切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11250阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 `-.2Z 0  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! '/NpmNY:L  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 %S;AM\o4  
    function z = zernfun(n,m,r,theta,nflag) rhbz|Uq  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0>Snps3*Z  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N > v%.q]E6n  
    %   and angular frequency M, evaluated at positions (R,THETA) on the kEnGr6e  
    %   unit circle.  N is a vector of positive integers (including 0), and dEtjcId  
    %   M is a vector with the same number of elements as N.  Each element H?];8wq$G  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) jeWv~JA%L|  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, (T#$0RFq  
    %   and THETA is a vector of angles.  R and THETA must have the same Cjr]l!  
    %   length.  The output Z is a matrix with one column for every (N,M) ;,[0bmL  
    %   pair, and one row for every (R,THETA) pair. {WrEe7dLy  
    % [w'Q9\,p  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike p?y2j  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), c%/b*nQ(=  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ?'TK~,dG/  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, g~y0,0'j1\  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]5"k%v|  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. "u7[[.P)  
    % ;yomaAr  
    %   The Zernike functions are an orthogonal basis on the unit circle. &~P4yI;,  
    %   They are used in disciplines such as astronomy, optics, and N9_* {HOy  
    %   optometry to describe functions on a circular domain. j+gxn_E  
    % XYzaSp=bb  
    %   The following table lists the first 15 Zernike functions. \uOM,98xS  
    % bwXeEA@{  
    %       n    m    Zernike function           Normalization V'j+)!w5  
    %       -------------------------------------------------- |ZH(Z}m  
    %       0    0    1                                 1 t|>zke!'  
    %       1    1    r * cos(theta)                    2 f"FFgQMkv  
    %       1   -1    r * sin(theta)                    2 h5'hP>b#  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) >n09K8 A  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Y 3ApW vS  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) *yRsFC{,  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) [ @eA o>  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) g4h{dFb|_  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) i7.8H*z'  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ":udoVS!  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) :>fT=$i@  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;bB#P g  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 9O3#d  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o4kLgY !Q  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) =Pl@+RgK+  
    %       -------------------------------------------------- [j0[c9.p [  
    % [Jt}^  
    %   Example 1: T%eBgseS  
    % 8D )nM|  
    %       % Display the Zernike function Z(n=5,m=1) *,$5EN  
    %       x = -1:0.01:1; 1X2j%q I&  
    %       [X,Y] = meshgrid(x,x); (lM,'  
    %       [theta,r] = cart2pol(X,Y); <}RI<96  
    %       idx = r<=1; ~9+01UU^  
    %       z = nan(size(X)); O%T?+1E  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); w[-)c6JyE  
    %       figure <t"T'\3  
    %       pcolor(x,x,z), shading interp ;0 B1P|7zK  
    %       axis square, colorbar z,TH}s6  
    %       title('Zernike function Z_5^1(r,\theta)') Qfm$q~`D^W  
    % <==uK>pET  
    %   Example 2: g3$'G hf  
    % Czjb.c:a.Y  
    %       % Display the first 10 Zernike functions ,' | J  
    %       x = -1:0.01:1; MV"n{1B  
    %       [X,Y] = meshgrid(x,x); s?EQ  
    %       [theta,r] = cart2pol(X,Y);  `M I;.t  
    %       idx = r<=1; $t;:"i>  
    %       z = nan(size(X)); S1|u@d'  
    %       n = [0  1  1  2  2  2  3  3  3  3]; K<J,n!zc  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ~b~Tq  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ^+P.f[  
    %       y = zernfun(n,m,r(idx),theta(idx)); W Ej{2+  
    %       figure('Units','normalized') G]ek-[-  
    %       for k = 1:10 A2 + %  
    %           z(idx) = y(:,k); {1SsH ir>  
    %           subplot(4,7,Nplot(k)) S oeoUI]m  
    %           pcolor(x,x,z), shading interp .2E/(VM  
    %           set(gca,'XTick',[],'YTick',[]) n|{K_! f  
    %           axis square Fe0M2%e;|  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) VP#KoX85  
    %       end ;mU;+~YE  
    % ' 4FH9J  
    %   See also ZERNPOL, ZERNFUN2. GI]\  
    QOXo(S  
    %   Paul Fricker 11/13/2006 KHAc!4lA  
    1cK'B<5">]  
    n2mO-ZXud  
    % Check and prepare the inputs: aoey 5hts  
    % ----------------------------- n&:ohOH%  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) sjyr9AF  
        error('zernfun:NMvectors','N and M must be vectors.') V~dhTdQ5}  
    end x:FZEyalG  
    ]<^2B?}  
    if length(n)~=length(m) rE m/Q!  
        error('zernfun:NMlength','N and M must be the same length.') b-<0\@`Z#  
    end _^BA;S @  
    Xq;|l?,O  
    n = n(:); 0>od1/`  
    m = m(:); &+#5gii1i  
    if any(mod(n-m,2)) -hXKCb4YU  
        error('zernfun:NMmultiplesof2', ... ^{uHph9ny  
              'All N and M must differ by multiples of 2 (including 0).') `D77CC]vU  
    end sE[`x^1'8  
    o`iA&  
    if any(m>n) Lk !)G'42  
        error('zernfun:MlessthanN', ... J#$U<`j*G  
              'Each M must be less than or equal to its corresponding N.') 8%,#TMOg  
    end BY~Tc5  
    X84T F~2Y  
    if any( r>1 | r<0 ) Cy[G7A%  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') EHC7b^|3}  
    end "-=fi 'D  
    k' st^1T  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) tDRR3=9pX  
        error('zernfun:RTHvector','R and THETA must be vectors.') )h}IZSm  
    end fbh,V%t7  
    QCb D^  
    r = r(:); x-[ItJ% l  
    theta = theta(:); 9rMO=  
    length_r = length(r); v@=qVwX  
    if length_r~=length(theta) hoq2zDjD  
        error('zernfun:RTHlength', ... u#Ig!7iUu  
              'The number of R- and THETA-values must be equal.') Yj@ Sy  
    end yJI~{VmU7  
    ,ucRQ&P  
    % Check normalization: G[>NP#P  
    % -------------------- S~3|1Hw*tN  
    if nargin==5 && ischar(nflag) lEHx/#qt9  
        isnorm = strcmpi(nflag,'norm'); Z<;W*6J  
        if ~isnorm +VkL?J  
            error('zernfun:normalization','Unrecognized normalization flag.') TaRPMKk  
        end 8%K{lg"  
    else ~z:]rgX  
        isnorm = false; zP44 Xhz  
    end x@OBGKV  
    dx@dnWRT,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NA0nF8ek  
    % Compute the Zernike Polynomials 8'*x88+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;5ki$)v"  
    8{ZTHY -  
    % Determine the required powers of r: 86{>X5+  
    % ----------------------------------- , '0#q  
    m_abs = abs(m); 1b~21n  
    rpowers = []; ?b+Y])SJK  
    for j = 1:length(n) xq((]5Py  
        rpowers = [rpowers m_abs(j):2:n(j)]; !.'D"Me>  
    end D3 C7f'  
    rpowers = unique(rpowers); )h,y Q`.  
    T_S3_-|{==  
    % Pre-compute the values of r raised to the required powers, F%6wdM W  
    % and compile them in a matrix: 4  eLZ  
    % ----------------------------- 6Hnez@d  
    if rpowers(1)==0 ye.6tlW  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <YW)8J  
        rpowern = cat(2,rpowern{:}); |#_p0yPy  
        rpowern = [ones(length_r,1) rpowern]; BaQyn 6B  
    else \x-2qlZ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); gkd4)\9  
        rpowern = cat(2,rpowern{:}); ~3.*b% ,  
    end RvAgv[8  
    A^,E~Z!x  
    % Compute the values of the polynomials: )jOa!E"  
    % -------------------------------------- `$/a-K}  
    y = zeros(length_r,length(n)); f- XUto  
    for j = 1:length(n) &b|RoPV  
        s = 0:(n(j)-m_abs(j))/2; Odo)h  
        pows = n(j):-2:m_abs(j); ?SNacN@r  
        for k = length(s):-1:1 <W #G)c0  
            p = (1-2*mod(s(k),2))* ... -*k2:i`  
                       prod(2:(n(j)-s(k)))/              ... ~s+vJvWz  
                       prod(2:s(k))/                     ... bh@CtnO  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Yk|6?e{+)  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); i9L]h69r  
            idx = (pows(k)==rpowers); 1L*[!QT4  
            y(:,j) = y(:,j) + p*rpowern(:,idx); KyNu8s k  
        end _-C/s p^   
         xfeED^?  
        if isnorm VZt%cq  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); mS'Ad<  
        end ^UKAD'_#%O  
    end C7dq=(p&  
    % END: Compute the Zernike Polynomials hV(^Y)f  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C>Hdp_Lm  
    ',R%Q0Q  
    % Compute the Zernike functions: &)OI!^ (  
    % ------------------------------ bN/8 ~!  
    idx_pos = m>0; IB&G#2M<  
    idx_neg = m<0; 7"'RE95  
    Zp7Pw   
    z = y; :%h1Q>F  
    if any(idx_pos) :k_&Zd j,B  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); )pl5nu#<  
    end )vO"S  
    if any(idx_neg) \(pwHNSafk  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ];k!*lR)  
    end %nkP" Z#  
    *F%1~  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) oH w!~ c7  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. B6dU6"  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated $=.%IJ_MAz  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive |Lg2;P7\  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, /C8}5)  
    %   and THETA is a vector of angles.  R and THETA must have the same ?TpjU*Cxy  
    %   length.  The output Z is a matrix with one column for every P-value, }OEL] 5  
    %   and one row for every (R,THETA) pair. )'m;a_r`  
    % 0 8)f  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike o:{Sws(=  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) bRu 9*4t  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) tF),Sn|*  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 UWO3sZpU  
    %   for all p. %JBLp xnq  
    % '/<\X{l8  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 {Lal5E4-  
    %   Zernike functions (order N<=7).  In some disciplines it is Q`*U U82!  
    %   traditional to label the first 36 functions using a single mode -]^JaQw  
    %   number P instead of separate numbers for the order N and azimuthal n5C,Z!)z  
    %   frequency M. RVA ku  
    %  +#,J`fV%  
    %   Example: (xW+* %  
    % qfXt%6L  
    %       % Display the first 16 Zernike functions Lan|(!aW  
    %       x = -1:0.01:1; l8?C[, K%  
    %       [X,Y] = meshgrid(x,x); 4}DFCF%B  
    %       [theta,r] = cart2pol(X,Y); 8;pY-j #  
    %       idx = r<=1; s/hgWW$  
    %       p = 0:15; R{c~jjd  
    %       z = nan(size(X)); I8!>7`L  
    %       y = zernfun2(p,r(idx),theta(idx)); ,G0"T~  
    %       figure('Units','normalized') 6MM\nIU)/  
    %       for k = 1:length(p) P@@MQ[u?!.  
    %           z(idx) = y(:,k); )!0}<_2  
    %           subplot(4,4,k) JL G!;sov  
    %           pcolor(x,x,z), shading interp Tl yyJ{~  
    %           set(gca,'XTick',[],'YTick',[]) 8TpYt)]S  
    %           axis square =)Hu(;Yv  
    %           title(['Z_{' num2str(p(k)) '}']) >bWpj8Kv  
    %       end K9ia|2f  
    % WD\Yx~o  
    %   See also ZERNPOL, ZERNFUN. $B?8\>_?  
    %ud-3u52M8  
    %   Paul Fricker 11/13/2006 MUbKlX  
    3!F^ vZ.  
    T(u; <}e@[  
    % Check and prepare the inputs: Rw `ezC#  
    % ----------------------------- 8SRUqe[H]  
    if min(size(p))~=1 ^Lb\k|U ,\  
        error('zernfun2:Pvector','Input P must be vector.') X~& 8^?  
    end Ra53M!>]  
    Ub f5 :  
    if any(p)>35 DNZ,rL:h  
        error('zernfun2:P36', ... _w\i~To!  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... +w[ZMk  
               '(P = 0 to 35).']) (<_kq;XtN0  
    end U;iCH  
    hpXW t Q  
    % Get the order and frequency corresonding to the function number: =c \(]xX  
    % ---------------------------------------------------------------- \},H\kK+^  
    p = p(:); s:l H4B  
    n = ceil((-3+sqrt(9+8*p))/2); ^U,iDK_  
    m = 2*p - n.*(n+2); jY\z+lW6A  
    g%= K rO  
    % Pass the inputs to the function ZERNFUN: tJu:N'=Dy  
    % ---------------------------------------- \mLEwNhRY  
    switch nargin &I=o1F2B)  
        case 3 H.|I|XRG/  
            z = zernfun(n,m,r,theta); G^ k8Or2  
        case 4 <gi~:%T  
            z = zernfun(n,m,r,theta,nflag); ZRYlm$C  
        otherwise a$?d_BX  
            error('zernfun2:nargin','Incorrect number of inputs.') hzk!H]>E  
    end xO:h[  
    9h+Hd&=  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) %S"z9@  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. uSYI X  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 6bs-&Vf  
    %   order N and frequency M, evaluated at R.  N is a vector of 2hNl_P~z1u  
    %   positive integers (including 0), and M is a vector with the $X;OK  
    %   same number of elements as N.  Each element k of M must be a ^!exH(g  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) \nP79F0%2  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 2k=|p@V n~  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 3/usgw1  
    %   with one column for every (N,M) pair, and one row for every 6d8)]  
    %   element in R. y`$qcEw  
    % {q$U\y%Rq  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Q)4[zStR#  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is NUb$PT  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to y|B HSc3  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 %"c;kvw  
    %   for all [n,m]. Uu+ibVM$  
    % ; Yc\O:Qq  
    %   The radial Zernike polynomials are the radial portion of the indbg d  
    %   Zernike functions, which are an orthogonal basis on the unit %4rlB$x  
    %   circle.  The series representation of the radial Zernike +%[, m&  
    %   polynomials is WwoT~O8R  
    % Yur}<>`(  
    %          (n-m)/2  ^F?B_'  
    %            __ c"k nzB vy  
    %    m      \       s                                          n-2s Fv,c8f  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r GD}rsBQNkJ  
    %    n      s=0  :Kyr}-  
    % nTsV>lQY,  
    %   The following table shows the first 12 polynomials. >Giw\|:f(  
    % :T PG~`k(  
    %       n    m    Zernike polynomial    Normalization ":T"Y;  
    %       --------------------------------------------- n::i$ZUdK  
    %       0    0    1                        sqrt(2) GCQOjqiR  
    %       1    1    r                           2 ,0HID:&  
    %       2    0    2*r^2 - 1                sqrt(6) }Gb^%1%M  
    %       2    2    r^2                      sqrt(6) <oP`\m   
    %       3    1    3*r^3 - 2*r              sqrt(8) X`v6gv5qj  
    %       3    3    r^3                      sqrt(8) &q4~WRnzJk  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) :T6zT3(")D  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) t3}_mJ  
    %       4    4    r^4                      sqrt(10) l0yflFGr  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) g&B7Y|Es  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ( Ygy%O%  
    %       5    5    r^5                      sqrt(12) ;>>:7rdYt  
    %       --------------------------------------------- O*/Utl  
    % .'+JA:3R  
    %   Example: Yx. t+a-  
    % k-*k'S_  
    %       % Display three example Zernike radial polynomials >>R)?24,<  
    %       r = 0:0.01:1; V^.Z&7+E`_  
    %       n = [3 2 5]; Cu$`-b^y  
    %       m = [1 2 1]; WH $*\IGJL  
    %       z = zernpol(n,m,r); KVoi>?a   
    %       figure FDFVhcr  
    %       plot(r,z) u0+<[Ia'q  
    %       grid on RM2feWm  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Z^A(Q>{e  
    % ?|2m0~%V=  
    %   See also ZERNFUN, ZERNFUN2. c&RiUU7  
    -jTK3&5  
    % A note on the algorithm. -xH3}K%  
    % ------------------------ 3e;K5qSeo/  
    % The radial Zernike polynomials are computed using the series LWM& k#i  
    % representation shown in the Help section above. For many special \q-["W34  
    % functions, direct evaluation using the series representation can +C`vO5\0  
    % produce poor numerical results (floating point errors), because E9 #o0Di  
    % the summation often involves computing small differences between _cfAJ)8=  
    % large successive terms in the series. (In such cases, the functions jP3~O  
    % are often evaluated using alternative methods such as recurrence aQ 6T2bQ  
    % relations: see the Legendre functions, for example). For the Zernike /oM&29 jy  
    % polynomials, however, this problem does not arise, because the {;UBW7{  
    % polynomials are evaluated over the finite domain r = (0,1), and .d)H2X  
    % because the coefficients for a given polynomial are generally all WIwGw%_~  
    % of similar magnitude. aI\ >=*HF  
    % $U_1e'  
    % ZERNPOL has been written using a vectorized implementation: multiple oFGgr2Re  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] giddM2'  
    % values can be passed as inputs) for a vector of points R.  To achieve ).C>>1ZC  
    % this vectorization most efficiently, the algorithm in ZERNPOL rPW 9lG  
    % involves pre-determining all the powers p of R that are required to P/9|mYmsq  
    % compute the outputs, and then compiling the {R^p} into a single 9Cb>J  
    % matrix.  This avoids any redundant computation of the R^p, and t&bE/i_T  
    % minimizes the sizes of certain intermediate variables. '(($dT  
    % 9JC8OSjJ  
    %   Paul Fricker 11/13/2006 Q},uM_" +  
    4~:D7",Jn  
    zpxy X|  
    % Check and prepare the inputs: H&ZsMML/%  
    % ----------------------------- /z,+W9`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) a<D]Gz^h  
        error('zernpol:NMvectors','N and M must be vectors.') ##NowO  
    end 0ipYXbC  
    !jJH}o/KW  
    if length(n)~=length(m) f9E.X\"  
        error('zernpol:NMlength','N and M must be the same length.') Lr(wS {  
    end F>3fP  
    V :4($  
    n = n(:); ~hA;ji|I  
    m = m(:); oU~e|  
    length_n = length(n); fNi_C"<  
    Uefw  
    if any(mod(n-m,2)) &_c5C  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') G|]39/OO3{  
    end J 9k~cz  
    3WdANR  
    if any(m<0) y {1p#  
        error('zernpol:Mpositive','All M must be positive.') 1(U\vMb  
    end [W,maT M"  
    9ev " BO  
    if any(m>n) fL1EQ)  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Mj@ 0F 2hy  
    end $y*[" ~TJ  
    thSo,uGlW  
    if any( r>1 | r<0 ) [R[Suf  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') AJH-V 6  
    end B\!.o=<h  
    }h)[>I(  
    if ~any(size(r)==1) ]hkway  
        error('zernpol:Rvector','R must be a vector.') *[_>d.i  
    end eqE%ofW  
    5zBsulRt  
    r = r(:); rRZ ,X%  
    length_r = length(r); 6|:]2S  
    mI~k@!3  
    if nargin==4 mM7S9^<UH  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); rj].bGQ,+  
        if ~isnorm `#~HCl  
            error('zernpol:normalization','Unrecognized normalization flag.') pb5'5X+  
        end sj@'C@oK  
    else L$+ap~ld  
        isnorm = false; q y8=4~40  
    end aTy&"  
    P1 `-OM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VFMg$qv|_  
    % Compute the Zernike Polynomials COK7 i^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UujFZg[-P9  
    Qy@r&  
    % Determine the required powers of r: <4Jo1  
    % ----------------------------------- uNYHEs6%T$  
    rpowers = []; B6b {hsO  
    for j = 1:length(n) x+9aTsZ  
        rpowers = [rpowers m(j):2:n(j)]; 0:(@Y  
    end vx_v/pD  
    rpowers = unique(rpowers); =e,2/Ep{i  
    m+Yj"RMx&  
    % Pre-compute the values of r raised to the required powers, &?<o692  
    % and compile them in a matrix: L6O@q`\z  
    % ----------------------------- @BN cIJk9  
    if rpowers(1)==0 BjR:#*<qD  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); r,x;q  
        rpowern = cat(2,rpowern{:}); +'x`rk  
        rpowern = [ones(length_r,1) rpowern]; 'N0/;k0ax  
    else E0}jEl/{  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <c6C+OWT,  
        rpowern = cat(2,rpowern{:}); BS#@ehdig  
    end T%xB|^lf  
    X] /r'Tz  
    % Compute the values of the polynomials: (6G5UwSt  
    % -------------------------------------- f[!Q R  
    z = zeros(length_r,length_n); ;%#@vXH[Oo  
    for j = 1:length_n >w?O?&Q$  
        s = 0:(n(j)-m(j))/2; SA|f1R2uS  
        pows = n(j):-2:m(j); m(8t |~S  
        for k = length(s):-1:1 QP?Z+P<  
            p = (1-2*mod(s(k),2))* ... l 49)Cv/  
                       prod(2:(n(j)-s(k)))/          ... #]|9aVrr  
                       prod(2:s(k))/                 ... C``%<)WC  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... swnov[0  
                       prod(2:((n(j)+m(j))/2-s(k))); CBTa9|57  
            idx = (pows(k)==rpowers); 2Fce| Tn  
            z(:,j) = z(:,j) + p*rpowern(:,idx); vpUS(ztvs  
        end cv0}_<Tyx  
         Q<r O5 -K  
        if isnorm R/iw#.Yy  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); X .g")Bt7  
        end 8KW}XG  
    end (CH F=g  
    gRKmfJ*u  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  c(ZkK  
    exTpy  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 1-r1hZ-  
    +To{Tm-  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)