非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 +7mUX
function z = zernfun(n,m,r,theta,nflag) @x@wo9<Fc
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. emMk*l,
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -7IRlP&
% and angular frequency M, evaluated at positions (R,THETA) on the ^Z+p_;J$p
% unit circle. N is a vector of positive integers (including 0), and
<64#J9T^
% M is a vector with the same number of elements as N. Each element EEP&Y?
% k of M must be a positive integer, with possible values M(k) = -N(k) aQj"FUL
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, j6dlAe
% and THETA is a vector of angles. R and THETA must have the same T`2a)
% length. The output Z is a matrix with one column for every (N,M) *pYawT
% pair, and one row for every (R,THETA) pair. d-jZ 5nl(
% AbL(F#{
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike e8 c.&j3m
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2Mu3]2>
% with delta(m,0) the Kronecker delta, is chosen so that the integral Rxq4Diq5k
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ZfibHivz
% and theta=0 to theta=2*pi) is unity. For the non-normalized XG!^[ZDs
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. +fN2%aC
% ge ]Z5E(1
% The Zernike functions are an orthogonal basis on the unit circle. _LFABG=
% They are used in disciplines such as astronomy, optics, and |*g\-2j{
% optometry to describe functions on a circular domain. u`"Y!*[ -
% ao"Z%#Jb~
% The following table lists the first 15 Zernike functions. ^[VEr"X
%
0v|qP
% n m Zernike function Normalization ]Na; b
% -------------------------------------------------- N>w+YFM
% 0 0 1 1 ^ f[^.k$3d
% 1 1 r * cos(theta) 2 XCT3:db
% 1 -1 r * sin(theta) 2 r_MP[]f|0
% 2 -2 r^2 * cos(2*theta) sqrt(6) 63'L58O
% 2 0 (2*r^2 - 1) sqrt(3) 8:U0M'}u>
% 2 2 r^2 * sin(2*theta) sqrt(6) ddY-F
}z~
% 3 -3 r^3 * cos(3*theta) sqrt(8) rAk;8)O$
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) @QDUz>_y
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) mr,GHx
% 3 3 r^3 * sin(3*theta) sqrt(8) #n+sbx5~7
% 4 -4 r^4 * cos(4*theta) sqrt(10) ;?Q0mXr
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {<zE}7/2-
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 1
J[z ![Tf
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >:OP+Vc
% 4 4 r^4 * sin(4*theta) sqrt(10) I5E5,{
% -------------------------------------------------- uT
Y G/O
% e 8^%}\F
% Example 1: dKmPKeJM
% E)]emeGd
% % Display the Zernike function Z(n=5,m=1) orFB*{/Z
% x = -1:0.01:1; r;O?`~2'4
% [X,Y] = meshgrid(x,x); [6?x 6_M
% [theta,r] = cart2pol(X,Y); fVYv 2
% idx = r<=1; 88}0 4
% z = nan(size(X)); oJZ0{^
% z(idx) = zernfun(5,1,r(idx),theta(idx)); OqX+R4S
% figure &zPM#Q
% pcolor(x,x,z), shading interp Q'[~$~&`
% axis square, colorbar
9y*(SDF
% title('Zernike function Z_5^1(r,\theta)') ^y~oXS(
% &-x/c\jz
% Example 2: n65fT+;
% =nCV.Wf
% % Display the first 10 Zernike functions _he~Y2zFz
% x = -1:0.01:1; Up>,~bs]
% [X,Y] = meshgrid(x,x); 9Dyw4'W.N
% [theta,r] = cart2pol(X,Y);
aqwW`\
% idx = r<=1; ]@qD4:
% z = nan(size(X)); oTA'=<W?D
% n = [0 1 1 2 2 2 3 3 3 3]; p+2uK|T9
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; P.~sNd oJ
% Nplot = [4 10 12 16 18 20 22 24 26 28]; G~NhBA9
% y = zernfun(n,m,r(idx),theta(idx)); 8g/r8u~
% figure('Units','normalized') WX+@<y}%
% for k = 1:10 {9hhfI#3_
% z(idx) = y(:,k); ">s0B5F7
% subplot(4,7,Nplot(k)) %Ip=3($Ku[
% pcolor(x,x,z), shading interp <4;f?eu
% set(gca,'XTick',[],'YTick',[]) eh*F/Gu
% axis square l4OPzNc'
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vf`]
% end ~5Rh7
% bL5dCQxty
% See also ZERNPOL, ZERNFUN2. &0mhO+g
.\)p3pC)
% Paul Fricker 11/13/2006 XB%`5wwd
JM*rPzp
'eoI~*}3WQ
% Check and prepare the inputs: h#8{fr)6
% ----------------------------- \)PS&Y8n
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) sk. rJ
error('zernfun:NMvectors','N and M must be vectors.') VE/~tT;
end Bc#6mO-
T f^O(
if length(n)~=length(m) C%'eF`
error('zernfun:NMlength','N and M must be the same length.') F#{PJ#
end _j<,qi
BCHI@a
n = n(:); *tT5Zt/&Sr
m = m(:); fVBRP[,
if any(mod(n-m,2)) P+3)YO1C
error('zernfun:NMmultiplesof2', ... 7M9s}b%?
'All N and M must differ by multiples of 2 (including 0).') Xg97[ I8/
end PvdR)ZEm
..^,*
if any(m>n) .]Z,O>N
error('zernfun:MlessthanN', ... ~#[ ZuMO?
'Each M must be less than or equal to its corresponding N.') v aaZ
end [g*]u3s
jdVdz,Y
if any( r>1 | r<0 ) Q_a%$a.rV
error('zernfun:Rlessthan1','All R must be between 0 and 1.') !!t@H\
end n1c Q#u
fKT(.VNq5
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Z8Clm:S
error('zernfun:RTHvector','R and THETA must be vectors.') i@d@~M7/
end %K]nX#.B&
FdJC@Y-#uA
r = r(:); ?)5M3lV3k
theta = theta(:); |m7`:~ow
length_r = length(r); *'(dcy9
if length_r~=length(theta) LvS3c9|Aj
error('zernfun:RTHlength', ... K#{E87G(
'The number of R- and THETA-values must be equal.') (.3L'+F
end x]U (EX`t$
_'oy
C(:}
% Check normalization: iJE|u
% -------------------- [G|2m_
if nargin==5 && ischar(nflag) h Tn^:%(
isnorm = strcmpi(nflag,'norm'); `o*g2fW!
if ~isnorm Qs{Qg<}
error('zernfun:normalization','Unrecognized normalization flag.') z*>CP
end z95V 7E
else _mL 9G5~r
isnorm = false; Z_Ma|V?6
end {1YT a:evl
D 2Go,1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "Hjw
% Compute the Zernike Polynomials Xc5[d`]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _.06^5o
fhn0^Qc"+
% Determine the required powers of r: o6KBJx
% ----------------------------------- 6YU2
!x
m_abs = abs(m); a^5`fA/L,
rpowers = []; 9e :E% 2
for j = 1:length(n) A?|cJ"N
rpowers = [rpowers m_abs(j):2:n(j)]; JT^E`<nn
end +;[`fSi
rpowers = unique(rpowers); |I+E`,n"b
)SUN+YV^
% Pre-compute the values of r raised to the required powers, IL:"]`f*
% and compile them in a matrix: Ef `LBAfOO
% ----------------------------- 0_D~n0rq,v
if rpowers(1)==0 X7c*T /
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); '\*Rw]bR|
rpowern = cat(2,rpowern{:}); qryt1~Dq
rpowern = [ones(length_r,1) rpowern]; BK d(
else mQs'2Y6Oa
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); fZ g*@RR
rpowern = cat(2,rpowern{:}); 'HcDl@E
end MthThsr7
fp = y(:,idx_neg).*cos(theta*m(idx_neg)'); NE4fQi?3
end
k
WtUj
4dK@UN\
% EOF zernfun