切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11124阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 hEh` cBO  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! FUO9jX  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 +7 mUX  
    function z = zernfun(n,m,r,theta,nflag) @x@wo9<Fc  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. emMk*l,  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -7IRlP&  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ^Z+p_;J$p  
    %   unit circle.  N is a vector of positive integers (including 0), and <64#J9T^  
    %   M is a vector with the same number of elements as N.  Each element EEP&Y?  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) aQj"FUL  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, j 6dlAe  
    %   and THETA is a vector of angles.  R and THETA must have the same T`2a)  
    %   length.  The output Z is a matrix with one column for every (N,M) *pYawT  
    %   pair, and one row for every (R,THETA) pair. d-jZ5nl(  
    % AbL(F#{  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike e8 c.&j3m  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2Mu3] 2>  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Rxq4Diq5k  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ZfibHivz  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized XG!^[ZDs  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. +fN2%aC  
    % ge]Z5E(1  
    %   The Zernike functions are an orthogonal basis on the unit circle. _LFABG=  
    %   They are used in disciplines such as astronomy, optics, and |*g\-2j{  
    %   optometry to describe functions on a circular domain. u`"Y!*[ -  
    % ao"Z%#Jb~  
    %   The following table lists the first 15 Zernike functions. ^[VEr"X  
    % 0v|qP  
    %       n    m    Zernike function           Normalization ]Na;b  
    %       -------------------------------------------------- N>w+YFM  
    %       0    0    1                                 1 ^ f[^.k$3d  
    %       1    1    r * cos(theta)                    2 XCT3:db  
    %       1   -1    r * sin(theta)                    2 r_MP[]f|0  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 63'L58O  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 8:U0M'}u>  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ddY-F }z~  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) rAk;8)O$  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) @QDUz>_y  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) mr,G H x  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) #n+sbx5~7  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ;?Q0mXr  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {<zE}7/2-  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 1 J[z ![Tf  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >:OP+Vc  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) I5E5,{  
    %       -------------------------------------------------- uT Y G/O  
    % e 8^%}\F  
    %   Example 1: dKmPKeJM  
    % E)]emeG d  
    %       % Display the Zernike function Z(n=5,m=1) orFB*{/Z  
    %       x = -1:0.01:1; r;O?`~2'4  
    %       [X,Y] = meshgrid(x,x); [6?x 6_M  
    %       [theta,r] = cart2pol(X,Y); fVYv 2  
    %       idx = r<=1; 88}04  
    %       z = nan(size(X)); oJZ0{^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); OqX+ R4S  
    %       figure &zPM# Q  
    %       pcolor(x,x,z), shading interp Q'[~$~&`  
    %       axis square, colorbar 9y*(SDF  
    %       title('Zernike function Z_5^1(r,\theta)') ^y~oXS(  
    % &-x/c\jz  
    %   Example 2: n65fT+;  
    % =nCV. Wf  
    %       % Display the first 10 Zernike functions _he~Y2zFz  
    %       x = -1:0.01:1; Up>,~bs]  
    %       [X,Y] = meshgrid(x,x); 9Dyw4'W.N  
    %       [theta,r] = cart2pol(X,Y);  aqwW`\  
    %       idx = r<=1; ]@qD4:  
    %       z = nan(size(X)); oTA'=<W?D  
    %       n = [0  1  1  2  2  2  3  3  3  3]; p+2uK|T9  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; P.~sNd oJ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; G~NhBA9  
    %       y = zernfun(n,m,r(idx),theta(idx)); 8g/r8u~  
    %       figure('Units','normalized') WX+@<y}%  
    %       for k = 1:10 {9hhfI#3_  
    %           z(idx) = y(:,k); ">s0B5F7  
    %           subplot(4,7,Nplot(k)) %Ip=3($Ku[  
    %           pcolor(x,x,z), shading interp <4;f?e u  
    %           set(gca,'XTick',[],'YTick',[]) eh*F/Gu  
    %           axis square l4OPzNc'  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vf`]  
    %       end ~5Rh7   
    % bL5dCQxty  
    %   See also ZERNPOL, ZERNFUN2. &0mhO+g   
    .\)p3pC)  
    %   Paul Fricker 11/13/2006 XB%`5wwd  
    JM*rPzp  
    'eoI~*}3WQ  
    % Check and prepare the inputs: h#8 {fr)6  
    % ----------------------------- \)PS&Y8n  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) sk. rJ  
        error('zernfun:NMvectors','N and M must be vectors.') VE/~tT;  
    end Bc#6mO-  
    T f^O(  
    if length(n)~=length(m) C%'eF`  
        error('zernfun:NMlength','N and M must be the same length.') F#{ PJ#  
    end _j<,qi  
    BCH I@a  
    n = n(:); *tT5Zt/&Sr  
    m = m(:); fVBRP[,   
    if any(mod(n-m,2)) P+3)YO1C  
        error('zernfun:NMmultiplesof2', ... 7M9s}b%?  
              'All N and M must differ by multiples of 2 (including 0).') Xg97[I8/  
    end PvdR)ZE m  
    ..^,*  
    if any(m>n) .]Z,O>N  
        error('zernfun:MlessthanN', ... ~#[ ZuMO?  
              'Each M must be less than or equal to its corresponding N.') v aaZ  
    end [g*]u3s  
    jdVdz,Y  
    if any( r>1 | r<0 ) Q_a%$a.rV  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') !!t@ H\  
    end n1c Q#u  
    fKT(.VN q5  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Z8Clm:S  
        error('zernfun:RTHvector','R and THETA must be vectors.') i@d@~M7/  
    end %K]nX#.B&  
    FdJC@Y-#uA  
    r = r(:); ?)5M3 lV3k  
    theta = theta(:); |m7`:~ow  
    length_r = length(r); *'(dcy9  
    if length_r~=length(theta) LvS3c9|Aj  
        error('zernfun:RTHlength', ... K#{E87G(  
              'The number of R- and THETA-values must be equal.') (.3L'+F  
    end x]U (EX`t$  
    _'oy C(:}  
    % Check normalization: iJE|u  
    % -------------------- [G|2m_  
    if nargin==5 && ischar(nflag) h Tn^:%(  
        isnorm = strcmpi(nflag,'norm'); `o*g2fW!  
        if ~isnorm Qs{Qg<}  
            error('zernfun:normalization','Unrecognized normalization flag.') z*>CP  
        end z95V 7E  
    else _mL9G5~r  
        isnorm = false; Z_Ma|V?6  
    end {1YT a:evl  
    D2Go,1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "Hjw  
    % Compute the Zernike Polynomials Xc5[d`]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _.06^5o  
    fhn0^Qc"+  
    % Determine the required powers of r: o6K BJx  
    % ----------------------------------- 6YU2  !x  
    m_abs = abs(m); a^5`fA/L,  
    rpowers = []; 9e :E% 2  
    for j = 1:length(n) A?|cJ"N  
        rpowers = [rpowers m_abs(j):2:n(j)]; JT^E `<nn  
    end +;[`fSi  
    rpowers = unique(rpowers); |I+E`,n"b  
    )SUN+YV^  
    % Pre-compute the values of r raised to the required powers, IL:"]`f*  
    % and compile them in a matrix: Ef`LBAfOO  
    % ----------------------------- 0_D~n0rq,v  
    if rpowers(1)==0 X7c*T /  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); '\*Rw]bR|  
        rpowern = cat(2,rpowern{:}); qryt1~Dq  
        rpowern = [ones(length_r,1) rpowern]; BK d(  
    else mQs'2Y6Oa  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); fZ g*@RR  
        rpowern = cat(2,rpowern{:}); 'H cDl@E  
    end MthThsr7  
    fp![Pbms.  
    % Compute the values of the polynomials: M<~F>(wxA  
    % -------------------------------------- G[>-@9_b  
    y = zeros(length_r,length(n)); hy)RV=X  
    for j = 1:length(n) #=.h:_9  
        s = 0:(n(j)-m_abs(j))/2; ^:)&KV8D|  
        pows = n(j):-2:m_abs(j); Xp?Z;$r$  
        for k = length(s):-1:1 c\b>4 &n  
            p = (1-2*mod(s(k),2))* ... }\*Sf[EMD  
                       prod(2:(n(j)-s(k)))/              ... =W|Q0|U  
                       prod(2:s(k))/                     ... ,6buo~?W:  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... GKd>AP_  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 3CHte*NL=  
            idx = (pows(k)==rpowers); F_Pd\Aq8  
            y(:,j) = y(:,j) + p*rpowern(:,idx); w9PY^U.Y3e  
        end )w` Nkx  
         XbOL/6V ^[  
        if isnorm j5)qF1W,  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); r#}Sy \  
        end HYH!;  
    end ha),N<'  
    % END: Compute the Zernike Polynomials N+V-V-PVk  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mDmWTq\  
    7f$Lb,\y  
    % Compute the Zernike functions: 1<p"z,c  
    % ------------------------------ mHMej@  
    idx_pos = m>0; 09?<K)_G  
    idx_neg = m<0; f\^QV  
    rh l5r"%  
    z = y; IyuT=A~Ki  
    if any(idx_pos) Q}T9NzOH%  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (~GFd7  
    end ~GeYB6F  
    if any(idx_neg) D?'y)](  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); NE4fQi?3  
    end  k WtUj  
    4dK@UN\  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) t_rDXhM  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. f)x}_dw%  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 9-^p23.@[j  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ka3 Z5  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, S8RB0^Q7  
    %   and THETA is a vector of angles.  R and THETA must have the same h'x~"k1  
    %   length.  The output Z is a matrix with one column for every P-value, o4;Nb|kk9+  
    %   and one row for every (R,THETA) pair. Mg$9'a"[\  
    % ,Tl5@RN  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike GvOAs-$  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) eNFUjDm  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) (<Xdj^v  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 eLny-.i ,7  
    %   for all p. 2&fwr>!$  
    % tl5IwrF6;  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 7]j-zv  
    %   Zernike functions (order N<=7).  In some disciplines it is h$k3MhYDes  
    %   traditional to label the first 36 functions using a single mode Vcq?>mH&T  
    %   number P instead of separate numbers for the order N and azimuthal J#DcT@  
    %   frequency M. v`BG1&/|  
    % H| U/tU-  
    %   Example: )X;cS} yp  
    % <\g&%c,   
    %       % Display the first 16 Zernike functions l%(`<a]VIB  
    %       x = -1:0.01:1; t`,IW{  
    %       [X,Y] = meshgrid(x,x); -<!17jy  
    %       [theta,r] = cart2pol(X,Y); !nq\x8nU  
    %       idx = r<=1; i t@}dZ  
    %       p = 0:15; nln6:^w  
    %       z = nan(size(X)); R?~h7 d  
    %       y = zernfun2(p,r(idx),theta(idx)); "D(8]EG=  
    %       figure('Units','normalized') 1cBhcYv"  
    %       for k = 1:length(p) ~!F4JRf  
    %           z(idx) = y(:,k); PX2k,%  
    %           subplot(4,4,k) d J:x1j  
    %           pcolor(x,x,z), shading interp A9Wqz"[  
    %           set(gca,'XTick',[],'YTick',[]) ;Ph)BY<  
    %           axis square /2Lo{v=0[  
    %           title(['Z_{' num2str(p(k)) '}']) :V~*vLvR  
    %       end t}k'Ba3]:Y  
    % ~hslLUE  
    %   See also ZERNPOL, ZERNFUN. `L#?eQ{  
    iv+jv2ZF%  
    %   Paul Fricker 11/13/2006 B8AzN9v&"N  
    )?&kQ^@v  
    @) ZO$h  
    % Check and prepare the inputs: (Q8 ?)  
    % ----------------------------- <-:@} |br  
    if min(size(p))~=1 MlK`sH6  
        error('zernfun2:Pvector','Input P must be vector.') G+ v, Hi1  
    end +`zi>=  
    9m !!b{  
    if any(p)>35 Z/kaRnG[@t  
        error('zernfun2:P36', ... =l4\4td9p  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ioNa~F&  
               '(P = 0 to 35).']) xY'qm8V  
    end ,&&M|,NQ&s  
    >2CusT2  
    % Get the order and frequency corresonding to the function number: tNuCxb-  
    % ---------------------------------------------------------------- !x$ :8R  
    p = p(:); cYM~IA  
    n = ceil((-3+sqrt(9+8*p))/2); 9jR[:[  
    m = 2*p - n.*(n+2); aZjef  
    V.Ba''E7  
    % Pass the inputs to the function ZERNFUN: %7>AcTN~  
    % ---------------------------------------- kq%gY  
    switch nargin BU:Ecchbr  
        case 3 Y3$PQwn .P  
            z = zernfun(n,m,r,theta); XMEK5Z9Dd  
        case 4 I\rZk9F  
            z = zernfun(n,m,r,theta,nflag); ^jha:d  
        otherwise |\%F(d330  
            error('zernfun2:nargin','Incorrect number of inputs.') AuDR |;i  
    end .D,?u"fk|  
    ;eW'}&|LV  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) [T4 pgt'H  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ~)wwX:;B_  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ]D{c4)\7C|  
    %   order N and frequency M, evaluated at R.  N is a vector of cK|rrwa0  
    %   positive integers (including 0), and M is a vector with the WbQhl sc:  
    %   same number of elements as N.  Each element k of M must be a 8Da(tS  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k)  nOoKGT  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is }$|%/Y  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix gHvW e  
    %   with one column for every (N,M) pair, and one row for every abICoP1zQ  
    %   element in R. "J P{Q  
    % $-$5ta{s  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- L2CW'Hd  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is tg7C;rJ  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to -_2Dy1  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 m3xz=9Ve  
    %   for all [n,m]. N b3I%r  
    % ~VqFZasV  
    %   The radial Zernike polynomials are the radial portion of the H_?;h-Y]  
    %   Zernike functions, which are an orthogonal basis on the unit FgOUe  
    %   circle.  The series representation of the radial Zernike _8[UtZYG  
    %   polynomials is ;'=VrE6  
    % VLh%XoQx[  
    %          (n-m)/2 r7Nu>[r5  
    %            __ J16=!q()  
    %    m      \       s                                          n-2s ?CH?kP  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 09  
    %    n      s=0 =MTj4VXh"  
    % .Lojzx  
    %   The following table shows the first 12 polynomials. yy1>r }L  
    % b A)b`1lI  
    %       n    m    Zernike polynomial    Normalization bbd0ocva  
    %       --------------------------------------------- m !#_CQ:  
    %       0    0    1                        sqrt(2) cs K>iN  
    %       1    1    r                           2 rD0k%-{{  
    %       2    0    2*r^2 - 1                sqrt(6) M4TrnZ1D}  
    %       2    2    r^2                      sqrt(6) PM~bM3Ei  
    %       3    1    3*r^3 - 2*r              sqrt(8) e> ar  
    %       3    3    r^3                      sqrt(8) Q&u>7_, Du  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 99F>n[5  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) GhqgRzX  
    %       4    4    r^4                      sqrt(10) 4)c+t"h  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) x 8 f6,  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) =LXvlt'Q34  
    %       5    5    r^5                      sqrt(12) 4-y6MH  
    %       --------------------------------------------- d@-wi%,^  
    % 4JGE2ArR  
    %   Example: m9#}X_&x  
    % nHSTeF I?  
    %       % Display three example Zernike radial polynomials 5{')GTdX>  
    %       r = 0:0.01:1; {B@*DQv  
    %       n = [3 2 5]; oz%h)#;  
    %       m = [1 2 1]; B^Xy0fq  
    %       z = zernpol(n,m,r); {hxW,mmA  
    %       figure 'To<T  
    %       plot(r,z) 8dc538:q}  
    %       grid on  pz$_W  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Lb!r(o>8Cb  
    % BwJNi6,  
    %   See also ZERNFUN, ZERNFUN2. =f o4x|{O  
    kfVZ=`p}  
    % A note on the algorithm. dF$KrwDK  
    % ------------------------ Tc:sldtCk  
    % The radial Zernike polynomials are computed using the series %h0D)6 j  
    % representation shown in the Help section above. For many special )j\r,9<K+5  
    % functions, direct evaluation using the series representation can `/c7h16  
    % produce poor numerical results (floating point errors), because '#H&:Htm;L  
    % the summation often involves computing small differences between ]X*YAPv  
    % large successive terms in the series. (In such cases, the functions KZECo1  
    % are often evaluated using alternative methods such as recurrence ll_}& a0G  
    % relations: see the Legendre functions, for example). For the Zernike 9QX4R<"wUg  
    % polynomials, however, this problem does not arise, because the iNt 4>  
    % polynomials are evaluated over the finite domain r = (0,1), and ^Ss<X}es-  
    % because the coefficients for a given polynomial are generally all CP +4k.)*O  
    % of similar magnitude. Hr8\QgD<4  
    % YQ52~M0L  
    % ZERNPOL has been written using a vectorized implementation: multiple R3$@N  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] _~PO  
    % values can be passed as inputs) for a vector of points R.  To achieve B jYOfu'~z  
    % this vectorization most efficiently, the algorithm in ZERNPOL \kxh#{$z?  
    % involves pre-determining all the powers p of R that are required to C+`xx('N9  
    % compute the outputs, and then compiling the {R^p} into a single Y7-*2"!  
    % matrix.  This avoids any redundant computation of the R^p, and T\jAk+$Jo  
    % minimizes the sizes of certain intermediate variables. j13riI3A  
    % 0k%hY{  
    %   Paul Fricker 11/13/2006 dnix:'D1  
    t7&Dwmck9  
    ^dh=M5xz)  
    % Check and prepare the inputs: gNTh% e  
    % ----------------------------- =m~ruZ/  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >ZX|4U[$P  
        error('zernpol:NMvectors','N and M must be vectors.') W;.{]x.0  
    end *y{+W   
    N^lAG"Jao[  
    if length(n)~=length(m) u-kZW1wrQ  
        error('zernpol:NMlength','N and M must be the same length.') _1P`]+K\D$  
    end +SyUWoM  
    yu=piP  
    n = n(:); q4) Ey  
    m = m(:); G,B?&gFX  
    length_n = length(n); 8|6~o.B.G  
    <z',]hy  
    if any(mod(n-m,2)) Z&A0hI4d  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') kAeNQRjR  
    end `&H04x"Y$>  
    ~U9q-/(J/  
    if any(m<0) g#}tm<  
        error('zernpol:Mpositive','All M must be positive.') O MvT;Vgg  
    end ]'tJ S]  
    .ots?Ns  
    if any(m>n) e9lOk)`t  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') YIO.yN"0  
    end ~?CS_B *  
    ,aWCiu}  
    if any( r>1 | r<0 ) ?]5Ix1  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ?T <rt  
    end hox< vr4  
    1) 'Iu`k/  
    if ~any(size(r)==1) eKyqU9  
        error('zernpol:Rvector','R must be a vector.') ^iuo^2+  
    end 7C?E z%a@  
    *y?[ <2"$  
    r = r(:); H~eGgm;p  
    length_r = length(r);  jC4O`  
    #hy+ L  
    if nargin==4 nSHNis  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); %W&1`^Jl  
        if ~isnorm qEZ!2R^`G  
            error('zernpol:normalization','Unrecognized normalization flag.') me:iQ.g  
        end z-I|h~ii  
    else n7S; Xve#  
        isnorm = false; f]]f85  
    end `|,Bm|~:  
    AX K95eS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cl_T F[n?  
    % Compute the Zernike Polynomials 3Soy3Xp  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m@[3~ 6A  
    'gCZ'edM  
    % Determine the required powers of r: ` jyKCm.$#  
    % ----------------------------------- bOb Nc  
    rpowers = []; ?aFZOc4   
    for j = 1:length(n) 'B,KFA<  
        rpowers = [rpowers m(j):2:n(j)]; 5D L,U(Y  
    end w,/6B&|  
    rpowers = unique(rpowers); ;Yv14{T!  
    M9DgO4xl  
    % Pre-compute the values of r raised to the required powers, h 1*FPsc  
    % and compile them in a matrix: 1fRP1  
    % ----------------------------- ,\x$q'  
    if rpowers(1)==0 ntZ~m  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); x9D/s`!  
        rpowern = cat(2,rpowern{:}); _@K YF)  
        rpowern = [ones(length_r,1) rpowern]; {[tZ.1.w  
    else lC4PKm no  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :X Lp  
        rpowern = cat(2,rpowern{:}); {Xv3:"E"O  
    end QXY}STs  
    WN\PX!K9  
    % Compute the values of the polynomials: V)h y0_  
    % -------------------------------------- 1mix+.d  
    z = zeros(length_r,length_n); +99Bi2H}o  
    for j = 1:length_n e=L*&X  
        s = 0:(n(j)-m(j))/2; p#=;)1  
        pows = n(j):-2:m(j); ^cn@?k((A  
        for k = length(s):-1:1 a'A s  
            p = (1-2*mod(s(k),2))* ... U!Mf]3  
                       prod(2:(n(j)-s(k)))/          ... mV;3ILO  
                       prod(2:s(k))/                 ... Y;eoT J  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... `2e_ L  
                       prod(2:((n(j)+m(j))/2-s(k))); gyFr"9';c  
            idx = (pows(k)==rpowers); {=iyK/Uf  
            z(:,j) = z(:,j) + p*rpowern(:,idx); #9,=Owup  
        end D2]ZMDL.  
         ayeCi8  
        if isnorm ?;RD u[eD  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); =f `=@]  
        end TzY *;  
    end WUY,. 8  
    Q i^;1&  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  '&+Z,  
    "1AjCHZ  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ?fm2qrV@fp  
    ayHn_  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)