切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10843阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 9s7B1Pf  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Jx{,x-I  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 h]=chz  
    function z = zernfun(n,m,r,theta,nflag) S4(IYnwN  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. vIG,!^*3  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gTq-\k(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 4Cfwz-Qo  
    %   unit circle.  N is a vector of positive integers (including 0), and r'!l` gm,S  
    %   M is a vector with the same number of elements as N.  Each element #2MwmIeA  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) dKMuo'H'%  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, bHMlh^{`%  
    %   and THETA is a vector of angles.  R and THETA must have the same 'v,W gPe  
    %   length.  The output Z is a matrix with one column for every (N,M) LNg1q1 P3  
    %   pair, and one row for every (R,THETA) pair. givK{Yt<B  
    % hlVP_h"z  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &B.r&K&  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )N=wJN1  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral *\`C! r  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, hT_snb;ow  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized i3GvTg-X  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. td m{ V st  
    % \Dc\H )  
    %   The Zernike functions are an orthogonal basis on the unit circle. ! of7]s  
    %   They are used in disciplines such as astronomy, optics, and }E=kfMu  
    %   optometry to describe functions on a circular domain. P``hw=L  
    % fg9sZ%67]\  
    %   The following table lists the first 15 Zernike functions. -`;8~wMN  
    % .dygp"*  
    %       n    m    Zernike function           Normalization ;klDt|%3j  
    %       -------------------------------------------------- WDX?|q9rCt  
    %       0    0    1                                 1 =#u2Rx%V  
    %       1    1    r * cos(theta)                    2 U!'lc} 5  
    %       1   -1    r * sin(theta)                    2 u1"e+4f  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 646ye Q1  
    %       2    0    (2*r^2 - 1)                    sqrt(3) +-Dd*yD6<  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) mSzwx/3"  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) nFP2wvFM  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) M{S7ia"s  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) dnx}c4P  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) V?"^Ff3m!  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 6M6QMg^  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4 hj2rK'y  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) |B n=$T]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -Z Z$ 1E  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) NqWHR~&  
    %       -------------------------------------------------- I45A$nV#Q  
    % qYh,No5\;t  
    %   Example 1: daorKW4  
    % wv7jh~x(4  
    %       % Display the Zernike function Z(n=5,m=1) SUEw5qitB  
    %       x = -1:0.01:1; ZMe|fn  
    %       [X,Y] = meshgrid(x,x); wx!*fy4hL  
    %       [theta,r] = cart2pol(X,Y); H )}WWXK  
    %       idx = r<=1; WNx^Rg" >'  
    %       z = nan(size(X)); ArEpH"}@  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); <_>6a7ra  
    %       figure :+5afv}  
    %       pcolor(x,x,z), shading interp E,|n'  
    %       axis square, colorbar HB}gn2 .1&  
    %       title('Zernike function Z_5^1(r,\theta)') ^M9oTNk2  
    % 9JtvHUkO  
    %   Example 2: V588Leb?  
    % YfalsQ8  
    %       % Display the first 10 Zernike functions K4yYNlY  
    %       x = -1:0.01:1; 5 QeGx3'  
    %       [X,Y] = meshgrid(x,x); 3oKGeB;Ja  
    %       [theta,r] = cart2pol(X,Y); =, 0a3D6b  
    %       idx = r<=1; 10rGA=x'(  
    %       z = nan(size(X)); JXAyF6 $  
    %       n = [0  1  1  2  2  2  3  3  3  3]; qIT{`hX  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; p^:Lj9Qax  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 9H}&Ri%  
    %       y = zernfun(n,m,r(idx),theta(idx)); 7`/qL "  
    %       figure('Units','normalized') c 2@@Rd~M  
    %       for k = 1:10 OW}A48X[+  
    %           z(idx) = y(:,k); +m.8*^  
    %           subplot(4,7,Nplot(k)) $iPN5@F  
    %           pcolor(x,x,z), shading interp tb{{oxa,k  
    %           set(gca,'XTick',[],'YTick',[]) _pGviGR  
    %           axis square }ELCnN  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) |BkY"F7m9  
    %       end ?>8zU;Aj  
    % Bg h$P  
    %   See also ZERNPOL, ZERNFUN2. iq:[+  
    G7;}309s  
    %   Paul Fricker 11/13/2006 4sQAR6_SW~  
    -],?kP  
    Q75^7Ga_  
    % Check and prepare the inputs: X-,y[ )  
    % ----------------------------- %`1vIr(7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) gJxVU41  
        error('zernfun:NMvectors','N and M must be vectors.') f B96Q  
    end ws?s   
    4Jr[8P0/A9  
    if length(n)~=length(m) bW^QH-t  
        error('zernfun:NMlength','N and M must be the same length.') zjS:;!8em  
    end RM1uYFs<  
    grdyiBSVn  
    n = n(:); J\+gd%  
    m = m(:); $tHwJ!<$&  
    if any(mod(n-m,2)) .K1E1Z_  
        error('zernfun:NMmultiplesof2', ... *UoHzaIqz  
              'All N and M must differ by multiples of 2 (including 0).') $-?5Q~  
    end }.) 43(>]  
    xJLO\B+gM  
    if any(m>n) u^$Md WP  
        error('zernfun:MlessthanN', ... .GN$H>')  
              'Each M must be less than or equal to its corresponding N.') 9:i,WJO  
    end 0r ; nz]'  
    K!K"}%/_  
    if any( r>1 | r<0 ) Qsxkw  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') $ cK B+}  
    end T\!SA  
    SzlfA%4+GR  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) llfiNEK5;  
        error('zernfun:RTHvector','R and THETA must be vectors.') DIp:S&q2  
    end R(83E B~_  
    d 4\E  
    r = r(:); y6Epi|8  
    theta = theta(:); ,(27p6!  
    length_r = length(r); {kl{mJ*  
    if length_r~=length(theta) j~S!!Z ]  
        error('zernfun:RTHlength', ... Sje0:;;|  
              'The number of R- and THETA-values must be equal.') h_chZB'  
    end (g/X(3  
    `vxrC&,As  
    % Check normalization: Y+u-J4bj  
    % -------------------- XH:gQ9FD  
    if nargin==5 && ischar(nflag) vZeYp  
        isnorm = strcmpi(nflag,'norm'); +%qSB9_>N{  
        if ~isnorm <S8W~ wC  
            error('zernfun:normalization','Unrecognized normalization flag.') kad;Wa#h  
        end ^GrkIh0nL  
    else 3).o"AN  
        isnorm = false; "gvw0)  
    end Ym.l@(  
    -iDEh_pts  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n *i'vtQ8  
    % Compute the Zernike Polynomials T$^>Fiz{Se  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X ' #$e{  
    -j`!(IJ  
    % Determine the required powers of r: q= yZx)  
    % ----------------------------------- ZE8/ m")  
    m_abs = abs(m); TG63  
    rpowers = []; ]fADaw-R  
    for j = 1:length(n) HA9Nr.NqC@  
        rpowers = [rpowers m_abs(j):2:n(j)]; B3>Uba*-)}  
    end KM5DYy2 A6  
    rpowers = unique(rpowers); : \:~y9X0  
    [|[sYo  
    % Pre-compute the values of r raised to the required powers, BgkB x  
    % and compile them in a matrix: l!;_lH8W$  
    % ----------------------------- K Z!N{.Jk  
    if rpowers(1)==0 ;o)=XEh8P  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U+*oI*  
        rpowern = cat(2,rpowern{:}); &V#zkW  
        rpowern = [ones(length_r,1) rpowern]; Z<N&UFw7QJ  
    else yC'hwoQ`  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +% XhQ  
        rpowern = cat(2,rpowern{:}); Wj4^W<IO  
    end &,N3uy;Gc  
    "y~muE:.  
    % Compute the values of the polynomials: 5X`w&(]m  
    % -------------------------------------- ,qe]fo >  
    y = zeros(length_r,length(n)); G9i&#)nWr  
    for j = 1:length(n) hC|5e|S  
        s = 0:(n(j)-m_abs(j))/2; 5y%un  
        pows = n(j):-2:m_abs(j); \[[TlB>  
        for k = length(s):-1:1 1 ;\]D9i  
            p = (1-2*mod(s(k),2))* ... E/~"j  
                       prod(2:(n(j)-s(k)))/              ... (:?5 i`  
                       prod(2:s(k))/                     ... +~w?Xw,  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]_ejDN\>{V  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ;]gsJ9FK<  
            idx = (pows(k)==rpowers); "%oH@ =  
            y(:,j) = y(:,j) + p*rpowern(:,idx); YN%=Oq  
        end g[EM]q,  
         FJa[ToZ4+  
        if isnorm R=vbUA  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); bkr~13S{+  
        end `Di ^6UK(  
    end S,*{q(   
    % END: Compute the Zernike Polynomials !2zo]v4?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H.YIv50E  
    dThR)Z'=  
    % Compute the Zernike functions: 5JBB+g  
    % ------------------------------ n|70x5Z?}J  
    idx_pos = m>0; q_<*esZ,  
    idx_neg = m<0; L$Hx?^3  
    UAsF0&]  
    z = y; ~\IF9!  
    if any(idx_pos) UF&0 & `@  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ku/\16E/k  
    end qri}=du&F  
    if any(idx_neg) aBXYri  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); IajD;V  
    end 1MbY7!?PG  
    E4sn[DO  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) F>(qOH.I  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. <Q2u)m'  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated r5t;'eCe a  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive H@K#|A=a  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, @ SU8\:(U  
    %   and THETA is a vector of angles.  R and THETA must have the same {eEBrJJeB  
    %   length.  The output Z is a matrix with one column for every P-value, \Dn&"YG7  
    %   and one row for every (R,THETA) pair. CQ@LmTW[  
    % 2>F\&  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike }5Yj  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) u@<Pu@?xm  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) PeO]lq  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 JZ`>|<W  
    %   for all p. cNe0x2Z$?  
    % P+[QI U  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36  b<[jaI0  
    %   Zernike functions (order N<=7).  In some disciplines it is Z:K+I+:t  
    %   traditional to label the first 36 functions using a single mode hT?6sWa  
    %   number P instead of separate numbers for the order N and azimuthal +T9Q_e*  
    %   frequency M. Vwjk[ DOL  
    % \ jE CSV|  
    %   Example: ZAMeqPt  
    % DhZ:#mM{  
    %       % Display the first 16 Zernike functions n'T He|:I  
    %       x = -1:0.01:1; !_qskDc-  
    %       [X,Y] = meshgrid(x,x); ODm&&W#*  
    %       [theta,r] = cart2pol(X,Y); 2;8Xz 6T  
    %       idx = r<=1; <>%,}j 9  
    %       p = 0:15; vkJ)FEar  
    %       z = nan(size(X)); *P`v^&  
    %       y = zernfun2(p,r(idx),theta(idx)); y<TOqn  
    %       figure('Units','normalized') '!p=aF9L  
    %       for k = 1:length(p) Rq) 0i}F  
    %           z(idx) = y(:,k); ^7.XGWQ)-  
    %           subplot(4,4,k) LIF|bE9kd  
    %           pcolor(x,x,z), shading interp F9-[%l  
    %           set(gca,'XTick',[],'YTick',[]) g6WPPpqus  
    %           axis square |pJC:woq  
    %           title(['Z_{' num2str(p(k)) '}']) hR-K@fS%l'  
    %       end @<2d8ed  
    % D}-o+6TI?  
    %   See also ZERNPOL, ZERNFUN. xq2V0Jp1u  
    W;4Lkk$  
    %   Paul Fricker 11/13/2006 3QW_k5o  
    ylu2R0] (  
    a5|@R<iF  
    % Check and prepare the inputs: KF_?'X0=  
    % ----------------------------- WSRy%#  
    if min(size(p))~=1 Wbe0ZnM]  
        error('zernfun2:Pvector','Input P must be vector.') -IadHX}]t  
    end ?OE#q$g  
    [& ^RP,N~  
    if any(p)>35 Oa! m  
        error('zernfun2:P36', ... @xS]!1-  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... w d/G|kNO  
               '(P = 0 to 35).']) \6o\+OQk  
    end kx:jI^  
    ;$7v%Ls=  
    % Get the order and frequency corresonding to the function number: `N}d}O8   
    % ---------------------------------------------------------------- :=*}htP4C  
    p = p(:); " !-Kd'V  
    n = ceil((-3+sqrt(9+8*p))/2); | f\D>Y%)  
    m = 2*p - n.*(n+2); Z.'syGuV  
    =\Iu$2r`  
    % Pass the inputs to the function ZERNFUN: z}+i=cAN  
    % ---------------------------------------- ]3ifd G k  
    switch nargin %D`o  
        case 3 UX2lPgKdLz  
            z = zernfun(n,m,r,theta); io.]'">  
        case 4 H=p`T+  
            z = zernfun(n,m,r,theta,nflag); xr[Vp  
        otherwise 1oty*c  
            error('zernfun2:nargin','Incorrect number of inputs.') e"k/d<  
    end _okWQvdH  
    "$|Zr  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) <+v{GF#R  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. d ~`V7B2Y  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of jVWK0Zba  
    %   order N and frequency M, evaluated at R.  N is a vector of "35A/V  
    %   positive integers (including 0), and M is a vector with the iPj~I  
    %   same number of elements as N.  Each element k of M must be a 2eb1 lJdS  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) QJGKQ2^ n  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 0N;%2=2_E  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 8e&p\%1  
    %   with one column for every (N,M) pair, and one row for every )nfEQ)L;h}  
    %   element in R. mJ5H=&Z  
    % skg|>R,kE  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- nP3  E  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 2g-` ]Vqb  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ru9zTZZD  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 [ f/I2  
    %   for all [n,m]. }m- "8\_D  
    % [}z,J"Un  
    %   The radial Zernike polynomials are the radial portion of the /=:j9FF  
    %   Zernike functions, which are an orthogonal basis on the unit ,$lemH1d  
    %   circle.  The series representation of the radial Zernike Um` !%  
    %   polynomials is l \OLyQ  
    % `A@w7J'  
    %          (n-m)/2 BuOgOYh9  
    %            __ 6.WceWBR  
    %    m      \       s                                          n-2s r! %;R?c  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r %aRT>_6"  
    %    n      s=0 !l@zT}i??  
    % 1q7tiMvV-  
    %   The following table shows the first 12 polynomials. i)a%!1Ar  
    % oUZoj2G1  
    %       n    m    Zernike polynomial    Normalization Yk!/ow@.  
    %       --------------------------------------------- TrS8h^C  
    %       0    0    1                        sqrt(2) (p#0)C  
    %       1    1    r                           2 4?\:{1X=  
    %       2    0    2*r^2 - 1                sqrt(6) \M<3}t  
    %       2    2    r^2                      sqrt(6) Of,2Q#oji  
    %       3    1    3*r^3 - 2*r              sqrt(8) &7e)O=  
    %       3    3    r^3                      sqrt(8) (V:E2WR  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) /YAJbr  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) WJH\~<{mP  
    %       4    4    r^4                      sqrt(10) GL Mm(  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) zi9[)YqxPH  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) &ANP`=  
    %       5    5    r^5                      sqrt(12) , t5 '  
    %       --------------------------------------------- Yr.sm!xA  
    % Qn@Pd*DR  
    %   Example: MK #wut  
    % 46@{5)Tq  
    %       % Display three example Zernike radial polynomials Mj#-j/{x{5  
    %       r = 0:0.01:1; n{*D_kM(H  
    %       n = [3 2 5]; l7H qo)  
    %       m = [1 2 1]; b?X.U}62_  
    %       z = zernpol(n,m,r); HBS\<}  
    %       figure w'MGA  
    %       plot(r,z) RD7^&  
    %       grid on #G" xNl  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') s#~GH6/  
    %  ^zzP.   
    %   See also ZERNFUN, ZERNFUN2. % 2$/JZ  
    9I27TKy  
    % A note on the algorithm. tGvG  
    % ------------------------ }/tf>?c  
    % The radial Zernike polynomials are computed using the series y$FW$Ka  
    % representation shown in the Help section above. For many special g- AHdYJ  
    % functions, direct evaluation using the series representation can &s Pq<lo  
    % produce poor numerical results (floating point errors), because nRL. ppUI  
    % the summation often involves computing small differences between . o7m!  
    % large successive terms in the series. (In such cases, the functions h,aAw#NE*  
    % are often evaluated using alternative methods such as recurrence Qd}m`YW-f$  
    % relations: see the Legendre functions, for example). For the Zernike  McH>"`  
    % polynomials, however, this problem does not arise, because the c0B|F  
    % polynomials are evaluated over the finite domain r = (0,1), and voP7"Dl[  
    % because the coefficients for a given polynomial are generally all X[ q+619  
    % of similar magnitude. 0sN.H=   
    % %~L>1ShtU  
    % ZERNPOL has been written using a vectorized implementation: multiple eAv4FA4g  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] MYJg8 '[j  
    % values can be passed as inputs) for a vector of points R.  To achieve 'o|30LzYgQ  
    % this vectorization most efficiently, the algorithm in ZERNPOL L^2FQti>  
    % involves pre-determining all the powers p of R that are required to r.3/F[.  
    % compute the outputs, and then compiling the {R^p} into a single S5~VD?O,  
    % matrix.  This avoids any redundant computation of the R^p, and f` =CpO*  
    % minimizes the sizes of certain intermediate variables. Gj"7s8(/K|  
    % (?_S6H E  
    %   Paul Fricker 11/13/2006 ];.pK  
    &j(+/;A  
    Ox#\M0Wn$3  
    % Check and prepare the inputs: O"Ku1t!  
    % ----------------------------- zi`b2h  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ee%fqVQ8P  
        error('zernpol:NMvectors','N and M must be vectors.') 0/S_e)U  
    end R|O8RlH  
    C<KrMRWh^  
    if length(n)~=length(m) % K(<$!  
        error('zernpol:NMlength','N and M must be the same length.') xX*H7#  
    end H*#s }9=kZ  
    Q+4Xs.#  
    n = n(:); Y3Vlp/"rB"  
    m = m(:); TXe$<4"  
    length_n = length(n); Cmc3k,t  
    M\yT).>z  
    if any(mod(n-m,2)) :0s]U_h  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ': N51kC  
    end $<:E'^SAS  
    CPNL 94x  
    if any(m<0) KII *az  
        error('zernpol:Mpositive','All M must be positive.') V(Ub!n:j  
    end '1M7M(va  
    3p0LN'q]A  
    if any(m>n) PRz/inru-  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ^Z:~91Tv-_  
    end G:zua`u[  
    *S/_i-ony  
    if any( r>1 | r<0 ) ,o)d3g-&g  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') [Q=dC X9%  
    end 6Cn+e.j@  
    g!-,]  
    if ~any(size(r)==1) v{}#?=I5  
        error('zernpol:Rvector','R must be a vector.') [B+W%g(c-  
    end `Od5Gh  
    -jMJAYjV  
    r = r(:); c%=IL M4  
    length_r = length(r); aH^RoG}  
    6`f2-f9%iq  
    if nargin==4 lsJnI|  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Z)jw|T'X  
        if ~isnorm lT(oL|{#P  
            error('zernpol:normalization','Unrecognized normalization flag.') 1Tu *79A  
        end qh`t-  
    else 5}`_x+$%(`  
        isnorm = false; lV%N  
    end ,_Z+8  
    ;VWAf;U;B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }Hn/I,/  
    % Compute the Zernike Polynomials vd8{c7g:n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )E~ 79!  
    L'F<ev  
    % Determine the required powers of r: XGl+S  
    % ----------------------------------- 8QM(?A  
    rpowers = []; R) c'#St  
    for j = 1:length(n) ~Q\3pI. |  
        rpowers = [rpowers m(j):2:n(j)]; l8?>>.<P=  
    end )kP5u`v  
    rpowers = unique(rpowers); 3`k;a1Z#O'  
    V3"=w&2]K  
    % Pre-compute the values of r raised to the required powers, %mZ{4<7  
    % and compile them in a matrix: [ i]Ub0Dh7  
    % ----------------------------- hNzB4 p  
    if rpowers(1)==0 o_'p3nD  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); C+TI]{t  
        rpowern = cat(2,rpowern{:}); Y./2Ely  
        rpowern = [ones(length_r,1) rpowern]; -]QD|w3dp  
    else ariLG [:X  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); $C `;fA  
        rpowern = cat(2,rpowern{:}); hRCed4qA  
    end rYbpih=x  
    ~-I +9F  
    % Compute the values of the polynomials: YxP&7oq  
    % -------------------------------------- Rb.SY{}C  
    z = zeros(length_r,length_n); >k'c' 7/  
    for j = 1:length_n V>b\[(=s  
        s = 0:(n(j)-m(j))/2; 5=Di<!a;  
        pows = n(j):-2:m(j); ;UfCj5`Q)4  
        for k = length(s):-1:1 h-%R<[  
            p = (1-2*mod(s(k),2))* ... u,UmrR  
                       prod(2:(n(j)-s(k)))/          ... 7Zh~lM  
                       prod(2:s(k))/                 ... 1~PV[2a  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... =F@W gn,  
                       prod(2:((n(j)+m(j))/2-s(k))); *FMMjz  
            idx = (pows(k)==rpowers); }b-g*dn]5  
            z(:,j) = z(:,j) + p*rpowern(:,idx); JhLgCnm  
        end lR(+tj)9uO  
         D ^x-^6^  
        if isnorm 2* 2wY=  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); FAj)OTI2S  
        end RS^lKJ1 U  
    end iB498t  
    i(NdGL#P  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    854
    光币
    834
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  /7t>TYip!  
    Ns7(j-  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 }l],.J\BGX  
    t ]_VG  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)