切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11057阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 YoA$Gw2  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! y C#{nUdw  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 j,Y=GjfGM  
    function z = zernfun(n,m,r,theta,nflag) VCIG+Gz  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Q_Rr5/  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N oKUJB.PF  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 01J.XfCd6  
    %   unit circle.  N is a vector of positive integers (including 0), and d 9|u~3  
    %   M is a vector with the same number of elements as N.  Each element /T?['#:r-)  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) )9$Xfq/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, a)]N#gx  
    %   and THETA is a vector of angles.  R and THETA must have the same *m2:iChY  
    %   length.  The output Z is a matrix with one column for every (N,M) KM6r}CDHs  
    %   pair, and one row for every (R,THETA) pair. jm!G@k6TA  
    % <H.Ml>q:r  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike j JW0a\0  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), j$,`EBf`:<  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 8p5u1 ;2  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, IzG7!K  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Ky+TgR  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ,,?t>|3  
    % vR-/c  
    %   The Zernike functions are an orthogonal basis on the unit circle. $ysC)5q.  
    %   They are used in disciplines such as astronomy, optics, and c7'Pzb)'  
    %   optometry to describe functions on a circular domain. .gB#g{5+J  
    % (g 8K?Q  
    %   The following table lists the first 15 Zernike functions. [mhY_Hmz]  
    % ! !9V0[  
    %       n    m    Zernike function           Normalization x ` $4  
    %       -------------------------------------------------- E 0YXgQa  
    %       0    0    1                                 1 M/BBNT  
    %       1    1    r * cos(theta)                    2 9s}--_k?F2  
    %       1   -1    r * sin(theta)                    2 DpA)Z ??  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ^OUkFH;dG?  
    %       2    0    (2*r^2 - 1)                    sqrt(3) |XQ!xFB  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) `.n[G~*w~1  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) aw(P@9]  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ^ H'|iju  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) GDk/85cv0$  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) lGxG$0`;;  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) s3q65%D  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) VBOq~>V6(v  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) L%!jj7,9-  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sYvO"|  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) h4V.$e<T&  
    %       -------------------------------------------------- x.'O_7c0:  
    % DJeG  
    %   Example 1: EPyFM_k  
    % UlyX$f%2  
    %       % Display the Zernike function Z(n=5,m=1) f F?=W  
    %       x = -1:0.01:1; k+&|*!j  
    %       [X,Y] = meshgrid(x,x); JTVCaL3Z  
    %       [theta,r] = cart2pol(X,Y); !x>P]j7A}Y  
    %       idx = r<=1; MLUq"f~N  
    %       z = nan(size(X)); t.NG ]ejZ  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); BONM:(1  
    %       figure *NDzU%X8  
    %       pcolor(x,x,z), shading interp  pCv=rK@  
    %       axis square, colorbar $AoN,B>  
    %       title('Zernike function Z_5^1(r,\theta)') k*M1m'1  
    % gCd9"n-e  
    %   Example 2: i2EB.Zlv  
    % #\w~(Nm-  
    %       % Display the first 10 Zernike functions #  *\PU  
    %       x = -1:0.01:1; HdVGkv/  
    %       [X,Y] = meshgrid(x,x); *K!V$8k=99  
    %       [theta,r] = cart2pol(X,Y); ,rQznE1e  
    %       idx = r<=1; zL1H[}[z+  
    %       z = nan(size(X)); _uL m!ku  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ! XA07O[@  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; I(pU_7mw  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; X)`? P*[  
    %       y = zernfun(n,m,r(idx),theta(idx)); R(3V ! ph  
    %       figure('Units','normalized') SZE X;M  
    %       for k = 1:10 a Z ^SK|E  
    %           z(idx) = y(:,k); JIDE]f  
    %           subplot(4,7,Nplot(k)) Yk[yG;W  
    %           pcolor(x,x,z), shading interp ]ZZ7j  
    %           set(gca,'XTick',[],'YTick',[]) !qT.D:!@zF  
    %           axis square Aqq%HgY:t  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #AE'arT<  
    %       end ]x! vPIyq  
    % amOBUD5Ld`  
    %   See also ZERNPOL, ZERNFUN2. "h\{PoG  
    ^BW V6  
    %   Paul Fricker 11/13/2006 ]e 81O#t3  
    Bx2E9/S3  
    }wz )"  
    % Check and prepare the inputs: u.R:/H<>~  
    % ----------------------------- J=5G<  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) tvZpm@1  
        error('zernfun:NMvectors','N and M must be vectors.') g;Bq#/w  
    end BHqJ~2&FDW  
    H"6:!;9,  
    if length(n)~=length(m) ewD61Y8-  
        error('zernfun:NMlength','N and M must be the same length.') + ,0RrD )  
    end 7'd_]e-.  
    sLPFeibof5  
    n = n(:); IKH#[jW'IB  
    m = m(:); }>fL{};Z"  
    if any(mod(n-m,2)) |{<g-)  
        error('zernfun:NMmultiplesof2', ... *[k7KG2_U  
              'All N and M must differ by multiples of 2 (including 0).') J8~3LE )G  
    end YB.r-c"Y  
    lhKd<Y"  
    if any(m>n) >DpnIWn  
        error('zernfun:MlessthanN', ... e=QnGT*b5  
              'Each M must be less than or equal to its corresponding N.') UIIR$,XB  
    end oe# :EfT  
    Fn yA;,*  
    if any( r>1 | r<0 ) % =br-c  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') .^fq$7Y}7  
    end 77.5 _  
    +UB+. 5P  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #Q"el3P+q  
        error('zernfun:RTHvector','R and THETA must be vectors.') 5,|^4 ZA  
    end /!uxP~2U  
    lmgMR|v  
    r = r(:); _\1wLcFj  
    theta = theta(:); JIQS'r  
    length_r = length(r); ;N6L`|  
    if length_r~=length(theta) zH.DyD5T;  
        error('zernfun:RTHlength', ... |r$Vb$z  
              'The number of R- and THETA-values must be equal.') -6aGcPq  
    end 8J7 xs6@  
      9Ld3  
    % Check normalization: &Dgho  
    % -------------------- "n=`{~F  
    if nargin==5 && ischar(nflag) Da0E)  
        isnorm = strcmpi(nflag,'norm'); ]+{Cy\*kR  
        if ~isnorm H_3S#.  
            error('zernfun:normalization','Unrecognized normalization flag.') 1BmevE a)  
        end {;=I69 X  
    else AM#VRRTU  
        isnorm = false; dyC: Mko=  
    end l%oie1g l  
    dc|"34;^"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b,cA mZ  
    % Compute the Zernike Polynomials ;lB%N t<,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b`usRoD{+  
    SL? ! RQ  
    % Determine the required powers of r: e%afK@c  
    % ----------------------------------- 1>[3(o3t  
    m_abs = abs(m); m1heU3BUWU  
    rpowers = []; kS%FV;9>(  
    for j = 1:length(n) lc,{0$ 1<  
        rpowers = [rpowers m_abs(j):2:n(j)]; DvKM[z3j  
    end ;oH17  
    rpowers = unique(rpowers); HpC|dtro  
    By]XD~gcP  
    % Pre-compute the values of r raised to the required powers, U@@#f;&  
    % and compile them in a matrix: s7A{<>:  
    % ----------------------------- ce0TQ  
    if rpowers(1)==0 MS)#S&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h/ ?8F^C#v  
        rpowern = cat(2,rpowern{:}); bN`oQ.Z 4  
        rpowern = [ones(length_r,1) rpowern]; S#8wnHq  
    else :Ag]^ot  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); f<= #WV  
        rpowern = cat(2,rpowern{:}); O5CIK}A  
    end 2l}FOdq  
    (`5No:?v<  
    % Compute the values of the polynomials: Oz# $x  
    % -------------------------------------- w}c1zpa  
    y = zeros(length_r,length(n)); M}k )Ep9  
    for j = 1:length(n) r :{2}nE  
        s = 0:(n(j)-m_abs(j))/2; e#(0af8A  
        pows = n(j):-2:m_abs(j); #UG|\}Lp  
        for k = length(s):-1:1 /pan{.< k  
            p = (1-2*mod(s(k),2))* ... E{[c8l2B  
                       prod(2:(n(j)-s(k)))/              ... zW,m3~XX:  
                       prod(2:s(k))/                     ... T;XEU%:LK  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... bHH{bv~Z  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); CkE@ Ll3Z  
            idx = (pows(k)==rpowers); TG8QT\0G  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ^0_*AwIcN  
        end <W2}^q7F^  
         iA3d[%tBb  
        if isnorm {a.{x+!5I-  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ~ ' 81  
        end _A|1_^[G(  
    end yH#zyO4fD-  
    % END: Compute the Zernike Polynomials `<i|K*u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q6 @}t&k4C  
    =u QCm#  
    % Compute the Zernike functions: UK*+EEv  
    % ------------------------------ sesr`,m.,  
    idx_pos = m>0; M7-piRnd4  
    idx_neg = m<0; 0AP wk }  
    \:mx Ri  
    z = y; VI,z7 \  
    if any(idx_pos) Z#BwJHh  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); %H75u 6  
    end B(w k $2  
    if any(idx_neg) kbJ/7  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); C(Ujx=G+3  
    end @ +h2R  
    QDYS}{A:V  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) O|m-Uz"+  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. aF2 eGh  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated X[_w#Hwp-  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive y?GRxoCD"e  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 3C 84b/A  
    %   and THETA is a vector of angles.  R and THETA must have the same ..V6U"/  
    %   length.  The output Z is a matrix with one column for every P-value, EQ1wyKZS2g  
    %   and one row for every (R,THETA) pair. :A $%5;-kO  
    % wcUf?`21,  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike jo{[*]Oa  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 8.HqQ:?&2t  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) G`!#k!&r  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 6f,#O8]#5  
    %   for all p. 2LGeRw  
    % &MsnQP  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 *i|O!h1St  
    %   Zernike functions (order N<=7).  In some disciplines it is P0uUVU=B|  
    %   traditional to label the first 36 functions using a single mode *L7 ZyERs  
    %   number P instead of separate numbers for the order N and azimuthal %>`0hk88  
    %   frequency M. LL|$M;S  
    % +Wh0Of  
    %   Example: |0:< Z(  
    % D@*<p h=  
    %       % Display the first 16 Zernike functions ' Z:FGSwT  
    %       x = -1:0.01:1; ]n1@!qa48  
    %       [X,Y] = meshgrid(x,x); = zW}vm }  
    %       [theta,r] = cart2pol(X,Y); 'qwFVP  
    %       idx = r<=1; G/>upnA{w  
    %       p = 0:15; 'hfQ4EN  
    %       z = nan(size(X)); fw kX-ON  
    %       y = zernfun2(p,r(idx),theta(idx)); Z12-Vps  
    %       figure('Units','normalized') &dp<i[ec^  
    %       for k = 1:length(p) .vYU4g]  
    %           z(idx) = y(:,k); ?RJ ) u  
    %           subplot(4,4,k) L^uO.eI"m  
    %           pcolor(x,x,z), shading interp CM?dB$AwX  
    %           set(gca,'XTick',[],'YTick',[]) >Pj ?IE6  
    %           axis square <gRv7 ?V[z  
    %           title(['Z_{' num2str(p(k)) '}']) E7@0,9A U  
    %       end /=&HunaxI  
    % W- 5Z"m1I  
    %   See also ZERNPOL, ZERNFUN.  +LeZjA[  
    e2CjZ"C  
    %   Paul Fricker 11/13/2006 F+ qRC_C>O  
    #8iRWm0*6  
    p&~8N#I#  
    % Check and prepare the inputs: U|VF zpJ  
    % ----------------------------- mu`h6?v  
    if min(size(p))~=1 *m6~x-x  
        error('zernfun2:Pvector','Input P must be vector.') <|9s {z  
    end d6,SZ*AE  
    9gR@Q%b)  
    if any(p)>35 ZZk6 @C  
        error('zernfun2:P36', ... 0)n#$d>  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 2<53y~Yi%  
               '(P = 0 to 35).']) E uxD,(  
    end > 5-z"f  
    XA75tU[#  
    % Get the order and frequency corresonding to the function number: W,dqk=n  
    % ---------------------------------------------------------------- ;zVtJG`  
    p = p(:); \nT, NV11  
    n = ceil((-3+sqrt(9+8*p))/2); uLXMEx<^  
    m = 2*p - n.*(n+2); hAq7v']m  
    &6 .r=,BO  
    % Pass the inputs to the function ZERNFUN: gz8>uGx&V!  
    % ---------------------------------------- h^o>9s/|/H  
    switch nargin 7(c7-  
        case 3 W(U:D?e  
            z = zernfun(n,m,r,theta); t@(S=i7}-  
        case 4 |35"V3bs  
            z = zernfun(n,m,r,theta,nflag); t;X  !+  
        otherwise sbn|D\p  
            error('zernfun2:nargin','Incorrect number of inputs.') Ca}T)]//  
    end Wg X9k J  
    "`<tq#&C1  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) n?uVq6c  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. pxC:VJ;  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of $&IF#uDf  
    %   order N and frequency M, evaluated at R.  N is a vector of 'u"r^o?  
    %   positive integers (including 0), and M is a vector with the cTlitf9  
    %   same number of elements as N.  Each element k of M must be a ErZYPl  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ,au-g)IFZ  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is  ?X{ul  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix &oi*]:<FNe  
    %   with one column for every (N,M) pair, and one row for every :)7{$OR&  
    %   element in R. ~J #^L*  
    % 7-Bttv{  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- D9.H<.|36  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is E(t:F^z&D  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to .FV wZ:d  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 B,rpc\_  
    %   for all [n,m]. lM0`yh  
    % J*4byu|  
    %   The radial Zernike polynomials are the radial portion of the W>jgsR79M  
    %   Zernike functions, which are an orthogonal basis on the unit {zGM[A  
    %   circle.  The series representation of the radial Zernike Tz/=\_}  
    %   polynomials is T\}?  
    % `2}H$D  
    %          (n-m)/2 H_3-"m&3  
    %            __ !a %6nBo  
    %    m      \       s                                          n-2s `{1` >5  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 1E3'H7k\t  
    %    n      s=0 &+"-'7  
    % AH?T}t2  
    %   The following table shows the first 12 polynomials. sT&O%(  
    % bD*z"e  
    %       n    m    Zernike polynomial    Normalization <\0+*`">g  
    %       --------------------------------------------- 24 )Sf  
    %       0    0    1                        sqrt(2) OXT'$]p.*  
    %       1    1    r                           2 m5Q?g8  
    %       2    0    2*r^2 - 1                sqrt(6) 0LQ|J(u  
    %       2    2    r^2                      sqrt(6) <<Zt.!hS  
    %       3    1    3*r^3 - 2*r              sqrt(8) $inpiO|s  
    %       3    3    r^3                      sqrt(8) 1rhEk|pGZ  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 'VH%cz*  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) c{X>i>l>  
    %       4    4    r^4                      sqrt(10) i^Ba?r;*  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) V s/Z8t  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) MSef2|"P#  
    %       5    5    r^5                      sqrt(12) W PDL$y  
    %       --------------------------------------------- Z{' .fq2A  
    % 1w30Vj2<  
    %   Example: <W$Ig@4[.d  
    % KDt@Xi 6||  
    %       % Display three example Zernike radial polynomials t,CC~  
    %       r = 0:0.01:1; MXQ S6F#  
    %       n = [3 2 5]; A'jw;{8NpF  
    %       m = [1 2 1]; WziX1%0$n  
    %       z = zernpol(n,m,r); hU 3z4|~+  
    %       figure A4kYE A  
    %       plot(r,z)  G{4~{{tI  
    %       grid on HTpoYxn(  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') |Wo_5|E  
    % PP+-D~r`}  
    %   See also ZERNFUN, ZERNFUN2. +y}4^3Vx^  
    cwe@W PE2  
    % A note on the algorithm. Er 4P  
    % ------------------------ {9 PeBc  
    % The radial Zernike polynomials are computed using the series /CXrxeo  
    % representation shown in the Help section above. For many special -~wGJM VA  
    % functions, direct evaluation using the series representation can L%3m_'6QP  
    % produce poor numerical results (floating point errors), because iJIDx9 )Z  
    % the summation often involves computing small differences between n_8wYiBs(  
    % large successive terms in the series. (In such cases, the functions NrC (.*?m  
    % are often evaluated using alternative methods such as recurrence p-KMELB  
    % relations: see the Legendre functions, for example). For the Zernike ow,4'f!d  
    % polynomials, however, this problem does not arise, because the {e>E4(  
    % polynomials are evaluated over the finite domain r = (0,1), and tks3xS  
    % because the coefficients for a given polynomial are generally all #<^ngoOj  
    % of similar magnitude. o*d+W7l  
    % b[mAkm?9+1  
    % ZERNPOL has been written using a vectorized implementation: multiple g{]C@,W  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] kO1.27D  
    % values can be passed as inputs) for a vector of points R.  To achieve /M Hml0u  
    % this vectorization most efficiently, the algorithm in ZERNPOL f,e7;u z%  
    % involves pre-determining all the powers p of R that are required to Iy2KOv@a5  
    % compute the outputs, and then compiling the {R^p} into a single pO2Y'1*  
    % matrix.  This avoids any redundant computation of the R^p, and d|nJp-%V  
    % minimizes the sizes of certain intermediate variables. 'Z<V(;W  
    % ?2;gmZd7  
    %   Paul Fricker 11/13/2006 )v4?+$g  
    {;iG}jK  
    Hg~O0p}[  
    % Check and prepare the inputs: U ?%1:-#F  
    % ----------------------------- Pk9 4O  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6" s}<  
        error('zernpol:NMvectors','N and M must be vectors.') E0g` xf 6c  
    end ~Sr`Tlp  
    p=tj>{  
    if length(n)~=length(m) x{$~u2|  
        error('zernpol:NMlength','N and M must be the same length.') W?*]' 0  
    end p4ML } q8  
    >o#5tNm  
    n = n(:); g?(h{r`  
    m = m(:); \~3g*V  
    length_n = length(n); c4T8eTKU  
    \xQ10\u  
    if any(mod(n-m,2)) ,mu=#}a@}  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Tug}P K   
    end j'z}m+_?  
    D"5uN0Z  
    if any(m<0) ]yTMWIx#  
        error('zernpol:Mpositive','All M must be positive.') ql|ksios  
    end F<KUVe  
    9M$=X-  
    if any(m>n) JWu^7}@~=  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') [Rqv49n*V  
    end 3#d5.Ut  
    z}Qt6na]-  
    if any( r>1 | r<0 ) ;NyX9&@  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') MZpG1  
    end `%8byy@$  
    =Ws-s f]  
    if ~any(size(r)==1) HzW`j"\  
        error('zernpol:Rvector','R must be a vector.') 7 TTU&7l~  
    end rA/jNX@S  
    -SZW[T<N"  
    r = r(:); +) pO82  
    length_r = length(r); sC8C><y  
    d+5KHfkK  
    if nargin==4 Ab]`*h\U  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); G8m:]!  
        if ~isnorm _L?`C  
            error('zernpol:normalization','Unrecognized normalization flag.') PMDx5-{A/t  
        end 0;*1g47\  
    else t%<@k)hd~G  
        isnorm = false; RhJ{#G~:%  
    end LuM[*_8  
    w8|38m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B( ]=I@L=W  
    % Compute the Zernike Polynomials {Jv m *   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [SluYmW  
    $6BD6\@  
    % Determine the required powers of r: B&l5yI b  
    % ----------------------------------- V!eq)L  
    rpowers = []; x Z 3b)j2D  
    for j = 1:length(n) cx]&ae*  
        rpowers = [rpowers m(j):2:n(j)]; &cty&(2p  
    end Ig&=(Kmr  
    rpowers = unique(rpowers); Q4gsOx P  
    hOI| #(-  
    % Pre-compute the values of r raised to the required powers, &ukYTDM  
    % and compile them in a matrix: &N{XLg>  
    % ----------------------------- PD @]2lY(  
    if rpowers(1)==0 UjNe0jt% s  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); vT*z3  
        rpowern = cat(2,rpowern{:}); eOZ0L1JM!  
        rpowern = [ones(length_r,1) rpowern]; gbP]!d:I  
    else ]!yuD/4A  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -Y#YwBy;M  
        rpowern = cat(2,rpowern{:}); Q@]QPpe  
    end {uO=Wkp~7  
    HPGMR4=ANS  
    % Compute the values of the polynomials: g]^@bxdg  
    % -------------------------------------- Z.a`S~U  
    z = zeros(length_r,length_n); kaSy 9Y{  
    for j = 1:length_n S#IlWU  
        s = 0:(n(j)-m(j))/2; $^ \8-k "  
        pows = n(j):-2:m(j); KrcL*j&^  
        for k = length(s):-1:1 ,KXS6:1%5Y  
            p = (1-2*mod(s(k),2))* ... 3h:"-{MW.  
                       prod(2:(n(j)-s(k)))/          ... }9w?[hXW"  
                       prod(2:s(k))/                 ... OH2Xxr[bQ  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Lh0qB)>  
                       prod(2:((n(j)+m(j))/2-s(k))); y be:u  
            idx = (pows(k)==rpowers); ;T!w$({V0z  
            z(:,j) = z(:,j) + p*rpowern(:,idx); u n{LwZH  
        end MP5 vc5[  
         9M3XHj  
        if isnorm +!dWQ=W  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); (vX+ Yw  
        end ^_6.*Mvx  
    end muMb pF  
    FerQA9K)x  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)   Z>O2  
    N1pw*<&  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Em(&cra  
    0\Q/$#3  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)