非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 AJ#m6`M+EK
function z = zernfun(n,m,r,theta,nflag) $['7vcB^
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. gaw4NZd)0
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N (
*9Ip
% and angular frequency M, evaluated at positions (R,THETA) on the FV^4
% unit circle. N is a vector of positive integers (including 0), and =~\]3g
% M is a vector with the same number of elements as N. Each element W) 33;E/}
% k of M must be a positive integer, with possible values M(k) = -N(k) 0tW<LR-}E
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, aW=By)S!Y
% and THETA is a vector of angles. R and THETA must have the same :PFx&
% length. The output Z is a matrix with one column for every (N,M) $/, BJ/9
% pair, and one row for every (R,THETA) pair. h5&/hBN
% "^9[OgE:
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike y7M:b Uh
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0HHui7Yy>
% with delta(m,0) the Kronecker delta, is chosen so that the integral yNrinYw
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Vedyy\TU
% and theta=0 to theta=2*pi) is unity. For the non-normalized dq
YDz
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. wUK7um
% >k&8el6h
% The Zernike functions are an orthogonal basis on the unit circle. UK"}}nO@e
% They are used in disciplines such as astronomy, optics, and Zp7yaz3y
% optometry to describe functions on a circular domain. a@fE46o6<
% XDpfpJ,z"}
% The following table lists the first 15 Zernike functions. ${eY9-r_%
% %ezb^O_6v
% n m Zernike function Normalization 4-7kS85
% -------------------------------------------------- +9CEC1-l
% 0 0 1 1 B]^>GH
% 1 1 r * cos(theta) 2 4?>18%7&
% 1 -1 r * sin(theta) 2 XOysgX0g
% 2 -2 r^2 * cos(2*theta) sqrt(6) Ka]J^w;a
% 2 0 (2*r^2 - 1) sqrt(3) pKt-R07*
% 2 2 r^2 * sin(2*theta) sqrt(6) AezvBY0'`z
% 3 -3 r^3 * cos(3*theta) sqrt(8) Sc1+(z
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) :W.jNV{e\F
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) {J,6iP{>ZN
% 3 3 r^3 * sin(3*theta) sqrt(8) -,~;qSs
% 4 -4 r^4 * cos(4*theta) sqrt(10) f{y]
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <`R|a *
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 2PVx++*]C
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |'V DI]p&
% 4 4 r^4 * sin(4*theta) sqrt(10)
SwdC,
% -------------------------------------------------- E /fw?7eQ
% ]ZzoJ7lr
% Example 1: ^Yj"RM$;N
% K-J|/eB
% % Display the Zernike function Z(n=5,m=1) ="uKWt6n'
% x = -1:0.01:1; _\
.
% [X,Y] = meshgrid(x,x); cS<TmS!
% [theta,r] = cart2pol(X,Y); V#ndyUM;
% idx = r<=1; PUbaS{J7
% z = nan(size(X)); X}oj_zsy;^
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 7"ylN"syZ
% figure iD>G!\&