切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11315阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 )6o%6$c  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! it-2]Nw  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 NR%_&%qQA  
    function z = zernfun(n,m,r,theta,nflag) 2NB $(4/  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. BE54L+$p  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N OgHqF,0MN  
    %   and angular frequency M, evaluated at positions (R,THETA) on the g*w}m>O  
    %   unit circle.  N is a vector of positive integers (including 0), and VAe[x `  
    %   M is a vector with the same number of elements as N.  Each element jc,Q g2  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) E;q+u[$  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, q &S@\b  
    %   and THETA is a vector of angles.  R and THETA must have the same 6 tB\X^  
    %   length.  The output Z is a matrix with one column for every (N,M) C3 BoH&  
    %   pair, and one row for every (R,THETA) pair. iDltN]zS  
    % n_wF_K\h  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Deq@T {  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), wT-K g=-q  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral P5GV9SA  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Zt9ld=T  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized V`1x![\  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9`KFJx6D  
    % ^SM5oK  
    %   The Zernike functions are an orthogonal basis on the unit circle. UVW4KUxR  
    %   They are used in disciplines such as astronomy, optics, and `_BmVms  
    %   optometry to describe functions on a circular domain. BQs\!~Ux2  
    % :% +9y @%  
    %   The following table lists the first 15 Zernike functions. (.5Ft^3W  
    % Fr2F&NN`D  
    %       n    m    Zernike function           Normalization 9 aKU}y  
    %       -------------------------------------------------- J5z\e@?.0\  
    %       0    0    1                                 1 f>&*%[fw  
    %       1    1    r * cos(theta)                    2 Y3 -f68*(  
    %       1   -1    r * sin(theta)                    2 $6 4{Ff  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) bXqTc2>=  
    %       2    0    (2*r^2 - 1)                    sqrt(3) <Ynrw4[)t  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ,-DU)&dF  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) }j!C+i  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) B$7Cjv  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) /-(OJN5F^  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ,F+,A].wG  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) |qU~({=b  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~ftR:F|9  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) -M4VC^_  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~(=5`9  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) = '-/JH~  
    %       -------------------------------------------------- y'z9Ya  
    % /"^XrVi-  
    %   Example 1: $I<\Yuy-M9  
    % kv2 H3O  
    %       % Display the Zernike function Z(n=5,m=1) c6iFha;db  
    %       x = -1:0.01:1; _ x$\E  
    %       [X,Y] = meshgrid(x,x); VZ7E#z+nM#  
    %       [theta,r] = cart2pol(X,Y); #F6M<V'  
    %       idx = r<=1; Pu'NSNT  
    %       z = nan(size(X)); ;q#Pl!*5  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); _ D"S  
    %       figure :b!&Xw$  
    %       pcolor(x,x,z), shading interp Xo6zeLHO  
    %       axis square, colorbar nB/`~_9  
    %       title('Zernike function Z_5^1(r,\theta)') rqKK89fD'  
    % 5v sn'=yN  
    %   Example 2: RVF<l?EI4R  
    % A7T(p7pP  
    %       % Display the first 10 Zernike functions mcs!A/]<  
    %       x = -1:0.01:1; M<Y{Cs  
    %       [X,Y] = meshgrid(x,x); ME.!l6lm\  
    %       [theta,r] = cart2pol(X,Y); _{GD\Ai_W  
    %       idx = r<=1; WHu[A/##']  
    %       z = nan(size(X)); =GiN~$d  
    %       n = [0  1  1  2  2  2  3  3  3  3]; L[U?{  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; B3I0H6O  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; $yUPua/-  
    %       y = zernfun(n,m,r(idx),theta(idx)); nj-LG!"a  
    %       figure('Units','normalized') =NWzsRl,  
    %       for k = 1:10 L(C0236r  
    %           z(idx) = y(:,k); N{6-a  
    %           subplot(4,7,Nplot(k)) K?yMy,9%Yw  
    %           pcolor(x,x,z), shading interp }}oIZP\qM  
    %           set(gca,'XTick',[],'YTick',[]) };f^*KZ=0  
    %           axis square H8m[:K]_H  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) D}N4*L1  
    %       end x Vw1  
    % 3ik~PgGoKQ  
    %   See also ZERNPOL, ZERNFUN2. R_vK^Da  
    &gI*[5v  
    %   Paul Fricker 11/13/2006 4.>y[_vu  
    lbh7`xCR  
    fVi[mH0=+  
    % Check and prepare the inputs: n- 1  
    % ----------------------------- ViUx^e\  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) c2]h.G83  
        error('zernfun:NMvectors','N and M must be vectors.') M[e^Z}w.V  
    end W'e{2u  
    hW\'EJ  
    if length(n)~=length(m) 7 4hRG~  
        error('zernfun:NMlength','N and M must be the same length.') cb/$P!j7  
    end vorb?iVf>  
    Dw,LB>Eq,  
    n = n(:); ]}.|b6\  
    m = m(:); Gq7\b({=  
    if any(mod(n-m,2)) &M=15 uCK  
        error('zernfun:NMmultiplesof2', ... g+xcKfN{  
              'All N and M must differ by multiples of 2 (including 0).') 7324#HwS  
    end Vw`%|x"Xz  
    yvnvIy  
    if any(m>n) g3Ul'QJ  
        error('zernfun:MlessthanN', ... nk;+L  
              'Each M must be less than or equal to its corresponding N.') OJ.oHf=K!  
    end V8Z@y&ny  
    h|<;:o?yh  
    if any( r>1 | r<0 ) :J+ANIRI  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^__ P;Gr`  
    end -.-@|*5  
    L\"eE'A  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;)ERxMun  
        error('zernfun:RTHvector','R and THETA must be vectors.') FR\r/+n:t0  
    end @[Wf!8_  
    c57`mOe/b  
    r = r(:); %Siw>  
    theta = theta(:); 8L`wib2  
    length_r = length(r); 1\/~>  
    if length_r~=length(theta) nd5.Py$  
        error('zernfun:RTHlength', ... 6}*4co  
              'The number of R- and THETA-values must be equal.') @}' ?o_/C  
    end dE 3M   
    `*]r+J2  
    % Check normalization: 8mO_dQ  
    % -------------------- bKh}Y`  
    if nargin==5 && ischar(nflag) <irr .O  
        isnorm = strcmpi(nflag,'norm'); 6HH:K0j3'  
        if ~isnorm M-8d*#_P  
            error('zernfun:normalization','Unrecognized normalization flag.') {<cgeH  
        end P7 5@Yu(  
    else %mOQIXr1s  
        isnorm = false; }t1 q5@QU  
    end Q{ { =  
    WJ\,Y} J  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w!}kcn<  
    % Compute the Zernike Polynomials f^Q)lIv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5{-54mwo  
    xSq+>,b  
    % Determine the required powers of r: -y/Y%]%0  
    % ----------------------------------- >&T J  
    m_abs = abs(m); H8E#r*"-m  
    rpowers = []; S5cs(}Bq  
    for j = 1:length(n) H<q z rO  
        rpowers = [rpowers m_abs(j):2:n(j)]; i3>_E <"9  
    end vI(CX]o  
    rpowers = unique(rpowers); nr&9\lG]G  
    '1Ex{$Yk  
    % Pre-compute the values of r raised to the required powers, \3x+Z!  
    % and compile them in a matrix: =$_kkVQ$  
    % ----------------------------- "a<:fEsSE  
    if rpowers(1)==0 oYWHO<b  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ( ;KTV*1  
        rpowern = cat(2,rpowern{:}); LVy (O9g  
        rpowern = [ones(length_r,1) rpowern]; 8w~X4A,  
    else }3-`e3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); t ;y@;?~  
        rpowern = cat(2,rpowern{:}); MQX9BJ%  
    end )0=H)k0  
    <V|\yH9  
    % Compute the values of the polynomials: -r[O_[g w  
    % -------------------------------------- R-Y 7I  
    y = zeros(length_r,length(n)); ) LohB,?  
    for j = 1:length(n) ^j1i CL!  
        s = 0:(n(j)-m_abs(j))/2; :S+Bu*OyH  
        pows = n(j):-2:m_abs(j); NH'QMjL)  
        for k = length(s):-1:1 ?VyiR40-Cx  
            p = (1-2*mod(s(k),2))* ... 9CZ EP0i7  
                       prod(2:(n(j)-s(k)))/              ... GvL\%0Ibx  
                       prod(2:s(k))/                     ... +0:]KG!Zs.  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... sDkO!P  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); )\{]4[9N  
            idx = (pows(k)==rpowers); {=+'3p  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Z{_YH7_  
        end \{o<-S;h  
         #_:%Y d  
        if isnorm Yr>7c1FZi  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); IkQ,#Bsb[  
        end WogCt,  
    end t;t;+M|W  
    % END: Compute the Zernike Polynomials -hGLGF??  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |doG}C  
    )t$-/8  
    % Compute the Zernike functions: y!~ }7=  
    % ------------------------------ |sAl k,8s  
    idx_pos = m>0; 6<YAoo  
    idx_neg = m<0; 9ol&p>  
    F2Mxcs* M  
    z = y; S]gV!Q4%  
    if any(idx_pos) ",S146Y+  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); kU{a!ca4  
    end }?9A:&  
    if any(idx_neg) i8=+ <d  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .F0Q< s9  
    end Q|7m9~  
    w[u>*I  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) cEGR?4z  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 9x#T j/5%  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated )~ ^`[`  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive pwA~?$B1  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ]#W9l\  
    %   and THETA is a vector of angles.  R and THETA must have the same `X(H,Q}*;  
    %   length.  The output Z is a matrix with one column for every P-value, /wi/i*;A  
    %   and one row for every (R,THETA) pair. $?DEO[p.  
    % NOl/y@#  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike D=M'g}l  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) >oapw5~5  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) !#PA#Q|cO  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 8k^1:gt^  
    %   for all p.  8(}cbW  
    % S)`@)sr  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Wp^ A.  
    %   Zernike functions (order N<=7).  In some disciplines it is <'~6L#>,<  
    %   traditional to label the first 36 functions using a single mode LKg9{0Y:  
    %   number P instead of separate numbers for the order N and azimuthal -gv[u,R  
    %   frequency M. .i1|U8"X  
    % 5YXMnYt9  
    %   Example: Sd\oL*lN  
    % A $l  
    %       % Display the first 16 Zernike functions yp< )v(8|'  
    %       x = -1:0.01:1; ob9=/ R?i  
    %       [X,Y] = meshgrid(x,x); ;7(vqm<V2~  
    %       [theta,r] = cart2pol(X,Y); [=>[2Ty  
    %       idx = r<=1; UGP&&A#T-  
    %       p = 0:15; :#=B wdC  
    %       z = nan(size(X)); "j=E8Dd}  
    %       y = zernfun2(p,r(idx),theta(idx)); CT (HTu  
    %       figure('Units','normalized') |wyua@2  
    %       for k = 1:length(p) w^[:wzF0  
    %           z(idx) = y(:,k); sc z8 `%  
    %           subplot(4,4,k) A%~t[ H  
    %           pcolor(x,x,z), shading interp 5qkyi]/U8  
    %           set(gca,'XTick',[],'YTick',[])  y)3OQ24  
    %           axis square gj82qy\:  
    %           title(['Z_{' num2str(p(k)) '}']) =P,pW  
    %       end [2ri=lf,  
    % a@#<qf8g  
    %   See also ZERNPOL, ZERNFUN. )#,a'~w  
    f+2mX"Z[F  
    %   Paul Fricker 11/13/2006 ~l*[=0}  
    [o.#$(   
    Z.N9e  
    % Check and prepare the inputs: '~xiD?:  
    % ----------------------------- 6df`]s c  
    if min(size(p))~=1 n%6=w9.%c  
        error('zernfun2:Pvector','Input P must be vector.') n.1$p  
    end Iv?1XI=  
    hPt=j{aJ%<  
    if any(p)>35 w} r mYQ  
        error('zernfun2:P36', ... 7Kt i&T  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... LftzW{>gI"  
               '(P = 0 to 35).']) }{.V^;  
    end 2]H?q!l!O  
    H`7T;`Yb  
    % Get the order and frequency corresonding to the function number: J$ &2GAi  
    % ---------------------------------------------------------------- ^%qQ)>I=j  
    p = p(:); 3Q_)Xs r`  
    n = ceil((-3+sqrt(9+8*p))/2); /.(F\2+A  
    m = 2*p - n.*(n+2); *7),v+ET  
    h2 >a_0"  
    % Pass the inputs to the function ZERNFUN: [V0%=q+R  
    % ---------------------------------------- *\^(-p~M  
    switch nargin j{H IdP  
        case 3 S~GS:E#  
            z = zernfun(n,m,r,theta); W&2r{kCsQ  
        case 4 I3YSW  
            z = zernfun(n,m,r,theta,nflag); LqS_%6^  
        otherwise ,?!MVN-  
            error('zernfun2:nargin','Incorrect number of inputs.') ?*cCn-|  
    end `(~oZbErM  
    }jYVB|2  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) FMC]KXSd  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 5PE}3he:  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of aO* v"^oF  
    %   order N and frequency M, evaluated at R.  N is a vector of {Bb:\N8X  
    %   positive integers (including 0), and M is a vector with the |^gnT`+  
    %   same number of elements as N.  Each element k of M must be a 24 RD  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) n"nfEA3{`  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is HaQox.v%  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix P3TM5  
    %   with one column for every (N,M) pair, and one row for every 6Z{(.'Be  
    %   element in R. RT[ E$H  
    % eqqnR.0  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- -K6y#O@@  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is V/yj.aA*@  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to MZ>Q Rf  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 BxB B](  
    %   for all [n,m]. JG{`tTu  
    % !'>,37()  
    %   The radial Zernike polynomials are the radial portion of the >txeo17Ba\  
    %   Zernike functions, which are an orthogonal basis on the unit Tj!rAMQk  
    %   circle.  The series representation of the radial Zernike RJdijj  
    %   polynomials is ~\ v"xV  
    % '|G8yojz  
    %          (n-m)/2 J#\oc@  
    %            __ 1e I_F8I U  
    %    m      \       s                                          n-2s ]6,D 9^{;  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r e /L([  
    %    n      s=0 U"a7myB+jX  
    % jwheJ G  
    %   The following table shows the first 12 polynomials. C4gzg  
    % CaV)F3   
    %       n    m    Zernike polynomial    Normalization xxOhGA)  
    %       --------------------------------------------- ]N:Wt2  
    %       0    0    1                        sqrt(2) @IOl0db  
    %       1    1    r                           2 8( bK\-b  
    %       2    0    2*r^2 - 1                sqrt(6) 0R}hAK+| 4  
    %       2    2    r^2                      sqrt(6) qpq(<  
    %       3    1    3*r^3 - 2*r              sqrt(8) nY,LQ0r  
    %       3    3    r^3                      sqrt(8) _.SpU`>/f  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) lz _ r  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) c!mMH~#  
    %       4    4    r^4                      sqrt(10) :)%cL8Nz]$  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) kR{$&cE^  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Q<(aU{  
    %       5    5    r^5                      sqrt(12) #It!D5A  
    %       --------------------------------------------- j3j^cO[8v  
    % =]1g*~%  
    %   Example: JY3!jtv  
    % WZ UeW*#=  
    %       % Display three example Zernike radial polynomials t|*UlTLm  
    %       r = 0:0.01:1; 1D%E})B6  
    %       n = [3 2 5]; UI*&@!%bzp  
    %       m = [1 2 1]; TW=N+ye^1(  
    %       z = zernpol(n,m,r); N]&hw&R{Q  
    %       figure co' qVsOiH  
    %       plot(r,z) olK*uD'`  
    %       grid on <eZrb6a'  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') fyxc4-D  
    % gBZNO! a,d  
    %   See also ZERNFUN, ZERNFUN2. T#HF! GH]  
    Cj J n  
    % A note on the algorithm. 7**zO3 H  
    % ------------------------ n;y[%H!g  
    % The radial Zernike polynomials are computed using the series S KGnx  
    % representation shown in the Help section above. For many special #hXuGBZEI  
    % functions, direct evaluation using the series representation can M{p9b E[j  
    % produce poor numerical results (floating point errors), because ;HiaX<O!  
    % the summation often involves computing small differences between r>G||/Z  
    % large successive terms in the series. (In such cases, the functions JvS ~.g1  
    % are often evaluated using alternative methods such as recurrence _B\87e  
    % relations: see the Legendre functions, for example). For the Zernike qJw\<7m  
    % polynomials, however, this problem does not arise, because the %cASk>^i  
    % polynomials are evaluated over the finite domain r = (0,1), and tZ:fOM  
    % because the coefficients for a given polynomial are generally all o%K1!'  
    % of similar magnitude. -o57"r^x  
    % (A-Uo   
    % ZERNPOL has been written using a vectorized implementation: multiple SRrp= >w?  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] jJ?G7Q5 l  
    % values can be passed as inputs) for a vector of points R.  To achieve jn oX%3d-  
    % this vectorization most efficiently, the algorithm in ZERNPOL ^tVIPH.R  
    % involves pre-determining all the powers p of R that are required to l>)+HoD  
    % compute the outputs, and then compiling the {R^p} into a single 8DFq eY0S  
    % matrix.  This avoids any redundant computation of the R^p, and Z1wfy\9c8  
    % minimizes the sizes of certain intermediate variables. OOYdrv,  
    % Z 2lX^z  
    %   Paul Fricker 11/13/2006 ^b*ub(5Ot  
    nyOvB#f  
    m3|l-[!OA"  
    % Check and prepare the inputs: HN<e)E38  
    % ----------------------------- Kc+9n%sp  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8an_s%,AW  
        error('zernpol:NMvectors','N and M must be vectors.') {(h!JeQ  
    end {7Kl #b  
    Htep3Ol3  
    if length(n)~=length(m) lLEEre  
        error('zernpol:NMlength','N and M must be the same length.') +:u &]  
    end mOb@w/f  
    f1U: _V^d  
    n = n(:); Apkb!"}>  
    m = m(:); dCzS f4:  
    length_n = length(n); {3 >`k.w  
    ~)5k%?.  
    if any(mod(n-m,2)) %@%~<U)W  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ca%XA|_J  
    end o^u}(wZ{  
    c32"$g  
    if any(m<0) M$3/jl*#}  
        error('zernpol:Mpositive','All M must be positive.') )F6p+i="  
    end (dym*_J  
    8,:lw3x1  
    if any(m>n) t_qX7P8+'  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 7Q aZ|\c  
    end ]Y f8  
    w^S]HzMd  
    if any( r>1 | r<0 ) b+$-f:mj  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') s$/ Z+"f(  
    end :oJ!9\5  
    bW zUWLa  
    if ~any(size(r)==1) `[tYe<  
        error('zernpol:Rvector','R must be a vector.') [LSs|f  
    end ^!SwY_>  
    Qe=eer~jI  
    r = r(:); UDb  
    length_r = length(r); Ev&aD  
    qwo{34  
    if nargin==4 l+?sR<e?!  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 7[8d-Sf24{  
        if ~isnorm S|_lb MZM  
            error('zernpol:normalization','Unrecognized normalization flag.') dVBr-+  
        end QW&@>i  
    else gn[h:+H&  
        isnorm = false; >  !WFY  
    end M5+K[Ir/y9  
    ['l}*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @T{I;8S  
    % Compute the Zernike Polynomials |l,0bkY@&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F/D/1w^ iR  
    iRL|u~bj  
    % Determine the required powers of r: r D|Bj(X8  
    % ----------------------------------- \X;)Kt"  
    rpowers = []; Ce PI{`&,  
    for j = 1:length(n) 0f,Ii_k bT  
        rpowers = [rpowers m(j):2:n(j)]; do@BJWo  
    end qox@_  
    rpowers = unique(rpowers); \p!mX|  
    9Oc(Gl5az  
    % Pre-compute the values of r raised to the required powers, =z2g}X  
    % and compile them in a matrix: }vQ Y+O  
    % ----------------------------- <Kq!)) J'  
    if rpowers(1)==0 200Fd8Ju  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0+_:^z  
        rpowern = cat(2,rpowern{:}); Z'y:r2{ql  
        rpowern = [ones(length_r,1) rpowern]; Yn-;+ 4 K  
    else ffh3okyW0  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); n}q/:|c  
        rpowern = cat(2,rpowern{:}); }_cX" s  
    end WOf*1C  
    4+a u6ABy  
    % Compute the values of the polynomials: $-_@MT~  
    % -------------------------------------- )>WSuf j  
    z = zeros(length_r,length_n); q6V\n:hKV  
    for j = 1:length_n OyTp^W`&  
        s = 0:(n(j)-m(j))/2; YXTd^M~@D  
        pows = n(j):-2:m(j); yv.(Oy  
        for k = length(s):-1:1 4:qM'z  
            p = (1-2*mod(s(k),2))* ... {i:Ayhq~&  
                       prod(2:(n(j)-s(k)))/          ... k0-,qM#p;X  
                       prod(2:s(k))/                 ... %2rUJaOgy$  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... _6MNEoy?  
                       prod(2:((n(j)+m(j))/2-s(k)));  ?r(Bu  
            idx = (pows(k)==rpowers); 08;t%[R  
            z(:,j) = z(:,j) + p*rpowern(:,idx); r`d.Wy Zj  
        end @m ?&7{y#?  
         Pqv9> N|  
        if isnorm F$H^W@<w  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); YX6[m6L U  
        end REKv&^FLN  
    end )Xd2qbi  
    "pkn  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  RC| t-(Z  
    <!r0[bKz@  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 }L1 -2  
    P}Ud7Vil;l  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)