非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Xj+1]KRN
function z = zernfun(n,m,r,theta,nflag) j=dHgnVvj
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Wz:MPdz3(
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N p5)A"p8"9,
% and angular frequency M, evaluated at positions (R,THETA) on the vCbqZdy?
% unit circle. N is a vector of positive integers (including 0), and M29[\@zL
% M is a vector with the same number of elements as N. Each element _4zlEo-.gU
% k of M must be a positive integer, with possible values M(k) = -N(k) ^o:0 Y}v=
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, gl.P#7X
% and THETA is a vector of angles. R and THETA must have the same Lkk'y})/
% length. The output Z is a matrix with one column for every (N,M) YZpF*E;6t
% pair, and one row for every (R,THETA) pair. 3{on$\
% &E {/s
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike dWD9YIYf
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9<[RXY
% with delta(m,0) the Kronecker delta, is chosen so that the integral 0[PPVr:
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, [ "J
% and theta=0 to theta=2*pi) is unity. For the non-normalized X-oou'4<
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. o0s+ roiD
% JZu7Fb]L9
% The Zernike functions are an orthogonal basis on the unit circle. 1;vn*w`p
% They are used in disciplines such as astronomy, optics, and a/L?R
Uu
% optometry to describe functions on a circular domain. r^ #.yUz
% YIgzFt[L
% The following table lists the first 15 Zernike functions. VC>KW{&J0
% N[aK#o,
% n m Zernike function Normalization (.%:Q0i1
% -------------------------------------------------- @U5+1Hjc
% 0 0 1 1 7i334iQZ
% 1 1 r * cos(theta) 2 <T
% 1 -1 r * sin(theta) 2 L\y,7@1%AT
% 2 -2 r^2 * cos(2*theta) sqrt(6) 3iH!;`i
% 2 0 (2*r^2 - 1) sqrt(3) ,W*<e-
% 2 2 r^2 * sin(2*theta) sqrt(6) <po(7XB
% 3 -3 r^3 * cos(3*theta) sqrt(8) !ybEv| =
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) v[m/>l2[P
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) K{M_ 4'\
% 3 3 r^3 * sin(3*theta) sqrt(8) 2',t@< U
% 4 -4 r^4 * cos(4*theta) sqrt(10) ~+3f8%
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $vGl Z<3g
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) y<)Lr}gP
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ! ~&X1,l1*
% 4 4 r^4 * sin(4*theta) sqrt(10) 1mI)xDi9
% -------------------------------------------------- :8Q6=K87
% wg!
% Example 1: NYR^y\u
% ']Y:f)i#
% % Display the Zernike function Z(n=5,m=1) v`y{l>r,
% x = -1:0.01:1; tBrd+}e2*
% [X,Y] = meshgrid(x,x); A"_;.e`
% [theta,r] = cart2pol(X,Y); {_^sR}%]F
% idx = r<=1; <0R?#^XBZB
% z = nan(size(X)); `Ph4!-6#
% z(idx) = zernfun(5,1,r(idx),theta(idx)); [uAfE3
% figure iKp4@6an
% pcolor(x,x,z), shading interp Sw'DS
% axis square, colorbar 2!]':(8mR
% title('Zernike function Z_5^1(r,\theta)') X5>p~;[9
% OWOj|jM
% Example 2: 8{Zgvqbb
% f*oL8"?u&
% % Display the first 10 Zernike functions +` Em&
% x = -1:0.01:1; G_42ckLq
% [X,Y] = meshgrid(x,x); N<N!it
% [theta,r] = cart2pol(X,Y); >-y'N.l^
% idx = r<=1; Bj%{PK
% z = nan(size(X)); *QjFrw3
% n = [0 1 1 2 2 2 3 3 3 3]; +Icg;m{
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; U6.$F#n
% Nplot = [4 10 12 16 18 20 22 24 26 28]; <bGSr23*
% y = zernfun(n,m,r(idx),theta(idx)); 3b#KrN'
% figure('Units','normalized') I"T_<
% for k = 1:10 #<v3G)|aS
% z(idx) = y(:,k); = UTv
% subplot(4,7,Nplot(k)) lQ!6n
% pcolor(x,x,z), shading interp S1&6P)X.Za
% set(gca,'XTick',[],'YTick',[]) s=U_tfpH
% axis square -fG;`N5U
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #@y4/JS&2
% end oWx!
'K6]V
% v
C><N
% See also ZERNPOL, ZERNFUN2. 5p= T*Y
T:na\y/{j
% Paul Fricker 11/13/2006 JRU)AMMU&
c1MALgK~}\
/A<L
% Check and prepare the inputs: G.T}^xHmL
% ----------------------------- IU Dp5MIuR
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7z F29gC
error('zernfun:NMvectors','N and M must be vectors.') GW`9SB
end u^iK?S#Ci8
zbi[r
if length(n)~=length(m) oEKLuy
error('zernfun:NMlength','N and M must be the same length.') eCk}B$ 2
end |3"'>*
J
5&+
qX
2b
n = n(:); ";s?#c
m = m(:); ">CjnF2>R
if any(mod(n-m,2)) L6 hTz'
error('zernfun:NMmultiplesof2', ... e:!&y\'"9
'All N and M must differ by multiples of 2 (including 0).') w(.k6:e
end Q> @0'y=s
#,!.e
if any(m>n) 0[9A*
error('zernfun:MlessthanN', ... v0=^Hym
'Each M must be less than or equal to its corresponding N.') uF@Q8 7G
end
C4Bh#C
jk 9K>4W
if any( r>1 | r<0 ) ]hv4EL(zi
error('zernfun:Rlessthan1','All R must be between 0 and 1.') mm:\a-8j
end z#bOFVg#
.xCO_7Rd
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) obaJT"1
error('zernfun:RTHvector','R and THETA must be vectors.') \gj@O5rG P
end p0'A\@|
6^UeEmjc
r = r(:); -br/
theta = theta(:); [T~O%ly7x&
length_r = length(r); )Hl;9
if length_r~=length(theta) ,Iwri\
error('zernfun:RTHlength', ... Wx;9N
'The number of R- and THETA-values must be equal.') x:@Ht TX
end g3Kc? wTC
/g@.1z1w
% Check normalization: R}>Gk
% -------------------- K^s!0[6
if nargin==5 && ischar(nflag) @ZD1HA,h"
isnorm = strcmpi(nflag,'norm'); h_x"/z&
if ~isnorm ^Zydy
error('zernfun:normalization','Unrecognized normalization flag.') TQ>kmHWf/
end }UQBaqDH
else :m^eNS6:
isnorm = false; c?>Q!sC
end (#LV*&K%IC
'UW7zL5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $>8+t>|
% Compute the Zernike Polynomials j4+hWalm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WR gAc%
!u>29VN
% Determine the required powers of r: p24sWDf
% ----------------------------------- 5NBc8h7 V
m_abs = abs(m); l|U=(aA]h
rpowers = []; URX>(Y}g9^
for j = 1:length(n) !-LPFy>
rpowers = [rpowers m_abs(j):2:n(j)]; q
( H^H
end
IkL|bV3E0
rpowers = unique(rpowers); )uZ<?bkQ
)5Gzk&|
% Pre-compute the values of r raised to the required powers, D3(|bSca
% and compile them in a matrix: Ny
p5=
% ----------------------------- :=UeYm
@
if rpowers(1)==0 2O`uzT$
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^e<0-uM"s
rpowern = cat(2,rpowern{:}); e=1&mO?
rpowern = [ones(length_r,1) rpowern]; u+z$+[lm!G
else IEjKI"
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !$qNugLg
rpowern = cat(2,rpowern{:}); W&TPrB
end #CHsH{d
$2 ~A^#"0
% Compute the values of the polynomials: j?[fpN$
% -------------------------------------- X.%Xi'H
y = zeros(length_r,length(n)); y<8)mw
for j = 1:length(n) ^HX={(ddK
s = 0:(n(j)-m_abs(j))/2; W446;)?5
pows = n(j):-2:m_abs(j); I6{}S6
for k = length(s):-1:1 |Tf}8e
p = (1-2*mod(s(k),2))* ... kHm1aE<
prod(2:(n(j)-s(k)))/ ... 86vk"
prod(2:s(k))/ ... b4S7Q"g
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &}YB!6k h^
prod(2:((n(j)+m_abs(j))/2-s(k))); zp,f}
idx = (pows(k)==rpowers); z!D >l
y(:,j) = y(:,j) + p*rpowern(:,idx); ^md7ezXL
end Xe:B*
~EpMO]I
if isnorm DU({Ncge
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2W$c%~j$2
end )}]<o
|'
end K>w}(td
% END: Compute the Zernike Polynomials Ep.,2H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e7>)Z
ORp6
% Compute the Zernike functions: FavU"QU&|
% ------------------------------ ?b^VEp.;}
idx_pos = m>0; y%v<Cp@R
idx_neg = m<0; UI_|VU>J
J<>z}L{
z = y; $/Zsy6q:
if any(idx_pos) hc`9Y
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); rcOpOoU|
end I8
8y9sW
if any(idx_neg) V[rNJf1z
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); i8Y l1nF
end nxA]EFS
MDGcK/$')f
% EOF zernfun