切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10991阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 $Asr`Q1i   
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! cI:-Z{M7z  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 iKAusWj  
    function z = zernfun(n,m,r,theta,nflag) fzPZ|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. bK*~ol  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N BJy;-(JP  
    %   and angular frequency M, evaluated at positions (R,THETA) on the  3+U]?7t  
    %   unit circle.  N is a vector of positive integers (including 0), and L l}yJ#3,  
    %   M is a vector with the same number of elements as N.  Each element BC77<R!E)  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) J=H)JH3  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, H=~9CJ+tc  
    %   and THETA is a vector of angles.  R and THETA must have the same /tj$luls5  
    %   length.  The output Z is a matrix with one column for every (N,M) Ia4)uV8  
    %   pair, and one row for every (R,THETA) pair. 8ObeiVXf)  
    % tC)6  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /.Q4~Hw%}  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), G%{0i20_  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral D$q'FZH  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~ap2m  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 4 b,N8  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [Qj;/  
    % E^CiOTN  
    %   The Zernike functions are an orthogonal basis on the unit circle. Tv$sqVe9  
    %   They are used in disciplines such as astronomy, optics, and m;,xmEp  
    %   optometry to describe functions on a circular domain. ^3~e/PKM  
    % /,tAoa~FA  
    %   The following table lists the first 15 Zernike functions. !#N\ b  
    % $B .Qc!m  
    %       n    m    Zernike function           Normalization &c%Y<1e`%  
    %       -------------------------------------------------- #b)e4vwCq  
    %       0    0    1                                 1 T@ YGB]*Y  
    %       1    1    r * cos(theta)                    2 C+N k"l9  
    %       1   -1    r * sin(theta)                    2 m_7 nz!h  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 3z8C  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ,o#kRWRG  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ] d?x$>  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) E>uVofhml  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8)  .\:J~(  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) X#p Wyo~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) "484 n/D  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) N4!<Xj  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) E"PcrWB&  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Lx[ ,Z,kD  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) fiDl8=~@  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) !8RwO%c(  
    %       -------------------------------------------------- !0}\&<8/m  
    % <48<86TP  
    %   Example 1: 0L-!! c3  
    % ftbpqp'  
    %       % Display the Zernike function Z(n=5,m=1) 6lFfS!ZFA  
    %       x = -1:0.01:1; +OHGn;C  
    %       [X,Y] = meshgrid(x,x); =xN= #  
    %       [theta,r] = cart2pol(X,Y); n1v5Q2xw  
    %       idx = r<=1; Ip *g'  
    %       z = nan(size(X)); L}k/9F.5  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ;;U :Jtn2  
    %       figure 1KE:[YQ1  
    %       pcolor(x,x,z), shading interp m`A% p  
    %       axis square, colorbar n.}T1q|l  
    %       title('Zernike function Z_5^1(r,\theta)') -ysn&d\rV  
    % A%bCMP  
    %   Example 2: ,H kj1x  
    % ]uh3R{a/  
    %       % Display the first 10 Zernike functions `BXS)xj  
    %       x = -1:0.01:1; R9o-`Wz  
    %       [X,Y] = meshgrid(x,x); Gh( A%x)  
    %       [theta,r] = cart2pol(X,Y); HIvZQQW|  
    %       idx = r<=1; F5T3E?_  
    %       z = nan(size(X)); ^+|De}`u  
    %       n = [0  1  1  2  2  2  3  3  3  3]; uaPx"  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; uE5X~  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28];  H`QQG!  
    %       y = zernfun(n,m,r(idx),theta(idx)); |NFZ(6vNh  
    %       figure('Units','normalized') 9$*s8}|  
    %       for k = 1:10 %&<LNEiUN  
    %           z(idx) = y(:,k); A*yi"{FLi  
    %           subplot(4,7,Nplot(k)) =d`5f@'rl  
    %           pcolor(x,x,z), shading interp o^p  
    %           set(gca,'XTick',[],'YTick',[]) 8At<Wic  
    %           axis square E,[xUz"  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]+ Ixi o  
    %       end [:EvTY  
    % _8?o'<!8?^  
    %   See also ZERNPOL, ZERNFUN2. 2t#L:vY  
    eVh - _  
    %   Paul Fricker 11/13/2006 $iw%(H  
    QO;4}rq  
    `)$_YZq|SR  
    % Check and prepare the inputs: 5]Ajf;W\  
    % ----------------------------- 6sfwlT  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }Fb!?['G5  
        error('zernfun:NMvectors','N and M must be vectors.') dFXc/VH')  
    end Q;/a F`  
    9WG{p[  
    if length(n)~=length(m) 4_?7&G0(  
        error('zernfun:NMlength','N and M must be the same length.') fPa9ofU/kr  
    end GIwh@4;  
    qCQ./"8  
    n = n(:); uKr1Z2  
    m = m(:); BRRj$)u  
    if any(mod(n-m,2)) j Ch=@<9  
        error('zernfun:NMmultiplesof2', ... .p` pG3  
              'All N and M must differ by multiples of 2 (including 0).') ,El!fgL  
    end Q 9F)  
    `TLzVB-j3  
    if any(m>n) u,. 3  
        error('zernfun:MlessthanN', ... p<Z3tD;Z  
              'Each M must be less than or equal to its corresponding N.') ^C)n$L>C0  
    end ,L> ar)B  
    = "ts`>  
    if any( r>1 | r<0 ) !RvRGRSyF  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') j{++6<tr  
    end +~zXDBS9  
    sN=6gCau  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) F"+o@9]  
        error('zernfun:RTHvector','R and THETA must be vectors.') jdA ]2]  
    end =qVP]  9  
    Kb ;dKQ  
    r = r(:); Dh| w^Q  
    theta = theta(:); C@\{ehG  
    length_r = length(r); &?,U_)x/  
    if length_r~=length(theta) p/6zEZ*  
        error('zernfun:RTHlength', ... \*vHB`.,ey  
              'The number of R- and THETA-values must be equal.') ?i\;:<e4  
    end m|tC24  
    f>jwN@(  
    % Check normalization: Wzq>JNn y  
    % -------------------- } l 667N  
    if nargin==5 && ischar(nflag) kh$_!BT  
        isnorm = strcmpi(nflag,'norm'); {2d_"lHBt  
        if ~isnorm n 1b(\PA  
            error('zernfun:normalization','Unrecognized normalization flag.') IXLO>>`  
        end @exey  
    else ed 59B)?l  
        isnorm = false; b,H[I!. %  
    end %V!iQzL1  
    2.uA|~qH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B:TR2G9UT  
    % Compute the Zernike Polynomials }Nj97 R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d;[u8t  
    l(W[_ D  
    % Determine the required powers of r: K]oM8H1  
    % ----------------------------------- ]w).8=I  
    m_abs = abs(m); zSTR^sgJ  
    rpowers = []; %hS|68pN6  
    for j = 1:length(n) B0}~G(t(  
        rpowers = [rpowers m_abs(j):2:n(j)]; D |bBu  
    end &Nl2s ey  
    rpowers = unique(rpowers); yGBQ0o7E  
    QWnndI_4p  
    % Pre-compute the values of r raised to the required powers, G#`\(NW  
    % and compile them in a matrix: #^#Kcg  
    % ----------------------------- `|O yRU"EK  
    if rpowers(1)==0 >cMd\%^t  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); c~,23wP1  
        rpowern = cat(2,rpowern{:}); AnsjmR:Jv  
        rpowern = [ones(length_r,1) rpowern]; Fqq6^um  
    else km5~Gc}  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8;P2A\ X  
        rpowern = cat(2,rpowern{:}); =s97Z-  
    end 7Ey#u4Q  
    mdih-u(T|  
    % Compute the values of the polynomials: u^W2UE\  
    % -------------------------------------- .\3`2  
    y = zeros(length_r,length(n)); eJ8]g49mD6  
    for j = 1:length(n) * A|-KKo\  
        s = 0:(n(j)-m_abs(j))/2; 10[Jl5+t  
        pows = n(j):-2:m_abs(j); [s1pM1x  
        for k = length(s):-1:1 Z,7R;,qX  
            p = (1-2*mod(s(k),2))* ... Cr/`keR  
                       prod(2:(n(j)-s(k)))/              ... DC+wD Bp;  
                       prod(2:s(k))/                     ... 1nhtM  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... X&m'.PA  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); N^0uit  
            idx = (pows(k)==rpowers); GyI-)Bl DC  
            y(:,j) = y(:,j) + p*rpowern(:,idx); %GEJnJ  
        end  4-Z()F  
         O09ke-lC  
        if isnorm ,{eU P0]  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .0HZNWRtb  
        end :c[n\)U[aa  
    end C_fY %O  
    % END: Compute the Zernike Polynomials X<OSN&d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &O\(;mFc  
    B@v\eF;  
    % Compute the Zernike functions: `<"m%>  
    % ------------------------------ !G5a*8]  
    idx_pos = m>0; N[|Nxm0z/C  
    idx_neg = m<0; u'A#%}3  
    ._:nw=Y0<}  
    z = y; (WlIwKP  
    if any(idx_pos) V:NI4dv/R  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #%3rTU  
    end -ZOBAG*  
    if any(idx_neg) hv$yV%.`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); YA(@5CZ  
    end cTZ.}eLh  
    E N^Uki`  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) {[Q0qi =  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. _+f+`]iM  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated w]j+9-._  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive >ndJNinV  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Wk;5/  
    %   and THETA is a vector of angles.  R and THETA must have the same OvL\u{(<F  
    %   length.  The output Z is a matrix with one column for every P-value, BG2)v.CU  
    %   and one row for every (R,THETA) pair. =wu*D5  
    % R614#yn-+  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike :bU(S<%M  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 6`01EIk  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) q]& .#&h  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 F r?z"  
    %   for all p. iGXI6`F"  
    % G)=HB7u[a  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 -7>)i  
    %   Zernike functions (order N<=7).  In some disciplines it is fg%&N2/(.B  
    %   traditional to label the first 36 functions using a single mode `rY2up#%  
    %   number P instead of separate numbers for the order N and azimuthal jLg@FDb~  
    %   frequency M. ["<nq`~  
    % OV CR0  
    %   Example: y9Y1PH7G  
    % iyx>q!P  
    %       % Display the first 16 Zernike functions L7Dh(y=;7  
    %       x = -1:0.01:1; )bOBQbj  
    %       [X,Y] = meshgrid(x,x); [jx0-3s:X  
    %       [theta,r] = cart2pol(X,Y); "T/>d%O1b  
    %       idx = r<=1; Tq<2`*Qs  
    %       p = 0:15; Z~G my7h(  
    %       z = nan(size(X)); 4NEq$t$Jn  
    %       y = zernfun2(p,r(idx),theta(idx)); `<\}FS`'  
    %       figure('Units','normalized') :y]Omp  
    %       for k = 1:length(p) JM$.O;y -  
    %           z(idx) = y(:,k); 46jh-4) <  
    %           subplot(4,4,k) Weoj|0|t  
    %           pcolor(x,x,z), shading interp -XoPia2  
    %           set(gca,'XTick',[],'YTick',[]) }SyxPXs  
    %           axis square !SOrCMHx  
    %           title(['Z_{' num2str(p(k)) '}']) PrF}a<:n:  
    %       end 6bc3 37b  
    % UO`;&e-DB  
    %   See also ZERNPOL, ZERNFUN. wVs.Vcwr  
    [ Mg8/Oy  
    %   Paul Fricker 11/13/2006 l kIn%=Z  
    b}ODWdJ1  
    qKS;x@  
    % Check and prepare the inputs: D,l,`jv*  
    % ----------------------------- ]6Ug>>x5  
    if min(size(p))~=1 ^yviV Y  
        error('zernfun2:Pvector','Input P must be vector.') FwKj+f"  
    end 5}ie]/[|  
    #4LFG\s  
    if any(p)>35 9V uq,dv  
        error('zernfun2:P36', ... aAvsb$  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 0x2!<z  
               '(P = 0 to 35).']) RNVbcd  
    end [t\B6XxT  
    vQVK$n`  
    % Get the order and frequency corresonding to the function number: `i~ Y Fr  
    % ---------------------------------------------------------------- l|`9:H  
    p = p(:); XK(`mEi  
    n = ceil((-3+sqrt(9+8*p))/2); f67NWFX  
    m = 2*p - n.*(n+2); 1B>Vt*=  
    @*N )i?>  
    % Pass the inputs to the function ZERNFUN: 9ch#}/7B  
    % ----------------------------------------  q}Z3?W  
    switch nargin k#TYKft  
        case 3 *="8?Z  
            z = zernfun(n,m,r,theta); bSwWszd~  
        case 4 n@C~ev@%S  
            z = zernfun(n,m,r,theta,nflag); rI$`9d  
        otherwise :yT-9Ze%q  
            error('zernfun2:nargin','Incorrect number of inputs.') [ //R~i?  
    end G}@#u9  
    h~U02"$  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) T@wcHg  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. WlB' YL-`g  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ;cQW sTfT  
    %   order N and frequency M, evaluated at R.  N is a vector of /z7VNkD  
    %   positive integers (including 0), and M is a vector with the ~pk(L[G  
    %   same number of elements as N.  Each element k of M must be a kID[#g'  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) {eJt,[Y *  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is wyx(FinIH  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix L(;WxHL  
    %   with one column for every (N,M) pair, and one row for every 1:C:?ZC#c  
    %   element in R. _s,ao '/  
    % %sh>;^58P  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Z!d7&T}  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ?B@;QjhjiJ  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to q:>^ "P{  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 5/",<1  
    %   for all [n,m]. e[u?_h  
    % foF19_2 ,  
    %   The radial Zernike polynomials are the radial portion of the }*]B-\>  
    %   Zernike functions, which are an orthogonal basis on the unit 14eW4~Mr  
    %   circle.  The series representation of the radial Zernike uaw~r2  
    %   polynomials is kEeo5X N  
    % pnyWcrBf  
    %          (n-m)/2 dBsX*}C  
    %            __ JG`Q;K  
    %    m      \       s                                          n-2s lA!"z~03*  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r RT/o$$  
    %    n      s=0 f8 /'%$N  
    %  I7+9~5p  
    %   The following table shows the first 12 polynomials. 3H\w2V  
    % aIy*pmpD=  
    %       n    m    Zernike polynomial    Normalization MfF~8  
    %       --------------------------------------------- [$(%dV6O  
    %       0    0    1                        sqrt(2) .%BT,$1K  
    %       1    1    r                           2 -Ue$T{;RoH  
    %       2    0    2*r^2 - 1                sqrt(6) Z0!5d<  
    %       2    2    r^2                      sqrt(6) {yAL+}  
    %       3    1    3*r^3 - 2*r              sqrt(8) /gcEw!JS  
    %       3    3    r^3                      sqrt(8) Eh</? Qv\  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ?,P3)&3g  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) :%&Q-kk4!  
    %       4    4    r^4                      sqrt(10) 0Q,g7K<d  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) v dbO(  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) M4LP$N  
    %       5    5    r^5                      sqrt(12) ;rI@ *An  
    %       --------------------------------------------- ',3HlOJ:  
    % k- V,~c  
    %   Example: +=Jir1SLV  
    % ;a=w5,h:  
    %       % Display three example Zernike radial polynomials 5 hj  
    %       r = 0:0.01:1; d4:`@*  
    %       n = [3 2 5]; 75nNh~?)\  
    %       m = [1 2 1]; <tpmUA[]  
    %       z = zernpol(n,m,r); e:E0"<  
    %       figure {_N,=DQ!  
    %       plot(r,z) HjvCujJ  
    %       grid on !?f5>Bl  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') v$~QCtc  
    % HD,xY4q&N  
    %   See also ZERNFUN, ZERNFUN2. |Z\R*b"  
    wHZW `  
    % A note on the algorithm. 2n><RZ/9  
    % ------------------------ 8 a!Rb-Q:  
    % The radial Zernike polynomials are computed using the series kh~'Cn "O  
    % representation shown in the Help section above. For many special V6$xcAE"</  
    % functions, direct evaluation using the series representation can "q}FPJ^l_N  
    % produce poor numerical results (floating point errors), because (Q[fS:U  
    % the summation often involves computing small differences between g,`A[z2  
    % large successive terms in the series. (In such cases, the functions %:>3n8n  
    % are often evaluated using alternative methods such as recurrence h'J|K^na  
    % relations: see the Legendre functions, for example). For the Zernike LZPuDf~/  
    % polynomials, however, this problem does not arise, because the 0.$hn  
    % polynomials are evaluated over the finite domain r = (0,1), and xX3'bsN  
    % because the coefficients for a given polynomial are generally all ]A FI\$qB\  
    % of similar magnitude. U~{du;\  
    % bn 6WjJ~Z+  
    % ZERNPOL has been written using a vectorized implementation: multiple ^Jb H?  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Yw5'6NU  
    % values can be passed as inputs) for a vector of points R.  To achieve 4p;aS$Q  
    % this vectorization most efficiently, the algorithm in ZERNPOL j.a`N2]WE  
    % involves pre-determining all the powers p of R that are required to mOo`ZcTU  
    % compute the outputs, and then compiling the {R^p} into a single +[\eFj|=  
    % matrix.  This avoids any redundant computation of the R^p, and 4=uhh  
    % minimizes the sizes of certain intermediate variables. &<zd.~N"  
    % $VAx:Y|  
    %   Paul Fricker 11/13/2006 !-s!f&_  
    *"9><lJ-!  
    fA'qd.{f^  
    % Check and prepare the inputs: 8eA+d5k\.  
    % ----------------------------- tg^sCxz9]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _X ~87  
        error('zernpol:NMvectors','N and M must be vectors.') 6nhMP$h  
    end \tx bhWN  
    Sxjub&=  
    if length(n)~=length(m) ~HQ9i%exg  
        error('zernpol:NMlength','N and M must be the same length.') 2|\A7.  
    end (R`B'OtGg  
    1+b{}d  
    n = n(:); aA7=q=  
    m = m(:); imQUR C  
    length_n = length(n); (E,T#uc{  
    R+g z<H.Q  
    if any(mod(n-m,2)) B?VhIP e  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') sNun+xsf^  
    end XdH\OJ  
    rt JtK6t  
    if any(m<0) +_-bJo2a  
        error('zernpol:Mpositive','All M must be positive.') 4|A>b})H  
    end </uO e.l>Q  
    t1E[uu,V8  
    if any(m>n) >#ZUfm{k$  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ,C3,TkA]  
    end @aJ!PV'ms  
    ;?C #IU  
    if any( r>1 | r<0 ) RN=` -*E1  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 12Y  
    end W0I#\b18  
    Z{?G.L*/  
    if ~any(size(r)==1) zB yqD$  
        error('zernpol:Rvector','R must be a vector.') ;#w3{ NB  
    end h6dPO"  
    0!v ->Dk  
    r = r(:); @cU&n6C@  
    length_r = length(r); % `Z! 4L  
    P2 Vg4   
    if nargin==4 G[jW<'f  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); zbJT&@z  
        if ~isnorm g^zs,4pPU<  
            error('zernpol:normalization','Unrecognized normalization flag.') V|\7')Qq  
        end e%W$*f  
    else ^*fQX1h<  
        isnorm = false; Cu6%h>@K$  
    end 4&l10fR5  
    Q_l'o3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /dnCwFXf  
    % Compute the Zernike Polynomials Haqm^Ky$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m,fAeln  
    Jmx Ko+-  
    % Determine the required powers of r: s+>:,U<A  
    % ----------------------------------- BT}&Y6  
    rpowers = []; nS>8bub30  
    for j = 1:length(n) (p%>j0<  
        rpowers = [rpowers m(j):2:n(j)]; k{t`|BnPKB  
    end RejQ5'Neh  
    rpowers = unique(rpowers); K _&4D'  
    rj!0GI  
    % Pre-compute the values of r raised to the required powers, vTn}*d.K=  
    % and compile them in a matrix: EYA,hc  
    % ----------------------------- qx%}knB  
    if rpowers(1)==0 Yup3^E w&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); y( y8+ZT  
        rpowern = cat(2,rpowern{:}); s&j-\bOic9  
        rpowern = [ones(length_r,1) rpowern]; @B}aN@!/  
    else /Z7iLq~t"G  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j&k6O1_  
        rpowern = cat(2,rpowern{:}); 5atYOep  
    end 5ZBKRu  
    .9.2Be  
    % Compute the values of the polynomials: y r,=.?C-  
    % -------------------------------------- Sfdu`MQR  
    z = zeros(length_r,length_n); R LD`O9#j  
    for j = 1:length_n }V\N16f  
        s = 0:(n(j)-m(j))/2; }l=xiAF  
        pows = n(j):-2:m(j); "jw<V,,  
        for k = length(s):-1:1 R4-~jgzx  
            p = (1-2*mod(s(k),2))* ... m)oJFF  
                       prod(2:(n(j)-s(k)))/          ... ={u0_j W  
                       prod(2:s(k))/                 ... ge8/``=  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... -44&#l^}_u  
                       prod(2:((n(j)+m(j))/2-s(k))); G z)NwD  
            idx = (pows(k)==rpowers); W6Y@U$P#G  
            z(:,j) = z(:,j) + p*rpowern(:,idx); )+fh-Ui  
        end cv`~y'?D  
         I|Gp$ uq _  
        if isnorm x#:| }pR  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); "Iix )Ue  
        end Q%f|~Kl-hd  
    end LW(6$hpPp  
    b5^OQH{v  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  }dd8N5b  
    )}?#  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 /Dj=iBO  
    <h'5cO  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)