切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11297阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 $)7f%II  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! )* nbEZm@  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 s(.-bjR  
    function z = zernfun(n,m,r,theta,nflag) |+~2sbM  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~2}ICU5  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ~MQf($]  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 7Ej#7\TB]  
    %   unit circle.  N is a vector of positive integers (including 0), and WA5kX SdIb  
    %   M is a vector with the same number of elements as N.  Each element 3'e 4{  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) =xet+;~ji  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, &Q+V I/p  
    %   and THETA is a vector of angles.  R and THETA must have the same %9Fg1LH42r  
    %   length.  The output Z is a matrix with one column for every (N,M) 1AV1W_"  
    %   pair, and one row for every (R,THETA) pair. 6lAo`S\)eX  
    % l>?vjy65  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1H 6Wrik  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), s9bP6N!,  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral HKw:fGt/o^  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, k $&A  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized "a{f? .X.  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. v>!}cB/6  
    % K3D $ hb  
    %   The Zernike functions are an orthogonal basis on the unit circle. G_mu7w  
    %   They are used in disciplines such as astronomy, optics, and P`9A?aG.Z  
    %   optometry to describe functions on a circular domain. KptLeb:Om  
    % i~L7h=__  
    %   The following table lists the first 15 Zernike functions. to=##&ld<  
    % s7} )4.vO  
    %       n    m    Zernike function           Normalization 5c7a\J9>  
    %       -------------------------------------------------- n7uD(cL  
    %       0    0    1                                 1 p'}%pAY  
    %       1    1    r * cos(theta)                    2 M?u)H&kEl  
    %       1   -1    r * sin(theta)                    2 w!7/;VJ3d  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 3U$fMLx]k  
    %       2    0    (2*r^2 - 1)                    sqrt(3) e,UgTxZ  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) =ApT#*D)o  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ,SwaDWNO  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) e'&{KD,-T  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) W%cPX0  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) hDMp^^$  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) j=S"KVp9NF  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9 <m j@bI$  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) .&.CbE8K[  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u;g}N'"  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @R{&>Q:.  
    %       -------------------------------------------------- 0O4mA&&!oK  
    % ~A4WuA  
    %   Example 1: X5[sw;rk  
    % z\ pT+9&  
    %       % Display the Zernike function Z(n=5,m=1) 0u\@-np  
    %       x = -1:0.01:1; Bx >@HU  
    %       [X,Y] = meshgrid(x,x); a$8?0` (  
    %       [theta,r] = cart2pol(X,Y); =^vUb  
    %       idx = r<=1; ;A!i V |  
    %       z = nan(size(X)); ek!N eu>  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); nQ~L.V  
    %       figure U$ bM:d  
    %       pcolor(x,x,z), shading interp :tG5~sK  
    %       axis square, colorbar .X1niguXH  
    %       title('Zernike function Z_5^1(r,\theta)') =x>k:l~s  
    % 0in6 z  
    %   Example 2: |D:0BATRP  
    % w2[R&hJ  
    %       % Display the first 10 Zernike functions xpwzzO*U  
    %       x = -1:0.01:1; iX p8u**  
    %       [X,Y] = meshgrid(x,x); {*9i}w|2  
    %       [theta,r] = cart2pol(X,Y); v^ G5 N)F  
    %       idx = r<=1; b\Ub<pE  
    %       z = nan(size(X)); yl%F<5  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 5Ncd1  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; m(Ynl=c  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ^5}3FvW  
    %       y = zernfun(n,m,r(idx),theta(idx)); g*M3;G  
    %       figure('Units','normalized') ^(:Rbsl  
    %       for k = 1:10 i,T{SV  
    %           z(idx) = y(:,k); Rw`s O:eZ  
    %           subplot(4,7,Nplot(k)) H l@rS  
    %           pcolor(x,x,z), shading interp M(f'qFY=K  
    %           set(gca,'XTick',[],'YTick',[]) _P:P5H8  
    %           axis square 9qA_5x%"%u  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) V-3]h ba,  
    %       end dX=^>9hN/  
    % 9nE%r\H  
    %   See also ZERNPOL, ZERNFUN2. 04t_  
    E?uv&evPK7  
    %   Paul Fricker 11/13/2006 iy9]Y5b   
    /([aD~.  
    6"(&lK\^  
    % Check and prepare the inputs: )Be;Zw.|  
    % ----------------------------- oL;/Qan  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @gOgs  
        error('zernfun:NMvectors','N and M must be vectors.') d mO|PswW  
    end ZHJzh\?  
    WyETg!b[  
    if length(n)~=length(m) /2@@v|QL  
        error('zernfun:NMlength','N and M must be the same length.') =[&Jxy>Y  
    end p\K5B,  
    i747( ^  
    n = n(:); yrX]w3kr%  
    m = m(:); p pq#5t^[)  
    if any(mod(n-m,2)) -E1}mL}I`  
        error('zernfun:NMmultiplesof2', ... a=R-F!P)  
              'All N and M must differ by multiples of 2 (including 0).') M*N8p]3Cq  
    end #z.x3D@^r6  
    RZZB?vx  
    if any(m>n) q'q{M-U<  
        error('zernfun:MlessthanN', ... I f(_$>  
              'Each M must be less than or equal to its corresponding N.') By9/tB  
    end Sy_M!`B  
    *QX$Mo^E  
    if any( r>1 | r<0 ) ?kSs7e>  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]{hfM  
    end xjYFTb}!  
    ?m6E@.{  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) EA\~m*k  
        error('zernfun:RTHvector','R and THETA must be vectors.') w'!gLta  
    end I(.XK ucU  
    yT4|eHl  
    r = r(:); !`gg$9  
    theta = theta(:); ! [X<>  
    length_r = length(r); y[cAU:P?  
    if length_r~=length(theta) `W9_LROD  
        error('zernfun:RTHlength', ... /[OMpP  
              'The number of R- and THETA-values must be equal.') =ZQIpc  
    end n!p&.Mt  
    s5.2gu|"%  
    % Check normalization: \0$?r4A  
    % -------------------- Vk"QcW  
    if nargin==5 && ischar(nflag) VYBl0!t  
        isnorm = strcmpi(nflag,'norm'); >\'yj| U,  
        if ~isnorm >Ry4Cc  
            error('zernfun:normalization','Unrecognized normalization flag.') ]WG\+1x9  
        end ^6`U0|5mRX  
    else h5JXKR.1]c  
        isnorm = false; n;U|7it7  
    end 6=   
    o|+tRl  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  7;XdTx  
    % Compute the Zernike Polynomials D|xSO~M5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yVL~SH|  
    AXyuXB  
    % Determine the required powers of r: Y9WH%  
    % ----------------------------------- >g?,BK@  
    m_abs = abs(m); eg3{sDv,  
    rpowers = []; Abl=Ev  
    for j = 1:length(n) 5XhV+t g.  
        rpowers = [rpowers m_abs(j):2:n(j)]; <ANKoPNie  
    end ,FTF@h-Cs  
    rpowers = unique(rpowers); gC 4w&yL  
     >4Lb+]  
    % Pre-compute the values of r raised to the required powers, 6jn<YR E-  
    % and compile them in a matrix: 43eGfp'  
    % ----------------------------- yS?1JWUC>  
    if rpowers(1)==0 cX*^PSM  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~&pk</Dl  
        rpowern = cat(2,rpowern{:});  -x7L8Wj  
        rpowern = [ones(length_r,1) rpowern]; W46sKD;\^W  
    else %>f:m!.  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Rk'Dd4"m ,  
        rpowern = cat(2,rpowern{:}); ''Hq-Ng  
    end yCz? V[49  
    th]9@7UE,  
    % Compute the values of the polynomials: 3y@'p(}Az  
    % -------------------------------------- 8Hhe&B  
    y = zeros(length_r,length(n)); eq"~by[Uq  
    for j = 1:length(n) 4U((dx*m  
        s = 0:(n(j)-m_abs(j))/2; x*YJ :t  
        pows = n(j):-2:m_abs(j); d.{RZq2cp  
        for k = length(s):-1:1 (Yx rZ_F'b  
            p = (1-2*mod(s(k),2))* ... tDi<n}  
                       prod(2:(n(j)-s(k)))/              ... ?znSA >  
                       prod(2:s(k))/                     ... NE(6`Wq`  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 43/|[  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Jzr(A^vwo  
            idx = (pows(k)==rpowers); w}'E]y2.  
            y(:,j) = y(:,j) + p*rpowern(:,idx); W4Eo1 E  
        end _h5@3>b3r  
         Abj`0\  
        if isnorm 4 0Du*5M  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ~2pctqMA  
        end "xh]>_;&'  
    end Tj.;\a|d  
    % END: Compute the Zernike Polynomials r`" ?K]rI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  yXDf;`J  
    tnp]wZ  
    % Compute the Zernike functions: 7Npz {C{I  
    % ------------------------------ 1{DHlyA6g  
    idx_pos = m>0; vHao y  
    idx_neg = m<0; N^)L@6  
    Nf3L  
    z = y; =6? 3c\  
    if any(idx_pos) 5:O"T  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); + ('jqbV  
    end {4#'`Eejj  
    if any(idx_neg) 4).q+{#k  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); pO"V9[p]  
    end ?+51 B-  
    p#3P`I>ZrT  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) h4ZrD:D0\  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. L7 qim.J  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated M7En%sBp  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ]_j{b)t  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, J5IQ  
    %   and THETA is a vector of angles.  R and THETA must have the same "M2HiV  
    %   length.  The output Z is a matrix with one column for every P-value, #Ey!?Z  
    %   and one row for every (R,THETA) pair. ~g)gXPjke  
    % *y7^4I-J  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike N-;e" g  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) w,D(zk$   
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) #m|AQr|  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 }F**!%4d  
    %   for all p. 'R?;T[s%  
    % ]*Zg(YA  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 p ^T0(\1  
    %   Zernike functions (order N<=7).  In some disciplines it is WM:we*k8h  
    %   traditional to label the first 36 functions using a single mode 9V("K  
    %   number P instead of separate numbers for the order N and azimuthal %J7 ;b<}To  
    %   frequency M. lY0^Z  
    % eZT923tD  
    %   Example: K@`F*^A}V  
    % 9aYCU/3  
    %       % Display the first 16 Zernike functions <[kdF")  
    %       x = -1:0.01:1; Fb VtyQz  
    %       [X,Y] = meshgrid(x,x); aw {?UvL&  
    %       [theta,r] = cart2pol(X,Y); ,H\EPmNHK  
    %       idx = r<=1; $ ^m_M.1  
    %       p = 0:15; X5'foFE'  
    %       z = nan(size(X)); @~xNax&^  
    %       y = zernfun2(p,r(idx),theta(idx)); ^HQg$}=  
    %       figure('Units','normalized') mRFcZ.7  
    %       for k = 1:length(p) u\.7#D>  
    %           z(idx) = y(:,k); h )fi9  
    %           subplot(4,4,k) {088j?[hzk  
    %           pcolor(x,x,z), shading interp do C8!  
    %           set(gca,'XTick',[],'YTick',[]) ~~]L!P  
    %           axis square MW6d-  
    %           title(['Z_{' num2str(p(k)) '}']) SX$v&L<  
    %       end T[;O K  
    % },e f(  
    %   See also ZERNPOL, ZERNFUN. j[v<xo  
    ;}ileL Tl  
    %   Paul Fricker 11/13/2006 ?(n|ykXwc  
    ]8<;,}#  
    1|Us"GQ (n  
    % Check and prepare the inputs: c4k3|=f  
    % ----------------------------- Y FL9Q<  
    if min(size(p))~=1 7lqj" o(  
        error('zernfun2:Pvector','Input P must be vector.') t[Xx LG*  
    end inBBU[Sl  
    ZC@sUj"  
    if any(p)>35 MyXgp>?~T  
        error('zernfun2:P36', ... F$N"&<[c  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... _t_X`  
               '(P = 0 to 35).']) FcB]wz  
    end pc J5UJY  
    m$Lq#R={Z  
    % Get the order and frequency corresonding to the function number: KW ]/u  
    % ---------------------------------------------------------------- HY4X;^hF  
    p = p(:); D9*GS_K2 t  
    n = ceil((-3+sqrt(9+8*p))/2); ]g2Y/\)a  
    m = 2*p - n.*(n+2); uhz:G~x!  
    |X,T>{V?y  
    % Pass the inputs to the function ZERNFUN: S~.:B2=5K  
    % ---------------------------------------- PF+v[h;,  
    switch nargin DDsU6RyN  
        case 3  K!VIY|U  
            z = zernfun(n,m,r,theta); A]id*RtY  
        case 4 > SU2Jw  
            z = zernfun(n,m,r,theta,nflag); gBA UrY%]  
        otherwise ,|,DXw  
            error('zernfun2:nargin','Incorrect number of inputs.') K3Zc>QL{  
    end +1zCb=;!{  
    ,A T!:&<X  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) B#9rqC  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. #05#@v8.f  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of O:cta/M  
    %   order N and frequency M, evaluated at R.  N is a vector of St}j^i  
    %   positive integers (including 0), and M is a vector with the ~( 54-9&  
    %   same number of elements as N.  Each element k of M must be a v<c~ '?YzO  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) {1,]8!HBJ  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is FTZ][  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix zA4m !l*eM  
    %   with one column for every (N,M) pair, and one row for every %T4htZa  
    %   element in R. Nn5z   
    % JDrh-6Zgj  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- qfE>N?/  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Xo]QV.n  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 28J ; 9  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 <8nl}^d5  
    %   for all [n,m]. {Hxvt~P  
    % {-;lcOD  
    %   The radial Zernike polynomials are the radial portion of the Ta^l1]9.*  
    %   Zernike functions, which are an orthogonal basis on the unit E#?*6/  
    %   circle.  The series representation of the radial Zernike W&23M26"{  
    %   polynomials is ""Nu["|E  
    % [zmx  
    %          (n-m)/2 W!|A3V35\:  
    %            __ ihivJ Z  
    %    m      \       s                                          n-2s __<u!;f  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r SEsc"l8  
    %    n      s=0 *IL x-D5qr  
    % wN1%;~?7  
    %   The following table shows the first 12 polynomials. p"" #Gbwj  
    % O]rAo  
    %       n    m    Zernike polynomial    Normalization SJ$N]<d  
    %       --------------------------------------------- D5x }V  
    %       0    0    1                        sqrt(2) NfqJ>[}I+  
    %       1    1    r                           2 Cj^:8 ?%  
    %       2    0    2*r^2 - 1                sqrt(6) 2(~Y ^_  
    %       2    2    r^2                      sqrt(6) " '/:Tp)  
    %       3    1    3*r^3 - 2*r              sqrt(8) ~^jdiy5  
    %       3    3    r^3                      sqrt(8) $@k[Xh  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) JRQ{Q"`)  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) .R5[bXxe7  
    %       4    4    r^4                      sqrt(10) pMZKF=  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Vp{e1xpY  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) .XD7};g  
    %       5    5    r^5                      sqrt(12) *((wp4b  
    %       --------------------------------------------- q2v:lSFY  
    % \z"0lAv"  
    %   Example: :.KN;+tP  
    % ^wesuW@=  
    %       % Display three example Zernike radial polynomials `;Qw/xl_N  
    %       r = 0:0.01:1; {B^V_TX2  
    %       n = [3 2 5]; :C6  
    %       m = [1 2 1]; YNV!(>\GE  
    %       z = zernpol(n,m,r); xszGao'  
    %       figure 7d&_5Tj:  
    %       plot(r,z) {;.q?mj  
    %       grid on h'Tn&2r6  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Cw`8[)=}o  
    % 3k)W0]:|<  
    %   See also ZERNFUN, ZERNFUN2. R  Fgy  
    F\&Sn1>k  
    % A note on the algorithm. -<rQOPH%  
    % ------------------------ >s#[dr\ww  
    % The radial Zernike polynomials are computed using the series h%'4V<V  
    % representation shown in the Help section above. For many special 2uonT,W  
    % functions, direct evaluation using the series representation can =@%;6`AVcp  
    % produce poor numerical results (floating point errors), because jtqH3xfy  
    % the summation often involves computing small differences between OU)~ 02|\  
    % large successive terms in the series. (In such cases, the functions BQYj"Wi  
    % are often evaluated using alternative methods such as recurrence huh-S ,M  
    % relations: see the Legendre functions, for example). For the Zernike !: e(-  
    % polynomials, however, this problem does not arise, because the kO3{2$S6  
    % polynomials are evaluated over the finite domain r = (0,1), and ^`b&fb v  
    % because the coefficients for a given polynomial are generally all |Z%I3-z_DS  
    % of similar magnitude. Hg8n`a;R  
    % Q\(VQ1c  
    % ZERNPOL has been written using a vectorized implementation: multiple fQ>=\*b9x^  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] =gI;%M\'  
    % values can be passed as inputs) for a vector of points R.  To achieve QmQsNcF~z  
    % this vectorization most efficiently, the algorithm in ZERNPOL 3w&fN3 1  
    % involves pre-determining all the powers p of R that are required to  LW?Zd=  
    % compute the outputs, and then compiling the {R^p} into a single Hya  ";'  
    % matrix.  This avoids any redundant computation of the R^p, and 3L2@C%  
    % minimizes the sizes of certain intermediate variables. G9?6qb:  
    % Be"Swz(n  
    %   Paul Fricker 11/13/2006 zqEMR>px  
    P'o:Vhm_H  
    cSdkhRAn  
    % Check and prepare the inputs: oK3uGPi  
    % ----------------------------- bu`8QQ"C  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) En@] xvE  
        error('zernpol:NMvectors','N and M must be vectors.') <^:e)W  
    end 3Cq/ o'  
    @V$,H/v:  
    if length(n)~=length(m)  =[Lo9Sg  
        error('zernpol:NMlength','N and M must be the same length.') -fF1vJ7L  
    end qGndh  
    |12Cg>;j*n  
    n = n(:); >z0~!!YZ  
    m = m(:); y'sy]Q~  
    length_n = length(n); bkmW[w:M  
    &{B-a  
    if any(mod(n-m,2)) z4l O  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') c*nH=  
    end EZvB#cuL-  
    u rGk_.f  
    if any(m<0) gI^);J rTE  
        error('zernpol:Mpositive','All M must be positive.') /m,0H)w1  
    end ^{<x*/nK  
    gv=mz,z  
    if any(m>n) _Q<wb8+/  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') by*>w/@9)k  
    end DJl06-s V  
    a/@<KnT  
    if any( r>1 | r<0 ) COS(pfC  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') .y7&!a35  
    end (]'Q!MjGa  
    YJgw%UVJ5m  
    if ~any(size(r)==1) \=+ s3p5N  
        error('zernpol:Rvector','R must be a vector.') 33d86H% ;  
    end x}TDb0V  
    lD09(|`  
    r = r(:); oOk.Fq  
    length_r = length(r); DbSl}N;  
    gi`K^L=C  
    if nargin==4 <YbOO{  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); H) g:<  
        if ~isnorm ^G63GYh]y  
            error('zernpol:normalization','Unrecognized normalization flag.') ]pLQ;7f7D  
        end { .KCK_ d  
    else ')#E,Y%Hq  
        isnorm = false; RL>Nl ow  
    end od>DSn3T  
    )Q 8T`Tly  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `Rj<qz^7  
    % Compute the Zernike Polynomials ]Jj\**  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R7us9qM4e  
    s~$kzEtjjU  
    % Determine the required powers of r: SsjO1F  
    % ----------------------------------- ,hK0F3?H>  
    rpowers = []; }~lF Rf  
    for j = 1:length(n) HMNjQ 1y  
        rpowers = [rpowers m(j):2:n(j)]; 8WWRKP1V  
    end z602(mxGg  
    rpowers = unique(rpowers); J'.:l}g!1  
    uR"srn;^  
    % Pre-compute the values of r raised to the required powers, _<5o1  
    % and compile them in a matrix: Tgp}k%R~  
    % ----------------------------- XgKtg-,  
    if rpowers(1)==0 5VWXUNe@_q  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  TyMR m  
        rpowern = cat(2,rpowern{:}); daBu<0\  
        rpowern = [ones(length_r,1) rpowern]; "}D uAs  
    else !B?/6XRUx  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j'-akXo<  
        rpowern = cat(2,rpowern{:}); t~p9iGX<  
    end eif<aG5  
    ?PWD[mQE\  
    % Compute the values of the polynomials: _,b%t1v  
    % -------------------------------------- P*/px4;6  
    z = zeros(length_r,length_n); !-r@_tn|  
    for j = 1:length_n KtHh--j`  
        s = 0:(n(j)-m(j))/2;  ;9c3IK@  
        pows = n(j):-2:m(j); Rs)tf|`/  
        for k = length(s):-1:1 5(>m=ef"  
            p = (1-2*mod(s(k),2))* ... ]M{SM`Ya  
                       prod(2:(n(j)-s(k)))/          ... '#t"^E2$  
                       prod(2:s(k))/                 ... O7j$bxk/^  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ))!Z2PfD  
                       prod(2:((n(j)+m(j))/2-s(k))); 1o o'\  
            idx = (pows(k)==rpowers); qB@]$  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Z!6\KV]  
        end 'jcDfv(v<  
          >0+m  
        if isnorm '2zo  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); MLmc]nL=  
        end `a:@[0r0U  
    end /{7x|ay]  
    -9-%_=6  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  2d$hgR#v  
    v`Sllv5bV  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ^=R>rUCmv  
    hrcR"OZ~X  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)