非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 D8{,}@
function z = zernfun(n,m,r,theta,nflag) ?L0 |$#Iw
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ksTK'7*
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [.}Uzx
% and angular frequency M, evaluated at positions (R,THETA) on the G1\F7A
% unit circle. N is a vector of positive integers (including 0), and %w?C)$Kn\
% M is a vector with the same number of elements as N. Each element $f%om)
% k of M must be a positive integer, with possible values M(k) = -N(k) E]}_hZU
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, :5BCW68le
% and THETA is a vector of angles. R and THETA must have the same 56MY@
% length. The output Z is a matrix with one column for every (N,M) Zl{9G?abCT
% pair, and one row for every (R,THETA) pair. N.0g%0A.D
% !l]_c5
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @AM11v\:
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ahQY-%>
% with delta(m,0) the Kronecker delta, is chosen so that the integral wWSo+40
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3@:O1i
% and theta=0 to theta=2*pi) is unity. For the non-normalized &er,Wyc(
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 8]oolA:^4s
% @biU@[D
% The Zernike functions are an orthogonal basis on the unit circle. 9aNOfs8(
% They are used in disciplines such as astronomy, optics, and Ql%B=vgKL
% optometry to describe functions on a circular domain. Zd88+GS,#
% V%z?wDC
% The following table lists the first 15 Zernike functions. )0DgFA6k_
% SUv'cld
% n m Zernike function Normalization 3,K\ZUU.,
% -------------------------------------------------- s;..a&C'
% 0 0 1 1 |28'<BL
% 1 1 r * cos(theta) 2 (> _Lb
% 1 -1 r * sin(theta) 2 #oR`_Dm)P
% 2 -2 r^2 * cos(2*theta) sqrt(6) ~)n[Vf
% 2 0 (2*r^2 - 1) sqrt(3) H^54o$5
% 2 2 r^2 * sin(2*theta) sqrt(6) ca3SE^
% 3 -3 r^3 * cos(3*theta) sqrt(8) 8};kNW^2m
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) =<7z
:]
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) \yZVn6GVr
% 3 3 r^3 * sin(3*theta) sqrt(8) _/'VD!(MV
% 4 -4 r^4 * cos(4*theta) sqrt(10) J@"UFL'^
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jm@,Ihz=wI
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) FJ4,|x3v[x
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5ba e-
% 4 4 r^4 * sin(4*theta) sqrt(10) \#WWJh"W
% -------------------------------------------------- em5~4;&'
% wy8Q=X:vP
% Example 1: ;obOr~Jx'5
% O!^ >YvOh
% % Display the Zernike function Z(n=5,m=1) J3~%9MCJ
% x = -1:0.01:1; {Z7ixc523
% [X,Y] = meshgrid(x,x); u|T]Ne
% [theta,r] = cart2pol(X,Y); #oFyi @U
% idx = r<=1; ,Q3OQ[Nmh
% z = nan(size(X)); 97$Q?a8S@
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 8|<</v8i
% figure .@%L8_sMR
% pcolor(x,x,z), shading interp Kh[l};/F
% axis square, colorbar _)~1'tCs}h
% title('Zernike function Z_5^1(r,\theta)') UP$>,05z6
% l2:-).7xt
% Example 2: U#]J5'i
% # ACT&J
% % Display the first 10 Zernike functions 'RhS%l
% x = -1:0.01:1; 5S2 j5M00
% [X,Y] = meshgrid(x,x); JN4gH4ez)
% [theta,r] = cart2pol(X,Y); !LM`2|3$
% idx = r<=1; HA,8O[jon
% z = nan(size(X)); J*MH`;-
% n = [0 1 1 2 2 2 3 3 3 3]; "]kzt ux
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; M_Q`9
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ot[ZFF\
% y = zernfun(n,m,r(idx),theta(idx)); [Eccj`\e g
% figure('Units','normalized') Ez"*',(
% for k = 1:10 /]'&cD 1
% z(idx) = y(:,k); >
Xh=P%
% subplot(4,7,Nplot(k)) :"Otsb7
% pcolor(x,x,z), shading interp rab$[?]
% set(gca,'XTick',[],'YTick',[]) U# S-x5Gn
% axis square TfT^.p*
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9jY+0h*uP
% end |aAyWK S
% ?bt;i>O\
% See also ZERNPOL, ZERNFUN2. }e/vKWfT
,zr9* t
% Paul Fricker 11/13/2006 xw_klHL-o
ZS4dW_*[
{U$XHG
% Check and prepare the inputs: pfHjs3A=
% ----------------------------- dO%f ;m>#
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) k ,ldi
error('zernfun:NMvectors','N and M must be vectors.') y0(.6HI
end Dy,MQIM|!
i%.k{MY
if length(n)~=length(m) E;{CoL
error('zernfun:NMlength','N and M must be the same length.') ZD'mwj+K
end NK/y,f6
LKp;sV
n = n(:); #n{4f1TZ
m = m(:); KpLaQb
if any(mod(n-m,2)) 3@\/5I xn
error('zernfun:NMmultiplesof2', ... -,+C*|mu
'All N and M must differ by multiples of 2 (including 0).') gC(S(osF
end d/j?.\
NfPWcK[
if any(m>n) u&uFXOc'
error('zernfun:MlessthanN', ... ;$zvm`|:
'Each M must be less than or equal to its corresponding N.') ;`LG WT-<F
end tc[Ld#
VBPtM{g
if any( r>1 | r<0 ) ,cS#
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9x!kvB6
end @ Do.Wgt
%LP4RZ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 6q8}8;STTY
error('zernfun:RTHvector','R and THETA must be vectors.') &z40l['4bz
end }DM W,+3
Z8FgxR
r = r(:); Nv.
theta = theta(:); P ?f${t+
length_r = length(r); :%J;[bS+
if length_r~=length(theta) xok
T
error('zernfun:RTHlength', ... aReJ@
'The number of R- and THETA-values must be equal.') He'VqUw_
end X"d"a={]
RHn3\N
% Check normalization: 3{|~'5*
% -------------------- 4]tg! ks
if nargin==5 && ischar(nflag) M>m!\bb%.
isnorm = strcmpi(nflag,'norm'); 2"Wq=qy\J
if ~isnorm (?8i^T?WP=
error('zernfun:normalization','Unrecognized normalization flag.') _,60pr3D'
end C.:S@{sK
else Dt[+HCCY:
isnorm = false; N8At N\e
end Vf~-v$YI
,)*[Xa_n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jQm~F`z
% Compute the Zernike Polynomials aV|VC$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OYt_i'Q
\RR`
F .7
% Determine the required powers of r: K/Yeh<_&
% ----------------------------------- q x1Js3%
m_abs = abs(m); 5j.@)XXe
rpowers = []; UakVmVN/P
for j = 1:length(n) 8CRbo24"s
rpowers = [rpowers m_abs(j):2:n(j)]; G\MeJSt*
end tjRwbnT"
rpowers = unique(rpowers); *j]Bo,AC
qGH[kd
% Pre-compute the values of r raised to the required powers, $`7Fk%#+e
% and compile them in a matrix: [<U=)!Swg
% ----------------------------- $8U$.~v
if rpowers(1)==0 v5\ALWy+p
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); eL"'-d+]
rpowern = cat(2,rpowern{:}); CSoVB[vS
rpowern = [ones(length_r,1) rpowern]; C^,baCX
else fi>.X99(G
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :Ob^b3<t
rpowern = cat(2,rpowern{:}); O>hh
end &l]F&-
wMN;<