切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10974阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 s+^o[R T3  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! r[M]2h  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Xj+1]KRN  
    function z = zernfun(n,m,r,theta,nflag) j=dHgnVvj  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Wz:MPdz3(  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N p5)A"p8"9,  
    %   and angular frequency M, evaluated at positions (R,THETA) on the vCbqZdy?  
    %   unit circle.  N is a vector of positive integers (including 0), and M29[\@zL  
    %   M is a vector with the same number of elements as N.  Each element _4zlEo-.gU  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ^o:0 Y}v=  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, gl.P#7X  
    %   and THETA is a vector of angles.  R and THETA must have the same Lkk'y})/  
    %   length.  The output Z is a matrix with one column for every (N,M) YZpF*E;6t  
    %   pair, and one row for every (R,THETA) pair. 3 {on$\  
    % &E {/s  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike dWD9YIYf  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),  9<[RXY  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 0[PP Vr:  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, [ "J  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized X-oou'4<  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. o0s+ roiD  
    % JZu7Fb]L9  
    %   The Zernike functions are an orthogonal basis on the unit circle. 1;vn*w`p  
    %   They are used in disciplines such as astronomy, optics, and a/L?R Uu  
    %   optometry to describe functions on a circular domain. r^#.yUz  
    % YIgzFt[L  
    %   The following table lists the first 15 Zernike functions. VC>KW{&J0  
    % N[aK#o,  
    %       n    m    Zernike function           Normalization (.%:Q0i1  
    %       -------------------------------------------------- @U5 +1Hjc  
    %       0    0    1                                 1 7i 334iQZ  
    %       1    1    r * cos(theta)                    2 <T  
    %       1   -1    r * sin(theta)                    2 L\y,7@1%AT  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 3iH!;`i  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ,W*<e-  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) <po(7XB  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) !ybEv | =  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) v[m/>l2[P  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) K{M_ 4'\  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 2',t@<U  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ~+3f8%   
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $vGl Z<3g  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) y<)Lr}gP  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ! ~&X1,l1*  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 1mI)xDi9  
    %       -------------------------------------------------- :8Q6=K87  
    % wg!  
    %   Example 1: NYR^y \u  
    % ']Y:f)i#  
    %       % Display the Zernike function Z(n=5,m=1) v`y{l>r,  
    %       x = -1:0.01:1; tBrd+}e2*  
    %       [X,Y] = meshgrid(x,x); A "_;.e`  
    %       [theta,r] = cart2pol(X,Y); {_^sR}%]F  
    %       idx = r<=1; <0R?#^XBZB  
    %       z = nan(size(X)); `Ph4!-6#  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); [uAfE3  
    %       figure iKp4@6an  
    %       pcolor(x,x,z), shading interp Sw'DS  
    %       axis square, colorbar 2!]':(8mR  
    %       title('Zernike function Z_5^1(r,\theta)') X5>p~;[9  
    % OWOj|jM  
    %   Example 2: 8{Zgvqbb  
    % f*oL8"?u&  
    %       % Display the first 10 Zernike functions + ` Em&  
    %       x = -1:0.01:1; G _42ckLq  
    %       [X,Y] = meshgrid(x,x); N<N!it  
    %       [theta,r] = cart2pol(X,Y); >-y'N.l^  
    %       idx = r<=1; Bj%{PK  
    %       z = nan(size(X)); *QjFrw3  
    %       n = [0  1  1  2  2  2  3  3  3  3]; +Icg;m{  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; U6.$F#n  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; <bGSr23*  
    %       y = zernfun(n,m,r(idx),theta(idx)); 3b#KrN'  
    %       figure('Units','normalized') I"T_<  
    %       for k = 1:10 #<v3G)|aS  
    %           z(idx) = y(:,k); =UTv  
    %           subplot(4,7,Nplot(k)) lQ! 6n  
    %           pcolor(x,x,z), shading interp S1&6P)X.Za  
    %           set(gca,'XTick',[],'YTick',[]) s=U_tfpH  
    %           axis square -fG;`N5U  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #@y4/JS&2  
    %       end oWx! 'K6]V  
    % v C><N  
    %   See also ZERNPOL, ZERNFUN2. 5p=T*Y  
    T:na\y/{j  
    %   Paul Fricker 11/13/2006 JRU)AMMU&  
    c1MALgK~}\  
    /A <L  
    % Check and prepare the inputs: G.T}^ xHmL  
    % ----------------------------- IU Dp5MIuR  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7z F29gC  
        error('zernfun:NMvectors','N and M must be vectors.') GW` 9SB  
    end u^iK?S#Ci8  
    zbi[r  
    if length(n)~=length(m) oEKLuy  
        error('zernfun:NMlength','N and M must be the same length.')  eCk}B$ 2  
    end |3"'>* J  
    5&+ qX 2b  
    n = n(:); ";s?#c  
    m = m(:); ">CjnF2>R  
    if any(mod(n-m,2)) L6 hTz'  
        error('zernfun:NMmultiplesof2', ... e:!&y\'"9  
              'All N and M must differ by multiples of 2 (including 0).') w(.k6:e  
    end Q> @0'y=s  
    #,!.e  
    if any(m>n) 0[9A*  
        error('zernfun:MlessthanN', ... v0= ^Hy m  
              'Each M must be less than or equal to its corresponding N.') uF@Q8 7G  
    end C4Bh#C  
    jk 9K>4W  
    if any( r>1 | r<0 ) ]hv4EL(zi  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') mm:\a-8j  
    end z#bO FVg#  
    .xCO_7Rd  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) obaJT"1  
        error('zernfun:RTHvector','R and THETA must be vectors.') \gj@O5rGP  
    end p0'A\@|  
    6^UeEmjc  
    r = r(:); -b r/  
    theta = theta(:); [T~O%ly7x&  
    length_r = length(r); )Hl;9  
    if length_r~=length(theta) ,Iwri\  
        error('zernfun:RTHlength', ... Wx;9N  
              'The number of R- and THETA-values must be equal.') x:@HtTX  
    end g3Kc? wTC  
    /g@.1z1w  
    % Check normalization: R}>Gk  
    % -------------------- K^s!0[6  
    if nargin==5 && ischar(nflag) @ZD1HA,h"  
        isnorm = strcmpi(nflag,'norm'); h_x"/z&  
        if ~isnorm ^Zydy  
            error('zernfun:normalization','Unrecognized normalization flag.') TQ>kmHWf/  
        end }UQBaqDH  
    else :m^eNS6:  
        isnorm = false; c?>Q!sC  
    end (#LV*&K%IC  
    'UW7zL5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $>8+t>|  
    % Compute the Zernike Polynomials j4+hWalm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WR gAc%  
    !u>29VN  
    % Determine the required powers of r: p24sWDf  
    % ----------------------------------- 5NBc8h7 V  
    m_abs = abs(m); l|U=(aA]h  
    rpowers = []; URX>(Y}g9^  
    for j = 1:length(n) !-LPFy>  
        rpowers = [rpowers m_abs(j):2:n(j)]; q ( H^H  
    end IkL|bV3E0  
    rpowers = unique(rpowers); )uZ<?bkQ  
    )5Gzk&|  
    % Pre-compute the values of r raised to the required powers, D3(|bSca  
    % and compile them in a matrix: Ny p5=  
    % ----------------------------- :=UeYm @  
    if rpowers(1)==0 2O`uzT$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^e<0-uM" s  
        rpowern = cat(2,rpowern{:}); e=1&mO?  
        rpowern = [ones(length_r,1) rpowern]; u+z$+[lm!G  
    else IEjKI"  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !$qNugLg  
        rpowern = cat(2,rpowern{:}); W&TPrB  
    end #CHsH{d  
    $2 ~A^#"0  
    % Compute the values of the polynomials: j?[fpN$  
    % -------------------------------------- X.%Xi'H  
    y = zeros(length_r,length(n)); y<8)mw  
    for j = 1:length(n) ^HX={(ddK  
        s = 0:(n(j)-m_abs(j))/2; W446;)?5  
        pows = n(j):-2:m_abs(j); I6{}S6  
        for k = length(s):-1:1 |Tf}8e  
            p = (1-2*mod(s(k),2))* ... kHm1aE<  
                       prod(2:(n(j)-s(k)))/              ... 86vk"  
                       prod(2:s(k))/                     ... b4S7 Q"g  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &}YB!6k h^  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); zp,f}  
            idx = (pows(k)==rpowers); z! D >l  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ^md7ezXL  
        end Xe:B*  
         ~EpMO]I  
        if isnorm DU({Ncge  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2W$c%~j$2  
        end )}]<o |'  
    end K>w}(td  
    % END: Compute the Zernike Polynomials Ep.,2H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e7>)Z  
     ORp6  
    % Compute the Zernike functions: FavU"QU&|  
    % ------------------------------ ?b^VEp.;}  
    idx_pos = m>0; y%v<Cp@R  
    idx_neg = m<0; UI_|VU>J  
    J<>z}L{  
    z = y; $/Zsy6q:  
    if any(idx_pos) hc`9Y  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); rcOpOoU|  
    end I8 8y9sW  
    if any(idx_neg) V[rNJf1z  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); i8Yl1nF  
    end nxA]EFS  
    MDGcK/$')f  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) gupB8 .!  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. %+Z 0 $Q  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 4+$<G/K  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive [I4K`>|Z  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, dY;^JPT  
    %   and THETA is a vector of angles.  R and THETA must have the same xX{uDMYa;  
    %   length.  The output Z is a matrix with one column for every P-value, N#bWMZ"  
    %   and one row for every (R,THETA) pair. n AoGG0$5  
    % {iYu x;(  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike v"F.<Q  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) e,Gv~ae9  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Gyjx:EM  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 B(:Kw;r?  
    %   for all p. PxfeU2^{0  
    % fh b&_T  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 }2:bYpYQ  
    %   Zernike functions (order N<=7).  In some disciplines it is 0`h[|FYV  
    %   traditional to label the first 36 functions using a single mode d?v#gW  
    %   number P instead of separate numbers for the order N and azimuthal Bag2sk  
    %   frequency M.  +h9U V  
    % uZ]B?Z%y#  
    %   Example: bL)g+<:F  
    % x/[i &Gkv  
    %       % Display the first 16 Zernike functions L`R,4mI.W  
    %       x = -1:0.01:1; = <O{t#]  
    %       [X,Y] = meshgrid(x,x); OV7vwj/-  
    %       [theta,r] = cart2pol(X,Y); >m:.5][yu  
    %       idx = r<=1; q&<#)#+  
    %       p = 0:15; `y P-,lA$  
    %       z = nan(size(X)); JjfNH ~  
    %       y = zernfun2(p,r(idx),theta(idx)); H'q&1^w)  
    %       figure('Units','normalized') HAf.LdnzS  
    %       for k = 1:length(p) !V+5$TsS  
    %           z(idx) = y(:,k); KjZ^\lq'  
    %           subplot(4,4,k) pvI(hjMYPk  
    %           pcolor(x,x,z), shading interp $- =aqUU  
    %           set(gca,'XTick',[],'YTick',[]) 6lT1X)  
    %           axis square Ook3B  
    %           title(['Z_{' num2str(p(k)) '}']) JV36@DVQ  
    %       end >,@Fz)\:{'  
    % )N)ziAy}  
    %   See also ZERNPOL, ZERNFUN. (PsA[>F  
    nd3]&occ  
    %   Paul Fricker 11/13/2006 ZNOoyWYi5  
    c*RZbE9k  
    &I'~:nWpt  
    % Check and prepare the inputs: 'x+0 yd  
    % ----------------------------- u\t[rC=yd  
    if min(size(p))~=1 ^nbze  
        error('zernfun2:Pvector','Input P must be vector.') Jgtv ia  
    end z9w@-])  
    $rFv(Qc^=  
    if any(p)>35 zesEbR)j  
        error('zernfun2:P36', ... <Ks?g=K-  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... /D1Bf:'(  
               '(P = 0 to 35).']) )6bxP&k  
    end h,FP,w;G  
    ^>%=/RX  
    % Get the order and frequency corresonding to the function number: "{z9 L+  
    % ---------------------------------------------------------------- 1G.+)*:3  
    p = p(:); 5CU< ?  
    n = ceil((-3+sqrt(9+8*p))/2); 45kMIh~~X  
    m = 2*p - n.*(n+2); B susXW$  
    JO :m: M  
    % Pass the inputs to the function ZERNFUN: qhK;#<#  
    % ---------------------------------------- /rv XCA)j  
    switch nargin ry~3YYEMI0  
        case 3 ;Ic3th%u  
            z = zernfun(n,m,r,theta); !PUhdW  
        case 4 ei\X/Z*q%P  
            z = zernfun(n,m,r,theta,nflag); 8^dGI9N  
        otherwise Z]w_2- -  
            error('zernfun2:nargin','Incorrect number of inputs.') v|{*y  
    end =;Wkg4\5  
    zE<vFP-1v  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) q8kt_&Ij  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. K9w24Oka  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of e}K;5o=I  
    %   order N and frequency M, evaluated at R.  N is a vector of $<ZX};/D  
    %   positive integers (including 0), and M is a vector with the !^8'LMY<I  
    %   same number of elements as N.  Each element k of M must be a 4a!L/m *  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) <7 PtC,74  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Llk`  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 8De `.!Gg  
    %   with one column for every (N,M) pair, and one row for every @F3d9t-  
    %   element in R. c#Y9L+O  
    % @kqy!5)K  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- W]M[5p]*  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is )9<)mV*EB(  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to m|f|u3'z$  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 )3G?5 OTS  
    %   for all [n,m]. ~)ByARao=  
    % Wq,UxMz  
    %   The radial Zernike polynomials are the radial portion of the pkk0?$l ",  
    %   Zernike functions, which are an orthogonal basis on the unit O$&p<~  
    %   circle.  The series representation of the radial Zernike pAa{,,Qc  
    %   polynomials is |=h>3Z=r!  
    % ko, u  
    %          (n-m)/2 E* lqCh  
    %            __ %"KBX~3+Kj  
    %    m      \       s                                          n-2s *S=v1 s/  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ~z< ? Wh  
    %    n      s=0 4p1{Ady  
    % IF1?/D"<  
    %   The following table shows the first 12 polynomials. #vDe/o+=  
    % P, >#  
    %       n    m    Zernike polynomial    Normalization kXOlZ C  
    %       --------------------------------------------- |20p#]0E+  
    %       0    0    1                        sqrt(2) 90ORx\Oeo  
    %       1    1    r                           2 99ZQlX  
    %       2    0    2*r^2 - 1                sqrt(6) UhEnW8^bz1  
    %       2    2    r^2                      sqrt(6) lq%s/l  
    %       3    1    3*r^3 - 2*r              sqrt(8) Gm6^BYCk  
    %       3    3    r^3                      sqrt(8) QTLOP~^  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) _Y~+ #Vc  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) a{-}8f6  
    %       4    4    r^4                      sqrt(10) JgxOxZS`@  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) |5FyfDaFBX  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) &j>`H:  
    %       5    5    r^5                      sqrt(12) 0#yo\McZ  
    %       --------------------------------------------- k*n5+[U^tP  
    % =nY*,Xu<  
    %   Example: s\KV\5\o  
    % -bs~{  
    %       % Display three example Zernike radial polynomials +q =/}|  
    %       r = 0:0.01:1; )D#*Q~   
    %       n = [3 2 5]; i4uUvZ f  
    %       m = [1 2 1]; f-23.]`v  
    %       z = zernpol(n,m,r); |9(uiWf  
    %       figure + 1cK (Si  
    %       plot(r,z) Z-/ E$j  
    %       grid on Uq[NO JC  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') $I tehy  
    % C"YM"9JSJ  
    %   See also ZERNFUN, ZERNFUN2. YxsW Y7J  
    ,Z52d ggD  
    % A note on the algorithm. |#MA?oz3T  
    % ------------------------ \Mi y+<8$  
    % The radial Zernike polynomials are computed using the series Y=Bk;%yT=  
    % representation shown in the Help section above. For many special X#p E!mT  
    % functions, direct evaluation using the series representation can 0_%u(?  
    % produce poor numerical results (floating point errors), because 3|@Ske1%Y  
    % the summation often involves computing small differences between /r]IY.  
    % large successive terms in the series. (In such cases, the functions ^Ji5)c  
    % are often evaluated using alternative methods such as recurrence %+`$Lb?{  
    % relations: see the Legendre functions, for example). For the Zernike &| ',o ?'F  
    % polynomials, however, this problem does not arise, because the & }}o9  
    % polynomials are evaluated over the finite domain r = (0,1), and @y}1%{,%  
    % because the coefficients for a given polynomial are generally all =m1B1St2  
    % of similar magnitude. VV?KJz=,W=  
    % Blf;_e~=[j  
    % ZERNPOL has been written using a vectorized implementation: multiple L.erP* w  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] v+Ooihxl  
    % values can be passed as inputs) for a vector of points R.  To achieve ^OYar(  
    % this vectorization most efficiently, the algorithm in ZERNPOL \5O4}sm$*  
    % involves pre-determining all the powers p of R that are required to fpzC#  
    % compute the outputs, and then compiling the {R^p} into a single M3x%D)*  
    % matrix.  This avoids any redundant computation of the R^p, and (uRAK  
    % minimizes the sizes of certain intermediate variables. :~g=n&x  
    % 7]G3yt->  
    %   Paul Fricker 11/13/2006 $7lI Dt  
    iGm[fxQ|  
    qf+I2 kyS  
    % Check and prepare the inputs: gwT"o  
    % ----------------------------- V~ZAs+(2Z  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) VBsS1!g  
        error('zernpol:NMvectors','N and M must be vectors.') }}K4 4<]u  
    end M"5,8Q`PkI  
    Eiwo== M  
    if length(n)~=length(m) 3C2L _ K3  
        error('zernpol:NMlength','N and M must be the same length.') llI`"a  
    end rFdovfb   
    bf::bV?T  
    n = n(:); rT5dv3^MW!  
    m = m(:); mZ*!$P:vy"  
    length_n = length(n); )CEfG  
    - x@mS2  
    if any(mod(n-m,2)) e=TB/W_  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 3fM~R+p  
    end hcwKi  
    h_Q9 c  
    if any(m<0) E_7N^htv  
        error('zernpol:Mpositive','All M must be positive.') RCo!sZP}  
    end GuNzrKDr  
    \h?C G_|]  
    if any(m>n) g!cTG-bh>J  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') @'s^  
    end t%V!SvT8+  
    $_% a=0  
    if any( r>1 | r<0 ) -T`rk~A9A  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 3<CCC+47  
    end %fo+Y+t  
    U"af3c^2  
    if ~any(size(r)==1) q:+,'&<D  
        error('zernpol:Rvector','R must be a vector.') 'eZ UNX  
    end vc5g 4ud  
    (%YFcE)SRS  
    r = r(:); "i(k8+i K  
    length_r = length(r); 6/Q'o5>NL:  
    oxha8CF]D  
    if nargin==4 O4S~JE3o  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 5_x8!v  
        if ~isnorm d.3-@^P  
            error('zernpol:normalization','Unrecognized normalization flag.') V^As@P8,'(  
        end F /IXqj  
    else xJ:15eDC  
        isnorm = false; ,dLh`t<\  
    end nK)U.SZ  
    %l( qyH)*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -O:+?gG  
    % Compute the Zernike Polynomials 2I* 7?`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% esIE i!d  
    /ZUKt  
    % Determine the required powers of r: L#1Y R}m  
    % ----------------------------------- ! av B&Z  
    rpowers = []; !-_0I:m  
    for j = 1:length(n) 5IE2&V  
        rpowers = [rpowers m(j):2:n(j)]; $h"tg9L^)  
    end QX1QYwcmG  
    rpowers = unique(rpowers); Zui2O-L?V  
    N0,wT6.  
    % Pre-compute the values of r raised to the required powers, D pI)qg#>V  
    % and compile them in a matrix: *Fi`o_d9[`  
    % ----------------------------- %QCh#v=ks  
    if rpowers(1)==0 ELZCrh6*  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); FctqE/>}I  
        rpowern = cat(2,rpowern{:}); y-w=4_W  
        rpowern = [ones(length_r,1) rpowern]; )7l+\t  
    else lTBPq?4{  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); f 0A0uU8y  
        rpowern = cat(2,rpowern{:}); p%pM3<p  
    end _~ZNX+4  
    /g BB  
    % Compute the values of the polynomials: 4 |9M8ocR  
    % -------------------------------------- ze@NqCF  
    z = zeros(length_r,length_n); 61L  vT"  
    for j = 1:length_n |2z?8lx  
        s = 0:(n(j)-m(j))/2; a|Io)Qhr  
        pows = n(j):-2:m(j); 7=(r k  
        for k = length(s):-1:1 7 p}J]!Z  
            p = (1-2*mod(s(k),2))* ... EnnT)qos  
                       prod(2:(n(j)-s(k)))/          ... qpjtF'  
                       prod(2:s(k))/                 ... A[`c2v-hF  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... e33j&:O  
                       prod(2:((n(j)+m(j))/2-s(k))); VJmX@zX9  
            idx = (pows(k)==rpowers); mrX 2w  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Fa:fBs{  
        end r2M Iw  
         = _X#JP79  
        if isnorm KJ M :-z@  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); F67%xz0  
        end ErIAS6HS'  
    end g`I`q3EF)  
    |:BKexjHL  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Z5~dU{XsT  
    CaNZScnZ  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 V M[9!:  
    9[5NnRv$P  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)