切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11049阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ;0;3BH A  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! wu;7NatHx  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 db{NK wpj'  
    function z = zernfun(n,m,r,theta,nflag) `Mo~EHso.  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle.  ~Y1"k]J  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N tfi2y]{A  
    %   and angular frequency M, evaluated at positions (R,THETA) on the wlm3~B\64  
    %   unit circle.  N is a vector of positive integers (including 0), and j)6@q@P/  
    %   M is a vector with the same number of elements as N.  Each element Q.j-C}a  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) M3hy5 j(b  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, sL!;hKK  
    %   and THETA is a vector of angles.  R and THETA must have the same &@mvw=d  
    %   length.  The output Z is a matrix with one column for every (N,M) ^JYF1   
    %   pair, and one row for every (R,THETA) pair. >g5T;NgH9  
    % 0-8ELX[#  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |usnY  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ~0VwF  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral +W V@o'  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0!3!?E <  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ==jkp U*=  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Jm{As*W>  
    % F!z! :yp  
    %   The Zernike functions are an orthogonal basis on the unit circle. V/QTYy1  
    %   They are used in disciplines such as astronomy, optics, and ,gAr|x7_  
    %   optometry to describe functions on a circular domain. OGSEvfW  
    % eLHa9R{)B  
    %   The following table lists the first 15 Zernike functions. o`<h=+a\  
    % J,dG4.ht  
    %       n    m    Zernike function           Normalization ')5jllxv  
    %       -------------------------------------------------- v :'P"uU;4  
    %       0    0    1                                 1 +^^S'mP8  
    %       1    1    r * cos(theta)                    2 >m)2ox_B  
    %       1   -1    r * sin(theta)                    2 [8V(N2  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) S*~Na]nS0  
    %       2    0    (2*r^2 - 1)                    sqrt(3) LM'*OtpDG  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) pl1EJ <  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Li?{e+g  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) S>/I?(J  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) (P]^8qc  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) : L6-{9$  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) )_x8?:lv  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A-AN6.  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) sT;=7 L<TA  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^)eessZ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Gaw,1Ow!`2  
    %       -------------------------------------------------- -r6(=A  
    % a9mr-`<  
    %   Example 1: .@x"JI> ;  
    % 2vW,.]95M  
    %       % Display the Zernike function Z(n=5,m=1) @=aq&gb  
    %       x = -1:0.01:1; +e{djp@m  
    %       [X,Y] = meshgrid(x,x); `9G$p|6  
    %       [theta,r] = cart2pol(X,Y); OTy 4"%  
    %       idx = r<=1; K>DnD0  
    %       z = nan(size(X)); ^{6UAT~!R  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); &CPe$'FYI  
    %       figure ]R2Z-2  
    %       pcolor(x,x,z), shading interp #!<+:y'S?  
    %       axis square, colorbar g-TX;(  
    %       title('Zernike function Z_5^1(r,\theta)') 5 \.TZMB  
    % j*3sjOoC  
    %   Example 2: lHj7O &+  
    % U_zpLpm^  
    %       % Display the first 10 Zernike functions c,[qjr#\>  
    %       x = -1:0.01:1; $[^ KCNB  
    %       [X,Y] = meshgrid(x,x); q4IjCu+  
    %       [theta,r] = cart2pol(X,Y); LcQ\?]w`]  
    %       idx = r<=1; _UbR8  
    %       z = nan(size(X)); !O%f)v?  
    %       n = [0  1  1  2  2  2  3  3  3  3]; TF ([yZO'  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; EC\rh](d 1  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; X\^3,k."  
    %       y = zernfun(n,m,r(idx),theta(idx)); \:f}X?:  
    %       figure('Units','normalized') w4&v( m  
    %       for k = 1:10 ,2:L{8_L  
    %           z(idx) = y(:,k); XTn{1[.O  
    %           subplot(4,7,Nplot(k)) ,_X,V!  
    %           pcolor(x,x,z), shading interp jy)9EU=  
    %           set(gca,'XTick',[],'YTick',[]) =tvm=  
    %           axis square ^PCL^]W  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @_ tA"E  
    %       end , K"2tb  
    % enfu%"(K)  
    %   See also ZERNPOL, ZERNFUN2. A_4\$NZ^  
    *rMN,B@  
    %   Paul Fricker 11/13/2006 s-YV_  
    N[?4yV2s  
    g275{2G9  
    % Check and prepare the inputs: fPuQ,J2=  
    % ----------------------------- -QHzf&D?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) a!6OE"?QQ  
        error('zernfun:NMvectors','N and M must be vectors.') neMe<jr  
    end >Gu>T\jpe.  
    e715)_HD  
    if length(n)~=length(m) a0v1LT6  
        error('zernfun:NMlength','N and M must be the same length.') *IfIRR>3l(  
    end ]a@v)aa-  
    $@ #G+QQ_  
    n = n(:); E(K$|k_>  
    m = m(:); <a/ZOuBzZ  
    if any(mod(n-m,2)) Y&!McM!Jw  
        error('zernfun:NMmultiplesof2', ... c=c.p i"s  
              'All N and M must differ by multiples of 2 (including 0).') I]S(tx!  
    end 0BU:(o&  
    qi5>GX^t]b  
    if any(m>n) $EHn ;~w T  
        error('zernfun:MlessthanN', ... '&L   
              'Each M must be less than or equal to its corresponding N.') j2&OYg  
    end I>(z)"1  
    sC*E;7gT,  
    if any( r>1 | r<0 ) cH8H)55F  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') |Z)/  
    end X]qp~:4G  
    L bK1CGyA  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) KgkB)1s@n  
        error('zernfun:RTHvector','R and THETA must be vectors.') S>zKD  
    end T)?@E/VaS  
    <zWQ[^  
    r = r(:); Z-r0 D  
    theta = theta(:); !QzMeN;D  
    length_r = length(r); }t{^*(  
    if length_r~=length(theta) ViC76aJ  
        error('zernfun:RTHlength', ... :zk.^q  
              'The number of R- and THETA-values must be equal.') 6(;[ov1  
    end Q0cf]  
    6Yi,%#  
    % Check normalization: sg~/RSJ3  
    % -------------------- Sf8Xj |u  
    if nargin==5 && ischar(nflag) ,PtR^" Mf4  
        isnorm = strcmpi(nflag,'norm'); YH6 K-}  
        if ~isnorm cyn]>1ZM  
            error('zernfun:normalization','Unrecognized normalization flag.') $7ME a"a  
        end =$`")3y3  
    else &5CeRx7%  
        isnorm = false; w@D@,q'x  
    end :=KGQ3V~eK  
    t5[JN:an  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u(Q(UuI  
    % Compute the Zernike Polynomials "e?#c<p7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ku8Z;ONeH  
    }LVE^6zyk  
    % Determine the required powers of r: KuAGy*:4T  
    % ----------------------------------- ~wV98u-N  
    m_abs = abs(m); 2+rao2  
    rpowers = []; (W6\%H2u  
    for j = 1:length(n) 5_T>HHR 6  
        rpowers = [rpowers m_abs(j):2:n(j)]; HCCp<2D"C  
    end B,qZwc|  
    rpowers = unique(rpowers); S`PSFetC  
    8TM=AV  
    % Pre-compute the values of r raised to the required powers, MjosA R  
    % and compile them in a matrix: R1rfp;   
    % ----------------------------- R3 =E?us!  
    if rpowers(1)==0 @MVZy  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Rf$6}F  
        rpowern = cat(2,rpowern{:}); Kct +QO(  
        rpowern = [ones(length_r,1) rpowern]; }|,\ ?7,  
    else AZP>\Dq  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); w6Ny>(T/  
        rpowern = cat(2,rpowern{:}); k0=y_7 =(5  
    end "s^@PzQpN  
    */qc%!YV9  
    % Compute the values of the polynomials: y(g Otg  
    % -------------------------------------- Y'":OW#oN  
    y = zeros(length_r,length(n)); c_=zd6 b$S  
    for j = 1:length(n) X'p%$HsMG  
        s = 0:(n(j)-m_abs(j))/2; M0\[hps~X  
        pows = n(j):-2:m_abs(j); ;qQzF  
        for k = length(s):-1:1 %}MM+1eu  
            p = (1-2*mod(s(k),2))* ... N>iCb:_ T;  
                       prod(2:(n(j)-s(k)))/              ... ~d8o,.n`1  
                       prod(2:s(k))/                     ... !KW)*  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Vi~+C@96  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); tG&B D\  
            idx = (pows(k)==rpowers); -B! TA0=oJ  
            y(:,j) = y(:,j) + p*rpowern(:,idx); EnAw8Gm*  
        end p#NZ\qJ  
         cSWVHr  
        if isnorm l$@lk?dc  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); T 0C'$1T  
        end `2+52q<FO  
    end "lAS <dq  
    % END: Compute the Zernike Polynomials 8z v6Mx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1Ez A@3:{  
    ?NeB_<dLa`  
    % Compute the Zernike functions: QR8 Q10  
    % ------------------------------ N_}Im>;!  
    idx_pos = m>0; z<XS"4l?W  
    idx_neg = m<0; *]u/,wCB  
    LZ$!=vg4  
    z = y; 8`<GplO  
    if any(idx_pos) J?DyTs3 Z  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); )^3655mb  
    end A>S2BL#=  
    if any(idx_neg) b&&'b )  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); $RO=r90o  
    end )]Rr:i9n  
    .v!e=i}.  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ->UrWW^  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. AG%aH=TKp  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated  }2"k:-g  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive G3n7x?4m  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, P@ u%{  
    %   and THETA is a vector of angles.  R and THETA must have the same Vh&KfYY  
    %   length.  The output Z is a matrix with one column for every P-value, \U8Vsx1tl  
    %   and one row for every (R,THETA) pair. 3._fbAN%e  
    % igCtq!.a  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike W@Wh@eSb;  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) j/\XeG>  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) |\ L2q/u  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 wq#3f#3V  
    %   for all p.  (w fZ!  
    % 64cmv}d_  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 KYaf7qy]  
    %   Zernike functions (order N<=7).  In some disciplines it is ml2HA4X&$Y  
    %   traditional to label the first 36 functions using a single mode ^W*/!q7H  
    %   number P instead of separate numbers for the order N and azimuthal 7085&\9  
    %   frequency M. h !1c(UR  
    % 7BnP,Nd"W  
    %   Example: N4 pA3~P  
    % 3& $E  
    %       % Display the first 16 Zernike functions h9mR+ng*oD  
    %       x = -1:0.01:1; gf@Dy6<  
    %       [X,Y] = meshgrid(x,x); ]Ea6Z  
    %       [theta,r] = cart2pol(X,Y); =W=%!A\g  
    %       idx = r<=1; TMrmyvv  
    %       p = 0:15; @AFLFX]  
    %       z = nan(size(X)); ;f?bb*1  
    %       y = zernfun2(p,r(idx),theta(idx)); ' wEP:}  
    %       figure('Units','normalized') fi)ypv*  
    %       for k = 1:length(p) ([|M,P6e)U  
    %           z(idx) = y(:,k); i`X{pEKP+  
    %           subplot(4,4,k) Nx"?'-3Hm  
    %           pcolor(x,x,z), shading interp h2nyP  
    %           set(gca,'XTick',[],'YTick',[]) {iRNnh   
    %           axis square * gnL0\*  
    %           title(['Z_{' num2str(p(k)) '}']) B5hGzplS  
    %       end !ibp/:x  
    % %WR  
    %   See also ZERNPOL, ZERNFUN. $A ,=z  
    ]z,?{S  
    %   Paul Fricker 11/13/2006 C*$/J\6xy  
    >8##~ZuF+  
    ^AN9m]P  
    % Check and prepare the inputs: 7RZ7q@@fgh  
    % ----------------------------- Ic*Q(X  
    if min(size(p))~=1 vzU%5,  
        error('zernfun2:Pvector','Input P must be vector.') U"Y$7~  
    end Tr8+E;;  
    7?4>'  
    if any(p)>35 nz(OHh!}u  
        error('zernfun2:P36', ... $FoNEr&q  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... KK?}`o  
               '(P = 0 to 35).']) [": x  
    end 5R4 dN=L*1  
    ZO,]h9?4  
    % Get the order and frequency corresonding to the function number: Ugn"w E  
    % ---------------------------------------------------------------- KLk37IY2\  
    p = p(:); $I'ES#8P6  
    n = ceil((-3+sqrt(9+8*p))/2); cG<?AR?wDT  
    m = 2*p - n.*(n+2); 1DX=\BWp  
    c09uCito  
    % Pass the inputs to the function ZERNFUN: q#Bdq8  
    % ---------------------------------------- xc!"?&\*  
    switch nargin ;tHF$1!J  
        case 3 /1Eg6hf9B  
            z = zernfun(n,m,r,theta); C$P3&k#W  
        case 4 w/&#UsEIr  
            z = zernfun(n,m,r,theta,nflag); )9*WmFc+#  
        otherwise }*%%GPJ  
            error('zernfun2:nargin','Incorrect number of inputs.') ^^v!..V]J  
    end bV"0}|A~K  
    gG}<l ':  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) BUtXHD  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. zEu*q7  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of [u<1DR  
    %   order N and frequency M, evaluated at R.  N is a vector of k @[Bx>  
    %   positive integers (including 0), and M is a vector with the hE>Mo$Q(  
    %   same number of elements as N.  Each element k of M must be a _ ZJP]5  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) B"G;"X  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is #{0c01JZ  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix MQhL>oQ  
    %   with one column for every (N,M) pair, and one row for every #q%&,;4  
    %   element in R. =ahD'*R^A  
    % Z yIn>]{  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Pd>hd0!.%  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is >]Y`-*vw&  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to I(C_}I>Wb  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 *dGW=aM#C  
    %   for all [n,m]. =x=#Etj|  
    % mp}ZHufG  
    %   The radial Zernike polynomials are the radial portion of the P! :D2zSH_  
    %   Zernike functions, which are an orthogonal basis on the unit L='GsjF0}  
    %   circle.  The series representation of the radial Zernike Ra.<D.  
    %   polynomials is >I+O@  
    % NJ3b Oq  
    %          (n-m)/2 7Ij'!@no  
    %            __ .Zo8KwkFY  
    %    m      \       s                                          n-2s [&e}@!8O`  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r F$d`Umqs;P  
    %    n      s=0 ^"l4   
    % xmbkn}@A  
    %   The following table shows the first 12 polynomials. JPmW0wM  
    % HuG|BjP  
    %       n    m    Zernike polynomial    Normalization A07FjT5w8  
    %       --------------------------------------------- i: 1V\q%  
    %       0    0    1                        sqrt(2) oveW)~4  
    %       1    1    r                           2 wF}/7b54  
    %       2    0    2*r^2 - 1                sqrt(6) s<n5^Vxy  
    %       2    2    r^2                      sqrt(6) :h"Y>1P  
    %       3    1    3*r^3 - 2*r              sqrt(8) ?k#-)inf)  
    %       3    3    r^3                      sqrt(8) hV_0f_Og  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) iGM-#{5  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Y8(g8RN  
    %       4    4    r^4                      sqrt(10) p,U.5bX  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) !RAyUfS  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) rT <=`9^{  
    %       5    5    r^5                      sqrt(12) fZ$8PMZv  
    %       --------------------------------------------- wtaeF+u-R-  
    % K@6$|.bc  
    %   Example: 2UA h^i-^  
    % )/UPDdO  
    %       % Display three example Zernike radial polynomials UfXqcyY(  
    %       r = 0:0.01:1; <Xv]Ih?@f`  
    %       n = [3 2 5]; Sky!ZN'I  
    %       m = [1 2 1]; >tYptRP  
    %       z = zernpol(n,m,r); [Cvo^cC  
    %       figure 5) nm6sf  
    %       plot(r,z) (eFHMRMv~  
    %       grid on D>PB|rS@  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') c[f  
    % %\2 ll=p1  
    %   See also ZERNFUN, ZERNFUN2. }"E?#&^  
    Ub%5# <k|-  
    % A note on the algorithm. = T!iM2  
    % ------------------------ V\Cu|m&HI  
    % The radial Zernike polynomials are computed using the series Syo1Dq6z.  
    % representation shown in the Help section above. For many special b1R%JY7/S  
    % functions, direct evaluation using the series representation can z1*8 5?  
    % produce poor numerical results (floating point errors), because YOd 0dKe  
    % the summation often involves computing small differences between "xi)GH]H_  
    % large successive terms in the series. (In such cases, the functions +<(N]w*  
    % are often evaluated using alternative methods such as recurrence <%B sb}h,  
    % relations: see the Legendre functions, for example). For the Zernike twq!@C  
    % polynomials, however, this problem does not arise, because the ]`b/_LJN$F  
    % polynomials are evaluated over the finite domain r = (0,1), and 9m/v^  
    % because the coefficients for a given polynomial are generally all +' QX`  
    % of similar magnitude. `,3;#.[D  
    % TkM8GK-3  
    % ZERNPOL has been written using a vectorized implementation: multiple bODCC5yL  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] W c{<DE?J  
    % values can be passed as inputs) for a vector of points R.  To achieve c=0S]_  
    % this vectorization most efficiently, the algorithm in ZERNPOL l q~^&\_#  
    % involves pre-determining all the powers p of R that are required to g:7S/L0]  
    % compute the outputs, and then compiling the {R^p} into a single eF823cH2x_  
    % matrix.  This avoids any redundant computation of the R^p, and f![?og)I%  
    % minimizes the sizes of certain intermediate variables. xrs?"]M[  
    % IVjH.BzH9  
    %   Paul Fricker 11/13/2006 40w,:$  
    . K s%ar  
    iimTr_TEt  
    % Check and prepare the inputs: GWsvN&nr  
    % ----------------------------- kj{z;5-dl  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $WED]X@X!  
        error('zernpol:NMvectors','N and M must be vectors.') ph qx<N@  
    end '_N~PoV  
    JK) )Cuh  
    if length(n)~=length(m) o$)pJ#";F  
        error('zernpol:NMlength','N and M must be the same length.') 9)9p<(b $  
    end fkbHfBp[(A  
    >4 4A  
    n = n(:); >slD.rb]  
    m = m(:); Up*1j:_O  
    length_n = length(n); @ qy n[C  
    ,@!io  
    if any(mod(n-m,2)) 2.)xWCG  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') _4Z|O]  
    end 6[b'60CuZL  
    a~ sU  
    if any(m<0) v'na{"  
        error('zernpol:Mpositive','All M must be positive.') ,< Zu4bww  
    end wFI2 (cQ  
    -5B>2K F  
    if any(m>n) LS;j]!CU  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') -!V+>.Oh  
    end cLhHGwX=x  
    #[Z ToE4  
    if any( r>1 | r<0 ) g^ .g9"  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 69/aP=  
    end v% a)nv  
    r*_z<^d  
    if ~any(size(r)==1) WRrCrXP  
        error('zernpol:Rvector','R must be a vector.') %EV\nwn6  
    end #@%DY*w]v  
    ^F\RM4|,  
    r = r(:); w1U2cbCr/  
    length_r = length(r); T6mbGE*IeE  
    r'*x><m'  
    if nargin==4 X?'ShXI  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Xf 0)i  
        if ~isnorm 3lr9nBR  
            error('zernpol:normalization','Unrecognized normalization flag.') ',+YWlW  
        end 8k~$_AT>u  
    else <KY \sb9  
        isnorm = false; ZW+M<G  
    end Q+bZZMK5,U  
    0n dk=V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @G'&7-(h*  
    % Compute the Zernike Polynomials im,H|u_f4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bk)E]Fk|  
    Lsu_ f'p0  
    % Determine the required powers of r: S:5vC {  
    % ----------------------------------- lQ&"p+n  
    rpowers = []; mv1g2f+  
    for j = 1:length(n) _L8|Z V./  
        rpowers = [rpowers m(j):2:n(j)]; SfTTB'9  
    end 2><=U7~  
    rpowers = unique(rpowers); &<dC3o!  
    iEx sGn]2  
    % Pre-compute the values of r raised to the required powers, 0+3_CS++r  
    % and compile them in a matrix: LK>A C9ak<  
    % ----------------------------- x)}.@\&%  
    if rpowers(1)==0 /FJ.W<hw  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6&9}M Oc  
        rpowern = cat(2,rpowern{:}); 1 sJtkge:  
        rpowern = [ones(length_r,1) rpowern]; o,NTI h  
    else vM3 b\yp  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); };{Qx  
        rpowern = cat(2,rpowern{:}); +4 W6{`  
    end <ztcCRov  
    sOVbz2 \yb  
    % Compute the values of the polynomials: EN2H[i+,  
    % -------------------------------------- -tPia=^  
    z = zeros(length_r,length_n); L.ML0H-   
    for j = 1:length_n !#[B#DZc(  
        s = 0:(n(j)-m(j))/2; !=)b2}e/>  
        pows = n(j):-2:m(j); Sgp1p}  
        for k = length(s):-1:1 6Mc&gnN  
            p = (1-2*mod(s(k),2))* ... 57|RE5]|!  
                       prod(2:(n(j)-s(k)))/          ... <Jc :a?ICe  
                       prod(2:s(k))/                 ... ?z pN09e  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 1XppC[))  
                       prod(2:((n(j)+m(j))/2-s(k))); #r,LV}*qg  
            idx = (pows(k)==rpowers); ztEM>xsk  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ITssBB9  
        end 5jNDr`pnu  
         ?y/LMja  
        if isnorm 0FAe5 BE7  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); XG!s+ShFV  
        end Mn<#rBE B  
    end O~*`YsL9  
    ).$q9G  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  +SNjU"x  
    Vrn+"2pdJ  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 *CCh\+S7m  
    e+<'=_x {  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)