非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 !TA6- ]1
function z = zernfun(n,m,r,theta,nflag) %YkJA:
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. FIL?nkYEO
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N
GbUw:I
% and angular frequency M, evaluated at positions (R,THETA) on the $5yH(Z[[
% unit circle. N is a vector of positive integers (including 0), and IDQ@h`"B
% M is a vector with the same number of elements as N. Each element $sTbFY
% k of M must be a positive integer, with possible values M(k) = -N(k) ;PCnEs
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, \T`InBbf
% and THETA is a vector of angles. R and THETA must have the same eee77.@y-p
% length. The output Z is a matrix with one column for every (N,M) (OwAhjHE
% pair, and one row for every (R,THETA) pair. wzVx16Rvc
% ;IZ*o<_
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =
NHuj.
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5%BexIk
% with delta(m,0) the Kronecker delta, is chosen so that the integral IFcxyp
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ROlef;/A
% and theta=0 to theta=2*pi) is unity. For the non-normalized Zyt,D|eWj
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 3=5K7F
% ajC'C!"^Ty
% The Zernike functions are an orthogonal basis on the unit circle. UCG8=+t5T
% They are used in disciplines such as astronomy, optics, and
o=}}hE\H
% optometry to describe functions on a circular domain. ^,*ED Yz
% f4UnLig
% The following table lists the first 15 Zernike functions. F0:|uC4
% !m"LIa#/Cs
% n m Zernike function Normalization ,n<t':-
% -------------------------------------------------- #S)]`YW
% 0 0 1 1 8mj Pa^A
% 1 1 r * cos(theta) 2 me:~q#k
% 1 -1 r * sin(theta) 2 O#LG$Y
n*
% 2 -2 r^2 * cos(2*theta) sqrt(6) HK&Ul=^VN|
% 2 0 (2*r^2 - 1) sqrt(3) fFDI qX
% 2 2 r^2 * sin(2*theta) sqrt(6) O<7Q>m
% 3 -3 r^3 * cos(3*theta) sqrt(8) !~Vo'ykwx'
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) wNo2$>*
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) <Hd8Jd4f
% 3 3 r^3 * sin(3*theta) sqrt(8) }<R,)ZV^G
% 4 -4 r^4 * cos(4*theta) sqrt(10) Zk,`
Iq
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) j5Kw0Wy7
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) `EKmp|B_p_
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )4:K@
% 4 4 r^4 * sin(4*theta) sqrt(10) KYE)#<V}@
% -------------------------------------------------- ,;;7+|`
% s B!#`kh
% Example 1: EQe !&;
% @Wgd(Ezd
% % Display the Zernike function Z(n=5,m=1) .5L|(B=H
% x = -1:0.01:1; <A|X4;
% [X,Y] = meshgrid(x,x); s%M#
% [theta,r] = cart2pol(X,Y); (-S<9u-r
% idx = r<=1; dbn9t7'{
% z = nan(size(X)); O[}{$NXw
% z(idx) = zernfun(5,1,r(idx),theta(idx)); #b~B
0:U
% figure aa|u*afWQ
% pcolor(x,x,z), shading interp )/HbmtX qI
% axis square, colorbar
~8
>Tb
% title('Zernike function Z_5^1(r,\theta)') 7~b=G
% g)?Ol
% Example 2: zT<fTFJ1
% CFE ubEb
% % Display the first 10 Zernike functions k=]#)A(#C
% x = -1:0.01:1; *JnY0xP
% [X,Y] = meshgrid(x,x); sX8d8d`}
% [theta,r] = cart2pol(X,Y); Fl0(n #L
% idx = r<=1; k+9*7y8w
% z = nan(size(X)); ->Z9j(JU
% n = [0 1 1 2 2 2 3 3 3 3]; cp1-eR_&
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; MzEeDN
% Nplot = [4 10 12 16 18 20 22 24 26 28]; D;nd_{%
% y = zernfun(n,m,r(idx),theta(idx)); Ibf~gr(j
% figure('Units','normalized') JJ:p A_uX
% for k = 1:10 ,LE 15},
% z(idx) = y(:,k); {F!/\2a
% subplot(4,7,Nplot(k)) Lql2ry$Wa
% pcolor(x,x,z), shading interp I+oe{#:.
% set(gca,'XTick',[],'YTick',[]) V}3'0
% axis square yMG(FAyu
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) [^Z)f<l
% end @%lkRU)
% j_I[k8z
% See also ZERNPOL, ZERNFUN2. '/OcJVSR
q
~%'V
% Paul Fricker 11/13/2006 Ky0}phGRu
G2$<Q+UYs?
(rmOv\hG9V
% Check and prepare the inputs: }Q2v~eD
% ----------------------------- ai7R@~O:_k
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) z`"*60b
error('zernfun:NMvectors','N and M must be vectors.') *S xDwN
end v)p'0F#6A
2jf73$F
if length(n)~=length(m) RWg'W,v=!
error('zernfun:NMlength','N and M must be the same length.') ?rm3Iac0S
end Ln'y 3~@
zqHG2:MN"
n = n(:); \gsJ1@
m = m(:); zif&