切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10725阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 -,;Iob56!  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! C^ hHt,&  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 eR(PY{  
    function z = zernfun(n,m,r,theta,nflag) 29g("(}TK  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,jyNV<dI  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N M:W9h+z  
    %   and angular frequency M, evaluated at positions (R,THETA) on the byM/LE7)  
    %   unit circle.  N is a vector of positive integers (including 0), and dOq*W<%  
    %   M is a vector with the same number of elements as N.  Each element cpB$bC](  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) YJ]]6 K+  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, dL>0"UN}-  
    %   and THETA is a vector of angles.  R and THETA must have the same :8U=L'4  
    %   length.  The output Z is a matrix with one column for every (N,M) >Qc0g(w  
    %   pair, and one row for every (R,THETA) pair. GLA,,i'i9  
    % GmN} +(  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike De[!^/f;T  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), F#@Mf?#2  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral i\G@kJNnF  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 1i9}mzy%  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 0@1AH<  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ;Gxp'y  
    % lyKV^7}  
    %   The Zernike functions are an orthogonal basis on the unit circle. YMnG-'^Z  
    %   They are used in disciplines such as astronomy, optics, and l%lkDh!$"  
    %   optometry to describe functions on a circular domain. UaCEh?D+Y  
    % 3*64)Ol7t]  
    %   The following table lists the first 15 Zernike functions. AV AF!Z  
    % R>[2}R30  
    %       n    m    Zernike function           Normalization L.lmbxn  
    %       -------------------------------------------------- /iNCb&[  
    %       0    0    1                                 1 W'rft@J$  
    %       1    1    r * cos(theta)                    2 O9oVx4=  
    %       1   -1    r * sin(theta)                    2 ( }5k"9Z  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 2pH2s\r<UJ  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 9*RfOdnNe  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) XCoN!~  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) EbuOPa  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) #Qc[W +%  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) W}+Q!T=  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) fXvJ3w(  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) bSU9sg\  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #JeZA0r5  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ~HI|t2C  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .RH}/D  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 7EOn4I2@[  
    %       -------------------------------------------------- {l.) *#O  
    % V /$qD  
    %   Example 1: "d/x`Dx  
    % G9:[W"P  
    %       % Display the Zernike function Z(n=5,m=1) -lRXH7|X  
    %       x = -1:0.01:1; LR]P?  
    %       [X,Y] = meshgrid(x,x); ;n00kel$  
    %       [theta,r] = cart2pol(X,Y); b)(#/}jMkD  
    %       idx = r<=1; ;B o2$  
    %       z = nan(size(X)); POfvs]  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ,E$^i~OO  
    %       figure uXxyw7\W  
    %       pcolor(x,x,z), shading interp [m?eSq6e2b  
    %       axis square, colorbar k+'Rh'>  
    %       title('Zernike function Z_5^1(r,\theta)') WM*[+8h  
    % #n]js7  
    %   Example 2: (ST />")L  
    % .8uJ%'$)  
    %       % Display the first 10 Zernike functions VzA~w` $d  
    %       x = -1:0.01:1; L:IaJ?+?  
    %       [X,Y] = meshgrid(x,x); 0yfmQ=,X  
    %       [theta,r] = cart2pol(X,Y); R4 ;^R  
    %       idx = r<=1; 36@)a5  
    %       z = nan(size(X)); p )etl5  
    %       n = [0  1  1  2  2  2  3  3  3  3]; \kF}E3~+#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; D@rOX(m  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; U`ey7   
    %       y = zernfun(n,m,r(idx),theta(idx)); K%[Rv#>;q|  
    %       figure('Units','normalized') UN'hnqC  
    %       for k = 1:10 T-xcd  
    %           z(idx) = y(:,k); T#DJQ"$  
    %           subplot(4,7,Nplot(k)) Y\(Q  
    %           pcolor(x,x,z), shading interp MlkTrKdGi  
    %           set(gca,'XTick',[],'YTick',[]) bqJL@!T  
    %           axis square R;.zS^LL  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) F[ N{7C3  
    %       end p ~J`}>yo  
    % 36,qh.LKn  
    %   See also ZERNPOL, ZERNFUN2. ,}2M'DSWa  
    Bcg\p}  
    %   Paul Fricker 11/13/2006 PPU,o8E+  
    y&-wb'==p  
    oZHsCQ%  
    % Check and prepare the inputs: )}\jbh>RH  
    % ----------------------------- uhSRl~tn  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) J [J,  
        error('zernfun:NMvectors','N and M must be vectors.')  0$b)@  
    end 9n]z h-  
    DNcf2_m  
    if length(n)~=length(m) i=OPl  
        error('zernfun:NMlength','N and M must be the same length.') +e);lS"+/  
    end tH,}_Bp  
    u7ZSs-LuHw  
    n = n(:); JOS,>;;F4  
    m = m(:); 8G; t[9  
    if any(mod(n-m,2)) cod__.  
        error('zernfun:NMmultiplesof2', ... JaoRkl?F  
              'All N and M must differ by multiples of 2 (including 0).') $YSAD\a<  
    end \-a^8{.^E  
    `of 5h* k  
    if any(m>n) v!27q*;8H  
        error('zernfun:MlessthanN', ... Qz2Y w `  
              'Each M must be less than or equal to its corresponding N.') PVH^yWi n  
    end 3%{A"^S=}  
    ~KHGh29  
    if any( r>1 | r<0 ) Pc#8~t}2  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') s%z\szd*  
    end <^snS,06  
    `9E:V=  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,l^; ZE  
        error('zernfun:RTHvector','R and THETA must be vectors.') MlaViw  
    end nd*9vxM  
    Kmc*z (Q  
    r = r(:); :@x24wN/  
    theta = theta(:); Nd'+s>d0  
    length_r = length(r); 64 9{\;*4  
    if length_r~=length(theta) Kq#\P  
        error('zernfun:RTHlength', ... o7 ^t- L  
              'The number of R- and THETA-values must be equal.') *z I@Htp  
    end ]Q1?Ox:'  
    qp3J/(F  
    % Check normalization: H_RV#BW&  
    % -------------------- 8*z)aB&f3  
    if nargin==5 && ischar(nflag) is}6cR  
        isnorm = strcmpi(nflag,'norm'); Y '7f"W  
        if ~isnorm C^9G \s'  
            error('zernfun:normalization','Unrecognized normalization flag.') %\Dvng6$  
        end C#{s[l\]  
    else x}v]JEIf[Q  
        isnorm = false; aVkgE>  
    end ]."~)  
    \GhL{Awv&a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /$ Gp<.z  
    % Compute the Zernike Polynomials )y>o;^5'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7|Z=#3INw  
    GF 4k  
    % Determine the required powers of r: 6r  
    % ----------------------------------- v:/+Oz Y  
    m_abs = abs(m); ^6R Sbi\  
    rpowers = []; X*f#S:kiNU  
    for j = 1:length(n) |,!]]YO.V  
        rpowers = [rpowers m_abs(j):2:n(j)]; R\DdU-k  
    end {2jetX`@h  
    rpowers = unique(rpowers); 7G6XK   
    }/)vOUcEd  
    % Pre-compute the values of r raised to the required powers, Dxp8^VL  
    % and compile them in a matrix: +,oEcCi  
    % ----------------------------- R(YhVW_l  
    if rpowers(1)==0 tYb8a  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2AYV9egZ  
        rpowern = cat(2,rpowern{:}); f@JMDJ  
        rpowern = [ones(length_r,1) rpowern]; w=e_@^Fkx  
    else o>Fc.$ngZ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); =[A5qwyv  
        rpowern = cat(2,rpowern{:}); etnq{tE5  
    end RLy2d'DS  
    y $i^C:N  
    % Compute the values of the polynomials: d,%e? 8x5  
    % -------------------------------------- QuB`}rfLf  
    y = zeros(length_r,length(n)); C8^h`B9z&I  
    for j = 1:length(n)  Tt;h?  
        s = 0:(n(j)-m_abs(j))/2; [p&n]T  
        pows = n(j):-2:m_abs(j); ojmF:hR"  
        for k = length(s):-1:1 g=ehAg  
            p = (1-2*mod(s(k),2))* ... RN, 5>.w  
                       prod(2:(n(j)-s(k)))/              ... .qd/ft2  
                       prod(2:s(k))/                     ... ig-V^P  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ajM3Uwnr  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); p :v'"A}  
            idx = (pows(k)==rpowers); .Iu8bN(L`  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 7LFJi@*8  
        end tfKf*Um  
         xX !`0T7Y  
        if isnorm D,3Kx ^  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Ee~<PDzB  
        end a- \M)}T  
    end eq" eLk6h  
    % END: Compute the Zernike Polynomials \X*Es.;|x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]2_b_ok  
    w$)NW57[|  
    % Compute the Zernike functions: $q$G  
    % ------------------------------ 5n0B`A  
    idx_pos = m>0; +UM%6Z=+  
    idx_neg = m<0; 5wE+p<-KX  
    ,J$XVvwxF  
    z = y; !=3Ce3-  
    if any(idx_pos) ; _K3/:  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); "y9]>9:$-  
    end W?:e4:Q  
    if any(idx_neg) ;],Js1 m  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {i^F4A@=Z  
    end o#Viz:  
    |Wg!> g!  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) "!9FJ Y  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. [y&uc  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 7NMy1'-q  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 5 D <  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, }F';"ybrU)  
    %   and THETA is a vector of angles.  R and THETA must have the same F|&%Z(@a  
    %   length.  The output Z is a matrix with one column for every P-value, %w;wQ_  
    %   and one row for every (R,THETA) pair. GO UO  
    % 8wLGmv^  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 4jw q$G  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 13p.dp`  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) yS.)l  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 bH g 0,N  
    %   for all p. i 2 ='>  
    % 5^N y6t  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 KP_7h/e  
    %   Zernike functions (order N<=7).  In some disciplines it is (\%J0kR3[  
    %   traditional to label the first 36 functions using a single mode c27Zh=;Tj  
    %   number P instead of separate numbers for the order N and azimuthal r2\ }_pIj  
    %   frequency M. qu0 q LM  
    % I2gSgv%  
    %   Example: }O\g<ke:u  
    % kyf(V)APPu  
    %       % Display the first 16 Zernike functions %ed TW[C`  
    %       x = -1:0.01:1; R@KWiV  
    %       [X,Y] = meshgrid(x,x); >#y1(\e  
    %       [theta,r] = cart2pol(X,Y); 75iudki  
    %       idx = r<=1; s >k4G  
    %       p = 0:15; :BF WX  
    %       z = nan(size(X)); v}<z_i5/C.  
    %       y = zernfun2(p,r(idx),theta(idx)); 93/`e}P"o  
    %       figure('Units','normalized') 6n/KL  
    %       for k = 1:length(p) Z ZT2c0AK  
    %           z(idx) = y(:,k); Pr,C)uch  
    %           subplot(4,4,k) GS*_m4.Ry6  
    %           pcolor(x,x,z), shading interp /U>8vV+C  
    %           set(gca,'XTick',[],'YTick',[]) fO83 7  
    %           axis square ie/QSte  
    %           title(['Z_{' num2str(p(k)) '}']) {JM3drnw  
    %       end <)+;Bg  
    % =H"%{VeC5  
    %   See also ZERNPOL, ZERNFUN. wKJK!P  
    <#~n+,  
    %   Paul Fricker 11/13/2006 mG%cE(j*D  
    3]>YBbXvE  
    .yb8<qs  
    % Check and prepare the inputs: xG(:O@  
    % ----------------------------- k,y#|bf,Y  
    if min(size(p))~=1 %Ip=3($Ku[  
        error('zernfun2:Pvector','Input P must be vector.') `U;V-  
    end 5 d|+c<  
    ;8gODj:dO  
    if any(p)>35 &0mhO+g   
        error('zernfun2:P36', ... 1'5 !")r  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... t;[Q&Jl  
               '(P = 0 to 35).']) bre6SP@  
    end U9AtC.IG!  
    ;"%luQA<w  
    % Get the order and frequency corresonding to the function number: ,-BZsZ0~  
    % ---------------------------------------------------------------- |nO }YU\E  
    p = p(:); %;G!gJeE  
    n = ceil((-3+sqrt(9+8*p))/2); 8\Eq(o}7  
    m = 2*p - n.*(n+2); Xg97[I8/  
    K9Pw10g'  
    % Pass the inputs to the function ZERNFUN: J15$P8J  
    % ---------------------------------------- @yjui  
    switch nargin nzu 3BVv  
        case 3 dnTXx*I:  
            z = zernfun(n,m,r,theta); n1c Q#u  
        case 4 GgjBLe=C  
            z = zernfun(n,m,r,theta,nflag); i@d@~M7/  
        otherwise <kor;exeJ  
            error('zernfun2:nargin','Incorrect number of inputs.') 8|,-P=%t  
    end ,K[B/tD{j  
    1vxh3KS.  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) S8vmXlD  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. @+X}O /74  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of U w`LWG3T  
    %   order N and frequency M, evaluated at R.  N is a vector of |2 wff?  
    %   positive integers (including 0), and M is a vector with the W@$p'IBwm  
    %   same number of elements as N.  Each element k of M must be a 83l)o$S  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Jp-ae0 Ewa  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is OEwfNZQ-  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix MthThsr7  
    %   with one column for every (N,M) pair, and one row for every rw\4KI@ L  
    %   element in R. 2aje$w-  
    % ia_8$>xW+  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- B=c^ma  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is S~Hj. d4/  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to >aWJ+  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 GKd>AP_  
    %   for all [n,m]. QF>[cdl?8  
    % anwn!Eqk"  
    %   The radial Zernike polynomials are the radial portion of the J;kbY9e  
    %   Zernike functions, which are an orthogonal basis on the unit v1lj/A  
    %   circle.  The series representation of the radial Zernike B&$89]gs|  
    %   polynomials is K/,lw~>  
    % 7f$Lb,\y  
    %          (n-m)/2 o_N02l4J)  
    %            __ FT enXJ/c  
    %    m      \       s                                          n-2s 7@"X~C  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r #"M Pe4  
    %    n      s=0 ~GeYB6F  
    % .0|J+D  
    %   The following table shows the first 12 polynomials. uSQ*/h-<)0  
    % ?f`-&c;  
    %       n    m    Zernike polynomial    Normalization GT.^u#r  
    %       --------------------------------------------- RVsNr rZ  
    %       0    0    1                        sqrt(2) VfwD{+ 5  
    %       1    1    r                           2 `IoX'|C[h  
    %       2    0    2*r^2 - 1                sqrt(6) D+3Y.r 9  
    %       2    2    r^2                      sqrt(6) <X |h *  
    %       3    1    3*r^3 - 2*r              sqrt(8) ;^*!<F%t9R  
    %       3    3    r^3                      sqrt(8) iFA"m;$  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ,f+5x]F?m  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) h;KK6*Z*$E  
    %       4    4    r^4                      sqrt(10) Q2NnpsA^6  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) sriz b  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) jZ!JXmVV  
    %       5    5    r^5                      sqrt(12) af(JoX*U  
    %       --------------------------------------------- ^^SfIK?p  
    % m[j3s=Gr  
    %   Example: cvA\C_  
    % X^5"7phI@  
    %       % Display three example Zernike radial polynomials ?ljod6  
    %       r = 0:0.01:1; R TUNha^<T  
    %       n = [3 2 5]; i t@}dZ  
    %       m = [1 2 1]; Td1ba^J  
    %       z = zernpol(n,m,r); \]A;EwC4C  
    %       figure vCSB8R  
    %       plot(r,z) oB R(7U ~0  
    %       grid on Bq]O &>\hX  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') uO(guA,C  
    % [=6~"!P}  
    %   See also ZERNFUN, ZERNFUN2. rDX'oP:  
    "%Ana=cc  
    % A note on the algorithm. Q@wq }vc!  
    % ------------------------ Df~p 'N-$  
    % The radial Zernike polynomials are computed using the series -wQ^oOJ  
    % representation shown in the Help section above. For many special vj&5`  
    % functions, direct evaluation using the series representation can ,i?!3oLT  
    % produce poor numerical results (floating point errors), because yCCw<?  
    % the summation often involves computing small differences between ]p&<nK,  
    % large successive terms in the series. (In such cases, the functions ,&&M|,NQ&s  
    % are often evaluated using alternative methods such as recurrence b]<HhU  
    % relations: see the Legendre functions, for example). For the Zernike 04PoBv~g  
    % polynomials, however, this problem does not arise, because the L\m!8o4  
    % polynomials are evaluated over the finite domain r = (0,1), and W0MnGzZ  
    % because the coefficients for a given polynomial are generally all XyM(@6,'  
    % of similar magnitude. [AX"ne# M*  
    % bV$8 >[`  
    % ZERNPOL has been written using a vectorized implementation: multiple "bR'Bt  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] AuDR |;i  
    % values can be passed as inputs) for a vector of points R.  To achieve M_!u@\  
    % this vectorization most efficiently, the algorithm in ZERNPOL KT];SF ^Y  
    % involves pre-determining all the powers p of R that are required to G?-`>N-u  
    % compute the outputs, and then compiling the {R^p} into a single e-iYJ?  
    % matrix.  This avoids any redundant computation of the R^p, and *hZ~i{c,7  
    % minimizes the sizes of certain intermediate variables. $35,\ZO>  
    % O+o;aa6  
    %   Paul Fricker 11/13/2006 [T4 pgt'H  
    chO'Q+pw  
    ] ^; b  
    % Check and prepare the inputs: E#<7\ p>  
    % ----------------------------- }2Cd1RnS  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) JN&MyA"  
        error('zernpol:NMvectors','N and M must be vectors.') @1<omsl  
    end :/@k5#DY  
    |7QVMFZ  
    if length(n)~=length(m) JlC<MQ?  
        error('zernpol:NMlength','N and M must be the same length.') ^V<J69ny|9  
    end 1 [fo'M  
    _8[UtZYG  
    n = n(:); d&aBs++T  
    m = m(:); pXPqDA  
    length_n = length(n); |.b%rVu  
    :%/\1$3P  
    if any(mod(n-m,2)) +P [88!  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') v7 8&[  
    end jOBY&W0r  
    *nYB o\@g  
    if any(m<0) <K.Bq]  
        error('zernpol:Mpositive','All M must be positive.') $Q8P@L)[  
    end 968Ac}OA  
    x 8 f6,  
    if any(m>n) `]K,'i{R  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') >65 TkAp  
    end R]CZw;zS_  
    }US7 N w  
    if any( r>1 | r<0 )  LsQs:O  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') M$,Jg5Dc  
    end @ (i*-u3Tq  
    z8b _ _%Br  
    if ~any(size(r)==1) &c20x+  
        error('zernpol:Rvector','R must be a vector.') /r-8T>m  
    end 7. %f01/i  
    !loO%3_)  
    r = r(:); 0HjJaML  
    length_r = length(r); * !X4&#xP  
    ?hKm&B;d  
    if nargin==4 DK)u)?!  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); -eUV`&[4  
        if ~isnorm 6!Qknk$  
            error('zernpol:normalization','Unrecognized normalization flag.') R3$@N  
        end #`vVg GZ&  
    else )+?HI^-[S  
        isnorm = false; $;y1Q iel  
    end S:#e8H_7m]  
    GN0duV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z^<Sj5}6  
    % Compute the Zernike Polynomials {ZG:M}ieN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uw_H:-J  
    L/)B}8m\  
    % Determine the required powers of r: N^lAG"Jao[  
    % ----------------------------------- z<t>hzl 7  
    rpowers = []; oQ{cSThj  
    for j = 1:length(n) ( :iPm<  
        rpowers = [rpowers m(j):2:n(j)]; ?;_H{/)m  
    end Z&A0hI4d  
    rpowers = unique(rpowers); KYf;_C,$  
    q4+Yv2e <r  
    % Pre-compute the values of r raised to the required powers, SAy{YOLtl  
    % and compile them in a matrix: P0)AU i  
    % ----------------------------- L $SMfx  
    if rpowers(1)==0 rEmwKZF'  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); QhsVIta  
        rpowern = cat(2,rpowern{:}); 5~QT g  
        rpowern = [ones(length_r,1) rpowern]; eKyqU9  
    else D&-vq,c  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;5N41_hG  
        rpowern = cat(2,rpowern{:}); )O&z5n7t4s  
    end &1l~&,,  
    }qL~KA{&  
    % Compute the values of the polynomials: :Pf>Z? /d  
    % -------------------------------------- [Teh*CV  
    z = zeros(length_r,length_n); I3PQdAs~&h  
    for j = 1:length_n `6}Yqh))  
        s = 0:(n(j)-m(j))/2; 2qjyFTT  
        pows = n(j):-2:m(j); S2Vxe@b)  
        for k = length(s):-1:1 ~2(]ZfO?>H  
            p = (1-2*mod(s(k),2))* ... Sk$KqHX(  
                       prod(2:(n(j)-s(k)))/          ... LZa% x  
                       prod(2:s(k))/                 ... #N$9u"8C  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... B$j' /e-Zk  
                       prod(2:((n(j)+m(j))/2-s(k))); 7DZTQUb"  
            idx = (pows(k)==rpowers); Bq;1^gtpe  
            z(:,j) = z(:,j) + p*rpowern(:,idx); =+\$e1Mb*  
        end 7O$ &  
         j76%UG\Ga  
        if isnorm }^ ,q#'  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 7f r>ZY^  
        end "koo` J  
    end h1-Gp3#  
    ^cn@?k((A  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    851
    光币
    831
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  i G?w;  
    uMljH@xBc  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ot&j HS'  
    >^2ZM  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)