非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 }1Km h]
function z = zernfun(n,m,r,theta,nflag) [knwp$
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Oftjm
X_
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N U7d05y'
% and angular frequency M, evaluated at positions (R,THETA) on the ?F@X>zR2
% unit circle. N is a vector of positive integers (including 0), and @ R;o $n
% M is a vector with the same number of elements as N. Each element r*W&SU9Z
% k of M must be a positive integer, with possible values M(k) = -N(k) SI/p8 ^
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Y .\<P*iO
% and THETA is a vector of angles. R and THETA must have the same Pxe7 \e
% length. The output Z is a matrix with one column for every (N,M) hZeF? G)L'
% pair, and one row for every (R,THETA) pair. >Ms_bfSK
% _}:#T8h
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ~`o%Y"p%rv
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), wlfq$h p
% with delta(m,0) the Kronecker delta, is chosen so that the integral F=~LVaF/_
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, y'U-y"7y
% and theta=0 to theta=2*pi) is unity. For the non-normalized !jyy`q=
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. bDM;7fFp$
% #=aT Sw X
% The Zernike functions are an orthogonal basis on the unit circle. PZO8<d
% They are used in disciplines such as astronomy, optics, and =fy'w3m
% optometry to describe functions on a circular domain. F]`_ak E
% zr[|~-
% The following table lists the first 15 Zernike functions. $h8,QPy
% s f<NC>-
% n m Zernike function Normalization 0;x<0P
% -------------------------------------------------- xY1@Ja
% 0 0 1 1 lsRW.h,
% 1 1 r * cos(theta) 2 [HSN*LXe
% 1 -1 r * sin(theta) 2 %3 VToj@`>
% 2 -2 r^2 * cos(2*theta) sqrt(6) /7p1y v
% 2 0 (2*r^2 - 1) sqrt(3) (pkq{: Fs
% 2 2 r^2 * sin(2*theta) sqrt(6) .+dego:
% 3 -3 r^3 * cos(3*theta) sqrt(8) 2N}h<Yd9
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 2qfKDZ9f^
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) q;H5S<]/
% 3 3 r^3 * sin(3*theta) sqrt(8) Ai.^~#%X
% 4 -4 r^4 * cos(4*theta) sqrt(10) @1iH4RE*
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `& }C*i"
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) rZ^VKO`~I1
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4#2iq@s
% 4 4 r^4 * sin(4*theta) sqrt(10)
&L4>w.b"N
% -------------------------------------------------- f&L8<ASFo
% 7DCu#Y[
% Example 1: jK-usn
% H5?H{
% % Display the Zernike function Z(n=5,m=1) ]ppws3*Pa
% x = -1:0.01:1; L<H6AzR+
% [X,Y] = meshgrid(x,x); E8PlGQ~z{d
% [theta,r] = cart2pol(X,Y); A!fRpN
% idx = r<=1; )5U2-g#U
% z = nan(size(X)); so@wUxF
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 'w~e>$WI
% figure G.sf>.[
% pcolor(x,x,z), shading interp l\1_v7s
% axis square, colorbar ck K9@RQ
% title('Zernike function Z_5^1(r,\theta)') YTYCv7
%
o
C#W
% Example 2: uEcK0>xp
% *d$r`.9j
% % Display the first 10 Zernike functions EawtT
% x = -1:0.01:1; b{hdEb
% [X,Y] = meshgrid(x,x); +U*:WKdI?
% [theta,r] = cart2pol(X,Y); j`ybz G^
% idx = r<=1; |!.VpN&
% z = nan(size(X)); cux<7#6af
% n = [0 1 1 2 2 2 3 3 3 3]; dEG1[QG
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; $qy ST
% Nplot = [4 10 12 16 18 20 22 24 26 28]; |^$?9Dn9.L
% y = zernfun(n,m,r(idx),theta(idx)); K1[(%<Gp
% figure('Units','normalized') &(YNz9L
% for k = 1:10 t6a$ZN;
% z(idx) = y(:,k); E.+BqWZ!
% subplot(4,7,Nplot(k)) '?dT<w=Y&
% pcolor(x,x,z), shading interp <)ltvo(
% set(gca,'XTick',[],'YTick',[]) RqRyZ*n
% axis square >XK |jPK
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) $7'KcG
% end -Vhxnh S
% 9Jj:d)E>o
% See also ZERNPOL, ZERNFUN2. A,#a?O6m
^A' Bghy
% Paul Fricker 11/13/2006 i :Sih"=
31=vUS
\2NT7^H#
% Check and prepare the inputs: e]@R'oM?#`
% ----------------------------- fMZzR|_18
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LGPPyKNx
error('zernfun:NMvectors','N and M must be vectors.') ^.~m4t`U
end <^Sp4J
&24$*Oe
if length(n)~=length(m) ewORb
error('zernfun:NMlength','N and M must be the same length.') )G=hgqy
end ~Op~~
m
(YKkJ
n = n(:); r0/o{Y|l6
m = m(:); Yi+$g
if any(mod(n-m,2)) c},wW@SF2W
error('zernfun:NMmultiplesof2', ... G+zIh}9
'All N and M must differ by multiples of 2 (including 0).')
uhO-0H
end RI#o9d"x}
ISALR{Aq
if any(m>n) S^*ME*DDz
error('zernfun:MlessthanN', ... [ %:%C]4
'Each M must be less than or equal to its corresponding N.') DZ5QC aA
end G*\U'w4w|*
fe$O Pl~
if any( r>1 | r<0 ) gO,2:,
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6h3TU,$r
end 8xQjJ
Ab/KVB
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) mqk tM6
error('zernfun:RTHvector','R and THETA must be vectors.') jpRC6b?
end PWbi`qF)r
0$\
j
r = r(:); P[<EFjE
theta = theta(:); <`WtP+`
length_r = length(r); ]?A-D,!(
if length_r~=length(theta) iDrQ4>
error('zernfun:RTHlength', ... URb
'The number of R- and THETA-values must be equal.') tX
3y{W10"
end 1y}tPkOe7O
7zEpuw
% Check normalization: BFH=cs
% -------------------- S1D;Xv@
if nargin==5 && ischar(nflag) $mLiEsJ
isnorm = strcmpi(nflag,'norm'); L qdzqq
if ~isnorm A
^U`c'$
error('zernfun:normalization','Unrecognized normalization flag.') C3GI?|b
end l_z@.</8P@
else TSHH=`cx
isnorm = false; gPzp/I
end CyEEE2cV
(X( c.Jj
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >C"QV`+
% Compute the Zernike Polynomials SlojB ^%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5x1_rjP$|
#;~dA
% Determine the required powers of r: XX|wle1Kg
% ----------------------------------- vg ^&j0
m_abs = abs(m); l5fF.A7TT
rpowers = []; F}dq~QCzw
for j = 1:length(n) n 9N'}z
rpowers = [rpowers m_abs(j):2:n(j)]; ^#)M,.G^
end Cv;\cI"&
rpowers = unique(rpowers); @!:_r5R~N
nps"nggk
% Pre-compute the values of r raised to the required powers, @#W$7Gwf0
% and compile them in a matrix: y_A?}'X
% ----------------------------- K}1eQS&$a
if rpowers(1)==0 &nX,)"
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); RRBBz7:~
rpowern = cat(2,rpowern{:}); Oxq} dX7S
rpowern = [ones(length_r,1) rpowern]; 4[^lE?+
else yNkE>
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); elzKtVw
rpowern = cat(2,rpowern{:}); Mh;rhQ
end 1?5UVv_F
`p{,C`g,R
% Compute the values of the polynomials: $dgez#TPL
% -------------------------------------- 08JVX'X-mr
y = zeros(length_r,length(n)); AiE\PMF~{P
for j = 1:length(n) HG)c\b
s = 0:(n(j)-m_abs(j))/2; Pu7cL
pows = n(j):-2:m_abs(j); Yiy|^j
for k = length(s):-1:1 \NI0rL
p = (1-2*mod(s(k),2))* ... ` "JslpN
prod(2:(n(j)-s(k)))/ ... 5xF R7%_&
prod(2:s(k))/ ... @mu2,%
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... P 2^((c
prod(2:((n(j)+m_abs(j))/2-s(k))); baL-~`(T
idx = (pows(k)==rpowers); =gb(<`{>
y(:,j) = y(:,j) + p*rpowern(:,idx); 4hh=z>$|l)
end OP}8u"\Z
BL Q&VI4
if isnorm BpQ/$?5E"
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); b$Ch2Qz0q
end ^&-H"jF
end ^S'tMT_
% END: Compute the Zernike Polynomials _$Hx:^p:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'ffOFIz|=I
]\_T
% Compute the Zernike functions: `*hrU{b
% ------------------------------ m&X6a C'[
idx_pos = m>0; ' y9yx[P
idx_neg = m<0; 61^5QHur
U%,N"]`
z = y; :$ "L;"
if any(idx_pos) 1S26Y|L)
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :*wjC.Z
end =P.m5e<
if any(idx_neg) umo@JWr
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); wWNHZv&
end 6W abw:
Xu8_ <%
% EOF zernfun