切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10615阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 L bK1CGyA  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! S>zKD  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Y2~{qY  
    function z = zernfun(n,m,r,theta,nflag) {nWtNyJpS  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. )bJ6{&  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N    r3K:  
    %   and angular frequency M, evaluated at positions (R,THETA) on the , 0ja_  
    %   unit circle.  N is a vector of positive integers (including 0), and }|,\ ?7,  
    %   M is a vector with the same number of elements as N.  Each element =njj.<BO  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) .}opmI  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, YS6az0ie  
    %   and THETA is a vector of angles.  R and THETA must have the same aj~@r3E ;  
    %   length.  The output Z is a matrix with one column for every (N,M) U*l>8  
    %   pair, and one row for every (R,THETA) pair. DO*C]   
    % LA3,e (e  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0pG(+fN_9  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7E t(p'  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ~DS9{Y  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, lJ2/xE]  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized jYx(  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. s_+XSH[=f  
    % >}tG^)os  
    %   The Zernike functions are an orthogonal basis on the unit circle. \M^4DdAy  
    %   They are used in disciplines such as astronomy, optics, and BAed [  
    %   optometry to describe functions on a circular domain. }tq9 /\  
    % OF}_RGKg3  
    %   The following table lists the first 15 Zernike functions. :jCaDhK  
    % ;0{*V5A  
    %       n    m    Zernike function           Normalization oMf h|B  
    %       -------------------------------------------------- 2(xKE_|  
    %       0    0    1                                 1 IKj1{nZvDc  
    %       1    1    r * cos(theta)                    2 q&x#S_!  
    %       1   -1    r * sin(theta)                    2 0{uX2h  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) }z:=b8}  
    %       2    0    (2*r^2 - 1)                    sqrt(3) mSp7H!  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ?Cl"jcQ*  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) msJn;(Pn  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) "6h.6_bTw  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) jt*@,+e|  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) w N.Jyb  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) yQ2[[[@k@  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `84yGXLK  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) :RG6gvz  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )8PL7P84  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) o*8 pM`uw  
    %       -------------------------------------------------- 6ng9 o6  
    % s_Gp +-  
    %   Example 1: WVFy ZpB  
    % D7wWk ,B  
    %       % Display the Zernike function Z(n=5,m=1) %oQj^r!Xd  
    %       x = -1:0.01:1; m#P&Yd4T  
    %       [X,Y] = meshgrid(x,x); :a`m9s 4  
    %       [theta,r] = cart2pol(X,Y); J]e&z5c  
    %       idx = r<=1; @[lr F7`o  
    %       z = nan(size(X)); ObnB6ShKi  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); |'#NDFI>}  
    %       figure ru Lcu]  
    %       pcolor(x,x,z), shading interp ->UrWW^  
    %       axis square, colorbar .$;GVJ-:5  
    %       title('Zernike function Z_5^1(r,\theta)') 0cVXUTJ|W  
    % <taW6=;c  
    %   Example 2: *O2j<3CHf  
    % jiDYPYx;I  
    %       % Display the first 10 Zernike functions oyY,uB.|  
    %       x = -1:0.01:1; [sRQd;+  
    %       [X,Y] = meshgrid(x,x); '-qc \6UY  
    %       [theta,r] = cart2pol(X,Y); C7:Ry)8'I  
    %       idx = r<=1; ~I74'  
    %       z = nan(size(X)); -0Ek&"=Z^  
    %       n = [0  1  1  2  2  2  3  3  3  3]; nXjUTSGa)  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ,\IZ/1  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; L|Iq#QX|  
    %       y = zernfun(n,m,r(idx),theta(idx)); I_Qnq4Sk(  
    %       figure('Units','normalized') x~.U,,1  
    %       for k = 1:10 8V= o%[t  
    %           z(idx) = y(:,k); N:.bnF(  
    %           subplot(4,7,Nplot(k)) agzG  
    %           pcolor(x,x,z), shading interp {I ,'  
    %           set(gca,'XTick',[],'YTick',[]) {DR+sE  
    %           axis square QO%K`}Q}  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) V8/o@I{U[  
    %       end bC|~N0b  
    % TMrmyvv  
    %   See also ZERNPOL, ZERNFUN2. r`@Dgo}  
    Z^'; xn  
    %   Paul Fricker 11/13/2006 9"e!0Q40  
    fi)ypv*  
    ([|M,P6e)U  
    % Check and prepare the inputs: i`X{pEKP+  
    % ----------------------------- Nx"?'-3Hm  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h2nyP  
        error('zernfun:NMvectors','N and M must be vectors.') {iRNnh   
    end * gnL0\*  
    B5hGzplS  
    if length(n)~=length(m) !ibp/:x  
        error('zernfun:NMlength','N and M must be the same length.') %WR  
    end $A ,=z  
    ]z,?{S  
    n = n(:); C*$/J\6xy  
    m = m(:); >8##~ZuF+  
    if any(mod(n-m,2)) ^AN9m]P  
        error('zernfun:NMmultiplesof2', ... 1,E/So   
              'All N and M must differ by multiples of 2 (including 0).') ?w+T_EH  
    end bYz:gbs]4|  
    M:~#"lfK  
    if any(m>n) [,c>-jA5  
        error('zernfun:MlessthanN', ... =J,:j[D(  
              'Each M must be less than or equal to its corresponding N.') Z=xrj E  
    end nz(OHh!}u  
    9"rATgN1  
    if any( r>1 | r<0 ) _Cxs"to  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') g!8-yri  
    end KLk37IY2\  
    $I'ES#8P6  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) cG<?AR?wDT  
        error('zernfun:RTHvector','R and THETA must be vectors.') 1DX=\BWp  
    end c09uCito  
    q#Bdq8  
    r = r(:); xc!"?&\*  
    theta = theta(:); ;tHF$1!J  
    length_r = length(r); /1Eg6hf9B  
    if length_r~=length(theta) +$%o#~  
        error('zernfun:RTHlength', ... 1@am'#<  
              'The number of R- and THETA-values must be equal.') @M1U)JoQ  
    end V\ |b#?KL  
    (b(iL\B$D=  
    % Check normalization: #q\C"N5ip  
    % -------------------- @c/~qP4  
    if nargin==5 && ischar(nflag) )3;S;b  
        isnorm = strcmpi(nflag,'norm'); *StJ5c_kg2  
        if ~isnorm TPrwC~\B/  
            error('zernfun:normalization','Unrecognized normalization flag.') *ce h ]v  
        end =0Nd\  
    else bNXT*HOZb3  
        isnorm = false; /as1  
    end qZ4DO*%b3  
    TY? Fs-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P%1s6fjU  
    % Compute the Zernike Polynomials O@l`D`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7&X^y+bMe6  
    /t816,i  
    % Determine the required powers of r: [u<1DR  
    % ----------------------------------- Uu G;z5  
    m_abs = abs(m); Ij" `pdp  
    rpowers = []; _ ZJP]5  
    for j = 1:length(n) B"G;"X  
        rpowers = [rpowers m_abs(j):2:n(j)]; O%)w!0  
    end )#1@@\< ^T  
    rpowers = unique(rpowers); 8^O|Aa$IF:  
    HH>]"mv  
    % Pre-compute the values of r raised to the required powers, Z yIn>]{  
    % and compile them in a matrix: Pd>hd0!.%  
    % ----------------------------- >]Y`-*vw&  
    if rpowers(1)==0 I(C_}I>Wb  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *dGW=aM#C  
        rpowern = cat(2,rpowern{:}); =x=#Etj|  
        rpowern = [ones(length_r,1) rpowern]; mp}ZHufG  
    else P! :D2zSH_  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); L='GsjF0}  
        rpowern = cat(2,rpowern{:}); Ra.<D.  
    end CYz]tv}g:  
    =E{1QA0  
    % Compute the values of the polynomials: 'l2`05   
    % -------------------------------------- xK /NzVt  
    y = zeros(length_r,length(n)); Zd042 %  
    for j = 1:length(n) ucyxvhH^-  
        s = 0:(n(j)-m_abs(j))/2; |Kb-oM&^#  
        pows = n(j):-2:m_abs(j); @dGj4h.  
        for k = length(s):-1:1 p!173y,nL  
            p = (1-2*mod(s(k),2))* ... NKO5c?ds  
                       prod(2:(n(j)-s(k)))/              ... r6"t`M  
                       prod(2:s(k))/                     ... H$Q_K<V  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... X mLHZ,/  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 7,Nd[ oL*7  
            idx = (pows(k)==rpowers); kZfO`BVL  
            y(:,j) = y(:,j) + p*rpowern(:,idx); |NL$? %I  
        end Z>'.+OW  
         ^IY1^x  
        if isnorm st~f}w@  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7n5 bI\  
        end {R\"x|  
    end O]`CSTv'_  
    % END: Compute the Zernike Polynomials '\P6NszY~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H>k=V<  
    jrG@ +" }  
    % Compute the Zernike functions: a>6!?:Rj  
    % ------------------------------ qHklu2_%  
    idx_pos = m>0; // g~1(  
    idx_neg = m<0; Q@nxGm  
    g?)9zJ9  
    z = y; v:eVK!O  
    if any(idx_pos) xrp%b1Sy  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ! p458~|  
    end VQ2)qJ#l  
    if any(idx_neg) Mvu!  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); % ?@PlQ  
    end [{L4~(uU8  
    UJ2Tj+  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) .IE2d%]?  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ML9ZS @  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated q{nNWvL  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive C5c@@ch :  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, #"|</*% >  
    %   and THETA is a vector of angles.  R and THETA must have the same (3C::B=  
    %   length.  The output Z is a matrix with one column for every P-value, Ivmiz{Oii  
    %   and one row for every (R,THETA) pair. An{`'U(l  
    % OTY9Q  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike T8bk\\Od  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 7jQOwzj  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ]6bh#N;.  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Rt}H.D #  
    %   for all p. Tu"bbc  
    % tURjIt,I  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 9nN$%(EO5;  
    %   Zernike functions (order N<=7).  In some disciplines it is qcSlqWDk  
    %   traditional to label the first 36 functions using a single mode %}elh79H*  
    %   number P instead of separate numbers for the order N and azimuthal ?);6]"k:3  
    %   frequency M. P-o/ax  
    % [+\=x[q  
    %   Example: UzTFT:\  
    % j^-E,YMC  
    %       % Display the first 16 Zernike functions q$L=G  
    %       x = -1:0.01:1; roSdcQTeT  
    %       [X,Y] = meshgrid(x,x); DO` K_B  
    %       [theta,r] = cart2pol(X,Y); XHKiz2Pc1  
    %       idx = r<=1; SaceIV%(  
    %       p = 0:15; ek\8u`GC  
    %       z = nan(size(X)); `K5Lp>=R  
    %       y = zernfun2(p,r(idx),theta(idx)); C,r[H5G#  
    %       figure('Units','normalized') ,< Zu4bww  
    %       for k = 1:length(p) wFI2 (cQ  
    %           z(idx) = y(:,k); -5B>2K F  
    %           subplot(4,4,k) }-4@EC>  
    %           pcolor(x,x,z), shading interp Xo[j*<=0  
    %           set(gca,'XTick',[],'YTick',[]) 8S/SXyS  
    %           axis square #[Z ToE4  
    %           title(['Z_{' num2str(p(k)) '}']) +}1h  
    %       end w*#B_6bG  
    % v% a)nv  
    %   See also ZERNPOL, ZERNFUN. r*_z<^d  
    WRrCrXP  
    %   Paul Fricker 11/13/2006 %EV\nwn6  
    #@%DY*w]v  
    ^F\RM4|,  
    % Check and prepare the inputs: OD{()E?1B  
    % ----------------------------- J,q6  
    if min(size(p))~=1 R. :~e  
        error('zernfun2:Pvector','Input P must be vector.') NN> E1d=  
    end q9+`pj  
    W;L<zFFbU)  
    if any(p)>35 E&>3{uZI  
        error('zernfun2:P36', ... )bqSM&SO  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 5>CmWMQ  
               '(P = 0 to 35).']) eV(nexE  
    end b^s978qn#  
    |z.x M>  
    % Get the order and frequency corresonding to the function number: 3T1t !q4/5  
    % ---------------------------------------------------------------- oW ! Z= ;  
    p = p(:); Bk)E]Fk|  
    n = ceil((-3+sqrt(9+8*p))/2); P'}WmE'B}F  
    m = 2*p - n.*(n+2); ''D\E6c\  
    lQ&"p+n  
    % Pass the inputs to the function ZERNFUN: mv1g2f+  
    % ---------------------------------------- py|ORVN(Z  
    switch nargin Z2P DT  
        case 3 +>bm~6  
            z = zernfun(n,m,r,theta); S2+X/YeB  
        case 4 I'h|7y\  
            z = zernfun(n,m,r,theta,nflag); TwfQq`  
        otherwise l7T@<V  
            error('zernfun2:nargin','Incorrect number of inputs.') dMd2a4  
    end <[l0zE5Z8'  
    V8KdY=[  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 6Mc&gnN  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. /`kM0=MMa  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of B+VD53 V  
    %   order N and frequency M, evaluated at R.  N is a vector of x& a<u@[wa  
    %   positive integers (including 0), and M is a vector with the q 3nF\Me0  
    %   same number of elements as N.  Each element k of M must be a _8 C:Md`  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Dve+ #H6N  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is #@UzOQ>  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix /_(q7:<ZF  
    %   with one column for every (N,M) pair, and one row for every )JsmzGC0  
    %   element in R. X~2L  
    % ;h~v,h  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- QKHAN{hJ  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is rYI7V?  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to x{_3/4  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 EEJ OJ<  
    %   for all [n,m]. %G`GdG}T  
    % |& Pa`=sp  
    %   The radial Zernike polynomials are the radial portion of the z)_h"y?H{%  
    %   Zernike functions, which are an orthogonal basis on the unit UJ?qGOM3x>  
    %   circle.  The series representation of the radial Zernike 0ZAT;eaB  
    %   polynomials is DG-XX.:z  
    % dX;Q\  ]"  
    %          (n-m)/2 *Dhy a g  
    %            __ &;2@*#,  
    %    m      \       s                                          n-2s X/qLg+X  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r M5Q7izM  
    %    n      s=0 ($T"m-e  
    % dWi:V 7t+  
    %   The following table shows the first 12 polynomials. FzzV%  
    % FoKAF &h7  
    %       n    m    Zernike polynomial    Normalization ym*oCfu=  
    %       --------------------------------------------- /^\UB fE  
    %       0    0    1                        sqrt(2) X3zpU7`Av+  
    %       1    1    r                           2 Z=.$mFE\  
    %       2    0    2*r^2 - 1                sqrt(6) mmvo >F"  
    %       2    2    r^2                      sqrt(6) f=--$o0U~  
    %       3    1    3*r^3 - 2*r              sqrt(8) jU2 vnGw_  
    %       3    3    r^3                      sqrt(8) mx=2lL`  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Oe)B.{;Ph  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 6 k+4R<  
    %       4    4    r^4                      sqrt(10) vrX@T ?>  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) nXJG4$G  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Bm$(4  
    %       5    5    r^5                      sqrt(12) iOrpr,@  
    %       --------------------------------------------- (N^tg8Z<  
    % ~cH3RFV  
    %   Example: Q:^.Qs"IK  
    % M" vd /F V  
    %       % Display three example Zernike radial polynomials vE{L`,\ q  
    %       r = 0:0.01:1; .H#<yPty  
    %       n = [3 2 5]; fq<JX5DER  
    %       m = [1 2 1]; Ba#wW E  
    %       z = zernpol(n,m,r); ,)35Vi;.  
    %       figure TsF>Y""*M  
    %       plot(r,z) sLze/D_M*  
    %       grid on r WULv  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') | IB4-p  
    % [Ol~}@gV  
    %   See also ZERNFUN, ZERNFUN2. 'Da*MGu9  
    nm#,oX2C  
    % A note on the algorithm. G7N Rpr  
    % ------------------------ M37GQvo   
    % The radial Zernike polynomials are computed using the series RAU"  
    % representation shown in the Help section above. For many special vhd+A  
    % functions, direct evaluation using the series representation can HY2*5 #T  
    % produce poor numerical results (floating point errors), because g:eq B&&  
    % the summation often involves computing small differences between 6%a:^f]  
    % large successive terms in the series. (In such cases, the functions gZ@z}CIw'  
    % are often evaluated using alternative methods such as recurrence n^iq?u  
    % relations: see the Legendre functions, for example). For the Zernike u3vM!  
    % polynomials, however, this problem does not arise, because the ,X}Jpi;/  
    % polynomials are evaluated over the finite domain r = (0,1), and d;hv_h  
    % because the coefficients for a given polynomial are generally all .D{He9  
    % of similar magnitude. bae\EaS ?  
    % svvl`|n%  
    % ZERNPOL has been written using a vectorized implementation: multiple Ox%p"xuP,  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] h>"j!|#!s  
    % values can be passed as inputs) for a vector of points R.  To achieve qV5l v-p  
    % this vectorization most efficiently, the algorithm in ZERNPOL N~|Z@pU"  
    % involves pre-determining all the powers p of R that are required to -]Y@_T.C  
    % compute the outputs, and then compiling the {R^p} into a single p6X-P%s  
    % matrix.  This avoids any redundant computation of the R^p, and $*+IsP!  
    % minimizes the sizes of certain intermediate variables. *2>kic aH  
    % O9ar|8y  
    %   Paul Fricker 11/13/2006 "cz'|z`  
    r (KAG"5  
    W2BZG(dm  
    % Check and prepare the inputs: A/!"+Yfw  
    % ----------------------------- Seh(G  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =/Ph ]f9  
        error('zernpol:NMvectors','N and M must be vectors.') 2 9#jKh  
    end Q!y%N&  
    _=_<cg y1u  
    if length(n)~=length(m) 26ae|2?  
        error('zernpol:NMlength','N and M must be the same length.') K$KVm^`  
    end 722:2 {  
    LYO2L1u)  
    n = n(:); Zo< j"FG  
    m = m(:); &embAqW:  
    length_n = length(n); a4&Aw7"X  
     k`w /  
    if any(mod(n-m,2)) C`=YGyj=TL  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') TPVB{ 107  
    end HCw,bRxm  
    2b K1.BD  
    if any(m<0) PiN^/#D  
        error('zernpol:Mpositive','All M must be positive.') SW}?y%~  
    end H/y,}z  
    .: k6Kg  
    if any(m>n) oA?EJ~%  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') X ?U'GLm  
    end I-^C6~  
    RPdFLC/  
    if any( r>1 | r<0 ) e}+Zj'5  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Wv||9[Rd  
    end VWc)AfKe  
     {H*  
    if ~any(size(r)==1) saTS8p z  
        error('zernpol:Rvector','R must be a vector.') :(iBLO<x  
    end x~Dj2 F]  
    Ab6R ?mUM  
    r = r(:); jyB Ys& v  
    length_r = length(r); =!\Y;rk  
    GOOm] ]I  
    if nargin==4 E=Vp%08(  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); waU2C2!w  
        if ~isnorm hHZ'*,9 y  
            error('zernpol:normalization','Unrecognized normalization flag.') V8Ri2&|3  
        end M!aJKpf  
    else iK=QP+^VN  
        isnorm = false; U;j\FE^+>  
    end "W~vSbn7  
    0xY</S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1|m%xX,[  
    % Compute the Zernike Polynomials JT&RaFX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3m| C8:  
    Y?3f Fg  
    % Determine the required powers of r: n(`|:h"  
    % ----------------------------------- BOWBD@y  
    rpowers = []; 7pou(U  
    for j = 1:length(n) fW[ .Q0  
        rpowers = [rpowers m(j):2:n(j)]; G\o9mEzQ  
    end TbaZFLr  
    rpowers = unique(rpowers); }|%1LL^pB  
    &%%ix#iF  
    % Pre-compute the values of r raised to the required powers, :a^/&LbLm  
    % and compile them in a matrix: &isKU 8n  
    % ----------------------------- P) cEYk  
    if rpowers(1)==0 H~^)^6)^T  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }V[ORGzox  
        rpowern = cat(2,rpowern{:}); `ZbFky{  
        rpowern = [ones(length_r,1) rpowern]; Ch\__t*v!  
    else \2]_NU5.  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ITg<u?z_  
        rpowern = cat(2,rpowern{:}); 0?}n(f!S  
    end X`1R&K;z^  
    }=}wLm#&1  
    % Compute the values of the polynomials: 4Us_Z{.  
    % -------------------------------------- [(gXjt-  
    z = zeros(length_r,length_n); ;s;3cC!  
    for j = 1:length_n ~>HzAo9e  
        s = 0:(n(j)-m(j))/2; y/5GY,z%aL  
        pows = n(j):-2:m(j); s<rV1D  
        for k = length(s):-1:1 R1D ;  
            p = (1-2*mod(s(k),2))* ... N/ f7"~+`  
                       prod(2:(n(j)-s(k)))/          ... `<7!Rh,tS^  
                       prod(2:s(k))/                 ... #qh ,  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... =~k c7f{  
                       prod(2:((n(j)+m(j))/2-s(k))); ""Da 2Md  
            idx = (pows(k)==rpowers); 6T4I,XrY_F  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ~USt&?  
        end 0|J_'-<  
         wYg!H>5  
        if isnorm z~ywFk}KGd  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); (0B?OkQ  
        end Xjkg7p,HD@  
    end Zk`yd8C  
    j:xC \b47"  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  \@gV$+{9  
    (a[BvJf  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 WqeWjI.2  
    uY]';Ot G  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)