非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Bo.x
function z = zernfun(n,m,r,theta,nflag) -r]s #$
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. _)p@;vGV
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +|r;t
% and angular frequency M, evaluated at positions (R,THETA) on the m7z/@b[
% unit circle. N is a vector of positive integers (including 0), and ,W5pe#n
% M is a vector with the same number of elements as N. Each element Crh5^?
% k of M must be a positive integer, with possible values M(k) = -N(k) gWqmK/.U.0
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, jpZX5_o
% and THETA is a vector of angles. R and THETA must have the same aoz+g,1
//
% length. The output Z is a matrix with one column for every (N,M) ;gy_Q f2U
% pair, and one row for every (R,THETA) pair. 6Bmv1n[X^h
% HI#}M|4n
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -]~U_J]
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;5ugnVXu
% with delta(m,0) the Kronecker delta, is chosen so that the integral 5&v'aiWK
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )NRY9\H
% and theta=0 to theta=2*pi) is unity. For the non-normalized {}N* e"<O
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. @jN!j*Y H
% jWiZ!dtUZ
% The Zernike functions are an orthogonal basis on the unit circle. (<s7X$(]e
% They are used in disciplines such as astronomy, optics, and l Vo](#W
% optometry to describe functions on a circular domain. 1Ls@|
% +VDwDJ)lG
% The following table lists the first 15 Zernike functions. d"Y9go"Z
% -WE pBt7*
% n m Zernike function Normalization m/=,O_
% -------------------------------------------------- (k6=o';y
% 0 0 1 1 4o9#B:N]J
% 1 1 r * cos(theta) 2 35) ]R`f
% 1 -1 r * sin(theta) 2 Hlp!6\gukp
% 2 -2 r^2 * cos(2*theta) sqrt(6) eT[,k[#q
% 2 0 (2*r^2 - 1) sqrt(3) 6vro:`R ?
% 2 2 r^2 * sin(2*theta) sqrt(6) # Fw<R'c
% 3 -3 r^3 * cos(3*theta) sqrt(8) ~e{AgY)
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 7.CzS
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) )M#~/~^f+
% 3 3 r^3 * sin(3*theta) sqrt(8) aWm0*W"(@
% 4 -4 r^4 * cos(4*theta) sqrt(10) "Vho`x3
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) PDREwBX
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) /XEcA5C<
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zv <,
% 4 4 r^4 * sin(4*theta) sqrt(10) 8II-'%S6q
% -------------------------------------------------- DGO_fR5L
% g}{Rk>k
% Example 1: ,(N&%
% |q^e&M<
% % Display the Zernike function Z(n=5,m=1) }<uD[[FLB
% x = -1:0.01:1; Lx8^V7X
% [X,Y] = meshgrid(x,x); [
8N1tZ{`
% [theta,r] = cart2pol(X,Y); RQy|W}d_
% idx = r<=1; o
]2=5;)
% z = nan(size(X)); w:r0>
% z(idx) = zernfun(5,1,r(idx),theta(idx)); L7G':oA_`p
% figure rs~RKTv-
% pcolor(x,x,z), shading interp aN).G1
% axis square, colorbar 9Wb9g/L
% title('Zernike function Z_5^1(r,\theta)') @NlnZfMu
% [Rs5hO
% Example 2: Pw1V1v&>q
% 92]>"
% % Display the first 10 Zernike functions yi"V'Us
% x = -1:0.01:1; Z?oFee!4
% [X,Y] = meshgrid(x,x); cm%QV?
% [theta,r] = cart2pol(X,Y); t2BkQ8vr
% idx = r<=1; mc?5,oz;pz
% z = nan(size(X)); k
<A>J-|
% n = [0 1 1 2 2 2 3 3 3 3]; M cNj TD
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; LV0g *ng
% Nplot = [4 10 12 16 18 20 22 24 26 28]; mdypZ 1f_
% y = zernfun(n,m,r(idx),theta(idx)); .oO_x>
% figure('Units','normalized') :)g=AhBF
% for k = 1:10 {K*l,U
% z(idx) = y(:,k); #PVgx9T=_
% subplot(4,7,Nplot(k)) 1jh^-d5
% pcolor(x,x,z), shading interp ul(1)q^
% set(gca,'XTick',[],'YTick',[]) 8 fVI33
% axis square `dMOBYV
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \x(J vDt
% end 0jrcXN~
% ',z'.t
% See also ZERNPOL, ZERNFUN2. isj<lnQ
.P# c/SQp
% Paul Fricker 11/13/2006 K~+y<z E
?WG9}R[qE/
}z,4IHNn
% Check and prepare the inputs: |m"2B]"@
% ----------------------------- S!#7]wtbP
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) tJUMLn?
error('zernfun:NMvectors','N and M must be vectors.') @_FL,AC&m
end A_{QY&%m
Fw!5hR`,
if length(n)~=length(m) CP7Zin1S/w
error('zernfun:NMlength','N and M must be the same length.') -J:](p
end %HL@O]ftS
LdU, 32
n = n(:); ti`z:8n7
m = m(:); ~fAdOh
if any(mod(n-m,2)) yh]#V"W3
error('zernfun:NMmultiplesof2', ... }qmZ
'All N and M must differ by multiples of 2 (including 0).') [\V]tpl!
end "h_n/}r=
Y%^&aac Z
if any(m>n) WWrDr
error('zernfun:MlessthanN', ... _&XT
=SW}
'Each M must be less than or equal to its corresponding N.') >J 3N,f
end aPcO9
~Msee+ZZ :
if any( r>1 | r<0 ) =k2+VI
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7w@.)@5
end nDiD7:e7=
M7eO5
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) oE"!
error('zernfun:RTHvector','R and THETA must be vectors.') 6IPhy.8
end kkyn>Wxv
6%U1%;
r = r(:); I =qd\
theta = theta(:); Z A1?'
length_r = length(r); +;Q&
if length_r~=length(theta) ^(N+s?
error('zernfun:RTHlength', ... }-V .upl
'The number of R- and THETA-values must be equal.') mmwwz
end BtBy.bR
k#JFDw\
% Check normalization: AjAmV
hq
% -------------------- q_OIzZ@
if nargin==5 && ischar(nflag) WT'P[RU2
isnorm = strcmpi(nflag,'norm'); ,BW^j.7
if ~isnorm +SrE
error('zernfun:normalization','Unrecognized normalization flag.') Gd%6lab
end }UXj|SY
else #n{wK+lz
isnorm = false; 15iCJ p
end OJ@';ZyT=
V/"0'H\"1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .oaW#f}0P
% Compute the Zernike Polynomials -R~;E[
{%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YDi_Gl$
a}M7"v9
% Determine the required powers of r: &5(|a"5+G
% ----------------------------------- s:*gjoL
m_abs = abs(m); z;#}uC
rpowers = []; V,|l&-
for j = 1:length(n) o7/_a/
rpowers = [rpowers m_abs(j):2:n(j)]; ;l4rg!r(S
end X2dTV}~i
rpowers = unique(rpowers); 7R7g$
=ub&@~E
% Pre-compute the values of r raised to the required powers, 73Mh65
% and compile them in a matrix: %dw-}1X
% ----------------------------- .N_0rPO,Kw
if rpowers(1)==0 ^._)HM
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +_:Ih,-
rpowern = cat(2,rpowern{:}); 8Dhq_R'r
rpowern = [ones(length_r,1) rpowern]; LP@Q8{'
else H$(%FWzQ%
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1_7x'5GdA
rpowern = cat(2,rpowern{:}); [ueT]%
end ~K:#a$!%,
#Sb1oLC
% Compute the values of the polynomials: .X_k[l 9
% -------------------------------------- 3 c@Cb`w@
y = zeros(length_r,length(n)); D*vrQ9
8
for j = 1:length(n) {(D$Xb
s = 0:(n(j)-m_abs(j))/2; Tud[VS?99
pows = n(j):-2:m_abs(j); m`nv4 i#o
for k = length(s):-1:1 lCWk)m8
p = (1-2*mod(s(k),2))* ... 8@6:UR.)
prod(2:(n(j)-s(k)))/ ... o6xl,T%
prod(2:s(k))/ ... DI!NP;E
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... G{+sC2
prod(2:((n(j)+m_abs(j))/2-s(k))); EZ1H0fm
idx = (pows(k)==rpowers); oF]0o`U&a
y(:,j) = y(:,j) + p*rpowern(:,idx); N(t1?R/e,
end 3t68cdFlz
K`(STvtM
if isnorm l=
~]MSwY
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); u6t.$a!5
end e_k1pox]l
end ,_u8y&<|I
% END: Compute the Zernike Polynomials 5y}}?6n+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {-Yp~HQF
U+~0m!|4
% Compute the Zernike functions: #jA|04w
% ------------------------------ ],qG!,V
idx_pos = m>0; 1k{ E7eL
idx_neg = m<0; *ubLuC+b
ofcoNLX5c
z = y; +;:i,`Lmg
if any(idx_pos) 1ReO.Dd`R
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); aina6@S
end !?O:%QG
if any(idx_neg) BI4p 3-
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); q/70fR7{v
end :ozHuHJ#
7"
Dw4}T
% EOF zernfun