切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11492阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 K/2.1o;9  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! %/y`<lJz(  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 P</s)"@  
    function z = zernfun(n,m,r,theta,nflag) .Gizz</P~  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |JUe>E*  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N E-~mOYea  
    %   and angular frequency M, evaluated at positions (R,THETA) on the r^$\t0h(U8  
    %   unit circle.  N is a vector of positive integers (including 0), and [kbC'Eh*  
    %   M is a vector with the same number of elements as N.  Each element D@8jGcz62  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) VpkD'<G  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Y4mC_4EU  
    %   and THETA is a vector of angles.  R and THETA must have the same aje^Z=]  
    %   length.  The output Z is a matrix with one column for every (N,M) [@m[V1D  
    %   pair, and one row for every (R,THETA) pair. b5A Gk  
    % U~aWG\h#X  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike N-[n\}'  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), '#v71,  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral K7IyCcdB  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Wk@ eV\H71  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized _6;<ow  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. NB E pM  
    % coDj L.u  
    %   The Zernike functions are an orthogonal basis on the unit circle. ||uZ bP@  
    %   They are used in disciplines such as astronomy, optics, and o2DtCU-A  
    %   optometry to describe functions on a circular domain. RfKc{V  
    % ~32Pjk~  
    %   The following table lists the first 15 Zernike functions. P: n#S%  
    % wL;]1&Qq  
    %       n    m    Zernike function           Normalization Dk6?Nwy"  
    %       -------------------------------------------------- ],n%Xp  
    %       0    0    1                                 1 (]2<?x*  
    %       1    1    r * cos(theta)                    2 tqK=\{U  
    %       1   -1    r * sin(theta)                    2 m$,,YKhh  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 1e/L\Y=m  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ;4 ,'y  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 1t+%Gv^sK  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) OR]T`meO  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ! ,@ZQS  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) -Q#o)o  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) N/K=Ygv.  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ( : {"C6x  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @r F/]UJ  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) \/!ZA[D|E\  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) J{d(1gSZ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) !2z!8kI  
    %       -------------------------------------------------- u+i(";\  
    % !#?8BwnaZ  
    %   Example 1: Qm< gb+  
    % NCi>S%pD`<  
    %       % Display the Zernike function Z(n=5,m=1) &&WDo(r3  
    %       x = -1:0.01:1; r@iASITX  
    %       [X,Y] = meshgrid(x,x); x=.tiM{#  
    %       [theta,r] = cart2pol(X,Y); 8W;2oQN7  
    %       idx = r<=1; }qAVN  
    %       z = nan(size(X)); `fz,Lh*v  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ym\(PCa5`  
    %       figure c5("-xB  
    %       pcolor(x,x,z), shading interp atyu/+U'}  
    %       axis square, colorbar &UL_bG }  
    %       title('Zernike function Z_5^1(r,\theta)') UFe(4]^  
    % 34ha26\np  
    %   Example 2: ~Q?!W0ZBE  
    % A[`G^ $  
    %       % Display the first 10 Zernike functions Vv8_\^g]  
    %       x = -1:0.01:1; X8b|]Nr  
    %       [X,Y] = meshgrid(x,x); =h|wwQE  
    %       [theta,r] = cart2pol(X,Y); MLV:U  
    %       idx = r<=1; r,4lqar;E  
    %       z = nan(size(X)); D<t~e$H  
    %       n = [0  1  1  2  2  2  3  3  3  3]; "b]#MO}P  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; cD2+hp|9  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ]dG\j^e|  
    %       y = zernfun(n,m,r(idx),theta(idx)); 3;-^YG  
    %       figure('Units','normalized') 78 d_io}w  
    %       for k = 1:10 V@%  
    %           z(idx) = y(:,k); P]Xbjs<p  
    %           subplot(4,7,Nplot(k)) v0#*X5C1'  
    %           pcolor(x,x,z), shading interp ^,TTwLy- t  
    %           set(gca,'XTick',[],'YTick',[]) ^ S  
    %           axis square #f*g]p{   
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) B76 v}O:  
    %       end "ZT.k5Z  
    %  W8]V  
    %   See also ZERNPOL, ZERNFUN2. ',{7% G9  
    GX?*1  
    %   Paul Fricker 11/13/2006 %ucjMa>t  
    +}a C-&  
    B[F-gq-  
    % Check and prepare the inputs: X3wX`V}  
    % ----------------------------- {U"^UuU]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) __I/F6{ 9V  
        error('zernfun:NMvectors','N and M must be vectors.') nN aXp*J  
    end &:3Z.G  
    0y~<%`~  
    if length(n)~=length(m) zN{JJ3-  
        error('zernfun:NMlength','N and M must be the same length.') /YH`4e5g  
    end ^aF8wbuZ  
    c #lPc>0xb  
    n = n(:); /(?@mnq_  
    m = m(:); +th%enRB  
    if any(mod(n-m,2)) lw[e *q{s.  
        error('zernfun:NMmultiplesof2', ... uLk]LT  
              'All N and M must differ by multiples of 2 (including 0).') aDL*W@1S  
    end l-Nly>~  
    y&oNv xG-  
    if any(m>n) 9o0!m Cq  
        error('zernfun:MlessthanN', ... KrcgIB8X  
              'Each M must be less than or equal to its corresponding N.') ?2#(jZ# 2  
    end y'} O)lO1  
    VK:8 Nk_y  
    if any( r>1 | r<0 ) fD4ICO@  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') !kL> ,O>/  
    end + G;LX'B  
    `/nM[  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) zhblLBpeE\  
        error('zernfun:RTHvector','R and THETA must be vectors.') ;%Hf)F  
    end > cN~U3  
    *7$P]  
    r = r(:); /i_ @  
    theta = theta(:); bZ 443SG  
    length_r = length(r); 6!q#x[A  
    if length_r~=length(theta) iv&v8;B  
        error('zernfun:RTHlength', ... =f1B,%7G+5  
              'The number of R- and THETA-values must be equal.') g{:<2xI5P  
    end A],ooiq<  
    e3(/qMl  
    % Check normalization: IQH[Q9%  
    % -------------------- o[1ylzk}+  
    if nargin==5 && ischar(nflag) EU-]sTJLF  
        isnorm = strcmpi(nflag,'norm'); atF?OP|{,w  
        if ~isnorm Sr_VL:Gg  
            error('zernfun:normalization','Unrecognized normalization flag.') # 1.YKo  
        end +iO/m  
    else Uf\nFB? ^  
        isnorm = false; %|"g/2sF[G  
    end ]; Wx  
    ?rYT4vi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )C hqATKg  
    % Compute the Zernike Polynomials iK()&TNz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X"aEJ|y  
    sEc;!L  
    % Determine the required powers of r: Vz=auM1xZ  
    % ----------------------------------- I97yt[,Yy  
    m_abs = abs(m); w ej[+y-  
    rpowers = []; ^|MjJsn  
    for j = 1:length(n) +}xaQc:0|  
        rpowers = [rpowers m_abs(j):2:n(j)]; I5m][~6.?  
    end . T JEUK  
    rpowers = unique(rpowers); q'Wr[A40j  
    BB$oq'  
    % Pre-compute the values of r raised to the required powers, .L6Zm U  
    % and compile them in a matrix: bM,1f/^  
    % ----------------------------- 5ETip'<KT6  
    if rpowers(1)==0 WjSc/3Qy  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); jE2}p-2Q0  
        rpowern = cat(2,rpowern{:}); >Z.\J2wM<j  
        rpowern = [ones(length_r,1) rpowern]; *l&S-=]  
    else hr05L<?H  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); kzn[ =P  
        rpowern = cat(2,rpowern{:}); Z;l`YK^-  
    end *hLQ  
    Vr[czfROz'  
    % Compute the values of the polynomials: "es?=  
    % -------------------------------------- _PFnh)o  
    y = zeros(length_r,length(n)); q@hzo>[  
    for j = 1:length(n) U?a6D:~G  
        s = 0:(n(j)-m_abs(j))/2; `Z"Q^  
        pows = n(j):-2:m_abs(j); :#~U<C@o  
        for k = length(s):-1:1 < 0M:"^f  
            p = (1-2*mod(s(k),2))* ... "XgmuSQ!  
                       prod(2:(n(j)-s(k)))/              ... !~]<$WZV  
                       prod(2:s(k))/                     ... q#w8wH"  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2 dp>Z",  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); YKmsQ(q`N  
            idx = (pows(k)==rpowers); B.r4$:+jb2  
            y(:,j) = y(:,j) + p*rpowern(:,idx); uj>WgU  
        end 1NQbl+w#I  
         $$APgj"|<  
        if isnorm tVrY3)c  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7\]E~/g  
        end DGW+>\G  
    end ,GWNL m\5  
    % END: Compute the Zernike Polynomials "tFxhKf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W&(k!6<x  
    <f@"HG l  
    % Compute the Zernike functions: Wq*b~Lw  
    % ------------------------------ $$b 9&mTl#  
    idx_pos = m>0; &k-Vcrcz  
    idx_neg = m<0; #U8rO;$  
    <fCKUc  
    z = y; 2{-ZD ,(u7  
    if any(idx_pos) n Ox4<Wk&  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4P^6oh0"  
    end )-*5v D  
    if any(idx_neg) cdqB,]"  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); dL7E<?l  
    end bVP"(H]  
    N7E$G{TT  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) >pUtwIP  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. WA dCF-S  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated PkI:*\R  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive rE@T79"  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ca+5=+X7  
    %   and THETA is a vector of angles.  R and THETA must have the same df7wN#kO+  
    %   length.  The output Z is a matrix with one column for every P-value, dOa%9[  
    %   and one row for every (R,THETA) pair. %|s+jeUDn|  
    % %*BlWk!Q  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 2-Y<4'>  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) fb^fVSh>  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) MEB it  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 SlsdqP 9  
    %   for all p. /SYw;<=  
    % "DYJ21Ut4  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ~69&6C1Ch  
    %   Zernike functions (order N<=7).  In some disciplines it is O/[cpRe  
    %   traditional to label the first 36 functions using a single mode j?'GZ d"B  
    %   number P instead of separate numbers for the order N and azimuthal Gea\,{E9xA  
    %   frequency M. 7uzk p&+:  
    % SdD6 ~LS  
    %   Example: ]+X@ 7  
    % 6Ybg^0m  
    %       % Display the first 16 Zernike functions (o`{uj{!  
    %       x = -1:0.01:1; UFMA:o,  
    %       [X,Y] = meshgrid(x,x); AK@9?_D  
    %       [theta,r] = cart2pol(X,Y); SL5Ai/X0N  
    %       idx = r<=1; | Bi!  
    %       p = 0:15; &jmRA';sK  
    %       z = nan(size(X)); .V,@k7U,V  
    %       y = zernfun2(p,r(idx),theta(idx)); :OuA)f  
    %       figure('Units','normalized') B_.%i+ZZ  
    %       for k = 1:length(p) ~@}Bi@*  
    %           z(idx) = y(:,k); yqPdl1{Qr=  
    %           subplot(4,4,k) ]q4rlT.i  
    %           pcolor(x,x,z), shading interp Ofs <EQ  
    %           set(gca,'XTick',[],'YTick',[]) wb0L.'jyR)  
    %           axis square 9H]{g*kL  
    %           title(['Z_{' num2str(p(k)) '}']) A}l3cP; `#  
    %       end jyCXJa-!-  
    % .[_L=_.  
    %   See also ZERNPOL, ZERNFUN. Rb'|EiNPw  
    LGn:c;  
    %   Paul Fricker 11/13/2006 5aCgjA11  
    |:gf lseE  
    ]9^sa-8  
    % Check and prepare the inputs: %KLpig  
    % ----------------------------- PpzP7  
    if min(size(p))~=1 E 7{U |\  
        error('zernfun2:Pvector','Input P must be vector.') V-BiF>+  
    end o2F)%TDY  
    F%RRd/'  
    if any(p)>35 {e 14[0U-  
        error('zernfun2:P36', ... ?{ryGhb~  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 5?x>9C a  
               '(P = 0 to 35).']) Qnsi`1mASr  
    end [1S|dc>.O%  
    %$.3V#?  
    % Get the order and frequency corresonding to the function number: BI%$c~wS  
    % ---------------------------------------------------------------- e~=;c  
    p = p(:); %#kg#@z_`e  
    n = ceil((-3+sqrt(9+8*p))/2); ;>Ib^ov  
    m = 2*p - n.*(n+2); gDpVeBd[  
    cPlZXf  
    % Pass the inputs to the function ZERNFUN: oG_~q w|h  
    % ---------------------------------------- , K~}\CR  
    switch nargin U2W|:~KM  
        case 3 MDnua  
            z = zernfun(n,m,r,theta); 7fZDs j:  
        case 4 gi1^3R[  
            z = zernfun(n,m,r,theta,nflag); [<@.eH$hU/  
        otherwise <eWf<  
            error('zernfun2:nargin','Incorrect number of inputs.') [_EZhq  
    end W:pIPDx1=!  
    (5-FVp fb  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) I 5^!y  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Swig;`  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ;DfY#-  
    %   order N and frequency M, evaluated at R.  N is a vector of YJT&{jYi  
    %   positive integers (including 0), and M is a vector with the j8 ^Iz  
    %   same number of elements as N.  Each element k of M must be a L>Fa^jq5  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) MP Y[X[  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is m[~y@7AK<  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix UGV+/zxIM  
    %   with one column for every (N,M) pair, and one row for every 8V`WO6*  
    %   element in R. 2*laAB  
    % qN9(S:_Px  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- a%JuC2  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is {k TE He  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Z>k#n'm^z  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 T $>&[f$6  
    %   for all [n,m]. dy%;W%  
    % 98IJu  
    %   The radial Zernike polynomials are the radial portion of the <lPm1/8  
    %   Zernike functions, which are an orthogonal basis on the unit yg<R=$n,Q  
    %   circle.  The series representation of the radial Zernike Z&+ g;(g  
    %   polynomials is +V ;l6D  
    % wDal5GJp  
    %          (n-m)/2 \/r}]Vz  
    %            __ "c%0P"u  
    %    m      \       s                                          n-2s 3nO]Ge"w'n  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r X9W@&zQ  
    %    n      s=0 :+^lJ&{U  
    % Q4#m\KK;i9  
    %   The following table shows the first 12 polynomials. ;"5&b!=t  
    % ?jv/TBZX4  
    %       n    m    Zernike polynomial    Normalization &R'c.  
    %       --------------------------------------------- O`IQ(,yef  
    %       0    0    1                        sqrt(2) P^ ~yzI  
    %       1    1    r                           2 _^Ubs>d=*  
    %       2    0    2*r^2 - 1                sqrt(6) NvceYKp:  
    %       2    2    r^2                      sqrt(6) JE "x  
    %       3    1    3*r^3 - 2*r              sqrt(8) 5IGX5x  
    %       3    3    r^3                      sqrt(8) C!<Ou6}!b  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) t6 "%3#s  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) _$E6P^AQ  
    %       4    4    r^4                      sqrt(10) x}Eg.S  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) cJ= 6r :  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) v!~fs)cdE|  
    %       5    5    r^5                      sqrt(12) 3)<yod=  
    %       --------------------------------------------- i &nSh ]KK  
    % QOGvC[*`<T  
    %   Example: >C>.\  
    % 1hY{k{+o  
    %       % Display three example Zernike radial polynomials mp1@|*Sn  
    %       r = 0:0.01:1; _aSxc)?  
    %       n = [3 2 5]; {BN#h[#B{  
    %       m = [1 2 1]; ( Y[Q,  
    %       z = zernpol(n,m,r); @Md/Q~>  
    %       figure w3ResQ   
    %       plot(r,z) ~g]Vw4pv  
    %       grid on e'NJnPO  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 0*3R=7_},o  
    % ZPLm]I\]  
    %   See also ZERNFUN, ZERNFUN2. oWT3apGO  
    Hk3sI-XkA  
    % A note on the algorithm. g wRZ%.Cn  
    % ------------------------ vm8eZG|  
    % The radial Zernike polynomials are computed using the series W aRw05r  
    % representation shown in the Help section above. For many special W' VslZG  
    % functions, direct evaluation using the series representation can -$ls(oot  
    % produce poor numerical results (floating point errors), because y'q$ |  
    % the summation often involves computing small differences between W:2( .?  
    % large successive terms in the series. (In such cases, the functions +5*95-;0  
    % are often evaluated using alternative methods such as recurrence +Mb.:_7'  
    % relations: see the Legendre functions, for example). For the Zernike _1\v  
    % polynomials, however, this problem does not arise, because the L,/%f<wd  
    % polynomials are evaluated over the finite domain r = (0,1), and l ukB8  
    % because the coefficients for a given polynomial are generally all "%w u2%i  
    % of similar magnitude. pz}.9 yI8  
    % k1~&x$G  
    % ZERNPOL has been written using a vectorized implementation: multiple VscE^'+  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] &DX! f  
    % values can be passed as inputs) for a vector of points R.  To achieve TF\C@4Z  
    % this vectorization most efficiently, the algorithm in ZERNPOL IM'r8 V  
    % involves pre-determining all the powers p of R that are required to 'n3uu1C  
    % compute the outputs, and then compiling the {R^p} into a single }o(-=lF  
    % matrix.  This avoids any redundant computation of the R^p, and mO7]9 p  
    % minimizes the sizes of certain intermediate variables. 7>%8eEc  
    % *L^,|   
    %   Paul Fricker 11/13/2006 Wqw1J=]  
    BX7kO0j  
    i[3'ec3  
    % Check and prepare the inputs: #=A)XlZMd  
    % ----------------------------- r),kDia  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !*N@ZL&X  
        error('zernpol:NMvectors','N and M must be vectors.') /W<;Z;zk  
    end FcU SE  
    ^\=`edN0  
    if length(n)~=length(m) ^6V[=!& H  
        error('zernpol:NMlength','N and M must be the same length.') 8Fu(Ft^9  
    end ea 'D td  
    yR{3!{r3(  
    n = n(:); +a+Om73B2  
    m = m(:); dR,fXQm  
    length_n = length(n); / zPO  
    <\^8fn   
    if any(mod(n-m,2)) |)v,2  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') S4z;7z(8+  
    end c-5)QF) z  
    + =</&Tm  
    if any(m<0) @# l= l  
        error('zernpol:Mpositive','All M must be positive.') H<,gU`&R  
    end <PH #[dH  
     x'<X!gw  
    if any(m>n) <>rneHl8  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') "+G8d' %YV  
    end mCVFS=8V  
    @*( (1(q  
    if any( r>1 | r<0 ) '5$b-x6F  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') )jP1or  
    end oUU1+F-  
    Tyx_/pJT  
    if ~any(size(r)==1) h S&R(m  
        error('zernpol:Rvector','R must be a vector.') zQd 2  
    end b8 likP"T  
    kt:! 7  
    r = r(:); F={a;Dvrn  
    length_r = length(r); Ad_h K O  
    XXa|BZ1RX  
    if nargin==4 (f"4,b^]  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); &Z%?!.4j@  
        if ~isnorm !+v$)3u9  
            error('zernpol:normalization','Unrecognized normalization flag.') wb l&  
        end @K-">f  
    else q(84+{>B  
        isnorm = false; Y$@?.)tY  
    end "4{r6[dn  
    S"H2 7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <RL]  
    % Compute the Zernike Polynomials Q*Pq{]0K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]c'A%:f<  
    4Fr  
    % Determine the required powers of r: /j.9$H'y  
    % ----------------------------------- Q^")jPd  
    rpowers = []; S)@j6(HC4  
    for j = 1:length(n) C,4e"yynb  
        rpowers = [rpowers m(j):2:n(j)]; 3^yK!-Wp(  
    end G"A#Q"  
    rpowers = unique(rpowers); F:S}w   
    o`-msz  
    % Pre-compute the values of r raised to the required powers, UkFC~17P  
    % and compile them in a matrix: {)sdiE  
    % ----------------------------- VI *$em O0  
    if rpowers(1)==0 m)v &v6  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 7@W>E;go  
        rpowern = cat(2,rpowern{:}); (#c:b  
        rpowern = [ones(length_r,1) rpowern]; )8ZH-|N`!E  
    else f3y=Wxk[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j#4kY R{  
        rpowern = cat(2,rpowern{:}); 2D5StCF$O  
    end y?3; 06y|  
    do'GlU oMC  
    % Compute the values of the polynomials: < =IFcN  
    % -------------------------------------- G 01ON0  
    z = zeros(length_r,length_n); P]C<U aW'!  
    for j = 1:length_n pd$[8Rmj_  
        s = 0:(n(j)-m(j))/2; 5)X=*I  
        pows = n(j):-2:m(j); 2GG2jky{/  
        for k = length(s):-1:1 S3J^,*'  
            p = (1-2*mod(s(k),2))* ... ~a2}(]  
                       prod(2:(n(j)-s(k)))/          ... ftSW (og  
                       prod(2:s(k))/                 ... #GFr`o0$^  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... iWR)ke  
                       prod(2:((n(j)+m(j))/2-s(k))); #KvlYZ+1  
            idx = (pows(k)==rpowers); r<$y= B  
            z(:,j) = z(:,j) + p*rpowern(:,idx); gjlx~.0d  
        end CTmT@A{  
         Dw"\/p:-3  
        if isnorm r9XZ(0/p  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); |DwZ{(R"W  
        end rPm x  
    end #<xm.  
    BTxrp  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  6zn5UW#q  
    Qci]i)s$js  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 'W#D(l9nI  
    3mni>*q7d  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)