切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11164阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ;&7qw69k  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! $w2[5|^S  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ?),K=E+=U  
    function z = zernfun(n,m,r,theta,nflag) r0XGGLFuZl  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. E rRMiT  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4tN~UMw?  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ^,\se9=(  
    %   unit circle.  N is a vector of positive integers (including 0), and _ZvX"{y~  
    %   M is a vector with the same number of elements as N.  Each element XQ?)  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) H6+st`{  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ^dp[ Z,[1z  
    %   and THETA is a vector of angles.  R and THETA must have the same =*O9)$b  
    %   length.  The output Z is a matrix with one column for every (N,M) @o-evH;G  
    %   pair, and one row for every (R,THETA) pair. vA $BBXX  
    % L:];[xa%  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike #IciNCIrG  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ,19"[:WN  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral DW;.R<8  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )7BNzj"~  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ;kcFQed\w  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^<H#dkECG  
    % UW~tS  
    %   The Zernike functions are an orthogonal basis on the unit circle. ,HjHt\!~<  
    %   They are used in disciplines such as astronomy, optics, and Tu T=  
    %   optometry to describe functions on a circular domain. >?Y3WPB<F  
    % jl|X$w  
    %   The following table lists the first 15 Zernike functions. Uu<sntyv  
    % }N=zn7W  
    %       n    m    Zernike function           Normalization W71#NjM2Z  
    %       -------------------------------------------------- :r[-7 [/  
    %       0    0    1                                 1 FV<^q|K/(]  
    %       1    1    r * cos(theta)                    2 "\P~Re"EH  
    %       1   -1    r * sin(theta)                    2 fTnyCaB  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) sZ(Q4)r  
    %       2    0    (2*r^2 - 1)                    sqrt(3) N/SB}F j  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) $[9V'K  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) MZ#2WP)F  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) UHm+5%ZC  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Y K62#;  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) UmHb-uk ;  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Sv[_BP\^h  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Op)R3qt{  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) gbi~!S-  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (%^TTe  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) K LM^O$=  
    %       -------------------------------------------------- 4rCqN.J  
    % X\:(8C;+  
    %   Example 1: gl4 f9Ff  
    % "Kf~`0P  
    %       % Display the Zernike function Z(n=5,m=1) xn#I7]]G  
    %       x = -1:0.01:1; t7& GCZ  
    %       [X,Y] = meshgrid(x,x); aIyY%QT  
    %       [theta,r] = cart2pol(X,Y); a[OLS+zf!P  
    %       idx = r<=1; dJgOfg^  
    %       z = nan(size(X)); H5rNLfw '  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Kwmo)|7uPU  
    %       figure 1 jd=R7  
    %       pcolor(x,x,z), shading interp ,}$x'8v  
    %       axis square, colorbar jF2GHyB  
    %       title('Zernike function Z_5^1(r,\theta)') i}12mjF  
    % 5s2}nIe  
    %   Example 2: Y  .X-8  
    % vG=$UUh@~  
    %       % Display the first 10 Zernike functions P=hf/jOv9  
    %       x = -1:0.01:1; \%Ih 6  
    %       [X,Y] = meshgrid(x,x); )=y6s^}  
    %       [theta,r] = cart2pol(X,Y); 9!<3qx/  
    %       idx = r<=1; `e:RZ  
    %       z = nan(size(X)); M(gWd8?#  
    %       n = [0  1  1  2  2  2  3  3  3  3]; <qZ+U4@I)  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; faeyk]u  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; B~?Q. <M  
    %       y = zernfun(n,m,r(idx),theta(idx)); n/|`Dz.  
    %       figure('Units','normalized') 6aK2 {-+  
    %       for k = 1:10 "PP0PL^5F  
    %           z(idx) = y(:,k); B$eF@v"  
    %           subplot(4,7,Nplot(k)) GOgT(.5  
    %           pcolor(x,x,z), shading interp mAERZ<I  
    %           set(gca,'XTick',[],'YTick',[]) : l[Q  
    %           axis square Ny<G2! W  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) zb*4Nsda:  
    %       end YuuG:Kk  
    % -s84/E4Y*  
    %   See also ZERNPOL, ZERNFUN2. +m},c-,=$w  
    E^ti !4{<  
    %   Paul Fricker 11/13/2006 !!pi\J?sk  
    uw&,pq  
    d|HM  
    % Check and prepare the inputs: 0X6o  
    % ----------------------------- YR`rg;n#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) M?CMN.Dw  
        error('zernfun:NMvectors','N and M must be vectors.') qf{B  
    end jCa;g{#@  
     ~&jCz4M  
    if length(n)~=length(m) 3Q"+ #Ob  
        error('zernfun:NMlength','N and M must be the same length.') XsMphZnK  
    end +u)$o  
    )}lV41u  
    n = n(:); M- A}(r +J  
    m = m(:); I=-;*3g6  
    if any(mod(n-m,2)) ^aMdbB  
        error('zernfun:NMmultiplesof2', ... f@g  
              'All N and M must differ by multiples of 2 (including 0).') 0u9h2/ma  
    end y=`(`|YW}`  
    (pg9cM]NA  
    if any(m>n) N* -Z Jv  
        error('zernfun:MlessthanN', ... D'+8]B  
              'Each M must be less than or equal to its corresponding N.') B)NB6dCp  
    end jg/<"/E  
    jzw?V9Ijb  
    if any( r>1 | r<0 ) |`/uS;O  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') q,Q|Uvpk  
    end gWPa8q<b  
    <us{4 %  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) MPc=cLv  
        error('zernfun:RTHvector','R and THETA must be vectors.') =hlu, By  
    end "|rqt.f2[  
    ^a5>`W  
    r = r(:); %tLq&tyeY  
    theta = theta(:); Sa~C#[V  
    length_r = length(r); iB-s*b<`~  
    if length_r~=length(theta) K@hUif|([  
        error('zernfun:RTHlength', ... x~^nlnKVf  
              'The number of R- and THETA-values must be equal.') 0&~u0B{  
    end '& :"/4@)  
    CB1u_E_  
    % Check normalization: 5w9<_W0d  
    % -------------------- 2N]s}/l  
    if nargin==5 && ischar(nflag) .@V>p6MV  
        isnorm = strcmpi(nflag,'norm'); ARo5 Ss{  
        if ~isnorm YJ$ =`lIM  
            error('zernfun:normalization','Unrecognized normalization flag.') TQH#sx  
        end S\(_"xJPp  
    else U @|_5[nl  
        isnorm = false; e:<> Yq+  
    end vS#]RW&j  
    5K<C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X;tk\Ixd  
    % Compute the Zernike Polynomials _{%H*PxTn=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K(2s%  
    @d|9(,Q  
    % Determine the required powers of r: (#qVtN`t  
    % ----------------------------------- " cg>g/  
    m_abs = abs(m); cO9Aw!  
    rpowers = []; |zKcL3*  
    for j = 1:length(n) F^-4Pyq@  
        rpowers = [rpowers m_abs(j):2:n(j)]; a6_`V;  
    end %b9M\  
    rpowers = unique(rpowers); ,?+yu6eLb  
    3}+ \&[  
    % Pre-compute the values of r raised to the required powers, ,d#4Ib  
    % and compile them in a matrix: I5]zOKlVR  
    % ----------------------------- )3  
    if rpowers(1)==0 '>BHwc  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?a@l.ZM*  
        rpowern = cat(2,rpowern{:}); ";]m]PRAam  
        rpowern = [ones(length_r,1) rpowern]; jC%I]#!n  
    else h>?OWI  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,fn=%tiUk  
        rpowern = cat(2,rpowern{:}); }{J8U2])k  
    end ^Tx1y[hw$  
    &PX'=UT  
    % Compute the values of the polynomials: sTDBK!9I  
    % -------------------------------------- m`~ Qr~  
    y = zeros(length_r,length(n)); vNIQc "\-  
    for j = 1:length(n) MZ'HMYed   
        s = 0:(n(j)-m_abs(j))/2; 2X`M&)"X  
        pows = n(j):-2:m_abs(j); |wx1 [xZ  
        for k = length(s):-1:1 {;U:0BPI3  
            p = (1-2*mod(s(k),2))* ... :nI.Qa'"H  
                       prod(2:(n(j)-s(k)))/              ... 2ip~qZNw><  
                       prod(2:s(k))/                     ... r+Y1m\  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... v]v f(]""  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); "'Ik{wGc  
            idx = (pows(k)==rpowers); YQ/ *|  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 4)_ [)MZ\j  
        end H@zpw1fH+  
         aH_&=/-Tz  
        if isnorm aO1cd_d6x_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); F+GQl  
        end 43Q&<r$[T  
    end |@RO&F  
    % END: Compute the Zernike Polynomials <OUAppH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4/b#$o<I?  
    H\T h4teE  
    % Compute the Zernike functions: hjE9[{K  
    % ------------------------------ LHp s2,  
    idx_pos = m>0; 7Do)++t  
    idx_neg = m<0; 8Bhng;jX  
    @cON"(  
    z = y; =LRUasF  
    if any(idx_pos) KGIz)/eSg  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); V47 Fp  
    end e042`&9=Ic  
    if any(idx_neg) Nn$$yUkMX  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); g!$ "CX%8  
    end L>B0%TP^  
    p: o*=  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Y , P-@(  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. <,m}TTq  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated J(Bn  n  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive $z<CkMP!U7  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, P5N"7/PfW  
    %   and THETA is a vector of angles.  R and THETA must have the same 4ngiad6bR  
    %   length.  The output Z is a matrix with one column for every P-value, #8PjYB  
    %   and one row for every (R,THETA) pair. txi m|)  
    % 8w{V[@QLn  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike k=LY 6  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ?B-aj  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) {S|uQgs6j  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 eN/Jb;W  
    %   for all p. m+o>`1>a  
    % lB-Njr  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 {vaq,2_w  
    %   Zernike functions (order N<=7).  In some disciplines it is ;>PV]0bOm>  
    %   traditional to label the first 36 functions using a single mode 3LEN~ N}  
    %   number P instead of separate numbers for the order N and azimuthal CSs3l  
    %   frequency M. %hXa5}JL  
    % +Y .As  
    %   Example: 8J)x>6  
    % NWKD:{  
    %       % Display the first 16 Zernike functions C ZJW`c/  
    %       x = -1:0.01:1; zNB G;\ W  
    %       [X,Y] = meshgrid(x,x); pM>.z9  
    %       [theta,r] = cart2pol(X,Y); tvd/Y|bV=  
    %       idx = r<=1; oL<^m?-u  
    %       p = 0:15; ztu N0}'  
    %       z = nan(size(X)); aUd6 33  
    %       y = zernfun2(p,r(idx),theta(idx)); Ngg (<ZN  
    %       figure('Units','normalized') [x@iqFO9  
    %       for k = 1:length(p) W] RxRdY6[  
    %           z(idx) = y(:,k); f1Rm9``  
    %           subplot(4,4,k) c^m}ep\F5L  
    %           pcolor(x,x,z), shading interp P/^:IfuR  
    %           set(gca,'XTick',[],'YTick',[]) 5Eq_L  
    %           axis square C3 D1rS/I  
    %           title(['Z_{' num2str(p(k)) '}']) HbCM{A9  
    %       end GLEGyT?~  
    % FQ);el'_V  
    %   See also ZERNPOL, ZERNFUN. (Y-7B  
    `>K;S!z  
    %   Paul Fricker 11/13/2006 `DEz ` D  
    c: _l+CgeH  
    [~$9n_O94  
    % Check and prepare the inputs: 'GAjx{gM  
    % ----------------------------- 2 &R-z G  
    if min(size(p))~=1 XWK A0  
        error('zernfun2:Pvector','Input P must be vector.') <x,$ODso  
    end Qp{{OjD  
    ujHqw Rh  
    if any(p)>35 ~]}7|VN.}  
        error('zernfun2:P36', ... ptX;-'j(  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... `^RpT]S  
               '(P = 0 to 35).']) )bqO}_B  
    end M,NYF`;a  
    7Qz Uw  
    % Get the order and frequency corresonding to the function number: I:[3x2H  
    % ---------------------------------------------------------------- {]`O$S  
    p = p(:); $ -;,O8yR  
    n = ceil((-3+sqrt(9+8*p))/2); IEHAPt'  
    m = 2*p - n.*(n+2); &d=j_9   
    U^[<G6<9]  
    % Pass the inputs to the function ZERNFUN: 9FK%"s`  
    % ---------------------------------------- 5_{C \S`T  
    switch nargin g;vG6!;E\  
        case 3 ?PLf+S  
            z = zernfun(n,m,r,theta); LY/K ,6^a  
        case 4 Q!MS_ #O  
            z = zernfun(n,m,r,theta,nflag); Q R;Xj3]v  
        otherwise /qEoiL###  
            error('zernfun2:nargin','Incorrect number of inputs.') v-EcJj%  
    end Ee d2`~  
    JuS#p5E #  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) q0&g.=;  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. txw:m*(%  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of L W 8LD|@  
    %   order N and frequency M, evaluated at R.  N is a vector of p~6/  
    %   positive integers (including 0), and M is a vector with the iG^o@*}a  
    %   same number of elements as N.  Each element k of M must be a Z~[c65Nlu  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) .k|8nNj  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is \x5b=~/   
    %   a vector of numbers between 0 and 1.  The output Z is a matrix N*gnwrP{  
    %   with one column for every (N,M) pair, and one row for every ' cR||VX  
    %   element in R. gDa}8!+i  
    % $i;%n1VBg  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Z.ky=vCt  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is }w}2'P'T  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 1Ue )&RW  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 bj=kqO;*O  
    %   for all [n,m]. }4b 4<Sm_h  
    % \]1qAFB5  
    %   The radial Zernike polynomials are the radial portion of the Q$^oIFb  
    %   Zernike functions, which are an orthogonal basis on the unit e3oHe1"hP  
    %   circle.  The series representation of the radial Zernike yY_Zq\   
    %   polynomials is JvX]^t/}  
    % y@Z@ eK3  
    %          (n-m)/2 T{<riJ`O  
    %            __ ZF^$?;'3  
    %    m      \       s                                          n-2s XEl-5-M"  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r LVP2jTz  
    %    n      s=0 uxLT*,  
    % *")Req  
    %   The following table shows the first 12 polynomials. gqJSz}'  
    % ? Dm={S6  
    %       n    m    Zernike polynomial    Normalization \"Jgs.  
    %       --------------------------------------------- P'MfuTtT&  
    %       0    0    1                        sqrt(2) 0N>NX?r  
    %       1    1    r                           2 H3CG'?{ _  
    %       2    0    2*r^2 - 1                sqrt(6) jwhc;y  
    %       2    2    r^2                      sqrt(6) d 5jZ?  
    %       3    1    3*r^3 - 2*r              sqrt(8) /enlkZx=8  
    %       3    3    r^3                      sqrt(8) BQTZt'p  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 3Z/_}5%"  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) RC?gozBFJ  
    %       4    4    r^4                      sqrt(10) ZEa31[@B[  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) .Nt;J,U  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) >J(._K  
    %       5    5    r^5                      sqrt(12) a8nqzuI  
    %       --------------------------------------------- 5argw+2s4$  
    % b?i5C4=K  
    %   Example: rMr:\M]t  
    % _[F(8Q x"  
    %       % Display three example Zernike radial polynomials 0+S ;0  
    %       r = 0:0.01:1; 6)=`&>9  
    %       n = [3 2 5]; [>--U)/  
    %       m = [1 2 1]; pY.R?\  
    %       z = zernpol(n,m,r); +;,65j+n   
    %       figure dmA#v:$1  
    %       plot(r,z) 9B3+$uP  
    %       grid on WAq! _xE  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') }Um,wY[tK  
    % A; _Zw[  
    %   See also ZERNFUN, ZERNFUN2. O1+OE!w  
    _\&v A5-  
    % A note on the algorithm. nIZ;N!r=i  
    % ------------------------ 0nr5(4h  
    % The radial Zernike polynomials are computed using the series J(>T&G;  
    % representation shown in the Help section above. For many special aFw \ w>*^  
    % functions, direct evaluation using the series representation can 6&* z  
    % produce poor numerical results (floating point errors), because ==#mlpi`S[  
    % the summation often involves computing small differences between -XASS%  
    % large successive terms in the series. (In such cases, the functions @tT2o@2Y^  
    % are often evaluated using alternative methods such as recurrence VEsIhjQ  
    % relations: see the Legendre functions, for example). For the Zernike ?i{/iH~Sf  
    % polynomials, however, this problem does not arise, because the 4yK{(!&i+  
    % polynomials are evaluated over the finite domain r = (0,1), and s@ 02 ?+/  
    % because the coefficients for a given polynomial are generally all WU$l@:Yo  
    % of similar magnitude. E4N/or  
    % NI  r"i2  
    % ZERNPOL has been written using a vectorized implementation: multiple G22{',#r8  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] PQj'D <G  
    % values can be passed as inputs) for a vector of points R.  To achieve D?.H|%  
    % this vectorization most efficiently, the algorithm in ZERNPOL t1`.M$  
    % involves pre-determining all the powers p of R that are required to ;{lb_du2:  
    % compute the outputs, and then compiling the {R^p} into a single "LNLM  
    % matrix.  This avoids any redundant computation of the R^p, and \X2r?   
    % minimizes the sizes of certain intermediate variables. I|x? K>  
    % J5!-<oJ/  
    %   Paul Fricker 11/13/2006 eC{St0  
    YMn*i<m  
    P(%^J6[>  
    % Check and prepare the inputs: 2WK c;?  
    % ----------------------------- HT:V;?"  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) prEI9/d"  
        error('zernpol:NMvectors','N and M must be vectors.') ;RK;kdZ  
    end i&TWIl8  
    XvSng"f.  
    if length(n)~=length(m) ?WP*At0  
        error('zernpol:NMlength','N and M must be the same length.') ;#bDz}|\AN  
    end XEBeoOX/  
    G\z5Ue*  
    n = n(:); dOT7;@   
    m = m(:); 4 _P6P  
    length_n = length(n); <KX fh  
    Skg}/Ek  
    if any(mod(n-m,2)) :al ,zxs  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ;e{e ?,[  
    end &gF9VY  
    MWv(/_b  
    if any(m<0) Q{|_"sfJ  
        error('zernpol:Mpositive','All M must be positive.') p`2Q6  
    end L1#_  
    1'!D   
    if any(m>n) d@%PTSX  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') cT5BBR   
    end NTo[di\_  
    /_X`i[  
    if any( r>1 | r<0 ) bcgXpP  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') LAFxeo  
    end Q@1SqK#-DQ  
    Jcy+(7lE)  
    if ~any(size(r)==1) |>RNIJ]  
        error('zernpol:Rvector','R must be a vector.') =9h!K:,k  
    end 6e S~*  
    uPy5<c  
    r = r(:); .}5qi;CA  
    length_r = length(r); D*>#]0X  
    6zi 5#23  
    if nargin==4 |- <72$j  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 1Va=.#<  
        if ~isnorm BRa9j:_b  
            error('zernpol:normalization','Unrecognized normalization flag.') ^T#jBqe  
        end OIK46D6?.  
    else "G^TA:O:=  
        isnorm = false; *07?U")  
    end ({zWyl  
    VsJKxa4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UhJ{MUH`  
    % Compute the Zernike Polynomials - ~4na{6x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JZK93R  
    )FSEHQ  
    % Determine the required powers of r: /ykc`E?f  
    % ----------------------------------- 1?yj<^"  
    rpowers = []; z%1e>`\E  
    for j = 1:length(n) h@z0 x4_])  
        rpowers = [rpowers m(j):2:n(j)]; q65]bs4M  
    end vN:!{)~z  
    rpowers = unique(rpowers); CG95ScrX  
    !"o\H(siT  
    % Pre-compute the values of r raised to the required powers, i&8|@CACb  
    % and compile them in a matrix: l,~`o$ _  
    % ----------------------------- N~0ih T G5  
    if rpowers(1)==0 }'?qUy3x  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); eY-h<K)y  
        rpowern = cat(2,rpowern{:}); f[ 2PAz  
        rpowern = [ones(length_r,1) rpowern]; 6Xz d> 5x  
    else cU-A1W  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); fC 3T\@(&  
        rpowern = cat(2,rpowern{:}); IM ncl=1  
    end  q(X7e  
    "h #/b}/  
    % Compute the values of the polynomials: 93Zij<bH?e  
    % -------------------------------------- [2YPV\=  
    z = zeros(length_r,length_n); 9^9-\DG  
    for j = 1:length_n ?68~g<d,  
        s = 0:(n(j)-m(j))/2; ]Y-Y.&b7t  
        pows = n(j):-2:m(j); & Zn`2%  
        for k = length(s):-1:1 Alo L+eN@  
            p = (1-2*mod(s(k),2))* ... alB'l  
                       prod(2:(n(j)-s(k)))/          ... e(N},s:_  
                       prod(2:s(k))/                 ... `N&*+!O%  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... wdAKU+tM  
                       prod(2:((n(j)+m(j))/2-s(k))); "*t0 t  
            idx = (pows(k)==rpowers); W9pY=9]p+  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ,Tu.cg  
        end ;c>"gW8  
         ks\q^ten  
        if isnorm 3y+~l H :  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); x=IZ0@p  
        end tjwn FqI  
    end ?wv^X`Q*~  
    wV iTMlq  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  =v\}y+ Yh  
    2& Hl wpx  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ~l'[P=R+8  
    g~K-'Nw  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)