非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 7Q w|!
function z = zernfun(n,m,r,theta,nflag) CSPKP#,B0[
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. <"D=6jqZ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Zk8|K'oHx
% and angular frequency M, evaluated at positions (R,THETA) on the 8vSse
% unit circle. N is a vector of positive integers (including 0), and >>i@r@
% M is a vector with the same number of elements as N. Each element bI)u/
% k of M must be a positive integer, with possible values M(k) = -N(k) 8X|r4otn4
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ^u}L;`L
% and THETA is a vector of angles. R and THETA must have the same ph>7?3;t
% length. The output Z is a matrix with one column for every (N,M) D]a <4a18
% pair, and one row for every (R,THETA) pair. u]+~VT1C,3
% ml|W~-6l
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [YrHA~=U
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Rm1A>1a:
% with delta(m,0) the Kronecker delta, is chosen so that the integral obrl#(\P
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, mI*[>#q>
% and theta=0 to theta=2*pi) is unity. For the non-normalized !o=U19)
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. r0d35
% cKb)VG^
% The Zernike functions are an orthogonal basis on the unit circle. Z+j\a5d?,
% They are used in disciplines such as astronomy, optics, and [.hyZ}B
% optometry to describe functions on a circular domain. %CUGm$nH
% zA+~7;7E
% The following table lists the first 15 Zernike functions. g.c8FP+
% yme^b
;a
% n m Zernike function Normalization lv vs%@b>
% -------------------------------------------------- DypFl M*
% 0 0 1 1 i
wxVl)QL
% 1 1 r * cos(theta) 2 6hZ@;Q=b
% 1 -1 r * sin(theta) 2 r78TE@d
% 2 -2 r^2 * cos(2*theta) sqrt(6) ]?x:
Qm'yo
% 2 0 (2*r^2 - 1) sqrt(3) cLPkK3O\=
% 2 2 r^2 * sin(2*theta) sqrt(6) t5)+&I2
% 3 -3 r^3 * cos(3*theta) sqrt(8) oI)GKA_Ng7
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 'XY`(3q
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ,QzL)W7
% 3 3 r^3 * sin(3*theta) sqrt(8) +dA ,P\
% 4 -4 r^4 * cos(4*theta) sqrt(10) SS`qJZ|w
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [aI]y=v
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) / XnhmqWm%
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jM-)BP6f4
% 4 4 r^4 * sin(4*theta) sqrt(10) !RyO\>:q
% -------------------------------------------------- c wg
!j!l
% WD Fjp
% Example 1: [=B$5%A
% [,2|Flf
e
% % Display the Zernike function Z(n=5,m=1) it] E-^2>
% x = -1:0.01:1; fDG0BNLY
% [X,Y] = meshgrid(x,x); 1]orUF&_
% [theta,r] = cart2pol(X,Y); A,r*%&4~
% idx = r<=1; l;y7]DO
% z = nan(size(X)); k}
]T;|h]
% z(idx) = zernfun(5,1,r(idx),theta(idx)); hx/N1x
% figure K\XH4kic
% pcolor(x,x,z), shading interp P/EM :
% axis square, colorbar |t; ~:A
% title('Zernike function Z_5^1(r,\theta)')
/'31w9
% 6JKqn~0Kk
% Example 2: gX0R)spg
% cZ)}LX
% % Display the first 10 Zernike functions DjSbyXvrg
% x = -1:0.01:1; P!"&%d
% [X,Y] = meshgrid(x,x); 5@^ dgq
% [theta,r] = cart2pol(X,Y); yHxosxd<*
% idx = r<=1; A^q[N
% z = nan(size(X)); k)TSR5A
% n = [0 1 1 2 2 2 3 3 3 3]; $Of0n` e
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; !"8fdSfg
w
% Nplot = [4 10 12 16 18 20 22 24 26 28]; p~*UpU8u
% y = zernfun(n,m,r(idx),theta(idx)); ,t\* ZTt$
% figure('Units','normalized') \GHiLs,!
% for k = 1:10 V+I|1{@i0
% z(idx) = y(:,k); `7/Y@}n
% subplot(4,7,Nplot(k)) H\XP\4#u
% pcolor(x,x,z), shading interp 4)1s M=u
% set(gca,'XTick',[],'YTick',[]) &QhX1dT+
% axis square i hh/sPi
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) sZW^!z
% end $H+VA@_
% 5uxBK"q
% See also ZERNPOL, ZERNFUN2. =0;^(/1Mc
?_I[,N?@41
% Paul Fricker 11/13/2006 765p/**
SJIOI@\b
4wrk2x[
% Check and prepare the inputs: hAHq\
% ----------------------------- 6M13f@v
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) u%.$BD Hg
error('zernfun:NMvectors','N and M must be vectors.') -WYAN:s
end @xB*KyUW
yRo-EP
if length(n)~=length(m) ?. D3'qv
error('zernfun:NMlength','N and M must be the same length.') |g=="
end !"eIV@7
W3iZ|[E;
n = n(:); OK\A</8r
m = m(:); sP ls
zC[
if any(mod(n-m,2)) H"qOSf{
error('zernfun:NMmultiplesof2', ... yz0zFfiX
'All N and M must differ by multiples of 2 (including 0).') Yot?=T};3{
end Uh][@35 p
e^O(e
if any(m>n) tO0!5#-VR
error('zernfun:MlessthanN', ...
=|9H
'Each M must be less than or equal to its corresponding N.') S{Er?0wm.R
end (&!NC[n,
rD*sl}
if any( r>1 | r<0 ) qbv#I;
error('zernfun:Rlessthan1','All R must be between 0 and 1.') E8-P"`Qba
end lGVEpCS}
4fe7U=# ;Y
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) U*3uq7
error('zernfun:RTHvector','R and THETA must be vectors.') bR V+>;L0@
end !%c'$f/
Ox@sI:CT
r = r(:); 3\Xbmq8}
theta = theta(:); \|K;-pL
length_r = length(r); !H ~<
if length_r~=length(theta) |m2X+s9
error('zernfun:RTHlength', ... ;$z$@@WC
'The number of R- and THETA-values must be equal.') )HvnoUO0
end "I
Ql Vi
i F+vl]
% Check normalization: $#]]K
% -------------------- 7PkJ-JBA
if nargin==5 && ischar(nflag) Mb]rY>B4
isnorm = strcmpi(nflag,'norm'); qM.bF&&Go
if ~isnorm lv]hTH 4T
error('zernfun:normalization','Unrecognized normalization flag.') <A#
l
35
end 3"P }n
else ?2oHZ%G
isnorm = false; .B\ 5OI,]
end lIProF0
TY Qwy*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1Uqu>'
% Compute the Zernike Polynomials >$ e9igwe
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5:kH;/U
ndeebXw*
% Determine the required powers of r: 4 M(-xl?
% ----------------------------------- Lliqj1&
m_abs = abs(m); gmm|A9+tv
rpowers = []; mL4] l(U
for j = 1:length(n) X_7UJ
jFw"
rpowers = [rpowers m_abs(j):2:n(j)]; =J ym%m
end nH<eR)0
rpowers = unique(rpowers); &cu lbcz
APO>y
% Pre-compute the values of r raised to the required powers, lhkwWbB
% and compile them in a matrix: Iyyh!MVF
% ----------------------------- %wSj%>&-R
if rpowers(1)==0 4!LCR}K
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); y>aZXa
rpowern = cat(2,rpowern{:}); zA1lca0HK
rpowern = [ones(length_r,1) rpowern]; [AW"
D3
else FD8N"p
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -k"^o!p
rpowern = cat(2,rpowern{:}); IhA* "
end ;]pJj6J&v
~SnSEhE
% Compute the values of the polynomials: IqD_GL)Ms
% -------------------------------------- L\#<JxY$p
y = zeros(length_r,length(n)); 1[yq0^\]M[
for j = 1:length(n) v_nj$1dY6
s = 0:(n(j)-m_abs(j))/2; y8rm
pows = n(j):-2:m_abs(j); GO^_=EMR[
for k = length(s):-1:1 Zib)P &
p = (1-2*mod(s(k),2))* ... G^`1]?
prod(2:(n(j)-s(k)))/ ... H V;D?^F
prod(2:s(k))/ ... [!U?}1YQ
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Sx8OhUyux
prod(2:((n(j)+m_abs(j))/2-s(k))); 0eS)&GdR
idx = (pows(k)==rpowers); .3MIcj=p
y(:,j) = y(:,j) + p*rpowern(:,idx); ZAXN6h
end
!OuWPH.
:
6CMub0
if isnorm mljh|[
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); lj?v4$
end E,f>1meN=
end a!u
rew#
% END: Compute the Zernike Polynomials %C=]1Q=T)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pe{;~-|6
NwZ@#D#[ Y
% Compute the Zernike functions: cJL'$`gWf
% ------------------------------ :bC40@
idx_pos = m>0; [ U wi
idx_neg = m<0; MKWyP+6`
6O}`i>/6M
z = y; D7S'*;F
if any(idx_pos) PK4iuU`vh
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); $VxA0
=ad
end Rh>}rGvCUN
if any(idx_neg) UF@XK">
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); I*`* Q$
end ?2g`8[">
-G|G_$9
% EOF zernfun