切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11575阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ^6!8)7b  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! GB6(WAmr  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有  w4UJXc  
    function z = zernfun(n,m,r,theta,nflag) j7VaaA  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 2y9$ k\<xV  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N AxCFZf5  
    %   and angular frequency M, evaluated at positions (R,THETA) on the X>MDX.Z  
    %   unit circle.  N is a vector of positive integers (including 0), and _wZr`E)  
    %   M is a vector with the same number of elements as N.  Each element O+~@ S~  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) cvV8 ;  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, YXGxE&!  
    %   and THETA is a vector of angles.  R and THETA must have the same h;J%Z!Rjw  
    %   length.  The output Z is a matrix with one column for every (N,M) $rQi$w/  
    %   pair, and one row for every (R,THETA) pair. =jRC4]M})  
    % 7+P-MT  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike qwd T= H  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;O({|mpS\  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 7t6TB*H  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {=P}c:i W  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ,WS{O6O7  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. P m|S>r  
    % 4/&.N]  
    %   The Zernike functions are an orthogonal basis on the unit circle. -L2% ,.E>4  
    %   They are used in disciplines such as astronomy, optics, and /I0}(;^y  
    %   optometry to describe functions on a circular domain. WAb@d=H{+>  
    % AD"L>7  
    %   The following table lists the first 15 Zernike functions. H$)otDOE  
    % .[vYT.LE  
    %       n    m    Zernike function           Normalization va;fT+k=  
    %       -------------------------------------------------- K`kWfPwp  
    %       0    0    1                                 1 i0[mU,  
    %       1    1    r * cos(theta)                    2 )AAPT7!U  
    %       1   -1    r * sin(theta)                    2 6 $+b2&V  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) }A7 ] bd  
    %       2    0    (2*r^2 - 1)                    sqrt(3) l>@){zxL  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ztV%W6  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) -q DL':  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) p+:MZP -%(  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 8s6^!e&  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) dijHi  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ?qczMck_  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;VPYWss  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5)  5f_1 dn  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +Pb@@C&  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) [vcSt5R=  
    %       -------------------------------------------------- iiV'-!3w  
    % WI\h@qSB  
    %   Example 1: tL S$D-  
    % w#RfD  
    %       % Display the Zernike function Z(n=5,m=1) w;V+)r?w  
    %       x = -1:0.01:1; ||rZ+<  
    %       [X,Y] = meshgrid(x,x); G8OnNI  
    %       [theta,r] = cart2pol(X,Y); p~Mw^SN'  
    %       idx = r<=1; 4tFnZ2x  
    %       z = nan(size(X)); Wvwjj~HP2}  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); biAa&   
    %       figure 8,?*eYNjb  
    %       pcolor(x,x,z), shading interp gqACIXR  
    %       axis square, colorbar vA0f4W 8+  
    %       title('Zernike function Z_5^1(r,\theta)') ag"Nf-o/Y  
    % sm;\;MP*yH  
    %   Example 2: -|/*S]6kK  
    % m~vEandm  
    %       % Display the first 10 Zernike functions !+ ??3-q  
    %       x = -1:0.01:1; C'fQ Z,r-v  
    %       [X,Y] = meshgrid(x,x); OG2&=~hOz-  
    %       [theta,r] = cart2pol(X,Y); ?YhGW   
    %       idx = r<=1; lgh+\pj  
    %       z = nan(size(X)); 87:V-*8  
    %       n = [0  1  1  2  2  2  3  3  3  3]; WlnS.P\+E  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; "$N 4S9U  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; oJVpJA0IA  
    %       y = zernfun(n,m,r(idx),theta(idx)); 6g%~~hX  
    %       figure('Units','normalized') k3r<']S^  
    %       for k = 1:10 -^= JKd &p  
    %           z(idx) = y(:,k); <|4L+?_(&  
    %           subplot(4,7,Nplot(k)) ~X1<x4P\  
    %           pcolor(x,x,z), shading interp %51HJB}C]  
    %           set(gca,'XTick',[],'YTick',[]) 8DZ OPA  
    %           axis square 2B=+p83<  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) t$b{zv9C  
    %       end ? -`8w _3  
    % -5Ln3\ O@  
    %   See also ZERNPOL, ZERNFUN2. MF.$E?_R  
    aUEnQ%YU"  
    %   Paul Fricker 11/13/2006 %scQP{%aD  
    Mg=R**s1x%  
    teg[l-R"7z  
    % Check and prepare the inputs: e^Glgaf  
    % ----------------------------- uZ(,7>0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (t2vt[A6ph  
        error('zernfun:NMvectors','N and M must be vectors.') TvwkeOS#}7  
    end A7sva@}W  
    Rln@9muXA  
    if length(n)~=length(m) :V:siIDn  
        error('zernfun:NMlength','N and M must be the same length.') @!2vS@f  
    end a #Pr)H  
    I8{ohFFo  
    n = n(:); QF9$SCmv  
    m = m(:); ,(&5y:o  
    if any(mod(n-m,2)) 8WMGuv  
        error('zernfun:NMmultiplesof2', ...  '' Pfs<!  
              'All N and M must differ by multiples of 2 (including 0).') :N ]H"u9X  
    end wTPHc:2  
    r>x>aJ  
    if any(m>n) ~X%W2N2  
        error('zernfun:MlessthanN', ... =1Tn~)^O  
              'Each M must be less than or equal to its corresponding N.') F`JW&r\  
    end {xJ<)^fD8  
    wGAeOD  
    if any( r>1 | r<0 ) 2qfKDZ9f^  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') q;H5S<]/  
    end m0+'BC{$u  
    @1iH4RE*  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) `& }C *i"  
        error('zernfun:RTHvector','R and THETA must be vectors.') rZ^VKO`~I1  
    end 4#2iq@s  
    &L4>w.b"N  
    r = r(:); f&L8<AS Fo  
    theta = theta(:); 7DCu#Y[  
    length_r = length(r); jK-usn  
    if length_r~=length(theta) H5?H{  
        error('zernfun:RTHlength', ... ]ppws3*Pa  
              'The number of R- and THETA-values must be equal.') V.Qy4u7m  
    end z)XI A)i6  
    fGMuml?[ e  
    % Check normalization: /^9yncG;>  
    % -------------------- 2)47$eu  
    if nargin==5 && ischar(nflag) 5qQ\H}  
        isnorm = strcmpi(nflag,'norm'); BF+i82$zo  
        if ~isnorm 3IDX3cM9  
            error('zernfun:normalization','Unrecognized normalization flag.') iE=:}"pI"  
        end W`` -/  
    else -x2&IJ!  
        isnorm = false; W#lt_2!j  
    end B*T;DE   
    `Uy'YfYF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :}p<Hq 8Z  
    % Compute the Zernike Polynomials wQw y+S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% '"fZGz?  
    2kVQ#JyuRI  
    % Determine the required powers of r: bd@1j`i  
    % ----------------------------------- vN3uLz'<  
    m_abs = abs(m); #JW~&;  
    rpowers = []; i $;y  
    for j = 1:length(n) P_N i 5s)  
        rpowers = [rpowers m_abs(j):2:n(j)]; |FH|l#bu>  
    end  NncII5z  
    rpowers = unique(rpowers); o `}(1$a>  
    `} :~,E  
    % Pre-compute the values of r raised to the required powers, Tl`HFZQ1  
    % and compile them in a matrix: TOXZl3 s5#  
    % ----------------------------- ~k780  
    if rpowers(1)==0 |&0zAP"\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); nZ8f}R!f:  
        rpowern = cat(2,rpowern{:}); UZb!tO2  
        rpowern = [ones(length_r,1) rpowern]; ".Sa[A;~  
    else UJhUb)}^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); D!nx%%q  
        rpowern = cat(2,rpowern{:}); i.G"21M  
    end ~sbn"OS +  
    Y[Kpd[)[v  
    % Compute the values of the polynomials: *ci%c^}V  
    % -------------------------------------- wA?q/cw C  
    y = zeros(length_r,length(n)); Z }s56{!.  
    for j = 1:length(n) |tqYRWn0  
        s = 0:(n(j)-m_abs(j))/2; ]gG&X3jaKq  
        pows = n(j):-2:m_abs(j); ooIA#u  
        for k = length(s):-1:1 2!;U.+(  
            p = (1-2*mod(s(k),2))* ... 6R+EG{`  
                       prod(2:(n(j)-s(k)))/              ... iK3gw<g  
                       prod(2:s(k))/                     ... o%.0@W  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...  - j_  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); A~%h*nZc%I  
            idx = (pows(k)==rpowers); '5 kSr(  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ?QG?F9?  
        end q_[V9  
         l~c# X3E  
        if isnorm ZAa:f:[#f  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); &NB"[Mm:@  
        end ypV>*  
    end !R@s+5P)U  
    % END: Compute the Zernike Polynomials gO,2:,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8lfKlXR78  
    Zz@wbhMV  
    % Compute the Zernike functions: B96"|v$  
    % ------------------------------ p{S#>JTr  
    idx_pos = m>0; -G@:uxB  
    idx_neg = m<0; .:V4>  
    V/W{d[86G  
    z = y; o=ULo &9  
    if any(idx_pos) [2Ot=t6]  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :]+p#l  
    end OXIy0].b  
    if any(idx_neg) ".:]? Lvt  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Mv#\+|p 1x  
    end x !QA* M  
    `(Ij@8 4  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) IM9P5?kJ ?  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. > J>|+W  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated z1`z k0  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive F,>-+~L=  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ]n$&|@  
    %   and THETA is a vector of angles.  R and THETA must have the same C8bv%9  
    %   length.  The output Z is a matrix with one column for every P-value, >S=,ype~G  
    %   and one row for every (R,THETA) pair. $mZpX:7/u8  
    % 'W]oQLD^R  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ct-;L' a  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) [$P.ek<  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ?QfomTT  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 %2t#>}If!  
    %   for all p. c3G&)gU4q  
    % Sw^-@w=!U5  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 =as\Tp#d  
    %   Zernike functions (order N<=7).  In some disciplines it is PML +$  
    %   traditional to label the first 36 functions using a single mode *Qe{CE  
    %   number P instead of separate numbers for the order N and azimuthal >W7IWhm3  
    %   frequency M. -y5Z c?e  
    % `UH 1B/  
    %   Example: >HlQ+bl$xw  
    % n^7m^1to  
    %       % Display the first 16 Zernike functions N>3X!K  
    %       x = -1:0.01:1; .?CumaU  
    %       [X,Y] = meshgrid(x,x); @!zT+W&  
    %       [theta,r] = cart2pol(X,Y); %zA$+eT  
    %       idx = r<=1; $,L,VYN  
    %       p = 0:15; At=l>  
    %       z = nan(size(X)); P<GHX~nB  
    %       y = zernfun2(p,r(idx),theta(idx)); J~URv)g  
    %       figure('Units','normalized') 6*r3T:u3  
    %       for k = 1:length(p) jtF et{  
    %           z(idx) = y(:,k); $bv l.c  
    %           subplot(4,4,k) y/}ENUGR  
    %           pcolor(x,x,z), shading interp u{"@ 4  
    %           set(gca,'XTick',[],'YTick',[]) zA?]AL(+YW  
    %           axis square l5bd);L tq  
    %           title(['Z_{' num2str(p(k)) '}']) YMEI J}  
    %       end 875BD U  
    % 6a\YD{D] _  
    %   See also ZERNPOL, ZERNFUN. ZFsJeF'"  
    "-;l{tL  
    %   Paul Fricker 11/13/2006 %B{NH~  
    !NfN16  
    en6oFPG   
    % Check and prepare the inputs: baVSQtda  
    % ----------------------------- ;r}>1LhN  
    if min(size(p))~=1 A"8"e*  
        error('zernfun2:Pvector','Input P must be vector.') OK"B`*  
    end rJ UXA<:2  
    Q]]5\C.  
    if any(p)>35 u/8urxp y  
        error('zernfun2:P36', ... _hb@O2f  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... \dIQhF%%2  
               '(P = 0 to 35).']) 1~# 2AdG  
    end zz+p6`   
    z nc'  
    % Get the order and frequency corresonding to the function number: 0{GpO6!  
    % ---------------------------------------------------------------- "x)xjL  
    p = p(:); 1TvR-.e  
    n = ceil((-3+sqrt(9+8*p))/2); SdTJ?P+m  
    m = 2*p - n.*(n+2); /\_wDi+#  
    Cp@' k;(  
    % Pass the inputs to the function ZERNFUN: 'l}T_7g  
    % ---------------------------------------- i@C$O.m(  
    switch nargin URFp3qE  
        case 3 Wqu][Wa[Z  
            z = zernfun(n,m,r,theta); "x*5g*k  
        case 4 {LLy4m  
            z = zernfun(n,m,r,theta,nflag); G} &{]w@  
        otherwise e:~r_,K  
            error('zernfun2:nargin','Incorrect number of inputs.') Vp'Zm:  
    end >_4Ck{^d#  
    T&]J3TFJ  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) LH4!QDK-  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Bw31h3yB  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of q}PeXXH  
    %   order N and frequency M, evaluated at R.  N is a vector of GIt~"X  
    %   positive integers (including 0), and M is a vector with the N;9m&)@JR'  
    %   same number of elements as N.  Each element k of M must be a :[1^IH(sb  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 1 XAXokxj  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is G $TLWfm  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 8X@p?43  
    %   with one column for every (N,M) pair, and one row for every =""z!%j  
    %   element in R. uES|jU{]b  
    % e`pYO]Z  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- |g vx^)ro  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is }Fd4; ]  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to y9cDPwi:b  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 IJxBPwh  
    %   for all [n,m]. Bb 5|+b P  
    % b ^wL{q  
    %   The radial Zernike polynomials are the radial portion of the [Bn C_^[W  
    %   Zernike functions, which are an orthogonal basis on the unit =IQ+9Fl2  
    %   circle.  The series representation of the radial Zernike poZ04Uxo>  
    %   polynomials is Lo^0VD!O  
    % Yv?nw-HM  
    %          (n-m)/2 ' c[[H3s!;  
    %            __ v=kQ / h  
    %    m      \       s                                          n-2s _g|zDi^  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r &Kuo|=f  
    %    n      s=0 H ?Vo#/  
    % F)ak5  
    %   The following table shows the first 12 polynomials. Arg604V3  
    % v~f_~v5J!  
    %       n    m    Zernike polynomial    Normalization M#BM`2!s  
    %       --------------------------------------------- b&AGVWhh  
    %       0    0    1                        sqrt(2) !~+"TI}_%w  
    %       1    1    r                           2 )HHG3cvU  
    %       2    0    2*r^2 - 1                sqrt(6) @>Y.s6a  
    %       2    2    r^2                      sqrt(6) .<0|V  
    %       3    1    3*r^3 - 2*r              sqrt(8) E8_j?X1  
    %       3    3    r^3                      sqrt(8) :fo.9J  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) X$aN:!1  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) !S0$W?*  
    %       4    4    r^4                      sqrt(10) ~#z8Q{!O  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ;VhilWaF-  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) BE`{? -G  
    %       5    5    r^5                      sqrt(12) ]mDsd*1  
    %       --------------------------------------------- c/:d$o-  
    % ,8~q nLy9  
    %   Example: +m|S7yr'  
    % {y5v"GR{YM  
    %       % Display three example Zernike radial polynomials 'R'P^  
    %       r = 0:0.01:1; 7R4sd  
    %       n = [3 2 5]; :c4iXK0_^?  
    %       m = [1 2 1]; Un [olp  
    %       z = zernpol(n,m,r); >3{#S:  
    %       figure =ttvC"4?  
    %       plot(r,z) _ELuQ>zM]+  
    %       grid on iLQFce7d|&  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 6j*L]S c  
    % <ttrd%VW  
    %   See also ZERNFUN, ZERNFUN2. 3X &'hz@  
    UH8q:jOi  
    % A note on the algorithm. nK95v}p}Y  
    % ------------------------ R^v-%mG9  
    % The radial Zernike polynomials are computed using the series ,]A|z ~q  
    % representation shown in the Help section above. For many special Pu|PIdu!08  
    % functions, direct evaluation using the series representation can 9%{V?r]k  
    % produce poor numerical results (floating point errors), because I&2)@Zw  
    % the summation often involves computing small differences between Uq}FrK}  
    % large successive terms in the series. (In such cases, the functions (8JL/S;Z$  
    % are often evaluated using alternative methods such as recurrence  "! -  
    % relations: see the Legendre functions, for example). For the Zernike ua!i3]18  
    % polynomials, however, this problem does not arise, because the ivgV5 )".  
    % polynomials are evaluated over the finite domain r = (0,1), and CcGE4BB  
    % because the coefficients for a given polynomial are generally all HuVx^y` @  
    % of similar magnitude. $#z ` R;  
    % c(@(j8@S  
    % ZERNPOL has been written using a vectorized implementation: multiple Fe r&X  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] SRU }-  
    % values can be passed as inputs) for a vector of points R.  To achieve [-ONs  
    % this vectorization most efficiently, the algorithm in ZERNPOL Th\w#%'N  
    % involves pre-determining all the powers p of R that are required to 9i6z  p'  
    % compute the outputs, and then compiling the {R^p} into a single wwvS05=[T  
    % matrix.  This avoids any redundant computation of the R^p, and 71S~*"O0f  
    % minimizes the sizes of certain intermediate variables. L1H k[j]X|  
    % dBWi1vTF  
    %   Paul Fricker 11/13/2006 ILN Yh3  
    nj90`O.K  
    AVn?86ri  
    % Check and prepare the inputs: 3np |\i  
    % ----------------------------- ?* {Vn5aX{  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "b~-`ni  
        error('zernpol:NMvectors','N and M must be vectors.') U4$}8~o4  
    end `G@(Z:]f,t  
    J!\Cs1 !f  
    if length(n)~=length(m) `>HM<Nn-0  
        error('zernpol:NMlength','N and M must be the same length.') =pT}]  
    end #<$pl]>}t  
    !~j-5+DI  
    n = n(:); 8I>'x f  
    m = m(:); %%-?~rjI  
    length_n = length(n); EDDld6O,  
    zfsGf 'U  
    if any(mod(n-m,2)) ydZS^BqG  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Qhc>,v)  
    end 4MFdhJoN  
    |8{c|Qz  
    if any(m<0) =q\Ghqj1  
        error('zernpol:Mpositive','All M must be positive.') s)A=hB-V  
    end kd=|Iip;(  
    vk jHh.  
    if any(m>n) 1B0+dxN`  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') -:V0pb  
    end >h Rq  
    FjU -t/  
    if any( r>1 | r<0 ) J< vVsz+7:  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.')  Qi;62M  
    end yq=rv$.s  
    BJDSk#!J!{  
    if ~any(size(r)==1) 0en Bq>vr  
        error('zernpol:Rvector','R must be a vector.') %a=^T?8  
    end DtFzT>$^F  
    W2w A66MB  
    r = r(:); K ; e R)  
    length_r = length(r); [uLpm*7  
    UhX)?'J  
    if nargin==4 z+5%.^Re  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); F*4zC@;  
        if ~isnorm p Lwtm@  
            error('zernpol:normalization','Unrecognized normalization flag.') }8LTYn  
        end ;CtTdr  
    else <*3#nA-O>i  
        isnorm = false; Hp(wR'(g&  
    end 7L4~yazmK  
    /D>G4PP<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% '89nyx&W  
    % Compute the Zernike Polynomials V|hr9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S\S31pYT  
    =M."^X  
    % Determine the required powers of r: 4(%LG)a4S  
    % ----------------------------------- T1U8ZEK<iu  
    rpowers = []; 2EC<8}CG  
    for j = 1:length(n) \LYNrL~?J  
        rpowers = [rpowers m(j):2:n(j)]; L;i(@tp|v  
    end `L m9!?  
    rpowers = unique(rpowers); DyCnL@  
    \"| 7o8  
    % Pre-compute the values of r raised to the required powers, K 9tr Iy$v  
    % and compile them in a matrix: WzqYB a  
    % ----------------------------- (&!x2M  
    if rpowers(1)==0 <i ";5+  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); K}( @Ek  
        rpowern = cat(2,rpowern{:}); j2`%sBo  
        rpowern = [ones(length_r,1) rpowern]; Fql|0Fq  
    else S7h?tR*u  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); E#VF7 9L  
        rpowern = cat(2,rpowern{:}); fA"9eUu  
    end 2o<aEn&7|e  
    _-:CU  
    % Compute the values of the polynomials: $2>"2*,04  
    % -------------------------------------- il[waUfmD  
    z = zeros(length_r,length_n); ^ 0g!,L  
    for j = 1:length_n 2rWPqG4e  
        s = 0:(n(j)-m(j))/2; NI85|*h  
        pows = n(j):-2:m(j); ]-{A"tJ  
        for k = length(s):-1:1 D}OhmOu 3  
            p = (1-2*mod(s(k),2))* ... <T`&NA@%~$  
                       prod(2:(n(j)-s(k)))/          ... ` 1v Dp.  
                       prod(2:s(k))/                 ... ?#lHQT  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Vs9]Gm  
                       prod(2:((n(j)+m(j))/2-s(k))); Y(;u)uN_  
            idx = (pows(k)==rpowers); 6$&%z Eh  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Zq{TY)PI]  
        end 4Cp)!Bq?/  
         FnCMr_  
        if isnorm  NArr2o2  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); CE7{>pl  
        end 9R99,um$  
    end 9cQ;h37J>  
    jGEmf<q&u  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ;8yEhar  
    -GYJ)f  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 -(9TM*)O  
    fzzk#jU  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)