切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11533阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 o$.e^XL  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! JIO$=+p  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 HO|-@yOF^  
    function z = zernfun(n,m,r,theta,nflag) |E/L.gdP7  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. -[#n+`M  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1ywU@].6J]  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ES:!Vx9t0|  
    %   unit circle.  N is a vector of positive integers (including 0), and {GqXP0'  
    %   M is a vector with the same number of elements as N.  Each element w3*-^: ?j  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) `kBnSio~  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, `m%dX'0 E  
    %   and THETA is a vector of angles.  R and THETA must have the same DhKr;e  
    %   length.  The output Z is a matrix with one column for every (N,M) #'o7x'n^  
    %   pair, and one row for every (R,THETA) pair. %.x@gi q  
    % 0??Yr  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 2O""4_G  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3-wD^4)O,  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral GaNq2G  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?H;{~n?  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized V/#v\*JHFc  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. l`n5~Fs  
    % udqge?Tz  
    %   The Zernike functions are an orthogonal basis on the unit circle. j^u[F"  
    %   They are used in disciplines such as astronomy, optics, and ?KN:r E  
    %   optometry to describe functions on a circular domain. !)H*r|*[  
    % @] .VQ<X|0  
    %   The following table lists the first 15 Zernike functions. r)l`  
    % I ,FqN}  
    %       n    m    Zernike function           Normalization \gKdD S  
    %       -------------------------------------------------- X}JWf<=q  
    %       0    0    1                                 1 R ZcH+?7  
    %       1    1    r * cos(theta)                    2 jqoPLbxT  
    %       1   -1    r * sin(theta)                    2 >2-F2E,  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) A]y*so!)>  
    %       2    0    (2*r^2 - 1)                    sqrt(3) /#q")4Mf  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) bejGfc  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) $Lq:=7&LRn  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ]if;A)'  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 0^<,(]!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) P1d,8~;  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) LF=c^9t  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xUj2 ]Q>R+  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) %jKH?%Ih  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W%8+t)  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) [yd6gH  
    %       -------------------------------------------------- &6"P7X  
    % a&5g!;.  
    %   Example 1: dK # h<q1  
    % Ol cP(  
    %       % Display the Zernike function Z(n=5,m=1) i:Mc(mW  
    %       x = -1:0.01:1; 9/;{>RL=  
    %       [X,Y] = meshgrid(x,x); T Oy7?;|=  
    %       [theta,r] = cart2pol(X,Y); rF8 hr  
    %       idx = r<=1; BjD&> gO)  
    %       z = nan(size(X)); /?3:X *  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); q) _r3   
    %       figure NWISS  
    %       pcolor(x,x,z), shading interp 9s $PrF  
    %       axis square, colorbar 0eA5zFU7  
    %       title('Zernike function Z_5^1(r,\theta)') .~<]HAwq  
    % a J-}  
    %   Example 2: (v;A'BjN  
    % YC)hX'A\  
    %       % Display the first 10 Zernike functions t,Q'S`eTU  
    %       x = -1:0.01:1; p":@>v?  
    %       [X,Y] = meshgrid(x,x); FW^.m?}|  
    %       [theta,r] = cart2pol(X,Y); |Y{PO&-?r  
    %       idx = r<=1;  1~EO+  
    %       z = nan(size(X)); hO;9Y|y  
    %       n = [0  1  1  2  2  2  3  3  3  3]; %c0z)R~  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; { y/-:=S)A  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; hT=f;6$  
    %       y = zernfun(n,m,r(idx),theta(idx)); (w2(qT&O  
    %       figure('Units','normalized') j];G*-iv{  
    %       for k = 1:10 51/sTx<Z}  
    %           z(idx) = y(:,k); ?z"YC&Tp  
    %           subplot(4,7,Nplot(k)) U$09p;~$Ww  
    %           pcolor(x,x,z), shading interp ;&`:|Hf*  
    %           set(gca,'XTick',[],'YTick',[]) G1r V<,#m  
    %           axis square .nPL2zO  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) u9@b <  
    %       end y*|L:!   
    % {c?ymkK  
    %   See also ZERNPOL, ZERNFUN2. +/Z0  
    _=T]PSauI  
    %   Paul Fricker 11/13/2006 9TW8o}k`  
    4g'}h`kh  
    ] j1 vbk  
    % Check and prepare the inputs: TPqvp|~2  
    % ----------------------------- s?+fPOF  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Q %y,;N"ro  
        error('zernfun:NMvectors','N and M must be vectors.') KT%{G8Y@M  
    end /sH0x,V  
    ul$omKI$}  
    if length(n)~=length(m) j #es2;  
        error('zernfun:NMlength','N and M must be the same length.') u!u5g.Q  
    end H CuK  
    &$Ci}{{n#  
    n = n(:); l}+Cdy9>  
    m = m(:); 64b<0;~  
    if any(mod(n-m,2)) \3: L Nt  
        error('zernfun:NMmultiplesof2', ... k?n]ZNlT  
              'All N and M must differ by multiples of 2 (including 0).') U>1b9G"_  
    end %U:C|  
    M0 L-u  
    if any(m>n) L3g9b53\  
        error('zernfun:MlessthanN', ... Jbkt'Z(&J  
              'Each M must be less than or equal to its corresponding N.') ef,F[-2^o  
    end y* rY~U#3  
    2gH _$  
    if any( r>1 | r<0 ) vQcUaPm\$  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') l)%mqW%  
    end GGp{b>E+ #  
    DUQ9AT#3  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) N@}gLBf  
        error('zernfun:RTHvector','R and THETA must be vectors.') lf;~5/%wMG  
    end 6VGo>b;  
    fvO;lA>`  
    r = r(:); ` )]lUvR  
    theta = theta(:); .h a`)@MsZ  
    length_r = length(r); a.1`\ $]d  
    if length_r~=length(theta) 4"z;CGE7  
        error('zernfun:RTHlength', ... =}"R5  
              'The number of R- and THETA-values must be equal.') E"ZEo9y@^  
    end Jtext%"eNg  
    >Rr!rtc'x  
    % Check normalization: l-Fmn/V  
    % -------------------- XS3{R   
    if nargin==5 && ischar(nflag) G IK u  
        isnorm = strcmpi(nflag,'norm'); $>|?k$(x  
        if ~isnorm *J.c $1#h  
            error('zernfun:normalization','Unrecognized normalization flag.') NuI T{3S  
        end ]|t9B/()i  
    else l,^xX =,  
        isnorm = false; 1x8(I&i  
    end (e 0_RQ  
    J&'>IA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $m{{,&}k  
    % Compute the Zernike Polynomials oO8]lHS?@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xP42xv9U  
    x Ridc^  
    % Determine the required powers of r: 3g^IXm:K$  
    % ----------------------------------- d8D yv#gT  
    m_abs = abs(m); cgzy0$8dj\  
    rpowers = []; B*32D8t`u  
    for j = 1:length(n) %bEGv:88s  
        rpowers = [rpowers m_abs(j):2:n(j)]; >s44  
    end |G>q:]+AV  
    rpowers = unique(rpowers); Y=hP Erw  
    t`) 'LT  
    % Pre-compute the values of r raised to the required powers, bGhhh/n  
    % and compile them in a matrix: Q3(hK<Qh;  
    % ----------------------------- o.p+j  
    if rpowers(1)==0 b8eDD+ulk  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]aREQ?ma&z  
        rpowern = cat(2,rpowern{:}); zwKg  
        rpowern = [ones(length_r,1) rpowern]; #W_i{bdO  
    else XSD"/_xD  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 58qaA\iw  
        rpowern = cat(2,rpowern{:}); i:MlD5 F  
    end "r:H5) !  
    |:~("rA+v  
    % Compute the values of the polynomials: n+v!H O"2u  
    % -------------------------------------- ?SHc}iaU#  
    y = zeros(length_r,length(n)); GH [ U!J  
    for j = 1:length(n) ": mCZUt  
        s = 0:(n(j)-m_abs(j))/2; I:r($m  
        pows = n(j):-2:m_abs(j); pZyb  
        for k = length(s):-1:1 L~'^W/N  
            p = (1-2*mod(s(k),2))* ... "K9vm^xP  
                       prod(2:(n(j)-s(k)))/              ... u?F7 L8q]  
                       prod(2:s(k))/                     ... Sn;/;^@(\  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Wh#os,U$  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9|us<k  
            idx = (pows(k)==rpowers); b>G qNf!  
            y(:,j) = y(:,j) + p*rpowern(:,idx); d w|-=~  
        end AaJ,=eQ  
         :_W 0Af09  
        if isnorm <|mE9u  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); oVKsic?  
        end 3(oZZz  
    end gEcnn .(S  
    % END: Compute the Zernike Polynomials ;mCGh~?G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gt].rwo"  
    ]L5Z=.z&  
    % Compute the Zernike functions: ^(E"3 c  
    % ------------------------------ I^rZgp<'i  
    idx_pos = m>0; }TXp<E"\  
    idx_neg = m<0; Enq6K1@%G  
    7J #g1  
    z = y; iKR8^sj7S  
    if any(idx_pos) 3j[w -Lfp  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); RZcx4fL}x  
    end m-~V+JU;x  
    if any(idx_neg) \i&vOH'  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4]|9!=\  
    end t-?KKU8  
    2 zmQp  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) mTI\,x%<OC  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. -Ib+#pX  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated $9 &Q.Kpq>  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive G{&yzHAuae  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ci{9ODN  
    %   and THETA is a vector of angles.  R and THETA must have the same E9Qd>o  
    %   length.  The output Z is a matrix with one column for every P-value, ZmYSi$B  
    %   and one row for every (R,THETA) pair. lN][xnP  
    % ' Z(MV&  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike O[5_ 9W 4  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) pJ)+}vascR  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) {YO%JTQ  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 uZ=UBir  
    %   for all p. jU3;jm.)  
    % XeIUdg4>R  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 6|"!sW`%N  
    %   Zernike functions (order N<=7).  In some disciplines it is b[&,%Sm+6  
    %   traditional to label the first 36 functions using a single mode U`8^N.Snrp  
    %   number P instead of separate numbers for the order N and azimuthal 9 z8<[>  
    %   frequency M. +|}K5q\  
    % a|6x!p2X  
    %   Example: ]L%R[Z!3  
    % 0F0Q=dZ  
    %       % Display the first 16 Zernike functions ;ow~vO,x  
    %       x = -1:0.01:1; /v;)H#;  
    %       [X,Y] = meshgrid(x,x); 8y 4D9_{  
    %       [theta,r] = cart2pol(X,Y); :+%h  
    %       idx = r<=1; A 4W  
    %       p = 0:15; E;GR;i{t  
    %       z = nan(size(X)); L->f= 8L  
    %       y = zernfun2(p,r(idx),theta(idx)); d;NFkA(df  
    %       figure('Units','normalized') ]ZryY EB  
    %       for k = 1:length(p) h<^:Nn  
    %           z(idx) = y(:,k); #()cG  
    %           subplot(4,4,k) zcD_}t_K  
    %           pcolor(x,x,z), shading interp +GPT:\*q6  
    %           set(gca,'XTick',[],'YTick',[]) G=bP<XF  
    %           axis square 0@FM^ejA#  
    %           title(['Z_{' num2str(p(k)) '}']) jcv1z v.  
    %       end dD.d?rnZq7  
    % "aCb;2Rs  
    %   See also ZERNPOL, ZERNFUN. KZ<RDXVT  
    ap$ tu3j  
    %   Paul Fricker 11/13/2006 +^&v5[$R  
    U3j~}H.D1  
    E][{RTs  
    % Check and prepare the inputs: vo( j@+dz  
    % ----------------------------- p,AD!~n`  
    if min(size(p))~=1 /@nRL  
        error('zernfun2:Pvector','Input P must be vector.') 64 \5v?C  
    end #G , *j  
    Vg,>7?]6h  
    if any(p)>35 )D@n?qbG  
        error('zernfun2:P36', ... 4(0t GF  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... }jY[| >z  
               '(P = 0 to 35).']) +S5_J&~  
    end a6k(O8Ank3  
    9X {nJ"  
    % Get the order and frequency corresonding to the function number: X-N$+[#  
    % ---------------------------------------------------------------- hp z*jyh8  
    p = p(:); c>i*HN}Z|  
    n = ceil((-3+sqrt(9+8*p))/2); ks#Z~6+3  
    m = 2*p - n.*(n+2); n40MP5RxY  
    if!`Qid  
    % Pass the inputs to the function ZERNFUN: gUszMhHX  
    % ---------------------------------------- JJHvj=9'o  
    switch nargin CpqSn/  
        case 3 Qdr-GODx  
            z = zernfun(n,m,r,theta); wAOVH].  
        case 4 ~q T1<k  
            z = zernfun(n,m,r,theta,nflag); U1HD~  
        otherwise :k )<1ua  
            error('zernfun2:nargin','Incorrect number of inputs.') ?^$4)Y>Kf  
    end 6j"I5,-~!  
    v4>"p!_C  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) OZ14-}Lr5  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 7C?mD75j  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of :+^$?[6]  
    %   order N and frequency M, evaluated at R.  N is a vector of zu*G4?]~h  
    %   positive integers (including 0), and M is a vector with the 5m7Ax] \  
    %   same number of elements as N.  Each element k of M must be a ZFuJ2 :  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ;q&D,4r]  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is XhD fI &  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix hGo|2@sc  
    %   with one column for every (N,M) pair, and one row for every UG'U D"  
    %   element in R. [5eT|uy  
    % RrpF i'R  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- kBT}Siw  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is A}Dpw[Q2@8  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to yW(+?7U  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ~rX6owBq  
    %   for all [n,m]. J+NK+,_*M  
    % HgATH  
    %   The radial Zernike polynomials are the radial portion of the ]a|;G  
    %   Zernike functions, which are an orthogonal basis on the unit GXlg%  
    %   circle.  The series representation of the radial Zernike / cen# pb  
    %   polynomials is C$ `Y[w  
    % :Sn3|`HDm  
    %          (n-m)/2 4"(zi5`e  
    %            __ 9Zsb1 M!n>  
    %    m      \       s                                          n-2s 6SO7iFS  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Jv.R?1;8i  
    %    n      s=0 d@f2Vxe7  
    % F-,{+B66  
    %   The following table shows the first 12 polynomials. dTQvz9C  
    % T`ZJ=gv  
    %       n    m    Zernike polynomial    Normalization "[S 6w  
    %       --------------------------------------------- AR6vc  
    %       0    0    1                        sqrt(2) g2<S4  
    %       1    1    r                           2 jyH_/X5i7  
    %       2    0    2*r^2 - 1                sqrt(6) SY)$2RC+}  
    %       2    2    r^2                      sqrt(6) []!r|R3  
    %       3    1    3*r^3 - 2*r              sqrt(8) 5m?$\h  
    %       3    3    r^3                      sqrt(8) F/>Pv q]  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) * .VZ(wX  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) S)|b%mVwR  
    %       4    4    r^4                      sqrt(10) +##I4vP  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) -%) !XB  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) N`6|Y  
    %       5    5    r^5                      sqrt(12) !*UdY(  
    %       --------------------------------------------- HWOH8q{f!  
    % FN EmGz/4  
    %   Example: J}\]<aC  
    % :Ia&,;Gc  
    %       % Display three example Zernike radial polynomials v nC&1  
    %       r = 0:0.01:1; t+J6P)=  
    %       n = [3 2 5]; xU<lv{m`D  
    %       m = [1 2 1]; fr2w k}/b  
    %       z = zernpol(n,m,r); M?zAkHNS$  
    %       figure g"? D>}@=  
    %       plot(r,z) ?+=|{{l  
    %       grid on JHH&@Cn  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 82!GM.b  
    % Vp{2Z9]}  
    %   See also ZERNFUN, ZERNFUN2. oz@6%3+  
     yE,o~O  
    % A note on the algorithm. 695ppiKU  
    % ------------------------ ++"PPbOe&D  
    % The radial Zernike polynomials are computed using the series ?} tQaj  
    % representation shown in the Help section above. For many special 7"i*J6y*  
    % functions, direct evaluation using the series representation can hO@3-SRa,k  
    % produce poor numerical results (floating point errors), because 0*@S-Lj^c  
    % the summation often involves computing small differences between o|q#A3%?  
    % large successive terms in the series. (In such cases, the functions Vnb#N4vR  
    % are often evaluated using alternative methods such as recurrence IuW10}"9  
    % relations: see the Legendre functions, for example). For the Zernike ]_8 \g`"u  
    % polynomials, however, this problem does not arise, because the yo?Q%w'Nh  
    % polynomials are evaluated over the finite domain r = (0,1), and mP[u[|]  
    % because the coefficients for a given polynomial are generally all oF xVK  
    % of similar magnitude. ", )  
    %  U~t(YT  
    % ZERNPOL has been written using a vectorized implementation: multiple kq0m^`  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] :zRboqe(cc  
    % values can be passed as inputs) for a vector of points R.  To achieve eCd?.e0@j  
    % this vectorization most efficiently, the algorithm in ZERNPOL e*s{/a?,  
    % involves pre-determining all the powers p of R that are required to I0RWdOK8K  
    % compute the outputs, and then compiling the {R^p} into a single dxWw%_Q  
    % matrix.  This avoids any redundant computation of the R^p, and /Ql}jSKi  
    % minimizes the sizes of certain intermediate variables. ,$-PC=Ti(  
    % [F EQ@  
    %   Paul Fricker 11/13/2006 &_j4q  
    Q4q#/z  
    Zh^w)}(W  
    % Check and prepare the inputs: OhEL9"\<  
    % ----------------------------- Din)5CxFX  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) p]4 sN  
        error('zernpol:NMvectors','N and M must be vectors.') GK&Dd"v  
    end n\Ixv  
    HXI}f\6x  
    if length(n)~=length(m) 90}B*3x  
        error('zernpol:NMlength','N and M must be the same length.') 9lV'3UG-?  
    end cC.DBYV+-  
    2_X0Og8s[  
    n = n(:); e IA=?k.y  
    m = m(:); ^ BKr0~4A  
    length_n = length(n); nT"z(\i.!J  
    D9 en  
    if any(mod(n-m,2)) ? Q}{&J  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') y{JkY\g  
    end ]XU#i#;c  
    i;Y^}2   
    if any(m<0) 4>*`26  
        error('zernpol:Mpositive','All M must be positive.') DAW%?(\,  
    end B!@0(A  
    .~J^`/o  
    if any(m>n) _wCSL.  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') I]X<L2  
    end Sdp1h0E}7=  
    6-"&jbvm  
    if any( r>1 | r<0 ) 46~ug5gV  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') .U_=LV]C  
    end 9lv 2  
    if>] )g2lr  
    if ~any(size(r)==1) &bQ^J%\  
        error('zernpol:Rvector','R must be a vector.') e-mlvi^-  
    end 4a-wGx#h  
    ^MUM04l  
    r = r(:); |:z%7J3wP  
    length_r = length(r); 1zRO== b  
    Q*: Ow]  
    if nargin==4 zdCt#=QV?R  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm');  t2iFd?  
        if ~isnorm jLTs1`I/F  
            error('zernpol:normalization','Unrecognized normalization flag.') u2QJDLMJv  
        end 8@-US , |  
    else yFG&Ir  
        isnorm = false; X*KT=q^?n  
    end GF&"nW9A  
    _qV_(TpS+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A\`Uu&  
    % Compute the Zernike Polynomials )1/O_N6C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Lst5  
    _wBPn6gg`  
    % Determine the required powers of r: ^d,d<Uc  
    % ----------------------------------- +Q.[W`goV  
    rpowers = []; A@UnrbX:  
    for j = 1:length(n) pN[i%\vh  
        rpowers = [rpowers m(j):2:n(j)]; i+}M#Y-O  
    end e 6*=Si}V  
    rpowers = unique(rpowers); ''G @n*  
    aC*J=_9o #  
    % Pre-compute the values of r raised to the required powers, 8Ex0[ e  
    % and compile them in a matrix: "TPMSx&Ei  
    % ----------------------------- Z_%>yqDC  
    if rpowers(1)==0 /-T%yuU  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6o!"$IH4  
        rpowern = cat(2,rpowern{:}); 8QU`SoS9  
        rpowern = [ones(length_r,1) rpowern]; ;\h'A(  
    else c}A^0,"z>  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); vsK>?5{C-  
        rpowern = cat(2,rpowern{:}); #ed]zI9O  
    end Hogr#Sn2  
    ~1p f ?  
    % Compute the values of the polynomials: )jg3`I@  
    % -------------------------------------- HO"(eDW6z  
    z = zeros(length_r,length_n); 7 UR)4dYA  
    for j = 1:length_n ~jgd92`{z  
        s = 0:(n(j)-m(j))/2; a`}-^;}SW  
        pows = n(j):-2:m(j); [yz;OoA:;  
        for k = length(s):-1:1 R0Qp*&AL  
            p = (1-2*mod(s(k),2))* ... \C#Vh7z"2&  
                       prod(2:(n(j)-s(k)))/          ... tZJKB1#WbP  
                       prod(2:s(k))/                 ... |$Td-M^)  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... yDPek*#^"q  
                       prod(2:((n(j)+m(j))/2-s(k))); QFMS]  
            idx = (pows(k)==rpowers); -szvO_UP  
            z(:,j) = z(:,j) + p*rpowern(:,idx); uaiG (O   
        end "QMHY\C  
         LTxOq|/Cq  
        if isnorm 1!~9%=%  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); epQ7@9,Q  
        end K.z@Vx.  
    end # aC}\  
    -Jb I7Le  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  h\k@7wgu  
    @9Rg g9r  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ;EDc1:  
    K-vG5t0$\/  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)