非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 0BOL0<Wq
function z = zernfun(n,m,r,theta,nflag) 4@-Wp]
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. \ow(4O#
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4XeO^#
% and angular frequency M, evaluated at positions (R,THETA) on the E/E|*6R
% unit circle. N is a vector of positive integers (including 0), and Wx8;+!2Q/
% M is a vector with the same number of elements as N. Each element Z,F1n/7
% k of M must be a positive integer, with possible values M(k) = -N(k) J!'IkC$>
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, X0KUnxw
% and THETA is a vector of angles. R and THETA must have the same a$LoQ<f_
% length. The output Z is a matrix with one column for every (N,M) ?W&ajH_T
% pair, and one row for every (R,THETA) pair. XK(aH~7xme
%
O@rZ^Aa
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike I#zL-RXT
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), U.|0y =
% with delta(m,0) the Kronecker delta, is chosen so that the integral g#5t8w
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, .O
PBET(gv
% and theta=0 to theta=2*pi) is unity. For the non-normalized Ba
n^wX
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. YJwffV}nd
% }5?|iUH|
% The Zernike functions are an orthogonal basis on the unit circle. Ft>,
% They are used in disciplines such as astronomy, optics, and n$"BF\eM
% optometry to describe functions on a circular domain. D,s[{RW+q
% u 0 K1n_
% The following table lists the first 15 Zernike functions. /{Z<!7u;U
% -"xC\R
% n m Zernike function Normalization I>>X-}
% -------------------------------------------------- w1= f\
% 0 0 1 1 9O:-q[K**
% 1 1 r * cos(theta) 2 K*"Fpx{M
% 1 -1 r * sin(theta) 2 XJ3aaMh"
% 2 -2 r^2 * cos(2*theta) sqrt(6) VO*fC
% 2 0 (2*r^2 - 1) sqrt(3) mpl^LF[
% 2 2 r^2 * sin(2*theta) sqrt(6) `h1>rP
% 3 -3 r^3 * cos(3*theta) sqrt(8) ~@iYP/=/Q
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 'W[Nr
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) |%=c<z+8
% 3 3 r^3 * sin(3*theta) sqrt(8) "6iq_!#L
% 4 -4 r^4 * cos(4*theta) sqrt(10) ;7!u(XzN
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U[!wu]HMF
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) PMiG:bM
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v1E(K09h2
% 4 4 r^4 * sin(4*theta) sqrt(10) IPnx5#eB
% -------------------------------------------------- .~4DlT
% RD*.n1N1
% Example 1: w{Y:p[}
% @ds.)sKA>
% % Display the Zernike function Z(n=5,m=1) Wt!NLlN8
% x = -1:0.01:1; &>hln<a>
% [X,Y] = meshgrid(x,x); L4Si0 K
% [theta,r] = cart2pol(X,Y); 4[K6 ZDBU
% idx = r<=1; *&W1|Qkg_
% z = nan(size(X));
NW?h~2
% z(idx) = zernfun(5,1,r(idx),theta(idx)); p,#**g:
% figure 5U(ry6fI=
% pcolor(x,x,z), shading interp T-lHlm
% axis square, colorbar [2zS@p
% title('Zernike function Z_5^1(r,\theta)') kL%o9=R1
% Je~<2EsQ
% Example 2: ~ponYc.Y
% Yo2n[
% % Display the first 10 Zernike functions m?<5-"hz
% x = -1:0.01:1; 4iZ7BD
% [X,Y] = meshgrid(x,x); `~ R%}ID
% [theta,r] = cart2pol(X,Y); 1${Cwb/F
% idx = r<=1; c(!{_+q"
% z = nan(size(X)); B,ZLX/c9
% n = [0 1 1 2 2 2 3 3 3 3]; u_ym=N57`
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; `z`"0;,7S
% Nplot = [4 10 12 16 18 20 22 24 26 28]; <ApzcyC
% y = zernfun(n,m,r(idx),theta(idx)); )Ft>X9$
% figure('Units','normalized') =tfS@o/n
% for k = 1:10 ILXV yU
% z(idx) = y(:,k); 7j\jOklV
% subplot(4,7,Nplot(k)) y Ide]
% pcolor(x,x,z), shading interp Pb@9<N Xm'
% set(gca,'XTick',[],'YTick',[]) 7_AcvsdW
% axis square 0p ZX _L'
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;=?KQq f
% end [d,")Ng
% ngQ]
% See also ZERNPOL, ZERNFUN2. dK?vg@|'
q|ww fPez7
% Paul Fricker 11/13/2006 G+f@m,
qi-!iT(fe
swT/
tesj
% Check and prepare the inputs: -<WQ>mrB&
% ----------------------------- (8OaXif
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i.*Utm`1"e
error('zernfun:NMvectors','N and M must be vectors.') <YBA
7i
end JGKiVBN
-!z,t7!
if length(n)~=length(m) 06S-3bis
error('zernfun:NMlength','N and M must be the same length.') [1 gWc`#
end .jC-&(R
+
<