切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11587阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 uE#i3( J  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! TPZ^hL>ao  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ?uE@C3 e  
    function z = zernfun(n,m,r,theta,nflag) @IBU{{  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. EMS$?"K  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 'n!Sco)C  
    %   and angular frequency M, evaluated at positions (R,THETA) on the &PEw8: TX  
    %   unit circle.  N is a vector of positive integers (including 0), and onUF@3V  
    %   M is a vector with the same number of elements as N.  Each element |+Ub3<b[]  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) !r_2b! dy  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, r1xhplHH@  
    %   and THETA is a vector of angles.  R and THETA must have the same |uln<nM9  
    %   length.  The output Z is a matrix with one column for every (N,M) qH*Fv:qnM  
    %   pair, and one row for every (R,THETA) pair. (wEaw|Zx  
    % =a./HCF  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike j1P#({z[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :]IY w!_-p  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral p GSS   
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, O<qo%fP  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ?{-y? %y  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _WHGd&u  
    % J]4Uh_>)  
    %   The Zernike functions are an orthogonal basis on the unit circle. UxVxnJ_  
    %   They are used in disciplines such as astronomy, optics, and F%q}N,W  
    %   optometry to describe functions on a circular domain. H5p&dNO  
    % q{oppali  
    %   The following table lists the first 15 Zernike functions. #vvQ 1ub  
    % s4{>7`N2  
    %       n    m    Zernike function           Normalization THDyb9_g  
    %       -------------------------------------------------- <bgFc[Z  
    %       0    0    1                                 1 Z\*jt B:  
    %       1    1    r * cos(theta)                    2 RE75TqYW  
    %       1   -1    r * sin(theta)                    2 *z\L  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) [cf!%3>53  
    %       2    0    (2*r^2 - 1)                    sqrt(3) y8=H+Y  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) $2gZpO|  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) W%^;:YQ9i  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) kG$U  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) iwT PJGK|  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) XfH[: XG3  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) $23dcC*hI  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )*n2 ,n  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) _+2Jc}Yf  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q !G^CG  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) g\lEdxm6Sj  
    %       -------------------------------------------------- %w3"B,k'9D  
    % |jE0H!j  
    %   Example 1: 0P_3%   
    % :f5"w+  
    %       % Display the Zernike function Z(n=5,m=1)  a EmLf  
    %       x = -1:0.01:1; Y|96K2BR  
    %       [X,Y] = meshgrid(x,x); jz72~+)T  
    %       [theta,r] = cart2pol(X,Y); +LsACSB  
    %       idx = r<=1; &i?>mt  
    %       z = nan(size(X)); dw]jF=u  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); c.eA]mq  
    %       figure Rk@xv;t;  
    %       pcolor(x,x,z), shading interp |KLCO'x  
    %       axis square, colorbar j$Z:S~*  
    %       title('Zernike function Z_5^1(r,\theta)') ]:r6  
    % ]KE"|}B  
    %   Example 2: M|xs>+r*  
    % U[t/40W}P  
    %       % Display the first 10 Zernike functions p? L*vcU  
    %       x = -1:0.01:1; _/`H<@B_U  
    %       [X,Y] = meshgrid(x,x); G2BB]] m3  
    %       [theta,r] = cart2pol(X,Y); #[.aj2  
    %       idx = r<=1; 5'z D}[2  
    %       z = nan(size(X)); ];8S<KiS~  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 5>u,Qh  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :M _N  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; @Xg5 E  
    %       y = zernfun(n,m,r(idx),theta(idx)); !{%BfZX<&  
    %       figure('Units','normalized') qz6@'1  
    %       for k = 1:10 p]erk  
    %           z(idx) = y(:,k); ;dVYR=l  
    %           subplot(4,7,Nplot(k)) bx8;`Q MX  
    %           pcolor(x,x,z), shading interp ni`uO<\U  
    %           set(gca,'XTick',[],'YTick',[]) ::R5F4  
    %           axis square T_/ n#e  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) JOFQyhY0>m  
    %       end ~duF2m 72  
    % vkE a[7  
    %   See also ZERNPOL, ZERNFUN2. ee\QK,QV  
    e> -fI_+b  
    %   Paul Fricker 11/13/2006 "1HKD  
    ?3=y]Vb+  
    N83c+vs%c  
    % Check and prepare the inputs: Hx#1TqC /  
    % ----------------------------- K|sk]2.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5~GH*!h%;  
        error('zernfun:NMvectors','N and M must be vectors.') eNc>^:&y*  
    end ALXie86a8  
    V18 A|]k  
    if length(n)~=length(m) c%@< h6  
        error('zernfun:NMlength','N and M must be the same length.') s_}q  
    end N/6! |F  
    v1}9i3Or#  
    n = n(:); F0x'^Z}Q;  
    m = m(:); 'B yB1NL  
    if any(mod(n-m,2)) A} v;uNS]  
        error('zernfun:NMmultiplesof2', ... _ 2 oZhJ  
              'All N and M must differ by multiples of 2 (including 0).') :Fh#"<A&&  
    end {j[a'Gb  
    #G!\MYfQt  
    if any(m>n) mr2fNA>kR  
        error('zernfun:MlessthanN', ... i# bcjH  
              'Each M must be less than or equal to its corresponding N.') b>]k=zd  
    end \zLKSJ]  
    "el}9OitC  
    if any( r>1 | r<0 ) ~`X$b F  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') )0?u_Z]w9  
    end Tnoy#w}Ve  
    .oH)eD  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) g1v=a  
        error('zernfun:RTHvector','R and THETA must be vectors.') IN7Cpg~9%  
    end K(r@JW  
    ToR@XL!%rP  
    r = r(:); sWv!ig_  
    theta = theta(:); Z;~7L*|  
    length_r = length(r); !xvAy3  
    if length_r~=length(theta) ~yiw{:\  
        error('zernfun:RTHlength', ... YHzP/&0  
              'The number of R- and THETA-values must be equal.') :hTmt{LjN  
    end 1+ 9!W  
    21[=xboU  
    % Check normalization: Y^tUcBm\  
    % -------------------- {PKf]m  
    if nargin==5 && ischar(nflag) *I.eCMDa  
        isnorm = strcmpi(nflag,'norm'); Q6;bORN  
        if ~isnorm [JYy  
            error('zernfun:normalization','Unrecognized normalization flag.') 4^T_" W}  
        end W:>XXUU  
    else {t!Pv 2y<  
        isnorm = false; moRo>bvN~  
    end ^h!}jvqE  
    9#E)H?`g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K57u87=*X?  
    % Compute the Zernike Polynomials `Wd4d2aLG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~S\8 '  
    lYT_Y.%I  
    % Determine the required powers of r: zZ94_8b  
    % ----------------------------------- I,W `s  
    m_abs = abs(m); qSt\ 6~  
    rpowers = []; M|fC2[]v B  
    for j = 1:length(n) @,m 7%,  
        rpowers = [rpowers m_abs(j):2:n(j)]; XhUVDmeUMb  
    end 9[R+m3V/`  
    rpowers = unique(rpowers); rvuasr~  
    -"rANP-UI  
    % Pre-compute the values of r raised to the required powers, nK}-^Ur  
    % and compile them in a matrix: j'`-3<k  
    % ----------------------------- UCj{ &  
    if rpowers(1)==0 Jl<pWjkZZ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); P9W?sPnC5  
        rpowern = cat(2,rpowern{:}); 5mX^{V&^  
        rpowern = [ones(length_r,1) rpowern]; WO6R04+WV  
    else Qb|@DMq%  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .}Eckqkp  
        rpowern = cat(2,rpowern{:}); + w'q5/`  
    end \5}*;O@  
    _nM 7SK  
    % Compute the values of the polynomials: !v8](UI8-  
    % -------------------------------------- tz5\O}  
    y = zeros(length_r,length(n)); (8~D ^N6Z  
    for j = 1:length(n) zkquXzlgB  
        s = 0:(n(j)-m_abs(j))/2; Yv.7-DHNl  
        pows = n(j):-2:m_abs(j); g7{:F\S  
        for k = length(s):-1:1 tUt_Q;%yC  
            p = (1-2*mod(s(k),2))* ... ~C>clkZ  
                       prod(2:(n(j)-s(k)))/              ... l#~pK6@W  
                       prod(2:s(k))/                     ... bFSs{\zE  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... "'C5B>qO  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 51tZ:-1!  
            idx = (pows(k)==rpowers); NFF!g]QN  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ^7a@?|,q8  
        end Ww"]3  
         yb,X }"Et  
        if isnorm N>CNgUyP  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); T;]Ob3(BpW  
        end p[ &b@U#  
    end a?xZsR  
    % END: Compute the Zernike Polynomials &*74 5,e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $+PyW( r  
    I E{:{b\  
    % Compute the Zernike functions: z,bK.KFSs  
    % ------------------------------ -{q'Tmst  
    idx_pos = m>0; K>C@oE[W  
    idx_neg = m<0; SSq4KFO1  
    [b_qC'K[  
    z = y; Fy0sn|  
    if any(idx_pos) W23Q>x&S  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |>OBpb  
    end tfD7!N{  
    if any(idx_neg) =dsEt\ j  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); yZN~A:  
    end e)N< r  
    4j8$& ~/  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) G&@d J &B  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. #6v357-5  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated !XM<`H/  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive z>\l%_w  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, cGR)$:  
    %   and THETA is a vector of angles.  R and THETA must have the same gwdAf%|f  
    %   length.  The output Z is a matrix with one column for every P-value, SF9NS*mr  
    %   and one row for every (R,THETA) pair. TZ `Ypi7r  
    % 8a&c=9  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike  wlsx|  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) seRf q&  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) @56*r@4:q  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 S;jD@j\t&  
    %   for all p. F" M  
    % D9NQ3[R 9  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 \#WWJh"W  
    %   Zernike functions (order N<=7).  In some disciplines it is wGw~ F:z  
    %   traditional to label the first 36 functions using a single mode Dy>6L79G  
    %   number P instead of separate numbers for the order N and azimuthal 5!cp^[rGL  
    %   frequency M. >3pT).wH|M  
    % Tl'wA^~H  
    %   Example: B-$?5Ft!  
    % /!^,+  
    %       % Display the first 16 Zernike functions wu><a!3`=o  
    %       x = -1:0.01:1; 93:oXyFjD  
    %       [X,Y] = meshgrid(x,x); \uZ|2WG`  
    %       [theta,r] = cart2pol(X,Y); !icI Rqcf=  
    %       idx = r<=1; 4(VV@:_%  
    %       p = 0:15; /H"fycZ  
    %       z = nan(size(X)); Z^z{, u;!  
    %       y = zernfun2(p,r(idx),theta(idx)); l qwy5#  
    %       figure('Units','normalized') :CK`v6 Qs  
    %       for k = 1:length(p) Dr(2@ 0P  
    %           z(idx) = y(:,k); &M@c50&%  
    %           subplot(4,4,k) _p5#`-%mM  
    %           pcolor(x,x,z), shading interp ;6D3>Lm  
    %           set(gca,'XTick',[],'YTick',[]) 9<&M~(dwT4  
    %           axis square C:}1r  
    %           title(['Z_{' num2str(p(k)) '}']) ok0ZI>=,  
    %       end @/ |g|4  
    % }A,!|m4  
    %   See also ZERNPOL, ZERNFUN. &VA^LS@b  
    hc[J,yG  
    %   Paul Fricker 11/13/2006 Maq`Or|4  
    *4NY"EwjN  
    2G$p x  
    % Check and prepare the inputs: U#S-x5Gn  
    % ----------------------------- y<w_>O  
    if min(size(p))~=1 r~YBj>}  
        error('zernfun2:Pvector','Input P must be vector.') 4v |i\V>M  
    end -j]c(Q MA]  
    YY:{/0?  
    if any(p)>35 `4snTM!v&  
        error('zernfun2:P36', ... 7M7Lj0Y)L  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... pe0ax- Zv  
               '(P = 0 to 35).']) D_0sXIbg  
    end yo->mD  
    Sn4xv2/  
    % Get the order and frequency corresonding to the function number: y6tqemz  
    % ---------------------------------------------------------------- J`)/\9'&&  
    p = p(:); iu(obmh/o  
    n = ceil((-3+sqrt(9+8*p))/2); .?5 ~zK  
    m = 2*p - n.*(n+2); i%.k{MY  
    E;{CoL  
    % Pass the inputs to the function ZERNFUN: ZD'mwj+K  
    % ---------------------------------------- NK/y,f6  
    switch nargin LKp;sV  
        case 3 >6jal?4u-  
            z = zernfun(n,m,r,theta); Anu:  
        case 4 6vAZLNG3  
            z = zernfun(n,m,r,theta,nflag); $Wj{B@k  
        otherwise 5,##p"O(  
            error('zernfun2:nargin','Incorrect number of inputs.') Hzm_o>^KC  
    end ;Ivv4u  
    A+8)VlE\  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) )Jk$j  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. H=,>-eVv*  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of &8l?$7S"_/  
    %   order N and frequency M, evaluated at R.  N is a vector of $;G<!]& s  
    %   positive integers (including 0), and M is a vector with the TMY. z  
    %   same number of elements as N.  Each element k of M must be a yc?L OW0  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) N,rd= m+  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ]tT=jN&(  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix LYL_Ah'=  
    %   with one column for every (N,M) pair, and one row for every &.DRAD)  
    %   element in R. `<d.I%}  
    % kN1R8|pv  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- \1joW#  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is D C/X|f  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to "Y L^j~A  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 e,p*R?Y{[  
    %   for all [n,m]. !`H{jwH  
    % =cS5f#0  
    %   The radial Zernike polynomials are the radial portion of the !ITM:%  
    %   Zernike functions, which are an orthogonal basis on the unit 1c#\CO1l  
    %   circle.  The series representation of the radial Zernike L5 Cfa-  
    %   polynomials is =,;$d&#*h  
    % '+{yg+#/wV  
    %          (n-m)/2 $Ugc:L<h+  
    %            __ I*Dj@f`  
    %    m      \       s                                          n-2s *9r(lmrfj  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Uv>e :U7;  
    %    n      s=0 |3E|VGm~  
    % = FV12(U  
    %   The following table shows the first 12 polynomials. \ [OB.  
    % 7L&,Na  
    %       n    m    Zernike polynomial    Normalization +g7]ga  
    %       --------------------------------------------- R[l`# I  
    %       0    0    1                        sqrt(2) W[DoQ @q  
    %       1    1    r                           2 F*#!hWtb  
    %       2    0    2*r^2 - 1                sqrt(6) % vy,A*  
    %       2    2    r^2                      sqrt(6) @OT$* Qh  
    %       3    1    3*r^3 - 2*r              sqrt(8) eq%cRd]u  
    %       3    3    r^3                      sqrt(8) &x\)] i2f  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) =>c0NT  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 0lniu=xmQ-  
    %       4    4    r^4                      sqrt(10) +u=VO#IA#  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) CQ.C{  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) /D^ g"  
    %       5    5    r^5                      sqrt(12) r`<e<C  
    %       --------------------------------------------- ^.)0O3oC  
    % +,YK}?e  
    %   Example: Kgi`@`  
    % /v<Gt%3X  
    %       % Display three example Zernike radial polynomials h>*3i#  
    %       r = 0:0.01:1; ,N,@9p  
    %       n = [3 2 5]; B.od{@I(Xp  
    %       m = [1 2 1]; *rw6?u9I  
    %       z = zernpol(n,m,r); c-&Q_lB  
    %       figure Hpz1Iy @  
    %       plot(r,z) zj2y=A| Y  
    %       grid on PPV T2;9  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') PR!0=E*}  
    % 9v;[T%%  
    %   See also ZERNFUN, ZERNFUN2. /*fx`0mY)  
    {aV,h@>  
    % A note on the algorithm. LNR1YC1c  
    % ------------------------ w/ZP. B  
    % The radial Zernike polynomials are computed using the series b|k^   
    % representation shown in the Help section above. For many special zQ,M795@EA  
    % functions, direct evaluation using the series representation can "{E%Y*  
    % produce poor numerical results (floating point errors), because q] pHD})O  
    % the summation often involves computing small differences between .p=J_%K}0x  
    % large successive terms in the series. (In such cases, the functions &g90q   
    % are often evaluated using alternative methods such as recurrence 7_Te-i  
    % relations: see the Legendre functions, for example). For the Zernike QR(;a:  
    % polynomials, however, this problem does not arise, because the xbw;s}B  
    % polynomials are evaluated over the finite domain r = (0,1), and fW=<bf  
    % because the coefficients for a given polynomial are generally all 73S N\  
    % of similar magnitude. Q6URaw#Yt`  
    % GY@:[u.&  
    % ZERNPOL has been written using a vectorized implementation: multiple ucz~y! 4L{  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] NQuqM`LSQ  
    % values can be passed as inputs) for a vector of points R.  To achieve 4noy!h  
    % this vectorization most efficiently, the algorithm in ZERNPOL >h~ik/|*  
    % involves pre-determining all the powers p of R that are required to i9qIaG/  
    % compute the outputs, and then compiling the {R^p} into a single l?_Fy_fBt  
    % matrix.  This avoids any redundant computation of the R^p, and /%7&De6Xg  
    % minimizes the sizes of certain intermediate variables. VuTTWBx  
    % 98 NFJ  
    %   Paul Fricker 11/13/2006 ]G8"\J4 &  
    jHE^d<=O^  
    AZik:C"Q  
    % Check and prepare the inputs: ~&<vAgy,  
    % ----------------------------- t OJyj49^a  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) u.n'dF-  
        error('zernpol:NMvectors','N and M must be vectors.') +3XaAk  
    end `ItoL7bi  
    kd"nBb=  
    if length(n)~=length(m) Hq gg*4#  
        error('zernpol:NMlength','N and M must be the same length.') -~JYfj@  
    end CGK]i. N  
    -~(d_  
    n = n(:); Z 1wtOL  
    m = m(:); OJA_OqVp$K  
    length_n = length(n); !fe_w5S^  
    Z;1r=p#s  
    if any(mod(n-m,2)) 5wAKA`p"z  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') /+`%u&<  
    end ':tdb$h  
    @x!+_z  
    if any(m<0) s3@mk\?qMe  
        error('zernpol:Mpositive','All M must be positive.') 8EdaxeDq  
    end +hispU3ia  
    w?8\9\ ;?  
    if any(m>n) +G"YQq'b  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') +`1~zcu  
    end 7p!ROl^  
    :HrFbq  
    if any( r>1 | r<0 ) \k"CtzoX  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') uF}B:53A  
    end bd%< Jg+  
    YIgHLM(  
    if ~any(size(r)==1) 5#X R1#`  
        error('zernpol:Rvector','R must be a vector.') 2cIbX  
    end YXqYIG.G  
    zv;xxAX  
    r = r(:); ~9#x=nU:+V  
    length_r = length(r); gE^pOn  
    ?fC9)s  
    if nargin==4 9MI9$s2y  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 8L_OH  
        if ~isnorm *pnaj\  
            error('zernpol:normalization','Unrecognized normalization flag.') W4k$m 2  
        end zd!%7 UP  
    else T"X]@9g^-  
        isnorm = false; 4]p#9`j  
    end P?|\Ig1Gk  
    <Ist^ h+o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jC}HNiM78  
    % Compute the Zernike Polynomials d2gYB qag  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &&LB0vH!J  
    ='qVwM['  
    % Determine the required powers of r: I 2OQ  
    % ----------------------------------- ' i5KRFy-  
    rpowers = []; tk h *su  
    for j = 1:length(n) 0QfDgDX  
        rpowers = [rpowers m(j):2:n(j)]; H%rNQxA2 +  
    end .b<W*4{j0H  
    rpowers = unique(rpowers); _&s pMf  
    ~&MDfpl  
    % Pre-compute the values of r raised to the required powers, J#i7'9g  
    % and compile them in a matrix: ln8NcAEx  
    % ----------------------------- 0} &/n>F  
    if rpowers(1)==0 Ac|dmu  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); OA\] |2 :  
        rpowern = cat(2,rpowern{:}); ZADMtsk  
        rpowern = [ones(length_r,1) rpowern]; 'yA/sZ  
    else _$D!"z7i  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \.H9e/vU`  
        rpowern = cat(2,rpowern{:}); -D=Sj@G  
    end C%]qK(9vvd  
    f`/('}t  
    % Compute the values of the polynomials: hjFht+j1  
    % -------------------------------------- X?< L<:.  
    z = zeros(length_r,length_n); L'aB/5_%  
    for j = 1:length_n ly6zz|c5  
        s = 0:(n(j)-m(j))/2; !V/\_P!I  
        pows = n(j):-2:m(j); L1(-xNUo_i  
        for k = length(s):-1:1 p19@to5l  
            p = (1-2*mod(s(k),2))* ... ]a~sJz!  
                       prod(2:(n(j)-s(k)))/          ... n4+q7  
                       prod(2:s(k))/                 ... =GF=_Ac  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... :@-yK8q's  
                       prod(2:((n(j)+m(j))/2-s(k))); aD'Ax\-  
            idx = (pows(k)==rpowers); ]plp.f#av  
            z(:,j) = z(:,j) + p*rpowern(:,idx); zYY]+)k?  
        end R@tEC)Zn  
         3Os0<1@H  
        if isnorm GtZ.' ?-  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); w <"mS*Q  
        end A]i!131{w|  
    end g%[:wjV;  
    i}v.x  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  PtW2S 1?j  
    gU x}vE-  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 U; oXX  
    'A:Y&w"r  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)