切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11595阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 /D"T\KNWr  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! tEL;,1  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 K/(LF}  
    function z = zernfun(n,m,r,theta,nflag) #~j$J  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. _x5-!gK  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N B#."cg4VR  
    %   and angular frequency M, evaluated at positions (R,THETA) on the (a!E3y5,  
    %   unit circle.  N is a vector of positive integers (including 0), and F@/syX;bb5  
    %   M is a vector with the same number of elements as N.  Each element 8;=?F>]xn  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) &h[)nD  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Ew}GPJ  
    %   and THETA is a vector of angles.  R and THETA must have the same |QzJHP @  
    %   length.  The output Z is a matrix with one column for every (N,M) aJm5`az)  
    %   pair, and one row for every (R,THETA) pair. sUF5Y q:9  
    % _BG `!3U+  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike _6FDuCVD-  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), dY?l oFz  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral &\?{%xj  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, w}}+8mk[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 9F,XjPK=  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. IwFf8? 3  
    % Qvny$sr2  
    %   The Zernike functions are an orthogonal basis on the unit circle. l$BKE{rg  
    %   They are used in disciplines such as astronomy, optics, and /XRgsF  
    %   optometry to describe functions on a circular domain. F`Vp   
    % s5 Fn("h]n  
    %   The following table lists the first 15 Zernike functions. R U[  
    % -'W:P'BG  
    %       n    m    Zernike function           Normalization UL7%6v{'*  
    %       -------------------------------------------------- TuMZHB7h;  
    %       0    0    1                                 1 XSZjuQ<[3  
    %       1    1    r * cos(theta)                    2 uJ*|SSN~  
    %       1   -1    r * sin(theta)                    2 w*SFQ_6YE  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) r~;.8qs  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Vfw +m1sS  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) [-[|4|CnOm  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) `).;W  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 7Ph+Vs+h  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) e ]>{?Z  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) mR{%f?B  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) {iq{<;)U?U  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JvUHoc$sI  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) >|T?87  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1_W5@)  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) OQX ek@~2  
    %       -------------------------------------------------- G[yN*C  
    % Q!%CU8!`&  
    %   Example 1: ;rta#pRn  
    % qf] OSd  
    %       % Display the Zernike function Z(n=5,m=1) I|[aa$G  
    %       x = -1:0.01:1; }\ui} \  
    %       [X,Y] = meshgrid(x,x); ;Wr,VU]  
    %       [theta,r] = cart2pol(X,Y); Z42v@?R.!W  
    %       idx = r<=1; }Lwj~{  
    %       z = nan(size(X)); 13{"sY:PT#  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ;lWy?53=@  
    %       figure T{K+1SPy4  
    %       pcolor(x,x,z), shading interp -ap;Ul?  
    %       axis square, colorbar eEe8T=mD  
    %       title('Zernike function Z_5^1(r,\theta)') <Q-ufF85)  
    % S+OI?QS  
    %   Example 2: m9>nv rQ  
    % g?o$:>c  
    %       % Display the first 10 Zernike functions N<Q}4%^c  
    %       x = -1:0.01:1; XKU=VOY  
    %       [X,Y] = meshgrid(x,x); 7#|NQ=yd  
    %       [theta,r] = cart2pol(X,Y); *&2#;mf3  
    %       idx = r<=1; .y[K =p3  
    %       z = nan(size(X)); E.% F/mM  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 1aMBCh<}JN  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; yZ)ScB^  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; RBgkC+2  
    %       y = zernfun(n,m,r(idx),theta(idx)); 5BCaE)J  
    %       figure('Units','normalized') $BBfsaJPT  
    %       for k = 1:10 |)JoxqR  
    %           z(idx) = y(:,k); @x J^JcE  
    %           subplot(4,7,Nplot(k)) x}>tX  
    %           pcolor(x,x,z), shading interp n _ez6{  
    %           set(gca,'XTick',[],'YTick',[]) ujWHO$uz!  
    %           axis square /7"1\s0U  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) tw3d>H`  
    %       end z=Vvb  
    % =L wX+c  
    %   See also ZERNPOL, ZERNFUN2. >`\*{]  
    FfgJ 2y  
    %   Paul Fricker 11/13/2006 t@JPnA7~  
    Gf]s?J^a  
    Sf'5/9<DW+  
    % Check and prepare the inputs: dO//  
    % ----------------------------- 7ER 2 h*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) coFg69\^  
        error('zernfun:NMvectors','N and M must be vectors.') q@-qA]  
    end (Mm{"J3uv  
    #f~a\}$I  
    if length(n)~=length(m) Y-c~"#  
        error('zernfun:NMlength','N and M must be the same length.') ;VFr5.*x  
    end t5Mo'*j =  
    W=\dsdnu*  
    n = n(:); ,"VQ 0Z1  
    m = m(:); _~(Xd@c(  
    if any(mod(n-m,2)) .XB] X  
        error('zernfun:NMmultiplesof2', ... ZAH<!@qh  
              'All N and M must differ by multiples of 2 (including 0).') +?:V\niQI  
    end hw'2q9J|  
    MHYf8HN  
    if any(m>n) 2* L/c-  
        error('zernfun:MlessthanN', ... bgK(l d`  
              'Each M must be less than or equal to its corresponding N.') RZtL<2.@  
    end nm-Y?!J  
    GDB>!ukg  
    if any( r>1 | r<0 ) ~&/Gx_KU  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') a*[\edcHU  
    end piFQ7B  
    G0Eq }MyF  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) LG|,g3&  
        error('zernfun:RTHvector','R and THETA must be vectors.') ibc/x v2  
    end `~]ReJ!X%  
    ZO 1J";>u  
    r = r(:); p,8Z{mLn  
    theta = theta(:); dR+$7N$  
    length_r = length(r); v+sbRuo8  
    if length_r~=length(theta) A,e^bM  
        error('zernfun:RTHlength', ... _D4}[`  
              'The number of R- and THETA-values must be equal.') Wd5t,8*8  
    end 8vw]u_e  
    T_Y}1n|7[  
    % Check normalization: x+e _pb   
    % -------------------- UVJ(iNK"  
    if nargin==5 && ischar(nflag) 9p4U\hx  
        isnorm = strcmpi(nflag,'norm'); 8!SiTOzR?  
        if ~isnorm k#) .E X  
            error('zernfun:normalization','Unrecognized normalization flag.') @GtZK  
        end uP]o39b;V  
    else A%2}?Ds  
        isnorm = false; OP}p;(  
    end UYOn p7R<  
    6w;|-/:`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% " G6j UTt  
    % Compute the Zernike Polynomials %Ab_PAw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p ri{vveN@  
    q*nz4QTOE  
    % Determine the required powers of r: 8|NJ(D-$  
    % -----------------------------------  ]:fCyIE  
    m_abs = abs(m); - (}1o9e\7  
    rpowers = []; G9inNz*Cx  
    for j = 1:length(n) ji -1yX  
        rpowers = [rpowers m_abs(j):2:n(j)]; # :w2Hf6Q  
    end =+S3S{\CK  
    rpowers = unique(rpowers); 9lJj/  
    ]/Qy1,  
    % Pre-compute the values of r raised to the required powers, xN8JrZE&  
    % and compile them in a matrix: )N 6[rw<  
    % ----------------------------- D#1~]d  
    if rpowers(1)==0 QS*cd|7J;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Wb )l8[=  
        rpowern = cat(2,rpowern{:}); C}'="g^=sl  
        rpowern = [ones(length_r,1) rpowern]; gdE`UZ\  
    else {dXBXC/Ju  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GPLt<K!<#  
        rpowern = cat(2,rpowern{:}); ~"2@A F  
    end PZRn6Tc  
    /'fDXSdP  
    % Compute the values of the polynomials: _j\=FJz[  
    % -------------------------------------- 8Vhck-wF  
    y = zeros(length_r,length(n)); AWXpA1(  
    for j = 1:length(n) "ak9LZQ9z  
        s = 0:(n(j)-m_abs(j))/2; kseJm+Hc  
        pows = n(j):-2:m_abs(j); "IS^a jaq  
        for k = length(s):-1:1 $YY)g$  
            p = (1-2*mod(s(k),2))* ... CN~NyJL H  
                       prod(2:(n(j)-s(k)))/              ... uo'31V0  
                       prod(2:s(k))/                     ... #x@lZ!Y  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... !LOors za  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Guw|00w,Q$  
            idx = (pows(k)==rpowers); 0&IXzEOr  
            y(:,j) = y(:,j) + p*rpowern(:,idx); uE#,c\[8  
        end t`YZ)>Ws  
         tK}p05nPhl  
        if isnorm <-B"|u  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !aw#',r8m  
        end _s^:zPl  
    end s~X*U&}5  
    % END: Compute the Zernike Polynomials I cR;A\z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #t2UPLO~  
    9Jy2T/l  
    % Compute the Zernike functions: s7nX\:Bw:  
    % ------------------------------ 795Jwv  
    idx_pos = m>0; ,o@~OTja*  
    idx_neg = m<0; u@_!mjXQ  
    =Cy>$/H64  
    z = y; m_!vIUOz  
    if any(idx_pos) 4[,B;7  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); YG 5Z8@kH  
    end `o8{qU,*]N  
    if any(idx_neg) jXY;V3l  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); d9-mWz(V+  
    end >[H&k8\7n  
    FL#g9U>  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 833 %H`jQc  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. B]|6`UfB  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 7O+Ij9+{n  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Z[k#AgC)  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, lbB.*oQ  
    %   and THETA is a vector of angles.  R and THETA must have the same ;;YcuzQI3  
    %   length.  The output Z is a matrix with one column for every P-value, lP@)   
    %   and one row for every (R,THETA) pair. fys5-1@-p  
    % P^8^1-b  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Z\|u9DO  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) WXLe,7y  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) uS,p|}Q&  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 lk[G;=K:.  
    %   for all p. 3'[Rvy{  
    % % QPWw~}:  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 -v;n"Zy1  
    %   Zernike functions (order N<=7).  In some disciplines it is }{&l n  
    %   traditional to label the first 36 functions using a single mode llHc=&y#  
    %   number P instead of separate numbers for the order N and azimuthal E[jXUOu-  
    %   frequency M. YgfSC}a  
    % NV} RRs  
    %   Example: ~5r=FF6  
    % ?{ B[^  
    %       % Display the first 16 Zernike functions w.J%qWJq  
    %       x = -1:0.01:1; !Tn0M;  
    %       [X,Y] = meshgrid(x,x); (]3ERPn#y  
    %       [theta,r] = cart2pol(X,Y); _/,SZ-C#L4  
    %       idx = r<=1; <$jKy3@  
    %       p = 0:15; Sc&)~h}YF  
    %       z = nan(size(X)); 5c: '>  
    %       y = zernfun2(p,r(idx),theta(idx)); i1qS ns  
    %       figure('Units','normalized') B*?ZE4`  
    %       for k = 1:length(p) `E3:;|  
    %           z(idx) = y(:,k); X0y?<G1( a  
    %           subplot(4,4,k) /[a|DUoHO  
    %           pcolor(x,x,z), shading interp Dq/3E-y5  
    %           set(gca,'XTick',[],'YTick',[]) [1z{T(dh  
    %           axis square 6IEUJ-M Z  
    %           title(['Z_{' num2str(p(k)) '}']) 7fTxGm  
    %       end n$.1Wk"  
    % mi7sBA9L8  
    %   See also ZERNPOL, ZERNFUN. 7$(_j<o`  
    jrm0@K+<IA  
    %   Paul Fricker 11/13/2006 bK3B3r#$  
    [AXsnpa/C  
    XnBm`vk?V!  
    % Check and prepare the inputs: B/jrYT$;m  
    % ----------------------------- 9v~1We;{$  
    if min(size(p))~=1 `FUFK/7 w\  
        error('zernfun2:Pvector','Input P must be vector.') OuB2 x=B  
    end L~*u4  
    3YR* ^  
    if any(p)>35 A)8rk_92Q  
        error('zernfun2:P36', ... &&;ex9  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... jEUx q%BH  
               '(P = 0 to 35).']) -NAmu97V}  
    end ?E % +}P  
    +x(YG(5\w  
    % Get the order and frequency corresonding to the function number: u\`/Nhn  
    % ---------------------------------------------------------------- 5B%w]n  
    p = p(:); xb%/sz(4  
    n = ceil((-3+sqrt(9+8*p))/2); j7f5|^/x3  
    m = 2*p - n.*(n+2); $zdd=.!KiK  
    z~F37]W3[  
    % Pass the inputs to the function ZERNFUN: _zdNLwE[  
    % ---------------------------------------- 1{^CfamF  
    switch nargin &a.']!$^"  
        case 3 <z,+Eg  
            z = zernfun(n,m,r,theta); 9*' &5F=  
        case 4 P"b8!k?  
            z = zernfun(n,m,r,theta,nflag); +|6`E3j%  
        otherwise iBucT"d]  
            error('zernfun2:nargin','Incorrect number of inputs.') ze&#i6S  
    end ri:,q/-  
    vyE{WkZxR  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) d,UCH  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. sdrWOq  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of rkq#7  
    %   order N and frequency M, evaluated at R.  N is a vector of tj[c#@[B  
    %   positive integers (including 0), and M is a vector with the i0\)%H:z  
    %   same number of elements as N.  Each element k of M must be a iA9 E^  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) E4=qh1d  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ;= a_B1"9u  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix E:)Cp  
    %   with one column for every (N,M) pair, and one row for every )9B:Y;>)  
    %   element in R. U9 bWU'  
    % `kFiH*5%z  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 2 L:$aZ  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is cAb>2]M5V  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 6lsEGe  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ytiyF2Kp  
    %   for all [n,m]. eQ;Q4  
    % /D'M24  
    %   The radial Zernike polynomials are the radial portion of the ;g+]klR!  
    %   Zernike functions, which are an orthogonal basis on the unit J1X~vQAe  
    %   circle.  The series representation of the radial Zernike Z5$fE7ba+  
    %   polynomials is DHv2&zH  
    % A @2Bs 5F  
    %          (n-m)/2 f0DK>L  
    %            __ 6J\fF tB@V  
    %    m      \       s                                          n-2s q(Hip<6p  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r \x(^]/@  
    %    n      s=0 x#r<,uNn,  
    % Wo!;K|~P  
    %   The following table shows the first 12 polynomials. M?$ZJ-  
    % O%&cE*eX  
    %       n    m    Zernike polynomial    Normalization W:vr@e6  
    %       --------------------------------------------- o/^1Wm=  
    %       0    0    1                        sqrt(2) h&`y$Jj  
    %       1    1    r                           2 6e.[,-eU  
    %       2    0    2*r^2 - 1                sqrt(6) =ewyQ  
    %       2    2    r^2                      sqrt(6) m(_9<bc>  
    %       3    1    3*r^3 - 2*r              sqrt(8) YG`? o  
    %       3    3    r^3                      sqrt(8) N}x9N.  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) !),t"Ae?>  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) I]9 C_  
    %       4    4    r^4                      sqrt(10)  q=4Bny0  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) +D`*\d1  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) e;h,V(  
    %       5    5    r^5                      sqrt(12) VD [pZ2;4  
    %       --------------------------------------------- N=~~EtX  
    % v@n_F  
    %   Example: t7*#[x)a  
    % 50$W0L$  
    %       % Display three example Zernike radial polynomials Ee)xnY%(  
    %       r = 0:0.01:1; S&wzB)#'  
    %       n = [3 2 5]; U\vY/6;JI  
    %       m = [1 2 1]; =wrP:wYF  
    %       z = zernpol(n,m,r); >;9NtoE  
    %       figure l'"'o~MC  
    %       plot(r,z) -[heV|$;  
    %       grid on y vI<4F  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') wxdyF&U n  
    % !OAvD#  
    %   See also ZERNFUN, ZERNFUN2. !MV@) (.  
    Fe!9y2Mg  
    % A note on the algorithm. qINTCm j  
    % ------------------------ NBOCt)C;H  
    % The radial Zernike polynomials are computed using the series +>tUz D  
    % representation shown in the Help section above. For many special G%:G eW  
    % functions, direct evaluation using the series representation can ppN} k)m  
    % produce poor numerical results (floating point errors), because \Y5W!.(%w  
    % the summation often involves computing small differences between e fO jTA%  
    % large successive terms in the series. (In such cases, the functions f~ U.a.Fb  
    % are often evaluated using alternative methods such as recurrence z9 ($.  
    % relations: see the Legendre functions, for example). For the Zernike #fDs[  
    % polynomials, however, this problem does not arise, because the  f^b K=#  
    % polynomials are evaluated over the finite domain r = (0,1), and L0"~[zB]N  
    % because the coefficients for a given polynomial are generally all eR;!(Oy=A  
    % of similar magnitude. QJBr6   
    % RN9;kB)c  
    % ZERNPOL has been written using a vectorized implementation: multiple 6q/ ?-Qcy  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 2?DRLF]  
    % values can be passed as inputs) for a vector of points R.  To achieve Gquuy7[&  
    % this vectorization most efficiently, the algorithm in ZERNPOL d%ME@6K)  
    % involves pre-determining all the powers p of R that are required to NX,-;v  
    % compute the outputs, and then compiling the {R^p} into a single /nQ`&q  
    % matrix.  This avoids any redundant computation of the R^p, and h"W8N+e\  
    % minimizes the sizes of certain intermediate variables. w/m:{cHk  
    % (.23rVvnT@  
    %   Paul Fricker 11/13/2006 5v _P Oq  
    y7lWeBnC  
    )jDJMi_[  
    % Check and prepare the inputs: c0rk<V%5+  
    % ----------------------------- |J>WC}g@n  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0XU}B\'<  
        error('zernpol:NMvectors','N and M must be vectors.') uY#TEjGh]  
    end l=={pb  
    EL D!{bMT  
    if length(n)~=length(m) |i7a@'0)  
        error('zernpol:NMlength','N and M must be the same length.') 55DE\<r  
    end 'Jj=RAV`  
     $xgBKD  
    n = n(:); TqAPAHg  
    m = m(:); 7Y( 5]A9=  
    length_n = length(n); Da1aI]{I  
    Xm!-~n@-m7  
    if any(mod(n-m,2)) diT=x52  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') V5mTu)tp5  
    end tWPO]3hW  
    TzG]WsY_  
    if any(m<0) #x@eDnb_  
        error('zernpol:Mpositive','All M must be positive.') 5iX! lAFJ  
    end =o7}]k7  
    lB;FUck9  
    if any(m>n) .*/Fucr  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 9 c3E+  
    end #JW+~FU`  
    +j/~Af p5f  
    if any( r>1 | r<0 ) F -gE<<  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') *_-'/i  
    end <V&5P3)d9  
    p( LZ)7/  
    if ~any(size(r)==1) }JgYCsF/f  
        error('zernpol:Rvector','R must be a vector.') 5/0j}_pP  
    end vqdX^m^PY  
    ]uh3R{a/  
    r = r(:); $jzFc!rs  
    length_r = length(r); R9o-`Wz  
    Gh( A%x)  
    if nargin==4 HIvZQQW|  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); F7}-!  
        if ~isnorm ,. EBOUW^  
            error('zernpol:normalization','Unrecognized normalization flag.') K7)kS  
        end <i. a pBH  
    else n# 7Pr/*0  
        isnorm = false; PAF8W lg  
    end ^A_;#vK  
    S ZU \i*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V-yUJ#f8[  
    % Compute the Zernike Polynomials t+Bf#:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mI1H!  
    *C|  
    % Determine the required powers of r: ?h8{xa5b  
    % ----------------------------------- Lxl_"k G  
    rpowers = []; &2.u%[gO[q  
    for j = 1:length(n) pox, Im  
        rpowers = [rpowers m(j):2:n(j)]; 6;b9swmh  
    end %VNlXHO.  
    rpowers = unique(rpowers); aAt>QxGQW  
    cntco@  
    % Pre-compute the values of r raised to the required powers, Ri*3ySyb  
    % and compile them in a matrix: 19e8  
    % ----------------------------- [U{UW4  
    if rpowers(1)==0 r?$ ?;%|C  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); umEVy*hc  
        rpowern = cat(2,rpowern{:}); qdD)e$XW,  
        rpowern = [ones(length_r,1) rpowern]; }:Z9Vc ZP`  
    else \3YO<E!t  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (8a#\Y[b  
        rpowern = cat(2,rpowern{:}); {p<Zbm.  
    end tOl e>]  
    ^%T7.1'x  
    % Compute the values of the polynomials: r#i?j}F}  
    % -------------------------------------- u'~;Y.@i'  
    z = zeros(length_r,length_n); n$L51#'  
    for j = 1:length_n E+95WF|4k"  
        s = 0:(n(j)-m(j))/2; uzr\oj+>  
        pows = n(j):-2:m(j); ?9+@+q  
        for k = length(s):-1:1 I27,mS+]  
            p = (1-2*mod(s(k),2))* ... 32)tJ|m  
                       prod(2:(n(j)-s(k)))/          ... IZ,oM!Y  
                       prod(2:s(k))/                 ... coE&24,0  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... v6(E3)J7  
                       prod(2:((n(j)+m(j))/2-s(k))); S56]?M|[  
            idx = (pows(k)==rpowers); 7*+]wEs  
            z(:,j) = z(:,j) + p*rpowern(:,idx); F"+o@9]  
        end jdA ]2]  
         =qVP]  9  
        if isnorm Kb ;dKQ  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Dh| w^Q  
        end L71!J0@a#  
    end ]jMKC8uz  
    >`RRP}u=u  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  yI{5m^s{  
    p\v Mc\  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ?wpB`  
    &:*q_$]Oz  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)