非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 PrSkHxm
function z = zernfun(n,m,r,theta,nflag) 5V @&o`!=h
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 9afh[3qm
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N QrC/ssf}
% and angular frequency M, evaluated at positions (R,THETA) on the VNj@5s
% unit circle. N is a vector of positive integers (including 0), and ,H39V+Y*
% M is a vector with the same number of elements as N. Each element XsUUJuCG
% k of M must be a positive integer, with possible values M(k) = -N(k) ],[)uTZc
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 9P.(^SD][z
% and THETA is a vector of angles. R and THETA must have the same J>%t<xYf4
% length. The output Z is a matrix with one column for every (N,M) d0
-~|`5
% pair, and one row for every (R,THETA) pair. M3(k'q7&:
% 6Y7H|>g)
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike C),7- ?
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), M4?8xuC
% with delta(m,0) the Kronecker delta, is chosen so that the integral Jq
.L:>x
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, `G?qY8
% and theta=0 to theta=2*pi) is unity. For the non-normalized qS.)UaA
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. w!`Umll2
% Z^#]#f
% The Zernike functions are an orthogonal basis on the unit circle. +.@c{5J<
% They are used in disciplines such as astronomy, optics, and "K?Q
% optometry to describe functions on a circular domain. TvQ^DZbe
% .N"~zOV<#
% The following table lists the first 15 Zernike functions. K\&o2lo]
% Q\9K2=4
% n m Zernike function Normalization |s=`w8p
% -------------------------------------------------- vv.PF~:
% 0 0 1 1 f^9&WT
% 1 1 r * cos(theta) 2 Rri`dmH
% 1 -1 r * sin(theta) 2 Hm9<