切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11589阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 [#G*GAa6*  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 'mm>E  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 h^1 !8oOYD  
    function z = zernfun(n,m,r,theta,nflag) "Y4glomR[  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. o-AF_N  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N e{XzUY6  
    %   and angular frequency M, evaluated at positions (R,THETA) on the JR&yaOws  
    %   unit circle.  N is a vector of positive integers (including 0), and -XK;B--c  
    %   M is a vector with the same number of elements as N.  Each element p&)d]oV>  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) R?tjobk!  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, gf9U<J#&C  
    %   and THETA is a vector of angles.  R and THETA must have the same Je2&7uR0  
    %   length.  The output Z is a matrix with one column for every (N,M) `CBXz!v!O  
    %   pair, and one row for every (R,THETA) pair. L 8;H_:~_'  
    % Tow!5VAM  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?_p!teb  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 02NVdpo[wU  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral J~oxqw}  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, G%zJ4W%  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized K)+]as  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \DBEs02  
    % q"DHMZB  
    %   The Zernike functions are an orthogonal basis on the unit circle. 19pFNg'kA  
    %   They are used in disciplines such as astronomy, optics, and ^K_FGE0ec  
    %   optometry to describe functions on a circular domain. b35 3+7"|  
    % Hi/[  
    %   The following table lists the first 15 Zernike functions. n\<7`,  
    % "68X+!  
    %       n    m    Zernike function           Normalization PX2b(fR8_O  
    %       -------------------------------------------------- #Q-#7|0&  
    %       0    0    1                                 1 @#-\ BQ;  
    %       1    1    r * cos(theta)                    2 5ug|crX  
    %       1   -1    r * sin(theta)                    2 H!OX1F  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) wi+L 4v  
    %       2    0    (2*r^2 - 1)                    sqrt(3) L%<]gJtrO  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) %B1)mA;  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 9k6/D.Dz  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) HVhd#Q;  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) )UTjP/\gN  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Qb55q`'z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) f1elzANy  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7zA+UWr  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5)  2+S+Y%~  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Doq}UWp  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ^;9l3P{  
    %       -------------------------------------------------- bAN>\zG+  
    % 3^-R_  
    %   Example 1: J P5en  
    % $/5\Hg1  
    %       % Display the Zernike function Z(n=5,m=1) kzNRRs\e  
    %       x = -1:0.01:1; nm]lPKU+Y  
    %       [X,Y] = meshgrid(x,x); i "X" -)#  
    %       [theta,r] = cart2pol(X,Y); YjJ^SU`*  
    %       idx = r<=1; Am*lx  
    %       z = nan(size(X)); I|>.&nb  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); , /jHhKW  
    %       figure kumo%TXB&  
    %       pcolor(x,x,z), shading interp }bdoJ5  
    %       axis square, colorbar {D :WXvI  
    %       title('Zernike function Z_5^1(r,\theta)') kdx06'4o  
    % 2Oyw#1tdn  
    %   Example 2: +RR6gAma}<  
    % bb\XZ~)F  
    %       % Display the first 10 Zernike functions ZU `~@.`i  
    %       x = -1:0.01:1; i+< v7?:`#  
    %       [X,Y] = meshgrid(x,x); rnp; R  
    %       [theta,r] = cart2pol(X,Y); [e@m -/B  
    %       idx = r<=1; A{k1MA<F6  
    %       z = nan(size(X)); 8;c\} D  
    %       n = [0  1  1  2  2  2  3  3  3  3]; O@W/s!&lFa  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 6#K.n&=*  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; P>)J:.tr0  
    %       y = zernfun(n,m,r(idx),theta(idx)); VAUd^6Xdwx  
    %       figure('Units','normalized') &2[Xu4*  
    %       for k = 1:10 #R31V QwK5  
    %           z(idx) = y(:,k); 2G!z/OAj  
    %           subplot(4,7,Nplot(k)) 2EN}"Du]mj  
    %           pcolor(x,x,z), shading interp {hN<Ot  
    %           set(gca,'XTick',[],'YTick',[]) &y|PseH"  
    %           axis square ycki0&n3  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !g}@xwWax  
    %       end zSk`Ou8M  
    % *B{]  
    %   See also ZERNPOL, ZERNFUN2. eY^zs0  
    NV?XZ[<*<  
    %   Paul Fricker 11/13/2006 f8qDmk5s  
    9=/4}!.  
    ?p 4iXHE  
    % Check and prepare the inputs: .0gfP4{1{  
    % ----------------------------- 7bRfkKD  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) kTT%< e  
        error('zernfun:NMvectors','N and M must be vectors.') u*uHdV5  
    end nnE'zk<"  
    LjW32>B  
    if length(n)~=length(m) R+e)TR7+  
        error('zernfun:NMlength','N and M must be the same length.') b\o>4T  
    end c9Cc%EK  
    *)I^+zN  
    n = n(:); ].aFdy  
    m = m(:); ht>/7.p]  
    if any(mod(n-m,2))  iycceZ  
        error('zernfun:NMmultiplesof2', ... yD.(j*bMK;  
              'All N and M must differ by multiples of 2 (including 0).') Jg{K!P|i  
    end E]g6|,4~-  
    @p^EXc*|  
    if any(m>n) DTo"{!  
        error('zernfun:MlessthanN', ... GBR$k P  
              'Each M must be less than or equal to its corresponding N.') T"C.>G'[B  
    end omy3<6  
    <gH-`3 J6  
    if any( r>1 | r<0 ) S Te8*=w  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') -b8SaLak  
    end }U5$~, *p  
    $ve$Sq  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @(E6P;+{  
        error('zernfun:RTHvector','R and THETA must be vectors.') F`(;@LO  
    end \T<F#a  
    Qy4Pw\  
    r = r(:); qxHn+O!h  
    theta = theta(:); kRbJK  
    length_r = length(r); QfPw50N;  
    if length_r~=length(theta) pr4y*!|Y$  
        error('zernfun:RTHlength', ... a|4D6yUw|  
              'The number of R- and THETA-values must be equal.') 3="vOSJ6&  
    end T \- x3i  
    Lyn{Uag  
    % Check normalization: Fn4yx~0  
    % -------------------- T3"'`Sd9;  
    if nargin==5 && ischar(nflag) 45< gO1  
        isnorm = strcmpi(nflag,'norm'); C\ Yf]J  
        if ~isnorm sMUpkU-  
            error('zernfun:normalization','Unrecognized normalization flag.') L ed{#+  
        end T;{:a-8  
    else n6Uf>5  
        isnorm = false; [P ;fv  
    end }0@@_Y]CC  
    u(f;4`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QXL .4r%  
    % Compute the Zernike Polynomials P0hr=/h4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n4 N6]W\5  
    ]>k8v6*=  
    % Determine the required powers of r: Q!=`|X|:  
    % ----------------------------------- bT T>  
    m_abs = abs(m); Xppb|$qp4H  
    rpowers = []; ev+H{5W8  
    for j = 1:length(n) )Td{}vbIh  
        rpowers = [rpowers m_abs(j):2:n(j)]; I!1+#0SG  
    end =OPX9oG  
    rpowers = unique(rpowers); ~Jw84U{$  
    |F<iu2\  
    % Pre-compute the values of r raised to the required powers, HUCJA-OZGL  
    % and compile them in a matrix: u#^l9/tl  
    % ----------------------------- Fi;OZ>;a  
    if rpowers(1)==0 vZ$E [EG}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5|Z8UzL  
        rpowern = cat(2,rpowern{:}); cwtlOg  
        rpowern = [ones(length_r,1) rpowern]; VSV]6$~H  
    else `l.bU3C  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7w8UnPuM  
        rpowern = cat(2,rpowern{:}); mQ`2c:Rn&7  
    end e m)%U  
    wxPl[)E  
    % Compute the values of the polynomials: \)>#`X  
    % -------------------------------------- YN<vOv  
    y = zeros(length_r,length(n)); J:ka@2>|  
    for j = 1:length(n) t# y,9>6  
        s = 0:(n(j)-m_abs(j))/2; A<TYt M  
        pows = n(j):-2:m_abs(j); 1ZYo-a;)  
        for k = length(s):-1:1 h#Z,ud_  
            p = (1-2*mod(s(k),2))* ... +( afO ~9  
                       prod(2:(n(j)-s(k)))/              ... (pP.*`JRv  
                       prod(2:s(k))/                     ... K[/L!.Ag  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... )uR_d=B&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); $Z w +"AA  
            idx = (pows(k)==rpowers); uWFyI"  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Jmg9|g!f  
        end f5un7,m  
         ZUS5z+o  
        if isnorm >#l: ]T  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .\ya  
        end 3^fwDt}  
    end pYr+n9)^  
    % END: Compute the Zernike Polynomials PE/uB,Wl  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d8+@K&z|  
    J=: \b  
    % Compute the Zernike functions: ~OvbMWu  
    % ------------------------------ [uHC AP  
    idx_pos = m>0; t?PqfVSq  
    idx_neg = m<0; :&'jh/vRN  
    UQ7]hX9  
    z = y; a8ouk7 G  
    if any(idx_pos) }BL7P-km  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); >b=."i  
    end cS:O|R#%t  
    if any(idx_neg) T{m) = (q  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )X|)X,~+-  
    end $@] xi  
    "$o>_+U  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) |mHf 7gCX  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Cc%{e9e*  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated @n.n[zb\|  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ;s3\Z^h4kd  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ` V [4  
    %   and THETA is a vector of angles.  R and THETA must have the same -vT{D$&1  
    %   length.  The output Z is a matrix with one column for every P-value, : #?_4D!r  
    %   and one row for every (R,THETA) pair. W}3%BWn  
    % Y_jc*S  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 'bSWJ/;p)  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) L97 ~ma  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) W SxoGly  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 L*,h=#x(  
    %   for all p. =7H\llL4BC  
    % :3D6OBkB  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 V]+y*b.60  
    %   Zernike functions (order N<=7).  In some disciplines it is 8IxIW0  
    %   traditional to label the first 36 functions using a single mode 0!ZaR 6  
    %   number P instead of separate numbers for the order N and azimuthal %Y=r5'6l  
    %   frequency M. w{xa@Q]t-  
    % 8M,@Mb n  
    %   Example: 0,0Z!-Y  
    % UQ;2g\([  
    %       % Display the first 16 Zernike functions JA9NTu(  
    %       x = -1:0.01:1; PlS)Zv3  
    %       [X,Y] = meshgrid(x,x); 00dY?d{[D  
    %       [theta,r] = cart2pol(X,Y); 3F!)7  
    %       idx = r<=1; h%W,O,K/  
    %       p = 0:15; kBrA ?   
    %       z = nan(size(X)); fmQif]J;;  
    %       y = zernfun2(p,r(idx),theta(idx)); )8#-IXxp  
    %       figure('Units','normalized') _a& Z$2O  
    %       for k = 1:length(p) ]a&riPh"  
    %           z(idx) = y(:,k); c*E7nc)u  
    %           subplot(4,4,k) >4kQ9lXL  
    %           pcolor(x,x,z), shading interp Wex2Fd?DO  
    %           set(gca,'XTick',[],'YTick',[]) U\qbr.<  
    %           axis square <8kCmuGlk  
    %           title(['Z_{' num2str(p(k)) '}']) 7#G!es  
    %       end /}6y\3h  
    % \$DBtq5=  
    %   See also ZERNPOL, ZERNFUN. +}?%w|8||s  
    (GL'm[V  
    %   Paul Fricker 11/13/2006 KGo^>us  
    y }R2ZO  
    wXqwb|2  
    % Check and prepare the inputs: <X4f2z{T{@  
    % ----------------------------- xZ`vcS(  
    if min(size(p))~=1 ip}%Y6Wj  
        error('zernfun2:Pvector','Input P must be vector.') &-Wt!X 3  
    end O|=?!|`o  
     WTl0}wi  
    if any(p)>35 0n`Temb/  
        error('zernfun2:P36', ... GBRiU &D  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... W% Lrp{  
               '(P = 0 to 35).']) VWK/(>TP  
    end F}meKc?a  
    u1u;aG  
    % Get the order and frequency corresonding to the function number: : fYfXm  
    % ---------------------------------------------------------------- ,P`GIGvkA  
    p = p(:); ts@$*  
    n = ceil((-3+sqrt(9+8*p))/2); ;R2A>f~  
    m = 2*p - n.*(n+2);  ?f'`b<o  
    8$47Y2r@  
    % Pass the inputs to the function ZERNFUN: L[*cbjt[  
    % ---------------------------------------- $yj*n;  
    switch nargin ]:?S}DRG  
        case 3 2~g-k 3  
            z = zernfun(n,m,r,theta); :R:@V#Y  
        case 4 Lk#)VGk:  
            z = zernfun(n,m,r,theta,nflag); b`S9#`  
        otherwise PZZPx<?N  
            error('zernfun2:nargin','Incorrect number of inputs.') _:tS-Mx@5  
    end Ph.RWy")  
    7p':a)  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ^*$!9~  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. q^wSM  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of hH;i_("i(h  
    %   order N and frequency M, evaluated at R.  N is a vector of =+DhLH}8  
    %   positive integers (including 0), and M is a vector with the Bt$,=k  
    %   same number of elements as N.  Each element k of M must be a `VGw5o  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k)  Q$`uZ  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is #sjGju"#_  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix b|kL*{;  
    %   with one column for every (N,M) pair, and one row for every Tw` dLK?  
    %   element in R. 1?8M31  
    % lAC "7 Z?F  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- .T(vGiU  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is -p7 HQ/  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ?^7X2 u$nm  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 N z=P1&G'  
    %   for all [n,m]. 46\!W(O~y  
    % \' A- Lp  
    %   The radial Zernike polynomials are the radial portion of the 7AGUi+!ICl  
    %   Zernike functions, which are an orthogonal basis on the unit =c&.I}^1L  
    %   circle.  The series representation of the radial Zernike &%/T4$'+Y+  
    %   polynomials is e F}KOOfC  
    % DXO'MZon3  
    %          (n-m)/2 eUR+j?5I  
    %            __ :2vuc!Pu  
    %    m      \       s                                          n-2s !-%%94Q  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r OuWRLcJ!  
    %    n      s=0 E|_8#xvb  
    % gy|o#&e]%  
    %   The following table shows the first 12 polynomials. /6y{ ?0S  
    % sVmqx^-  
    %       n    m    Zernike polynomial    Normalization tr/.pw6  
    %       --------------------------------------------- -*T0Cl.  
    %       0    0    1                        sqrt(2) zO$r   
    %       1    1    r                           2 ).e}.Z6[i`  
    %       2    0    2*r^2 - 1                sqrt(6) LZs'hA<L  
    %       2    2    r^2                      sqrt(6) J#3[,~  
    %       3    1    3*r^3 - 2*r              sqrt(8) Z:x`][vg  
    %       3    3    r^3                      sqrt(8) mC0Dj O  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 368 g> /#'  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 5^ ubXA  
    %       4    4    r^4                      sqrt(10) /!p}H'jl  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) hPgYKa8u  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) }K,3SO(:  
    %       5    5    r^5                      sqrt(12)  fWs*u[S  
    %       --------------------------------------------- D ZH2U+K  
    % 1Id"|/b%$  
    %   Example: swJQwY   
    % $cm 9xW&  
    %       % Display three example Zernike radial polynomials Wy/h"R\=  
    %       r = 0:0.01:1; ZIh)D[n  
    %       n = [3 2 5]; Ja/  
    %       m = [1 2 1]; Q~' \oWz  
    %       z = zernpol(n,m,r); ZU z7h^3@  
    %       figure oY; C[X  
    %       plot(r,z) `P:[.hRu  
    %       grid on ;7H^;+P  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ,zK E$  
    % Co=Bq{GY  
    %   See also ZERNFUN, ZERNFUN2. {L.uLr_?e  
    ^%LyT!y  
    % A note on the algorithm. :c8d([)$  
    % ------------------------ K,U8vc  
    % The radial Zernike polynomials are computed using the series |}<Gz+E>  
    % representation shown in the Help section above. For many special p_EM/jI,  
    % functions, direct evaluation using the series representation can 7i#/eRui  
    % produce poor numerical results (floating point errors), because BD^1V( I/  
    % the summation often involves computing small differences between 0O]v|  
    % large successive terms in the series. (In such cases, the functions pDvznpQ  
    % are often evaluated using alternative methods such as recurrence qss )5a/x.  
    % relations: see the Legendre functions, for example). For the Zernike Wa&!1' @  
    % polynomials, however, this problem does not arise, because the AUIp vd  
    % polynomials are evaluated over the finite domain r = (0,1), and %@TC- xx  
    % because the coefficients for a given polynomial are generally all dq'f >S z}  
    % of similar magnitude. 1_Av_X  
    % |pq9i)e&  
    % ZERNPOL has been written using a vectorized implementation: multiple WA:r4V  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] n:k4t  
    % values can be passed as inputs) for a vector of points R.  To achieve SQx&4R.  
    % this vectorization most efficiently, the algorithm in ZERNPOL @A*>lUo  
    % involves pre-determining all the powers p of R that are required to QH,(iX6RY  
    % compute the outputs, and then compiling the {R^p} into a single `QW=<Le?  
    % matrix.  This avoids any redundant computation of the R^p, and k{UeY[,jb  
    % minimizes the sizes of certain intermediate variables. x#R6Ez7  
    % G\V*j$}!  
    %   Paul Fricker 11/13/2006 r=54@`O!  
    U)aftH *Pk  
    B_b5&M@  
    % Check and prepare the inputs: %*Uc,V  
    % ----------------------------- {0-rnSjC  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) m&'!^{av  
        error('zernpol:NMvectors','N and M must be vectors.') 1Ax;|.KQH  
    end GCfVH?Vx  
    /m 7~-~$V  
    if length(n)~=length(m) be5N{lPT@;  
        error('zernpol:NMlength','N and M must be the same length.') @' ;.$  
    end ~#}T|  
    !7MRHI/0C  
    n = n(:); 6CW5ay_,  
    m = m(:); -%^'x&e  
    length_n = length(n); e+{lf*"3  
    9tVV?Q@)  
    if any(mod(n-m,2)) ={N1j<%fh  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') n5^57[(  
    end # h4FLF_w  
    3T4HX|rC  
    if any(m<0) 9 Qa_3+.B  
        error('zernpol:Mpositive','All M must be positive.') ._`rh  
    end 4i^WE;|s  
    PB8g4-?p6  
    if any(m>n) g%!U7CM6h  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') )58 ~2vR  
    end WW &Wh<4  
    P+OS  
    if any( r>1 | r<0 ) G43r85LO  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') N0vECk  
    end 0(:SEiz6s  
    FoH1O+e  
    if ~any(size(r)==1) mZPvG  
        error('zernpol:Rvector','R must be a vector.') IAq o(Qm  
    end M6Np!0G  
    p3{Ff5FZ  
    r = r(:); 8"ZS|^#  
    length_r = length(r); \hBzP^*"n  
    ; D/6e6  
    if nargin==4 N2duhI6  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); .kPNWNrw  
        if ~isnorm %9Z0\ a)[  
            error('zernpol:normalization','Unrecognized normalization flag.') K5 BL4N  
        end Q9xb7)G  
    else _*Z3,*~"X  
        isnorm = false; TB+k[UxB  
    end N~l*//Ep  
    IOdxMzF`m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n_9Ex&?e  
    % Compute the Zernike Polynomials nw%`CnzT  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [0]A-#J  
    `&OX|mL^w  
    % Determine the required powers of r: >$E;."a  
    % ----------------------------------- [w|Klq5  
    rpowers = []; _ezRE"F5  
    for j = 1:length(n) $/;K<*O$  
        rpowers = [rpowers m(j):2:n(j)]; _N^w5EBC]  
    end W{tZX^|  
    rpowers = unique(rpowers); 0gaHYqkA>}  
    %!(C?k!\  
    % Pre-compute the values of r raised to the required powers, ?6`B;_m  
    % and compile them in a matrix: m;MJ{"@A'  
    % ----------------------------- 4"(rZWv  
    if rpowers(1)==0 $D!/v)3  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); qxu3y+po]  
        rpowern = cat(2,rpowern{:}); L+<h 5>6  
        rpowern = [ones(length_r,1) rpowern]; ThI}~$Y  
    else :-JryiI  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); LR>s2zu-  
        rpowern = cat(2,rpowern{:}); f pq|mY  
    end ftR& 5 !Wm  
    ,1N|lyV   
    % Compute the values of the polynomials: 'hs4k|B  
    % -------------------------------------- 'xx M0Kn`  
    z = zeros(length_r,length_n); sVw:d _ E  
    for j = 1:length_n PgT8 1u  
        s = 0:(n(j)-m(j))/2; 111A e *U  
        pows = n(j):-2:m(j); H)7v$A,5%  
        for k = length(s):-1:1 /]!2 k9u\  
            p = (1-2*mod(s(k),2))* ... igk<]AwxS  
                       prod(2:(n(j)-s(k)))/          ... T>rmm7F  
                       prod(2:s(k))/                 ... Q+9:]Bt  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... d8w3Oz54  
                       prod(2:((n(j)+m(j))/2-s(k))); UgS`{&b36  
            idx = (pows(k)==rpowers); ~h;   
            z(:,j) = z(:,j) + p*rpowern(:,idx); -kMw[Y  
        end >WD HRC  
         2(@2 z[eKr  
        if isnorm ka\{?:r,8  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); n>j2$m1[  
        end ; /K6U  
    end *S:~U  
    <a @7's  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  'd$RNqe  
    `CVkjLiy  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 J~5V7B  
    z='%NZY  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)