切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10464阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 aSfAu!j)  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! m9$lOk4/  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 h&EF)~G  
    function z = zernfun(n,m,r,theta,nflag) v}uzUY  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. UH7FIM7kX  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <e$%m(]  
    %   and angular frequency M, evaluated at positions (R,THETA) on the nm@.] "/  
    %   unit circle.  N is a vector of positive integers (including 0), and -dH]_  
    %   M is a vector with the same number of elements as N.  Each element ~PedR=Y0n  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) eY'RDQa  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ^-qz!ib  
    %   and THETA is a vector of angles.  R and THETA must have the same jlaC: (6  
    %   length.  The output Z is a matrix with one column for every (N,M) Ev1gzHd!i  
    %   pair, and one row for every (R,THETA) pair. `Wp& 'X  
    % 8AmB0W> e  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike d'e\tO  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :}Z Y*ind  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 3q0S}<h al  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +}^^]J$Nh  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ZE6W"pbjU  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .|2[! 7CXH  
    % -;&-b>b  
    %   The Zernike functions are an orthogonal basis on the unit circle. }_9yemP  
    %   They are used in disciplines such as astronomy, optics, and x UTlM  
    %   optometry to describe functions on a circular domain. VI8/@A1Gv  
    % .;%`I  
    %   The following table lists the first 15 Zernike functions. E5t /-4  
    % *30T$_PiX|  
    %       n    m    Zernike function           Normalization Eyg F,>.4  
    %       -------------------------------------------------- c- "#  
    %       0    0    1                                 1 4siq  
    %       1    1    r * cos(theta)                    2 o(oD8Ni  
    %       1   -1    r * sin(theta)                    2 8>!-|VSn  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) !~ZAm3GwL  
    %       2    0    (2*r^2 - 1)                    sqrt(3) OT}P0 ~4s  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) .N  Z  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) UkM#uKr:  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) kC/An@J^#  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Kd7Lpw1u]  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Lv:;}  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) lLNI5C  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9mB] \{^  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) He}"e&K  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v=x)]<E" _  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) F&D ,y-CQ  
    %       -------------------------------------------------- LCok4N$o  
    % (iY2d_FQ[  
    %   Example 1: ]1|OQYG  
    % B1z7r0Rm,  
    %       % Display the Zernike function Z(n=5,m=1) eY3<LVAX  
    %       x = -1:0.01:1; %H=^U8WB  
    %       [X,Y] = meshgrid(x,x); ,? V YrL  
    %       [theta,r] = cart2pol(X,Y); Ej$oRo{ IG  
    %       idx = r<=1; k~=P0";  
    %       z = nan(size(X)); Ny]]L  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); M~g@y$  
    %       figure P B{7u  
    %       pcolor(x,x,z), shading interp GCp90  
    %       axis square, colorbar fs8C ^Ik>~  
    %       title('Zernike function Z_5^1(r,\theta)') Fuo.8  
    % }C5Fvy6uz  
    %   Example 2: ez[$;>  
    % C0H@  
    %       % Display the first 10 Zernike functions {5JYu  
    %       x = -1:0.01:1; 8FgF6ip  
    %       [X,Y] = meshgrid(x,x); M#xol/)h  
    %       [theta,r] = cart2pol(X,Y); :-cqC|Y  
    %       idx = r<=1; :<xf'.  
    %       z = nan(size(X)); ro18%' RRI  
    %       n = [0  1  1  2  2  2  3  3  3  3]; #QiNSS  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; &IkHP/  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; \d QRQL{LL  
    %       y = zernfun(n,m,r(idx),theta(idx)); )H%Rw V#  
    %       figure('Units','normalized') f!JSb?#3  
    %       for k = 1:10 Y$FhV~m  
    %           z(idx) = y(:,k); J&;' gT  
    %           subplot(4,7,Nplot(k)) M&0U@ r-  
    %           pcolor(x,x,z), shading interp "cDc~~3/@  
    %           set(gca,'XTick',[],'YTick',[]) /!W',9ua6  
    %           axis square e(jD[q  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G:Nwi=vN  
    %       end cxnEcX\   
    % pB,l t6  
    %   See also ZERNPOL, ZERNFUN2. Hx ojxZwm  
    ky[^uQ>0  
    %   Paul Fricker 11/13/2006 ! Y'~?BI  
    UZu.B!4  
    @gm!D`YL  
    % Check and prepare the inputs: *.+N?%sAP)  
    % ----------------------------- Qe]aI7Ei  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) p?x]|`M  
        error('zernfun:NMvectors','N and M must be vectors.') x^y&<tA  
    end (o1o);AO  
    __ G=xf  
    if length(n)~=length(m) ] {=qdgJ  
        error('zernfun:NMlength','N and M must be the same length.') #6nuiSF  
    end TGI`}#  
    sb</-']a  
    n = n(:); /^,/o  
    m = m(:); *TYOsD**9  
    if any(mod(n-m,2)) y@dTdR2Wc  
        error('zernfun:NMmultiplesof2', ... yH.Z%*=xQa  
              'All N and M must differ by multiples of 2 (including 0).') 13/U4-%b2  
    end `5Em: 8 M  
    5>rjL ;  
    if any(m>n) S|T*-?|  
        error('zernfun:MlessthanN', ... ^fvx2<  
              'Each M must be less than or equal to its corresponding N.') \`8?=_ST  
    end R3E|seR  
    IUQYoKz4}A  
    if any( r>1 | r<0 ) Tnb5tHjnh  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') i/F ].Sag  
    end &u~%5;  
    xWKUti i  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) > @q4Uez  
        error('zernfun:RTHvector','R and THETA must be vectors.') Z+Ppd=||,  
    end uar[D|DcD"  
    els71t -  
    r = r(:); It5n;,n  
    theta = theta(:); @;>Xy!G  
    length_r = length(r); ^c:I]_Ww  
    if length_r~=length(theta) d6~d)E  
        error('zernfun:RTHlength', ... W";Po)YC  
              'The number of R- and THETA-values must be equal.') 8V+  
    end cDh\$7'b  
    D~@lpcI  
    % Check normalization: >RKepV(X7  
    % -------------------- G/V0Yn""  
    if nargin==5 && ischar(nflag) r+}<]?aT>-  
        isnorm = strcmpi(nflag,'norm'); 910N 1E  
        if ~isnorm RzqU`<//  
            error('zernfun:normalization','Unrecognized normalization flag.') #\MkbZc d  
        end wW0m}L  
    else dlc'=M  
        isnorm = false; D?r% Y  
    end q:G3y[ P  
    B{lL}"++0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wKAxUPzm  
    % Compute the Zernike Polynomials .KF(_ 92  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qim|=  
    )|<g\>/  
    % Determine the required powers of r: Fzn#>`qG  
    % ----------------------------------- KZwzQ"Hl  
    m_abs = abs(m); A]m_&A#  
    rpowers = []; p&3~n: Fo  
    for j = 1:length(n) c/`Rv{ *'o  
        rpowers = [rpowers m_abs(j):2:n(j)]; ?/24-n  
    end #oEq)Vq>g|  
    rpowers = unique(rpowers); aN~x3G  
    n16TQe"8  
    % Pre-compute the values of r raised to the required powers, i|G /x  
    % and compile them in a matrix: jx8hh}C  
    % ----------------------------- UQCond+K  
    if rpowers(1)==0 vjYG>YhV  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -|_io,eL;  
        rpowern = cat(2,rpowern{:}); [ jgC`  
        rpowern = [ones(length_r,1) rpowern]; Ox+}JB [  
    else J*]JH{  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); zl["}I(*n  
        rpowern = cat(2,rpowern{:}); ]`eJSk.  
    end  h]?[}&  
    mbZ g2TTy  
    % Compute the values of the polynomials: -/J2;AkGH  
    % -------------------------------------- Oa -~}hN  
    y = zeros(length_r,length(n)); {aWfD XB1  
    for j = 1:length(n) sys;Rz2  
        s = 0:(n(j)-m_abs(j))/2; Axx{G~n![  
        pows = n(j):-2:m_abs(j); Zz56=ZX*_  
        for k = length(s):-1:1 ceNJXK  
            p = (1-2*mod(s(k),2))* ... (r$QQO) /  
                       prod(2:(n(j)-s(k)))/              ... "'mr0G9X  
                       prod(2:s(k))/                     ... 3G-f+HN^E  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... K@;ls  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); &}vc^io  
            idx = (pows(k)==rpowers); 3Tr}t.mt  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 0vdnM8N2  
        end gj1l9>f>]a  
         u3_AZ2-;  
        if isnorm cUM#|K#6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); F` ]s  
        end Pna2IB+  
    end =s[P =dU  
    % END: Compute the Zernike Polynomials iVb#X#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -Khb  
    "AMsBvzgo  
    % Compute the Zernike functions: C**kJ  
    % ------------------------------ S[o R q  
    idx_pos = m>0; R3} Z"  
    idx_neg = m<0; nv"D  
    XX'Rv]T  
    z = y; VWcR@/3  
    if any(idx_pos) Cr%6c3aQ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {t&+abY  
    end 2[$` ]{U  
    if any(idx_neg) YM]ZL,8  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +G>;NiP_  
    end fIcra  
    ' C|yUsBC  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) k!6wVJ|_Y  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. J#'+&D H  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated a uz2n  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive &-1;3+#w  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, f; 1C)  
    %   and THETA is a vector of angles.  R and THETA must have the same &MsBcP[  
    %   length.  The output Z is a matrix with one column for every P-value, gKGM|0u|r  
    %   and one row for every (R,THETA) pair. O%(k$ fvM  
    % xkzC+ _A  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike =!%+ sem  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 7`f',ZK%  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 4?{e?5)  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 E64d6z^7u  
    %   for all p. ~ -hH#5  
    % W8 m*co  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 .5x+FHu7  
    %   Zernike functions (order N<=7).  In some disciplines it is *m[ow s  
    %   traditional to label the first 36 functions using a single mode bqDHLoB\1  
    %   number P instead of separate numbers for the order N and azimuthal -dn\*n5  
    %   frequency M. ndIU0kq3  
    % ]h$,=Qf hD  
    %   Example: e-#!3j!'  
    % 7!E?(3$#"  
    %       % Display the first 16 Zernike functions 8?r RLM4  
    %       x = -1:0.01:1; $xf{m9 8  
    %       [X,Y] = meshgrid(x,x); 'M#'BQQ5  
    %       [theta,r] = cart2pol(X,Y); q0hg0 DC[;  
    %       idx = r<=1; C,xM) V^a  
    %       p = 0:15; 0FV?By  
    %       z = nan(size(X)); E5<}7Pt  
    %       y = zernfun2(p,r(idx),theta(idx)); &m6x*i-5\f  
    %       figure('Units','normalized') >9.xFiq<  
    %       for k = 1:length(p) 5/O;&[lYy  
    %           z(idx) = y(:,k); 6*<=(SQI  
    %           subplot(4,4,k) oZV=vg5Dq  
    %           pcolor(x,x,z), shading interp Ge>%?\  
    %           set(gca,'XTick',[],'YTick',[]) @{Q[M3l  
    %           axis square [1Yx#t  
    %           title(['Z_{' num2str(p(k)) '}']) H0 YxPk)  
    %       end ;_lEu" -  
    % qi\!<clv  
    %   See also ZERNPOL, ZERNFUN. *|RQ )  
    _/_1:ivY8  
    %   Paul Fricker 11/13/2006 YEWHr>&Z  
    A qKl}8  
    I9`R L Sn  
    % Check and prepare the inputs: w$cic  
    % ----------------------------- =x4:jas  
    if min(size(p))~=1 /QsFeH  
        error('zernfun2:Pvector','Input P must be vector.') < ealt  
    end ''Y}Q"  
    3 G?^/nB  
    if any(p)>35 yVyh'd:Ik  
        error('zernfun2:P36', ... "bRg_]\q6  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... /]Fs3uf  
               '(P = 0 to 35).']) AT:T%a:G?  
    end AFWcTz6#d  
    y#AwuC K  
    % Get the order and frequency corresonding to the function number: NW`.RGLI<  
    % ---------------------------------------------------------------- a<%WFix  
    p = p(:); fa#]G^f  
    n = ceil((-3+sqrt(9+8*p))/2); ^IxT.g  
    m = 2*p - n.*(n+2); _be*B+?2t  
    *=1;HN3  
    % Pass the inputs to the function ZERNFUN: R<gC,eV<=  
    % ---------------------------------------- u:pdY'`"#  
    switch nargin %6}S'yL  
        case 3 v2dCkn /  
            z = zernfun(n,m,r,theta); 8=!M0i  
        case 4 x=yU }lsV  
            z = zernfun(n,m,r,theta,nflag);  I)E+  
        otherwise ${#5$U+kI  
            error('zernfun2:nargin','Incorrect number of inputs.') EdA_Hf  
    end jGzs; bE  
    M#JOX/  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) J"8bRp=/|  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. =y8HOT}8  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of GBvB0kC)c  
    %   order N and frequency M, evaluated at R.  N is a vector of -vI?b#  
    %   positive integers (including 0), and M is a vector with the -gh',)R   
    %   same number of elements as N.  Each element k of M must be a %5*gsgeI  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) PGMu6$  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is |H5){2V>K  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Z~8Xp  
    %   with one column for every (N,M) pair, and one row for every R:B-4  
    %   element in R. 1 ,oC:N  
    % )_b #c+  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- k+44ud.j  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is qFW- ~T  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to *}3e'0`  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 C81+nR  
    %   for all [n,m]. T1;yw1/m5\  
    % $Vbgfp~U-  
    %   The radial Zernike polynomials are the radial portion of the mwCNfwb:  
    %   Zernike functions, which are an orthogonal basis on the unit 1j6ZSE/*|  
    %   circle.  The series representation of the radial Zernike uJMF\G=nb  
    %   polynomials is Kwfrh?  
    % %,MCnu&Z  
    %          (n-m)/2 %p"x|e  
    %            __ 8iD_md_[  
    %    m      \       s                                          n-2s pq*b"Jku1  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r N7%Jy?-+  
    %    n      s=0 9x&,`95O  
    % jgYUS@}  
    %   The following table shows the first 12 polynomials. [+gX6  
    %  OnF +  
    %       n    m    Zernike polynomial    Normalization @.T'  
    %       --------------------------------------------- 4XQv  
    %       0    0    1                        sqrt(2) 9M~EH?>+[  
    %       1    1    r                           2 `8\pihww  
    %       2    0    2*r^2 - 1                sqrt(6) jfl7L"2  
    %       2    2    r^2                      sqrt(6) W<yh{u&,  
    %       3    1    3*r^3 - 2*r              sqrt(8) ZP*Hx %U  
    %       3    3    r^3                      sqrt(8) tQ'E"u1  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Pf6rr9  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) l},*^Sn<5  
    %       4    4    r^4                      sqrt(10) 88d0`6K-9  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ;7 i0ko9  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) O?D*<rwD  
    %       5    5    r^5                      sqrt(12)  }Q`Kg8L  
    %       --------------------------------------------- w48T?  
    % }k duN0  
    %   Example: <X j:c2@  
    % "Z }'u2%\m  
    %       % Display three example Zernike radial polynomials ,\[&%ph  
    %       r = 0:0.01:1; 0Apdhwk~  
    %       n = [3 2 5]; ,y,NVF  
    %       m = [1 2 1]; HV&N(;@  
    %       z = zernpol(n,m,r); ( E&}SI~  
    %       figure ;_of'  
    %       plot(r,z) 9Z6] ];8E  
    %       grid on :doP66["!  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') <y6M@(b  
    % s41<e"  
    %   See also ZERNFUN, ZERNFUN2. "X>Z!>  
    ! s?vj <  
    % A note on the algorithm. n O$(\ z)  
    % ------------------------ B y6:  
    % The radial Zernike polynomials are computed using the series YQ 4;X8I`r  
    % representation shown in the Help section above. For many special ai`fP{WlX  
    % functions, direct evaluation using the series representation can "Hg.pDNZ  
    % produce poor numerical results (floating point errors), because '_g8fz 3  
    % the summation often involves computing small differences between W4QVWn %3  
    % large successive terms in the series. (In such cases, the functions qeBfE  
    % are often evaluated using alternative methods such as recurrence QSAz:Yvf|  
    % relations: see the Legendre functions, for example). For the Zernike 8 ]dhNA5  
    % polynomials, however, this problem does not arise, because the *@dRL3c^=  
    % polynomials are evaluated over the finite domain r = (0,1), and "xa<Q%hk  
    % because the coefficients for a given polynomial are generally all aoco'BR F  
    % of similar magnitude. '+Gt+Gq+  
    % :!N 5daK  
    % ZERNPOL has been written using a vectorized implementation: multiple ,78 QLh9:  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] PsEm(.z  
    % values can be passed as inputs) for a vector of points R.  To achieve Up*p*(d3  
    % this vectorization most efficiently, the algorithm in ZERNPOL V(=~p[  
    % involves pre-determining all the powers p of R that are required to >UE_FC*u  
    % compute the outputs, and then compiling the {R^p} into a single T}$1<^NK  
    % matrix.  This avoids any redundant computation of the R^p, and 5sM-E>8G^{  
    % minimizes the sizes of certain intermediate variables. ZJ 8~f  
    % 4.|]R8Mn  
    %   Paul Fricker 11/13/2006 SvAz9>N4  
    >VE,/?71@  
    u#\=g:  
    % Check and prepare the inputs: j S')!Wcu  
    % ----------------------------- Dvo.yn|kB  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) R8c1~'  
        error('zernpol:NMvectors','N and M must be vectors.') oS/<)>\Gv  
    end z\oq b) a  
    )|XmF4R  
    if length(n)~=length(m) l-XiQ#-{  
        error('zernpol:NMlength','N and M must be the same length.') n9050&_S  
    end E&#AX:  
    {|^9y]VFu  
    n = n(:); 82YTd(yB  
    m = m(:); 8 %Lq~ lk  
    length_n = length(n); :tedtV ~  
    p=coOWOQ  
    if any(mod(n-m,2)) f%an<>j^w  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') bkceR>h%  
    end 8,a&i:C  
    9 @!Og(l  
    if any(m<0) "k)( ,  
        error('zernpol:Mpositive','All M must be positive.') xA`Q4"[I  
    end =mn)].Wg  
    5MQD:K2  
    if any(m>n) gkI(B2,/  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') (VO) Q  
    end a^~T-;_V  
    % rRYT8  
    if any( r>1 | r<0 ) R N5\,>+  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') [~W"$sT  
    end 8%_XJyg  
    (i.MxG Dd  
    if ~any(size(r)==1) 2rB$&>}T  
        error('zernpol:Rvector','R must be a vector.') -=&r}/&  
    end up=4B  
    z. VuY3  
    r = r(:); IU{~{(p"  
    length_r = length(r); I')URk[  
    2L[/.|  
    if nargin==4 Ih;6(5z  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); <?yAIhgN*  
        if ~isnorm .6z#o{n  
            error('zernpol:normalization','Unrecognized normalization flag.') Y 1rU  
        end qx18A  
    else mEa\0oPGB  
        isnorm = false; E b-?wzh  
    end nC$f0r"z  
    we4e>)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZK[4n5}  
    % Compute the Zernike Polynomials 'VS!<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7m~+HM\  
    ax[-907  
    % Determine the required powers of r: /+1+6MqRn*  
    % ----------------------------------- \L}Soe'  
    rpowers = []; B# |w}hj  
    for j = 1:length(n) *TfXMN ?w  
        rpowers = [rpowers m(j):2:n(j)]; $iUK, ?  
    end Y/2@PzA|  
    rpowers = unique(rpowers); KqG:o+V=  
    skh6L!6*<  
    % Pre-compute the values of r raised to the required powers, v?,_SVgAi  
    % and compile them in a matrix: yd$_XW p?\  
    % ----------------------------- jutEb@nog  
    if rpowers(1)==0 0.'$U}#b  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ` Xc~'zG  
        rpowern = cat(2,rpowern{:}); Obgn?TAVX  
        rpowern = [ones(length_r,1) rpowern]; =H%c/Jty  
    else -Ob'/d5&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); T?4MFx#  
        rpowern = cat(2,rpowern{:}); 2 DJs '"8  
    end y2;uG2IS_g  
    ^ #B`GV  
    % Compute the values of the polynomials: W&#Ps6)8  
    % -------------------------------------- bgq/]fI}  
    z = zeros(length_r,length_n); X,y0 J  
    for j = 1:length_n bW\OKI1  
        s = 0:(n(j)-m(j))/2; ghq[oK  
        pows = n(j):-2:m(j); Au<NUc 2  
        for k = length(s):-1:1 /Fy2ZYs,`8  
            p = (1-2*mod(s(k),2))* ... ?9'Ukw` g  
                       prod(2:(n(j)-s(k)))/          ... :c[iS~ ~Y  
                       prod(2:s(k))/                 ... J5e  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... c}v>Mx  
                       prod(2:((n(j)+m(j))/2-s(k))); L}Nc kL  
            idx = (pows(k)==rpowers); qIIc>By(\"  
            z(:,j) = z(:,j) + p*rpowern(:,idx); VN6h:-&iY  
        end gg $/  
         mucKmb/  
        if isnorm =kFZ2/P2t(  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1));  #~QkS_  
        end m%au* 0p  
    end qM%l  
    x.W93e[]H  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5476
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  B1&H5gxgN  
    ^z[-pTY  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 UJ0Dy ` f  
    vd5"phn 3  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)