切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10973阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 *.ZU" 5e  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! <m3or  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 p ]zYj >e  
    function z = zernfun(n,m,r,theta,nflag) ; -RhI_  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. FBGHVV w!  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N a* pZcv<  
    %   and angular frequency M, evaluated at positions (R,THETA) on the >q&Q4E0  
    %   unit circle.  N is a vector of positive integers (including 0), and !k&~|_$0@  
    %   M is a vector with the same number of elements as N.  Each element ,qRSB>5c  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) %(-YOTDr  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ~EU[?  
    %   and THETA is a vector of angles.  R and THETA must have the same 2.2Z'$W  
    %   length.  The output Z is a matrix with one column for every (N,M) gKZ{O  
    %   pair, and one row for every (R,THETA) pair. L-d8bA  
    % eh'mSf^=p  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike UZdE ^Q[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), lO9{S=N  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral =3=KoH/'  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, KrkZv$u,  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized O#7ldF(  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Et'C4od s  
    % *eXO?6f%s^  
    %   The Zernike functions are an orthogonal basis on the unit circle. $EJ*x$  
    %   They are used in disciplines such as astronomy, optics, and p _e-u-  
    %   optometry to describe functions on a circular domain. w c%  
    % fC3IxlG  
    %   The following table lists the first 15 Zernike functions. 3i(k6)H$4  
    % ~+>M,LfK  
    %       n    m    Zernike function           Normalization RQ,(?I*8\  
    %       -------------------------------------------------- )O- x1U  
    %       0    0    1                                 1 ):78GVp  
    %       1    1    r * cos(theta)                    2 dr6 dK  
    %       1   -1    r * sin(theta)                    2 ,:\2Lf  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ;oFaDTX]  
    %       2    0    (2*r^2 - 1)                    sqrt(3) M]` Q4\  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) N/?Ms rZw  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) E2*"~gL^,  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Y0B*.H Ae  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) -N\{QX1Yd  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) x}x@_w   
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) a3c4#'c|D  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V2FE|+R%g  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) LVEVCpp@  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )vU{JY;  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 2FVKgyV  
    %       -------------------------------------------------- *VlYl"  
    % sId5pY!  
    %   Example 1: l.)N  
    % `f'q/  
    %       % Display the Zernike function Z(n=5,m=1) g?$9~/h :;  
    %       x = -1:0.01:1; pWx3l5)R  
    %       [X,Y] = meshgrid(x,x); qBNiuV;*  
    %       [theta,r] = cart2pol(X,Y); GO)rpk9  
    %       idx = r<=1; H0(zE *c~  
    %       z = nan(size(X)); D1Sl+NOV  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Qx,G3m[}  
    %       figure H);'\]_'x  
    %       pcolor(x,x,z), shading interp 9bNIaC*M  
    %       axis square, colorbar B)Q'a3d#  
    %       title('Zernike function Z_5^1(r,\theta)') v4zd x)  
    % 2>!ykUw^O  
    %   Example 2: OX`n`+^D  
    % Ii,:+o%  
    %       % Display the first 10 Zernike functions )g --=w3  
    %       x = -1:0.01:1; piG1&*  
    %       [X,Y] = meshgrid(x,x); -0X> y  
    %       [theta,r] = cart2pol(X,Y); bvx:R ~E$  
    %       idx = r<=1; ( 7?%Hg  
    %       z = nan(size(X)); |i`@!NrFL  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 709eLhXrH  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 19.cf3Dh  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; $a A.d^  
    %       y = zernfun(n,m,r(idx),theta(idx)); ?W n(ciO  
    %       figure('Units','normalized') @,MdvR+a  
    %       for k = 1:10 @(cS8%wK  
    %           z(idx) = y(:,k); g,:N zb  
    %           subplot(4,7,Nplot(k)) 2jW>uk4/i  
    %           pcolor(x,x,z), shading interp (OqJet2{+  
    %           set(gca,'XTick',[],'YTick',[]) n{t',r50  
    %           axis square ~qS/90,  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %-l:_A  
    %       end B0i}Y-Z  
    % \`zG`f  
    %   See also ZERNPOL, ZERNFUN2. V@S/!h+  
    Y/0O9}hf  
    %   Paul Fricker 11/13/2006 $t$f1?  
    zb/Xfu.)?6  
    3~</lAm;  
    % Check and prepare the inputs: y.:-  
    % ----------------------------- q=Yerp3~  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Z5Ihc%J^  
        error('zernfun:NMvectors','N and M must be vectors.') vB5iG|b}  
    end %-/:ps  
    ]&U|d  
    if length(n)~=length(m) !2| `aa  
        error('zernfun:NMlength','N and M must be the same length.') )[sO5X7'^  
    end `^-Be  
    R0mT/h2  
    n = n(:); 9! HMQ  
    m = m(:); 8.Ef5-m  
    if any(mod(n-m,2)) e K1m(E.=  
        error('zernfun:NMmultiplesof2', ... K4/P(*r`  
              'All N and M must differ by multiples of 2 (including 0).') 2{kfbm-89t  
    end Gd6 ;'ZCmY  
    [y[v]'  
    if any(m>n) bC>>^?U1m  
        error('zernfun:MlessthanN', ... 1+tt'  
              'Each M must be less than or equal to its corresponding N.') ilp;@O6  
    end 8N* -2/P&  
    5m USh3  
    if any( r>1 | r<0 ) y7)[cvB  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') J=SB/8tQ)T  
    end 2<o[@w  
    ^ $+f3Z'  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <fsn2[V:B%  
        error('zernfun:RTHvector','R and THETA must be vectors.') Ky9No"o  
    end VWA-?%r  
    W[X!P)=w]  
    r = r(:); h[je_^5  
    theta = theta(:); zNr_W[  
    length_r = length(r); ssX6kgq_(  
    if length_r~=length(theta) YNgR1 :l  
        error('zernfun:RTHlength', ... aEFe!_QY  
              'The number of R- and THETA-values must be equal.') FQ|LA[~  
    end ]i,Mq  
    j&[3Be'pQ  
    % Check normalization: w] 5U  
    % -------------------- :S99}pgY  
    if nargin==5 && ischar(nflag) RZ)vU'@kx  
        isnorm = strcmpi(nflag,'norm'); 0(U3~ k6  
        if ~isnorm kf^-m/  
            error('zernfun:normalization','Unrecognized normalization flag.') }lC64;yo  
        end 01-\:[{  
    else =2g[tsY  
        isnorm = false; X$uz=)  
    end iUxDEt[t*  
    qtdxMX]iR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xu"94y+  
    % Compute the Zernike Polynomials {? K|(C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MgH1d&R  
    7>t$<J  
    % Determine the required powers of r: *2"bG1`  
    % ----------------------------------- +9 16ZPk  
    m_abs = abs(m); gc,J2B]61  
    rpowers = []; \'It,PN  
    for j = 1:length(n) $K6?(x_  
        rpowers = [rpowers m_abs(j):2:n(j)]; ;9p#xW6  
    end tyn?o  
    rpowers = unique(rpowers); \'s$ZN$k  
    _A;vSp.`  
    % Pre-compute the values of r raised to the required powers, 0.J1!RIK/  
    % and compile them in a matrix: kwDh|K  
    % ----------------------------- KlVi4.]  
    if rpowers(1)==0 NK  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); cotxo?)Zv  
        rpowern = cat(2,rpowern{:}); >+Sv9S  
        rpowern = [ones(length_r,1) rpowern]; q9>Ls-k  
    else Qfkh0DX B  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); pW*{Mx  
        rpowern = cat(2,rpowern{:}); ||{T5E-.F  
    end _XH4;uGg  
    ":UWowJO  
    % Compute the values of the polynomials:  D rF  
    % -------------------------------------- `DgaO-Dg3  
    y = zeros(length_r,length(n)); KXoL,)Hl  
    for j = 1:length(n) Hk<X  
        s = 0:(n(j)-m_abs(j))/2; l?[{?Luq  
        pows = n(j):-2:m_abs(j); ]k[ Q]:q  
        for k = length(s):-1:1 egZyng pB  
            p = (1-2*mod(s(k),2))* ... s"I-YFP%c  
                       prod(2:(n(j)-s(k)))/              ... 2x7(}+eD  
                       prod(2:s(k))/                     ... @wd!&%yzO  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... K)<Wm,tON  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); EpRXjz  
            idx = (pows(k)==rpowers); fkdf~Vb  
            y(:,j) = y(:,j) + p*rpowern(:,idx);  =3h+=l[  
        end @+}rEe_(  
         o\_ Td  
        if isnorm T6sr/<#<(  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Hfh@<'NL]  
        end l%^h2 o  
    end [NQmL=l  
    % END: Compute the Zernike Polynomials T$:>*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,]0S4h67  
    8# 6\+R  
    % Compute the Zernike functions: P#AAOSlLV  
    % ------------------------------ wY' "ab  
    idx_pos = m>0; eeZIa`.sX  
    idx_neg = m<0; Ya~ "R#Uy  
    Bs_S.JP<`  
    z = y; zx ct(  
    if any(idx_pos) l<u{6o  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Z+Kv+GmqH  
    end V]r hr  
    if any(idx_neg)  `>%-  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {d| |q<.-  
    end ]PeLcB  
    yPSVwe|g  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) DTPay1]6  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. [ne" T  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 5!t b$p#z  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive XjxPIdX_H  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, AfN&n= d K  
    %   and THETA is a vector of angles.  R and THETA must have the same z /weit  
    %   length.  The output Z is a matrix with one column for every P-value, bQ<b[  
    %   and one row for every (R,THETA) pair. TiQ^}5~M  
    % ?d4Boe0-a2  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike O"\nR:\  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) xHHV=M2l(s  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) kff ZElV  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 5Q|sta!  
    %   for all p. "?P[9x}  
    % G,=F<TnI'  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 |:N>8%@6c  
    %   Zernike functions (order N<=7).  In some disciplines it is %&tb9_T)d  
    %   traditional to label the first 36 functions using a single mode c yP,[?N  
    %   number P instead of separate numbers for the order N and azimuthal p0Gk j-  
    %   frequency M. 9KyZEH;pY  
    % h8jB=e, H  
    %   Example: ~p\n&{P0  
    % lufeieW  
    %       % Display the first 16 Zernike functions N xFUO0O3  
    %       x = -1:0.01:1; &wjB{%  
    %       [X,Y] = meshgrid(x,x); ?Wa<AFXQ  
    %       [theta,r] = cart2pol(X,Y);  &{ZSE^  
    %       idx = r<=1; oNIFx5*Z  
    %       p = 0:15; 4-V)_U#8  
    %       z = nan(size(X)); @\jQoaLT$_  
    %       y = zernfun2(p,r(idx),theta(idx)); @1g&Z}L o  
    %       figure('Units','normalized') ! Mo`^ t  
    %       for k = 1:length(p) Jq)U</  
    %           z(idx) = y(:,k); MM gx|"  
    %           subplot(4,4,k) \[ M_\&GC  
    %           pcolor(x,x,z), shading interp g<a<*)&  
    %           set(gca,'XTick',[],'YTick',[]) PS@*qTin  
    %           axis square ^A!$i$NON  
    %           title(['Z_{' num2str(p(k)) '}']) DP*@dFU"  
    %       end b\giJ1NJB  
    % [PWL<t::c  
    %   See also ZERNPOL, ZERNFUN. 3=- })X ;  
    * t!r@k  
    %   Paul Fricker 11/13/2006 6I>^Pf'ND  
    ]JMl|e  
    <2<87PU  
    % Check and prepare the inputs: " U8S81'  
    % ----------------------------- !h:  Q  
    if min(size(p))~=1 ;GOz>pg  
        error('zernfun2:Pvector','Input P must be vector.') CT*,<l-D  
    end ;LMWNy4  
    %Q~CB7ILK  
    if any(p)>35 /;oqf4MF  
        error('zernfun2:P36', ... +S9PML){h  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... R#eg^7HfX  
               '(P = 0 to 35).']) Eju~}:Lo  
    end B42sb_  
    _^\$" nw  
    % Get the order and frequency corresonding to the function number: e:-8k_0|  
    % ---------------------------------------------------------------- 79BaDB`{a  
    p = p(:); AGq>=avv  
    n = ceil((-3+sqrt(9+8*p))/2); 4c159wsnQ  
    m = 2*p - n.*(n+2); hfrnxeM#~  
    "A[ b rG  
    % Pass the inputs to the function ZERNFUN: Zj VWxQ  
    % ---------------------------------------- YZE.@Rz  
    switch nargin MGt]'}  
        case 3 =6T 4>rP  
            z = zernfun(n,m,r,theta); KQ`=t   
        case 4 [j9E pi(  
            z = zernfun(n,m,r,theta,nflag); i8PuC^]  
        otherwise ziEz.Wn"  
            error('zernfun2:nargin','Incorrect number of inputs.') la^ DjHA$  
    end n(vDytrj;  
    )^O-X.1  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) W WG /k17  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. \wav?;z  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of oFC)  
    %   order N and frequency M, evaluated at R.  N is a vector of B]iP't \~  
    %   positive integers (including 0), and M is a vector with the j 6)Y  
    %   same number of elements as N.  Each element k of M must be a K k[`dR;  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ` %?9=h%  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is z;}6f  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix l=P'B @,  
    %   with one column for every (N,M) pair, and one row for every y2yKm1<Ru<  
    %   element in R. mZvG|P$}  
    % yJJ4~j){l  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- f-RK,#^?,  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is w YNloU  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to )NW6?Pu"  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 % 4 ~l  
    %   for all [n,m]. 0~gO'*2P  
    % P`SnavQBt  
    %   The radial Zernike polynomials are the radial portion of the zA+@FR?  
    %   Zernike functions, which are an orthogonal basis on the unit ": ;@Hnb/  
    %   circle.  The series representation of the radial Zernike Zm TDQ`Ix  
    %   polynomials is Oe]&(  
    % #Z!b G?="  
    %          (n-m)/2 VM=+afY5M  
    %            __ woOy*)@  
    %    m      \       s                                          n-2s udqS'g&  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r df*w>xS  
    %    n      s=0 9uB(Mx(-:`  
    % Cpl;vQ  
    %   The following table shows the first 12 polynomials. p9ZXbAJ{  
    % '` CspY  
    %       n    m    Zernike polynomial    Normalization TCVl8)j  
    %       --------------------------------------------- O9h+Q\0\W  
    %       0    0    1                        sqrt(2) YE+$H%Jl!  
    %       1    1    r                           2 h1"zV6U  
    %       2    0    2*r^2 - 1                sqrt(6) 8cg`7(a  
    %       2    2    r^2                      sqrt(6) u=+q$Q]  
    %       3    1    3*r^3 - 2*r              sqrt(8) SS.jL)  
    %       3    3    r^3                      sqrt(8) Wa"(m*hW  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) r4 dOK] 0  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) /uqu32;o  
    %       4    4    r^4                      sqrt(10) 6)gd^{  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) K`:=]Z8  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) _O:WG&a6  
    %       5    5    r^5                      sqrt(12) /'DwfX  
    %       --------------------------------------------- XAOak$(j  
    % e&I t  
    %   Example: kUHE\L.Y]  
    % Lm)\Z P+W  
    %       % Display three example Zernike radial polynomials yl]FP@N(  
    %       r = 0:0.01:1; ?[)S7\rP  
    %       n = [3 2 5]; &%aXR A#+  
    %       m = [1 2 1]; mXWTm%'[  
    %       z = zernpol(n,m,r); wVK*P -C  
    %       figure dx_6X!=.J  
    %       plot(r,z) +*nGp5=^GE  
    %       grid on tB(4Eq \  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ;^k7zNf-  
    % ph:3|d  
    %   See also ZERNFUN, ZERNFUN2. ;-mdi/*g  
    ik1tidw  
    % A note on the algorithm. /L=(^k=a.;  
    % ------------------------ |?m` xO  
    % The radial Zernike polynomials are computed using the series <!^ [~`  
    % representation shown in the Help section above. For many special }E <^gAh}  
    % functions, direct evaluation using the series representation can !3&kQpF  
    % produce poor numerical results (floating point errors), because ,%"xH4d  
    % the summation often involves computing small differences between YrI|gz)  
    % large successive terms in the series. (In such cases, the functions +RZ~LA \+  
    % are often evaluated using alternative methods such as recurrence @ CsV]97`  
    % relations: see the Legendre functions, for example). For the Zernike &M&{yc*%  
    % polynomials, however, this problem does not arise, because the !4#"!Md4o  
    % polynomials are evaluated over the finite domain r = (0,1), and `\$8`Zb;  
    % because the coefficients for a given polynomial are generally all `|e!Kq?#Q  
    % of similar magnitude. H:&?ha,9  
    % 2i=H"('G)+  
    % ZERNPOL has been written using a vectorized implementation: multiple 3SG?W_  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M]  ^y.UbI  
    % values can be passed as inputs) for a vector of points R.  To achieve nn~YK  
    % this vectorization most efficiently, the algorithm in ZERNPOL FY0%XW  
    % involves pre-determining all the powers p of R that are required to &vUq}r%P  
    % compute the outputs, and then compiling the {R^p} into a single 8Cf|*C+_'  
    % matrix.  This avoids any redundant computation of the R^p, and oW}!vf3z  
    % minimizes the sizes of certain intermediate variables. n$+M%}/f  
    % jRZ%}KX  
    %   Paul Fricker 11/13/2006 =C7 khE  
    ks(SjEF  
    O_,O,1  
    % Check and prepare the inputs: cA`4:gp  
    % ----------------------------- 8^ep/b&|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) V-W'RunnW  
        error('zernpol:NMvectors','N and M must be vectors.') t=wXTK5"  
    end nL `9l1  
    -$8.3\6h  
    if length(n)~=length(m) bi[7!VQf  
        error('zernpol:NMlength','N and M must be the same length.') uGtV}-t:  
    end %|Qw9sbd  
    :J_oj:0r"f  
    n = n(:); ^JeMuU  
    m = m(:); f4t.f*#  
    length_n = length(n); ! >.vh]8g  
    M].8HwC+  
    if any(mod(n-m,2)) 9(1rh9`=  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') OKue" p  
    end !XE aF]8  
    UGKaOol.  
    if any(m<0) ]?l{j  
        error('zernpol:Mpositive','All M must be positive.') y.a]r7  
    end 5 9 2;W-y  
    x1[?5n6  
    if any(m>n) W:s@L#-  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') }p3b#fAr  
    end X T>('qy  
    HMQI&Lh=U  
    if any( r>1 | r<0 ) UPh=+s #Q  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') NP t(MFK \  
    end t 0O4GcAN  
    4SVW/Zl.?  
    if ~any(size(r)==1) wz(K*FP  
        error('zernpol:Rvector','R must be a vector.') [s6C ZcL  
    end khX|" d360  
    a:!uORQby  
    r = r(:); )c<6Sfp^B  
    length_r = length(r); APBK9ky  
    d,#.E@Po  
    if nargin==4 n'w,n1z7  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 7Ua7A  
        if ~isnorm W4(?HTWZ  
            error('zernpol:normalization','Unrecognized normalization flag.') m#@_8_ M  
        end c[(Pg%  
    else 3(_!`0#F%  
        isnorm = false; !q /5yEJ>h  
    end D'i6",Z>  
    'p}`i/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "Ai6<:ml  
    % Compute the Zernike Polynomials @z,*K_AKr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~l4f{uOD>]  
    Hcv u7uD  
    % Determine the required powers of r: k=n "+  
    % ----------------------------------- KCqqJ}G  
    rpowers = []; #uvJH8)D  
    for j = 1:length(n) ?l6jG  
        rpowers = [rpowers m(j):2:n(j)]; Uene=Q6>  
    end 4O$2]D.\  
    rpowers = unique(rpowers); 3:`XG2'  
    TipHV;|e  
    % Pre-compute the values of r raised to the required powers, (F5ttQPh  
    % and compile them in a matrix: sBW3{uK  
    % ----------------------------- 9YKDguG  
    if rpowers(1)==0 x-Z^Q C  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); VWa|Y@Dc]  
        rpowern = cat(2,rpowern{:}); $G";2(-k  
        rpowern = [ones(length_r,1) rpowern]; 2i:zz? 'p`  
    else ^#SBpLw  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {*xBm#  
        rpowern = cat(2,rpowern{:}); wq\G|/%  
    end (_8#YyW#  
    f1cl';  
    % Compute the values of the polynomials: ~"7J}[i 5  
    % -------------------------------------- J W"  
    z = zeros(length_r,length_n); RaNeZhF>M  
    for j = 1:length_n .h8M  
        s = 0:(n(j)-m(j))/2; &HF]\`RNr  
        pows = n(j):-2:m(j); ^Q2ZqAf^a  
        for k = length(s):-1:1 +VOb  
            p = (1-2*mod(s(k),2))* ... UKs$W`  
                       prod(2:(n(j)-s(k)))/          ... Slx2z%'>  
                       prod(2:s(k))/                 ... e-6(F4  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... .ZX2^)`XD  
                       prod(2:((n(j)+m(j))/2-s(k))); ]N}]d +^6  
            idx = (pows(k)==rpowers); Bw-s6MS  
            z(:,j) = z(:,j) + p*rpowern(:,idx); K` (#K#n  
        end rO^xz7K^  
          P\(30  
        if isnorm L8P 36]>  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); $c =&0yt5  
        end $9H[3OZPVv  
    end 1uM/2sX  
    _Ex?Xk  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  F=:F>6`  
    /95FDk>  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 < JGYr 4V  
    >h|UCJ1 `  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)