非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 v]#[bqB.b
function z = zernfun(n,m,r,theta,nflag) n~ZZX={a
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. qERJEyU?
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N n#sK31;yb
% and angular frequency M, evaluated at positions (R,THETA) on the =7[}:haB{
% unit circle. N is a vector of positive integers (including 0), and cRE6/qrXGg
% M is a vector with the same number of elements as N. Each element S9[Y1qH>K
% k of M must be a positive integer, with possible values M(k) = -N(k) NA$%Up
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, R$`%<Y3)
% and THETA is a vector of angles. R and THETA must have the same &eb8k2S
% length. The output Z is a matrix with one column for every (N,M) `A#0If
% pair, and one row for every (R,THETA) pair. %, S{9q
% vSR5F9
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {Ve3EYYm
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), yqH9*&KH{
% with delta(m,0) the Kronecker delta, is chosen so that the integral UW1i%u
k
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, RL[F 9g
% and theta=0 to theta=2*pi) is unity. For the non-normalized ~14|y|\/
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. y&/bp<Z
% <zm:J4&>T
% The Zernike functions are an orthogonal basis on the unit circle. qHvU4v
% They are used in disciplines such as astronomy, optics, and cG&@PO]+.
% optometry to describe functions on a circular domain. z<%dWz
% G#ELQ/Q
% The following table lists the first 15 Zernike functions. !ST7@D
% (*kKfg4Wj
% n m Zernike function Normalization G'`^U}9V\
% -------------------------------------------------- 7yjun|Lt}X
% 0 0 1 1 4C )sjk?m
% 1 1 r * cos(theta) 2 8@b`a]lgrd
% 1 -1 r * sin(theta) 2 hiv {A9a?
% 2 -2 r^2 * cos(2*theta) sqrt(6) iRx `Nx<@
% 2 0 (2*r^2 - 1) sqrt(3) ttls.~DG
% 2 2 r^2 * sin(2*theta) sqrt(6) -3 Sb%V\
% 3 -3 r^3 * cos(3*theta) sqrt(8) &DjA?0`J
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) U2LD_-HZ
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ;GKL[tI"
% 3 3 r^3 * sin(3*theta) sqrt(8) O{\%{XrW
% 4 -4 r^4 * cos(4*theta) sqrt(10) FzykC
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vz)R84
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ?op;#/Q(
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W)'*Dcd
% 4 4 r^4 * sin(4*theta) sqrt(10) e.^?hwl
% -------------------------------------------------- #^yOW^
% =[zP
% Example 1: WX]O1Y
% e
tL?UF$
% % Display the Zernike function Z(n=5,m=1) p+5J
% x = -1:0.01:1; vvs2:87zvJ
% [X,Y] = meshgrid(x,x); $j8CF3d.6
% [theta,r] = cart2pol(X,Y); 5<e{)$C
% idx = r<=1; YWJ$Pp
% z = nan(size(X)); @^DVA}*b)
% z(idx) = zernfun(5,1,r(idx),theta(idx)); a47e
% figure 22;B:
% pcolor(x,x,z), shading interp [ LQOP3f
% axis square, colorbar ;Qi!~VsP;
% title('Zernike function Z_5^1(r,\theta)') cucmn*o?
% ? JTTl;
% Example 2: 1GIBqs~-
% 2h#.:!/SMw
% % Display the first 10 Zernike functions \B:k|Pw6~
% x = -1:0.01:1; &,3s2,1U(
% [X,Y] = meshgrid(x,x); mU
% [theta,r] = cart2pol(X,Y); m`):= ^nC
% idx = r<=1; oRJ!TAbD
% z = nan(size(X)); 'Z:wEt!
% n = [0 1 1 2 2 2 3 3 3 3]; o4OB xHKy
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 2(x|
%
% Nplot = [4 10 12 16 18 20 22 24 26 28]; w^=(:`
% y = zernfun(n,m,r(idx),theta(idx)); f$9|qfW'$
% figure('Units','normalized') *B\ @L
% for k = 1:10 3,`M\#z%K
% z(idx) = y(:,k); TvS<;0~K
% subplot(4,7,Nplot(k)) >56fa6=3@
% pcolor(x,x,z), shading interp wt;`_}g
% set(gca,'XTick',[],'YTick',[]) q`.=/O'
% axis square d[5v A/8O
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) mq:WBSsV
% end '9zKaL
% ~kj96w4eAR
% See also ZERNPOL, ZERNFUN2. {:b~^yW
/Oi(5?Jn
% Paul Fricker 11/13/2006 ; yE.R[I
Ihr[44#
wnK6jMjkSf
% Check and prepare the inputs: "FhC"}N
% ----------------------------- z@o6[g/*Q
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *M*WjEOA
error('zernfun:NMvectors','N and M must be vectors.') F6{/iF
end ,grx'to(X
Q+wO\TtE
if length(n)~=length(m) J]w3iYK
error('zernfun:NMlength','N and M must be the same length.') T8)X?>CIW
end mdQe)>
a7uL{*ZR
n = n(:); `IJ)'$pn
m = m(:); ya5HAs
if any(mod(n-m,2)) Yk)fBPHr
error('zernfun:NMmultiplesof2', ... MxUbx+_N
'All N and M must differ by multiples of 2 (including 0).') yPe9KN_
end 2{Dnfl'k
BOR$R}q
if any(m>n) ;DhAw 1
error('zernfun:MlessthanN', ... B0Ay
'Each M must be less than or equal to its corresponding N.') fAz4>_4
end E.sZjo1
cH$(*k9%M
if any( r>1 | r<0 ) #H<}xC2
error('zernfun:Rlessthan1','All R must be between 0 and 1.') J]zhwM
end e=p_qhBt
t Zm`(2S
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) zDEgC
error('zernfun:RTHvector','R and THETA must be vectors.') \ykA7Y%
end n7Bv~?DM
isy[RAP<
r = r(:); Gc*=n*@^K
theta = theta(:); !fd>wvJ,:
length_r = length(r); Y2tBFeWY
if length_r~=length(theta) p:$kX9mT&
error('zernfun:RTHlength', ... #8
^b]
'The number of R- and THETA-values must be equal.') <gGO
end ?b'(39fj
f*88k='\W
% Check normalization: z_ '!?K{
% -------------------- [{R>'~
if nargin==5 && ischar(nflag) 5} <OB-9
isnorm = strcmpi(nflag,'norm'); =8TBkxG
if ~isnorm k%\y,b*
error('zernfun:normalization','Unrecognized normalization flag.') J %B/(v`
end JUj.:n2e
else ^!i4d))
isnorm = false; i `p1e5$
end BB9eQ:
xO
)*6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g:xg ~H2
% Compute the Zernike Polynomials 5-k gGOt
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0%;| B
*?C8,;=2r
% Determine the required powers of r: .@EzHe ^W
% ----------------------------------- |+JO]J#bc
m_abs = abs(m); J7oj@Or9
rpowers = []; Zn40NKYc
for j = 1:length(n) F7w\ctUP
rpowers = [rpowers m_abs(j):2:n(j)]; n9 FA`e
end ^_V0irv
rpowers = unique(rpowers); WBJn1
H^`J(J+
% Pre-compute the values of r raised to the required powers, U(x$&um(l
% and compile them in a matrix: Wd(|w8J{a
% ----------------------------- 8 $H\b &u
if rpowers(1)==0 [ +CFQf>
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3D5adI<aq"
rpowern = cat(2,rpowern{:}); bA$ElKT
rpowern = [ones(length_r,1) rpowern]; tn _\E/Q
else =B'Yx
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Q%!xw(
rpowern = cat(2,rpowern{:}); s!yD%zO
end 5T9[a
9-&@Y
% Compute the values of the polynomials: W> Pcj EI
% -------------------------------------- F3$8l[O_
y = zeros(length_r,length(n)); K.&6c,P]
for j = 1:length(n) 'Z,7{U1P
s = 0:(n(j)-m_abs(j))/2; `*yOc6i]
pows = n(j):-2:m_abs(j); yLnTIE 3)
for k = length(s):-1:1 g2}aEfp!H
p = (1-2*mod(s(k),2))* ... WLh!L='{BK
prod(2:(n(j)-s(k)))/ ... 8@rF~^-_
prod(2:s(k))/ ... 3m21n7F4*
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ){u#
(sW
prod(2:((n(j)+m_abs(j))/2-s(k))); FEopNDy@y
idx = (pows(k)==rpowers); -`Zk`s|!
y(:,j) = y(:,j) + p*rpowern(:,idx); k%-UW%
end 3BLHd<
=z<sx2#*
if isnorm #a9R3-aP
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); eYjF"Aq
end RLLL=?W@
end (r'NB
% END: Compute the Zernike Polynomials N>P" $
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p&`I#6{
H.l
WHM+H4
% Compute the Zernike functions: nSZp,?^
% ------------------------------ [{T/2IGq
idx_pos = m>0; ~j!|(a7
idx_neg = m<0; IsFL"Vx
QZO<'q`L
z = y; L+lye Ir'
if any(idx_pos) K&=6DvfR
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M3GFKWQI,`
end $SniQ
if any(idx_neg) i
!SN"SY
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ^;\6ju2
end rXe+#`m2
4`r-*Lx
% EOF zernfun