切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11416阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 DVp5hR_$  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 1=VJ&D;  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ?;ukvD  
    function z = zernfun(n,m,r,theta,nflag) hlJpElYf  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. *A}WP_ZQ  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N e79KbLV  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 0JyVNuHn  
    %   unit circle.  N is a vector of positive integers (including 0), and R=)55qu  
    %   M is a vector with the same number of elements as N.  Each element K7TzF&  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) k%'m*Tf  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, \FmKJ\  
    %   and THETA is a vector of angles.  R and THETA must have the same VRng=,  
    %   length.  The output Z is a matrix with one column for every (N,M) i?@M  
    %   pair, and one row for every (R,THETA) pair. @J 'YV{]  
    % ;iYff N  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -b;|q.!  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5N7H{vT_  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Qt>>$3]!!  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, MHj,<|8Q  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized vG.9 H_&  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. d=O3YNM:v  
    % 4\otq%Y  
    %   The Zernike functions are an orthogonal basis on the unit circle. h:bru:ef  
    %   They are used in disciplines such as astronomy, optics, and 63WS7s"  
    %   optometry to describe functions on a circular domain. A#h/B+  
    % 9]'&RyH=#  
    %   The following table lists the first 15 Zernike functions. MmTC=/j  
    % j+4H}XyE  
    %       n    m    Zernike function           Normalization R=j% S!  
    %       -------------------------------------------------- F'm(8/A$  
    %       0    0    1                                 1 yl&UM qI(  
    %       1    1    r * cos(theta)                    2 v}JD2.O+  
    %       1   -1    r * sin(theta)                    2 8P' ana  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) gN6rp(?y  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 6i@\5}m=  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) !c#]?b%  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) zy'D!db`Z  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) R,2P3lv1v@  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) yCz|{=7"j  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) tAu4haa4;  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ,FzeOSy'p  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `YBkF  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 4-GXmC  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o(kM9G|  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) E ]9\R  
    %       -------------------------------------------------- 2.e vx  
    % TtD@'QXq  
    %   Example 1:  )v4b  
    % =3 ~/:8o  
    %       % Display the Zernike function Z(n=5,m=1) ;lX(}2tXW  
    %       x = -1:0.01:1; q% >'4_  
    %       [X,Y] = meshgrid(x,x); Z)9g~g94  
    %       [theta,r] = cart2pol(X,Y); BP[|nL  
    %       idx = r<=1; WG71k8af  
    %       z = nan(size(X)); @F*wg  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); |R/.r_x,V?  
    %       figure I`(l*U  
    %       pcolor(x,x,z), shading interp B?rSjdY4  
    %       axis square, colorbar e-hjC6Q U  
    %       title('Zernike function Z_5^1(r,\theta)') T'-FV  
    % Z;Rp+ X  
    %   Example 2: x`RTp:#  
    % LjFqZrH  
    %       % Display the first 10 Zernike functions U:6W+p8  
    %       x = -1:0.01:1; ,B}I?vN.  
    %       [X,Y] = meshgrid(x,x); [P4$Khu$  
    %       [theta,r] = cart2pol(X,Y); NSA F4e  
    %       idx = r<=1; )jrT6x^IB  
    %       z = nan(size(X)); {Rq1HH  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Uggw-sRU  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; HL3XyP7  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 1k%k`[VC  
    %       y = zernfun(n,m,r(idx),theta(idx)); eas:6Q)  
    %       figure('Units','normalized') <+#o BN  
    %       for k = 1:10 %?C8mA'w  
    %           z(idx) = y(:,k); abNV4 ,M  
    %           subplot(4,7,Nplot(k)) &ZHC-qMRK  
    %           pcolor(x,x,z), shading interp ''OfS D_g  
    %           set(gca,'XTick',[],'YTick',[])  Qe"pW\  
    %           axis square |WryBzZ>on  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) DHC+C4  
    %       end C`jM0Q  
    % IxR?'  
    %   See also ZERNPOL, ZERNFUN2. ysIh[1E~%:  
    @Y,7'0U  
    %   Paul Fricker 11/13/2006 |H}m4-+*  
    m9}AG Rj  
    3ss6_xd+  
    % Check and prepare the inputs: 'V+dBt3  
    % ----------------------------- `~UZU@/x  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _lKZmhi  
        error('zernfun:NMvectors','N and M must be vectors.') ]&~]#vB#  
    end FSuAjBl0-  
    ZPN roCK`  
    if length(n)~=length(m) Nr<`Z  
        error('zernfun:NMlength','N and M must be the same length.') Si 9Z>MR  
    end Z+`{7G?4m  
    L%}zVCg  
    n = n(:); ;8S/6FI  
    m = m(:); %Pqk63QF  
    if any(mod(n-m,2)) M~*u;vA/  
        error('zernfun:NMmultiplesof2', ... *Oc.9 F88"  
              'All N and M must differ by multiples of 2 (including 0).') ZR v"h/~  
    end D'l5Zd  
    EVX{ 7%  
    if any(m>n) if;71ZE  
        error('zernfun:MlessthanN', ... 7?gFy-  
              'Each M must be less than or equal to its corresponding N.') |wEN`#.;b  
    end @4(k(  
    ;Yfv!\^|  
    if any( r>1 | r<0 ) C9DJO:f.2y  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Sw`RBN[ yo  
    end [+ *$\  
    K-<^ $VWh  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (C] SH\  
        error('zernfun:RTHvector','R and THETA must be vectors.') R .[Z]-X  
    end ,6 !rR,0  
    YJS{i  
    r = r(:); !J*,)kRN  
    theta = theta(:); `u!l3VZ/4  
    length_r = length(r); 'Djm0  
    if length_r~=length(theta) ~1m2#>  
        error('zernfun:RTHlength', ... 7J28JK  
              'The number of R- and THETA-values must be equal.') !{n<K:x1  
    end _ ~RpGX  
    w:Jrmx  
    % Check normalization: LIU} a5  
    % -------------------- Ee1LO#^_6  
    if nargin==5 && ischar(nflag) =@u 5|:  
        isnorm = strcmpi(nflag,'norm'); @''GPL@  
        if ~isnorm t&5%?QyM  
            error('zernfun:normalization','Unrecognized normalization flag.') Sx:Ur>?hd5  
        end Nfe>3uQK  
    else JxLf?ad.  
        isnorm = false; yq_LW>|Z  
    end MC 0TaP  
    f"7M^1)h2%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w#JJXXQI  
    % Compute the Zernike Polynomials @ DZD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /:<IIqO.  
    :{'k@J"| a  
    % Determine the required powers of r: p5O",3,A4  
    % ----------------------------------- LAx4Xp/  
    m_abs = abs(m); 7:]Pl=:X  
    rpowers = []; cH<q:OYi  
    for j = 1:length(n) FLoNE>q  
        rpowers = [rpowers m_abs(j):2:n(j)]; %xlqF<  
    end .t&R>9cZ^  
    rpowers = unique(rpowers); 5!C_X5M  
    E@a3~a  
    % Pre-compute the values of r raised to the required powers, Y $g$x<7  
    % and compile them in a matrix: qj0 1]  
    % ----------------------------- k"k J_(  
    if rpowers(1)==0 )CI1;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,U*)2`[  
        rpowern = cat(2,rpowern{:}); Y=Z1Tdxa|  
        rpowern = [ones(length_r,1) rpowern]; EA.D}XC  
    else !@u>A_  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _<$>*i R  
        rpowern = cat(2,rpowern{:}); H 9 C9P17  
    end #B'aU#$u  
    h0?2j)X_  
    % Compute the values of the polynomials: ^1:U'jIXO  
    % -------------------------------------- 6b8;}],|  
    y = zeros(length_r,length(n)); %or,{mmiM:  
    for j = 1:length(n) H?}[r)|(3i  
        s = 0:(n(j)-m_abs(j))/2; 2=-utN@Z  
        pows = n(j):-2:m_abs(j); =k3!RW'  
        for k = length(s):-1:1 " +KJop  
            p = (1-2*mod(s(k),2))* ... Sj'ht=  
                       prod(2:(n(j)-s(k)))/              ... _$<Gyz*  
                       prod(2:s(k))/                     ... WqxUXH  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... gIR^ )m  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); %xwIt~Y  
            idx = (pows(k)==rpowers); ?^' 7+8C*J  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 0.r4f'vk  
        end s6 ( z  
         ,3v+PIcMM+  
        if isnorm [w -{r+[  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);  6,1b=2G  
        end {^{p,9  
    end #6+ FY+/  
    % END: Compute the Zernike Polynomials IUGz =%[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r8xyd"Axy  
    ~/_9P Fk  
    % Compute the Zernike functions: -3Avs9`5  
    % ------------------------------ "O+5R(XT  
    idx_pos = m>0; d-bqL:/  
    idx_neg = m<0; 4vK8kkW1  
    #5sD{:f`  
    z = y; qP!eJ6[Nh"  
    if any(idx_pos) qZ@0]"h  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Mv|ykJoz"  
    end uBg 8h{>  
    if any(idx_neg) 6Dws,_UAZ4  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {v aaFs  
    end R8*Q$rH<  
    OYM@szM  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Mr+@c)  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. )g| BMmB  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ~:;3uL s,8  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive di9!lS$  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Y izE5[*  
    %   and THETA is a vector of angles.  R and THETA must have the same c- $Gpa}M  
    %   length.  The output Z is a matrix with one column for every P-value, k1z$e*u&r  
    %   and one row for every (R,THETA) pair. P`$12<\O1  
    % si1*Wt<3Bc  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike L^kp8o^$  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) `T ^G^7&  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) &zL#hBE  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 G" b60RQ  
    %   for all p. ?{o/I\\  
    % Ue5O9;y]u  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 J.*XXM- V  
    %   Zernike functions (order N<=7).  In some disciplines it is 5FvOznK^e  
    %   traditional to label the first 36 functions using a single mode ${~|+zdB  
    %   number P instead of separate numbers for the order N and azimuthal gLD`wfZR  
    %   frequency M. Qx|H1_6  
    % u'Q?T7  
    %   Example: OL59e %X  
    % @z6!a  
    %       % Display the first 16 Zernike functions ;'T{li2  
    %       x = -1:0.01:1; g]mtFrP  
    %       [X,Y] = meshgrid(x,x); FD7H@L5  
    %       [theta,r] = cart2pol(X,Y); A)n W  
    %       idx = r<=1; n_[i0x7#  
    %       p = 0:15; Dkw%`(Oh/,  
    %       z = nan(size(X)); +\`vq"e  
    %       y = zernfun2(p,r(idx),theta(idx)); 4YG/`P  
    %       figure('Units','normalized') 8$P>wCK\l  
    %       for k = 1:length(p) 1ZJ4*bn  
    %           z(idx) = y(:,k); R5Yl1   
    %           subplot(4,4,k) H{ M)-  
    %           pcolor(x,x,z), shading interp ux2013C_  
    %           set(gca,'XTick',[],'YTick',[]) !jX4`/n2  
    %           axis square u.|~   
    %           title(['Z_{' num2str(p(k)) '}']) Q}%tt=KD  
    %       end AG"l1wz  
    % W+>wu%[L  
    %   See also ZERNPOL, ZERNFUN. b=##A  
    dFW=9ru+MQ  
    %   Paul Fricker 11/13/2006 _v5t<_^N  
    >X}{BDMb.  
    8 ,}ikOZ?  
    % Check and prepare the inputs: V*n==Nb5L  
    % ----------------------------- IY(h~O  
    if min(size(p))~=1 7 &)]) {Q  
        error('zernfun2:Pvector','Input P must be vector.') I8m:3fL"  
    end S 4vbN  
    % n$^-Vc&  
    if any(p)>35 SQ(apc}N4  
        error('zernfun2:P36', ... sLh0&R7   
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Dk)}|GJ()"  
               '(P = 0 to 35).']) B:oF;~d/,  
    end N{a kg90  
    MOz}Q1`a  
    % Get the order and frequency corresonding to the function number: .CV _\  
    % ---------------------------------------------------------------- `"y`AY/N  
    p = p(:); 9w ~cvlv[  
    n = ceil((-3+sqrt(9+8*p))/2); NGzgLSm\  
    m = 2*p - n.*(n+2);  y).P=z  
    ``4wX-y  
    % Pass the inputs to the function ZERNFUN: 9/TY\?U  
    % ---------------------------------------- a% ,fXp>  
    switch nargin DQ6jT@ZDH  
        case 3 Ub)I66  
            z = zernfun(n,m,r,theta); jp<VK<s]  
        case 4 OD9 yxN>P  
            z = zernfun(n,m,r,theta,nflag); 9BON.` |_  
        otherwise /)#8)"`nT  
            error('zernfun2:nargin','Incorrect number of inputs.') is#8R:7.:  
    end xxX/y2\  
    x'`"iZO.t  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 'V!kL, 9ES  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. bEpMaBN  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of %?tq;~|]Q  
    %   order N and frequency M, evaluated at R.  N is a vector of aWvd`qA9r  
    %   positive integers (including 0), and M is a vector with the |-kEGLH[*V  
    %   same number of elements as N.  Each element k of M must be a lizTRVBE  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) n(&*kfk  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 4;<DJ.XlN=  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ])$S\fFm  
    %   with one column for every (N,M) pair, and one row for every XVUf,N,  
    %   element in R. S<oQ}+4[~  
    % *SZ>upg  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- \iZ1W  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 6E+=Xi  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to .hN3`>*V  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 4 X`^{~  
    %   for all [n,m]. JSjYC0e  
    % lgT?{,>RkW  
    %   The radial Zernike polynomials are the radial portion of the =lrN'$z?%  
    %   Zernike functions, which are an orthogonal basis on the unit D@hmO]5c  
    %   circle.  The series representation of the radial Zernike <xF?~7  
    %   polynomials is [X|OrRA  
    % "6V_/u5M;=  
    %          (n-m)/2 ay[+2"  
    %            __ w-: D  
    %    m      \       s                                          n-2s oQvFrSz  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 1URsHV!xcM  
    %    n      s=0 4(m3c<'P  
    % `u=<c  
    %   The following table shows the first 12 polynomials. %HEmi;  
    % ? ).(fP  
    %       n    m    Zernike polynomial    Normalization nHU3%%%cU  
    %       --------------------------------------------- z(UX't (q  
    %       0    0    1                        sqrt(2) :yD@5)  
    %       1    1    r                           2 A_Gp&acs$  
    %       2    0    2*r^2 - 1                sqrt(6) 1UyH0`&  
    %       2    2    r^2                      sqrt(6) -s~p}CQ.  
    %       3    1    3*r^3 - 2*r              sqrt(8) Kq6qXc\x  
    %       3    3    r^3                      sqrt(8) @7|)RSBQz  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ^'Zh;WjI7  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) N7B}O*;  
    %       4    4    r^4                      sqrt(10) B}5XRgq  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) *2:Yf7rvI+  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ddMM74  
    %       5    5    r^5                      sqrt(12) v<fWc971  
    %       --------------------------------------------- /O"0L/hc^  
    % h>Rpb#]  
    %   Example: R7t bxC  
    % p,^>*/O>  
    %       % Display three example Zernike radial polynomials %#Q #N,fw  
    %       r = 0:0.01:1; .Bijc G  
    %       n = [3 2 5]; bgXc_>T6_y  
    %       m = [1 2 1]; _Fvsi3d/  
    %       z = zernpol(n,m,r); Sl~C0eO  
    %       figure bl9E&B/  
    %       plot(r,z) =z%s8D2  
    %       grid on mZ&]  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') /K&wr6  
    % ,,2_/u\"/i  
    %   See also ZERNFUN, ZERNFUN2. %,E7vYjT%  
    u"joCZ7`kG  
    % A note on the algorithm. dK7 ^  
    % ------------------------ Xa6qvg7/  
    % The radial Zernike polynomials are computed using the series dW6Q)Rfi  
    % representation shown in the Help section above. For many special '|+=B u  
    % functions, direct evaluation using the series representation can ,|>nF;.Y  
    % produce poor numerical results (floating point errors), because 3~8AcX@  
    % the summation often involves computing small differences between ;WPI+`-  
    % large successive terms in the series. (In such cases, the functions IT7:QEfKU  
    % are often evaluated using alternative methods such as recurrence ~M(pCSJ[  
    % relations: see the Legendre functions, for example). For the Zernike |O^V)bZmx  
    % polynomials, however, this problem does not arise, because the w7[0  
    % polynomials are evaluated over the finite domain r = (0,1), and .;}pU!S~R  
    % because the coefficients for a given polynomial are generally all ^W{eO@  
    % of similar magnitude. 8^NE=)cb7w  
    % _4De!q0(  
    % ZERNPOL has been written using a vectorized implementation: multiple -kt1t@O  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ob)D{4B'  
    % values can be passed as inputs) for a vector of points R.  To achieve nFSG<#x\  
    % this vectorization most efficiently, the algorithm in ZERNPOL sd7Y6?_C  
    % involves pre-determining all the powers p of R that are required to %k~C-+  
    % compute the outputs, and then compiling the {R^p} into a single 9yp^zL  
    % matrix.  This avoids any redundant computation of the R^p, and P}b Dn;  
    % minimizes the sizes of certain intermediate variables. K T"h74@  
    % Oym]&SrbS  
    %   Paul Fricker 11/13/2006 @)8NI[=6O  
    +2f> M4q  
    .jy)>"h0  
    % Check and prepare the inputs: <:H  
    % ----------------------------- (p'/p  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [)B@  
        error('zernpol:NMvectors','N and M must be vectors.') _p?I{1O  
    end !k ;[^>  
    C5d/)aC  
    if length(n)~=length(m) Cf.WO%?P  
        error('zernpol:NMlength','N and M must be the same length.') XP3QBq  
    end ei(| 5h  
    F12S(5Z0%  
    n = n(:); GWVEIZ  
    m = m(:); sT@u3^>  
    length_n = length(n); _q2`m  
    DWHOS XA4  
    if any(mod(n-m,2)) NO%|c|B|  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') w`2_6[,9  
    end i@sCMCu6  
    4"rb&$E   
    if any(m<0) )2   
        error('zernpol:Mpositive','All M must be positive.') F^J&g%ql  
    end 6uv'r;U]  
    <5C=i:6%  
    if any(m>n) t;bZc s  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ;w>Q{z  
    end [j]}$f Fe  
    \f ~u85  
    if any( r>1 | r<0 ) m(Pz7U.Q  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') q>wa#1X)  
    end ~`a#h#  
    i|:: v l  
    if ~any(size(r)==1) Uj y6vgU;  
        error('zernpol:Rvector','R must be a vector.') $NH`Iu9t  
    end xV }:M  
    mCZF5r  
    r = r(:); !M#?kKj  
    length_r = length(r); 96^1Ivd  
    2\kC_o97  
    if nargin==4 )4VL m  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); W,L>'$#pM  
        if ~isnorm aH~x7N6!  
            error('zernpol:normalization','Unrecognized normalization flag.') W_Ws3L1;N  
        end |>m# m*{S  
    else BHiw!S<  
        isnorm = false; [v>Z(  
    end QqT6P`0u  
    3:z4M9f  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k1@  A'n  
    % Compute the Zernike Polynomials QmDhZ04f  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `t/@ L:  
    kfG65aa>_  
    % Determine the required powers of r: gXJ19zB+  
    % ----------------------------------- GhchfI.  
    rpowers = []; UGezo3}  
    for j = 1:length(n) 'IqK M  
        rpowers = [rpowers m(j):2:n(j)]; '/n%}=a=  
    end 9|?(GG  
    rpowers = unique(rpowers); 9Le/'ovq  
    hc31+TL  
    % Pre-compute the values of r raised to the required powers, 519:yt   
    % and compile them in a matrix: NC[GtAPD3  
    % ----------------------------- OGD8QD  
    if rpowers(1)==0 ;^*+:e  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^`B##9g~  
        rpowern = cat(2,rpowern{:}); /oix tO)  
        rpowern = [ones(length_r,1) rpowern]; e-duZ o  
    else Xk$l-Zfse  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); cxF?&0[mY  
        rpowern = cat(2,rpowern{:}); /d]V{I~6  
    end V+@%(x@D_  
    k(vEp ]  
    % Compute the values of the polynomials: Q,`2DHhK  
    % -------------------------------------- osgS?=8  
    z = zeros(length_r,length_n); _|5FrN  
    for j = 1:length_n y9l.i@-  
        s = 0:(n(j)-m(j))/2; M}KM]<  
        pows = n(j):-2:m(j); wshp{ y  
        for k = length(s):-1:1 Rs( CrB/M  
            p = (1-2*mod(s(k),2))* ... <PuB3PEvV  
                       prod(2:(n(j)-s(k)))/          ... 1RUbY>K#U  
                       prod(2:s(k))/                 ... Eg- Mm4o  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... GF/x;,Ae  
                       prod(2:((n(j)+m(j))/2-s(k))); .]sIoB-54  
            idx = (pows(k)==rpowers); PU/Br;2A  
            z(:,j) = z(:,j) + p*rpowern(:,idx); lXL7q?,9  
        end /B#lju!  
         O|7{%5h  
        if isnorm (8eNZ*+mO  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ws=9u-  
        end i[BR(D&l_p  
    end j*Wh;I+h  
    l!2Z`D_MD  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Mo|5)8_  
    HW,55#yG  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 {X"]92+  
    p5t#d)  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)