切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11398阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 >~TLgq*  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! q{ @>2AlK  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 kJlRdt2  
    function z = zernfun(n,m,r,theta,nflag) zRD{"uqi  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1 BAnf9  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N enO5XsIc  
    %   and angular frequency M, evaluated at positions (R,THETA) on the :p=IZY  
    %   unit circle.  N is a vector of positive integers (including 0), and <S6|$7{1  
    %   M is a vector with the same number of elements as N.  Each element `V$i*{c:#  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) DKF`uRvGN:  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, m mu{K$9}I  
    %   and THETA is a vector of angles.  R and THETA must have the same wX<)Fj'  
    %   length.  The output Z is a matrix with one column for every (N,M) cmZ39pjBJ  
    %   pair, and one row for every (R,THETA) pair. W.HM!HQp  
    % R3jhq3F\Y  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =Mc*~[D/  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <I&X[Sqp  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral [_^K}\/+  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (m|p|rL  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized eXc`"T,C.  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 8)\ ?6C  
    % 38 tRb"3zP  
    %   The Zernike functions are an orthogonal basis on the unit circle. G9 ;X=c  
    %   They are used in disciplines such as astronomy, optics, and NJI-8qTGI  
    %   optometry to describe functions on a circular domain. `&LPqb  
    % Z0`Bn5  
    %   The following table lists the first 15 Zernike functions. dli?/U@hO  
    % 4@u*#Bp`|  
    %       n    m    Zernike function           Normalization 7ykpDl^@  
    %       -------------------------------------------------- kOfbO'O9  
    %       0    0    1                                 1 LS}u6\(  
    %       1    1    r * cos(theta)                    2 MXh0a@*]  
    %       1   -1    r * sin(theta)                    2 >OgA3)X  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) [1F.   
    %       2    0    (2*r^2 - 1)                    sqrt(3) pV9$Vg?-H  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) (oBvpFP33  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) [i== Tp  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) *?zmo@-  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8)  TTZb.  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) <'>c`80@\*  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 1Mn=m w  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i+ ]3J/J  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5)  SP?~i@H  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4@AY~"dq  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) n0bm 'qw  
    %       -------------------------------------------------- +DmfqKKbd  
    % !nQ_<  
    %   Example 1: v*iD)k:|t  
    % pX8TzmIB0  
    %       % Display the Zernike function Z(n=5,m=1) RZoSP(6  
    %       x = -1:0.01:1; (HbA?Aja  
    %       [X,Y] = meshgrid(x,x); -N $4\yp  
    %       [theta,r] = cart2pol(X,Y); >o9tlO)  
    %       idx = r<=1; MKPxF@N(  
    %       z = nan(size(X)); NOM6},rp  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); p{ X?_F  
    %       figure  UCV1{  
    %       pcolor(x,x,z), shading interp GVR/p  
    %       axis square, colorbar ]s_,;PGU  
    %       title('Zernike function Z_5^1(r,\theta)') eocq Hwbv  
    % /|Z_Dy  
    %   Example 2: Y\75cfD  
    % _}+Aw{7!r  
    %       % Display the first 10 Zernike functions f$1&)1W[  
    %       x = -1:0.01:1; CGw,RNV  
    %       [X,Y] = meshgrid(x,x); *Tc lc u  
    %       [theta,r] = cart2pol(X,Y); eFKF9m  
    %       idx = r<=1; H j [!F%  
    %       z = nan(size(X)); F3nYMf  
    %       n = [0  1  1  2  2  2  3  3  3  3]; $ /`X7a{  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; pLj[b4p9  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; >|zMN$:  
    %       y = zernfun(n,m,r(idx),theta(idx)); R*0]*\C z  
    %       figure('Units','normalized') "`Q &s  
    %       for k = 1:10 ~(*2 :9*0  
    %           z(idx) = y(:,k); Op()`x m  
    %           subplot(4,7,Nplot(k)) (yrN-M4~t  
    %           pcolor(x,x,z), shading interp boS=  
    %           set(gca,'XTick',[],'YTick',[]) (vP<}  
    %           axis square }TQa<;Q  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 0\zY?UUww  
    %       end AjVX  
    % \uPyvA =  
    %   See also ZERNPOL, ZERNFUN2. CKI.\o  
    =j~BAS*"  
    %   Paul Fricker 11/13/2006 -\<\OV:c*  
    gFpub_  
    xO[V>Ud  
    % Check and prepare the inputs: <*Nd%Ca  
    % ----------------------------- C19}Y4r:  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) PctXh, =  
        error('zernfun:NMvectors','N and M must be vectors.') GJ5R <f9I  
    end J6 J">  
    .af+h<RG4$  
    if length(n)~=length(m) r=-b@U.fk>  
        error('zernfun:NMlength','N and M must be the same length.') A!cY!aQ  
    end N TcojA{V$  
    U ,NGV0  
    n = n(:); fUMjLA|*I<  
    m = m(:); f$76p!pDa  
    if any(mod(n-m,2)) Yt[LIn-v:  
        error('zernfun:NMmultiplesof2', ... 1etT."  
              'All N and M must differ by multiples of 2 (including 0).') ZIN1y;dJ  
    end +T\<oj%}2  
    $Qz<:?D  
    if any(m>n) IaZmN.k*  
        error('zernfun:MlessthanN', ... b(oe^jeGz  
              'Each M must be less than or equal to its corresponding N.') 4a0Ud !Qcs  
    end X J`*dgJ  
    Mz.C`Z>o  
    if any( r>1 | r<0 ) et2;{Tb,5  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') %~I&T". iC  
    end #+QJ5VI :  
    ~!S/{Un   
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @F] w]d  
        error('zernfun:RTHvector','R and THETA must be vectors.') hraR:l D  
    end ht*N[Pi4;  
    0BNH~,0u  
    r = r(:); Tw djBMte  
    theta = theta(:);  )ut$644R  
    length_r = length(r); 4[i 3ckFT,  
    if length_r~=length(theta) 9N `WT=  
        error('zernfun:RTHlength', ... #]dq^B~~  
              'The number of R- and THETA-values must be equal.') oP`:NCj\9  
    end Mq#m;v$E  
    o{>4PZ}=g  
    % Check normalization: 5kGQf  
    % -------------------- &c 2Qa  
    if nargin==5 && ischar(nflag) r95 ,X!  
        isnorm = strcmpi(nflag,'norm'); e/cHH3 4  
        if ~isnorm <o9AjASv\,  
            error('zernfun:normalization','Unrecognized normalization flag.') k,$/l1D  
        end 1$1>cuu  
    else `-%dHvB^R  
        isnorm = false; IqV" 4  
    end -8l(eDm"m  
    [) 0JI6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i3mw.`7  
    % Compute the Zernike Polynomials uB^"A ;0v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g%tUkM  
    1TX3/]:  
    % Determine the required powers of r: f,i2U|1pbj  
    % ----------------------------------- FAL#p$y}  
    m_abs = abs(m); B8eZ}9X  
    rpowers = []; ~"0{<mMcX  
    for j = 1:length(n) 'zav%}b]L  
        rpowers = [rpowers m_abs(j):2:n(j)]; p2Gd6v.t  
    end (&NLLrsio  
    rpowers = unique(rpowers); H>D sAHS  
    cLp_\\  
    % Pre-compute the values of r raised to the required powers, pY-!NoES  
    % and compile them in a matrix: JBA{i45x  
    % ----------------------------- 8\9W:D@"x  
    if rpowers(1)==0 "!(@MfjT  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0 LXu!iix  
        rpowern = cat(2,rpowern{:}); ~CHcbEWk)W  
        rpowern = [ones(length_r,1) rpowern]; n:B){'S  
    else <m^a ?q^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); pGD-K41O]  
        rpowern = cat(2,rpowern{:}); f+ZOE?"  
    end JL!^R_b&c  
    *g %bdO  
    % Compute the values of the polynomials: ^7ID |uMr  
    % -------------------------------------- x^c,cV+*  
    y = zeros(length_r,length(n)); yPT o,,ca=  
    for j = 1:length(n) ]@cI_n  
        s = 0:(n(j)-m_abs(j))/2; (=WbLNBS  
        pows = n(j):-2:m_abs(j); N.+A-[7,W  
        for k = length(s):-1:1 9>0OpgvC(  
            p = (1-2*mod(s(k),2))* ... Jw}&[  
                       prod(2:(n(j)-s(k)))/              ... nC !NZ  
                       prod(2:s(k))/                     ... Cq7 uy  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]l h=ZC  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); rN7JJHV  
            idx = (pows(k)==rpowers); "M+I$*]  
            y(:,j) = y(:,j) + p*rpowern(:,idx); )(yaX  
        end OGLA1}k4  
         qhG2j;  
        if isnorm 4 ;)t\9cy_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ^8bc<c:P  
        end 3!cenyE  
    end G9xO>Xp^Al  
    % END: Compute the Zernike Polynomials js;YSg{m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,Xn %0]  
    >ySO.S  
    % Compute the Zernike functions: 9bRUN<  
    % ------------------------------ =aQlT*n%3  
    idx_pos = m>0; p:$v,3:  
    idx_neg = m<0; {/N8[?zML  
    pRxVsOb  
    z = y; % jf|efxo  
    if any(idx_pos) T*Ge67  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -G?IXgG  
    end GV ) "[O  
    if any(idx_neg) xT* 3QwK  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ME!P{ _/  
    end P_mP ^L  
    90Sras>F  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) #h9Gl@|  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Pk(%=P ,  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated IZ^:wIKo{  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive V!yBH<X  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, T*C F5S  
    %   and THETA is a vector of angles.  R and THETA must have the same Y[>h |@  
    %   length.  The output Z is a matrix with one column for every P-value, 9AQ,@xP|  
    %   and one row for every (R,THETA) pair. `(P71T  
    % (~5]1S}F  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 8cMX=P  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2)  xI#rnx*  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) D^p)`*  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Zy?!;`c*{  
    %   for all p. :9x]5;ma  
    % }y J,&N'p  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 9jx>&MnWs  
    %   Zernike functions (order N<=7).  In some disciplines it is I 0x;rP  
    %   traditional to label the first 36 functions using a single mode y@2"[fo3~  
    %   number P instead of separate numbers for the order N and azimuthal {x..> 4  
    %   frequency M. OUO'w6m!  
    % %gSmOW2.c^  
    %   Example: Vu4LC&q  
    % 63$`KG3  
    %       % Display the first 16 Zernike functions 55] MRv  
    %       x = -1:0.01:1; /P46k4M1U  
    %       [X,Y] = meshgrid(x,x); ux6)K= ]  
    %       [theta,r] = cart2pol(X,Y); RF -c`C  
    %       idx = r<=1; E&L ml?@  
    %       p = 0:15; gX n `!  
    %       z = nan(size(X)); K$:btWSm  
    %       y = zernfun2(p,r(idx),theta(idx)); M _cm,|FF  
    %       figure('Units','normalized') Ik A~+6UY  
    %       for k = 1:length(p) (6[/7e)  
    %           z(idx) = y(:,k); OS>%pgv  
    %           subplot(4,4,k) **AkpV)  
    %           pcolor(x,x,z), shading interp 4&e<Sc64  
    %           set(gca,'XTick',[],'YTick',[]) )?l7I*  
    %           axis square 3G^A^]h  
    %           title(['Z_{' num2str(p(k)) '}']) ]+w 27!  
    %       end %X%f0J  
    % i/!KUbt  
    %   See also ZERNPOL, ZERNFUN. TC=>De2;  
    V!TGFo}  
    %   Paul Fricker 11/13/2006 vJ 28A  
    M9~'dS'XI  
    d:cOdm>,  
    % Check and prepare the inputs: LUpkO  
    % ----------------------------- ={6vShG)m  
    if min(size(p))~=1 +~ Y.m8  
        error('zernfun2:Pvector','Input P must be vector.') 30sA\TZ  
    end qzZ;{>_f  
     ggfCfn  
    if any(p)>35 heb{i5el  
        error('zernfun2:P36', ... 5RY-.c4}  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... z t!>  
               '(P = 0 to 35).']) LCHw.  
    end K>\v<!%a  
    }h3[QUVf%  
    % Get the order and frequency corresonding to the function number: ox";%|PP1  
    % ---------------------------------------------------------------- C&EA@U5X^  
    p = p(:); ~~p)_  
    n = ceil((-3+sqrt(9+8*p))/2); 4Y G\<Zf  
    m = 2*p - n.*(n+2); QMDkkNK  
    U` )d `4"  
    % Pass the inputs to the function ZERNFUN: FysIN~  
    % ---------------------------------------- `bLJ wJ7  
    switch nargin G%}k_vi&q  
        case 3 V-63   
            z = zernfun(n,m,r,theta); 0juP"v$C>  
        case 4 VjeF3pmBa  
            z = zernfun(n,m,r,theta,nflag); ~eiD(04^r*  
        otherwise Kz]\o"K  
            error('zernfun2:nargin','Incorrect number of inputs.') qR%as0;  
    end :C&6M79k  
    nLrCy5R:  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) sWVapu p?  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ))7CqN  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Vw&# Lo  
    %   order N and frequency M, evaluated at R.  N is a vector of q5) K  
    %   positive integers (including 0), and M is a vector with the J7kqyo"  
    %   same number of elements as N.  Each element k of M must be a {?}^HW9{  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) OgzKX>N`A  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Xhpcu1nA  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix aR)w~s\6  
    %   with one column for every (N,M) pair, and one row for every i G%R'/*  
    %   element in R. wxF\enDY  
    % +u`4@~D#  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- nIfp0U*  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 7gRR/&ZK  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to qv<^%7gq  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Y3H5}4QD  
    %   for all [n,m]. ^ h2!u'IQ  
    % =tGRy@QV'\  
    %   The radial Zernike polynomials are the radial portion of the UC.kI&A  
    %   Zernike functions, which are an orthogonal basis on the unit -'^:+FU  
    %   circle.  The series representation of the radial Zernike Ieh<|O,-C  
    %   polynomials is C4 -y%W"P  
    % Tsdgg?#  
    %          (n-m)/2 O;0VKNn['  
    %            __ @qB>qD~WsD  
    %    m      \       s                                          n-2s V \/Qik{h  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r $dsLU5]1o  
    %    n      s=0 <00=bZzX  
    % 2dDhO  
    %   The following table shows the first 12 polynomials. ^,`]Q)P^  
    % <s$Jj><  
    %       n    m    Zernike polynomial    Normalization ?[)V  
    %       --------------------------------------------- =JxEM7r  
    %       0    0    1                        sqrt(2)  %Nx,ZD@  
    %       1    1    r                           2 X(Z(cY(  
    %       2    0    2*r^2 - 1                sqrt(6) Z1] 4:  
    %       2    2    r^2                      sqrt(6) wZ=@0al  
    %       3    1    3*r^3 - 2*r              sqrt(8) e2L>"/  
    %       3    3    r^3                      sqrt(8) 35:RsL  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) d?V/V'T[  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) C 1)+^{7ef  
    %       4    4    r^4                      sqrt(10) Oc5f8uv  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) VH vL:z  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) -vc ,O77z"  
    %       5    5    r^5                      sqrt(12) CY$ 1;/  
    %       --------------------------------------------- PzustC|  
    %  \+:`nz3m  
    %   Example: p[)yn%uh  
    % zjzEmX  
    %       % Display three example Zernike radial polynomials KEf1GU6s  
    %       r = 0:0.01:1; +-|}<mq  
    %       n = [3 2 5]; 9Q\RCl_1  
    %       m = [1 2 1]; ;Eh"]V,e  
    %       z = zernpol(n,m,r); FtlJ3fB@  
    %       figure fUZCP*7>  
    %       plot(r,z) mP?}h  
    %       grid on lI@Z)~  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') XEN-V-Z%*  
    % [w)KNl  
    %   See also ZERNFUN, ZERNFUN2. YdUcO.V  
    - b`  
    % A note on the algorithm.  '{cFr  
    % ------------------------ `G=+qti  
    % The radial Zernike polynomials are computed using the series 12Fnv/[n'K  
    % representation shown in the Help section above. For many special 6z'0fi|EN  
    % functions, direct evaluation using the series representation can ?v'CuWS  
    % produce poor numerical results (floating point errors), because LvU/,.$  
    % the summation often involves computing small differences between 5glEV`.je  
    % large successive terms in the series. (In such cases, the functions CZ%KC$l.5  
    % are often evaluated using alternative methods such as recurrence +?{LLD*2e  
    % relations: see the Legendre functions, for example). For the Zernike K <WowU  
    % polynomials, however, this problem does not arise, because the ,'sDauFn  
    % polynomials are evaluated over the finite domain r = (0,1), and $_e{Zv[  
    % because the coefficients for a given polynomial are generally all NdRE,HWd?$  
    % of similar magnitude. JIc9csr:b  
    % m}2hIhD9  
    % ZERNPOL has been written using a vectorized implementation: multiple J%fJF//U  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] OC\cN%qlw  
    % values can be passed as inputs) for a vector of points R.  To achieve P$3!4D[  
    % this vectorization most efficiently, the algorithm in ZERNPOL 0 t/mLw&  
    % involves pre-determining all the powers p of R that are required to ;6?,Yhk$h  
    % compute the outputs, and then compiling the {R^p} into a single cBHUa}:  
    % matrix.  This avoids any redundant computation of the R^p, and )0Vj\>  
    % minimizes the sizes of certain intermediate variables. H)y_[:[  
    % jP<6Q|5F  
    %   Paul Fricker 11/13/2006 u{dkUG1ia  
    b>d]= u  
    [~;wCW,1  
    % Check and prepare the inputs: w[G-=>;  
    % ----------------------------- d[E= HN  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) s"8z q ;)  
        error('zernpol:NMvectors','N and M must be vectors.') 715J1~aRNr  
    end kpk ^Uw%f  
    ONc#d'-L  
    if length(n)~=length(m) f,BJb+0  
        error('zernpol:NMlength','N and M must be the same length.') #X6=`Xe#  
    end EAF\ 7J*  
    64:p 4N  
    n = n(:); 5F :\U  
    m = m(:); [y<s]C6E  
    length_n = length(n); GW9,%}l^;  
    8"u.GL.  
    if any(mod(n-m,2)) 4dh> B>Q  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') {4%ddJn[.)  
    end d 5h x%M  
    l8lJ &  
    if any(m<0) 9YBlMf`KEf  
        error('zernpol:Mpositive','All M must be positive.') cL"Ral-qB  
    end paxZlA o  
    _ CzAv%  
    if any(m>n) CKDg3p';  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') va.Ve# N  
    end qtP*O#1q  
    4@-Wp]  
    if any( r>1 | r<0 ) (c[DQSj  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') kioIyV\=  
    end @*$"6!3s5  
    #;"lBqxY`  
    if ~any(size(r)==1) `Cu9y+t  
        error('zernpol:Rvector','R must be a vector.') ork{a.1-_w  
    end D P:}<  
    X,K`]hb*0_  
    r = r(:); "&mwrjn"T  
    length_r = length(r); gER(&L4[  
    Rr\fw'  
    if nargin==4 ASNo6dP 7  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); F<,"{L  
        if ~isnorm [bN_0T.YI  
            error('zernpol:normalization','Unrecognized normalization flag.') < -Ax)zE  
        end CTc#*LJx>j  
    else ]oC7{OoX  
        isnorm = false; S @)P#  
    end ck8Qs08  
    M/}i7oS]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2}ywNVS  
    % Compute the Zernike Polynomials 1rh2!4)7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QX9['B<  
    EFs\zWF  
    % Determine the required powers of r: y$L&N0z  
    % ----------------------------------- )/{~&L U  
    rpowers = []; ?gXdi<2Qn  
    for j = 1:length(n) X-%91z:o58  
        rpowers = [rpowers m(j):2:n(j)]; o^BX:\}  
    end PC)V".W 1  
    rpowers = unique(rpowers); 3d_g@x#9  
    ab<7jfFIa  
    % Pre-compute the values of r raised to the required powers, [wUJ ~~2#  
    % and compile them in a matrix: eZ(o_  
    % ----------------------------- m=]}Tn  
    if rpowers(1)==0 @OC*:?!4  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); QFEc?sEe  
        rpowern = cat(2,rpowern{:}); A2B]E,JMp  
        rpowern = [ones(length_r,1) rpowern]; w)gMJX/0yw  
    else Ak2Vf0Eb  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W1UqvaR  
        rpowern = cat(2,rpowern{:}); jL~. =QD  
    end SS-7y:6y>  
    vn96o] n  
    % Compute the values of the polynomials: $`/F5R!  
    % -------------------------------------- _[J>GfQd  
    z = zeros(length_r,length_n); SvD:UG  
    for j = 1:length_n "=9)|{=m  
        s = 0:(n(j)-m(j))/2; b"~Ct}6f  
        pows = n(j):-2:m(j); BctU`.  
        for k = length(s):-1:1 XN'<H(G  
            p = (1-2*mod(s(k),2))* ... e&=T`  
                       prod(2:(n(j)-s(k)))/          ... kn6X I*  
                       prod(2:s(k))/                 ... ,j\UZ  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... =]sM,E,n  
                       prod(2:((n(j)+m(j))/2-s(k))); /I q6'oo  
            idx = (pows(k)==rpowers); X(K5>L>  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 0 oHnam  
        end OlYCw.Zu  
         ,wk %)^  
        if isnorm h)yAg e  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 1$ {Cwb/F  
        end c(!{_+q"  
    end @!Q\| <  
    u_ym=N57`  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  9:!<=rk  
    (dxkDS-G  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 3rEBG0cf]  
    ROr..-[u  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)