非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 NR%_&%qQA
function z = zernfun(n,m,r,theta,nflag) 2NB$(4/
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. BE54L+$p
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N OgHqF,0MN
% and angular frequency M, evaluated at positions (R,THETA) on the g*w}m>O
% unit circle. N is a vector of positive integers (including 0), and VAe[x
`
% M is a vector with the same number of elements as N. Each element jc,Qg2
% k of M must be a positive integer, with possible values M(k) = -N(k) E;q+u[$
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, q &S@\b
% and THETA is a vector of angles. R and THETA must have the same 6
tB\X^
% length. The output Z is a matrix with one column for every (N,M) C3
BoH&
% pair, and one row for every (R,THETA) pair. iDltN]zS
% n_wF_K\h
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Deq@T {
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), wT-Kg=-q
% with delta(m,0) the Kronecker delta, is chosen so that the integral P5GV9SA
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Zt9ld=T
% and theta=0 to theta=2*pi) is unity. For the non-normalized V`1x![\
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9`KFJx6D
% ^SM5oK
% The Zernike functions are an orthogonal basis on the unit circle. UVW4KUxR
% They are used in disciplines such as astronomy, optics, and `_BmVms
% optometry to describe functions on a circular domain. BQs\!~Ux2
% :%+9y @%
% The following table lists the first 15 Zernike functions. (.5Ft^3W
% Fr2F&NN`D
% n m Zernike function Normalization 9 aK U}y
% -------------------------------------------------- J5z\e@?.0\
% 0 0 1 1 f>&*%[fw
% 1 1 r * cos(theta) 2 Y3-f68*(
% 1 -1 r * sin(theta) 2 $6 4{Ff
% 2 -2 r^2 * cos(2*theta) sqrt(6) bXqTc2>=
% 2 0 (2*r^2 - 1) sqrt(3) <Ynrw4[)t
% 2 2 r^2 * sin(2*theta) sqrt(6) ,-DU)&dF
% 3 -3 r^3 * cos(3*theta) sqrt(8) }j!C+i
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) B$7Cjv
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) /-(OJN5F^
% 3 3 r^3 * sin(3*theta) sqrt(8) ,F+,A].wG
% 4 -4 r^4 * cos(4*theta) sqrt(10) |qU~({=b
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~ftR:F|9
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) -M4VC^_
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~(=5`9
% 4 4 r^4 * sin(4*theta) sqrt(10) ='-/JH~
% -------------------------------------------------- y'z9Ya
% /"^XrVi-
% Example 1: $I<\Yuy-M9
% kv2 H3O
% % Display the Zernike function Z(n=5,m=1) c6iFha;db
% x = -1:0.01:1; _x$\E
% [X,Y] = meshgrid(x,x); VZ7E#z+nM#
% [theta,r] = cart2pol(X,Y); #F6M<V'
% idx = r<=1; Pu 'NSNT
% z = nan(size(X)); ;q#Pl!*5
% z(idx) = zernfun(5,1,r(idx),theta(idx)); _ D"S
% figure :b!&Xw$
% pcolor(x,x,z), shading interp Xo6zeLHO
% axis square, colorbar nB/`~_9
% title('Zernike function Z_5^1(r,\theta)') rqKK89fD'
% 5v sn'=yN
% Example 2: RVF<l?EI4R
% A7T(p7pP
% % Display the first 10 Zernike functions mcs!A/]<
% x = -1:0.01:1; M<Y{Cs
% [X,Y] = meshgrid(x,x); ME.!l6lm\
% [theta,r] = cart2pol(X,Y); _{GD\Ai_W
% idx = r<=1; WHu[A/##']
% z = nan(size(X)); =GiN~$d
% n = [0 1 1 2 2 2 3 3 3 3]; L[U?{
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; B3I0H6O
% Nplot = [4 10 12 16 18 20 22 24 26 28]; $y UPua/-
% y = zernfun(n,m,r(idx),theta(idx)); nj-LG!"a
% figure('Units','normalized')
=NWzsRl,
% for k = 1:10 L(C0236r
% z(idx) = y(:,k); N{6-a
% subplot(4,7,Nplot(k)) K?yMy,9%Yw
% pcolor(x,x,z), shading interp }}oIZP\qM
% set(gca,'XTick',[],'YTick',[]) };f^*KZ=0
% axis square H8m[:K]_H
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) D}N4*L1
% end x Vw1
% 3ik~PgGoKQ
% See also ZERNPOL, ZERNFUN2. R_vK^Da
&gI*[5v
% Paul Fricker 11/13/2006 4.>y[_vu
lbh7`xCR
fVi[mH0=+
% Check and prepare the inputs: n-1
% ----------------------------- ViUx^e\
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) c2]h.G83
error('zernfun:NMvectors','N and M must be vectors.') M[e^Z}w.V
end W'e{2u
hW\'EJ
if length(n)~=length(m) 74hRG~
error('zernfun:NMlength','N and M must be the same length.') cb/$P!j7
end vorb? iVf>
Dw,LB>Eq,
n = n(:); ]}.|b6\
m = m(:); Gq7\b({=
if any(mod(n-m,2)) &M=15 uCK
error('zernfun:NMmultiplesof2', ... g+xcKfN{
'All N and M must differ by multiples of 2 (including 0).') 7324#Hw S
end Vw`%|x"Xz
yvnvI y
if any(m>n) g3Ul'QJ
error('zernfun:MlessthanN', ... nk;+L
'Each M must be less than or equal to its corresponding N.') OJ.oHf=K!
end V8Z@y&ny
h|<;:o?yh
if any( r>1 | r<0 ) :J+ANIRI
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^__P;Gr`
end -.-@|*5
L\"eE'A
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;)ERxMun
error('zernfun:RTHvector','R and THETA must be vectors.') FR\r/+n:t0
end @[Wf!8_
c57`mOe/b
r = r(:); %Siw>
theta = theta(:);
8L`wib2
length_r = length(r); 1\/~>
if length_r~=length(theta) nd5.Py$
error('zernfun:RTHlength', ... 6}*4co
'The number of R- and THETA-values must be equal.') @}'?o_/C
end dE3M
`*]r+J2
% Check normalization: 8mO_dQ
% -------------------- bKh}Y`
if nargin==5 && ischar(nflag) <irr.O
isnorm = strcmpi(nflag,'norm'); 6HH:K0j3'
if ~isnorm M -8d*#_P
error('zernfun:normalization','Unrecognized normalization flag.') {<cgeH
end P75@Yu(
else %mOQIXr1s
isnorm = false; }t1 q5@QU
end Q{
{=
WJ\,Y} J
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w!}kcn<
% Compute the Zernike Polynomials f^Q)lIv
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5{-54mwo
xSq+>, b
% Determine the required powers of r: -y/Y%]%0
% ----------------------------------- >&T J
m_abs = abs(m); H8E#r*"-m
rpowers = []; S5cs(}Bq
for j = 1:length(n) H<qz
rO
rpowers = [rpowers m_abs(j):2:n(j)]; i3>_E <"9
end vI(CX]o
rpowers = unique(rpowers); nr&9\lG]G
'1Ex{$Yk
% Pre-compute the values of r raised to the required powers, \3x+Z!
% and compile them in a matrix: =$_kkVQ$
% ----------------------------- "a<:fEsSE
if rpowers(1)==0 oYWHO<b
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (
;KTV*1
rpowern = cat(2,rpowern{:}); LVy (O9g
rpowern = [ones(length_r,1) rpowern]; 8w~X4A,
else }3-`e3
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); t;y@;?~
rpowern = cat(2,rpowern{:}); MQX9BJ%
end )0=H)k0
<V|\yH9
% Compute the values of the polynomials: -r[O_[g w
% -------------------------------------- R-Y 7I
y = zeros(length_r,length(n)); ) LohB,?
for j = 1:length(n) ^j1iCL!
s = 0:(n(j)-m_abs(j))/2; :S+Bu*OyH
pows = n(j):-2:m_abs(j); NH'QMjL)
for k = length(s):-1:1 ?VyiR40-Cx
p = (1-2*mod(s(k),2))* ... 9CZEP0i7
prod(2:(n(j)-s(k)))/ ... GvL\%0Ibx
prod(2:s(k))/ ... +0:]KG!Zs.
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... sDkO!P
prod(2:((n(j)+m_abs(j))/2-s(k))); )\{]4[9N
idx = (pows(k)==rpowers); {=+'3p
y(:,j) = y(:,j) + p*rpowern(:,idx); Z{_YH7_
end \{o<-S;h
#_: %Yd
if isnorm Yr>7c1FZi
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); IkQ,#Bsb[
end WogCt,
end t;t;+M|W
% END: Compute the Zernike Polynomials -hGLGF??
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |doG}C
)t$-/8
% Compute the Zernike functions: y!~ }7=
% ------------------------------ |sAl k,8s
idx_pos = m>0; 6<YAoo
idx_neg = m<0; 9ol&p>
F 2Mxcs*M
z = y; S]gV! Q4%
if any(idx_pos) ",S146Y+
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); kU{a!ca4
end }?9 A:&
if any(idx_neg) i8=+<d
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .F0Q<s9
end Q|7m9~
w[u>*I
% EOF zernfun