切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11011阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 CMu/n]?c  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! :Vdo.uUa  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 9coN >y  
    function z = zernfun(n,m,r,theta,nflag) bVgmjt2&>  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]r&dWF  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N bnZ`Wc*5b  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 8+|7*Ud  
    %   unit circle.  N is a vector of positive integers (including 0), and ^J-"8%  
    %   M is a vector with the same number of elements as N.  Each element (@(rz/H  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 'Dx_n7&=  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, PrQs_ t Ni  
    %   and THETA is a vector of angles.  R and THETA must have the same CqAv^n7 }  
    %   length.  The output Z is a matrix with one column for every (N,M) o0 &pSCK  
    %   pair, and one row for every (R,THETA) pair. {Gi:W/jJ  
    % 8GKqPS+  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +)<H,?/  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), k62KZ5| D  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 5^0K5R6GQf  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, A5q%yt I  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized `21$e  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _/pdZM,V  
    % 6Gj69Lr  
    %   The Zernike functions are an orthogonal basis on the unit circle. J_@`:l0,z  
    %   They are used in disciplines such as astronomy, optics, and kf -/rC)>  
    %   optometry to describe functions on a circular domain. wK*b2r}0/  
    % ;n2b$MB?nM  
    %   The following table lists the first 15 Zernike functions. z$]HZ#aRE  
    % }'c@E0"  
    %       n    m    Zernike function           Normalization 6$'0^Ftm'  
    %       -------------------------------------------------- =JDa[_lpN  
    %       0    0    1                                 1 Op 0Qpn  
    %       1    1    r * cos(theta)                    2 EG oe<.  
    %       1   -1    r * sin(theta)                    2 4+2hj*I  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) xA#'%|"  
    %       2    0    (2*r^2 - 1)                    sqrt(3) tLc~]G*\`s  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) }DzN-g<K  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) X)^&5;\`  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) R1/87eB  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) s]@k,%  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) -)o0P\cTEt  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) # fkOm Y7X  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lKA2~o  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) d_!l RQ^N  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nv-_\M   
    %       4    4    r^4 * sin(4*theta)             sqrt(10) KX$Q`lM   
    %       -------------------------------------------------- =2tl149m/z  
    % `mo>~c7  
    %   Example 1: "PtOe[Xk  
    % f^D4aEU  
    %       % Display the Zernike function Z(n=5,m=1) $/XR/  
    %       x = -1:0.01:1; Yv7`5b{N.  
    %       [X,Y] = meshgrid(x,x); r<XlIi  
    %       [theta,r] = cart2pol(X,Y); AOVoOd+6  
    %       idx = r<=1; {WYmO1  
    %       z = nan(size(X)); |vf /M|  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); BdYl sYp  
    %       figure d*(wU>J '  
    %       pcolor(x,x,z), shading interp z;KUIWg  
    %       axis square, colorbar }RPeAcbU_  
    %       title('Zernike function Z_5^1(r,\theta)') oEuo@\U05v  
    % 8C4 =f  
    %   Example 2: 4}>1I}!k  
    % Da WzQe=  
    %       % Display the first 10 Zernike functions AYLCdCoK.  
    %       x = -1:0.01:1; D-!#TN`Y  
    %       [X,Y] = meshgrid(x,x); AcCM W@e  
    %       [theta,r] = cart2pol(X,Y); cc|"^-j-7  
    %       idx = r<=1; $v*0 \O  
    %       z = nan(size(X));  ~hxo_&  
    %       n = [0  1  1  2  2  2  3  3  3  3]; v*.#LJEm  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 76M`{m  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; q=|0lZ$`V_  
    %       y = zernfun(n,m,r(idx),theta(idx)); Me|+)}'p5h  
    %       figure('Units','normalized') DHO+JtO  
    %       for k = 1:10 h1uD>heGl  
    %           z(idx) = y(:,k); ko<iG]Dv'  
    %           subplot(4,7,Nplot(k)) ?=lnYD j  
    %           pcolor(x,x,z), shading interp lS:R##  
    %           set(gca,'XTick',[],'YTick',[]) Vy:MK9U2  
    %           axis square \ mt> R[  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5NECb4FG  
    %       end <0hJo=6a8  
    %  GP/G v  
    %   See also ZERNPOL, ZERNFUN2. 9X2 lH~C  
    c6NCy s  
    %   Paul Fricker 11/13/2006 *;I F^u1  
    WP-'gC6K=  
    }:5>1FfX=  
    % Check and prepare the inputs: D@yuldx'/  
    % ----------------------------- b2vc  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) : %hxg  
        error('zernfun:NMvectors','N and M must be vectors.') ^M Zdht   
    end nPj/C7j  
    Mi5"XQ>/  
    if length(n)~=length(m) 9ywPWT[^  
        error('zernfun:NMlength','N and M must be the same length.') ,UD,)ZPf[  
    end 9u\&kQxqD  
    @Fl&@ $  
    n = n(:); G2x5%`   
    m = m(:); \I4*|6kA  
    if any(mod(n-m,2)) 8'kA",P  
        error('zernfun:NMmultiplesof2', ... 3C8W]yw/s  
              'All N and M must differ by multiples of 2 (including 0).') Jc#()4  
    end XU}sbbwu  
    $*Q_3]AY]  
    if any(m>n) ,6%{9oW9Z:  
        error('zernfun:MlessthanN', ... vKX $Nf  
              'Each M must be less than or equal to its corresponding N.') 3GSoHsNk  
    end 9N[vNg<n  
    y/}>)o4Q  
    if any( r>1 | r<0 ) Hkv4t5F  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') }0({c~z\  
    end ?=]*r>a3  
    Q.Kr;64G  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) :K3nJ1G&  
        error('zernfun:RTHvector','R and THETA must be vectors.') 3-Q*umh  
    end h69: Tj!  
    fQ&:1ec  
    r = r(:); rX%qWhiEJ  
    theta = theta(:); 1MV\ ^l_  
    length_r = length(r); SRN:!-  
    if length_r~=length(theta) 042sjt  
        error('zernfun:RTHlength', ... ezt_ct/Z  
              'The number of R- and THETA-values must be equal.') J]f\=;z;<a  
    end C_[V[k0(  
    GLe(?\Ug=  
    % Check normalization: Z:#-4CiP  
    % -------------------- #_+T@|r  
    if nargin==5 && ischar(nflag) fNi&1J-/  
        isnorm = strcmpi(nflag,'norm'); !P, 9Sg&5)  
        if ~isnorm UC^Bn1  
            error('zernfun:normalization','Unrecognized normalization flag.') -o+_PL $\  
        end sBuVm<H  
    else F*QD\sG:  
        isnorm = false; sX3Vr&r  
    end n ?%3=~9  
    DlR&Lnv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4 []R?lL  
    % Compute the Zernike Polynomials C61KY7iyR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $J #}3;a  
    qVFz-!6b  
    % Determine the required powers of r: _c|>m4+X  
    % ----------------------------------- _9Kdcoh  
    m_abs = abs(m); o_gpBaWD  
    rpowers = []; y @AKb  
    for j = 1:length(n) -/aDq?<<  
        rpowers = [rpowers m_abs(j):2:n(j)]; VwoCR q*  
    end v&U'%1|  
    rpowers = unique(rpowers); H{x}gBQ  
    /|y3M/;F  
    % Pre-compute the values of r raised to the required powers, 2I:vie  
    % and compile them in a matrix: 0+O)~>v  
    % ----------------------------- VG'oy  
    if rpowers(1)==0 V9"Kro  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); o(~>a  
        rpowern = cat(2,rpowern{:}); }0uSm%,"  
        rpowern = [ones(length_r,1) rpowern]; : H<u@%  
    else {"e/3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  UJoWTx  
        rpowern = cat(2,rpowern{:}); 3Fh<%<=  
    end {!B0&x  
    pM\)f  
    % Compute the values of the polynomials: )F<<M+q=  
    % -------------------------------------- @6i^wC  
    y = zeros(length_r,length(n)); C9Fc(Y?_  
    for j = 1:length(n) 2s EdN$O  
        s = 0:(n(j)-m_abs(j))/2; K4xZT+Qb  
        pows = n(j):-2:m_abs(j); L5cNCWpo  
        for k = length(s):-1:1 &I?1(t~hT  
            p = (1-2*mod(s(k),2))* ... w"-bO ~5h  
                       prod(2:(n(j)-s(k)))/              ... ZzI^*Nyg  
                       prod(2:s(k))/                     ... ;4F[*VF!w  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 7%8,*T  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); QA.B.U7!  
            idx = (pows(k)==rpowers); &}w,bG$  
            y(:,j) = y(:,j) + p*rpowern(:,idx); F& H~JJ  
        end ,^|+n()O  
         Yq/|zTe{  
        if isnorm uGLVY%N  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5cyl:1Ln  
        end .'"+CKD.N  
    end u!nt0hS  
    % END: Compute the Zernike Polynomials -H.;73Kb[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )sB`!:~HjP  
    + 7E6U*  
    % Compute the Zernike functions: *D;B%j^;  
    % ------------------------------ c.&vWmLSGE  
    idx_pos = m>0; 8c__ U<  
    idx_neg = m<0; zv#i\8h^p  
    >g93Bj*  
    z = y; fylW)W4C  
    if any(idx_pos) ,i*^fpF`F"  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Z#>k:v  
    end \s<iM2]Kl  
    if any(idx_neg) =q[3/'2V$?  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H7#RL1qM&  
    end % C6 H(  
    15U=2j*.b  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 5/P?@`/ eT  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. }(M<sEK~  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated j*QY_Ny*  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive %iD>^Dp  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, &% M^:WT  
    %   and THETA is a vector of angles.  R and THETA must have the same mL6/NSSz  
    %   length.  The output Z is a matrix with one column for every P-value, Q `E{Oo,  
    %   and one row for every (R,THETA) pair. O%c6vp7  
    % )\VUAD%~e7  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ]vT  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) c}v:X Slh7  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) b55|JWfC`  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 >r]# 77d  
    %   for all p. #C>pA<YJzK  
    % u%}vTCg*p  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Nb]qY>K  
    %   Zernike functions (order N<=7).  In some disciplines it is XkdNWR0  
    %   traditional to label the first 36 functions using a single mode 3\D jV2t  
    %   number P instead of separate numbers for the order N and azimuthal $yCj80m\  
    %   frequency M. 1Tiq2+hmf  
    % f4g(hjETbu  
    %   Example: B[$KnQM9Y  
    % &# @1n  
    %       % Display the first 16 Zernike functions P'Y8 t  
    %       x = -1:0.01:1; 8~2A"<{ub  
    %       [X,Y] = meshgrid(x,x); j./bVmd.  
    %       [theta,r] = cart2pol(X,Y); Rut6m5>  
    %       idx = r<=1; n:<avl@o<  
    %       p = 0:15; (V=lK6WQm  
    %       z = nan(size(X)); ,#WXAA mm  
    %       y = zernfun2(p,r(idx),theta(idx)); 8o{ SU6pH  
    %       figure('Units','normalized') r2sog{R  
    %       for k = 1:length(p) 5utj$ha2  
    %           z(idx) = y(:,k); #4c uNX5m%  
    %           subplot(4,4,k) },f7I^s|  
    %           pcolor(x,x,z), shading interp Rf%ver  
    %           set(gca,'XTick',[],'YTick',[]) ~Kb(`Px@  
    %           axis square d[$1:V  
    %           title(['Z_{' num2str(p(k)) '}'])  K8 ThZY%  
    %       end 0q`'65 lx  
    % ORHC bw9  
    %   See also ZERNPOL, ZERNFUN. C)ChF`Ru':  
    Rwy:.)7B$q  
    %   Paul Fricker 11/13/2006 #x%O0  
    TR%?U/_4;r  
    #bdJ]v.n  
    % Check and prepare the inputs: 2G'G45Q  
    % ----------------------------- ^WD [>E~  
    if min(size(p))~=1 \h0e09& I  
        error('zernfun2:Pvector','Input P must be vector.') :nXB w%0x  
    end R/^ rh  
    }'X}!_9w>  
    if any(p)>35 ]\3dJ^q|%  
        error('zernfun2:P36', ... k2;8~LqF  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... <N`rcKE%~P  
               '(P = 0 to 35).']) Bo~wD|E2  
    end Jhut>8  
    Nm^q.)dO  
    % Get the order and frequency corresonding to the function number: wvh4AE5F|z  
    % ---------------------------------------------------------------- $@#nn5^IX  
    p = p(:); f9\7v_  
    n = ceil((-3+sqrt(9+8*p))/2); I'yhxymZ;  
    m = 2*p - n.*(n+2); "thu@~aC  
    H[G EAQO  
    % Pass the inputs to the function ZERNFUN: QR8F'7S  
    % ---------------------------------------- 9g*~X;`2  
    switch nargin YWdlE7 y  
        case 3 |owhF  
            z = zernfun(n,m,r,theta); [Q$"+@jw  
        case 4 4Fz^[L}[  
            z = zernfun(n,m,r,theta,nflag); :#|77b0  
        otherwise |mM7P^I  
            error('zernfun2:nargin','Incorrect number of inputs.') t)v#y!Ci"  
    end $qEJO=v  
    <w:fR|O  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Uex b>|  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. u*U?VZ5  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Xgl>kJy<#  
    %   order N and frequency M, evaluated at R.  N is a vector of [[|;Wr} 2  
    %   positive integers (including 0), and M is a vector with the <l6CtK@  
    %   same number of elements as N.  Each element k of M must be a cK?t]%S  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) &=UzF  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is #&/*ll)  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix -`gC?yff:  
    %   with one column for every (N,M) pair, and one row for every MdKZH\z/  
    %   element in R. IaJ(T>" +  
    % *X>rvAd3  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Zsuh8t   
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is j IW:O  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to XNl!(2x'pb  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 jBQQ?cA  
    %   for all [n,m]. T S.lFg:K  
    % :I7MP   
    %   The radial Zernike polynomials are the radial portion of the 61KJ( rSX3  
    %   Zernike functions, which are an orthogonal basis on the unit ywdNwNJ  
    %   circle.  The series representation of the radial Zernike &]M<G)9  
    %   polynomials is (=\P|iv  
    % w_ Ls.K5"  
    %          (n-m)/2 6` s[PKP.  
    %            __ ^aC[Z P:  
    %    m      \       s                                          n-2s BkJcT  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Vz,WPm$I  
    %    n      s=0 $@NZ*m%?JQ  
    % eu4x{NmQ  
    %   The following table shows the first 12 polynomials. |p+VitM7  
    % o+vf  
    %       n    m    Zernike polynomial    Normalization FD6|>G  
    %       --------------------------------------------- B}jZ~/D}  
    %       0    0    1                        sqrt(2) H;CGLis  
    %       1    1    r                           2 _Nj;Ni2rD  
    %       2    0    2*r^2 - 1                sqrt(6) +:t1PV;l  
    %       2    2    r^2                      sqrt(6) Fivv#4YO  
    %       3    1    3*r^3 - 2*r              sqrt(8) v3/cNd3  
    %       3    3    r^3                      sqrt(8) vZKo&jU k  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ooq>/OI0  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) V- v Vb  
    %       4    4    r^4                      sqrt(10) ;EJ6C#} >7  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) {L+?n*;CA  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) s)N1@RBR  
    %       5    5    r^5                      sqrt(12) OO$<Wgh  
    %       --------------------------------------------- ^NCH)zK]v  
    % AV'>  
    %   Example: J3'"-,Hv  
    % @-m&X2J+c  
    %       % Display three example Zernike radial polynomials Wm A:"!~M  
    %       r = 0:0.01:1; EmH{G  
    %       n = [3 2 5]; L.GpQJ8u  
    %       m = [1 2 1]; vS X 6~m  
    %       z = zernpol(n,m,r); 0#q_LB  
    %       figure n% *u;iG  
    %       plot(r,z) 0>'1|8+`(z  
    %       grid on m}XI?[!s  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') A6sBObw;  
    % -1{N#c/U  
    %   See also ZERNFUN, ZERNFUN2. 8'?e4;O  
    7e40 }n  
    % A note on the algorithm. ctCfLlK  
    % ------------------------ ^fx9R 5E$:  
    % The radial Zernike polynomials are computed using the series X23TS`  
    % representation shown in the Help section above. For many special A>PM'$"sT  
    % functions, direct evaluation using the series representation can [$V_qFv{  
    % produce poor numerical results (floating point errors), because _ x7Vyy5  
    % the summation often involves computing small differences between }r i"u;.R  
    % large successive terms in the series. (In such cases, the functions \nJr jH A  
    % are often evaluated using alternative methods such as recurrence <Ei|:m  
    % relations: see the Legendre functions, for example). For the Zernike eg}|%GG  
    % polynomials, however, this problem does not arise, because the  =HSE  
    % polynomials are evaluated over the finite domain r = (0,1), and )jH"6my_  
    % because the coefficients for a given polynomial are generally all T&!>lqU!J  
    % of similar magnitude. R1S Ev$  
    % ?>,aq>2O$  
    % ZERNPOL has been written using a vectorized implementation: multiple R=IeAuZR4k  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] D8h~?phK  
    % values can be passed as inputs) for a vector of points R.  To achieve |S4yol  
    % this vectorization most efficiently, the algorithm in ZERNPOL auO^v;s  
    % involves pre-determining all the powers p of R that are required to QQ?` 1W  
    % compute the outputs, and then compiling the {R^p} into a single :hevBBP  
    % matrix.  This avoids any redundant computation of the R^p, and C[pAa8  
    % minimizes the sizes of certain intermediate variables. xLGAP-mx]  
    % a-YK*  
    %   Paul Fricker 11/13/2006 !g}9xIL  
    0h; -Yg  
    0nl)0|?Az  
    % Check and prepare the inputs: 3wr~P  
    % ----------------------------- aMHIOA%Kh  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ek 4aC3  
        error('zernpol:NMvectors','N and M must be vectors.') Z|~<B4#c  
    end nmgW>U0jZh  
    hwO]{)%  
    if length(n)~=length(m) PM_q"}-  
        error('zernpol:NMlength','N and M must be the same length.') $GYy[-.`  
    end ]=pEs6%O3  
    9@S icqx   
    n = n(:); hTy#Q.=  
    m = m(:); 3)T5}_  
    length_n = length(n); )ei+ewVZ  
    pY:xxnE  
    if any(mod(n-m,2)) i %z}8GIt'  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') -m__I U  
    end ?! kup  
    6L*y$e"Qc  
    if any(m<0) zZDr=6|r_  
        error('zernpol:Mpositive','All M must be positive.') Tn-H8;Hg  
    end gHm ^@  
    #4|?;C)u\  
    if any(m>n) 2x`# f0[  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') V^f'4*~'  
    end ,2]6cP(6qQ  
    (57x5qP X  
    if any( r>1 | r<0 ) BgE]xm  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 8HWY]:| oh  
    end zKI(yC  
    CE?R/uNo{  
    if ~any(size(r)==1) jsL'O;K/  
        error('zernpol:Rvector','R must be a vector.') PPmZ[N9(;  
    end V6Q[Y>84~a  
    .Wb),  
    r = r(:); ?C4a,%  
    length_r = length(r); inhb>zB  
    .2u%;)S  
    if nargin==4 Qs4Jl;Y_  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); yJgnw6>r2  
        if ~isnorm 8Y4YE(x5  
            error('zernpol:normalization','Unrecognized normalization flag.') \;g{qM 8  
        end HM<V$ R  
    else $YW z~^f  
        isnorm = false; lQ)8zI  
    end WLizgVM  
    dLo%+V#/A  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jIEK[vJ`  
    % Compute the Zernike Polynomials /.}&yRR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fXL$CgXG\x  
    =JEnK_@?K\  
    % Determine the required powers of r: (D))?jnC  
    % ----------------------------------- ^&.F!  
    rpowers = []; kH{axMNc  
    for j = 1:length(n) LtC kDnXk  
        rpowers = [rpowers m(j):2:n(j)]; 6g<JPc  
    end :yw0-]/DD  
    rpowers = unique(rpowers); y/Nvts2!C  
    E|ZY2&J`4  
    % Pre-compute the values of r raised to the required powers, *X,vu2(I-=  
    % and compile them in a matrix: @P)GDB7A  
    % ----------------------------- f9#B(4Tgi  
    if rpowers(1)==0 X, J.!:4`  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =`{!" 6a  
        rpowern = cat(2,rpowern{:}); h NP|  
        rpowern = [ones(length_r,1) rpowern]; siOeR@> X  
    else c?[A  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); bu\,2t}B  
        rpowern = cat(2,rpowern{:}); ]1gt|M^  
    end  #p\sw  
    B<_T"n'#b  
    % Compute the values of the polynomials: _{-GR-  
    % -------------------------------------- }!B<MGBd  
    z = zeros(length_r,length_n); 4(o0I~hpB?  
    for j = 1:length_n ~Fisno  
        s = 0:(n(j)-m(j))/2; qxE~Moht  
        pows = n(j):-2:m(j); >6(nW:I0y  
        for k = length(s):-1:1 RN!oflb  
            p = (1-2*mod(s(k),2))* ... ` R^[s56wp  
                       prod(2:(n(j)-s(k)))/          ... CK.Z-_M  
                       prod(2:s(k))/                 ... b7HS 3NYk  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 3WaYeol`  
                       prod(2:((n(j)+m(j))/2-s(k))); pcL02W|J  
            idx = (pows(k)==rpowers); JTdK\A>l  
            z(:,j) = z(:,j) + p*rpowern(:,idx); .XS rLb?  
        end utRvE(IbmV  
         w Gw}a[a  
        if isnorm o#E z_D[  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); .lRO; D  
        end F*hs3b0Db  
    end $JcU0tPq0  
    00<iv"8  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  VS1gg4tCv  
    HC+(FymV  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 3sHC1 +  
    d #y{eV$Q  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)