`1dU
% [theta,r] = cart2pol(X,Y); k`g+
% idx = r<=1; vlIdi@V
% z = nan(size(X)); <eN>X:_N
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ^\N2
Iu>6
% figure /l(:H
% pcolor(x,x,z), shading interp }"m@~kg=
% axis square, colorbar EoU}@MjM~
% title('Zernike function Z_5^1(r,\theta)') S-2xe?sb
% w** .8]A"N
% Example 2: IUd>jHp`6
% $L</{bXW
% % Display the first 10 Zernike functions )\mklM9Z
% x = -1:0.01:1; um,/^2A
% [X,Y] = meshgrid(x,x); !c6lP'U
% [theta,r] = cart2pol(X,Y); 3 tXtt@Yy
% idx = r<=1; z*yN*M6t
% z = nan(size(X)); bSz6O/A/
% n = [0 1 1 2 2 2 3 3 3 3]; *\VQ%_wg
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; e}[$ =
% Nplot = [4 10 12 16 18 20 22 24 26 28]; t ?bq~!X
% y = zernfun(n,m,r(idx),theta(idx)); \!cqeg*53
% figure('Units','normalized') ~fCD#D2KU
% for k = 1:10 d0-}Xl
% z(idx) = y(:,k); }d.R=A9L
% subplot(4,7,Nplot(k)) ?9?0M A<[i
% pcolor(x,x,z), shading interp )>\Ne~%
% set(gca,'XTick',[],'YTick',[]) ?rBj{]=
% axis square 2#+@bk>^{
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7%7_i%6wP
% end |:!0`p{R
% iZjvO`@[
% See also ZERNPOL, ZERNFUN2. EXJ>Z
-D!F|&$
% Paul Fricker 11/13/2006 Kq{s^G
W!tP sPM
|{9"n<JW
% Check and prepare the inputs: 9,y&?GLP
% ----------------------------- f[|xp?ef
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) d=>5%$:v
error('zernfun:NMvectors','N and M must be vectors.') :hMuxHr
end :~T:&;q0
W:5m8aE\
if length(n)~=length(m) y|MW-|0=!
error('zernfun:NMlength','N and M must be the same length.') :eIBK
end #mllVQ
4uNcp0
n = n(:); hJd#Gc~*M
m = m(:); 1Eg}qU,:
if any(mod(n-m,2)) }Bc6:a
error('zernfun:NMmultiplesof2', ... Wb4sfP_
'All N and M must differ by multiples of 2 (including 0).') m%Ef]({I
end Pi8U}lG;
%{HqF>=~
if any(m>n) 'kh%^_FH7
error('zernfun:MlessthanN', ... L\-T[w),z7
'Each M must be less than or equal to its corresponding N.') ~(%G;fZ?x
end bM-Y4[
@Rx/]wyH
if any( r>1 | r<0 ) QGshc
error('zernfun:Rlessthan1','All R must be between 0 and 1.') .IKK.G
end DJ<c
'm2,7]
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) cA/2,i
error('zernfun:RTHvector','R and THETA must be vectors.') ^ g4)aaBZ
end s#d# *pgzh
*g=*}2
r = r(:); MI@ RdXkY
theta = theta(:);
^MddfBwk
length_r = length(r); $~:hv7%
if length_r~=length(theta) qA"?5 j32
error('zernfun:RTHlength', ... ikxSWO_Y=
'The number of R- and THETA-values must be equal.') Ab(bvS8r$
end EI_J7J+
&[Sw:{&*jv
% Check normalization: _X]?
% -------------------- ,U2D&{@
if nargin==5 && ischar(nflag) IvO3*{k,
isnorm = strcmpi(nflag,'norm'); i5AhF\7F9
if ~isnorm RMvlA'c
error('zernfun:normalization','Unrecognized normalization flag.') 1i>)@{P&BN
end S((8DSt*
else }Ns_RS$
isnorm = false; ~(&xBtg:}
end f
a\cLC
/NkZ;<uxJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]3I_H+hU
% Compute the Zernike Polynomials T4f:0r;^f*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #|e<l1 F
o3W5FHFAv
% Determine the required powers of r: QU#/(N(U#T
% ----------------------------------- sV*Q8b*
m_abs = abs(m); d")r^7
rpowers = []; |j!D _j#U
for j = 1:length(n) 3AB5Qs<
rpowers = [rpowers m_abs(j):2:n(j)]; .9ROa#7U;n
end MRC5c:(
rpowers = unique(rpowers); CjST*(,b
bZlAK)
% Pre-compute the values of r raised to the required powers, @=,J6
% and compile them in a matrix: UG!&n@R
% ----------------------------- D=OU61AA
if rpowers(1)==0 xp&I~YPH
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _E"[%
rpowern = cat(2,rpowern{:}); qMUqd}=P
rpowern = [ones(length_r,1) rpowern]; u(o @_6
else stDn{x.
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Th8Q~*v
rpowern = cat(2,rpowern{:}); [cH/Y2[
end J\{)qJ*jp
gTq-\k(
% Compute the values of the polynomials: ~kHir]jc
% -------------------------------------- %EpK=;51U
y = zeros(length_r,length(n)); ^Uf`w7"iY
for j = 1:length(n) 3dM6zOK
s = 0:(n(j)-m_abs(j))/2; YW'Y=*
pows = n(j):-2:m_abs(j); 'v,W
gPe
for k = length(s):-1:1 "d#s|_n,d)
p = (1-2*mod(s(k),2))* ... givK{Yt<B
prod(2:(n(j)-s(k)))/ ... >2|#b
prod(2:s(k))/ ... ]6aM %r=c
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... k]JLk"K
prod(2:((n(j)+m_abs(j))/2-s(k))); Oh^X^*I$@
idx = (pows(k)==rpowers);
[:k'VXL
y(:,j) = y(:,j) + p*rpowern(:,idx); F+6ZD5/
end E`s_Dr}K
v_ J.M ]
if isnorm /qCYNwWH9
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); H{V-C_
end G]S E
A
end PU>;4l
% END: Compute the Zernike Polynomials m=K XMX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >}I}9y+
3}+/\:q*
% Compute the Zernike functions: H z6H,h
% ------------------------------ jn7}jWA
idx_pos = m>0; }Q%>Fv
idx_neg = m<0; Cse0!7_T
jTqba:q@
z = y; l:ED_env:
if any(idx_pos) 0g+@WK6y
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ~U1iB
end V?"^Ff3m!
if any(idx_neg) vW_A.iI"e
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4EpzCaEZ
end Cam}:'a/`
Cb13 Qz
% EOF zernfun