非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Xv:IbM>
Qc
function z = zernfun(n,m,r,theta,nflag) i|mA/
e3b
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. p2K9R4
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }dM^6
Kd%
% and angular frequency M, evaluated at positions (R,THETA) on the a{W-+t
% unit circle. N is a vector of positive integers (including 0), and 6wgOmyJx
% M is a vector with the same number of elements as N. Each element KK6YA
% k of M must be a positive integer, with possible values M(k) = -N(k) y]_DW6W
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, (Q+3aEUE
% and THETA is a vector of angles. R and THETA must have the same ]u ';zJ.
% length. The output Z is a matrix with one column for every (N,M) ,+&j/0U
% pair, and one row for every (R,THETA) pair. t/g}cR^Q
% U|nk86r
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Jk*MxlA.b
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), R7i*f/m
% with delta(m,0) the Kronecker delta, is chosen so that the integral JSU\Hh!
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?x97q3I+]
% and theta=0 to theta=2*pi) is unity. For the non-normalized f7'%AuSQ(
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Up&q#vqIj
% vkK+
C~"
% The Zernike functions are an orthogonal basis on the unit circle. (L1`]cp
% They are used in disciplines such as astronomy, optics, and x3Uv&
% optometry to describe functions on a circular domain. ?x@khzk
% 6_Kz}PQ
% The following table lists the first 15 Zernike functions. 7-DC"`Y8e
% ?*4zNhL
% n m Zernike function Normalization QS}=oOR@k
% -------------------------------------------------- $m>e!P>%u
% 0 0 1 1 jo^*R'}
% 1 1 r * cos(theta) 2 he Wb(E&
% 1 -1 r * sin(theta) 2 ,n*.Yq
% 2 -2 r^2 * cos(2*theta) sqrt(6) ?HY0@XILI
% 2 0 (2*r^2 - 1) sqrt(3) o2~x'*A0I
% 2 2 r^2 * sin(2*theta) sqrt(6) FyEl@ }W
% 3 -3 r^3 * cos(3*theta) sqrt(8) mI# BQE`p6
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ~#@EjQCq
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) c.fj[U|j
% 3 3 r^3 * sin(3*theta) sqrt(8) vF,l?cU~
% 4 -4 r^4 * cos(4*theta) sqrt(10) `4CRpz
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;IT^SHym
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) RjDFc:bB
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yrjm0BM#
% 4 4 r^4 * sin(4*theta) sqrt(10) u2t<auE9^
% -------------------------------------------------- 2Y+*vN s3
% i]nE86.;
% Example 1: \&H%k
% CbZ1<r" /
% % Display the Zernike function Z(n=5,m=1) Aq"_hjp
% x = -1:0.01:1; xn"g_2Hi
% [X,Y] = meshgrid(x,x); fAs:[
% [theta,r] = cart2pol(X,Y); =T$E
lXwJ
% idx = r<=1; wb}tN7~Y;
% z = nan(size(X)); <L J$GiU
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ;VuIQ*@m"
% figure URAipLvN
% pcolor(x,x,z), shading interp Y%faf.$/9
% axis square, colorbar g_=Q=y@,
% title('Zernike function Z_5^1(r,\theta)') lwU&jo*@
% V/Q6v
YX
% Example 2: 073(xAkL{
% ^tah4QmUA
% % Display the first 10 Zernike functions 3
*G=U
% x = -1:0.01:1; -K
jCPc
% [X,Y] = meshgrid(x,x); Pc3u`Q L?
% [theta,r] = cart2pol(X,Y); _VlNZ/V
% idx = r<=1; =8iM,Vl3
% z = nan(size(X)); hCmOSDym
% n = [0 1 1 2 2 2 3 3 3 3]; c_iF S
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; h+Dok#g
% Nplot = [4 10 12 16 18 20 22 24 26 28]; %VMazlM15
% y = zernfun(n,m,r(idx),theta(idx)); )"1D-Bc\Q
% figure('Units','normalized') "\9@gfsp)
% for k = 1:10 7@sWT<P
% z(idx) = y(:,k); ;cO0Y.V9l
% subplot(4,7,Nplot(k)) aQ)9<LsI
% pcolor(x,x,z), shading interp #_E8>;)k
% set(gca,'XTick',[],'YTick',[]) _ReQQti[
% axis square lY 1m%
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /nrDU*
% end IQM!dC
% 4nY2v['m0
% See also ZERNPOL, ZERNFUN2. D,hl+P{^K
/90@ 85%r
% Paul Fricker 11/13/2006 %$cwbh-{{
DgdW.Kj|IL
'1w<<?vX?
% Check and prepare the inputs: !O5UE
% ----------------------------- xWD wg@ P
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jk|0 <-3
error('zernfun:NMvectors','N and M must be vectors.') E`i;9e'S
end ?832#a?FZ;
VHJr+BQ1K/
if length(n)~=length(m) Xbz}pAnj
error('zernfun:NMlength','N and M must be the same length.') hE=cgO`QU
end j'7FTVmJ
+`[$w<I
n = n(:); os2yiF",
m = m(:); +Kk6|+5u
if any(mod(n-m,2)) dWp4|r
error('zernfun:NMmultiplesof2', ... YFW+l~[#
'All N and M must differ by multiples of 2 (including 0).') toQn]MT
end HsO=%bb
F;zmq%rK
if any(m>n) l"cYW9
error('zernfun:MlessthanN', ... 8^^al!0K~
'Each M must be less than or equal to its corresponding N.') !PO(Bfd
end 2Two|E
0{j>u`
if any( r>1 | r<0 ) `Q{kiy
error('zernfun:Rlessthan1','All R must be between 0 and 1.') BjB2YO& /
end eSvu:euv
tp1{)|pwY6
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) |sI^_RdBv
error('zernfun:RTHvector','R and THETA must be vectors.')
VC.r
end P017y&X
rz3&khi
r = r(:); F`-? 3]\3
theta = theta(:); o]]Q7S=
length_r = length(r); N8KHNTb-M
if length_r~=length(theta) 0xPML}|V
error('zernfun:RTHlength', ... .$q]<MK8
'The number of R- and THETA-values must be equal.') ztTpMj
end IlaH,J7n
rp
_G.C
% Check normalization: \>\w-ty[(
% -------------------- e\P+R>i0
if nargin==5 && ischar(nflag) t rHj7Nw
isnorm = strcmpi(nflag,'norm'); -5Ccuk>6
if ~isnorm A\=:h AQ
error('zernfun:normalization','Unrecognized normalization flag.') ;B7>/q;g
end c*3ilMP\4
else ln3.TR*
isnorm = false; 02S Uyv(Mt
end 87*R#((
r*WdD/r|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (OJ}|*\ e
% Compute the Zernike Polynomials Uqkh@-6-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2[WQq)\
D,X$66T ^
% Determine the required powers of r: ']qC,;2
% ----------------------------------- \f+R!
m_abs = abs(m); B$7lL
rpowers = []; ag] nVE/
for j = 1:length(n) wv1?v_4
rpowers = [rpowers m_abs(j):2:n(j)]; <,LeFy\zW
end K<V(h#(.@
rpowers = unique(rpowers); [7$<sN<'
z9VQsC'K
% Pre-compute the values of r raised to the required powers, 3Hq0\Y"Y
% and compile them in a matrix: xvgIYc{
% ----------------------------- eNXpRvY
if rpowers(1)==0 ,@<-h* m
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h>\}-|Ek
rpowern = cat(2,rpowern{:}); RRV&!<l@$
rpowern = [ones(length_r,1) rpowern]; hI?<F^b
else hR. EZ|.
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); U:`rNHl
rpowern = cat(2,rpowern{:}); 4E"qpy \(
end E6n;_{Se/S
RI%*5lM8;
% Compute the values of the polynomials: *gBaF/C
% -------------------------------------- :pNZQX
y = zeros(length_r,length(n)); d*H-l3N
for j = 1:length(n) NeNKOW#X
s = 0:(n(j)-m_abs(j))/2; F.O2;M|x
pows = n(j):-2:m_abs(j); TN l$P~X>
for k = length(s):-1:1 #{N#yReh
p = (1-2*mod(s(k),2))* ... 0`OqD d
prod(2:(n(j)-s(k)))/ ... ^ 41p+
prod(2:s(k))/ ... ^\x
PF5
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... -"(e*&TJ#
prod(2:((n(j)+m_abs(j))/2-s(k))); B:9Z;g@&
idx = (pows(k)==rpowers); n+xM))
y(:,j) = y(:,j) + p*rpowern(:,idx); pKp#4Js
end !CEF@J
o2%"Luf<
if isnorm y 5=J6a2.
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); K<N0%c~
end _I@dt6oF
end %d*}:295
% END: Compute the Zernike Polynomials {\ .2h
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O1/!)E!
%zY3,4~
% Compute the Zernike functions: &M<431y
% ------------------------------ k"AY7vq@!P
idx_pos = m>0; C?b Mj[$
idx_neg = m<0; L@v0C)
,(lD5iN
z = y; 6#dx%TC
if any(idx_pos) NbgP,-
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); fDqlN`P@
end !M}&dW2
if any(idx_neg) bEPXNN
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +y -:(aP
end <Qwi 0$
|/rBR!kPq
% EOF zernfun