非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 *w.":\P]
function z = zernfun(n,m,r,theta,nflag) \"RCJadK
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. _#v"sGmN
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N K"t?
% and angular frequency M, evaluated at positions (R,THETA) on the j&/+/s9N
% unit circle. N is a vector of positive integers (including 0), and )N~ p4kp
% M is a vector with the same number of elements as N. Each element :4)x
% k of M must be a positive integer, with possible values M(k) = -N(k) &QD)1b[U
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Eo^m; p5
% and THETA is a vector of angles. R and THETA must have the same >WZbbd-
% length. The output Z is a matrix with one column for every (N,M) @=AQr4&
% pair, and one row for every (R,THETA) pair. LKI\(%ba#
% n6,YA2yZO
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @,= pG
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ]!!?gnPd5
% with delta(m,0) the Kronecker delta, is chosen so that the integral [O ^/"Qk
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Q5dqn"?
% and theta=0 to theta=2*pi) is unity. For the non-normalized FXY>o>K%h
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. V;R gO}
% U!Zj%H1XQ0
% The Zernike functions are an orthogonal basis on the unit circle. 3f^jy(
% They are used in disciplines such as astronomy, optics, and U5-8It2OR
% optometry to describe functions on a circular domain. |.RyF@N`T
% $X-PjQb1Bb
% The following table lists the first 15 Zernike functions. \ ;]{`
% <)LR
% n m Zernike function Normalization tboQn~&4
% -------------------------------------------------- b'SP,}s5"
% 0 0 1 1 )lt1I\n*k
% 1 1 r * cos(theta) 2 (||qFu9a
% 1 -1 r * sin(theta) 2 QGOkB
% 2 -2 r^2 * cos(2*theta) sqrt(6) ^{IZpT3
% 2 0 (2*r^2 - 1) sqrt(3) 6~ y'
% 2 2 r^2 * sin(2*theta) sqrt(6) \WnTpl>B
% 3 -3 r^3 * cos(3*theta) sqrt(8) S]%,g%6i
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) SX'NFdY
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) C[%&;\3S@
% 3 3 r^3 * sin(3*theta) sqrt(8) Va.TUz4
% 4 -4 r^4 * cos(4*theta) sqrt(10) =$bF[3D
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #E=8kbD7
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) vf>d{F^rv
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |[5;dt_U/
% 4 4 r^4 * sin(4*theta) sqrt(10) oI`Mn3N
% -------------------------------------------------- YWd2bRb
% F[O147&C
% Example 1: mh[,E8'd
% 3}phg
% % Display the Zernike function Z(n=5,m=1) z8S]FpM6
% x = -1:0.01:1; `EMGrw_
% [X,Y] = meshgrid(x,x); Jia@HrLR
% [theta,r] = cart2pol(X,Y); )S4ga
% idx = r<=1; r6Vw!^]8u8
% z = nan(size(X)); bp?TO]LH
% z(idx) = zernfun(5,1,r(idx),theta(idx)); c-NUD$
% figure dVMl;{
% pcolor(x,x,z), shading interp jCtk3No
% axis square, colorbar Bx}"X?%S
% title('Zernike function Z_5^1(r,\theta)') +?3RC$jyw
% `%#_y67v
% Example 2: OOIp)=4
% A_ &IK;-go
% % Display the first 10 Zernike functions Uv.Xw} q
% x = -1:0.01:1; &-^*D%9
% [X,Y] = meshgrid(x,x); WhH60/`
% [theta,r] = cart2pol(X,Y); x4g6Qze
% idx = r<=1; OA9P"*
% z = nan(size(X)); BHgs,
% n = [0 1 1 2 2 2 3 3 3 3]; =Oh$pZRymu
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; P%yL{
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Z|UVH
% y = zernfun(n,m,r(idx),theta(idx)); #k>n5cR@0
% figure('Units','normalized') ("}Hs[
% for k = 1:10 : Gi8Jo
% z(idx) = y(:,k); X1oR
% subplot(4,7,Nplot(k)) H*0g*(
% pcolor(x,x,z), shading interp HES$. a
% set(gca,'XTick',[],'YTick',[]) Fq+Cr?-
% axis square D1>*ml
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) &u[F)|
% end >a2[P"
% Citumc)E
% See also ZERNPOL, ZERNFUN2. G] tT=X[
\j)c?1*$
% Paul Fricker 11/13/2006 g]44|9x(W
B&59c*K
.L#4#IO
% Check and prepare the inputs: d72
yu3
% ----------------------------- RDQ]_wsyKG
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) kn3GgdU
error('zernfun:NMvectors','N and M must be vectors.') ^qC.bv]&
end `'r]Oe
r:0RvWif
if length(n)~=length(m) / M]P&Zb |
error('zernfun:NMlength','N and M must be the same length.') lc
fAb@}2
end n 78!]O
U$a)lcJd
n = n(:); p*cyW l
m = m(:); (qc<'$o
if any(mod(n-m,2)) PPpaH!(D
error('zernfun:NMmultiplesof2', ... ^56D)A=
'All N and M must differ by multiples of 2 (including 0).') Lnn^j#n
end G5 )"%G.
4Vf-D%
h>a
if any(m>n) 30Q77,Nsny
error('zernfun:MlessthanN', ... IWN18aaL?
'Each M must be less than or equal to its corresponding N.') $E:z*~?
end loq2+(
KU+u.J
if any( r>1 | r<0 ) Y@ ;/Sf$Q
error('zernfun:Rlessthan1','All R must be between 0 and 1.') HH(2
end zKYN5|17
,T 3M
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) d*([!!i
error('zernfun:RTHvector','R and THETA must be vectors.') n3/Bs
end {}"
<
TK>~)hc}
r = r(:); O6-';H:I]L
theta = theta(:); +['1~5
length_r = length(r); E){ODyk
if length_r~=length(theta) 9*n?V ;E
error('zernfun:RTHlength', ... [["eK9}0
'The number of R- and THETA-values must be equal.') LG(" <CU
end HPO:aGU
#f=41d%
% Check normalization: MM@&Q