非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 1M+mH#?
function z = zernfun(n,m,r,theta,nflag) m!PN1$9V
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. EBn7waBS
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N S4\T (
% and angular frequency M, evaluated at positions (R,THETA) on the [#.QDe
% unit circle. N is a vector of positive integers (including 0), and LsLsSV
% M is a vector with the same number of elements as N. Each element P!-9cd1C,
% k of M must be a positive integer, with possible values M(k) = -N(k) HID;~Ne
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, uh GL1{
% and THETA is a vector of angles. R and THETA must have the same | 0&~fY
% length. The output Z is a matrix with one column for every (N,M) , n+dB2\
% pair, and one row for every (R,THETA) pair. sqkPC_;A
% _|#)tWy}
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 8J>s|MZ
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m7d? SU
% with delta(m,0) the Kronecker delta, is chosen so that the integral \Q
&Kd|
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, h-6kf:XP%
% and theta=0 to theta=2*pi) is unity. For the non-normalized =XqmFr;h
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. P>)qN,a
% H*!E*_
% The Zernike functions are an orthogonal basis on the unit circle. "eBpSV>nnQ
% They are used in disciplines such as astronomy, optics, and
2"13!s
% optometry to describe functions on a circular domain. HtXzMSGo7
% k6$.pCH6
% The following table lists the first 15 Zernike functions. X${k
% +.zriiF]i
% n m Zernike function Normalization Bf8 #&]O
% -------------------------------------------------- tQ*5[F,fm
% 0 0 1 1 [5,#p$R
% 1 1 r * cos(theta) 2 zHyM@*Gf(
% 1 -1 r * sin(theta) 2 ] @IzJz"R
% 2 -2 r^2 * cos(2*theta) sqrt(6) Of-l<Ks\
% 2 0 (2*r^2 - 1) sqrt(3) &'i>5Y
% 2 2 r^2 * sin(2*theta) sqrt(6) &t`l,]PQ=6
% 3 -3 r^3 * cos(3*theta) sqrt(8) w%`7,du|
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) teET nz_L
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) uN'e~X6
% 3 3 r^3 * sin(3*theta) sqrt(8) tLLP2^_&
% 4 -4 r^4 * cos(4*theta) sqrt(10) sv
=6?uYW
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X62GEqff
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) qL]!/}
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /SjA;c!.
% 4 4 r^4 * sin(4*theta) sqrt(10) }+,;wj~
% -------------------------------------------------- qA5tMZ^w
% lNqYpyvy*
% Example 1: (rvK@
% YQ;?N66
% % Display the Zernike function Z(n=5,m=1) J](AJkGzK
% x = -1:0.01:1; ss.wX~I
% [X,Y] = meshgrid(x,x); <Knl6$B
% [theta,r] = cart2pol(X,Y); lorjMS
% idx = r<=1; yX/ 9jk
% z = nan(size(X)); `cCsJm$V"
% z(idx) = zernfun(5,1,r(idx),theta(idx)); R9^Vk*`gFU
% figure 7]62=p2R
% pcolor(x,x,z), shading interp M2{{B^*$6
% axis square, colorbar 6gNsh
% title('Zernike function Z_5^1(r,\theta)') 3+0$=ef
% 4Y;z46yM%
% Example 2: 5v6*.e'p
% up#W"`"
% % Display the first 10 Zernike functions Ic P]EgB
% x = -1:0.01:1; X=8y$Yy
% [X,Y] = meshgrid(x,x); UXvUU^k"v
% [theta,r] = cart2pol(X,Y); 4Un (}P'
% idx = r<=1; ~#C7G\R
% z = nan(size(X)); ]-&A)M6
% n = [0 1 1 2 2 2 3 3 3 3]; RNiFLD%5
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; w9G (^jS6
% Nplot = [4 10 12 16 18 20 22 24 26 28]; jEo)#j];`<
% y = zernfun(n,m,r(idx),theta(idx)); WRe9ki=R
% figure('Units','normalized') `O5wM\Z
% for k = 1:10 @l41'?m
% z(idx) = y(:,k); j KGfm9|zj
% subplot(4,7,Nplot(k)) I r]#u]Ap
% pcolor(x,x,z), shading interp At@H
% set(gca,'XTick',[],'YTick',[]) Y{ijSOl3
% axis square gY|f[M|
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) UP' ~D]J
% end Y23- Im
% *eK\W00
% See also ZERNPOL, ZERNFUN2. 0}$Zr*|;Y
H`d595<=i;
% Paul Fricker 11/13/2006 P%2aOsD0
TF R8
f{mWy1NH\
% Check and prepare the inputs: i&= I5$
% ----------------------------- {<+B>6^
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) H65><38X/
error('zernfun:NMvectors','N and M must be vectors.') ]Dec/Nnj
end W|'7)ph
/N '0@q
if length(n)~=length(m) \MI2^JN
error('zernfun:NMlength','N and M must be the same length.') 3Xcjr2]~
end D`d*bNR
&6wD
n = n(:); w`KqB(36
m = m(:); 4&N#d;ErC
if any(mod(n-m,2)) PDQEI55
error('zernfun:NMmultiplesof2', ... kD;1+lNz
'All N and M must differ by multiples of 2 (including 0).') Bie#GKc
end H{M7_1T
`xv2,Z9<
if any(m>n) S1$lNB
error('zernfun:MlessthanN', ... Rxb?SBa
'Each M must be less than or equal to its corresponding N.') GBeWF-`B
end ,=>Ws:j
RRRF/Z;))
if any( r>1 | r<0 ) OEiu,Y|@l
error('zernfun:Rlessthan1','All R must be between 0 and 1.') /~~A2.=.
end b'r</ncZ
p+7G
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) R.x^
error('zernfun:RTHvector','R and THETA must be vectors.') x%_VzqR`
end 0{Uc/
u1 Z;n
r = r(:); 8FT]B/^&m
theta = theta(:); pmwVVUEQ
length_r = length(r); )_C+\K*
if length_r~=length(theta) wE3L,yx=
error('zernfun:RTHlength', ... _+7+90u
'The number of R- and THETA-values must be equal.') j)nL!":O
end `^v=* &
eR3v=Q
% Check normalization: u*}ltR~/
% -------------------- TW?_fse*[
if nargin==5 && ischar(nflag) baQORU=X
isnorm = strcmpi(nflag,'norm'); \+M6R<Qw
if ~isnorm Xfc+0$U@
error('zernfun:normalization','Unrecognized normalization flag.') 6.Jvqn
end B%7Az!GX
else 2t7P| b~V1
isnorm = false; @vZeye
end =cR"_ Z[8X
D~ogq]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Yj CH KI"e
% Compute the Zernike Polynomials 4bs<j
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
s5/u>d
J8'1 ~$6
% Determine the required powers of r: k=W~ot&
% -----------------------------------
dzQs7D}
m_abs = abs(m); 8TBv~Qu
rpowers = []; d88Dyzz
for j = 1:length(n) n1U! od
rpowers = [rpowers m_abs(j):2:n(j)]; 6&
(b L<8b
end WKAG)4
rpowers = unique(rpowers); R 7h^
@
m#Ydq(0+
% Pre-compute the values of r raised to the required powers, jj&mRF0gCb
% and compile them in a matrix: bey:Qj??
% ----------------------------- -aq3Lqi
if rpowers(1)==0 nR]*RIp5
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); J`]9n>G
rpowern = cat(2,rpowern{:}); 1=Kt.tuf
rpowern = [ones(length_r,1) rpowern]; \ 5.nr*5
else Sa[?B
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); qRSoF04!R
rpowern = cat(2,rpowern{:}); 6:~<L!`&
end Oq^t[X'
/3#h]5Y"T
% Compute the values of the polynomials: C$0rl74Wi
% -------------------------------------- enx+,[
y = zeros(length_r,length(n)); eQz.N<f"
for j = 1:length(n) GrUpATIx
s = 0:(n(j)-m_abs(j))/2; )K8^}L,
pows = n(j):-2:m_abs(j); 4_D
*xW
for k = length(s):-1:1 .-'_At4g
p = (1-2*mod(s(k),2))* ... +zwS[P@
prod(2:(n(j)-s(k)))/ ... j0=F__H#@
prod(2:s(k))/ ... ZZw2m@T>
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 97[wz C,
prod(2:((n(j)+m_abs(j))/2-s(k))); 4.Q[Tu
idx = (pows(k)==rpowers); 1N_T/I8_F
y(:,j) = y(:,j) + p*rpowern(:,idx); QOX'ZAB`
end IgjPy5k
Kton$%Li
if isnorm PR/>E60H
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $Zr \$z2
end 4{Q$^wD+.
end kbL7Xjk
% END: Compute the Zernike Polynomials b<!' WpY-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \2!.
qnHjw Mi
% Compute the Zernike functions: cTz@ga;!mI
% ------------------------------ T6b~uE
idx_pos = m>0; lN&+<>a
idx_neg = m<0; ,PoG=W
EKO~\d
z = y; q:nUn?zB
if any(idx_pos) \!hd|j?&6
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); VDro(?p8Z
end =;GmLi3A
if any(idx_neg) A;5_/ 2
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); cNT !}8h^
end 7Vk9{x$z
dWi<U4
% EOF zernfun