切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11531阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 $*H_0wQc  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! g9<*+fV 2$  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 !TA6-]1  
    function z = zernfun(n,m,r,theta,nflag) %YkJ A:  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. FIL?nkYEO  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N GbUw:I  
    %   and angular frequency M, evaluated at positions (R,THETA) on the $5yH(Z[[  
    %   unit circle.  N is a vector of positive integers (including 0), and IDQ@h`"B  
    %   M is a vector with the same number of elements as N.  Each element $sTbFY  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ;PCnEs  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, \T `InBbf  
    %   and THETA is a vector of angles.  R and THETA must have the same eee77.@y-p  
    %   length.  The output Z is a matrix with one column for every (N,M) (OwAhjHE  
    %   pair, and one row for every (R,THETA) pair. wzVx16Rvc  
    % ;IZ*o<_  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike = NHuj.  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5%BexIk  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral IFcxyp  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ROlef;/A  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Zyt,D|eWj  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 3=5K7 F  
    % ajC'C!"^Ty  
    %   The Zernike functions are an orthogonal basis on the unit circle. UCG8=+t5T  
    %   They are used in disciplines such as astronomy, optics, and o=}}hE\H  
    %   optometry to describe functions on a circular domain. ^,*ED Yz  
    % f4UnLig  
    %   The following table lists the first 15 Zernike functions. F0:|uC4  
    % !m"LIa#/Cs  
    %       n    m    Zernike function           Normalization ,n<t':-  
    %       -------------------------------------------------- #S)] `YW  
    %       0    0    1                                 1 8mjPa^A  
    %       1    1    r * cos(theta)                    2 me:~q#k  
    %       1   -1    r * sin(theta)                    2 O#LG$Y n*  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) HK&Ul=^VN|  
    %       2    0    (2*r^2 - 1)                    sqrt(3) fFDI qX  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) O<7Q>m  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) !~Vo'ykwx'  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) wNo2$>*  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) <Hd8Jd4f  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) }<R,)ZV^G  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Zk,` Iq  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) j5Kw0Wy7  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) `EKmp|B_p_  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )4:K@  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) KYE)#<V}@  
    %       -------------------------------------------------- ,;;7+|`  
    % sB!#`kh  
    %   Example 1: EQe!&;   
    % @Wgd(Ezd  
    %       % Display the Zernike function Z(n=5,m=1) .5L|(B=H  
    %       x = -1:0.01:1; <A|X4;  
    %       [X,Y] = meshgrid(x,x); s%M#  
    %       [theta,r] = cart2pol(X,Y); (-S<9u-r  
    %       idx = r<=1; dbn9t7'{  
    %       z = nan(size(X)); O[}{$NXw  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); #b~B 0:U  
    %       figure aa|u *afWQ  
    %       pcolor(x,x,z), shading interp )/HbmtXqI  
    %       axis square, colorbar ~8 >Tb  
    %       title('Zernike function Z_5^1(r,\theta)') 7 ~b=G  
    % g)?Ol  
    %   Example 2: zT<fTFJ1  
    % CFE  ubEb  
    %       % Display the first 10 Zernike functions k=]#)A(#C  
    %       x = -1:0.01:1; *JnY0xP  
    %       [X,Y] = meshgrid(x,x); sX8d8d`}  
    %       [theta,r] = cart2pol(X,Y); Fl0(n #L  
    %       idx = r<=1; k+9*7y8w  
    %       z = nan(size(X)); ->Z9j(JU  
    %       n = [0  1  1  2  2  2  3  3  3  3]; cp1-eR_&  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; MzEeDN  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; D;nd_{%  
    %       y = zernfun(n,m,r(idx),theta(idx)); Ibf~gr(j  
    %       figure('Units','normalized') JJ:pA_uX  
    %       for k = 1:10 ,LE15},  
    %           z(idx) = y(:,k); {F!/\ 2a  
    %           subplot(4,7,Nplot(k)) Lql2ry$Wa  
    %           pcolor(x,x,z), shading interp I+oe{#:.  
    %           set(gca,'XTick',[],'YTick',[]) V}3'0  
    %           axis square yMG(FAyu  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) [^Z)f<l  
    %       end @%lkRU)  
    % j_I[k8z  
    %   See also ZERNPOL, ZERNFUN2. '/OcJVSR  
    q ~%'V  
    %   Paul Fricker 11/13/2006 Ky0}phGRu  
    G2$<Q+UYs?  
    (rmOv\hG9V  
    % Check and prepare the inputs: }Q2v~eD  
    % ----------------------------- ai7R@~O:_k  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) z`"*60b  
        error('zernfun:NMvectors','N and M must be vectors.') *S xDwN  
    end v)p'0F#6A  
    2jf73$F  
    if length(n)~=length(m) RWg'W,v=!  
        error('zernfun:NMlength','N and M must be the same length.') ?rm3Iac0S  
    end Ln'y 3~@  
    zqHG2:MN"  
    n = n(:);  \gsJ1@  
    m = m(:); zif&;)wV/  
    if any(mod(n-m,2)) {MRXK nm;e  
        error('zernfun:NMmultiplesof2', ... 9^L{)t>  
              'All N and M must differ by multiples of 2 (including 0).') Pz^C3h$5_  
    end ')Q  
    ~'V&[]nh8  
    if any(m>n) DsB30  
        error('zernfun:MlessthanN', ... ^B_SAZ&%%  
              'Each M must be less than or equal to its corresponding N.') +\doF  
    end jn 5v  
    rp '^]Zx  
    if any( r>1 | r<0 ) .5"s[(S  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8J#U=qYei  
    end oVTXn=cYDp  
    S$O5jX 0  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +v2)'?BS  
        error('zernfun:RTHvector','R and THETA must be vectors.') {RGQX"k  
    end _Sg"|g  
    O#<F"e;$  
    r = r(:); <{+U- ^rzR  
    theta = theta(:); UX2@eyejQ7  
    length_r = length(r); upLjkQ)_  
    if length_r~=length(theta) qyBC1an5,  
        error('zernfun:RTHlength', ... v <Ywfb  
              'The number of R- and THETA-values must be equal.') b'ZzDYN  
    end 4tEAi4H|`@  
    `;=-71Gn~  
    % Check normalization: vM@8&,;  
    % -------------------- 85f:!p  
    if nargin==5 && ischar(nflag) VA>0Y  
        isnorm = strcmpi(nflag,'norm'); 1COSbi]  
        if ~isnorm DfU]+;AE  
            error('zernfun:normalization','Unrecognized normalization flag.') 7K HQ0  
        end _dY5qW1p  
    else MQQQaD:v  
        isnorm = false; nC%<BatQ  
    end VKtlAfXy~  
    2,Aw 6h;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C hQ] d  
    % Compute the Zernike Polynomials ? 'qyI^m@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W}y)vrL  
    No8-Hm  
    % Determine the required powers of r: .VR ~[aD  
    % ----------------------------------- B^!-%_q  
    m_abs = abs(m); ^AShy`o^X  
    rpowers = []; `g_r<EY8/  
    for j = 1:length(n) m2H?VY .^K  
        rpowers = [rpowers m_abs(j):2:n(j)]; ny%$BQM=  
    end J )^F  
    rpowers = unique(rpowers); F [Lg,}  
    I94-#*~I  
    % Pre-compute the values of r raised to the required powers, UlWm). b;v  
    % and compile them in a matrix: HOx+umjxW  
    % ----------------------------- Qqi?DW1)-  
    if rpowers(1)==0 2cO6'?b  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bSz@@s.  
        rpowern = cat(2,rpowern{:}); )@p?4XsT4J  
        rpowern = [ones(length_r,1) rpowern]; JljCI@  
    else 5A$,'%d  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); mr2Mu  
        rpowern = cat(2,rpowern{:}); ubZJUm  
    end /k[8xb  
    @eZBwFe  
    % Compute the values of the polynomials: Vo6+|ztk|  
    % -------------------------------------- %-]a[qf3  
    y = zeros(length_r,length(n)); oY5`r)C7  
    for j = 1:length(n) q`'"+`h  
        s = 0:(n(j)-m_abs(j))/2; 1l/t|M^I  
        pows = n(j):-2:m_abs(j); DSRmFxkk  
        for k = length(s):-1:1 {/(.Bpld  
            p = (1-2*mod(s(k),2))* ... \4LTViY]  
                       prod(2:(n(j)-s(k)))/              ... @}19:A<'  
                       prod(2:s(k))/                     ... z(8G=C  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... e/_QS}OA  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Fc8 0HK5R  
            idx = (pows(k)==rpowers); gTgoS:M"_O  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 6:L2oW 6}{  
        end 98)C 7N'  
         2X[oge0@  
        if isnorm L,.AY?)+7  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |V4<eF-0S  
        end ar\ K8mj  
    end Kj"X!-  
    % END: Compute the Zernike Polynomials >_xuXEslUz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H] g=( %ok  
    ^%!SKhRIK  
    % Compute the Zernike functions: c_CVZR?  
    % ------------------------------ xkw=os  
    idx_pos = m>0; 'l`prp3  
    idx_neg = m<0; @tPr\F  
    gwsIzYV  
    z = y; ZjMnGRP  
    if any(idx_pos) 4;W{#jk  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _G-y{D_S&  
    end #Q)r6V:  
    if any(idx_neg) ~ +>e hU  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \K~wsu/?`  
    end dHTx^1  
    #qmsZHd}b  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) V2`Ud[  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. pqb`g@  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated qB,0(I1-!  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ^9Cu?!xu0  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 'fGKRd|)  
    %   and THETA is a vector of angles.  R and THETA must have the same A)3H`L  
    %   length.  The output Z is a matrix with one column for every P-value, Q!qD3<?5  
    %   and one row for every (R,THETA) pair. !`RMXUV  
    % X[r0$yuE  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike c ?EvrtND  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 9]w?mHslE  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) IQ_s]b;z  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 G"E_4YkJ  
    %   for all p. X?[ )e  
    % S4 Uu/EX6S  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 mB"I(>q*M  
    %   Zernike functions (order N<=7).  In some disciplines it is Jy% ?"wn  
    %   traditional to label the first 36 functions using a single mode A"&<$5Q  
    %   number P instead of separate numbers for the order N and azimuthal ni%)a  
    %   frequency M. .?Y"o3  
    % _fu <`|kc  
    %   Example: /z4c>)fV  
    % `R: W5_n  
    %       % Display the first 16 Zernike functions prN+{N8YC  
    %       x = -1:0.01:1; fV5$[CL1  
    %       [X,Y] = meshgrid(x,x); (g/A uL  
    %       [theta,r] = cart2pol(X,Y); x51R:x(p  
    %       idx = r<=1; ,0,FzxX0!  
    %       p = 0:15; ;*<R~HJt  
    %       z = nan(size(X)); 85H \v_[  
    %       y = zernfun2(p,r(idx),theta(idx)); WEe7\bWF  
    %       figure('Units','normalized') cPuXy e  
    %       for k = 1:length(p)  jF0"AA  
    %           z(idx) = y(:,k); ?YS>_ MN  
    %           subplot(4,4,k) +llb{~ZN  
    %           pcolor(x,x,z), shading interp ls:oC},p*  
    %           set(gca,'XTick',[],'YTick',[]) nL/]Q'(5  
    %           axis square mc8Q2eQat}  
    %           title(['Z_{' num2str(p(k)) '}']) h2f8-}fsq  
    %       end 'xj5R=V  
    % ;z.niX.fx  
    %   See also ZERNPOL, ZERNFUN. ~Ay)kv;  
    dB[4NT  
    %   Paul Fricker 11/13/2006 ~[t#$2d}  
    -wiQ d@X  
    n.2:fk  
    % Check and prepare the inputs: gh ?[x.U  
    % ----------------------------- i$<['DY  
    if min(size(p))~=1 0LH6G[  
        error('zernfun2:Pvector','Input P must be vector.') =3-?$  
    end s$hO/INr  
    rY45.,qWs  
    if any(p)>35 15Mtlb  
        error('zernfun2:P36', ... k Alx m{  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... HS{Vohy>  
               '(P = 0 to 35).']) ?#=xx.cF  
    end Uc {m##!  
    ^wd@mWxx  
    % Get the order and frequency corresonding to the function number: [M~tH *4"  
    % ---------------------------------------------------------------- +|obU9M  
    p = p(:); =;uMrb4  
    n = ceil((-3+sqrt(9+8*p))/2); { sC Ni  
    m = 2*p - n.*(n+2); e7@ m i  
    (b f IS  
    % Pass the inputs to the function ZERNFUN: zFExYYd   
    % ---------------------------------------- #\lvzMjCC  
    switch nargin y'!OA+ob  
        case 3 w/m@(EBK  
            z = zernfun(n,m,r,theta); jjj<B'zt  
        case 4 [A84R04_%  
            z = zernfun(n,m,r,theta,nflag); _P qq*  
        otherwise f_S$CFa@  
            error('zernfun2:nargin','Incorrect number of inputs.') &/WM:]^?0)  
    end MZ,1mR  
    8eS(gKD  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) R|\eBnfI  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ;b0Q%TDh  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of CwX?%$S   
    %   order N and frequency M, evaluated at R.  N is a vector of i86:@/4~F  
    %   positive integers (including 0), and M is a vector with the  lrv-[}}  
    %   same number of elements as N.  Each element k of M must be a ^}-l["u`  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) rS BI'op  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 4@-tT;$  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix C{J5:ak  
    %   with one column for every (N,M) pair, and one row for every :.*Q@X}-I  
    %   element in R. AfTm#-R  
    % et 1HbX  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- o7!A(Eu  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is IEy$2f>Ns  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to zas&gsl-;  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 kT@ITA22  
    %   for all [n,m]. o&1mX  
    % eVfD&&@  
    %   The radial Zernike polynomials are the radial portion of the <\^o  
    %   Zernike functions, which are an orthogonal basis on the unit a20w.6F  
    %   circle.  The series representation of the radial Zernike .Od:#(aq  
    %   polynomials is PuP"( M  
    % 71nZi`AR  
    %          (n-m)/2 vMp=\U-~^  
    %            __ caQ1SV^{9  
    %    m      \       s                                          n-2s ^@V*:n^  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r C|&tdh :g  
    %    n      s=0 #EzhtuHxn  
    % s1 >8uW  
    %   The following table shows the first 12 polynomials. ]20:8l'  
    % 2.Vrh@FNRo  
    %       n    m    Zernike polynomial    Normalization =T[P  
    %       --------------------------------------------- Wa^Wn +r  
    %       0    0    1                        sqrt(2) -NwG' U~  
    %       1    1    r                           2 (10t,n$  
    %       2    0    2*r^2 - 1                sqrt(6) ^&YtZjV  
    %       2    2    r^2                      sqrt(6) F-3=eKZ  
    %       3    1    3*r^3 - 2*r              sqrt(8) "^$Ht`p[  
    %       3    3    r^3                      sqrt(8) oT{9P?K8  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) kc2B_+Y1  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) |Gz<I  
    %       4    4    r^4                      sqrt(10) F `:Q  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) QfEJU8/5d  
    %       5    3    5*r^5 - 4*r^3            sqrt(12)  ,h^6y  
    %       5    5    r^5                      sqrt(12) P;I,f  
    %       --------------------------------------------- ;&j'`tP  
    % "Y+VNS  
    %   Example: d8: $ll  
    % QwhO /  
    %       % Display three example Zernike radial polynomials 0e8  
    %       r = 0:0.01:1; 2`]c&k;]  
    %       n = [3 2 5]; %_Vz0 D! 7  
    %       m = [1 2 1]; !hQ-i3?qm  
    %       z = zernpol(n,m,r); 7%"|6dw  
    %       figure hFA |(l6  
    %       plot(r,z) ^ZsIQ4@`  
    %       grid on k$%{w\?Jf  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') $R #_c}  
    % j4i$2ZT'  
    %   See also ZERNFUN, ZERNFUN2. F4\:9ws  
    'Q E8  
    % A note on the algorithm. )2).kL>  
    % ------------------------ )$^xbC#j`3  
    % The radial Zernike polynomials are computed using the series w]MI3_|'r(  
    % representation shown in the Help section above. For many special #6@hVR.  
    % functions, direct evaluation using the series representation can PNAvT$0LaZ  
    % produce poor numerical results (floating point errors), because Q+Nnj(AQY  
    % the summation often involves computing small differences between esSj 3E  
    % large successive terms in the series. (In such cases, the functions 15{^waR6  
    % are often evaluated using alternative methods such as recurrence s&ox%L4  
    % relations: see the Legendre functions, for example). For the Zernike v>K|hH  
    % polynomials, however, this problem does not arise, because the Tr;.%/4Q  
    % polynomials are evaluated over the finite domain r = (0,1), and dwB#k$VIOw  
    % because the coefficients for a given polynomial are generally all '~ b  
    % of similar magnitude. 2+pw%#fe  
    % w31O~Ve  
    % ZERNPOL has been written using a vectorized implementation: multiple G:b6Wf  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ;fqp!|J  
    % values can be passed as inputs) for a vector of points R.  To achieve R~oY R,L;  
    % this vectorization most efficiently, the algorithm in ZERNPOL puMVvo  
    % involves pre-determining all the powers p of R that are required to 3\ajnd|  
    % compute the outputs, and then compiling the {R^p} into a single ?T73BL=  
    % matrix.  This avoids any redundant computation of the R^p, and ?:vg`m!*  
    % minimizes the sizes of certain intermediate variables. 9Y2u/|!.3  
    % *}:P  
    %   Paul Fricker 11/13/2006 ]kNxytH\o  
    bzpi7LKN  
    4Ty?>'*|  
    % Check and prepare the inputs: ;0_T\{H"nR  
    % ----------------------------- rs4:jS$)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Pq~#SxA~  
        error('zernpol:NMvectors','N and M must be vectors.') =4q5KI  
    end o7we'1(O  
    1Mq"f 7X8  
    if length(n)~=length(m) ;Uch  
        error('zernpol:NMlength','N and M must be the same length.') u^C\aujg  
    end L~+aD2 E {  
    %zc.b  
    n = n(:); uu4! e{K  
    m = m(:); =:T"naY(  
    length_n = length(n); r8R7@S2V'  
    n S$4[!0  
    if any(mod(n-m,2)) CNuE9|W(vI  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') dT1UYG}>j  
    end miBCq l@x  
     `&a8Wv  
    if any(m<0) M97+YMY)  
        error('zernpol:Mpositive','All M must be positive.') D3 +|Os)  
    end dh}"uM}a  
    :zC=JvKT  
    if any(m>n) unYPvrd  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') x?6^EB|@  
    end lKQjG+YF  
    tvJl-&'N  
    if any( r>1 | r<0 ) 5Q}HLjG8Z  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') #@Tm5z  
    end o}36bi{  
    .}R'(gN\6  
    if ~any(size(r)==1) S% ptG$Z  
        error('zernpol:Rvector','R must be a vector.') [PrJf"Z "  
    end 4u p7 :?  
    +CEt:KQ   
    r = r(:); |L;Hd.l7^*  
    length_r = length(r); 6EWCJ%_  
    K:4 G(?w  
    if nargin==4 2DZ&g\|  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); :'H}b*VWx  
        if ~isnorm 7}=MVp] )S  
            error('zernpol:normalization','Unrecognized normalization flag.') *JW.ca}  
        end D_f :D^  
    else 6(Cjak+~!  
        isnorm = false; M;-FW5O't  
    end H6#SP~V  
    _ Axw$oYS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VF-[O  
    % Compute the Zernike Polynomials UA0R)BH'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bnp:J|(ld  
    Pw Amnk !  
    % Determine the required powers of r: IOrYm  
    % ----------------------------------- ~8Ef`zL  
    rpowers = []; }q/[\3  
    for j = 1:length(n) sQzr+]+#9  
        rpowers = [rpowers m(j):2:n(j)]; $iy(+}  
    end \bSakh71  
    rpowers = unique(rpowers); R'1"`@f G  
    f`J[u!Ja  
    % Pre-compute the values of r raised to the required powers, IgF#f%|Q  
    % and compile them in a matrix: \iwUsv>SB  
    % ----------------------------- w/0;N`YB  
    if rpowers(1)==0 %eu_Pr6X  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Z!?T&:  
        rpowern = cat(2,rpowern{:}); K!88 Nox(  
        rpowern = [ones(length_r,1) rpowern]; FZ% WD@=  
    else l~`JFWur]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); y3 S T"U  
        rpowern = cat(2,rpowern{:}); 6 1K:SXj  
    end :rmi8!o  
    1$c[G}h  
    % Compute the values of the polynomials: }Oy/F  
    % -------------------------------------- G>^ _&(c@2  
    z = zeros(length_r,length_n); T 6rjtq  
    for j = 1:length_n tUFXx\p  
        s = 0:(n(j)-m(j))/2; Yceex}X*5  
        pows = n(j):-2:m(j); ` \-m qe  
        for k = length(s):-1:1 &4F iYZ  
            p = (1-2*mod(s(k),2))* ... C Yk"  
                       prod(2:(n(j)-s(k)))/          ... }Tk*?tYt  
                       prod(2:s(k))/                 ...  YP}r15P  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... |VX0o2  
                       prod(2:((n(j)+m(j))/2-s(k))); hniTMO  
            idx = (pows(k)==rpowers); Z5>}  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 3D rW[\  
        end y=WCR*N  
          2Y9@[  
        if isnorm 3rv~r0  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); cy_zEJjbD  
        end *7/MeE6)i  
    end v.]W{~PI2V  
    U| 1&=8l  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ;?9u#FRtw  
    U9KnW]O%"  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 `~"l a>}  
    N(]>(S o  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)