切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11218阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 t;f p<z7N.  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! -Fw4;&>  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 &aht K}u  
    function z = zernfun(n,m,r,theta,nflag) G uI sM  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. H.S|njn:r  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ba1QFzN  
    %   and angular frequency M, evaluated at positions (R,THETA) on the rG%_O$_dO  
    %   unit circle.  N is a vector of positive integers (including 0), and 2&f=4b`Z  
    %   M is a vector with the same number of elements as N.  Each element V1V4 <Zj  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 6Kc7@oO~  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, U`4Z j1y  
    %   and THETA is a vector of angles.  R and THETA must have the same !Y i<h/:  
    %   length.  The output Z is a matrix with one column for every (N,M) 5DBd [u3  
    %   pair, and one row for every (R,THETA) pair. _4#psxl[M  
    % |,~A9  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike t`3T_t Y  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )8>f  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral vPq\reKe  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, /9# jv]C:  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized _C#( )#  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. KT?s\w  
    % @G{DOxE*  
    %   The Zernike functions are an orthogonal basis on the unit circle. .B n2;nO  
    %   They are used in disciplines such as astronomy, optics, and +~AI(h  
    %   optometry to describe functions on a circular domain. qUg4-Z4  
    % *\+ 'tFT6  
    %   The following table lists the first 15 Zernike functions. AUpC HG7  
    % VDN]P3   
    %       n    m    Zernike function           Normalization 3CRBu:)m  
    %       -------------------------------------------------- tzN;;h4C  
    %       0    0    1                                 1 e;3 (,  
    %       1    1    r * cos(theta)                    2 s*WfRY*=V  
    %       1   -1    r * sin(theta)                    2 |*a>6y  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) P &._ -[  
    %       2    0    (2*r^2 - 1)                    sqrt(3) e-meUf9  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) u^[v{hv'H  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) |0%UM}  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) mMWNUkDq  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ~PAn _]Z  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Kf5p* AI  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) d)sl)qt}0  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) VX%\_@  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) j!H?dnE||  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5X-(@GwN  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) oOz6Er[KO  
    %       -------------------------------------------------- e.H"!X!0#H  
    % ( #Aq*2Z.  
    %   Example 1: U.x.gZRo[  
    % /_(Dq8^g@  
    %       % Display the Zernike function Z(n=5,m=1) V> SA3  
    %       x = -1:0.01:1; |7fBiVo  
    %       [X,Y] = meshgrid(x,x); o(qmI/h  
    %       [theta,r] = cart2pol(X,Y); SQk!o{  
    %       idx = r<=1; t,6=EK*3T  
    %       z = nan(size(X));  S_6;e|  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); VG^-aR_F  
    %       figure _m-r}9au   
    %       pcolor(x,x,z), shading interp n-_w0Y  
    %       axis square, colorbar \_'pUp22  
    %       title('Zernike function Z_5^1(r,\theta)') ']D( ({%g  
    % lU& IS?^?  
    %   Example 2: jL1UPN  
    % p}uw-$O  
    %       % Display the first 10 Zernike functions `#bcoK5  
    %       x = -1:0.01:1; J-c7ZcTt  
    %       [X,Y] = meshgrid(x,x); hT#mM*`  
    %       [theta,r] = cart2pol(X,Y); Q0-~&e_'  
    %       idx = r<=1; zYsGI<4  
    %       z = nan(size(X)); 7h~M&\M  
    %       n = [0  1  1  2  2  2  3  3  3  3]; hSH-Ck@Qy  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 'r CR8>k  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; q?\D9aT9  
    %       y = zernfun(n,m,r(idx),theta(idx)); yAe}O#dy  
    %       figure('Units','normalized') ER+[gT1CQ  
    %       for k = 1:10 \ZH=$c*W  
    %           z(idx) = y(:,k); na)_8r~  
    %           subplot(4,7,Nplot(k)) [u:_J qf-  
    %           pcolor(x,x,z), shading interp fM{Vy])J  
    %           set(gca,'XTick',[],'YTick',[]) =t2epIr 5  
    %           axis square zx*f*L,6F  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) hZy*E[i  
    %       end k6\c^%x  
    % LTHS&3% 2  
    %   See also ZERNPOL, ZERNFUN2. i%2K%5{)$D  
    COafVlJ,l  
    %   Paul Fricker 11/13/2006 Tj:F Qnx  
    2~ a4ib  
    JI(|sAH  
    % Check and prepare the inputs: )uP= o  
    % -----------------------------  "(xu  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3@PVUJ0B|  
        error('zernfun:NMvectors','N and M must be vectors.') {Bx\Z0+'&  
    end 2S3F]fG0  
    |u[gI+TUE  
    if length(n)~=length(m) ^.Q),{%Xo  
        error('zernfun:NMlength','N and M must be the same length.') .:}\Z27-c  
    end nYY U  
    M=%p$\x  
    n = n(:); ,bJx| K  
    m = m(:); 2Xosj(H  
    if any(mod(n-m,2)) b,wO^07-3^  
        error('zernfun:NMmultiplesof2', ... u CXd% CzE  
              'All N and M must differ by multiples of 2 (including 0).') xS'So7:h  
    end _19k@a  
    'J}lnt[V  
    if any(m>n) p%BO:%v  
        error('zernfun:MlessthanN', ... f 36rU  
              'Each M must be less than or equal to its corresponding N.') P+xZaf H  
    end TocqoYX{{  
    RN0Rk 8AC  
    if any( r>1 | r<0 ) {ib`mC^  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') !?96P|G  
    end 8eNGPuoL)  
    Kmtr.]Nj  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) =g ]C9'I3  
        error('zernfun:RTHvector','R and THETA must be vectors.') B(~D*H2T[  
    end I`|>'$E[r  
    .*,ZcO  
    r = r(:); r*Mm5QozA  
    theta = theta(:); +x1sV*S  
    length_r = length(r); O3Uu{'=0  
    if length_r~=length(theta) GC~::m~  
        error('zernfun:RTHlength', ... F]&9Lp} "  
              'The number of R- and THETA-values must be equal.') j2z$kw%  
    end |Z<adOg  
    xnArYm  
    % Check normalization: Z7 @#0;g{  
    % -------------------- ;-3M  
    if nargin==5 && ischar(nflag) aaBBI S  
        isnorm = strcmpi(nflag,'norm'); 0o#lB^e;l  
        if ~isnorm \l`;]cA  
            error('zernfun:normalization','Unrecognized normalization flag.') nv={.H  
        end W{%M+a[#l  
    else 8/=2N  
        isnorm = false; =LC5o2bLy  
    end '{|87kI  
    ?h5Y^}8Qg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ."2V:;;  
    % Compute the Zernike Polynomials 4#o` -vcW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *]rV,\z:  
    !"wIb.j }0  
    % Determine the required powers of r: rkD(K G9E  
    % ----------------------------------- te`4*t  
    m_abs = abs(m); )_BteLo-  
    rpowers = []; :r\<DVj  
    for j = 1:length(n) uaS?y1:c  
        rpowers = [rpowers m_abs(j):2:n(j)]; SXhJz=h  
    end vt1!|2{ h  
    rpowers = unique(rpowers); Fax73vl|^a  
    !({[^[!  
    % Pre-compute the values of r raised to the required powers, 3KqylC &.  
    % and compile them in a matrix: m~}nM|m%  
    % ----------------------------- GK)hK-  
    if rpowers(1)==0 G#csN&|,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g ,.iM8  
        rpowern = cat(2,rpowern{:}); jWm<!< ~  
        rpowern = [ones(length_r,1) rpowern]; p4/D%*G^`  
    else /rquI y^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); J[^-k!9M  
        rpowern = cat(2,rpowern{:}); CkOd>Kn  
    end dfNNCPu]+  
    CzwnmSv{.  
    % Compute the values of the polynomials: $+Xohtt  
    % -------------------------------------- ?&[`=ZVn  
    y = zeros(length_r,length(n)); Ts.6 1Rx  
    for j = 1:length(n) H#f FU  
        s = 0:(n(j)-m_abs(j))/2; LE Y$St  
        pows = n(j):-2:m_abs(j); bk V_ ^8  
        for k = length(s):-1:1 ^JH 4: h  
            p = (1-2*mod(s(k),2))* ... }^=J]  
                       prod(2:(n(j)-s(k)))/              ... s8R.?mhH=  
                       prod(2:s(k))/                     ... m~2PpO  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... WXJ%bH  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); W&* 0F~  
            idx = (pows(k)==rpowers); z+;+c$X  
            y(:,j) = y(:,j) + p*rpowern(:,idx); /: B!hvpw  
        end /WfpA\4S  
         tYVmB:l  
        if isnorm 1B2>8 N  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); m'Ran3rp  
        end O Qd,.m  
    end 6L8wsz CW  
    % END: Compute the Zernike Polynomials P#iBwmwN+.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v&|o5om  
    aCQAh[T  
    % Compute the Zernike functions: {>90d(j  
    % ------------------------------ j2V^1  
    idx_pos = m>0; 3~Ah8,  
    idx_neg = m<0; +dlN^P647  
    <&B)i\j8=b  
    z = y; Zhf+u r  
    if any(idx_pos) ^`ny]3JA  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3b~k)t4R  
    end m#ID%[hg$  
    if any(idx_neg) ?nE<Aig  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ?3[as<GZ8  
    end 67 ^?v)|  
    "OkJPu2!W  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) CKCot  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. *6<<6f`(  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated T@Mrbravc  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive o-c.D=~  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, g{RVxGE7  
    %   and THETA is a vector of angles.  R and THETA must have the same @X5F$=aqZr  
    %   length.  The output Z is a matrix with one column for every P-value, 0.!_k )tu  
    %   and one row for every (R,THETA) pair. z&Cz!HrS  
    % P9c!   
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ?cF`T/z]"  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) bL-+  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) NH~\kV  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 muc6gwBp  
    %   for all p. l$ ^LY)i  
    % >cJfD9-<h  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 6fY-D qF!  
    %   Zernike functions (order N<=7).  In some disciplines it is 0o7*5| T4  
    %   traditional to label the first 36 functions using a single mode c&X2k\  
    %   number P instead of separate numbers for the order N and azimuthal ozB2L\D7  
    %   frequency M. 8#L V oR  
    % Lh\ 1L  
    %   Example: lub_2Cb|j  
    % OXp(rJ*bK  
    %       % Display the first 16 Zernike functions KDxqz$14 -  
    %       x = -1:0.01:1; %W` }  
    %       [X,Y] = meshgrid(x,x); n` M!K:Pq  
    %       [theta,r] = cart2pol(X,Y); $ra q,SP  
    %       idx = r<=1; ~xCv_u^=  
    %       p = 0:15; <x-7MU&  
    %       z = nan(size(X)); 4 ))ZBq?  
    %       y = zernfun2(p,r(idx),theta(idx)); eI%9.Cx#I  
    %       figure('Units','normalized') $Y`oqw?g+^  
    %       for k = 1:length(p) P8[rp   
    %           z(idx) = y(:,k); >UNx<=ry  
    %           subplot(4,4,k) c]}F$[>oN'  
    %           pcolor(x,x,z), shading interp +adwEYRrr  
    %           set(gca,'XTick',[],'YTick',[]) _3%eIyk4T  
    %           axis square ]"ou?ot }  
    %           title(['Z_{' num2str(p(k)) '}']) .7BJq?K.  
    %       end w#}[=jy  
    % duQ ,6  
    %   See also ZERNPOL, ZERNFUN. u43W.4H13  
    N2 4J!L  
    %   Paul Fricker 11/13/2006 y~Z7sx0  
    WIKSz {"=/  
    :_k5[KT.]9  
    % Check and prepare the inputs: L0.F }~S  
    % ----------------------------- qf T71o(  
    if min(size(p))~=1 FRhHp(0}5  
        error('zernfun2:Pvector','Input P must be vector.') @B \$ me  
    end QZ& 4W  
    cS#yfN,  
    if any(p)>35 X{Ij30Bmv  
        error('zernfun2:P36', ... o4U0kiI@  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... *[Im].  
               '(P = 0 to 35).']) ,J(shc_F  
    end ]$~\GE^  
    0@yw#.j  
    % Get the order and frequency corresonding to the function number: w~4T.l#1  
    % ---------------------------------------------------------------- #(7^V y&  
    p = p(:); ULH<FDot  
    n = ceil((-3+sqrt(9+8*p))/2); Zz?)k])F  
    m = 2*p - n.*(n+2); go9tvK  
    !mH !W5&  
    % Pass the inputs to the function ZERNFUN: w"{mDL}c  
    % ---------------------------------------- [>D5(O  
    switch nargin =O%'qUj`q  
        case 3 NK\0X5##.  
            z = zernfun(n,m,r,theta); }2h!  
        case 4 1z3>nou2{  
            z = zernfun(n,m,r,theta,nflag); T*z*x=<5  
        otherwise ZiW&*nN?M  
            error('zernfun2:nargin','Incorrect number of inputs.') n|fKwWB\  
    end `ztp u ~?  
    +;T\:'CU  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) xwu b-yz  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. +w?-#M#  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of rn]F97v@]  
    %   order N and frequency M, evaluated at R.  N is a vector of cJ\ 1ndBH  
    %   positive integers (including 0), and M is a vector with the MxOIe|=&  
    %   same number of elements as N.  Each element k of M must be a <m/XGFc  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) JmC2buO  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Rrrq>{D  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix N6Dv1_c,  
    %   with one column for every (N,M) pair, and one row for every E~c>j<'-"<  
    %   element in R. P~84#5R1  
    % :w]NN\  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- =om<*\vsO  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is @1~cPt   
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to /[5\T2GI   
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 OaKr_m  
    %   for all [n,m]. s<;{q+1#  
    % U8{^-#(Uz  
    %   The radial Zernike polynomials are the radial portion of the M< H+$}[  
    %   Zernike functions, which are an orthogonal basis on the unit b/_u\R ]-'  
    %   circle.  The series representation of the radial Zernike \*M;W|8aB  
    %   polynomials is ]E.\ |I(  
    % .l,]yWwfK  
    %          (n-m)/2 XqGa]/;}  
    %            __ *^KEb")$  
    %    m      \       s                                          n-2s ]@m`bs_6  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r r`$P60,@C  
    %    n      s=0 r?9".H  
    % 0+K<;5"63d  
    %   The following table shows the first 12 polynomials. Fr-Vq =j&  
    % ,Iru_=Wk~  
    %       n    m    Zernike polynomial    Normalization 411z -aS  
    %       --------------------------------------------- WD5jO9Oai  
    %       0    0    1                        sqrt(2) %jJIR88  
    %       1    1    r                           2 _C=01 %/  
    %       2    0    2*r^2 - 1                sqrt(6) Nxt`5kSx=  
    %       2    2    r^2                      sqrt(6) "MD 6<H  
    %       3    1    3*r^3 - 2*r              sqrt(8) wb%4f6i  
    %       3    3    r^3                      sqrt(8) e0]#vqdO  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) If8Lt}-  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) _;R#B`9Iu  
    %       4    4    r^4                      sqrt(10) vsPIvW!V  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) %_G '#Bn<  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) -v:3#9uX)  
    %       5    5    r^5                      sqrt(12) <?:h(IZe[  
    %       --------------------------------------------- Zq 'FOzs  
    % E B! ,t  
    %   Example: ] K+8f-  
    % nkz<t   
    %       % Display three example Zernike radial polynomials YV'B*arIA  
    %       r = 0:0.01:1; ?BbEQr  
    %       n = [3 2 5]; t~$8sG\  
    %       m = [1 2 1]; 3BAQ2S}  
    %       z = zernpol(n,m,r); '$VP\Gj.  
    %       figure [ {HTGz@(  
    %       plot(r,z) T+S\'f\  
    %       grid on ]bbP_n8  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 8bf@<VTO_  
    % D~TlG@Pq  
    %   See also ZERNFUN, ZERNFUN2. wv=U[:Y  
    '@zMZc!  
    % A note on the algorithm. e(FT4KD~  
    % ------------------------ rHqP[[4B'  
    % The radial Zernike polynomials are computed using the series ERIF#EY  
    % representation shown in the Help section above. For many special <dAxB$16sT  
    % functions, direct evaluation using the series representation can f%JM a]yV  
    % produce poor numerical results (floating point errors), because 3HNm`b8G4m  
    % the summation often involves computing small differences between :H#D4O8UiH  
    % large successive terms in the series. (In such cases, the functions cEn|Q  
    % are often evaluated using alternative methods such as recurrence @1qdnU  
    % relations: see the Legendre functions, for example). For the Zernike "Z~@"JLb%  
    % polynomials, however, this problem does not arise, because the ~jzT;9:  
    % polynomials are evaluated over the finite domain r = (0,1), and sLzZ}u?(  
    % because the coefficients for a given polynomial are generally all 9Z"WV5o  
    % of similar magnitude. Q(R -8"  
    % :fUNc^\2  
    % ZERNPOL has been written using a vectorized implementation: multiple /7ShE-.5#  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ;iQw2XhT  
    % values can be passed as inputs) for a vector of points R.  To achieve !| q19$  
    % this vectorization most efficiently, the algorithm in ZERNPOL 4q?R3 \e;  
    % involves pre-determining all the powers p of R that are required to >>M7#hmt  
    % compute the outputs, and then compiling the {R^p} into a single D( y c  
    % matrix.  This avoids any redundant computation of the R^p, and 3JD"* <zs  
    % minimizes the sizes of certain intermediate variables. 'j?H >'t{  
    % - ~*kAh  
    %   Paul Fricker 11/13/2006 L>lxkq8!Q  
    jthyZZ   
    b ZZ _yc  
    % Check and prepare the inputs: 7W+{U0 2O  
    % ----------------------------- X_)I"`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ks,d4b=->  
        error('zernpol:NMvectors','N and M must be vectors.') p^Z|$aZZ  
    end BAG#YZB  
    Bsk` e  
    if length(n)~=length(m) `=kiqF2P}  
        error('zernpol:NMlength','N and M must be the same length.') L-m' #  
    end "*TP@X?@f  
    gt=@v())  
    n = n(:); twt's,dO  
    m = m(:); y'<5P~W!a  
    length_n = length(n); FTzc,6  
    K;`W4:,  
    if any(mod(n-m,2)) ) % gU  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') +:/.\3v71  
    end 0LTsWCUQ6e  
    AmUH]+5KT  
    if any(m<0) p  S|  
        error('zernpol:Mpositive','All M must be positive.') U} Pr1  
    end [<}W S} .  
    Gs4t6+Al  
    if any(m>n)  feM(  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Yf1%7+V35  
    end 9)n3f^,Oj*  
    i-4?]h k  
    if any( r>1 | r<0 ) mR#"ng  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ,,g: x  
    end cnDF`7xrT  
    BFqM6_/J  
    if ~any(size(r)==1) @udc/J$  
        error('zernpol:Rvector','R must be a vector.') YllW2g:  
    end ?\<Kb|Q  
    9U@>&3[v  
    r = r(:); j*~z.Q|  
    length_r = length(r); T?1e&H%USV  
    d_ &~^*>  
    if nargin==4 "y ;0}9]n1  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); YWDd[\4  
        if ~isnorm 4KW_#d`t  
            error('zernpol:normalization','Unrecognized normalization flag.') _Om5w p=:  
        end L9l]0C37e  
    else Wi*HLP!lNC  
        isnorm = false; 2Y;iqR  
    end rT;_"y}  
    D}2$n?~+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vtzbF1?O  
    % Compute the Zernike Polynomials ,8DjQz0ZPo  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xj5MKX{CJT  
    y+7A?"s)  
    % Determine the required powers of r: kZcGe*  
    % ----------------------------------- VT;cz6"6b4  
    rpowers = [];  \Awqr:A&  
    for j = 1:length(n) u~Y+YzCxV  
        rpowers = [rpowers m(j):2:n(j)]; bV*q~ @xh  
    end mE9ytFH\k  
    rpowers = unique(rpowers); K~qKr<)  
    `R-VJR 2"  
    % Pre-compute the values of r raised to the required powers, JaN53,&<  
    % and compile them in a matrix: ?zYR;r2'b)  
    % ----------------------------- &hWYw+yH\  
    if rpowers(1)==0 ;F/s!bupCM  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .|y{1?f_  
        rpowern = cat(2,rpowern{:}); `Tr !Gj_  
        rpowern = [ones(length_r,1) rpowern]; I=k`VId:  
    else '=UsN_@  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); b^<7@tY  
        rpowern = cat(2,rpowern{:}); %D ,(S-Uj  
    end xz}=C:s  
    \~T&C5  
    % Compute the values of the polynomials: 8>:u%+ C1c  
    % -------------------------------------- Enhrkk  
    z = zeros(length_r,length_n); \obM}caT  
    for j = 1:length_n T 0?9F2  
        s = 0:(n(j)-m(j))/2; @[;$R@M_3  
        pows = n(j):-2:m(j); - ysd`&  
        for k = length(s):-1:1 # tU@\H5kN  
            p = (1-2*mod(s(k),2))* ... ItG|{Bo  
                       prod(2:(n(j)-s(k)))/          ... <7j"CcJzZ  
                       prod(2:s(k))/                 ... ka:wD?>1i  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... n%{oFTLCo  
                       prod(2:((n(j)+m(j))/2-s(k))); Gx(%AB~9$  
            idx = (pows(k)==rpowers); KwxJ{$|xH  
            z(:,j) = z(:,j) + p*rpowern(:,idx); wR9gx-bE 4  
        end VS+5{w:t  
         M:%Ll3  
        if isnorm {<2q  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); o H]FT{  
        end px^brzLQo  
    end -M-y*P)  
    @SAJ*h fb0  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  7 }sj&  
    )hai?v~g  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 XD\Z$\UJE  
    8RR6f98FF  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)