非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 *Y(59J2
function z = zernfun(n,m,r,theta,nflag) +fk*c[FG
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Jb"FY:/Qv+
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N =R=V
% and angular frequency M, evaluated at positions (R,THETA) on the x/O;8^b
% unit circle. N is a vector of positive integers (including 0), and |E >h*Y
% M is a vector with the same number of elements as N. Each element K} CgFBk
% k of M must be a positive integer, with possible values M(k) = -N(k) 6X@z(EEL
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, hH`x*:Qja
% and THETA is a vector of angles. R and THETA must have the same <2)AbI+3
% length. The output Z is a matrix with one column for every (N,M) <'4Wne.z!
% pair, and one row for every (R,THETA) pair. @l CG)Ix<
% I:jIChT
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike YcA. Bn|as
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^i8,9T'=
% with delta(m,0) the Kronecker delta, is chosen so that the integral G0 EXgq8
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, "\@J0|ppb
% and theta=0 to theta=2*pi) is unity. For the non-normalized U(f@zGV
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. lBfthLBa
% \>5sW8P]H`
% The Zernike functions are an orthogonal basis on the unit circle. 9Q1%+zjjMq
% They are used in disciplines such as astronomy, optics, and ?V2P]|
% optometry to describe functions on a circular domain. 0i\>(o
% Z)|~
% The following table lists the first 15 Zernike functions. :Vxt2@p{
% sa+
JN^[X
% n m Zernike function Normalization 3?B1oIHQ
% -------------------------------------------------- ^(TCUY~f&
% 0 0 1 1 lWc[Q1
% 1 1 r * cos(theta) 2 )(]rUJ~+~A
% 1 -1 r * sin(theta) 2 pl>b 6 |
% 2 -2 r^2 * cos(2*theta) sqrt(6) c
\??kQH
% 2 0 (2*r^2 - 1) sqrt(3) ,?yjsJd.
% 2 2 r^2 * sin(2*theta) sqrt(6) ;((t|
% 3 -3 r^3 * cos(3*theta) sqrt(8) $}(Z]z}O ;
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) {LiJ=Ebt
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 1#x5
o2n
% 3 3 r^3 * sin(3*theta) sqrt(8) p-"C^=l
% 4 -4 r^4 * cos(4*theta) sqrt(10) 9\Gk)0
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _9=87u0
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) (LK@w9)i;
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (/uN+
% 4 4 r^4 * sin(4*theta) sqrt(10) J~KO#`
% -------------------------------------------------- OFr"RGW"
% 9C \}bT
% Example 1: $?F_Qsy{d
% &n| <NF
% % Display the Zernike function Z(n=5,m=1) C+/EPPi
% x = -1:0.01:1; Lz1KDXr`)+
% [X,Y] = meshgrid(x,x); +}m`$B}mJ
% [theta,r] = cart2pol(X,Y); fL|9/sojz
% idx = r<=1; <zqIq9}r
% z = nan(size(X)); !!L'{beF
% z(idx) = zernfun(5,1,r(idx),theta(idx)); {qHQ_ _Bl
% figure \Yj_U'2"i
% pcolor(x,x,z), shading interp UhJS=YvT
% axis square, colorbar ( 72%au
% title('Zernike function Z_5^1(r,\theta)') ?xwi2<zz
% oPs asa
% Example 2: iY`[dsT
% \'=svJ
% % Display the first 10 Zernike functions =A5i84y.2u
% x = -1:0.01:1; _8$xsj4_
% [X,Y] = meshgrid(x,x); U`)
";WN
% [theta,r] = cart2pol(X,Y); ]A[}:E 5}
% idx = r<=1; .~I:Hcf/
% z = nan(size(X)); Srw`vql{(
% n = [0 1 1 2 2 2 3 3 3 3]; `}t5` :#k
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; (;g/wb:
% Nplot = [4 10 12 16 18 20 22 24 26 28]; |m\7/&@<
% y = zernfun(n,m,r(idx),theta(idx)); kR1
12J9P
% figure('Units','normalized') {KSLB8gtL
% for k = 1:10 x(>XM:|
% z(idx) = y(:,k); B[mZQ&Gz`a
% subplot(4,7,Nplot(k)) 5q4wREh
% pcolor(x,x,z), shading interp .Od@i$E>&
% set(gca,'XTick',[],'YTick',[]) <>KQ8:
% axis square uLv
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) L"0dB.
% end lre(]oBXA
% nEUH; z
% See also ZERNPOL, ZERNFUN2. 0Bgj.?l
6 [bQ'Ir^8
% Paul Fricker 11/13/2006 |9i[*]
6a9:P@tY
R{H8@JLD
% Check and prepare the inputs: Y, Lpv|
% ----------------------------- @=g{4(zR^
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) y z3=#
error('zernfun:NMvectors','N and M must be vectors.') 7&etnQJ{
end V,zFHXO
, MqoX-+
if length(n)~=length(m) ;|\j][A
error('zernfun:NMlength','N and M must be the same length.') hH$9GL{H
end vx$DKQK@l\
bOYM-\
{y
n = n(:); 0f_`;{
m = m(:); EFU)0IAL[
if any(mod(n-m,2)) @@3NSKA
error('zernfun:NMmultiplesof2', ... ) F -8
'All N and M must differ by multiples of 2 (including 0).') tw 3zw`o:
end ?1|\(W#
MYJMZ3qBi
if any(m>n) bWp)'mx5u
error('zernfun:MlessthanN', ... ',+Zqog92
'Each M must be less than or equal to its corresponding N.') \u6.*w5TI
end asQ^33g z
"\lOOp^-
if any( r>1 | r<0 ) Bvj
error('zernfun:Rlessthan1','All R must be between 0 and 1.') _^?_Vb
end >C{8}Lg-.
Y ajAz5N
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) VeEa17g&
error('zernfun:RTHvector','R and THETA must be vectors.') lP4s"8E`h
end c8zok `\P_
@G>eCj
r = r(:); 5%K|dYv^^
theta = theta(:); d=\TC'd"{
length_r = length(r); Z6So5r%wZ
if length_r~=length(theta) CZ^
,bad
error('zernfun:RTHlength', ... `uDOIl
'The number of R- and THETA-values must be equal.') B$OV^iwxK
end <v\$r2C*
0}`
-<(
% Check normalization: CG35\b;Q
% -------------------- H7drDw
if nargin==5 && ischar(nflag) S]}}r)
isnorm = strcmpi(nflag,'norm'); Q"!GdKM
if ~isnorm ES(qu]CjI
error('zernfun:normalization','Unrecognized normalization flag.') I~HA
ad,k
end E&"V~
else gLFSZ
isnorm = false; [k%u$
end Tqs|2at<t
&\ad.O/Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b'4}=Xpn
% Compute the Zernike Polynomials ;i [;%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wrJ"(:VZ
L6jwJwD
% Determine the required powers of r: .Y!dO@$:
% ----------------------------------- A&ceuu
m_abs = abs(m); |<8Fa%!HHc
rpowers = []; YJDJj
x
for j = 1:length(n) 6B
b+f"
rpowers = [rpowers m_abs(j):2:n(j)]; RA){\~@wC
end }t|i1{%_
rpowers = unique(rpowers); T'Jl,)"
Gy6x.GX
% Pre-compute the values of r raised to the required powers, 4qd(a)NdY
% and compile them in a matrix: LF{8hC[
% ----------------------------- !4z vkJO
if rpowers(1)==0 (6
RWI#
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @bAuR
rpowern = cat(2,rpowern{:}); e?o/H
rpowern = [ones(length_r,1) rpowern]; &-My[t
else }:s.m8LC5n
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); s|[qq7
rpowern = cat(2,rpowern{:}); 1bDXv,nD
end k O.iJcZg
VHLNJnA
% Compute the values of the polynomials: n-GoG(s..b
% -------------------------------------- I2)2'j,B
y = zeros(length_r,length(n)); |WT]s B0Eq
for j = 1:length(n) u{sb^cmy
s = 0:(n(j)-m_abs(j))/2; tu;Pm4q7
pows = n(j):-2:m_abs(j); 0hXx31JN N
for k = length(s):-1:1 W]>%*n
p = (1-2*mod(s(k),2))* ... (7$BF~s:,
prod(2:(n(j)-s(k)))/ ... #oR@!?
prod(2:s(k))/ ... .rX,*|1x
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Bq-}BN?pz
prod(2:((n(j)+m_abs(j))/2-s(k))); ]{t!J^Xn
idx = (pows(k)==rpowers); :+?rnb)N
y(:,j) = y(:,j) + p*rpowern(:,idx); /*"pylm
end {=U*!`D
fMM%,/b{
if isnorm PH^Gjm
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }Q6o#oZ
end : Hu{MN\
end #D ]CuSi
% END: Compute the Zernike Polynomials )tS;gn
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U?5G%o(q
>4+KEK
% Compute the Zernike functions: o?IrDQ2gmh
% ------------------------------ )4,U
idx_pos = m>0; e:rbyzf#
idx_neg = m<0; 5e?<x>e
##alzC
z = y; Cm"S=gV
if any(idx_pos) Qf'g2
\
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); `z7,HJ.0c
end i;juwc^n}
if any(idx_neg) Pl2eDv-y
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); a#9pN?~
end y(^\]-fE
cHOC>|
% EOF zernfun