切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11374阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 U{(07GNm#  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! TVwYFX  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^|(4j_.(e  
    function z = zernfun(n,m,r,theta,nflag) ;XQ lj?:  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. R9G)X]  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N vaJXX  
    %   and angular frequency M, evaluated at positions (R,THETA) on the )0MshgM  
    %   unit circle.  N is a vector of positive integers (including 0), and chzR4"WZFt  
    %   M is a vector with the same number of elements as N.  Each element Vp"Ug,1  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) $50"3g!Y  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, w*}yw"gP*0  
    %   and THETA is a vector of angles.  R and THETA must have the same K(fLqXE%  
    %   length.  The output Z is a matrix with one column for every (N,M) UDtbfc7bk  
    %   pair, and one row for every (R,THETA) pair. <>Ddxmw  
    % [ c[MQA0  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike BG0M j2  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), }_l -'t  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral /Py>HzRE:  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, i/~QJ1C  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized HKN"$(Q  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. G2{M#H  
    % @Qjl`SL%O^  
    %   The Zernike functions are an orthogonal basis on the unit circle. *oX]=u&  
    %   They are used in disciplines such as astronomy, optics, and L^{;jgd&T9  
    %   optometry to describe functions on a circular domain. Mq lo:7 ^F  
    % l~!fQ$~  
    %   The following table lists the first 15 Zernike functions. ~.9o{?pbG  
    % EZumJ."  
    %       n    m    Zernike function           Normalization pQ^,.[[  
    %       -------------------------------------------------- wW! r}I#  
    %       0    0    1                                 1 &W<>^C2v  
    %       1    1    r * cos(theta)                    2 39aCwhh7v  
    %       1   -1    r * sin(theta)                    2 Q>a7Ps@~  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) n!eqzr{  
    %       2    0    (2*r^2 - 1)                    sqrt(3) zo7XmUI3P  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 'BdmFKy1  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) eGe[sv"k  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8)  QXxLe*  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Q] yT  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) lH@E%  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) _Z66[T+M  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kbp( a+5  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 2]aZe4H.  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) io r [v  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) #+Yp^6zg  
    %       -------------------------------------------------- .4C[D{4  
    % Lr?4Y  
    %   Example 1: ncJFB,4  
    % J6( RlHS;  
    %       % Display the Zernike function Z(n=5,m=1) v;bP8)mI  
    %       x = -1:0.01:1; kuj1 2  
    %       [X,Y] = meshgrid(x,x); 7l#2,d4  
    %       [theta,r] = cart2pol(X,Y); g y e(/N+I  
    %       idx = r<=1; *iRm`)zC(  
    %       z = nan(size(X)); PVD ~W)0m*  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); _95}ifSVm  
    %       figure qM1)3.)[:  
    %       pcolor(x,x,z), shading interp Jm (&G  
    %       axis square, colorbar !` M;#  
    %       title('Zernike function Z_5^1(r,\theta)') *)`kx   
    % 2^ ,H_PS  
    %   Example 2: Y( $Ji12  
    % ,v}?{p c  
    %       % Display the first 10 Zernike functions 0ve`  
    %       x = -1:0.01:1; ,P@/=I5  
    %       [X,Y] = meshgrid(x,x); >)n4s Mq  
    %       [theta,r] = cart2pol(X,Y); U!\2K~  
    %       idx = r<=1; i2FD1*=/?  
    %       z = nan(size(X)); ;]&~D +XH  
    %       n = [0  1  1  2  2  2  3  3  3  3]; u3*NO )O  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; "0'*q<8  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; eN]>l  
    %       y = zernfun(n,m,r(idx),theta(idx)); (,Ja  
    %       figure('Units','normalized') lLkmcHu  
    %       for k = 1:10 4P4 Fo1  
    %           z(idx) = y(:,k); W%>i$:Qq  
    %           subplot(4,7,Nplot(k)) {7=WU4$  
    %           pcolor(x,x,z), shading interp G !1~i*P$u  
    %           set(gca,'XTick',[],'YTick',[]) AvrL9D  
    %           axis square wTlK4R#  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vcw>v={x  
    %       end bCA2ik  
    % J+71FP`ZH  
    %   See also ZERNPOL, ZERNFUN2. ]|,q|c,  
    Z&dr0w8  
    %   Paul Fricker 11/13/2006 a/QtJwIV  
    so!w!O@@  
    Qst \b8,  
    % Check and prepare the inputs: =sE2}/g  
    % ----------------------------- QY~<~<d+G  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) v@fe-T&0  
        error('zernfun:NMvectors','N and M must be vectors.') -t@y\vZF,  
    end 7b&JX'`Mb  
    \LdmGv@ &  
    if length(n)~=length(m) &o*s !u  
        error('zernfun:NMlength','N and M must be the same length.') RIy5ww}3|  
    end {Ax)[<i  
    ;-KA UgL2  
    n = n(:); _{LN{iqDv  
    m = m(:); %@}o'=[  
    if any(mod(n-m,2)) )-+\M_JK5  
        error('zernfun:NMmultiplesof2', ... rU=b?D)n!w  
              'All N and M must differ by multiples of 2 (including 0).') Mw"xm9(Q  
    end .M9d*qp`S  
    eg"=H50  
    if any(m>n) R^J.?>0  
        error('zernfun:MlessthanN', ... TL},Unq  
              'Each M must be less than or equal to its corresponding N.') RzA2*]%a  
    end pk-yj~F}  
    jWH{;V&ZV  
    if any( r>1 | r<0 ) A1T<  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') #XTY7,@ P  
    end E rop9T1  
    .FIt.XPzv  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 1t/dxB;  
        error('zernfun:RTHvector','R and THETA must be vectors.') 1~}m.ER  
    end =X-^YG3x  
    B{7Kzwh;  
    r = r(:); ]y3pE}R  
    theta = theta(:); kOs(?=  
    length_r = length(r); yicO!:bM  
    if length_r~=length(theta) )W&o?VRfO  
        error('zernfun:RTHlength', ... ^FP} qW~;9  
              'The number of R- and THETA-values must be equal.') JDLTOLG  
    end $_Y/'IN`k  
    9[cp7 Rcb  
    % Check normalization: {S[I_\3  
    % -------------------- i 8l./Yt/  
    if nargin==5 && ischar(nflag) -Y*VgoK%  
        isnorm = strcmpi(nflag,'norm'); &qJPwO  
        if ~isnorm ;% 2wGT  
            error('zernfun:normalization','Unrecognized normalization flag.') `J72+RA  
        end ?h/xAl  
    else 8YNu<   
        isnorm = false; >(hSW~i~  
    end Ne3R.g9;Z  
    r& vFikIz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7OB%A&  
    % Compute the Zernike Polynomials Q*]$)D3n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Lj}>Xy(7<  
    C>.e+V+':  
    % Determine the required powers of r: <0CzB"Ap  
    % ----------------------------------- h}<0/  
    m_abs = abs(m); 3pvYi<<D'  
    rpowers = []; e# t3u_  
    for j = 1:length(n) U1OFDXHG  
        rpowers = [rpowers m_abs(j):2:n(j)]; R)ERx z#  
    end 94\t1fE  
    rpowers = unique(rpowers); &~RR&MdZ2  
    BR+nL6sU  
    % Pre-compute the values of r raised to the required powers, z9[[C^C  
    % and compile them in a matrix: l :/&E 6 9  
    % ----------------------------- ~A6"sb=  
    if rpowers(1)==0 fX_#S|DlSG  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [`d$X^<y;  
        rpowern = cat(2,rpowern{:}); Jlp<koy  
        rpowern = [ones(length_r,1) rpowern]; !<&m]K  
    else nSS>\$  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !lAD q|$  
        rpowern = cat(2,rpowern{:}); sONBQ9  
    end OA[&Za#w  
    z"lqrSJ:  
    % Compute the values of the polynomials: @}WNKS&m  
    % -------------------------------------- MU'@2c  
    y = zeros(length_r,length(n)); :p' VbQZ{  
    for j = 1:length(n) ^(ScgoXva  
        s = 0:(n(j)-m_abs(j))/2; P.djd$#  
        pows = n(j):-2:m_abs(j); ;imRh'-V6  
        for k = length(s):-1:1 $$hv`HE^l  
            p = (1-2*mod(s(k),2))* ... n"6;\  
                       prod(2:(n(j)-s(k)))/              ... b.b@bq$1  
                       prod(2:s(k))/                     ... UfO7+_2  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... D==Mb~  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 3o*FPO7?  
            idx = (pows(k)==rpowers); P-CB;\  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 2edBQYWd  
        end rz%<AF Z  
         ZQ3_y $  
        if isnorm 6-B 9na  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); LvJGvj  
        end l?/Y  
    end c8{]]  
    % END: Compute the Zernike Polynomials JS2nXs1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C)Jn[/BD  
    +R6a}d/K  
    % Compute the Zernike functions: mf' ]O,  
    % ------------------------------ *#y;8  
    idx_pos = m>0; HRB[GP+  
    idx_neg = m<0; !g>.i`  
    aQ#qRkI  
    z = y; ?7[alV~  
    if any(idx_pos) jTb-;4 N'  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {fV}gR2  
    end O oSb>Y/4  
    if any(idx_neg) r[_4Lo @G  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); e8}Ezy"^  
    end ~9=aT1S|  
    ]JE TeZ^/  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) xd-XWXc  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 8FkFM^\1L  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated (k`{*!:1a  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive N ]N4^A'  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, B*1W`f  
    %   and THETA is a vector of angles.  R and THETA must have the same q o 1lj"P  
    %   length.  The output Z is a matrix with one column for every P-value, _:`!DIz~9}  
    %   and one row for every (R,THETA) pair. 28andfl  
    % *[+)7  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike QHt4",Ij  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) O 5 Nb  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ?BA^YF  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 aj\nrD1  
    %   for all p. 2F`cv1M  
    % !? 5U|  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 "xRBE\B  
    %   Zernike functions (order N<=7).  In some disciplines it is F^k.is  
    %   traditional to label the first 36 functions using a single mode sJ z@7.  
    %   number P instead of separate numbers for the order N and azimuthal zTbVp8\pI  
    %   frequency M. }MbH3ufC  
    % *i{Y9f8  
    %   Example: RW$:9~  
    % 9Z5D\yv?H  
    %       % Display the first 16 Zernike functions +;}#B~:  
    %       x = -1:0.01:1; k n[Y   
    %       [X,Y] = meshgrid(x,x); qFQ 8  
    %       [theta,r] = cart2pol(X,Y); JwnQ0 e  
    %       idx = r<=1; )6KMHG  
    %       p = 0:15; gk[{2HgN  
    %       z = nan(size(X)); KInk^`C/H  
    %       y = zernfun2(p,r(idx),theta(idx)); YC_5YY(k  
    %       figure('Units','normalized') aVL=K  
    %       for k = 1:length(p) Sn4[3JV$l  
    %           z(idx) = y(:,k); 4_v]O  
    %           subplot(4,4,k) xM[Vc  
    %           pcolor(x,x,z), shading interp P + "Y  
    %           set(gca,'XTick',[],'YTick',[]) b1XRC`Gy  
    %           axis square S& #U!#@  
    %           title(['Z_{' num2str(p(k)) '}']) vsWHk7 9  
    %       end @H>@[+S#  
    % D?yG+%&9  
    %   See also ZERNPOL, ZERNFUN. hI?sOR!  
    )}vNOE?X~  
    %   Paul Fricker 11/13/2006 Vm}%ttTC  
    bwM@/g%DL  
    dz [!-M  
    % Check and prepare the inputs: OA/WtQ5  
    % ----------------------------- ~=<}\a~  
    if min(size(p))~=1 l {jmlT  
        error('zernfun2:Pvector','Input P must be vector.') R" )bDy?  
    end 2&c9q5.b  
    ae"]\a\&1o  
    if any(p)>35 hQ6a~?f  
        error('zernfun2:P36', ... N,2s?Y_!  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... :l7U>~ o  
               '(P = 0 to 35).']) =[\s8XH,  
    end ;,i]w"*  
    'TH15r@  
    % Get the order and frequency corresonding to the function number: a22Mufl  
    % ---------------------------------------------------------------- r<F hY  
    p = p(:); -/{ 4Jf Wf  
    n = ceil((-3+sqrt(9+8*p))/2); f7h*Vu`>  
    m = 2*p - n.*(n+2); 8:BIbmtt5  
    g;$Xq)Dd  
    % Pass the inputs to the function ZERNFUN: 'XY`(3q  
    % ---------------------------------------- ,QzL)W7  
    switch nargin +dA,P\  
        case 3 &B! o,qp  
            z = zernfun(n,m,r,theta); E0%~! b  
        case 4 pwwH<0[  
            z = zernfun(n,m,r,theta,nflag); |-V&O=!^+  
        otherwise D +_oVob\  
            error('zernfun2:nargin','Incorrect number of inputs.') OpM(j&  
    end Mu'8;9_6  
    `n$5+a+  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) dnV[ P  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Or !+._3i  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ~ek$C  
    %   order N and frequency M, evaluated at R.  N is a vector of ,+~rd4a  
    %   positive integers (including 0), and M is a vector with the +cD!1IT:  
    %   same number of elements as N.  Each element k of M must be a F(t=!k,4\  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) <dW]\h?)  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is rvr-XGK36\  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix (@iMLuewK  
    %   with one column for every (N,M) pair, and one row for every Oft4- 4$E  
    %   element in R. n_3O-X(  
    % 1"pw  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly-  o x+ 3U  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Gs3LB/8?  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to uYE`"/h,1e  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Z*-g[8FO  
    %   for all [n,m]. f4L`.~b'hb  
    % a33TPoj  
    %   The radial Zernike polynomials are the radial portion of the s}N#n(  
    %   Zernike functions, which are an orthogonal basis on the unit 4lBU#V7  
    %   circle.  The series representation of the radial Zernike ;j4?>3  
    %   polynomials is kWdi59 5  
    % fu90]upz~  
    %          (n-m)/2 SJIOI@\b  
    %            __ 4wrk2x[  
    %    m      \       s                                          n-2s hAHq\  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 6M13f@v  
    %    n      s=0 2(/g}  
    % 8T(e.I  
    %   The following table shows the first 12 polynomials. LVJxn2x6  
    % /="~gq@  
    %       n    m    Zernike polynomial    Normalization E*jP87g  
    %       --------------------------------------------- JwJ7=P=c  
    %       0    0    1                        sqrt(2) d6W SL;$  
    %       1    1    r                           2 <Qxh)@ N  
    %       2    0    2*r^2 - 1                sqrt(6) F^hBtfz  
    %       2    2    r^2                      sqrt(6) vap,y $C  
    %       3    1    3*r^3 - 2*r              sqrt(8) }<dRj  
    %       3    3    r^3                      sqrt(8) q7"7U=W0  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) =+AS/Jq  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 92^w8Z.  
    %       4    4    r^4                      sqrt(10) B, 9w0  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ATR!7i\|  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ij?  
    %       5    5    r^5                      sqrt(12) 9;veuX#(  
    %       --------------------------------------------- F$[ U|%*  
    % qG<$Ajiin  
    %   Example: &LbJT$}V  
    % g&`pgmUX  
    %       % Display three example Zernike radial polynomials 7U"[Gf  
    %       r = 0:0.01:1; .jj$Kh q]  
    %       n = [3 2 5]; [o?* "c  
    %       m = [1 2 1]; e [8LmuIZ  
    %       z = zernpol(n,m,r); gCxAG  
    %       figure /tUy3myJ  
    %       plot(r,z) `\+@Fwfx  
    %       grid on *V+j%^91}  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Dq)j:f#QM  
    % 7^g&)P  
    %   See also ZERNFUN, ZERNFUN2. &B|D;|7H  
    {c (!;U  
    % A note on the algorithm. CP6LHkM9  
    % ------------------------ i F+vl]  
    % The radial Zernike polynomials are computed using the series xKFn.qFr  
    % representation shown in the Help section above. For many special &9Xhl''  
    % functions, direct evaluation using the series representation can ahPoEh  
    % produce poor numerical results (floating point errors), because %DdJ ^qHI  
    % the summation often involves computing small differences between Op_RzZP`  
    % large successive terms in the series. (In such cases, the functions pZeE61c/  
    % are often evaluated using alternative methods such as recurrence 1 CHeufQ  
    % relations: see the Legendre functions, for example). For the Zernike k2AJXw  
    % polynomials, however, this problem does not arise, because the $H-!j%hV  
    % polynomials are evaluated over the finite domain r = (0,1), and [/X4"D-uOK  
    % because the coefficients for a given polynomial are generally all [w -l?  
    % of similar magnitude. t 89!Ihk  
    % q=#} yEG  
    % ZERNPOL has been written using a vectorized implementation: multiple C[%OkPR,H  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] *guoWPA|Ij  
    % values can be passed as inputs) for a vector of points R.  To achieve 0)m(;>'70  
    % this vectorization most efficiently, the algorithm in ZERNPOL =dFv/F/RW  
    % involves pre-determining all the powers p of R that are required to [3@):8  
    % compute the outputs, and then compiling the {R^p} into a single 1n@8Kv  
    % matrix.  This avoids any redundant computation of the R^p, and \.3D~2cU  
    % minimizes the sizes of certain intermediate variables. n+PzA[  
    % DS'n  
    %   Paul Fricker 11/13/2006 qBCK40   
    {\(L%\sV@  
    ;vIrGZV<  
    % Check and prepare the inputs: d`F&aC  
    % ----------------------------- q5#J~n8Wr  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l'3pQ;  
        error('zernpol:NMvectors','N and M must be vectors.') et }T %~T  
    end AU$Uxwz4  
    D)d~3`=#  
    if length(n)~=length(m) 'UYR5Y>  
        error('zernpol:NMlength','N and M must be the same length.') V,G|k!!  
    end B~_d^`  
    EcCFbqS4W  
    n = n(:); ,j$Vvz   
    m = m(:); %b"\bHH  
    length_n = length(n); @0SC"CqM  
    TqddOp  
    if any(mod(n-m,2)) xa pq*oj  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') G;~V  
    end YxP@!U9dE,  
    sUU{fNC6|  
    if any(m<0) lHhUC16>  
        error('zernpol:Mpositive','All M must be positive.') ~>+]%FPv  
    end gwWN%Z"  
    - h9?1vc7  
    if any(m>n) 6#QK%[1!>  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') J;f!!<l\  
    end U~ck!\0&T  
    Gqy,u3lE  
    if any( r>1 | r<0 ) f?'JAC*  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') fOMvj%T@2  
    end ;asP4R=  
    1)[]x9]^q'  
    if ~any(size(r)==1)  z~>pVs  
        error('zernpol:Rvector','R must be a vector.') B!\;/Vk  
    end H(&4[%;MP  
    \} ^E`b  
    r = r(:); 4`8<   
    length_r = length(r); >z.<u|r2  
    /*c\qXA5  
    if nargin==4 [/BE8]M ~  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); J|w)&bV  
        if ~isnorm `ck$t5:6sp  
            error('zernpol:normalization','Unrecognized normalization flag.') 6l4mS~/  
        end [Ts"OPb% ~  
    else qvv2O1c"A  
        isnorm = false; C|?o*fQ  
    end [ l8jRT=R  
    wW/7F;54  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  &CG*)bE  
    % Compute the Zernike Polynomials $]rj73p^tH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U_{Ux 2  
    Cj?L@%"  
    % Determine the required powers of r: ubmrlH\d  
    % ----------------------------------- L^{|uP15N  
    rpowers = []; "&%#!2  
    for j = 1:length(n) @S 7sr-  
        rpowers = [rpowers m(j):2:n(j)]; $&2UTczp  
    end Vo"RO$%ow*  
    rpowers = unique(rpowers); qVs\Y3u(  
    :,DM*zBV p  
    % Pre-compute the values of r raised to the required powers, <fs2fTUeqF  
    % and compile them in a matrix: H/"lAXfb  
    % ----------------------------- "5,   
    if rpowers(1)==0 _IdRF5<4  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~wVd$%7`  
        rpowern = cat(2,rpowern{:}); ~jb"5CX  
        rpowern = [ones(length_r,1) rpowern]; 1Zi,b  
    else \~5C7^_  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jH6&q~#  
        rpowern = cat(2,rpowern{:}); +EAT:,  
    end d` [HT``  
    E~AjK'Z  
    % Compute the values of the polynomials: KW7UUXL  
    % -------------------------------------- +L5\;  
    z = zeros(length_r,length_n); >|Cw\^  
    for j = 1:length_n %H+\>raLz  
        s = 0:(n(j)-m(j))/2; - > J_ ~  
        pows = n(j):-2:m(j); <2nZ&M4/s{  
        for k = length(s):-1:1 np4+"  
            p = (1-2*mod(s(k),2))* ... UYz0PSV=.  
                       prod(2:(n(j)-s(k)))/          ... #-GJ&m8  
                       prod(2:s(k))/                 ... }`NU@O#  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... L =8+_0  
                       prod(2:((n(j)+m(j))/2-s(k))); O%ug@& S{  
            idx = (pows(k)==rpowers); k}#;Uy=5  
            z(:,j) = z(:,j) + p*rpowern(:,idx); R9! Uo  
        end hbc uK&  
         E!O\87[  
        if isnorm yu;SH[{Wi  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); G\a8B#hg  
        end 2mq$H_  
    end h?$T!D>  
    XB[<;*Iz  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  'q%%m/,VPQ  
    Cef:tdk7  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 z"F*\xa  
    #NRh\Wj|  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)