切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11452阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦  *l-F  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 5Fa/Q>N  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 }1Km h]  
    function z = zernfun(n,m,r,theta,nflag) [knwp$  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. O ftjm X_  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N U7d05y'  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ?F@X>zR2  
    %   unit circle.  N is a vector of positive integers (including 0), and @ R;o $n  
    %   M is a vector with the same number of elements as N.  Each element r*W&SU9Z  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) SI/p8 ^  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Y .\<P*iO  
    %   and THETA is a vector of angles.  R and THETA must have the same Pxe7 \e  
    %   length.  The output Z is a matrix with one column for every (N,M) hZeF? G)L'  
    %   pair, and one row for every (R,THETA) pair. >Ms_bfSK  
    % _ }:#T8h  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ~`o%Y"p%rv  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), wlfq$h p  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral F=~LVaF/_  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, y'U-y"7y  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized !jyy`q=  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. bDM;7fFp$  
    % #=aTSw X  
    %   The Zernike functions are an orthogonal basis on the unit circle. PZO8< d  
    %   They are used in disciplines such as astronomy, optics, and =fy'w3m  
    %   optometry to describe functions on a circular domain. F]`_akE  
    % zr[|~-  
    %   The following table lists the first 15 Zernike functions. $h8,QPy  
    % s f<NC>-  
    %       n    m    Zernike function           Normalization 0;x<0P  
    %       -------------------------------------------------- xY1@Ja  
    %       0    0    1                                 1 lsRW.h,  
    %       1    1    r * cos(theta)                    2 [HSN*LXe  
    %       1   -1    r * sin(theta)                    2 %3 VToj@`>  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) /7p1y v  
    %       2    0    (2*r^2 - 1)                    sqrt(3) (pkq{: Fs  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) .+dego:  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 2N}h<Yd 9  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 2qfKDZ9f^  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) q;H5S<]/  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Ai.^~#%X  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) @1iH4RE*  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `& }C *i"  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) rZ^VKO`~I1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4#2iq@s  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) &L4>w.b"N  
    %       -------------------------------------------------- f&L8<AS Fo  
    % 7DCu#Y[  
    %   Example 1: jK-usn  
    % H5?H{  
    %       % Display the Zernike function Z(n=5,m=1) ]ppws3*Pa  
    %       x = -1:0.01:1; L<H6AzR+  
    %       [X,Y] = meshgrid(x,x); E8PlGQ~z{d  
    %       [theta,r] = cart2pol(X,Y); A!fRpN  
    %       idx = r<=1; )5U2-g#U  
    %       z = nan(size(X)); so@wUxF  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 'w~e>$WI  
    %       figure G.sf>.[  
    %       pcolor(x,x,z), shading interp l\1_v7s  
    %       axis square, colorbar ck K9@RQ  
    %       title('Zernike function Z_5^1(r,\theta)') YTYCv7  
    %  o C#W  
    %   Example 2: uEcK0>xp  
    % *d$r`.9j  
    %       % Display the first 10 Zernike functions EawtT  
    %       x = -1:0.01:1; b{hdEb  
    %       [X,Y] = meshgrid(x,x); +U*:WKdI?  
    %       [theta,r] = cart2pol(X,Y); j`ybzG^  
    %       idx = r<=1; |!.VpN&  
    %       z = nan(size(X)); cux<7#6af  
    %       n = [0  1  1  2  2  2  3  3  3  3]; dEG1[QG  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3];  $qyST  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; |^$?9Dn9.L  
    %       y = zernfun(n,m,r(idx),theta(idx)); K1[(% <Gp  
    %       figure('Units','normalized') &(YNz9L  
    %       for k = 1:10 t6a$ZN;  
    %           z(idx) = y(:,k); E.+BqWZ!  
    %           subplot(4,7,Nplot(k)) '?dT<w=Y&  
    %           pcolor(x,x,z), shading interp <) ltvo(  
    %           set(gca,'XTick',[],'YTick',[]) RqRyZ*n  
    %           axis square >XK |jPK  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) $7'KcG  
    %       end -VhxnhS  
    % 9Jj:d)E>o  
    %   See also ZERNPOL, ZERNFUN2. A,#a?O6m  
    ^A' Bghy  
    %   Paul Fricker 11/13/2006 i :Sih"=  
    31=v US  
    \2NT7^H#  
    % Check and prepare the inputs: e]@R'oM?#`  
    % ----------------------------- fMZzR|_18  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LGPPyK Nx  
        error('zernfun:NMvectors','N and M must be vectors.') ^.~m4t`U  
    end <^Sp4J  
    & 24$*Oe  
    if length(n)~=length(m) ewORb  
        error('zernfun:NMlength','N and M must be the same length.') )G=hgqy  
    end ~Op~~ m  
    (YKkJ  
    n = n(:); r0/o{Y|l6  
    m = m(:); Yi+$g  
    if any(mod(n-m,2)) c},wW@SF2W  
        error('zernfun:NMmultiplesof2', ... G+zIh}9  
              'All N and M must differ by multiples of 2 (including 0).') uhO-0H  
    end RI#o9d"x}  
    ISALR{Aq  
    if any(m>n) S^*ME*DDz  
        error('zernfun:MlessthanN', ... [ %:%C]4  
              'Each M must be less than or equal to its corresponding N.') DZ5QC aA  
    end G*\U'w4w|*  
    fe$OPl~  
    if any( r>1 | r<0 ) gO,2:,  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6h3TU,$r  
    end 8xQjJ  
    Ab/KVB  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) mqk tM6  
        error('zernfun:RTHvector','R and THETA must be vectors.') jpRC6b?  
    end PWbi`qF)r  
    0$\ j  
    r = r(:); P[<EFj E  
    theta = theta(:); <`WtP+`  
    length_r = length(r); ]?A-D,!(  
    if length_r~=length(theta) iDrQ4>  
        error('zernfun:RTHlength', ... U Rb  
              'The number of R- and THETA-values must be equal.') tX 3y{W10"  
    end 1y}tPkOe7O  
    7zEpuw  
    % Check normalization: BFH=cs  
    % -------------------- S1D;Xv@  
    if nargin==5 && ischar(nflag) $mLiEsJ  
        isnorm = strcmpi(nflag,'norm'); L qdz qq  
        if ~isnorm A ^U`c'$  
            error('zernfun:normalization','Unrecognized normalization flag.') C3GI?| b  
        end l_z@.</8P@  
    else TSHH=`cx  
        isnorm = false; gPz p/I  
    end CyEEE2cV  
    (X(c.Jj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >C"QV `+  
    % Compute the Zernike Polynomials SlojB^%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5x1_rjP$|  
    #;~dA  
    % Determine the required powers of r: XX|wle1Kg  
    % ----------------------------------- vg ^&j0  
    m_abs = abs(m); l5fF.A7TT  
    rpowers = []; F}dq~QCzw  
    for j = 1:length(n) n9N '}z  
        rpowers = [rpowers m_abs(j):2:n(j)]; ^#)M,.G^  
    end Cv;\cI"&  
    rpowers = unique(rpowers); @!:_r5R~N  
    nps"nggk  
    % Pre-compute the values of r raised to the required powers, @#W$7Gwf0  
    % and compile them in a matrix: y_A?} 'X  
    % ----------------------------- K}1eQS&$a  
    if rpowers(1)==0 &nX,)"  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); RRBBz7:~  
        rpowern = cat(2,rpowern{:}); Oxq} dX7S  
        rpowern = [ones(length_r,1) rpowern]; 4[^lE?+  
    else yNk E>  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); e lzKtVw  
        rpowern = cat(2,rpowern{:}); Mh;rhQ  
    end 1?5UVv_F  
    `p{,C`g,R  
    % Compute the values of the polynomials: $dgez#TPL  
    % -------------------------------------- 08JVX'X-mr  
    y = zeros(length_r,length(n)); AiE\PMF~{P  
    for j = 1:length(n) H G)c\b  
        s = 0:(n(j)-m_abs(j))/2; Pu7cL  
        pows = n(j):-2:m_abs(j); Yiy|^j  
        for k = length(s):-1:1 \NI0rL  
            p = (1-2*mod(s(k),2))* ... ` "JslpN  
                       prod(2:(n(j)-s(k)))/              ... 5xF R7%_&  
                       prod(2:s(k))/                     ... @mu2,%  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... P2^((c  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); baL-~`(T  
            idx = (pows(k)==rpowers); =gb(<`{>  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 4hh=z>$|l)  
        end OP}8u"\Z  
         BL Q&VI4  
        if isnorm BpQ/$?5E"  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); b$Ch2Qz0q  
        end ^&-H"jF  
    end ^S'tMT_  
    % END: Compute the Zernike Polynomials _$Hx:^p:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'ffOFIz|=I  
    ]\_T  
    % Compute the Zernike functions: `*hrU{b  
    % ------------------------------ m&X6a C'[  
    idx_pos = m>0; ' y9yx[P  
    idx_neg = m<0; 61^5QHur  
    U%,N"]`  
    z = y; :$"L;"  
    if any(idx_pos) 1S26Y|L)  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :*wjC.Z  
    end =P.m5e<  
    if any(idx_neg) umo@JWr  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); wWNHZ v&  
    end 6Wabw:  
    Xu8_<%  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) :uD*Q/  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. :2KLziO2  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated =+qtk(p  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Hi 1@  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, fb8t9sAI  
    %   and THETA is a vector of angles.  R and THETA must have the same xD(JkOne  
    %   length.  The output Z is a matrix with one column for every P-value, BWct0=  
    %   and one row for every (R,THETA) pair. Q6G-`&5  
    % =nYd|Ok  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike -U?Udmov  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 9N[PZD  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) \+cU}  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 %\ i 7  
    %   for all p. \p-3P)U  
    % lKMOsr@l  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 aF9p%HPDw  
    %   Zernike functions (order N<=7).  In some disciplines it is hwaU;>F  
    %   traditional to label the first 36 functions using a single mode 5;5DEMe  
    %   number P instead of separate numbers for the order N and azimuthal -o8H_MR  
    %   frequency M. V^P]QQ\ )  
    % GN4'LU  
    %   Example: d_j% ,1-#  
    % #S/]=D  
    %       % Display the first 16 Zernike functions ) /kf  
    %       x = -1:0.01:1; W -Yv0n3  
    %       [X,Y] = meshgrid(x,x); (hB&OP5Fne  
    %       [theta,r] = cart2pol(X,Y); mZ^z%+Ca|  
    %       idx = r<=1; +ou ]|  
    %       p = 0:15; w(QU'4~  
    %       z = nan(size(X)); >[=fbL@N<@  
    %       y = zernfun2(p,r(idx),theta(idx)); Lbka*@  
    %       figure('Units','normalized') B>3joe}  
    %       for k = 1:length(p) tSVN}~1\  
    %           z(idx) = y(:,k); eC^UL5>%  
    %           subplot(4,4,k) hE41$9?TJ  
    %           pcolor(x,x,z), shading interp ze<Lc/;X~  
    %           set(gca,'XTick',[],'YTick',[]) GHaOFLY  
    %           axis square (cX;a/BR  
    %           title(['Z_{' num2str(p(k)) '}']) fb7Gy  
    %       end gAA2S5th  
    % v2e*mNK5  
    %   See also ZERNPOL, ZERNFUN. qn VxP&  
    %T hY6y(  
    %   Paul Fricker 11/13/2006 >~-8RM  
    2NHkK_B1P  
    wo($7'.@  
    % Check and prepare the inputs: e6C;A]T2E  
    % ----------------------------- $niJw@zC  
    if min(size(p))~=1 RKu'WD?sdH  
        error('zernfun2:Pvector','Input P must be vector.') U ~j:b{  
    end IJxBPwh  
    Bb 5|+b P  
    if any(p)>35 b ^wL{q  
        error('zernfun2:P36', ... [Bn C_^[W  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... =IQ+9Fl2  
               '(P = 0 to 35).']) poZ04Uxo>  
    end Lo^0VD!O  
    B{UL(6\B  
    % Get the order and frequency corresonding to the function number: *=Ko"v }  
    % ---------------------------------------------------------------- v=kQ / h  
    p = p(:); LUGyc( h  
    n = ceil((-3+sqrt(9+8*p))/2); _i_^s0J  
    m = 2*p - n.*(n+2); `0 .<  
    i6L>,^Dg  
    % Pass the inputs to the function ZERNFUN: M#BM`2!s  
    % ---------------------------------------- q\2q3}n  
    switch nargin k[9~Er+  
        case 3  pFfd6P  
            z = zernfun(n,m,r,theta); {MP8B'r-6  
        case 4 r5U[jwP  
            z = zernfun(n,m,r,theta,nflag); snPM&  
        otherwise Lnin;0~{  
            error('zernfun2:nargin','Incorrect number of inputs.') J!O{.v  
    end )Gf"#TM[  
    h<)YZ[;x  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) I4[sf  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. _ELuQ>zM]+  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of iLQFce7d|&  
    %   order N and frequency M, evaluated at R.  N is a vector of 6j*L]S c  
    %   positive integers (including 0), and M is a vector with the vJybhdvP  
    %   same number of elements as N.  Each element k of M must be a U/hf?T;  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Ll" Kxg  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is YkOl@l$D  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix OZDd  
    %   with one column for every (N,M) pair, and one row for every MHl ffj  
    %   element in R. ]]sy+$@~  
    % EESGU(  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- _/FpmnaY  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is .<#oLM^  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to U*P&O+(1'  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 4Ss4jUj  
    %   for all [n,m]. g0Rny  
    % {..6{~L  
    %   The radial Zernike polynomials are the radial portion of the h/'b(9fS  
    %   Zernike functions, which are an orthogonal basis on the unit b-)m'B}`  
    %   circle.  The series representation of the radial Zernike j ^Tb=  
    %   polynomials is y7f,]<%e_  
    % .|$:%"O&X  
    %          (n-m)/2 @fI1|v=eF  
    %            __ BM~>=emc  
    %    m      \       s                                          n-2s j{8;5 ?x  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r w^{qut.  
    %    n      s=0 pr;n~E 'kq  
    % 4q9+a7@  
    %   The following table shows the first 12 polynomials. ;u:A:Y4V  
    % ^bD)Tg5K  
    %       n    m    Zernike polynomial    Normalization e8Ul^]  
    %       --------------------------------------------- cDkq@H:   
    %       0    0    1                        sqrt(2) $,b1`*  
    %       1    1    r                           2 'P AIh*qA  
    %       2    0    2*r^2 - 1                sqrt(6) M0jC:*D`"  
    %       2    2    r^2                      sqrt(6) PZ#\O  
    %       3    1    3*r^3 - 2*r              sqrt(8) "YC5viX  
    %       3    3    r^3                      sqrt(8) G+_Q7-o&d6  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) V4["+Y  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) [:hTwBRF  
    %       4    4    r^4                      sqrt(10) Ihn#GzM?u  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) "c9T4=]&t  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) }s@ i  
    %       5    5    r^5                      sqrt(12) **,(>4j  
    %       --------------------------------------------- 8I>'x f  
    % l:@`.'-=  
    %   Example: 7>-"r*W +z  
    % . r?URC  
    %       % Display three example Zernike radial polynomials $D][_I  
    %       r = 0:0.01:1; a< E\9DL  
    %       n = [3 2 5]; qUS y0SQ/l  
    %       m = [1 2 1]; yQ [n7du  
    %       z = zernpol(n,m,r);  T)Uhp  
    %       figure _c z$w5`  
    %       plot(r,z) Hf$pwfGcY]  
    %       grid on >s%&t[r6  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 7hzd.  
    % y/.I<5+Bu  
    %   See also ZERNFUN, ZERNFUN2. dED&-e#  
    VYo2m  
    % A note on the algorithm. (r9W[  
    % ------------------------ 2Wx~+@1y  
    % The radial Zernike polynomials are computed using the series ML!>tCT  
    % representation shown in the Help section above. For many special af>^<q  
    % functions, direct evaluation using the series representation can nb30<h  
    % produce poor numerical results (floating point errors), because E,}(jAq7  
    % the summation often involves computing small differences between G m~2s;/  
    % large successive terms in the series. (In such cases, the functions ev4f9Fhu  
    % are often evaluated using alternative methods such as recurrence 8[B0[2O  
    % relations: see the Legendre functions, for example). For the Zernike mS9ITe M  
    % polynomials, however, this problem does not arise, because the d#U~>wr  
    % polynomials are evaluated over the finite domain r = (0,1), and %.rVIc"  
    % because the coefficients for a given polynomial are generally all gebDNl\Y2  
    % of similar magnitude. qS!U1R?s  
    % Ivx]DXR|  
    % ZERNPOL has been written using a vectorized implementation: multiple olxnQYFo  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Z.%0yS_T  
    % values can be passed as inputs) for a vector of points R.  To achieve KW@][*\uC  
    % this vectorization most efficiently, the algorithm in ZERNPOL C}=9m A  
    % involves pre-determining all the powers p of R that are required to NY3/mS3w  
    % compute the outputs, and then compiling the {R^p} into a single VprrklZ  
    % matrix.  This avoids any redundant computation of the R^p, and khb/"VYd  
    % minimizes the sizes of certain intermediate variables. =K;M\_k%y  
    % th^&wp  
    %   Paul Fricker 11/13/2006 ]Vm:iF#5P  
    "nA~/t=  
    gWGh:.*T  
    % Check and prepare the inputs: <-(n48  
    % ----------------------------- &Cm$%3  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `gX$N1(  
        error('zernpol:NMvectors','N and M must be vectors.') hRI?>an  
    end laQ{nSVBm  
    ?'^dYQ4  
    if length(n)~=length(m) l Zz%W8"  
        error('zernpol:NMlength','N and M must be the same length.') M\D25=(  
    end o^3X5})sv  
    w{"ro~9o  
    n = n(:); d",VOhW7)S  
    m = m(:); Vv_lBYV  
    length_n = length(n); {' UK> S  
    8zrLl:{  
    if any(mod(n-m,2)) J,D^fVIw  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 1a tQ9  
    end W690N&Wz  
    ~[Z,:=z  
    if any(m<0) DR(/|?k+  
        error('zernpol:Mpositive','All M must be positive.') pnp)- a*7  
    end h#}'9oA  
    /2x@Z>  
    if any(m>n) ]T;  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') PlRcrT"#w  
    end k9!eu j&  
    h'"~t#r  
    if any( r>1 | r<0 ) >c=-uI  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') %fIYWu`X  
    end =Bos>;dl  
    6){nu rDBG  
    if ~any(size(r)==1) Sv\399(  
        error('zernpol:Rvector','R must be a vector.') V$g!#V  
    end NJmyp!8  
    34I;DUdcE  
    r = r(:); N gagzsJ=  
    length_r = length(r); 589P$2e1X  
    K6 c[W%Va  
    if nargin==4 8<=]4-X@  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); nP+jkNn3  
        if ~isnorm UG=],\E2  
            error('zernpol:normalization','Unrecognized normalization flag.') ,*Z/3at}5M  
        end Sr>5V  
    else Y'Yu1mH)  
        isnorm = false; OU[ FiW-E  
    end xm0(U0 >  
    l}~9xa}:D|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bejk^V~  
    % Compute the Zernike Polynomials I.- I4F)D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _Jn@+NoO  
    ss4YeZa  
    % Determine the required powers of r: \u*[mrX_B:  
    % ----------------------------------- h$#|s/  
    rpowers = []; oA+'9/UY  
    for j = 1:length(n) df{6!}/(  
        rpowers = [rpowers m(j):2:n(j)]; -Yg?@yt  
    end 0QY9vuhL<  
    rpowers = unique(rpowers); 5Un)d<!7&u  
    +wcif-  
    % Pre-compute the values of r raised to the required powers, {'6-;2&f  
    % and compile them in a matrix: +&[X7r<  
    % ----------------------------- T/?C_i  
    if rpowers(1)==0 0RHjA& r3v  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); lz4M)pL^  
        rpowern = cat(2,rpowern{:}); 9P*p{O{_  
        rpowern = [ones(length_r,1) rpowern]; w" Y'I$  
    else iCy$ rC  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,S?M;n?z_  
        rpowern = cat(2,rpowern{:}); s1J( -O  
    end \{54mM~  
    ,|?rt`8)Q  
    % Compute the values of the polynomials: 0Vj!'=Ntv  
    % -------------------------------------- A5~OHmeK  
    z = zeros(length_r,length_n); Eb p=du  
    for j = 1:length_n %:8XZf  
        s = 0:(n(j)-m(j))/2; Go !{T  
        pows = n(j):-2:m(j); ~:N 1[  
        for k = length(s):-1:1 mW1T4rR'  
            p = (1-2*mod(s(k),2))* ... yGC3B00Z  
                       prod(2:(n(j)-s(k)))/          ... $$eBr8  
                       prod(2:s(k))/                 ... )D" 2Q:  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 9`Xr7gmQf  
                       prod(2:((n(j)+m(j))/2-s(k))); `.F3&pA  
            idx = (pows(k)==rpowers); r[P+F  
            z(:,j) = z(:,j) + p*rpowern(:,idx); YXIAVSnr  
        end -*;JUSGh  
         CK8!7=>}^  
        if isnorm (/C 8\}Ox  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ZdlQ}l#F  
        end 9:7&`J lC#  
    end Q+dLWFI  
    <+: PTG/('  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ]P)2Q!X  
    %S<))G  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 'W/AYF^5  
    UH#S |o4  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)