切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11200阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 NbfV6$jo  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! friNo^v&  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 c54oQ1Q&"  
    function z = zernfun(n,m,r,theta,nflag) L "P$LEk  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. AK} wSXF  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N y08.R. l  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 00[Uk'Q*5  
    %   unit circle.  N is a vector of positive integers (including 0), and 5O%Q*\(  
    %   M is a vector with the same number of elements as N.  Each element D({% FQ"  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) @GK0j"_  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, pMe'fC~*  
    %   and THETA is a vector of angles.  R and THETA must have the same -uHD| }  
    %   length.  The output Z is a matrix with one column for every (N,M) I>B-[QEC  
    %   pair, and one row for every (R,THETA) pair. T'"aStt6  
    % #;# V1  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike O=?WI  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /Q 8E12  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral xlZ"F  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @bSxT,2  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 8vOKm)[%  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. @7e h/|Y,  
    % !ZJ" lm  
    %   The Zernike functions are an orthogonal basis on the unit circle. :GBWQXb G  
    %   They are used in disciplines such as astronomy, optics, and ;!v2kVuS]  
    %   optometry to describe functions on a circular domain. `lX |yy"  
    % *$1M= $  
    %   The following table lists the first 15 Zernike functions. 0&mOu #l  
    % ~Pq1@N>n  
    %       n    m    Zernike function           Normalization  yl0&|Ub  
    %       -------------------------------------------------- w]J9Kv1)-  
    %       0    0    1                                 1 wC+_S*M-K  
    %       1    1    r * cos(theta)                    2 cah1'Y  
    %       1   -1    r * sin(theta)                    2 g"Mqh!{ FI  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) SV0E7qX  
    %       2    0    (2*r^2 - 1)                    sqrt(3) `xMmo8u4  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Ue^2H[zs-  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) {7.."@Ob<v  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) $hZb<Xz  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) pC2ZN  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) u.ubw(vv  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) G0 Q} 1  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W ZdEfY{  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) :vZ8n6J[  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kv{uf$X*ve  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ,7&`V=C  
    %       -------------------------------------------------- ?f<JwF<  
    % 5 0uYU[W  
    %   Example 1: +[C dd{2  
    % ~47Bbom  
    %       % Display the Zernike function Z(n=5,m=1) (C>FM8$J  
    %       x = -1:0.01:1; Y /$`vgqs  
    %       [X,Y] = meshgrid(x,x); <Z GEmQ  
    %       [theta,r] = cart2pol(X,Y); `@1y|j:m  
    %       idx = r<=1; l$N b1&  
    %       z = nan(size(X)); Ysbd4 rN  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); HI)MBrj;r  
    %       figure d$Y3 a^O|  
    %       pcolor(x,x,z), shading interp o8Vtxnkg  
    %       axis square, colorbar 3NAU|//J  
    %       title('Zernike function Z_5^1(r,\theta)') c@;$6WSG^  
    % g S xK9P  
    %   Example 2: ^L#\z7  
    % G8b/eWtP  
    %       % Display the first 10 Zernike functions 9c9F C  
    %       x = -1:0.01:1; \i_y(;  
    %       [X,Y] = meshgrid(x,x); f'P}]_3(  
    %       [theta,r] = cart2pol(X,Y); AT Dm$ *  
    %       idx = r<=1; o>*vG  
    %       z = nan(size(X)); j}$dYbf$  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Au3> =x`  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; l,AK  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; KzD5>Xf]4$  
    %       y = zernfun(n,m,r(idx),theta(idx)); k.=67L  
    %       figure('Units','normalized') /^ *GoB  
    %       for k = 1:10 e[_W( v  
    %           z(idx) = y(:,k); 7.g)_W{7}  
    %           subplot(4,7,Nplot(k)) #!V [(/  
    %           pcolor(x,x,z), shading interp NJK?5{H'  
    %           set(gca,'XTick',[],'YTick',[]) Xb +)@Y4h  
    %           axis square DE"KbA0}  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) nn>< k"  
    %       end cfI5KLG~#  
    % pgT XyAP{  
    %   See also ZERNPOL, ZERNFUN2. N'hj  
    3S='/^l  
    %   Paul Fricker 11/13/2006 u=^0n2ez  
    Fq3[/'M^  
    iC- ?F cA  
    % Check and prepare the inputs: 8was/^9;  
    % ----------------------------- 0_b7*\xc  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) p_h)|*W{  
        error('zernfun:NMvectors','N and M must be vectors.') \%\b* OO  
    end nTrfbK@  
    ]}z;!D>  
    if length(n)~=length(m) _|%pe]St  
        error('zernfun:NMlength','N and M must be the same length.') V# Mw  
    end VesW7m*z  
    iw1((&^)"  
    n = n(:); 63:0Vt>hZ^  
    m = m(:); {MX_t/o=f  
    if any(mod(n-m,2)) ;-84cpfu  
        error('zernfun:NMmultiplesof2', ... 47I5Y5  
              'All N and M must differ by multiples of 2 (including 0).') ONQp-$  
    end 5MY+O\  
    9D74/3b*  
    if any(m>n)  |F5^mpU  
        error('zernfun:MlessthanN', ... W}B 4^l  
              'Each M must be less than or equal to its corresponding N.') mY"DYYR>  
    end pAg;Rib  
    o?A/  
    if any( r>1 | r<0 ) xTQV?g J  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') $4.mRS97g  
    end wqDRFZ1*P  
    ^Q8m) 0DP  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) !ZP1?l30  
        error('zernfun:RTHvector','R and THETA must be vectors.') $t5 0<1  
    end y$@d%U*rW^  
    YLk; ^?  
    r = r(:); js )G   
    theta = theta(:); Bu?"b=B*  
    length_r = length(r); Yjz'lWg  
    if length_r~=length(theta) 0@a6r=`el  
        error('zernfun:RTHlength', ... g3{)AX[Uy  
              'The number of R- and THETA-values must be equal.') M52kau  
    end ^EU& 6M2  
    cn ,zUG!-h  
    % Check normalization:  N3^pFy`  
    % -------------------- GEP YSp  
    if nargin==5 && ischar(nflag) 'qLk"   
        isnorm = strcmpi(nflag,'norm'); AEkgm^t.{  
        if ~isnorm |7WzTz  
            error('zernfun:normalization','Unrecognized normalization flag.') J)(H-xvV  
        end &B3Eq 1A  
    else ><iEVrpN  
        isnorm = false; gUDd2T#  
    end %o< &O(Y  
    2a*1q#MpAt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G}i\UXFE  
    % Compute the Zernike Polynomials q|2{W.P5qi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AF D/ J  
    ]OY6.m  
    % Determine the required powers of r: ri~dWx  
    % ----------------------------------- xMg&>}5  
    m_abs = abs(m); aA%$<ItH  
    rpowers = []; 9\TvX!)h  
    for j = 1:length(n) _J&u{  
        rpowers = [rpowers m_abs(j):2:n(j)]; q ,d]i/T  
    end rBs7,h  
    rpowers = unique(rpowers); Faa:h#  
    d%9I*Qo0,  
    % Pre-compute the values of r raised to the required powers, x@.iDP@(  
    % and compile them in a matrix: /6F 1=O(c>  
    % ----------------------------- Ed #%F-1sX  
    if rpowers(1)==0 M4M 4*o  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); `{I,!to  
        rpowern = cat(2,rpowern{:}); H_;Dq*  
        rpowern = [ones(length_r,1) rpowern]; F']Vg31c  
    else 8s8q`_.)(  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3f's>+,#%  
        rpowern = cat(2,rpowern{:}); 3leg,q d  
    end #f.@XIt'  
    ,Z_nV+l_  
    % Compute the values of the polynomials: v)N6ZOj*C  
    % -------------------------------------- V]H<:UE  
    y = zeros(length_r,length(n)); /(n)I  
    for j = 1:length(n) <t]c'  
        s = 0:(n(j)-m_abs(j))/2; C Cq<y  
        pows = n(j):-2:m_abs(j); psRm*,*O  
        for k = length(s):-1:1 K *vNv 4  
            p = (1-2*mod(s(k),2))* ... oiO3]P]P  
                       prod(2:(n(j)-s(k)))/              ... S,AZrgh,"X  
                       prod(2:s(k))/                     ... U'-MMwE]  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... e_]1e 7t  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); !dhZs?/UI  
            idx = (pows(k)==rpowers); =i%2/kdi0b  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Fh v)  
        end qCgP8U/jv  
         NL&g/4A[a  
        if isnorm R$,`}@VqZ3  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2!68W X  
        end C==tJog[  
    end 9[T#uh!DC  
    % END: Compute the Zernike Polynomials Xki/5roCQ|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eV9:AN}K=  
    l$m^{6IYc  
    % Compute the Zernike functions: w?M*n<) O  
    % ------------------------------ AaTtY d  
    idx_pos = m>0; oE)c8rE  
    idx_neg = m<0; I4|p;\`fK  
    ^ fK8~g;rB  
    z = y; u6r-{[W}  
    if any(idx_pos) rLL;NTN+/  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); }sJ% InL  
    end "r"]NyM  
    if any(idx_neg) 3pDZ}{ZZU  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); [&3"kb  
    end w5|@vB/pj  
    PY z | d  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ?,%N?  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. q"5 2-42  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated LoCxoAg  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive H`io|~Q  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, {?L}qV  
    %   and THETA is a vector of angles.  R and THETA must have the same &P+cTN9)  
    %   length.  The output Z is a matrix with one column for every P-value, [6|8Gx :  
    %   and one row for every (R,THETA) pair. v#/,,)m  
    % ?1412Tq5  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ,~4(td+R7  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Ppp&3h[dW)  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) /:USpuu  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 1gm{.*G  
    %   for all p. D 3HB`{  
    % )7`~U"r  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 JGdBpj:  
    %   Zernike functions (order N<=7).  In some disciplines it is DHJnz>bE  
    %   traditional to label the first 36 functions using a single mode \@F{Q-  
    %   number P instead of separate numbers for the order N and azimuthal rvfl~<G*  
    %   frequency M. \Fe5<G'v  
    % B"B  
    %   Example: 1b D c ct  
    % hOC,Eo  
    %       % Display the first 16 Zernike functions :8QG$Ua1  
    %       x = -1:0.01:1; b~~}(^Bg  
    %       [X,Y] = meshgrid(x,x); oDP|>yXC)  
    %       [theta,r] = cart2pol(X,Y); -OW$  
    %       idx = r<=1; {Y/  
    %       p = 0:15; 6/n;u{|  
    %       z = nan(size(X)); _j2`#|oG  
    %       y = zernfun2(p,r(idx),theta(idx)); SMy&K[hJ[  
    %       figure('Units','normalized') V('b|gsEo  
    %       for k = 1:length(p) [a Z)*L ;  
    %           z(idx) = y(:,k); QMsnfG  
    %           subplot(4,4,k) v m$v[  
    %           pcolor(x,x,z), shading interp M<L<mP}  
    %           set(gca,'XTick',[],'YTick',[]) Fca?'^X  
    %           axis square [&4y@  
    %           title(['Z_{' num2str(p(k)) '}']) %B?5l^W@  
    %       end qqAsh]Z  
    % 97 g-*K  
    %   See also ZERNPOL, ZERNFUN. @kK=|(OB'  
    BA5= D>T-  
    %   Paul Fricker 11/13/2006 KWYG\#S0]  
    ";xEuX  
    +Q9HsfX/  
    % Check and prepare the inputs: ;K_B,@:'  
    % ----------------------------- m6 gr!aT  
    if min(size(p))~=1 M]{!Nx  
        error('zernfun2:Pvector','Input P must be vector.') hh{liS% 10  
    end e8#3Y+Tc  
    GhT7:_r~  
    if any(p)>35 kO#`m ]  
        error('zernfun2:P36', ... !K2[S J  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... aD^MoB3  
               '(P = 0 to 35).']) (l,o UBRr  
    end loB/w{r*x  
    2=|IOkY  
    % Get the order and frequency corresonding to the function number: n" ~*9'  
    % ---------------------------------------------------------------- a]k&$  
    p = p(:); +!Ltn  
    n = ceil((-3+sqrt(9+8*p))/2); +u2Co_FJ&  
    m = 2*p - n.*(n+2); tvUvd(8 w  
    >tzXbmFp;  
    % Pass the inputs to the function ZERNFUN: t<7WM'2<y  
    % ---------------------------------------- d7P @_jO6  
    switch nargin "10VN*)J}  
        case 3 aFym&n\  
            z = zernfun(n,m,r,theta); {|%O)fr,  
        case 4 C"{on%  
            z = zernfun(n,m,r,theta,nflag); -T8 gV1*(<  
        otherwise l1[IXw?  
            error('zernfun2:nargin','Incorrect number of inputs.') M&FuXG%  
    end a\w | tf  
    E0Djo'64  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) PNgMLQI6  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. fJ2{w[ne  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of [r8 d+  
    %   order N and frequency M, evaluated at R.  N is a vector of GuWBl$|+b  
    %   positive integers (including 0), and M is a vector with the HW72 6K*  
    %   same number of elements as N.  Each element k of M must be a M[u3]dN  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) (dF;Gcw+  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is o(/ ia3  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix I%919  
    %   with one column for every (N,M) pair, and one row for every acY[?L_6J  
    %   element in R. Qu FCc1Q  
    % SsX05>  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 8$UZL  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 2gAdZE&Y  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to X-#mv|3  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 7 afA'.=  
    %   for all [n,m]. N>%KV8>{L  
    % sDm},=X}  
    %   The radial Zernike polynomials are the radial portion of the XhAcC  
    %   Zernike functions, which are an orthogonal basis on the unit $L8s/1up  
    %   circle.  The series representation of the radial Zernike 8'"/gC{  
    %   polynomials is sFCs_u1tNN  
    % I%>]!X  
    %          (n-m)/2  jnzz~:  
    %            __ s4`*0_n  
    %    m      \       s                                          n-2s "Vp: z V<S  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r `OReSg 2  
    %    n      s=0 k`mrRs  
    % B9)qv>m  
    %   The following table shows the first 12 polynomials. ku9F N  
    % Pq\V($gN  
    %       n    m    Zernike polynomial    Normalization Bj($_2M%+  
    %       --------------------------------------------- Po!JgcJ#\  
    %       0    0    1                        sqrt(2) MQH8Q$5D  
    %       1    1    r                           2 Y_3YO 2K]  
    %       2    0    2*r^2 - 1                sqrt(6) +Y9D!=_lj  
    %       2    2    r^2                      sqrt(6) i^cM@?  
    %       3    1    3*r^3 - 2*r              sqrt(8) *5'6 E'  
    %       3    3    r^3                      sqrt(8) k=~pA iRDN  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) D3AtYt  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) _& Uo|T  
    %       4    4    r^4                      sqrt(10) PSqtZN  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) h8= MVh(I  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) VueQP|   
    %       5    5    r^5                      sqrt(12) $CwTNm?  
    %       --------------------------------------------- pkV\D  
    % 27 YLg c  
    %   Example: 4U a~*58  
    % GlgORy=>  
    %       % Display three example Zernike radial polynomials 'j<:FUDJ  
    %       r = 0:0.01:1; 0/00 W6r0  
    %       n = [3 2 5]; [xs)u3b  
    %       m = [1 2 1]; fRa-bqQ  
    %       z = zernpol(n,m,r); {S"  
    %       figure '"fU2M<.  
    %       plot(r,z) L5qCv -{  
    %       grid on :f !=_^}  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest')  z0Z\d  
    % lp0T\ %  
    %   See also ZERNFUN, ZERNFUN2. c;8"vJ  
    i&'^9"Z)O  
    % A note on the algorithm. p<0kmA<B/  
    % ------------------------ < J<;?%]  
    % The radial Zernike polynomials are computed using the series uZ`d&CEh  
    % representation shown in the Help section above. For many special "K$Wh1<7  
    % functions, direct evaluation using the series representation can Q~Sv2  
    % produce poor numerical results (floating point errors), because cwWSNm|  
    % the summation often involves computing small differences between > ?{iv1  
    % large successive terms in the series. (In such cases, the functions 6[3Ioh  
    % are often evaluated using alternative methods such as recurrence 7~l  
    % relations: see the Legendre functions, for example). For the Zernike u388Wj   
    % polynomials, however, this problem does not arise, because the K0DXOVT\  
    % polynomials are evaluated over the finite domain r = (0,1), and XAULD]Q  
    % because the coefficients for a given polynomial are generally all ND55`KT4  
    % of similar magnitude. o|^?IQ7bpf  
    % ~ut& U  
    % ZERNPOL has been written using a vectorized implementation: multiple sg6w7fp>  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] k"^t?\Q%vI  
    % values can be passed as inputs) for a vector of points R.  To achieve &b@!DAwAJ  
    % this vectorization most efficiently, the algorithm in ZERNPOL hA1gkEM2o  
    % involves pre-determining all the powers p of R that are required to {?>bblw/d  
    % compute the outputs, and then compiling the {R^p} into a single s?G'l=CcKu  
    % matrix.  This avoids any redundant computation of the R^p, and r@ T-Hi  
    % minimizes the sizes of certain intermediate variables. fdq^!MWTi  
    % hDD~,/yVxs  
    %   Paul Fricker 11/13/2006 |!xfIR>=F  
    H6PXx  
    TH(Lzrbg  
    % Check and prepare the inputs: THbtu*El  
    % ----------------------------- \{M rQ2jd  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +.gf]|  
        error('zernpol:NMvectors','N and M must be vectors.') Q&.IlVB[  
    end _L:i=.hxN  
    ;*)fO? TG)  
    if length(n)~=length(m) _sf#J|kQ  
        error('zernpol:NMlength','N and M must be the same length.') 8%2rgA  
    end A}#]g>L  
    )S wG+k,  
    n = n(:); vzohq1r5  
    m = m(:); \\2k}TsB  
    length_n = length(n); =UB*xm%!  
    Oj4u!SY\j  
    if any(mod(n-m,2)) 7i+!^Qj?y  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') m>abK@5na  
    end 0x>/6 <<  
    b5n]Gp  
    if any(m<0) 68J 9T^84  
        error('zernpol:Mpositive','All M must be positive.') 35%[D Ukb  
    end x#:BE  
    z*dQIC  
    if any(m>n) {#w A !>.  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Rekb?|{z  
    end ;Oi[:Ck  
    [yYH>~SuwZ  
    if any( r>1 | r<0 ) C`yvBt40r  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') _[$T29:8\]  
    end c9*1$~(v0I  
    4[LLnF--  
    if ~any(size(r)==1) !Ig|m+  
        error('zernpol:Rvector','R must be a vector.') fd5ZaE#f  
    end :~ZqB\>i  
    *gM,x4Y  
    r = r(:); jIx8k8  
    length_r = length(r); ;LQ# *NjL\  
    w PG1P'w;  
    if nargin==4 Ss#@=:"P  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); d%#!nq{vd  
        if ~isnorm $S6HZG:N  
            error('zernpol:normalization','Unrecognized normalization flag.') o[bE  
        end t g KG&  
    else n*vTVt)dJ  
        isnorm = false; fr}1_0DDz  
    end ()QOZ+x_!  
    ?Y? gzD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i}/e}s<-6  
    % Compute the Zernike Polynomials |+Hp+9J  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :mXGIRi  
    _KB{J7bs<a  
    % Determine the required powers of r: "*++55  
    % ----------------------------------- T~i%j@Q.6  
    rpowers = []; W>5vRwx00  
    for j = 1:length(n) AW,v  
        rpowers = [rpowers m(j):2:n(j)]; [%j?.N  
    end ^CZCZ,v  
    rpowers = unique(rpowers); c;:">NR  
    (O)\#%,@R  
    % Pre-compute the values of r raised to the required powers, gk!E$NyE  
    % and compile them in a matrix: v2 29H<  
    % ----------------------------- B ~fSMB6h  
    if rpowers(1)==0 B :.@Qi^  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); sU) TXL'_!  
        rpowern = cat(2,rpowern{:}); G(U9rJ9  
        rpowern = [ones(length_r,1) rpowern]; {]wIM^$6+  
    else ?z2jk  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); U@Z>/ q  
        rpowern = cat(2,rpowern{:}); )E'Fke  
    end /y}"M  
    Bk?8 zYp  
    % Compute the values of the polynomials: ,:D=gQ@`  
    % -------------------------------------- V ]79vC  
    z = zeros(length_r,length_n); @ Ii-NmOr  
    for j = 1:length_n `I5O4|K)  
        s = 0:(n(j)-m(j))/2; 4p.^'2m  
        pows = n(j):-2:m(j); ?b||Cr  
        for k = length(s):-1:1 `NBbTQtgO  
            p = (1-2*mod(s(k),2))* ... O0^?f/&k  
                       prod(2:(n(j)-s(k)))/          ... '.?^uM  
                       prod(2:s(k))/                 ... ` ^DjEdUN  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Vclr)}5  
                       prod(2:((n(j)+m(j))/2-s(k))); "`pNH'   
            idx = (pows(k)==rpowers); b"I~_CL|  
            z(:,j) = z(:,j) + p*rpowern(:,idx); qu_)`wB  
        end n-DaX kK  
         R (G2qi  
        if isnorm 3gAR4  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); \[yr=X  
        end )zU:  
    end axmsrj W#  
     EIr@g  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  )4>2IQ  
    J_;N:7'p  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 }?F`t[+  
    !Z!g:II /  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)