切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10978阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 &q":o 'q  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! #mllVQ  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 -Z;:_"&9  
    function z = zernfun(n,m,r,theta,nflag) G)e 20Mst  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. vW4 f3(/  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Uc6U!X  
    %   and angular frequency M, evaluated at positions (R,THETA) on the \\/X+4|o'  
    %   unit circle.  N is a vector of positive integers (including 0), and gf3/kll9  
    %   M is a vector with the same number of elements as N.  Each element mYy3KqYu  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) { j/w3  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ZR#UoYjupb  
    %   and THETA is a vector of angles.  R and THETA must have the same sP+S86 u  
    %   length.  The output Z is a matrix with one column for every (N,M) +'KM~c?]  
    %   pair, and one row for every (R,THETA) pair. fe0 Y^vW  
    % Jz|(B_U  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike mWGT (`|~/  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), F;_;lRAb  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral u#P7~9ZG-  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, '8Gw{&&  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 3; M!]9ms  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. aSK$#Xeu  
    % }YSH8d  
    %   The Zernike functions are an orthogonal basis on the unit circle. L`Ic0}|lzy  
    %   They are used in disciplines such as astronomy, optics, and A5/h*`Q\\  
    %   optometry to describe functions on a circular domain. Kp&d9e{ Yc  
    % .6'T;SoK>  
    %   The following table lists the first 15 Zernike functions. @+ 2Zt%  
    % z[k2&=c  
    %       n    m    Zernike function           Normalization ,J~1~fg89  
    %       -------------------------------------------------- WI6er;D  
    %       0    0    1                                 1 jG^~{7#  
    %       1    1    r * cos(theta)                    2 #/ 4Wcz<  
    %       1   -1    r * sin(theta)                    2 sV+>(c-$  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) '+eP%Y[W%  
    %       2    0    (2*r^2 - 1)                    sqrt(3) C9nNziws  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) P#0 _  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) V*TG%V -  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ~Ep&:c4:D  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) P9'5=e@jB  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) awawq9)Y  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) l9jcoVo .  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Hv=coS>g:  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) h!Q >h7  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F-R`'{ ka  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ]I]dwi_g)  
    %       -------------------------------------------------- ydFY<Mb(o  
    % rvG qUmSUs  
    %   Example 1: Mfz5:'  
    % $K iMu  
    %       % Display the Zernike function Z(n=5,m=1) k]JLk"K  
    %       x = -1:0.01:1; vbFAS:Y:+  
    %       [X,Y] = meshgrid(x,x); B8nXWi  
    %       [theta,r] = cart2pol(X,Y); 4R0_%x6vG  
    %       idx = r<=1; p!691LI  
    %       z = nan(size(X)); pQ/:*cd+M  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ENmo^O#,u  
    %       figure *[U:'o `67  
    %       pcolor(x,x,z), shading interp nJ?C4\#3  
    %       axis square, colorbar G]SE A  
    %       title('Zernike function Z_5^1(r,\theta)') hw7_8pAbh  
    % m=K XMX  
    %   Example 2: {NFeX'5bP  
    % 226s:\d  
    %       % Display the first 10 Zernike functions \?g%>D:O;  
    %       x = -1:0.01:1; %MIu;u FR  
    %       [X,Y] = meshgrid(x,x); 9@j~1G%^  
    %       [theta,r] = cart2pol(X,Y); M&K@><6k,k  
    %       idx = r<=1; c`>\R<Z ]  
    %       z = nan(size(X)); :X!(^ a;]  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Q?>#sN,  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 0{ ,zE  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; GGBe/X  
    %       y = zernfun(n,m,r(idx),theta(idx)); =UV?Pi*M>  
    %       figure('Units','normalized') ,'9tR&S$_  
    %       for k = 1:10 VgdkCdWRm_  
    %           z(idx) = y(:,k); .$yw;go3  
    %           subplot(4,7,Nplot(k)) 06`__$@h  
    %           pcolor(x,x,z), shading interp Z:*U/_G  
    %           set(gca,'XTick',[],'YTick',[]) {)[i\=,`{  
    %           axis square j@ "`!uPz  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) . 9 NS  
    %       end 9,Mp/.T"\  
    % *HC8kD a%$  
    %   See also ZERNPOL, ZERNFUN2. {7wvC)WW  
    e\dT~)c  
    %   Paul Fricker 11/13/2006 <H p"ZCN  
    ^"Y'zI L  
    R*y[/Aw  
    % Check and prepare the inputs: rNAu@B  
    % ----------------------------- z>{KeX:  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) EH3G|3^xz  
        error('zernfun:NMvectors','N and M must be vectors.') )k1,oUx  
    end 7L]?)2=  
    ^M9oTNk2  
    if length(n)~=length(m) ~ /[Cgh0  
        error('zernfun:NMlength','N and M must be the same length.') mx[^LaR>v  
    end So^`L s;S  
     )L!R~F C  
    n = n(:); 5 QeGx3'  
    m = m(:); 3oKGeB;Ja  
    if any(mod(n-m,2)) =, 0a3D6b  
        error('zernfun:NMmultiplesof2', ... 10rGA=x'(  
              'All N and M must differ by multiples of 2 (including 0).') JXAyF6 $  
    end Psa8OJan  
    p^:Lj9Qax  
    if any(m>n) 9H}&Ri%  
        error('zernfun:MlessthanN', ... 7`/qL "  
              'Each M must be less than or equal to its corresponding N.') c 2@@Rd~M  
    end OW}A48X[+  
    D5>~'N3b  
    if any( r>1 | r<0 ) <f6PULm  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') `Y;gMrp  
    end Vr1|%*0Tv  
    IpJv\zH7  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) DRoxw24  
        error('zernfun:RTHvector','R and THETA must be vectors.') AL7O-D  
    end ?GarD3#A  
    cQ41NX@I  
    r = r(:); ?<?C*W_  
    theta = theta(:); LwPM7S~ *  
    length_r = length(r); ewG21 q$  
    if length_r~=length(theta) c.Y8CD.tqL  
        error('zernfun:RTHlength', ... Q/n.T0Z ^  
              'The number of R- and THETA-values must be equal.') Nj_sU0Dt  
    end "V0:Lq  
    3x0wk9lND  
    % Check normalization: cmU+VZ#pk  
    % -------------------- CD1=2  
    if nargin==5 && ischar(nflag) _ICDtG^  
        isnorm = strcmpi(nflag,'norm'); b6Hk20+B;  
        if ~isnorm ;cn.s,  
            error('zernfun:normalization','Unrecognized normalization flag.') ls\E%d  
        end t)Q @sKT6  
    else !#I/be]  
        isnorm = false; U_;J.{n  
    end $F7gH  
    AdW2o|Uap  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /7@2Qc2  
    % Compute the Zernike Polynomials V8$bPVps  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K=?F3tX^  
    ><MgIV  
    % Determine the required powers of r: 7B\(r~f`t  
    % ----------------------------------- w00\1'-Kz  
    m_abs = abs(m); }!]x|zU.=  
    rpowers = []; 25c!-.5D  
    for j = 1:length(n) o;>3z*9?3  
        rpowers = [rpowers m_abs(j):2:n(j)]; $A@3ogoS&  
    end w LN2`ucC  
    rpowers = unique(rpowers); niEEm`"  
    P&3/nL$9N  
    % Pre-compute the values of r raised to the required powers, *.]E+MYi*  
    % and compile them in a matrix: , ."(Gp  
    % ----------------------------- *\:_o5o%[T  
    if rpowers(1)==0 \seG2vw$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?U/Wio$@  
        rpowern = cat(2,rpowern{:}); O;e8ft '|  
        rpowern = [ones(length_r,1) rpowern]; ^=Ct Aa2  
    else XH:gQ9FD  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _#D\*0J  
        rpowern = cat(2,rpowern{:}); >_aio4j}r  
    end ,V]A63J  
    7;}3{z  
    % Compute the values of the polynomials: x~9z`d{!  
    % -------------------------------------- k?/vy9  
    y = zeros(length_r,length(n)); z2Y_L8u2  
    for j = 1:length(n) + lB+|yJ+  
        s = 0:(n(j)-m_abs(j))/2; J&"?m.~@  
        pows = n(j):-2:m_abs(j); (d'j'U:C  
        for k = length(s):-1:1 NC.P 2^%  
            p = (1-2*mod(s(k),2))* ... mOgOHb2  
                       prod(2:(n(j)-s(k)))/              ... A]iv)C;]  
                       prod(2:s(k))/                     ... r d6F"W  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... g{W6a2  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); f>)Tq'  
            idx = (pows(k)==rpowers); 8f,'p}@!d  
            y(:,j) = y(:,j) + p*rpowern(:,idx); R=amKLD?  
        end b4)*<Zp`  
         mbX)'. +L  
        if isnorm S $_Y/x  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {y&\?'L'  
        end N+s?ZE*  
    end B221}t  
    % END: Compute the Zernike Polynomials XiRT|%j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CaYos;Pl  
    `  -[Bo  
    % Compute the Zernike functions: S#h'\/S  
    % ------------------------------ 5hJYy`h~  
    idx_pos = m>0; 2z.8rNwT  
    idx_neg = m<0; RO%tuU,-  
    up &NCX  
    z = y; -4vHK!l  
    if any(idx_pos)  ^%5~ ;  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6MQs \J6.  
    end ii_|)udz  
    if any(idx_neg) b =K6IX;  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); D/S>w(=  
    end =XMD+  
    [+%d3+27  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 5u;Rr 1D  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. `1fJ:b/M  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 7P/?wv9+n*  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 'v\1:zi  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ,7^d9v3t  
    %   and THETA is a vector of angles.  R and THETA must have the same q+A<g(Xu  
    %   length.  The output Z is a matrix with one column for every P-value, %[]"QbF?  
    %   and one row for every (R,THETA) pair. tt6. jo  
    % v8=?HUDd  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike :DtZ8$I`]C  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ny12U;'s,  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) pqyWv;  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 z5XYpi_;[  
    %   for all p. Ku<b0<`  
    % (NH8AS<  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 IL~]m?'V(  
    %   Zernike functions (order N<=7).  In some disciplines it is (3 IZ  
    %   traditional to label the first 36 functions using a single mode Ur'9bl{5  
    %   number P instead of separate numbers for the order N and azimuthal )-bD2YA{  
    %   frequency M. y z[%MXI  
    % CfPXn0I  
    %   Example: |d,F-9iw  
    % J+ Jt4  
    %       % Display the first 16 Zernike functions &$mZ?%^C  
    %       x = -1:0.01:1; z.eJEK  
    %       [X,Y] = meshgrid(x,x); :3f-9aRC!  
    %       [theta,r] = cart2pol(X,Y); !oZQ2z~  
    %       idx = r<=1; o3Mf:;2cC  
    %       p = 0:15; ;[(= kOI  
    %       z = nan(size(X)); oM6j>&$b  
    %       y = zernfun2(p,r(idx),theta(idx)); oN *SRaAp  
    %       figure('Units','normalized') 9{_8cpm4  
    %       for k = 1:length(p) l6iw=b[?  
    %           z(idx) = y(:,k); JB&G~7Q85  
    %           subplot(4,4,k) S5uJX#*;  
    %           pcolor(x,x,z), shading interp 0CPxIF&  
    %           set(gca,'XTick',[],'YTick',[]) d{er |$E?  
    %           axis square ).pO2lLF4  
    %           title(['Z_{' num2str(p(k)) '}']) J'o DOn.M  
    %       end "6?lQw e  
    % xDR9_  
    %   See also ZERNPOL, ZERNFUN. %lN2n,AK  
    "yg.hK`  
    %   Paul Fricker 11/13/2006 8O,? |c=>  
    h,^BC^VU9-  
    TqIAWbb&  
    % Check and prepare the inputs: xC<=~(  
    % ----------------------------- }1 $hxfb  
    if min(size(p))~=1 ARPKzF`Wq  
        error('zernfun2:Pvector','Input P must be vector.') /+>)"D6'  
    end j:7* 3@f  
     }VF#\q  
    if any(p)>35 OkLz^R?d  
        error('zernfun2:P36', ... F"!agc2!  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... YPu9Q  
               '(P = 0 to 35).']) ful#Px6m  
    end 2b5#PcKa  
    +}P%HH]E/p  
    % Get the order and frequency corresonding to the function number: J0=7'@(p  
    % ---------------------------------------------------------------- *P`v^&  
    p = p(:); vB^uxdt|m  
    n = ceil((-3+sqrt(9+8*p))/2); _}D%iJg#  
    m = 2*p - n.*(n+2); bG "H D?A_  
    >QXzMN}o  
    % Pass the inputs to the function ZERNFUN: l09Fn>wa  
    % ---------------------------------------- )B6# A0  
    switch nargin <0#^7Z  
        case 3 5UE409Gn'  
            z = zernfun(n,m,r,theta); uKv&7p@|_)  
        case 4 te i`/  
            z = zernfun(n,m,r,theta,nflag); ^ oYPyk`9  
        otherwise FKC\VF  
            error('zernfun2:nargin','Incorrect number of inputs.') +=7:4LFOL  
    end Y,C=@t@_  
    xOythvO  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) gw^'{b  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. \6o\+OQk  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ~h! 13!  
    %   order N and frequency M, evaluated at R.  N is a vector of ;$7v%Ls=  
    %   positive integers (including 0), and M is a vector with the `N}d}O8   
    %   same number of elements as N.  Each element k of M must be a :=*}htP4C  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) pLnB)z?  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is | f\D>Y%)  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Z.'syGuV  
    %   with one column for every (N,M) pair, and one row for every :'}@Al9=>  
    %   element in R. z<B CLP  
    % EiWd+v,QJQ  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ]3ifd G k  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is %D`o  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to UX2lPgKdLz  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 io.]'">  
    %   for all [n,m]. H=p`T+  
    % xr[Vp  
    %   The radial Zernike polynomials are the radial portion of the 1oty*c  
    %   Zernike functions, which are an orthogonal basis on the unit e"k/d<  
    %   circle.  The series representation of the radial Zernike <^8*<;PaG  
    %   polynomials is F}36IM9/:  
    %  @pFj9[N  
    %          (n-m)/2 r8[T&z@_  
    %            __ SJk>Jt=  
    %    m      \       s                                          n-2s $i#?v  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 8md*wEjk  
    %    n      s=0 Y/fJQ6DY  
    % +&5' uAe  
    %   The following table shows the first 12 polynomials. booRrTS  
    % bcH_V| 5}  
    %       n    m    Zernike polynomial    Normalization ^:KO_{3E  
    %       --------------------------------------------- I[d]!YI}F  
    %       0    0    1                        sqrt(2) Xj@+{uvQB  
    %       1    1    r                           2 DMn4ll|  
    %       2    0    2*r^2 - 1                sqrt(6)  &;c>O  
    %       2    2    r^2                      sqrt(6) 7 ^$;  
    %       3    1    3*r^3 - 2*r              sqrt(8) TTZe$>f  
    %       3    3    r^3                      sqrt(8) QR0(,e$Dl  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) XRtD< jlA"  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) qf#)lyr<D6  
    %       4    4    r^4                      sqrt(10) (=u'sn:s  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ,SUT~oETP  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ,<` )>2 'o  
    %       5    5    r^5                      sqrt(12) @?k J).  
    %       --------------------------------------------- [ MyE2^  
    % 8)j@aiF`  
    %   Example: 3n]79+w@z  
    % cn`iX(ZgR  
    %       % Display three example Zernike radial polynomials 6RoAl$}'  
    %       r = 0:0.01:1; h6v077qG  
    %       n = [3 2 5]; !*{q^IO9v&  
    %       m = [1 2 1]; .0p^W9  
    %       z = zernpol(n,m,r); =&nW~<- v  
    %       figure nZk +  
    %       plot(r,z) vFv3'b$;G  
    %       grid on ztll}  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') vB0RKk}d5  
    % [?0d~Q(R#  
    %   See also ZERNFUN, ZERNFUN2. !t#F/C  
    5's~>up&  
    % A note on the algorithm. EGVM)ur  
    % ------------------------ |nUl\WRd\  
    % The radial Zernike polynomials are computed using the series j5$GFi\kB  
    % representation shown in the Help section above. For many special E_T 2z4lw  
    % functions, direct evaluation using the series representation can V3Z]DA  
    % produce poor numerical results (floating point errors), because hz:pbes  
    % the summation often involves computing small differences between xc @Ss[  
    % large successive terms in the series. (In such cases, the functions oUZoj2G1  
    % are often evaluated using alternative methods such as recurrence Yk!/ow@.  
    % relations: see the Legendre functions, for example). For the Zernike TrS8h^C  
    % polynomials, however, this problem does not arise, because the O+q/4  
    % polynomials are evaluated over the finite domain r = (0,1), and k[j90C5  
    % because the coefficients for a given polynomial are generally all dT"hNHaf  
    % of similar magnitude. > L2HET  
    % Q\ppfc{,  
    % ZERNPOL has been written using a vectorized implementation: multiple /]^#b  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] @(g_<@Jz  
    % values can be passed as inputs) for a vector of points R.  To achieve saf&dd  
    % this vectorization most efficiently, the algorithm in ZERNPOL KLWn?`  
    % involves pre-determining all the powers p of R that are required to PNs~[  
    % compute the outputs, and then compiling the {R^p} into a single NPa\Cg[  
    % matrix.  This avoids any redundant computation of the R^p, and FS6`6M.K  
    % minimizes the sizes of certain intermediate variables. $;N*cH~  
    % ^TY ;Zp  
    %   Paul Fricker 11/13/2006 'a6<ixgo0  
    V~G`kkNy  
    : 18KR*;p  
    % Check and prepare the inputs: &#`l;n:]+  
    % ----------------------------- "*1 f;+\  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) YyAJ m^o  
        error('zernpol:NMvectors','N and M must be vectors.') l e4?jQQ@L  
    end 4`m~FNVS   
    V" \0Y0  
    if length(n)~=length(m) sUJ%x#u}Fk  
        error('zernpol:NMlength','N and M must be the same length.') O/s $SX%g  
    end 8BOZh6BV  
    %ts^Z*3u  
    n = n(:); >{gPN"S"a  
    m = m(:); sV"UI  
    length_n = length(n); -VxTx^)>  
    X|f7K  
    if any(mod(n-m,2)) fWfk[(M'9  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') [qUN4x5b  
    end klg25#t  
    6tHO!`}1  
    if any(m<0) fZ04!R  
        error('zernpol:Mpositive','All M must be positive.') v\16RD  
    end 7w,FX.=;cv  
    3s\.cG?`r  
    if any(m>n) 9{k97D/  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') &,A64y  
    end ]H-S, lmV  
    f=C,e/sw  
    if any( r>1 | r<0 ) AjcX  N  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ;<yd^Xs  
    end /Jf.y*;  
    z%MW!x  
    if ~any(size(r)==1) Q_* "SRz  
        error('zernpol:Rvector','R must be a vector.') ) [0T16  
    end Ya>oCr}K  
    Dd;Nz  
    r = r(:); kt`nbm|aw  
    length_r = length(r); O5$/55PI  
    p' M%XBu  
    if nargin==4 G9g1hie@%  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); JJ;[,  
        if ~isnorm bM8If"  
            error('zernpol:normalization','Unrecognized normalization flag.') m_?d=o  
        end _ZY)M  
    else 3"o"fl  
        isnorm = false; 6qcO?U  
    end eF[63zx5*  
    x77l~=P+!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fRg`UI4w}  
    % Compute the Zernike Polynomials Q+4Xs.#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j'9"cE5_  
    b Q]/?cCYV  
    % Determine the required powers of r: K>*a*[t0Sy  
    % ----------------------------------- ylt`*|$  
    rpowers = []; \ [a%('}  
    for j = 1:length(n) /rUo{j  
        rpowers = [rpowers m(j):2:n(j)]; ^G6RjJxqp8  
    end ;&1V0U,fx  
    rpowers = unique(rpowers); %f($*l.  
    z9aY]lHY  
    % Pre-compute the values of r raised to the required powers, N[kwO1  
    % and compile them in a matrix: `rf_7  
    % ----------------------------- m0v:\?S:  
    if rpowers(1)==0 E<yW\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); XC.%za8  
        rpowern = cat(2,rpowern{:}); V<Z[ nq  
        rpowern = [ones(length_r,1) rpowern]; M5xCC!  
    else =Zi2jL?On  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); gx%|Pgd  
        rpowern = cat(2,rpowern{:}); >JiltF7H0  
    end BJ% eZ.  
    4;2< ^[M  
    % Compute the values of the polynomials: ) $PDo 7#  
    % -------------------------------------- ^tXJj:wtS  
    z = zeros(length_r,length_n); P2bZ65>3y  
    for j = 1:length_n G "73=8d  
        s = 0:(n(j)-m(j))/2; OKoan$#sn  
        pows = n(j):-2:m(j); liXdNk8  
        for k = length(s):-1:1 >nzdnF_&zW  
            p = (1-2*mod(s(k),2))* ... _q~=~nub  
                       prod(2:(n(j)-s(k)))/          ... "HPB!)C8(  
                       prod(2:s(k))/                 ... ;3' .C~   
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... .'Vww  
                       prod(2:((n(j)+m(j))/2-s(k))); XLH0 ;+CL{  
            idx = (pows(k)==rpowers); M)U{7c$c7  
            z(:,j) = z(:,j) + p*rpowern(:,idx); hiQha5  
        end j ?MAED  
         $sEy%-  
        if isnorm k{'0[,mx#  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 0}b tXh  
        end >%wLAS",w  
    end {?yr'*  
    mvq&Pj 1}L  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  eep1I :N  
    lc~%=  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 `#;e)1  
    xo&]$W8  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)