非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 HO|-@yOF^
function z = zernfun(n,m,r,theta,nflag) |E/L.gdP7
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. -[#n+`M
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1ywU@].6J]
% and angular frequency M, evaluated at positions (R,THETA) on the ES:!Vx9t0|
% unit circle. N is a vector of positive integers (including 0), and {GqXP0'
% M is a vector with the same number of elements as N. Each element w3*-^: ?j
% k of M must be a positive integer, with possible values M(k) = -N(k) `kBnSi o~
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, `m%dX'0E
% and THETA is a vector of angles. R and THETA must have the same DhKr;e
% length. The output Z is a matrix with one column for every (N,M) #'o7x'n^
% pair, and one row for every (R,THETA) pair. %.x@gi q
% 0??Yr
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 2O""4_G
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3-wD^4)O,
% with delta(m,0) the Kronecker delta, is chosen so that the integral GaNq2 G
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?H;{~n?
% and theta=0 to theta=2*pi) is unity. For the non-normalized V/#v\*JHFc
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. l`n5~Fs
% udqge?Tz
% The Zernike functions are an orthogonal basis on the unit circle. j^u[F"
% They are used in disciplines such as astronomy, optics, and ?KN:r E
% optometry to describe functions on a circular domain. !)H*r|*[
% @]
.VQ<X|0
% The following table lists the first 15 Zernike functions. r)l`
% I
,FqN}
% n m Zernike function Normalization \gKdDS
% -------------------------------------------------- X}JWf<=q
% 0 0 1 1 R ZcH+?7
% 1 1 r * cos(theta) 2 jq oPLbxT
% 1 -1 r * sin(theta) 2 >2-F2E,
% 2 -2 r^2 * cos(2*theta) sqrt(6) A]y*so!)>
% 2 0 (2*r^2 - 1) sqrt(3) /#q")4Mf
% 2 2 r^2 * sin(2*theta) sqrt(6) bejGfc
% 3 -3 r^3 * cos(3*theta) sqrt(8) $Lq:=7&LRn
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ]if;A ) '
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 0^<,(]!
% 3 3 r^3 * sin(3*theta) sqrt(8) P1d,8~;
% 4 -4 r^4 * cos(4*theta) sqrt(10) LF=c^9t
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xUj2]Q>R+
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) %jKH?%Ih
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W%8+t)
% 4 4 r^4 * sin(4*theta) sqrt(10) [yd6gH
% -------------------------------------------------- &6"P7X
% a&5g!;.
% Example 1: dK# h<q1
% OlcP(
% % Display the Zernike function Z(n=5,m=1) i:Mc(mW
% x = -1:0.01:1; 9/;{>RL=
% [X,Y] = meshgrid(x,x); T Oy7?;|=
% [theta,r] = cart2pol(X,Y); rF8
hr
% idx = r<=1; BjD&>gO)
% z = nan(size(X)); /?3:X*
% z(idx) = zernfun(5,1,r(idx),theta(idx)); q) _r3
% figure NWISS
% pcolor(x,x,z), shading interp 9s
$PrF
% axis square, colorbar 0eA5zFU7
% title('Zernike function Z_5^1(r,\theta)') .~<]HAwq
% aJ-}
% Example 2: (v;A'BjN
% YC)hX'A\
% % Display the first 10 Zernike functions t,Q'S`eTU
% x = -1:0.01:1; p":@>v?
% [X,Y] = meshgrid(x,x); FW^.m?}|
% [theta,r] = cart2pol(X,Y); |Y{PO&-?r
% idx = r<=1; 1~EO+
% z = nan(size(X)); hO;9Y|y
% n = [0 1 1 2 2 2 3 3 3 3]; %c0z)R~
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; {y/-:=S)A
% Nplot = [4 10 12 16 18 20 22 24 26 28]; hT=f;6$
% y = zernfun(n,m,r(idx),theta(idx)); (w2(qT&