非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 [*2|#KSCX
function z = zernfun(n,m,r,theta,nflag) %>)&QZig/
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. <cx,Z5W
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N (U@uJ
% and angular frequency M, evaluated at positions (R,THETA) on the 63Dm{
2i}F
% unit circle. N is a vector of positive integers (including 0), and ^[u*m%UB
% M is a vector with the same number of elements as N. Each element otSF8[
% k of M must be a positive integer, with possible values M(k) = -N(k) 0ofl,mXW
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, JzZ9ua
% and THETA is a vector of angles. R and THETA must have the same =F>nqklc
% length. The output Z is a matrix with one column for every (N,M) :eR[lR^4*
% pair, and one row for every (R,THETA) pair. "YQ%j+
% ,Y_[+
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =^D{ZZw{
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -mPrmapb3
% with delta(m,0) the Kronecker delta, is chosen so that the integral g$eZT{{W
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, u*C"d1v=
% and theta=0 to theta=2*pi) is unity. For the non-normalized _0c$SK
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. mzoNXf:x
% ja|XFs~
% The Zernike functions are an orthogonal basis on the unit circle.
?ybX&V
% They are used in disciplines such as astronomy, optics, and q oJ4w7
% optometry to describe functions on a circular domain. 9CW8l0
% YkqauyV^
% The following table lists the first 15 Zernike functions. i<]Y0_?s
% |Je+y;P7
% n m Zernike function Normalization 7IV:X
_y
% -------------------------------------------------- %G>|u/:U
% 0 0 1 1 ~!G&K`u
% 1 1 r * cos(theta) 2 /qalj\ud
% 1 -1 r * sin(theta) 2 VtJy0OGcRP
% 2 -2 r^2 * cos(2*theta) sqrt(6) D8I)3cXa'
% 2 0 (2*r^2 - 1) sqrt(3) D_MNF=7
% 2 2 r^2 * sin(2*theta) sqrt(6) OJH:k~]0!
% 3 -3 r^3 * cos(3*theta) sqrt(8) dS[="Set
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) %M_5C4&6
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Q8sCI An{
% 3 3 r^3 * sin(3*theta) sqrt(8) GOeYw[Vh
% 4 -4 r^4 * cos(4*theta) sqrt(10) /^>yDGT,0
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gc6T`O-_;
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ie+746tFW
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w}jH,Ew
% 4 4 r^4 * sin(4*theta) sqrt(10) / Dn
% -------------------------------------------------- 1 n86Mp1.e
% D;l)&"|r?
% Example 1: ;PrL)!
% A t#'q>Dn
% % Display the Zernike function Z(n=5,m=1) <(%cb.^c=N
% x = -1:0.01:1; W%k0_Y/5
% [X,Y] = meshgrid(x,x); m#oZu {
% [theta,r] = cart2pol(X,Y); 9ywPWT[^
% idx = r<=1; ,UD,)ZPf[
% z = nan(size(X)); i%R2#F7I
% z(idx) = zernfun(5,1,r(idx),theta(idx)); {lhdropd
% figure @Fl&@ $
% pcolor(x,x,z), shading interp 5E#koy7
$s
% axis square, colorbar 6c/Tm0[
% title('Zernike function Z_5^1(r,\theta)') ;_ ^"}
% B?xu!B,
% Example 2: t/baze;V
% %Jr6pmc
% % Display the first 10 Zernike functions ]GS@ ub
% x = -1:0.01:1; 1wqsGad+;
% [X,Y] = meshgrid(x,x); X|WAUp?
% [theta,r] = cart2pol(X,Y); Kb# }f/
% idx = r<=1; N!e?K=}tL
% z = nan(size(X)); QzQTE-SQ
% n = [0 1 1 2 2 2 3 3 3 3]; :_qgpE<
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; w]{NaNIeq1
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 7 vS]O$w<4
% y = zernfun(n,m,r(idx),theta(idx)); 82X}@5o2
% figure('Units','normalized') 2Q,8@2w;
% for k = 1:10 R":nG7o
% z(idx) = y(:,k); wghz[qe
% subplot(4,7,Nplot(k)) Ass8c]H@
% pcolor(x,x,z), shading interp 'CH|w~E
% set(gca,'XTick',[],'YTick',[]) hOX$|0i
% axis square jnK8
[och
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) M- 2:$;D
% end m_TZY_;
% cs ?@Ri=g
% See also ZERNPOL, ZERNFUN2. 'xdM>y#S
eqSCNYN
% Paul Fricker 11/13/2006 lxRzyx
l.i"Z pik
`O5kI#m)L*
% Check and prepare the inputs: }[u 9vZL
% ----------------------------- |f^/((:D
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Hy<4q^3$G
error('zernfun:NMvectors','N and M must be vectors.') <:u)C;
end W"rX$D[Le
N[j7^q7Xt
if length(n)~=length(m) ]u_^~
error('zernfun:NMlength','N and M must be the same length.') 2O|o%`?
end cz/mUU
E5lC'@D cz
n = n(:); [|2uu."$
m = m(:); eB:obz
if any(mod(n-m,2)) -#b-@sD
error('zernfun:NMmultiplesof2', ... Y.?|[x0Wh
'All N and M must differ by multiples of 2 (including 0).') yKO84cSl
end =L$};ko
#[*e$C
if any(m>n) #ZIV>(Q\H
error('zernfun:MlessthanN', ... /h0<0b?i
'Each M must be less than or equal to its corresponding N.') W|T"'M_
end $2F*p#l(<Z
Uq/(xh,t5
if any( r>1 | r<0 ) @T1/S&F=
error('zernfun:Rlessthan1','All R must be between 0 and 1.') {Gs&u>>R"^
end {=7W;uL
L_jwM^8
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (J):
>\a]
error('zernfun:RTHvector','R and THETA must be vectors.') Zg7~&vs$
end ~Xnq(}?ok
Jug1Va<^c
r = r(:); p]:~z|.Ba
theta = theta(:); >ofS'mp
length_r = length(r); !+ IxPn
if length_r~=length(theta) gtz!T2%
error('zernfun:RTHlength', ... Y,?
'The number of R- and THETA-values must be equal.') 0-g,C=L
end SGH"m/ e
%|Vo Zx ^
% Check normalization: 0i$jtCCL(
% -------------------- ,u(g#T
if nargin==5 && ischar(nflag) <P( K,L?r
isnorm = strcmpi(nflag,'norm'); Xt'R@"H<V9
if ~isnorm %yQ-~T@
error('zernfun:normalization','Unrecognized normalization flag.') KbH#g>.oB
end ?4q6>ipx
else V/|Ln*rm
isnorm = false; M!=v"C#
end <HG~#oBRq
-z0,IYG }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <V"'j
% Compute the Zernike Polynomials K;-:C9@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "
%|CD"@
+:It1`A~]
% Determine the required powers of r: Np|iXwl1
% ----------------------------------- >S{1=N@Ev=
m_abs = abs(m); 622mNY
rpowers = []; v{=-#9-4
&
for j = 1:length(n) I]Wb\&$
rpowers = [rpowers m_abs(j):2:n(j)]; d[rxmEXht
end xzMa[D4(
rpowers = unique(rpowers); h&yaug,.
u[ s+YGS
% Pre-compute the values of r raised to the required powers, jzEimKDE's
% and compile them in a matrix: \I,<G7!0
% ----------------------------- d2.eDEOsC
if rpowers(1)==0 5jy>)WqK
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h+.^8fPR
rpowern = cat(2,rpowern{:}); /Rk5n
rpowern = [ones(length_r,1) rpowern]; sj. eJX"z
else wGISb\rr
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); V}9wx%v
rpowern = cat(2,rpowern{:}); 5qG7LO.
end |=38t8Ge&
I U4[}x
% Compute the values of the polynomials: -mX
_I{BJ
% -------------------------------------- Ks
X@e)8u
y = zeros(length_r,length(n)); e@0wF59
for j = 1:length(n) A1%V<im@Z
s = 0:(n(j)-m_abs(j))/2; !M^pL|
pows = n(j):-2:m_abs(j); h{<^?=
for k = length(s):-1:1 giaO7Qh~
p = (1-2*mod(s(k),2))* ... W
.Hv2r3
prod(2:(n(j)-s(k)))/ ... g:;v]
prod(2:s(k))/ ... = "c
_<?=[
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2E2J=Do
prod(2:((n(j)+m_abs(j))/2-s(k))); {Fb)Z"8]
idx = (pows(k)==rpowers); (: ZOoL
y(:,j) = y(:,j) + p*rpowern(:,idx); #wM0p:<
end (eO0Ic[c
v
l{hE~
if isnorm J4lE7aFDA~
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); @[
:s P
end !k<+-Lf:2
end 1P2%n[y
% END: Compute the Zernike Polynomials B}P,sFghw
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /B1<N}
%$]u6GKabi
% Compute the Zernike functions: gdCU1D\
% ------------------------------ YLobBtXc9
idx_pos = m>0; fEQ<L!'
idx_neg = m<0; 6Mk@,\1
R>gj"nB
z = y; 3<JZt.|
if any(idx_pos) 1uXtBk6
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); )[nzmL*w
end )b!q
if any(idx_neg) $AsM 9D<BE
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); D;d;:WT5
end y[r T5ed
2s6Vy
% EOF zernfun