非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ]r!|@AWrQ\
function z = zernfun(n,m,r,theta,nflag) E>
pr})^w
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Oto8?4[n
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N *
G*VY#L
% and angular frequency M, evaluated at positions (R,THETA) on the >{(c\oMD
% unit circle. N is a vector of positive integers (including 0), and du}HTrsC
% M is a vector with the same number of elements as N. Each element CR.d3!&28
% k of M must be a positive integer, with possible values M(k) = -N(k) yuC$S&Y>!
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 6oQ7u90z*
% and THETA is a vector of angles. R and THETA must have the same bxPa|s?
% length. The output Z is a matrix with one column for every (N,M) 7;@YR
% pair, and one row for every (R,THETA) pair. 0sSBwG
% vv)w@A:Vn)
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike <t!0{FJ
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), >A]l|#Rz
% with delta(m,0) the Kronecker delta, is chosen so that the integral {?^ES*5
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, jTqJ(M}L
% and theta=0 to theta=2*pi) is unity. For the non-normalized X}
V]3
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. FZU1WBNL%t
% ~)$R'=
% The Zernike functions are an orthogonal basis on the unit circle. 4J`-&05O
% They are used in disciplines such as astronomy, optics, and gA_oJW4_
% optometry to describe functions on a circular domain. D1deh=
% Fv,c8f
% The following table lists the first 15 Zernike functions. GD}rsBQNkJ
%
:Kyr}-
% n m Zernike function Normalization nTsV>lQY,
% -------------------------------------------------- 'HfI~wN
% 0 0 1 1 :T PG~`k(
% 1 1 r * cos(theta) 2
":T"Y;
% 1 -1 r * sin(theta) 2 n::i$ZUdK
% 2 -2 r^2 * cos(2*theta) sqrt(6) GCQOjqiR
% 2 0 (2*r^2 - 1) sqrt(3) $l.8
% 2 2 r^2 * sin(2*theta) sqrt(6) 1Zk1!> ?
% 3 -3 r^3 * cos(3*theta) sqrt(8) `ba<eT':
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) i)cG
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) hx%UZ <a
% 3 3 r^3 * sin(3*theta) sqrt(8) @>'Wiq!
% 4 -4 r^4 * cos(4*theta) sqrt(10) hC{2LLu;n
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Dz.kJ_"Ro
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 8 rE`
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) MwD+'5
% 4 4 r^4 * sin(4*theta) sqrt(10) Q$'\_zV
% -------------------------------------------------- h$~$a;2cR
% /^{Q(R(X<
% Example 1: b;;y|H
% N0D5N(kH%
% % Display the Zernike function Z(n=5,m=1) Z$Ps_Ik
% x = -1:0.01:1; ;CL^2{
% [X,Y] = meshgrid(x,x); uVZm9Sp
% [theta,r] = cart2pol(X,Y); <.lN'i;(
% idx = r<=1; @:'E9J06
% z = nan(size(X)); /Yww G;1
% z(idx) = zernfun(5,1,r(idx),theta(idx)); )i39'0a
% figure ss|n7
% pcolor(x,x,z), shading interp )('{q}JxV
% axis square, colorbar 3!*`hQ;s
% title('Zernike function Z_5^1(r,\theta)') }EfRYE$E
% e6gj'GmY
% Example 2: c7?|Tipc
% _mQ~[}y+?
% % Display the first 10 Zernike functions A-\n"}4
% x = -1:0.01:1; S=w ~bz,/
% [X,Y] = meshgrid(x,x); z} VCiS0
% [theta,r] = cart2pol(X,Y); =5pwNi_S
% idx = r<=1; J{EK}'
% z = nan(size(X)); tUfze9m
% n = [0 1 1 2 2 2 3 3 3 3]; I.6#>=
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ]%Whtj.,x7
% Nplot = [4 10 12 16 18 20 22 24 26 28]; pek5P4W_
% y = zernfun(n,m,r(idx),theta(idx)); 'HvW&~i(
% figure('Units','normalized') g2r8J0v
% for k = 1:10 ?
zic1i
% z(idx) = y(:,k); mp]UUpt
% subplot(4,7,Nplot(k)) :e_yOT}}
% pcolor(x,x,z), shading interp a 6fH *2E
% set(gca,'XTick',[],'YTick',[]) <&M5#:u
% axis square QmPHf*w[
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @yPI$"Ma
% end &19z|Id
% a5g1.6hF
% See also ZERNPOL, ZERNFUN2. 7.^1I7O
ol4!#4Y&{
% Paul Fricker 11/13/2006 7 Uu
C\[g>_J
g'eJN
% Check and prepare the inputs: )i.\q
% ----------------------------- ?=Z0N&}[
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 37,)/8]lG
error('zernfun:NMvectors','N and M must be vectors.') `jFvG\aC
end 3o__tU)B
eY$Q}BcW
if length(n)~=length(m) %}Ob~m>P
error('zernfun:NMlength','N and M must be the same length.') vr>Rd{dm
end %eqL)pC]
Q#$dp
n = n(:); YC~kq?
m = m(:); j~9,Ct
if any(mod(n-m,2)) 5adB5)`
error('zernfun:NMmultiplesof2', ... A832z`
'All N and M must differ by multiples of 2 (including 0).') Uefw
end ma M8:\
uO`YA]
if any(m>n) F{aM6I
error('zernfun:MlessthanN', ... Ax+q/nvnb
'Each M must be less than or equal to its corresponding N.') U5wO;MA
end bQM_rqjJGw
FmRa]31W
if any( r>1 | r<0 ) AU
+2'
error('zernfun:Rlessthan1','All R must be between 0 and 1.') \=/^H
end ~cx/>Hu
2L_ts=
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) \uV;UH7qe
error('zernfun:RTHvector','R and THETA must be vectors.') o93A:f c
end G(~"Zt}?
K:eP Il{JE
r = r(:);
MoP0qNk
theta = theta(:); pYs"Y;%
length_r = length(r); ojitBo~
if length_r~=length(theta) ~m56t5+uw
error('zernfun:RTHlength', ... C[O \aW
'The number of R- and THETA-values must be equal.') q,a|lH
end l0$
+)FKd
;0 VE*
% Check normalization: S)*eAON9
% -------------------- '
RjFWHAp
if nargin==5 && ischar(nflag) d98ZC+q
isnorm = strcmpi(nflag,'norm'); q|%(47}z
if ~isnorm Q04iuhDO:
error('zernfun:normalization','Unrecognized normalization flag.') k w!1]N
end AT U
2\Y
else |EaEdA@T
isnorm = false; i.Qy0
end {
O*maE"
c.PPVqx
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,9f$an
% Compute the Zernike Polynomials ZIx,?E+eJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9c1n
5xHl6T+
% Determine the required powers of r: h^5'i}@u
% ----------------------------------- HBL)_c{/O
m_abs = abs(m); ;
. c]0
rpowers = []; }cE,&n
for j = 1:length(n) BS#@ehdig
rpowers = [rpowers m_abs(j):2:n(j)]; T%xB|^lf
end X] /r'Tz
rpowers = unique(rpowers); (6G5UwSt
f[!QR
% Pre-compute the values of r raised to the required powers, ;%#@vXH[Oo
% and compile them in a matrix: >w?O?&Q$
% ----------------------------- SA|f1R2uS
if rpowers(1)==0 lfKrd3KS_
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); l
49)Cv/
rpowern = cat(2,rpowern{:}); #]|9aVrr
rpowern = [ones(length_r,1) rpowern]; C``%<)WC
else :(Feg 2c
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); XH0R:+s
rpowern = cat(2,rpowern{:}); 2Fce| Tn
end vpUS(ztvs
%
j7lLSusX
% Compute the values of the polynomials: c|Nv^V*2
% -------------------------------------- rj*4ZA?
y = zeros(length_r,length(n)); 81/Bn!
for j = 1:length(n) +aV>$Y
s = 0:(n(j)-m_abs(j))/2;
8KW}XG
pows = n(j):-2:m_abs(j); R)#D{/#FW
for k = length(s):-1:1 atFj Vk^
p = (1-2*mod(s(k),2))* ... ue$\i =jw
prod(2:(n(j)-s(k)))/ ... Mx-,:a9}
prod(2:s(k))/ ... pWB)N7x&
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Sg0 _ l(
prod(2:((n(j)+m_abs(j))/2-s(k))); Ne.W-,X^cL
idx = (pows(k)==rpowers); OXzJ%&h
y(:,j) = y(:,j) + p*rpowern(:,idx); >=i47-H
end BRV /7ao="
9QI\[lT&
if isnorm Q4Q*5>
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); `yHV10
end Ni{(=&*=
end 'd1E~A
% END: Compute the Zernike Polynomials +tOBt("5/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r 06}@ 7
6lq7zi}'w
% Compute the Zernike functions: ^&DHBx"J
% ------------------------------ NwuME/C7#
idx_pos = m>0; Om{[ <tL
idx_neg = m<0; 2[Q*?N
6,0pkx&Nv
z = y; ZsUxO%jP
if any(idx_pos) _pKW($\
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); v)+wr[Qs
end 2,;+)
if any(idx_neg) F)Yn1&a