切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11614阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 % ."@Q$lA  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! wGsRS[  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 7Q w|!  
    function z = zernfun(n,m,r,theta,nflag) CSPKP#,B0[  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. <"D=6jqZ  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Zk8|K'oHx  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 8vSse  
    %   unit circle.  N is a vector of positive integers (including 0), and >>i@r@  
    %   M is a vector with the same number of elements as N.  Each element bI)u/  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 8X|r4otn4  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ^u}L;`L  
    %   and THETA is a vector of angles.  R and THETA must have the same ph>7?3;t  
    %   length.  The output Z is a matrix with one column for every (N,M) D]a<4a 18  
    %   pair, and one row for every (R,THETA) pair. u]+~VT1C,3  
    % ml|W~-6l  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [YrHA~=U  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Rm1A>1a :  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral obrl#(\P  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, mI*[>#q>  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized !o=U19)  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. r0d35  
    % cKb)VG^  
    %   The Zernike functions are an orthogonal basis on the unit circle. Z+j\a5d?,  
    %   They are used in disciplines such as astronomy, optics, and [.hyZ}B  
    %   optometry to describe functions on a circular domain. %CUGm$nH  
    % zA+~7;7E  
    %   The following table lists the first 15 Zernike functions. g.c8FP+  
    % yme^b ;a  
    %       n    m    Zernike function           Normalization lv vs%@b>  
    %       -------------------------------------------------- DypFl M*  
    %       0    0    1                                 1 i wxVl)QL  
    %       1    1    r * cos(theta)                    2 6hZ@;Q=b  
    %       1   -1    r * sin(theta)                    2 r78TE@d  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]?x: Qm'yo  
    %       2    0    (2*r^2 - 1)                    sqrt(3) cLPkK3O\=  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) t5)+&I2  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) oI)GKA_Ng7  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 'XY`(3q  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ,QzL)W7  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) +dA,P\  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) SS`qJZ|w  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [aI]y =v  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) / XnhmqWm%  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jM-)BP6f4  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) !RyO\>:q  
    %       -------------------------------------------------- c wg !j!l  
    % WDFjp  
    %   Example 1: [=B$5%A  
    % [,2|Flf e  
    %       % Display the Zernike function Z(n=5,m=1) it]E-^2>  
    %       x = -1:0.01:1; fDG0BNLY  
    %       [X,Y] = meshgrid(x,x); 1]orUF&_  
    %       [theta,r] = cart2pol(X,Y); A,r*%&4~  
    %       idx = r<=1; l;y7]DO  
    %       z = nan(size(X)); k} ]T;|h]  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); hx/N1 x  
    %       figure K\XH4kic  
    %       pcolor(x,x,z), shading interp P/EM :  
    %       axis square, colorbar |t; ~:A  
    %       title('Zernike function Z_5^1(r,\theta)')  /'31w9  
    % 6JKqn~0Kk  
    %   Example 2: gX0R)spg  
    % cZ)}LX  
    %       % Display the first 10 Zernike functions DjSbyXvrg  
    %       x = -1:0.01:1; P!"&%d  
    %       [X,Y] = meshgrid(x,x); 5@^ dgq  
    %       [theta,r] = cart2pol(X,Y); yHxosxd<*  
    %       idx = r<=1; A^q[N  
    %       z = nan(size(X)); k)TSR5A  
    %       n = [0  1  1  2  2  2  3  3  3  3]; $Of0n` e  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !"8fdSfg w  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; p~*UpU8u  
    %       y = zernfun(n,m,r(idx),theta(idx)); ,t\* ZTt$  
    %       figure('Units','normalized') \GHiLs,!  
    %       for k = 1:10 V+I|1{@i0  
    %           z(idx) = y(:,k); `7/Y@}n  
    %           subplot(4,7,Nplot(k)) H\XP\4#u  
    %           pcolor(x,x,z), shading interp 4)1s M=u  
    %           set(gca,'XTick',[],'YTick',[]) &QhX1dT+  
    %           axis square i hh/sPi  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) sZW^ !z  
    %       end $H+VA@_  
    % 5uxBK"q  
    %   See also ZERNPOL, ZERNFUN2. =0;^(/1Mc  
    ?_I[,N?@41  
    %   Paul Fricker 11/13/2006 765p/**  
    SJIOI@\b  
    4wrk2x[  
    % Check and prepare the inputs: hAHq\  
    % ----------------------------- 6M13f@v  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) u%.$BD Hg  
        error('zernfun:NMvectors','N and M must be vectors.') -WYAN:s  
    end @xB*KyUW  
    yRo- EP  
    if length(n)~=length(m) ?.D3'qv  
        error('zernfun:NMlength','N and M must be the same length.') |g=="  
    end !"eIV@7  
    W3iZ|[E;  
    n = n(:); OK\A</8r  
    m = m(:); sP ls zC[  
    if any(mod(n-m,2)) H"qOSf{  
        error('zernfun:NMmultiplesof2', ... yz0zFfiX  
              'All N and M must differ by multiples of 2 (including 0).') Yot?=T};3{  
    end Uh][@35 p  
    e^O(e  
    if any(m>n) tO0!5#-VR  
        error('zernfun:MlessthanN', ...  =|9H  
              'Each M must be less than or equal to its corresponding N.') S{Er?0wm.R  
    end (&!NC[n,  
    rD*sl}  
    if any( r>1 | r<0 ) qbv#I;  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') E8-P"`Qba  
    end lGVEpCS}  
    4fe7U=#;Y  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) U*3uq7  
        error('zernfun:RTHvector','R and THETA must be vectors.') bR V+>;L0@  
    end !%c'$f/  
    Ox@sI:CT  
    r = r(:); 3\Xbmq8}  
    theta = theta(:); \|K;-pL  
    length_r = length(r); !H ~<  
    if length_r~=length(theta) |m2X+s9  
        error('zernfun:RTHlength', ... ;$z$@@WC  
              'The number of R- and THETA-values must be equal.') )HvnoUO0  
    end "I QlVi  
    i F+vl]  
    % Check normalization: $#]]K  
    % -------------------- 7PkJ-JBA  
    if nargin==5 && ischar(nflag) Mb]rY>B4  
        isnorm = strcmpi(nflag,'norm'); qM.bF&&Go  
        if ~isnorm lv]hTH 4T  
            error('zernfun:normalization','Unrecognized normalization flag.') <A# l 35  
        end 3"P }n  
    else ?2oHZ%G  
        isnorm = false; .B\5OI,]  
    end lIProF0  
    TYQwy*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1Uqu> '  
    % Compute the Zernike Polynomials >$ e9igwe  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5:kH;/U  
    ndeebXw*  
    % Determine the required powers of r: 4 M(-xl?  
    % ----------------------------------- Lliq j1&  
    m_abs = abs(m); gmm|A9+tv  
    rpowers = []; mL4]l(U  
    for j = 1:length(n) X_7UJ jFw"  
        rpowers = [rpowers m_abs(j):2:n(j)]; =Jym%m  
    end nH<eR)0  
    rpowers = unique(rpowers); &cu lbcz  
    APO>y  
    % Pre-compute the values of r raised to the required powers, lhkwWbB  
    % and compile them in a matrix: Iyyh!MVF  
    % ----------------------------- %wSj%>&-R  
    if rpowers(1)==0 4!LCR}K  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); y>aZXa  
        rpowern = cat(2,rpowern{:}); zA1lca0HK  
        rpowern = [ones(length_r,1) rpowern]; [AW" D3  
    else FD8N"p  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -k"^o!p  
        rpowern = cat(2,rpowern{:}); IhA*"  
    end ;]pJj6J&v  
    ~SnSEhE  
    % Compute the values of the polynomials: IqD_GL)Ms  
    % -------------------------------------- L\#<JxY$p  
    y = zeros(length_r,length(n)); 1[yq0^\]M[  
    for j = 1:length(n) v_nj$1dY6  
        s = 0:(n(j)-m_abs(j))/2; y8rm  
        pows = n(j):-2:m_abs(j); GO^_=EMR[  
        for k = length(s):-1:1 Zib)P&  
            p = (1-2*mod(s(k),2))* ... G^` 1]?  
                       prod(2:(n(j)-s(k)))/              ... H V;D?^F  
                       prod(2:s(k))/                     ... [!U?}1YQ  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Sx8OhUyux  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 0eS)&GdR  
            idx = (pows(k)==rpowers); .3MIcj=p  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ZAXN6h  
        end !OuWPH. :  
         6CMub0   
        if isnorm mljh|[  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); lj?v4$  
        end E,f>1meN=  
    end a! u rew#  
    % END: Compute the Zernike Polynomials %C=]1Q=T)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pe{; ~-|6  
    NwZ@#D#[ Y  
    % Compute the Zernike functions: cJL'$`gWf  
    % ------------------------------ :bC40@  
    idx_pos = m>0; [ U w i  
    idx_neg = m<0; MKWyP+6`  
    6O}`i>/6M  
    z = y; D7S'*;F  
    if any(idx_pos) PK4iuU`vh  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); $VxA0 =ad  
    end Rh>}rGvCUN  
    if any(idx_neg) UF@XK">  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); I*`*Q$  
    end ?2g`8[">  
    -G|G_$9  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) j8sH#b7Z  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. -c}, :G"  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ,yTjU{<"  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive $]q8, N|1  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, =lu/9 i6  
    %   and THETA is a vector of angles.  R and THETA must have the same Ck /F9(  
    %   length.  The output Z is a matrix with one column for every P-value, kn/Ao}J74z  
    %   and one row for every (R,THETA) pair. t2r?N}"P  
    % L*x[?x;)@  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike MX ;J5(Ae  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) i}~SDY  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 0p@k({]<  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 E.U_W  
    %   for all p. +Lnsr\BA  
    % (X?/"lC)  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 +d%L\^?F  
    %   Zernike functions (order N<=7).  In some disciplines it is +L5\;  
    %   traditional to label the first 36 functions using a single mode LvEnXS  
    %   number P instead of separate numbers for the order N and azimuthal B)QHM+[= F  
    %   frequency M. %/rMg"f:  
    % K_ ci_g":  
    %   Example: BY]i;GVq  
    % ,do58i K  
    %       % Display the first 16 Zernike functions ?SC[G-b  
    %       x = -1:0.01:1; Y OJ6 w  
    %       [X,Y] = meshgrid(x,x); N72Yq)(  
    %       [theta,r] = cart2pol(X,Y); +z$pg  
    %       idx = r<=1; f +hjC  
    %       p = 0:15; R9! Uo  
    %       z = nan(size(X)); hbc uK&  
    %       y = zernfun2(p,r(idx),theta(idx)); E!O\87[  
    %       figure('Units','normalized') yu;SH[{Wi  
    %       for k = 1:length(p) G\a8B#hg  
    %           z(idx) = y(:,k); {Ixg2=E\  
    %           subplot(4,4,k) wm+})SOX9  
    %           pcolor(x,x,z), shading interp G5FaYL.7  
    %           set(gca,'XTick',[],'YTick',[]) >[1W:KQA  
    %           axis square +GAf O0  
    %           title(['Z_{' num2str(p(k)) '}']) QL$S4 J"  
    %       end -!8(bjlJ&  
    % Ve/xnn]'  
    %   See also ZERNPOL, ZERNFUN. .uEPnzi  
    aBzszp]l+  
    %   Paul Fricker 11/13/2006 P(a.iu5   
    vhb)2n  
    Gxa x2o  
    % Check and prepare the inputs: q SejLh6  
    % ----------------------------- @;?T~^nGj  
    if min(size(p))~=1 8#&q$kE  
        error('zernfun2:Pvector','Input P must be vector.') 3.)b4T  
    end Z,X'-7YkU  
    W<<9y  
    if any(p)>35 SZ_V^UX_  
        error('zernfun2:P36', ... b,IocD6v;P  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ~j'l.gQb  
               '(P = 0 to 35).']) h},oF!,  
    end 8/"fWm/  
    u(!&:A9JFd  
    % Get the order and frequency corresonding to the function number: A$WZF/x  
    % ---------------------------------------------------------------- BQ jK8c<  
    p = p(:); m5D"A D  
    n = ceil((-3+sqrt(9+8*p))/2); d HJhFw  
    m = 2*p - n.*(n+2); :5yV.7  
    S:61vD  
    % Pass the inputs to the function ZERNFUN: 9RwawTM  
    % ---------------------------------------- hwqbi "o  
    switch nargin > MG>=A  
        case 3 "3F;cCDv]  
            z = zernfun(n,m,r,theta); }Up.){.%  
        case 4  a1j.fA  
            z = zernfun(n,m,r,theta,nflag); &Z^ l=YH,  
        otherwise "<i SZ  
            error('zernfun2:nargin','Incorrect number of inputs.') Xq4|uuS-O  
    end .O0O-VD+a  
    A!63p$VT;  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) \ /|)HElKR  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. T5O _LCIws  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of @InZ<AW>|  
    %   order N and frequency M, evaluated at R.  N is a vector of EC6k{y}bA  
    %   positive integers (including 0), and M is a vector with the bqx0d=Z~[  
    %   same number of elements as N.  Each element k of M must be a 1t9.fEmT  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) /hv#CB>1x  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is :!zC"d9@  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix smQVWs>  
    %   with one column for every (N,M) pair, and one row for every JmpsQ,,  
    %   element in R. rp7W }P+uU  
    % 4F MAz^  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- gBk5wk_j|  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is <f~Fl^^8  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to VK3it3FI>3  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 kJ)gP2E  
    %   for all [n,m]. AAUyy :  
    % "'Z- UV  
    %   The radial Zernike polynomials are the radial portion of the eX l=i-'  
    %   Zernike functions, which are an orthogonal basis on the unit ~2_lp^Y  
    %   circle.  The series representation of the radial Zernike G"y.Z2$  
    %   polynomials is =GR 'V  
    % /OGA$eP  
    %          (n-m)/2 v$w++3H  
    %            __ "zZI S6j  
    %    m      \       s                                          n-2s KbxR Lx]w  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r R,@g7p  
    %    n      s=0 8Og3yFx[rt  
    % Me:{{-V4  
    %   The following table shows the first 12 polynomials. G6`J1Uk  
    % tu%[p 4   
    %       n    m    Zernike polynomial    Normalization =fyyqb 4  
    %       --------------------------------------------- `^U&#K  
    %       0    0    1                        sqrt(2) hh.Q\qhubB  
    %       1    1    r                           2 >[a<pm !  
    %       2    0    2*r^2 - 1                sqrt(6) uL?vG6% ^1  
    %       2    2    r^2                      sqrt(6) YT yX`Y#  
    %       3    1    3*r^3 - 2*r              sqrt(8) %3Bpn=k>  
    %       3    3    r^3                      sqrt(8) k<4P6?  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) KhM.Tc  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) J^3H7 ]  
    %       4    4    r^4                      sqrt(10) ?$%%Mp(  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) . \5$MIF  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) {)K](S ~  
    %       5    5    r^5                      sqrt(12) 5^)_B;.f  
    %       --------------------------------------------- rj  H`  
    % M1u{A^d.Z  
    %   Example: <`g3(?   
    % i</J@0}y  
    %       % Display three example Zernike radial polynomials 4Nmea-!*  
    %       r = 0:0.01:1; xX@FWAj  
    %       n = [3 2 5]; oO=o|w|T  
    %       m = [1 2 1]; !E& MBAKy  
    %       z = zernpol(n,m,r); CB*/ =Y  
    %       figure O]nT>;PXX  
    %       plot(r,z) U=!@Db5k~  
    %       grid on |pWaBh|r  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') d\]O'U)s  
    % $3\yf?m}q  
    %   See also ZERNFUN, ZERNFUN2. d(L{!mm  
    Gq]d:-7l  
    % A note on the algorithm. bsO@2NP'  
    % ------------------------ }e=e",eAT  
    % The radial Zernike polynomials are computed using the series T{ -2fp8r[  
    % representation shown in the Help section above. For many special d\Jji 6W  
    % functions, direct evaluation using the series representation can g"y?nF.&F  
    % produce poor numerical results (floating point errors), because <d@pmh  
    % the summation often involves computing small differences between ^g!B.ll`  
    % large successive terms in the series. (In such cases, the functions D@vMAW  
    % are often evaluated using alternative methods such as recurrence zk>h u<_  
    % relations: see the Legendre functions, for example). For the Zernike kfj%  
    % polynomials, however, this problem does not arise, because the &=-PRza%j  
    % polynomials are evaluated over the finite domain r = (0,1), and !A[S6-18%-  
    % because the coefficients for a given polynomial are generally all &`@M8-m#F  
    % of similar magnitude. .s};F/(diD  
    % F";FG 0  
    % ZERNPOL has been written using a vectorized implementation: multiple ="B n=>  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] u7muaSy  
    % values can be passed as inputs) for a vector of points R.  To achieve  `$-lL"  
    % this vectorization most efficiently, the algorithm in ZERNPOL "T*I|  
    % involves pre-determining all the powers p of R that are required to 0>Fqx{!heq  
    % compute the outputs, and then compiling the {R^p} into a single sx-F8:Qa  
    % matrix.  This avoids any redundant computation of the R^p, and 2z-$zB<vyw  
    % minimizes the sizes of certain intermediate variables. QGPR.<D)B  
    % },6*Y*?{  
    %   Paul Fricker 11/13/2006 37K U~9-A  
    v*L '{3f  
    pF='jj51  
    % Check and prepare the inputs: _$(GRNRYK  
    % ----------------------------- =>YvA>izE  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #>q[oie1e  
        error('zernpol:NMvectors','N and M must be vectors.') X,Zd=  
    end r{V.jZ%p'Z  
    Opry`}5h  
    if length(n)~=length(m) E$T(Qu<-  
        error('zernpol:NMlength','N and M must be the same length.') DR{] sG  
    end 5&qY3@I7l  
    [|<EDR  
    n = n(:); {]M>Y%j48  
    m = m(:); B"[{]GP BY  
    length_n = length(n); :A*0]X;  
    FF@`+T  
    if any(mod(n-m,2)) uRGB/ju^E  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') lWlUWhLnP  
    end L?.7\a@  
    R2Yl)2 D  
    if any(m<0) IQoH@l&Xk  
        error('zernpol:Mpositive','All M must be positive.') "VQ|E d  
    end J=P;W2L  
    =~$U^IsWA  
    if any(m>n) iUCwKpb9  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') !5E9sk{)  
    end /Tcb\:`9  
    Q;@X2 JSp  
    if any( r>1 | r<0 ) .$^wy3:F"  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') =g[H]-Ee  
    end %/md"S  
    .m!s". ?[  
    if ~any(size(r)==1) r?afv.@L2  
        error('zernpol:Rvector','R must be a vector.') neIy~H_#!  
    end @?vLAsp\  
    7BK46x  
    r = r(:); b_l.QKk  
    length_r = length(r); x{2o[dK4}  
    :Lc3a$qtx5  
    if nargin==4 aa!a&L|!  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); s79 q 5  
        if ~isnorm B%y! aQep  
            error('zernpol:normalization','Unrecognized normalization flag.') oc=tI@W  
        end -g<cinNSp  
    else X -v~o/r7  
        isnorm = false; |zb`&tv}  
    end Kf&r21h  
    Z3Gm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;h~?ko  
    % Compute the Zernike Polynomials 0tSA|->(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FQQ@kP$.  
    T[m ~6  
    % Determine the required powers of r: f{f_g8f[  
    % ----------------------------------- QWKs[yfdo  
    rpowers = []; .u&|e  
    for j = 1:length(n) a2[ 8wv1  
        rpowers = [rpowers m(j):2:n(j)];  .?70=8{  
    end &1 oaZY w  
    rpowers = unique(rpowers); :"y0oCu7`W  
    FE>3 D1\  
    % Pre-compute the values of r raised to the required powers, E+:.IuXW$  
    % and compile them in a matrix: 2h5tBEOX.s  
    % ----------------------------- )< l\jfx e  
    if rpowers(1)==0 DqRLx85d1  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); l~4_s/  
        rpowern = cat(2,rpowern{:}); u1wg C#  
        rpowern = [ones(length_r,1) rpowern]; { _-wG3f|  
    else >@z d\}@W  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;Sy/N||  
        rpowern = cat(2,rpowern{:}); otoBb^Mz  
    end Jm%mm SYK  
    |x*{fXdMhr  
    % Compute the values of the polynomials: dEL3?-;'  
    % -------------------------------------- VPdwSW[eM  
    z = zeros(length_r,length_n); hyM'x*  
    for j = 1:length_n K* 0 aXr?  
        s = 0:(n(j)-m(j))/2; 2B5A!? ~>  
        pows = n(j):-2:m(j); 2\DTJ`Y,  
        for k = length(s):-1:1 4n#YDZ  
            p = (1-2*mod(s(k),2))* ... 9/FG,9  
                       prod(2:(n(j)-s(k)))/          ... jC#`PA3m=  
                       prod(2:s(k))/                 ... `Fz\wPd  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... xGwTk  
                       prod(2:((n(j)+m(j))/2-s(k))); C{DlcZ<  
            idx = (pows(k)==rpowers); RfD{g"]y  
            z(:,j) = z(:,j) + p*rpowern(:,idx); oo;;y,`8py  
        end kboizJp  
         .MzOLv   
        if isnorm wwo(n$!\  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ~6\& y  
        end ?e"Wu+q~L  
    end a|8| @,  
    #4Dn@Gqh.Y  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  "lv:hz  
    Ru  vG1"  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 i-i}`oN  
    Up /eV}C  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)