非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 zS:2?VXxq
function z = zernfun(n,m,r,theta,nflag) ]9_gbQ
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6uD<E
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !<TkX/O
% and angular frequency M, evaluated at positions (R,THETA) on the ]x)!Kd2>
% unit circle. N is a vector of positive integers (including 0), and !h1:AW_iz
% M is a vector with the same number of elements as N. Each element "U^m~N9k{
% k of M must be a positive integer, with possible values M(k) = -N(k) rp\`uj*D
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ]RAh['u|
% and THETA is a vector of angles. R and THETA must have the same `M~R4lr
% length. The output Z is a matrix with one column for every (N,M) 7 "eK<qJ
% pair, and one row for every (R,THETA) pair. s(py7{ ^K
% )bM,>x
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike LZ wCe$1
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), g} !{_z
% with delta(m,0) the Kronecker delta, is chosen so that the integral JDf>Qg{
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 6y!U68L;B
% and theta=0 to theta=2*pi) is unity. For the non-normalized U4*u|A
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. G,>YzjMY`
% 0{vT`e'
% The Zernike functions are an orthogonal basis on the unit circle. 7c"Csq/]I
% They are used in disciplines such as astronomy, optics, and \^6 [^\@[
% optometry to describe functions on a circular domain. k.C&6*l!5;
% nA0%M1a
% The following table lists the first 15 Zernike functions. %%ouf06.|
% %Bw:6Y4LZ
% n m Zernike function Normalization t+w{uwEY
% -------------------------------------------------- X<5fn+{]S:
% 0 0 1 1 /4O))}TX
% 1 1 r * cos(theta) 2 wU|@fm"
% 1 -1 r * sin(theta) 2 ~~Bks{"BS
% 2 -2 r^2 * cos(2*theta) sqrt(6) N!c FUZ5]
% 2 0 (2*r^2 - 1) sqrt(3) R*vQvO%)h
% 2 2 r^2 * sin(2*theta) sqrt(6) S'5 )K
% 3 -3 r^3 * cos(3*theta) sqrt(8) j4,y+9U
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 0g30nr)
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) :%&
E58
% 3 3 r^3 * sin(3*theta) sqrt(8) Iuz_u2"C
% 4 -4 r^4 * cos(4*theta) sqrt(10) (o*YGYC
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) PP{9Y Vr
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) =Rx4ZqTI|
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~;9n6U
% 4 4 r^4 * sin(4*theta) sqrt(10) ,=\.L_'
% -------------------------------------------------- Btxtu"]nJo
% +YZo-tE
% Example 1: 8\68NG6o
% <oJ?J^
% % Display the Zernike function Z(n=5,m=1) {ol7*% u
% x = -1:0.01:1; $ (;:4
% [X,Y] = meshgrid(x,x); KANR=G
% [theta,r] = cart2pol(X,Y); A:ts_*
% idx = r<=1; pMT7 /y-
% z = nan(size(X)); ~-Kx^3(#
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 27 XM&ZrZ
% figure 9HO9>^
% pcolor(x,x,z), shading interp K@*+;6y@
% axis square, colorbar B!pz0K*uG
% title('Zernike function Z_5^1(r,\theta)') \t)va:y
% 7)QZ<fme
% Example 2: 3N$@K"qM#
% 3"m]A/6C}
% % Display the first 10 Zernike functions -XXsob}/8
% x = -1:0.01:1;
i=\)[;U
% [X,Y] = meshgrid(x,x); C]2-V1,ZX
% [theta,r] = cart2pol(X,Y); RAl/p9\A+
% idx = r<=1; ic`BDkNO
% z = nan(size(X)); rwJU;wy
% n = [0 1 1 2 2 2 3 3 3 3]; ~(v5p"]dj
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; UstUPO
% Nplot = [4 10 12 16 18 20 22 24 26 28]; (Ff}Y.4
% y = zernfun(n,m,r(idx),theta(idx)); <L8|Wz
% figure('Units','normalized') EA(4xj&:U
% for k = 1:10 {Vj&i.2,
% z(idx) = y(:,k); k*?T^<c3
% subplot(4,7,Nplot(k)) Wz.iDRFl
% pcolor(x,x,z), shading interp V K6D
% set(gca,'XTick',[],'YTick',[]) {,JO}Dmu5
% axis square (
jU $
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) peu9Bgs
% end *VhEl7
% jz_Y|"{`v
% See also ZERNPOL, ZERNFUN2. eMnK@J
!DOyOTR&3
% Paul Fricker 11/13/2006 _|["}M"?
vN^.MR+<
>)<?
% Check and prepare the inputs: Ez~5ax7x
% ----------------------------- 2, )>F"R
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) m|W17LhW{
error('zernfun:NMvectors','N and M must be vectors.') V3ozaVk;
end '>t&fzD0
dscah0T
if length(n)~=length(m) \4wMv[;7
error('zernfun:NMlength','N and M must be the same length.') _M/N_Fm
end OJpfiZ@Q_
:wS&3:h
n = n(:); %4m Nk}tyH
m = m(:); g_cED15
if any(mod(n-m,2)) Zpg;hj5_
error('zernfun:NMmultiplesof2', ... Ht;Rz*}
'All N and M must differ by multiples of 2 (including 0).') cZ_)'0
end vQLYWRXiA
2pdeJ
if any(m>n) rb-ao\
error('zernfun:MlessthanN', ... g0j)k6<6(Y
'Each M must be less than or equal to its corresponding N.') KV$&qM.
end A]!0Z:{h%
ZwBz\jmbP
if any( r>1 | r<0 ) ~BuzI9~7P
error('zernfun:Rlessthan1','All R must be between 0 and 1.') N_bgW QY
end QUW`Yc
}
doAeTZ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) *|Vf1R]
error('zernfun:RTHvector','R and THETA must be vectors.') Uo >aQk
end %urvX$r4K
}R<t=):
r = r(:); Q&:)D7m\)S
theta = theta(:); :@i+yN cV
length_r = length(r); iSO xQ
if length_r~=length(theta) G^t)^iI"'
error('zernfun:RTHlength', ... 56z>/`=
'The number of R- and THETA-values must be equal.') kMCP .D45;
end Zq8 5q
cxs@ph&Wk
% Check normalization: fE~KWLm
% -------------------- )).=MTk
if nargin==5 && ischar(nflag) `[5xncZ-
isnorm = strcmpi(nflag,'norm'); &zF>5@fM
if ~isnorm n7bVL#Sq[
error('zernfun:normalization','Unrecognized normalization flag.') ((A@VcX
end #aL.E(%
else `15}jTi
isnorm = false; HNS^:XR
end m8F$h-
MS;^:t1`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n{!{,s
% Compute the Zernike Polynomials HSNj
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =h4uN,
;)FvTm'"\.
% Determine the required powers of r: ^WB[uFt-
% ----------------------------------- f4 S:L&
m_abs = abs(m); K>+ v" x
rpowers = []; w3,KqF
for j = 1:length(n) E~}H,*)
rpowers = [rpowers m_abs(j):2:n(j)]; Y9X,2L7V
end m+'1c}n^7
rpowers = unique(rpowers); o4p5`jOG@
[Ix6ArY
% Pre-compute the values of r raised to the required powers, HDKF>S_S
% and compile them in a matrix: Jn{)CZ
% ----------------------------- 9ia&/BT7"z
if rpowers(1)==0 -Ct+W;2
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); t RU/[?!
rpowern = cat(2,rpowern{:}); dY}5Kmt
rpowern = [ones(length_r,1) rpowern]; A x8 >
else 0J'^<GTL
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); |.Vgk8oTl
rpowern = cat(2,rpowern{:}); OE(y$+L3_I
end (9]1p;
_DSDY$Ec
% Compute the values of the polynomials: LAc60^t1
% -------------------------------------- %TFsk
y = zeros(length_r,length(n)); xMk>r1Ud
for j = 1:length(n) =Ya^PAj '}
s = 0:(n(j)-m_abs(j))/2; =)+^ y}xb
pows = n(j):-2:m_abs(j); >oq\`E
for k = length(s):-1:1 ]zj#X\
p = (1-2*mod(s(k),2))* ... n>u_>2Ikkj
prod(2:(n(j)-s(k)))/ ... l tNI+G
prod(2:s(k))/ ... X$;x2mz nM
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... p+iNi4y@
prod(2:((n(j)+m_abs(j))/2-s(k))); @Pc7$ qD %
idx = (pows(k)==rpowers); -%J9!(
y(:,j) = y(:,j) + p*rpowern(:,idx); _"p(/H
end jX4$PfOhR
O8#]7\)
if isnorm :7X4VHw/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 0@?m"|G
end 2gK]w$H7!
end SN"Y@y)=
% END: Compute the Zernike Polynomials W>!:K^8]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !)oQ9,N
rEp\ld
% Compute the Zernike functions: VOj7Tz9UD
% ------------------------------ Yz2N(g[
idx_pos = m>0; ,1 H|{ <
idx_neg = m<0; r Yt|[Pk
wclj9&k
z = y; 2|?U%YrHWs
if any(idx_pos) N}/V2K]Q
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /Zs_G=\>
end d1.@v;
if any(idx_neg) 56YqYu.
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); j9c:SP5
end Y*9vR~#H
ZL0Vx6Ph
% EOF zernfun