切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11059阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 1Msc:7:L  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! mxCqN1:#  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^FK-e;J  
    function z = zernfun(n,m,r,theta,nflag) NO.5Vy  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. o@r~KFIe  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cb_nlG!  
    %   and angular frequency M, evaluated at positions (R,THETA) on the uBo~PiJ2"  
    %   unit circle.  N is a vector of positive integers (including 0), and oMF[<Xf  
    %   M is a vector with the same number of elements as N.  Each element j$khGR!  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ljk,R G  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]"U/3dL5  
    %   and THETA is a vector of angles.  R and THETA must have the same l gTw>r   
    %   length.  The output Z is a matrix with one column for every (N,M) uSNlI78D  
    %   pair, and one row for every (R,THETA) pair. DbH'Qs?z  
    % Hr=?_Un"  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ZrDr/Q~  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gPy}.g{tH$  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Qy| 6A@  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, =b#,OXQ  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized NE-c[|rq  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4 _Idf  
    % ~> 5  
    %   The Zernike functions are an orthogonal basis on the unit circle. 4Kn)5>  
    %   They are used in disciplines such as astronomy, optics, and .\|}5J9W  
    %   optometry to describe functions on a circular domain. `5t CmU  
    % {3\{aZ8)  
    %   The following table lists the first 15 Zernike functions. _S6SCSFc  
    % z6bIv }  
    %       n    m    Zernike function           Normalization Z`{GjV3%wH  
    %       -------------------------------------------------- Rj/y.g  
    %       0    0    1                                 1 Hc-Ke1+  
    %       1    1    r * cos(theta)                    2 Cg%}=  
    %       1   -1    r * sin(theta)                    2 2M?L++i  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) _SQ0`=+  
    %       2    0    (2*r^2 - 1)                    sqrt(3) LKu ,H  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) fBct%M 3  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) p|'Rm ]&jb  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Ct9*T`Gl  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ^1z)\p1  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) &,iPI2`O A  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) D P+W* 87J  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  uE3xzF  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) qJEtB;J'  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8jU6N*p/  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ZTK)N  
    %       -------------------------------------------------- r[RO"Ej"  
    % ^uWj#  
    %   Example 1: #i[V {J8.p  
    % H.[t&VO  
    %       % Display the Zernike function Z(n=5,m=1) =1% <  
    %       x = -1:0.01:1; 1Et{lrgh f  
    %       [X,Y] = meshgrid(x,x); u#v];6N  
    %       [theta,r] = cart2pol(X,Y); , @dhJ8/  
    %       idx = r<=1; >&uR=Yd  
    %       z = nan(size(X)); $D(q  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); zZ{(7K fz  
    %       figure 0*8uo W t&  
    %       pcolor(x,x,z), shading interp GQ= Pkko  
    %       axis square, colorbar qc@v"pIz'S  
    %       title('Zernike function Z_5^1(r,\theta)') Zi ;7.PqL  
    % >Gxh=**F  
    %   Example 2: 1F94e)M)"  
    % ;&]oV`Ib  
    %       % Display the first 10 Zernike functions k= oCpXq^  
    %       x = -1:0.01:1; =FXq=x%9+  
    %       [X,Y] = meshgrid(x,x); P(Q}r 7F~(  
    %       [theta,r] = cart2pol(X,Y); =fy'w3m  
    %       idx = r<=1; Z^ }4bR]  
    %       z = nan(size(X)); hC...tk  
    %       n = [0  1  1  2  2  2  3  3  3  3]; T6Ks]6m_  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; PW GN UNc  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 3d*wZ9qz  
    %       y = zernfun(n,m,r(idx),theta(idx)); nO .:f  
    %       figure('Units','normalized') h9WyQl7  
    %       for k = 1:10 S]}W+BF3  
    %           z(idx) = y(:,k); H0Ck%5  
    %           subplot(4,7,Nplot(k)) EF[I@voc  
    %           pcolor(x,x,z), shading interp jin XK  
    %           set(gca,'XTick',[],'YTick',[]) &Vmx<w  
    %           axis square C?lZu\L  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) H(F9&6}  
    %       end 2, r{zJ8  
    % m0+'BC{$u  
    %   See also ZERNPOL, ZERNFUN2. @1iH4RE*  
    `& }C *i"  
    %   Paul Fricker 11/13/2006 rZ^VKO`~I1  
    4#2iq@s  
    .V?>Jhok  
    % Check and prepare the inputs: %n:ymc $}  
    % ----------------------------- uE:`Fo=y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) yc3i> w`  
        error('zernfun:NMvectors','N and M must be vectors.') UWg+7RL  
    end ({kOgOeC  
    |A19IXZ\  
    if length(n)~=length(m) Q804_F F#  
        error('zernfun:NMlength','N and M must be the same length.') m00 5*>IY  
    end `Fs-z  
    WTQd}f  
    n = n(:); o&U/e\zy  
    m = m(:); F@Cxjz  
    if any(mod(n-m,2)) 8c0ugM  
        error('zernfun:NMmultiplesof2', ... -q}I; cH  
              'All N and M must differ by multiples of 2 (including 0).') NM&R\GI  
    end OZi4S3k  
    ]8ob`F`m,  
    if any(m>n) Wc!.{2  
        error('zernfun:MlessthanN', ... Jqgo\r%`  
              'Each M must be less than or equal to its corresponding N.') U A}N  
    end EK<ly"S.  
    37nGFH`K2m  
    if any( r>1 | r<0 ) W"ldQ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') }@Ou]o  
    end f`"@7-N  
    s.9_/cFWB  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^9A,j} >o-  
        error('zernfun:RTHvector','R and THETA must be vectors.') mM)d`br  
    end ]O.Z4+6w  
    k#pNk7;MZ  
    r = r(:); FG6mh,C!  
    theta = theta(:); x|q|> dPB  
    length_r = length(r); [V_\SQV0  
    if length_r~=length(theta) -Gmg&yQ9  
        error('zernfun:RTHlength', ...  Jyo(Etp  
              'The number of R- and THETA-values must be equal.') G>w+J'7  
    end TwLQ;Q  
    tA]Y=U+Q  
    % Check normalization: `CF.-Vl3J#  
    % -------------------- ^A' Bghy  
    if nargin==5 && ischar(nflag) hT?|:!ED.F  
        isnorm = strcmpi(nflag,'norm'); ?-D'xqc  
        if ~isnorm BhCOT+i;c  
            error('zernfun:normalization','Unrecognized normalization flag.') );oE^3]f  
        end U.p"JSH L  
    else }D7} %P]  
        isnorm = false; ^mu PjM+D  
    end r>3y87  
    KB6`OT^b{r  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )ME'qA3K  
    % Compute the Zernike Polynomials u:GDM   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  ua] ?D2  
    C}8 3t~Q  
    % Determine the required powers of r:  WDq~mi  
    % ----------------------------------- SWPb=[WEz  
    m_abs = abs(m); G+zIh}9  
    rpowers = []; +je{%,*  
    for j = 1:length(n) JPGEE1!B{b  
        rpowers = [rpowers m_abs(j):2:n(j)]; *#g[ jl4  
    end S^*ME*DDz  
    rpowers = unique(rpowers); [ %:%C]4  
    DZ5QC aA  
    % Pre-compute the values of r raised to the required powers, G*\U'w4w|*  
    % and compile them in a matrix: fe$OPl~  
    % ----------------------------- gO,2:,  
    if rpowers(1)==0 #xBh62yIuP  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); b?deZ2"L#  
        rpowern = cat(2,rpowern{:}); r"\g6<RP  
        rpowern = [ones(length_r,1) rpowern]; p{S#>JTr  
    else P2>Y0"bY  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .:V4>  
        rpowern = cat(2,rpowern{:}); V/W{d[86G  
    end 4VrL@c @  
    3?:?dy(3z  
    % Compute the values of the polynomials: E{W(5.kb;i  
    % -------------------------------------- +!Lz]@9K  
    y = zeros(length_r,length(n)); _yP02a^2  
    for j = 1:length(n) | +r5D4]e  
        s = 0:(n(j)-m_abs(j))/2; )W.Y{\D0  
        pows = n(j):-2:m_abs(j);  TDR2){I  
        for k = length(s):-1:1 kQQhZ8Ch  
            p = (1-2*mod(s(k),2))* ... w6FVSU]sY  
                       prod(2:(n(j)-s(k)))/              ... nMU[S +  
                       prod(2:s(k))/                     ... h(MS>=  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... L qdz qq  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); A ^U`c'$  
            idx = (pows(k)==rpowers); C3GI?| b  
            y(:,j) = y(:,j) + p*rpowern(:,idx); l_z@.</8P@  
        end TSHH=`cx  
         Jl|^  
        if isnorm JDj^7\`  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \bzT=^Z;2  
        end &p6^    
    end fw+ VR.#2H  
    % END: Compute the Zernike Polynomials 9G"-~C"e3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (043G[H'.  
    B#Z-kFn@  
    % Compute the Zernike functions: 2z615?2_U  
    % ------------------------------ 8@J5tFJ&%  
    idx_pos = m>0; to"[r  
    idx_neg = m<0; PHHX)xK  
    Od@<L  
    z = y; QB|D_?]  
    if any(idx_pos) -e(,>9Q  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8j<+ ' R  
    end KM jnY2  
    if any(idx_neg) ;|H(_J=6k  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %eDJ]\*^X  
    end CKgbb4;<m[  
    vhj^R5=  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) qc6eqE  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. |nTZ/MXbw  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Q1(6U6L  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 5xF R7%_&  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, @mu2,%  
    %   and THETA is a vector of angles.  R and THETA must have the same P2^((c  
    %   length.  The output Z is a matrix with one column for every P-value, baL-~`(T  
    %   and one row for every (R,THETA) pair. =gb(<`{>  
    % 4hh=z>$|l)  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike b/g"ws_  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) BL Q&VI4  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) BpQ/$?5E"  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 b$Ch2Qz0q  
    %   for all p. ^&-H"jF  
    % z`Cq,Sz/  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Ul?92  
    %   Zernike functions (order N<=7).  In some disciplines it is q|fZdTw  
    %   traditional to label the first 36 functions using a single mode sBfPhBT|  
    %   number P instead of separate numbers for the order N and azimuthal YDMimis\H5  
    %   frequency M. F6h|AF|"  
    % G B &+EZ  
    %   Example: ={a_?l%  
    % "TgE@bC  
    %       % Display the first 16 Zernike functions o) hQ]d  
    %       x = -1:0.01:1; dfoFs&CSKh  
    %       [X,Y] = meshgrid(x,x); SWGD(]}uz  
    %       [theta,r] = cart2pol(X,Y); u/2!v(  
    %       idx = r<=1; {Z=m5Dy}  
    %       p = 0:15; 1~# 2AdG  
    %       z = nan(size(X)); zz+p6`   
    %       y = zernfun2(p,r(idx),theta(idx)); z nc'  
    %       figure('Units','normalized') w 9mi2=  
    %       for k = 1:length(p) -n`igC  
    %           z(idx) = y(:,k); [# '38  
    %           subplot(4,4,k) `/z6 Q"  
    %           pcolor(x,x,z), shading interp Ydr/ T/1  
    %           set(gca,'XTick',[],'YTick',[]) p#V h[UTl^  
    %           axis square *Tt*\ O  
    %           title(['Z_{' num2str(p(k)) '}']) pwvcH3l/r  
    %       end &4ScwK:  
    % W l+[{#  
    %   See also ZERNPOL, ZERNFUN. 2"~QI xY=  
    ~e!b81  
    %   Paul Fricker 11/13/2006 Evn=3Tw  
    1E*No1  
    a|x1aN 0  
    % Check and prepare the inputs: :2KLziO2  
    % ----------------------------- $`emP Hel  
    if min(size(p))~=1 rK\)  
        error('zernfun2:Pvector','Input P must be vector.') j5EZJ`  
    end ]OZk+DU:  
    H -sJt:  
    if any(p)>35 E.kjYIH8  
        error('zernfun2:P36', ... c_fx,; ;  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... :|:Disg  
               '(P = 0 to 35).']) ZO2$Aan  
    end `KgWaf-  
    L.uX  
    % Get the order and frequency corresonding to the function number: G Uf[Dz  
    % ---------------------------------------------------------------- hZ0CnY8 '  
    p = p(:); 0 7CufoI  
    n = ceil((-3+sqrt(9+8*p))/2); @k!J}O K  
    m = 2*p - n.*(n+2); DUk&`BSJ  
    PSO9{!  
    % Pass the inputs to the function ZERNFUN: +%'S>g0W=  
    % ---------------------------------------- <J`",h  
    switch nargin \tj7Jy  
        case 3 e `!PQMLU  
            z = zernfun(n,m,r,theta); ER O'{nT&  
        case 4 )Qe4J0.  
            z = zernfun(n,m,r,theta,nflag); p`)GO.pz  
        otherwise :)UF#  
            error('zernfun2:nargin','Incorrect number of inputs.') w~NQAHAvo  
    end H+`s#'(i_P  
    )")_aA  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 8\?7k  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. d%:B,bck  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of h01 HX  
    %   order N and frequency M, evaluated at R.  N is a vector of Q= DP# 9&  
    %   positive integers (including 0), and M is a vector with the +*2]R~"M  
    %   same number of elements as N.  Each element k of M must be a x=g=e <_  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) T5; zgr  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is M]O _L  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix jN\} l|;q  
    %   with one column for every (N,M) pair, and one row for every :}\w2W E[  
    %   element in R. L*xu<(>K  
    % gOpi>  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- "<3F[[;~  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is .E'Tfa  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to d NQ?8P-&  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 UEZnd8  
    %   for all [n,m]. @6eM{3E.  
    % Gkz\By  
    %   The radial Zernike polynomials are the radial portion of the Z)?i&y?  
    %   Zernike functions, which are an orthogonal basis on the unit  L|hdV\  
    %   circle.  The series representation of the radial Zernike h0}= C_.^  
    %   polynomials is Zj@k3y  
    % _MF:?p,l  
    %          (n-m)/2 ,(H`E?m1w4  
    %            __ !^{0vFWE  
    %    m      \       s                                          n-2s :6k8\{^9"D  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r EwvW: t1  
    %    n      s=0 \qx$h!<  
    % 3/rEXKS  
    %   The following table shows the first 12 polynomials. @>Y.s6a  
    % !c}?u_Z/  
    %       n    m    Zernike polynomial    Normalization 4e6x1`Y{xB  
    %       --------------------------------------------- td*1  
    %       0    0    1                        sqrt(2) 0E*q-$P  
    %       1    1    r                           2 X$aN:!1  
    %       2    0    2*r^2 - 1                sqrt(6) !S0$W?*  
    %       2    2    r^2                      sqrt(6) PtH>I,/  
    %       3    1    3*r^3 - 2*r              sqrt(8) K(&I8vAp  
    %       3    3    r^3                      sqrt(8) 2YT1]x 3  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) [BPK0  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) > -P UY  
    %       4    4    r^4                      sqrt(10) uw!w}1Y]}2  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 8+HXGqcv  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) yQAW\0`  
    %       5    5    r^5                      sqrt(12) sGg=4(D  
    %       --------------------------------------------- lD`@{A  
    % s(~tL-_ K  
    %   Example: \"L ;Ct 8  
    % ]q#w97BxiJ  
    %       % Display three example Zernike radial polynomials )uj:k*`)  
    %       r = 0:0.01:1;  4RPc&%  
    %       n = [3 2 5]; ?8ZOiY(  
    %       m = [1 2 1]; \<cs:C\h7  
    %       z = zernpol(n,m,r); 'CF?pxNQ l  
    %       figure fN)A`>iP  
    %       plot(r,z) 9%+Nzo(Fd  
    %       grid on BHmmvbM#Qm  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') .b.p yVk  
    %  fP+RuZ  
    %   See also ZERNFUN, ZERNFUN2. bl8zcpdL  
    29a~B<e7s  
    % A note on the algorithm.  Ptt  
    % ------------------------ \fX0&l;T9\  
    % The radial Zernike polynomials are computed using the series ;rp("<g:>  
    % representation shown in the Help section above. For many special ;k W+  
    % functions, direct evaluation using the series representation can rM?O2n  
    % produce poor numerical results (floating point errors), because `S`,H  
    % the summation often involves computing small differences between kn$2_I9  
    % large successive terms in the series. (In such cases, the functions jN3K= MA  
    % are often evaluated using alternative methods such as recurrence @ Sq =q=S  
    % relations: see the Legendre functions, for example). For the Zernike Hnq$d6F  
    % polynomials, however, this problem does not arise, because the )$EmKOTt:  
    % polynomials are evaluated over the finite domain r = (0,1), and Z<P?P`  
    % because the coefficients for a given polynomial are generally all x9DG87P~+  
    % of similar magnitude. c0 I;8z`b  
    % /nPNHO>U  
    % ZERNPOL has been written using a vectorized implementation: multiple N7Kg52|  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 0|Rt[qwKb@  
    % values can be passed as inputs) for a vector of points R.  To achieve 2F}D?] A  
    % this vectorization most efficiently, the algorithm in ZERNPOL 0mt lM(  
    % involves pre-determining all the powers p of R that are required to n]%T>\gw  
    % compute the outputs, and then compiling the {R^p} into a single )9pRT dT  
    % matrix.  This avoids any redundant computation of the R^p, and ^ gy"$F3{`  
    % minimizes the sizes of certain intermediate variables. 8;%F-?  
    % i1c z+}  
    %   Paul Fricker 11/13/2006 D+nKQ4  
    4](jV}Hg  
    "dkDT7  
    % Check and prepare the inputs: %qycxEVP  
    % ----------------------------- *#n#J[  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) E Pd9'9S  
        error('zernpol:NMvectors','N and M must be vectors.') O:% ,.??<%  
    end =<BPoGs5  
    E;o "^[we  
    if length(n)~=length(m) zfsGf 'U  
        error('zernpol:NMlength','N and M must be the same length.') ydZS^BqG  
    end  ~ERA  
    {uCX F~v  
    n = n(:); &.v|yG]&  
    m = m(:); ln1QY"g  
    length_n = length(n); r(ZMZ^  
    lH%%iYBM  
    if any(mod(n-m,2)) w/1Os!p  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 6_=t~9sY  
    end 1B0+dxN`  
    -:V0pb  
    if any(m<0) hZwbYvu  
        error('zernpol:Mpositive','All M must be positive.') \yE*nZ  
    end  LBIsj}e  
    r\j*?m ]  
    if any(m>n) -d*zgP  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 5/E7@h ,  
    end +Oafo|%  
    {qJ(55  
    if any( r>1 | r<0 ) V [#$Sz[G  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') (teK0s;t5k  
    end v =]!Po&Q-  
    Puq  
    if ~any(size(r)==1) :z^,>So:  
        error('zernpol:Rvector','R must be a vector.') %wQE lkB  
    end />X"' G  
    FoW|BGA~  
    r = r(:); KsDovy<  
    length_r = length(r); s?yl4\]Muf  
    lD-HQd  
    if nargin==4 =M],5<2;  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Q/%]%d  
        if ~isnorm t%fcp  
            error('zernpol:normalization','Unrecognized normalization flag.') >Tp`Kri  
        end ~(x"Y\PEu  
    else KBg5 _+l  
        isnorm = false; 9=}&evGm89  
    end Fzk%eHG=  
    ..fbRt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2]V&]s8Wi=  
    % Compute the Zernike Polynomials MC~<jJ,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :>*0./hG  
    O!k C  
    % Determine the required powers of r: 3Hi[Y[O`%P  
    % ----------------------------------- le150;7  
    rpowers = []; iO dk)  
    for j = 1:length(n) ] L6LB \  
        rpowers = [rpowers m(j):2:n(j)]; *%n(t+'q  
    end s?7"iE  
    rpowers = unique(rpowers); 1wLEkp!~  
    >*h3u7t  
    % Pre-compute the values of r raised to the required powers, r E&}B5PN=  
    % and compile them in a matrix: j58'P 5N  
    % ----------------------------- -+z8bZ  
    if rpowers(1)==0 7U2?in}?Qi  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); XR+  
        rpowern = cat(2,rpowern{:}); @ruWnwb  
        rpowern = [ones(length_r,1) rpowern]; 7srq~;j3  
    else > zV  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !%(PN3*  
        rpowern = cat(2,rpowern{:}); dfMi]rs!<  
    end b#W(&b^q  
    .c]@xoC  
    % Compute the values of the polynomials: fn, YH  
    % -------------------------------------- eZ|_wB'r  
    z = zeros(length_r,length_n); xs^wRE_  
    for j = 1:length_n :NynNu'  
        s = 0:(n(j)-m(j))/2; E[Bj+mX9  
        pows = n(j):-2:m(j); V$g!#V  
        for k = length(s):-1:1 NJmyp!8  
            p = (1-2*mod(s(k),2))* ... 34I;DUdcE  
                       prod(2:(n(j)-s(k)))/          ... N gagzsJ=  
                       prod(2:s(k))/                 ... xp F(de  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 3XIL; 5  
                       prod(2:((n(j)+m(j))/2-s(k))); C#@-uo2  
            idx = (pows(k)==rpowers); ^[.Z~>3!\q  
            z(:,j) = z(:,j) + p*rpowern(:,idx); u,JUMH]@  
        end 6T6UIq  
         jE2EoQ i,  
        if isnorm er.;qV'Wz6  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); &HtG&RvQf  
        end FyqsFTh_  
    end I_is3y0  
    "eIE5h  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  *`V r P  
    8p PQ   
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 6\xfoy|j  
    c6tH'oV  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)