非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 nP`#z&C
function z = zernfun(n,m,r,theta,nflag) 9XtR8MH
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ? t<yk(q
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %%`Q5I
% and angular frequency M, evaluated at positions (R,THETA) on the b#\i]2b:
% unit circle. N is a vector of positive integers (including 0), and #mu3`,9V
% M is a vector with the same number of elements as N. Each element :f<:>"<
% k of M must be a positive integer, with possible values M(k) = -N(k) klSzmi4M
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, o"h*@.
% and THETA is a vector of angles. R and THETA must have the same 17IT:T,'
% length. The output Z is a matrix with one column for every (N,M) _Q&O#f
% pair, and one row for every (R,THETA) pair. x[XN;W&
% O*%
1
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike XL!\Lx
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), NQb!?w
% with delta(m,0) the Kronecker delta, is chosen so that the integral l0AVyA4RFV
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,
sXe=4`O
% and theta=0 to theta=2*pi) is unity. For the non-normalized 7i(U?\A;.
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `-Yo$b;:
% fePt[U)2
% The Zernike functions are an orthogonal basis on the unit circle. ?[<C,w~$`
% They are used in disciplines such as astronomy, optics, and I!\;NVhv
% optometry to describe functions on a circular domain. ^|Bpo(
% 7bcl^~lY
% The following table lists the first 15 Zernike functions. 4rXjso|
% q u>5 rg-
% n m Zernike function Normalization ;&="aD
% -------------------------------------------------- q]PeS~PjF\
% 0 0 1 1 vm,/?]P
% 1 1 r * cos(theta) 2 N=4`jy =
% 1 -1 r * sin(theta) 2 xnz(hz6
% 2 -2 r^2 * cos(2*theta) sqrt(6) \~j6}4XS1.
% 2 0 (2*r^2 - 1) sqrt(3) #"PI%&
% 2 2 r^2 * sin(2*theta) sqrt(6) "^?|=sQ
% 3 -3 r^3 * cos(3*theta) sqrt(8) A\Ax5eeL
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) m3o+iYkMD
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) s^O>PEX&<I
% 3 3 r^3 * sin(3*theta) sqrt(8) H{&o_
% 4 -4 r^4 * cos(4*theta) sqrt(10) _Nze="Pt
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (jQ]<q%P
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5)
-w7g}
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Hzos$1DJ
% 4 4 r^4 * sin(4*theta) sqrt(10) T2Duz,
% -------------------------------------------------- 8M9LY9C
% .Y@)3
% Example 1: `8 Q3=^)3
% |n9q4*dN
% % Display the Zernike function Z(n=5,m=1) s+mNr3
% x = -1:0.01:1; #f*,mY|>
% [X,Y] = meshgrid(x,x); <qGVOAnz+
% [theta,r] = cart2pol(X,Y); mv%Zh1khn/
% idx = r<=1; ZAKNyA2
% z = nan(size(X)); L H>oG$a
% z(idx) = zernfun(5,1,r(idx),theta(idx)); z
xe6M~+
% figure Vs/Z8t
% pcolor(x,x,z), shading interp MSef2|"P#
% axis square, colorbar W
PDL$y
% title('Zernike function Z_5^1(r,\theta)') Z{'.fq2A
% 1w30Vj2<
% Example 2: <W$Ig@4[.d
% KDt@Xi6||
% % Display the first 10 Zernike functions t,CC~
% x = -1:0.01:1; MXQS6F#
% [X,Y] = meshgrid(x,x); A'jw;{8NpF
% [theta,r] = cart2pol(X,Y); WziX1%0$n
% idx = r<=1; hU3z4|~+
% z = nan(size(X)); A4kYEA
% n = [0 1 1 2 2 2 3 3 3 3]; jGp|:!'w
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; zYL</!6a[
% Nplot = [4 10 12 16 18 20 22 24 26 28]; _PI w""ssr
% y = zernfun(n,m,r(idx),theta(idx)); I $5*Puy#
% figure('Units','normalized') ?/EyfTex
% for k = 1:10 T[$! ^WT
% z(idx) = y(:,k); aWtyY[=
% subplot(4,7,Nplot(k)) Kz v*`
% pcolor(x,x,z), shading interp hvc%6A\nm
% set(gca,'XTick',[],'YTick',[]) _b ~XBn
% axis square ;'\#+GZ9p
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .bwKG`F
% end
k{{ iF
% Ng;K-WB\
% See also ZERNPOL, ZERNFUN2. Stq
[[S5P
!;[cm|<