非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 4Wla&yy
function z = zernfun(n,m,r,theta,nflag) mvTyx7h=
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 60,-\h
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }-{ b$6]
% and angular frequency M, evaluated at positions (R,THETA) on the ";_K x={
% unit circle. N is a vector of positive integers (including 0), and 5B>Q6
% M is a vector with the same number of elements as N. Each element oB0 8
% k of M must be a positive integer, with possible values M(k) = -N(k) !jAWNK6
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, UOu6LD/|h
% and THETA is a vector of angles. R and THETA must have the same &*aer5?`
% length. The output Z is a matrix with one column for every (N,M) D#d8 ^U
% pair, and one row for every (R,THETA) pair. 0ck&kpL:9
% L8:]`MQ0
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike h7EUIlh"
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), pfL2v,]g
% with delta(m,0) the Kronecker delta, is chosen so that the integral ~Un64M?
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, R2N^'
% and theta=0 to theta=2*pi) is unity. For the non-normalized 8Da(tS
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. xHv|ca.E
% i $[,-4v
% The Zernike functions are an orthogonal basis on the unit circle. 3q#"i&
% They are used in disciplines such as astronomy, optics, and 8B *E+f0
% optometry to describe functions on a circular domain. emv ;m/&8
% m|[\F#+C
% The following table lists the first 15 Zernike functions. QJ a4R
% p*pn@z
% n m Zernike function Normalization 0
OAqA?Z
% -------------------------------------------------- |"CJ
% 0 0 1 1 $/[Gys3"
% 1 1 r * cos(theta) 2 _\,rX\
% 1 -1 r * sin(theta) 2 (B>)2: T1
% 2 -2 r^2 * cos(2*theta) sqrt(6) k;;nE o~6
% 2 0 (2*r^2 - 1) sqrt(3) iN<(O7B;
% 2 2 r^2 * sin(2*theta) sqrt(6) e86Aqehle
% 3 -3 r^3 * cos(3*theta) sqrt(8) S)"##-~`T
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) K08 iPIkQ
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) _kn]#^ucCe
% 3 3 r^3 * sin(3*theta) sqrt(8) #0P!xZ'|{
% 4 -4 r^4 * cos(4*theta) sqrt(10) GFdZ`i
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3TU'*w
&
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) |x d@M-ln
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v]WH8GI
% 4 4 r^4 * sin(4*theta) sqrt(10) nU}~I)@V
% -------------------------------------------------- %<aImR]
% ?_VRfeztw
% Example 1: kF+ZW%6N
% j6n2dMRvSE
% % Display the Zernike function Z(n=5,m=1) Az
U|p
% x = -1:0.01:1; PSW#^o
% [X,Y] = meshgrid(x,x); QjQ4Z'.r >
% [theta,r] = cart2pol(X,Y); LIr(mB"Y0
% idx = r<=1; u=vh
Z%A]
% z = nan(size(X)); U:qF/%w
% z(idx) = zernfun(5,1,r(idx),theta(idx)); d4d\0[
% figure TkA9tFi
% pcolor(x,x,z), shading interp UUl*f!&
o
% axis square, colorbar {V[Ha~b%*
% title('Zernike function Z_5^1(r,\theta)') jo_o`j
% ER{yuw
% Example 2: 7k3p'FeS
% [/?c@N,
% % Display the first 10 Zernike functions Ip>^O/}$1
% x = -1:0.01:1; GSQfg
% [X,Y] = meshgrid(x,x); c2/FHI0J;
% [theta,r] = cart2pol(X,Y); 5+`=t07^et
% idx = r<=1; gk"mr_03
% z = nan(size(X)); =Q@6c
% n = [0 1 1 2 2 2 3 3 3 3]; ?LM:RADCm
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 5QR}IxQ
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ?hKm&B;d
% y = zernfun(n,m,r(idx),theta(idx));
+q7qK*
% figure('Units','normalized') iNt 4>
% for k = 1:10 ;JYoW{2
% z(idx) = y(:,k); pNuqT*
% subplot(4,7,Nplot(k)) Wt(Kd5k0'2
% pcolor(x,x,z), shading interp .
/Y&\<
% set(gca,'XTick',[],'YTick',[]) ^ b@!dS
% axis square /n(9&'H<
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Bgf=\7;5
% end VW {,:Ya
% {-Yee[d<?
% See also ZERNPOL, ZERNFUN2. 7 xUE,)?
l7ZB3'
% Paul Fricker 11/13/2006 N9pwWg&<+
fO#?k<p
1XCmMZ
% Check and prepare the inputs: O"qR }W
% ----------------------------- HQl~Dh0DJ
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) rxs8De
error('zernfun:NMvectors','N and M must be vectors.') AhR0zg
end ikr7DBLt
=9(tsB gTX
if length(n)~=length(m) :xM}gPj"
error('zernfun:NMlength','N and M must be the same length.') Gp,'kw"I
end =C#*!N73
":V%(c
n = n(:); X3AwM%,!
m = m(:); Jns/v6
if any(mod(n-m,2)) Y3<b~!f
error('zernfun:NMmultiplesof2', ... \ p3v#0R{
'All N and M must differ by multiples of 2 (including 0).') Mo_$b8i
end hl**zF
Uh}+"h5
if any(m>n) w
[L&*
error('zernfun:MlessthanN', ... 2qlIy
'Each M must be less than or equal to its corresponding N.') ,aWCiu}
end ^(DL+r,
5~Q Tg
if any( r>1 | r<0 ) SetX#e?q~
error('zernfun:Rlessthan1','All R must be between 0 and 1.') D&-vq,c
end Tv1]v.
$C$ub&D
~"
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) R1Yqz $#
error('zernfun:RTHvector','R and THETA must be vectors.') 1U'ZVJ5bpK
end UG # X/%p
j$mz3Yk
r = r(:); zC#%6@P\
theta = theta(:); m2Q$+p@
length_r = length(r); L ?Cjo4xS
if length_r~=length(theta) aDh|48}X
error('zernfun:RTHlength', ... )T/J
'The number of R- and THETA-values must be equal.') >4M<W4
end m@[3~
6A
f7
wmw2
% Check normalization: x)$2nonM
% -------------------- ki#bPgT
if nargin==5 && ischar(nflag) LZa%
x
isnorm = strcmpi(nflag,'norm'); ?M~
k$
if ~isnorm =9<$eLE0
error('zernfun:normalization','Unrecognized normalization flag.') Z0W0uP;J
end #2N_/J(U
else "[.ne)/MC
isnorm = false; r>O|L%xpv
end 9DPb|+O-
djGs~H>;U_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~
aA;<#
% Compute the Zernike Polynomials 7@3sUA_Go
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f"P$f8$
#N9d$[R*
% Determine the required powers of r: U6c@Et ,
% ----------------------------------- `2e_ L
m_abs = abs(m); yquAr$L!
rpowers = []; 0
u2Ny&6w
for j = 1:length(n) }*Zo6{B-
rpowers = [rpowers m_abs(j):2:n(j)]; 5*1#jiq
end q5?{1
rpowers = unique(rpowers); =x#&\ui
IM]h*YV'
% Pre-compute the values of r raised to the required powers, Bq{]Eh0%
% and compile them in a matrix: ~ k<SbFp
% ----------------------------- 73)Ll"(
if rpowers(1)==0 .pW o >`"
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); p&O8qAaO
rpowern = cat(2,rpowern{:}); {$|/|*
rpowern = [ones(length_r,1) rpowern]; O4!9{
else $P;UoqG<&
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +4HlRGH
rpowern = cat(2,rpowern{:}); ^vW$XRnt
end Bj=@&;
j/'
g$
% Compute the values of the polynomials: KC]tY9 FK
% -------------------------------------- P9s_2KOF
y = zeros(length_r,length(n)); B%mtp;) P
for j = 1:length(n) ;AJ<
LC
s = 0:(n(j)-m_abs(j))/2; om>VQ3
pows = n(j):-2:m_abs(j); gCL{Cw
for k = length(s):-1:1 vnZ4(
p = (1-2*mod(s(k),2))* ... s-%J5_d f
prod(2:(n(j)-s(k)))/ ... 7*MU2gb
prod(2:s(k))/ ... P=Puaz5&{
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... k:mlt:
prod(2:((n(j)+m_abs(j))/2-s(k)));
pl?kS8#U?
idx = (pows(k)==rpowers); + ~~ Z0.[
y(:,j) = y(:,j) + p*rpowern(:,idx); Z'e\_C
end F+3!uWUK
*l{4lu
if isnorm (V)9s\Le_
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); )WmZP3$^TX
end .aJ%am/:%
end B*2{M
% END: Compute the Zernike Polynomials nd;O(s;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |eF.ZC)QWh
<"A#Eok|4
% Compute the Zernike functions: L&QtHSzy
% ------------------------------ &1~Re.*B
idx_pos = m>0; v4D!7t&v"
idx_neg = m<0; AoIc9ElEX
0JyqCbl
z = y; pagC(F
if any(idx_pos) [WYJrk.
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); m|mG;8}pI
end <ZV7|'^
if any(idx_neg) f}%sO
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); DP0Z*8Ia
end ]o `4Z"
.01TTK *
% EOF zernfun