切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10447阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 b!SIs*  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! t':*~b{V@7  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 \w{fq+G  
    function z = zernfun(n,m,r,theta,nflag) oB}rd9  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. uUG&At  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C%Op[H3  
    %   and angular frequency M, evaluated at positions (R,THETA) on the uUpOa+t  
    %   unit circle.  N is a vector of positive integers (including 0), and c*> SZ'T\  
    %   M is a vector with the same number of elements as N.  Each element /z,+W9`  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) a<D]Gz^h  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, n-lDE}K9%B  
    %   and THETA is a vector of angles.  R and THETA must have the same o648 xUP  
    %   length.  The output Z is a matrix with one column for every (N,M) ;{>-K8=>$  
    %   pair, and one row for every (R,THETA) pair. lFM'F[-?-  
    % %eqL)pC]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Q# $dp  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YC~kq?  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral j~9,Ct  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 1T7;=<g`  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized u"r1RG'  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2! bE|  
    % [Hp"a^~r|  
    %   The Zernike functions are an orthogonal basis on the unit circle. h|=&a0  
    %   They are used in disciplines such as astronomy, optics, and [@t 6,g  
    %   optometry to describe functions on a circular domain. /`VtW$9-  
    % (V~PYf%  
    %   The following table lists the first 15 Zernike functions. .We"j_ }  
    % =gr3a,2  
    %       n    m    Zernike function           Normalization &5wM`  
    %       -------------------------------------------------- ) /<\|mR  
    %       0    0    1                                 1 I:#Es.  
    %       1    1    r * cos(theta)                    2 s%qK<U4@;Q  
    %       1   -1    r * sin(theta)                    2 qg@Wzs7c~  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) %g&i.2v  
    %       2    0    (2*r^2 - 1)                    sqrt(3) e_pyjaY!s  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) GwVSRI:[N  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) C,m o4,Q  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) jG3i )ALx  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) | [lM2  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) e6?h4}[+*  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) s8N\cOd#i  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gobqS+c  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) M%2 F7 FY  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 68LB745  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) \uV;UH7qe  
    %       -------------------------------------------------- o93A:fc  
    % Z-+p+34ytq  
    %   Example 1: ztS'Dp}q<  
    % d<v>C-nk%  
    %       % Display the Zernike function Z(n=5,m=1) f)+fdc  
    %       x = -1:0.01:1; 9WuKW***  
    %       [X,Y] = meshgrid(x,x); .sDVBT'%  
    %       [theta,r] = cart2pol(X,Y); V+l>wMeo  
    %       idx = r<=1; e$^O_e  
    %       z = nan(size(X)); "8 "7AoE  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); z_J"Qk  
    %       figure i'%:z]hp9  
    %       pcolor(x,x,z), shading interp 8V(#S :G35  
    %       axis square, colorbar s],+]<qX  
    %       title('Zernike function Z_5^1(r,\theta)') n300kpv  
    % ,Mwj`fgh  
    %   Example 2: $fY4amX6Z  
    % RSY{IY  
    %       % Display the first 10 Zernike functions U:`g12  
    %       x = -1:0.01:1; @`ttyI^1f  
    %       [X,Y] = meshgrid(x,x); %G$KahxV>  
    %       [theta,r] = cart2pol(X,Y); U>^ -Db]  
    %       idx = r<=1; vxo iPqo  
    %       z = nan(size(X)); )S|}de/a2  
    %       n = [0  1  1  2  2  2  3  3  3  3]; T(^<sjOs  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; "rr,P0lgX  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 0Kjm:x9T  
    %       y = zernfun(n,m,r(idx),theta(idx)); jn#  
    %       figure('Units','normalized') *r+i=i8{  
    %       for k = 1:10 |:tFQ.Z'2  
    %           z(idx) = y(:,k); Au,}5=+`P  
    %           subplot(4,7,Nplot(k)) kN>AY'1  
    %           pcolor(x,x,z), shading interp @&]j[if (s  
    %           set(gca,'XTick',[],'YTick',[]) Ss&R!w9p  
    %           axis square J~:/,'Ea  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 3L4lk8Dd  
    %       end $N=A,S  
    % ![iAALPNl  
    %   See also ZERNPOL, ZERNFUN2. ;ePmN|rq;  
    cV5Lp4wY?  
    %   Paul Fricker 11/13/2006 t\]CdH`+  
    o=2y`Eq  
    xgtdmv%  
    % Check and prepare the inputs: _~DFZt@T  
    % ----------------------------- % j7lLSusX  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %9=^#e+pE  
        error('zernfun:NMvectors','N and M must be vectors.') rj*4ZA?  
    end 81/Bn!  
    ~'HwNzDQc  
    if length(n)~=length(m) 0bpl3Fh.v  
        error('zernfun:NMlength','N and M must be the same length.') '@Y@H,  
    end gRKmfJ*u  
    >"S'R9t  
    n = n(:); M,PZ|=V6a  
    m = m(:); Xt/muV  
    if any(mod(n-m,2)) ])a?ri  
        error('zernfun:NMmultiplesof2', ... yKa}U!$   
              'All N and M must differ by multiples of 2 (including 0).') fdzD6K ZI  
    end ^c^9kK'  
    h.g11xa  
    if any(m>n) rBkf@  
        error('zernfun:MlessthanN', ... Kig.hHj@  
              'Each M must be less than or equal to its corresponding N.') s0.yPA  
    end *Rj>// A  
    } CJQC  
    if any( r>1 | r<0 ) Zi2NgVF  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') JB'q_dS}  
    end ?4_^}B9  
    \p.Byso,  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ][6$$ Lz  
        error('zernfun:RTHvector','R and THETA must be vectors.') L$@^EENS  
    end KC? hsID{  
    H4 & d,8:m  
    r = r(:); <<w $ Ur  
    theta = theta(:); vBQ5-00YY=  
    length_r = length(r); M0x5s@  
    if length_r~=length(theta) ZqkP# ]+Y'  
        error('zernfun:RTHlength', ... I [0od+K  
              'The number of R- and THETA-values must be equal.') L;5j hVy  
    end C&3#'/&  
    ev#d1s|<S  
    % Check normalization: @ MNL  
    % -------------------- VE6T&fz`  
    if nargin==5 && ischar(nflag) i3*?fMxhu)  
        isnorm = strcmpi(nflag,'norm'); IJ o`O  
        if ~isnorm pR&cdO RsP  
            error('zernfun:normalization','Unrecognized normalization flag.') <i~ ( 8F\  
        end 0:h;ots'  
    else d^Ra1@0"q2  
        isnorm = false; x-U:T.+{  
    end ^QB/{9#  
    0d:t$2~C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sxO_K^eD  
    % Compute the Zernike Polynomials o]}b#U8S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6k42>e*p  
    =5%jKHo+9z  
    % Determine the required powers of r: Cr4shdN34  
    % ----------------------------------- jY:(Tv3~  
    m_abs = abs(m); Fx0K.Q2Y0  
    rpowers = []; r1-?mMSU&  
    for j = 1:length(n) %zd1\We  
        rpowers = [rpowers m_abs(j):2:n(j)]; //e.p6"8h  
    end H<%7aOwO2  
    rpowers = unique(rpowers); *2 4P T7  
    5gGYG]*l  
    % Pre-compute the values of r raised to the required powers, ?Hf^& yo  
    % and compile them in a matrix: y*\ M7}](  
    % ----------------------------- GfJm&'U&  
    if rpowers(1)==0 %6L!JN  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _"a(vfl#  
        rpowern = cat(2,rpowern{:}); ;#3!ZB:}  
        rpowern = [ones(length_r,1) rpowern]; =a?l@dI]  
    else p4W->AVv$  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); sryujb.,  
        rpowern = cat(2,rpowern{:}); K,|Gtaa~  
    end h}z^NX  
    !;'U5[}8  
    % Compute the values of the polynomials: (Y, @-V  
    % -------------------------------------- =35EG{W(  
    y = zeros(length_r,length(n)); y= cBpC  
    for j = 1:length(n) @6 gA4h  
        s = 0:(n(j)-m_abs(j))/2; >B skw2  
        pows = n(j):-2:m_abs(j); =^q:h<  
        for k = length(s):-1:1 0l.+yr}PE  
            p = (1-2*mod(s(k),2))* ... # u^FB  
                       prod(2:(n(j)-s(k)))/              ... 6N~~:Gt  
                       prod(2:s(k))/                     ... R7x4v  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \[]36|$LS  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); /_x?PiL  
            idx = (pows(k)==rpowers); isDBNXV:  
            y(:,j) = y(:,j) + p*rpowern(:,idx); :5U(}\dL{  
        end ;'}1   
         4zpprh+`K  
        if isnorm f Nm Sx  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); /Kwo^Q{  
        end SG8|xoL  
    end BA A)IQF  
    % END: Compute the Zernike Polynomials _ 97F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D D"]as"#  
    Tp)-L0kD_k  
    % Compute the Zernike functions: lb{*,S  
    % ------------------------------ b&HA_G4  
    idx_pos = m>0; bH3-#mw5w  
    idx_neg = m<0; %Ni)^   
    /]F3t]FlC  
    z = y; j@ UIN3  
    if any(idx_pos) *vCJTz  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i)+@'!6  
    end }j+ZF'#  
    if any(idx_neg) B6MMn.  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,hT t]w  
    end r$=iM:kERC  
    4}W*,&_  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) hG uRV|`  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Br`Xw^S  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated jXSo{  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive @4sv(HyDY  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, owmV7E1  
    %   and THETA is a vector of angles.  R and THETA must have the same +a"MSPC4w  
    %   length.  The output Z is a matrix with one column for every P-value, A=I]1r  
    %   and one row for every (R,THETA) pair. 52C>f6w  
    % .,o=#  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike r_@;eh  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) i"0^Gr  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) )ra_`Qdcf  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 rs]%`"&=  
    %   for all p. \WQ\q \  
    % :~~}|Eu  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 !L2R0Y:a  
    %   Zernike functions (order N<=7).  In some disciplines it is ymrmvuh  
    %   traditional to label the first 36 functions using a single mode |b QKymS  
    %   number P instead of separate numbers for the order N and azimuthal r0+lH:G*q  
    %   frequency M. O7g ?x3  
    % )c^Rc9e/  
    %   Example: K``MS  
    % ]EnB`g(4;  
    %       % Display the first 16 Zernike functions 4;<?ec(dc  
    %       x = -1:0.01:1; Q0#oR [(  
    %       [X,Y] = meshgrid(x,x); `J'xVq#O  
    %       [theta,r] = cart2pol(X,Y); Xjw> Qws  
    %       idx = r<=1; $.a<b^.Xi  
    %       p = 0:15; }JeGjpAcV  
    %       z = nan(size(X)); COH0aNp;  
    %       y = zernfun2(p,r(idx),theta(idx)); sG=D(n1  
    %       figure('Units','normalized') 9s>q4_D  
    %       for k = 1:length(p) AME3hA  
    %           z(idx) = y(:,k); 0BMKwZg  
    %           subplot(4,4,k) Pv17wUB  
    %           pcolor(x,x,z), shading interp ?T3zA2  
    %           set(gca,'XTick',[],'YTick',[]) "T=Z/@Vy  
    %           axis square P(l$5x]g,  
    %           title(['Z_{' num2str(p(k)) '}']) ^HgQ"dD <  
    %       end ` .|JTm[  
    % mKugb_d?  
    %   See also ZERNPOL, ZERNFUN. r{!]` '8  
    ]JVs/  
    %   Paul Fricker 11/13/2006 '- oS=OrZ  
    8UJK]_99I,  
    Se.\wkl#Y  
    % Check and prepare the inputs: P"Lk(gY  
    % ----------------------------- A'vQtlvKA  
    if min(size(p))~=1 :hJHjh  
        error('zernfun2:Pvector','Input P must be vector.') {;4Y5kj  
    end 2BZYC5jy  
    cXU8}>qY7  
    if any(p)>35 QkS~~|0EI>  
        error('zernfun2:P36', ... b`){f\#t  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... hiq7e*Nsb  
               '(P = 0 to 35).']) dw#K!,g  
    end c7UmR?m  
    4[m})X2(  
    % Get the order and frequency corresonding to the function number: tS!Fn Qg4  
    % ---------------------------------------------------------------- *oopdGue  
    p = p(:); $\M<gW6  
    n = ceil((-3+sqrt(9+8*p))/2); U_i%@{  
    m = 2*p - n.*(n+2); 'n4Ro|kA  
    eG&\b-%  
    % Pass the inputs to the function ZERNFUN: 3#N'nhUzA  
    % ---------------------------------------- +Z> Y//  
    switch nargin I,TJV)B  
        case 3 fFDI qX  
            z = zernfun(n,m,r,theta); TRP#b 7nC  
        case 4 Fa<>2KkOr  
            z = zernfun(n,m,r,theta,nflag); ,I6jfXI4  
        otherwise > %h7)}U  
            error('zernfun2:nargin','Incorrect number of inputs.') (3cJ8o>&  
    end H'KCIqo  
    ).U\,@[A{  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) mzw`{Oy>L  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. aa|u *afWQ  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Kny0 (  
    %   order N and frequency M, evaluated at R.  N is a vector of +cH,2^&  
    %   positive integers (including 0), and M is a vector with the (V&5EO8)  
    %   same number of elements as N.  Each element k of M must be a }9:( l  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) =MR.*m{  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is o\/&05rp]  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 42/MBP`\Y  
    %   with one column for every (N,M) pair, and one row for every z$g cK>@l  
    %   element in R. $Lj~ge3#  
    % 7Qdf#DG  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 8;PS>9<  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is /q| r!+  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to nm"]q`(K  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 d]A.=NAc  
    %   for all [n,m]. rR Kbs@1M  
    % 7 bV(eV  
    %   The radial Zernike polynomials are the radial portion of the wnioIpRkh  
    %   Zernike functions, which are an orthogonal basis on the unit ~7p!t%;$  
    %   circle.  The series representation of the radial Zernike 26M:D&|ZB  
    %   polynomials is Wd`*<+t]  
    %  yqH  
    %          (n-m)/2 V}3'0  
    %            __ o*MiKgQ&  
    %    m      \       s                                          n-2s $>JfLSyC  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r In[rxT~K}Q  
    %    n      s=0 J\@|c.ws  
    % Ky0}phGRu  
    %   The following table shows the first 12 polynomials. G2$<Q+UYs?  
    % GLO%>&  
    %       n    m    Zernike polynomial    Normalization 1NAGGr00  
    %       --------------------------------------------- O2pntKI  
    %       0    0    1                        sqrt(2) 3_bE12  
    %       1    1    r                           2 jKh:}yl4  
    %       2    0    2*r^2 - 1                sqrt(6) !hs33@*u~  
    %       2    2    r^2                      sqrt(6) agV z  
    %       3    1    3*r^3 - 2*r              sqrt(8) ~<N9ckK  
    %       3    3    r^3                      sqrt(8) ,? >{M  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) sYEh>%mo^C  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) i)iK0g"2  
    %       4    4    r^4                      sqrt(10) HVJqDF  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) pV8_i7\  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) [psZc'q  
    %       5    5    r^5                      sqrt(12) d*YVk{s7V  
    %       --------------------------------------------- mEm=SpO[$o  
    % (himx8Uml2  
    %   Example: MzFFWk  
    % `@q\R-`  
    %       % Display three example Zernike radial polynomials hv  
    %       r = 0:0.01:1; I4|LD/b  
    %       n = [3 2 5]; $:?Dyu(Il  
    %       m = [1 2 1]; xTU;rJV  
    %       z = zernpol(n,m,r); q+znb'i-x  
    %       figure |.4>#<$__  
    %       plot(r,z) mtg=v@~  
    %       grid on qzj.N$9]  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') `fuQ t4  
    % YQ$LU \:  
    %   See also ZERNFUN, ZERNFUN2. Y{Ff I+  
    hgj ]Jr  
    % A note on the algorithm. D6dliU?k  
    % ------------------------ ZEp>~dn;  
    % The radial Zernike polynomials are computed using the series y7t'I.E[+  
    % representation shown in the Help section above. For many special \#h{bnx  
    % functions, direct evaluation using the series representation can %[4u #G`  
    % produce poor numerical results (floating point errors), because =F2`X#x_j  
    % the summation often involves computing small differences between ]xkh"j+W  
    % large successive terms in the series. (In such cases, the functions F pT$D  
    % are often evaluated using alternative methods such as recurrence 86pA+c+U  
    % relations: see the Legendre functions, for example). For the Zernike ;reBJk  
    % polynomials, however, this problem does not arise, because the HUAbq }  
    % polynomials are evaluated over the finite domain r = (0,1), and ken.#>w  
    % because the coefficients for a given polynomial are generally all }[{9u#@#  
    % of similar magnitude. #bJp)&LO  
    % zs(P2$  
    % ZERNPOL has been written using a vectorized implementation: multiple VbDk44X.W  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 1V wcJd  
    % values can be passed as inputs) for a vector of points R.  To achieve Pl. y9g~  
    % this vectorization most efficiently, the algorithm in ZERNPOL !4a#);`G  
    % involves pre-determining all the powers p of R that are required to C2aA])7 D  
    % compute the outputs, and then compiling the {R^p} into a single ~ _hA{$  
    % matrix.  This avoids any redundant computation of the R^p, and Ma'#5)D  
    % minimizes the sizes of certain intermediate variables. K.=5p/^a  
    % 0h~{K  
    %   Paul Fricker 11/13/2006 '6kD6o_p1  
    F( 4Ue6R  
    QE8 `nMf  
    % Check and prepare the inputs: VJ8'T"^Hf  
    % ----------------------------- BoQ%QV69%  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) UGlHe7  
        error('zernpol:NMvectors','N and M must be vectors.') VP~(;H5%  
    end d-C%R9  
    [7Q%c!e$*  
    if length(n)~=length(m) `T+w5ONn  
        error('zernpol:NMlength','N and M must be the same length.') (&1.!R[X  
    end @tJ4^<`P{  
    .R@s6}C`}=  
    n = n(:); Sgr. V)  
    m = m(:); E]v]fy"  
    length_n = length(n); <$@I*xk[  
    eIEL';N6  
    if any(mod(n-m,2)) p>O/H1US;  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') o*artMkG  
    end ) "?eug}D  
    @`#x:p:  
    if any(m<0) : h(Z\D_  
        error('zernpol:Mpositive','All M must be positive.') 1l/t|M^I  
    end DSRmFxkk  
    {/(.Bpld  
    if any(m>n) C0K: ffv;<  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') @}19:A<'  
    end *Ojl@N  
    &S`g&  
    if any( r>1 | r<0 ) j74hWz+p4  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') m?; ?I]`  
    end >&Oql9_  
    a'`?kBK7`U  
    if ~any(size(r)==1) {=\Fc`74  
        error('zernpol:Rvector','R must be a vector.') ;X a N  
    end <[D>[  
    w[D]\>QHa  
    r = r(:); Mvue>)g~>  
    length_r = length(r); '!ks $}$`h  
    vBJxhK-  
    if nargin==4 %.D!J",\/K  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ";7xE#jRk  
        if ~isnorm g~b$WV%  
            error('zernpol:normalization','Unrecognized normalization flag.') : 8j7}'  
        end L&y"oAp<  
    else ?G,gPb  
        isnorm = false; \EU^`o+  
    end x@QNMK.7  
    FF#+d~$z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #Q)r6V:  
    % Compute the Zernike Polynomials ~ +>e hU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \K~wsu/?`  
    dHTx^1  
    % Determine the required powers of r: XXhN; -p  
    % ----------------------------------- Ll-QhcC$  
    rpowers = []; cC>Svf[CzK  
    for j = 1:length(n) <&3aP}  
        rpowers = [rpowers m(j):2:n(j)]; ~,oz hj0f/  
    end *Ow2,{Nn  
    rpowers = unique(rpowers); GA$fueiQNs  
    <ShA_+Nd  
    % Pre-compute the values of r raised to the required powers, ;9WUt,R  
    % and compile them in a matrix: \y:48zd  
    % ----------------------------- T)OR HJ&,  
    if rpowers(1)==0 rX /'  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); s3nO"~tM  
        rpowern = cat(2,rpowern{:}); V2`Ud[  
        rpowern = [ones(length_r,1) rpowern]; Dw7Xy}I/  
    else QRK\74'uY  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 0IdA!.|  
        rpowern = cat(2,rpowern{:}); q^sZP\i,*;  
    end )qw;KG0F  
    D*[J rq,  
    % Compute the values of the polynomials: a*LfT<hmU3  
    % -------------------------------------- Osm))Ua(  
    z = zeros(length_r,length_n); j*gJP !  
    for j = 1:length_n 7(X z%v   
        s = 0:(n(j)-m(j))/2; Uavl%Q  
        pows = n(j):-2:m(j); 8{/.1:  
        for k = length(s):-1:1 S4 Uu/EX6S  
            p = (1-2*mod(s(k),2))* ... mB"I(>q*M  
                       prod(2:(n(j)-s(k)))/          ... GVJ||0D  
                       prod(2:s(k))/                 ... E/a2b(,Tg  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... R'zi#FeP  
                       prod(2:((n(j)+m(j))/2-s(k))); HnKgD:  
            idx = (pows(k)==rpowers); Wh| T3&  
            z(:,j) = z(:,j) + p*rpowern(:,idx); #"rK1Z  
        end ZK'46lh  
         z)U7  
        if isnorm Q2- lHn^L:  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); L;$>SLl,  
        end ltDohm?  
    end TUC)S&bC  
    T:Nk9t$W7@  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    8426
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  jV sH  
    {:gx*4}q8  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 FLMiW]?x  
    tw$EwNI[  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)