切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11072阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 JWu^7}@~=  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 3c#CEuu  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 we<m%pf  
    function z = zernfun(n,m,r,theta,nflag) Iz'*^{Ssm  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. +?xW%omy  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &E@8 z&  
    %   and angular frequency M, evaluated at positions (R,THETA) on the k<mfBNvuo  
    %   unit circle.  N is a vector of positive integers (including 0), and /V66P@[>  
    %   M is a vector with the same number of elements as N.  Each element !n<vN@V*3d  
    %   k of M must be a positive integer, with possible values M(k) = -N(k)  V~V_+  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, P4{8pO]B  
    %   and THETA is a vector of angles.  R and THETA must have the same _z:7Dj#  
    %   length.  The output Z is a matrix with one column for every (N,M) d" T">Og)  
    %   pair, and one row for every (R,THETA) pair. jU1([(?"  
    % ?GdoB7(%  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike sN6R0YW  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), j@jaFsX |  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral gr\UI!]F  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, x|#R$^4CY  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 3` ov?T(H  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. %P!6cyQS  
    % 58x=CN\QU  
    %   The Zernike functions are an orthogonal basis on the unit circle. 5iE-$,7#L  
    %   They are used in disciplines such as astronomy, optics, and efj[7K.h  
    %   optometry to describe functions on a circular domain. J2X;=X5  
    % !d@qT.  
    %   The following table lists the first 15 Zernike functions. c/fU0cA@  
    % 3$fzqFo  
    %       n    m    Zernike function           Normalization ?0%yDq1_  
    %       -------------------------------------------------- FLT4:B7  
    %       0    0    1                                 1 o!q3+Pp;}  
    %       1    1    r * cos(theta)                    2 Pr |u_^  
    %       1   -1    r * sin(theta)                    2 -;/;dz;  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ),9^hJ1+@  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 7Y`/w$  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) R`? '|G]P  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) fi5x0El  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) D%L}vugxK  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ('H[[YODh  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) UY@^KT]  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 7 &y'\  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ao2NwH##  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) clE_a?  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #bxUI{*J  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Wn61;kV_)  
    %       -------------------------------------------------- T%GdvtmS>  
    % vM_UF{a$=  
    %   Example 1: FsZW,  
    % ya[][!.G  
    %       % Display the Zernike function Z(n=5,m=1)  V6opV&  
    %       x = -1:0.01:1; } 0su[gy[  
    %       [X,Y] = meshgrid(x,x); El3Y1g3+3  
    %       [theta,r] = cart2pol(X,Y); &e2|]C4  
    %       idx = r<=1; C%hMh/Li;  
    %       z = nan(size(X)); [1 pWg^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); tO0MYEx"  
    %       figure 1C,=1bY  
    %       pcolor(x,x,z), shading interp Q8] lz}  
    %       axis square, colorbar y~,mIM$[@  
    %       title('Zernike function Z_5^1(r,\theta)') 60 D0z  
    % P ?- #d\qi  
    %   Example 2: G/l 28yt  
    % Lt\Wz'6Y  
    %       % Display the first 10 Zernike functions !Ee#jCXS  
    %       x = -1:0.01:1; 3em&7QM  
    %       [X,Y] = meshgrid(x,x); _!vxX ]  
    %       [theta,r] = cart2pol(X,Y); )U6-&-07  
    %       idx = r<=1; l* ~".q;S  
    %       z = nan(size(X)); "pQFIV,  
    %       n = [0  1  1  2  2  2  3  3  3  3]; qa>Z?/w  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 6N7^`ghTf  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; An cka  
    %       y = zernfun(n,m,r(idx),theta(idx)); ii< /!B(  
    %       figure('Units','normalized') QqpXUyHp[  
    %       for k = 1:10 {#-I;I:  
    %           z(idx) = y(:,k); 3>Ne_kY  
    %           subplot(4,7,Nplot(k)) dRl*rP/  
    %           pcolor(x,x,z), shading interp |wef[|@%  
    %           set(gca,'XTick',[],'YTick',[]) a]JQZo1$  
    %           axis square s&>U-7fx"  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) jv8diQ.  
    %       end dA[MjOd3  
    % O,$ ?Pj6  
    %   See also ZERNPOL, ZERNFUN2. uT")j,tz  
    75>)1H)Xm  
    %   Paul Fricker 11/13/2006 -0pAj}_2}  
    UEm~5,>$0  
    e}F1ZJz  
    % Check and prepare the inputs: w$E8R[J~P  
    % ----------------------------- VLLE0W _]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) mA{G: d  
        error('zernfun:NMvectors','N and M must be vectors.') P4h^_*d  
    end k15fy"+Ut  
    etcpto=Mo  
    if length(n)~=length(m) $w:7$:k  
        error('zernfun:NMlength','N and M must be the same length.') 8-f2$  
    end 1[? xU:;9  
    z8MKGM  
    n = n(:); bcVzl]9  
    m = m(:); ZvQ~K(3  
    if any(mod(n-m,2)) khXp}p!Zm  
        error('zernfun:NMmultiplesof2', ... f( %r)%  
              'All N and M must differ by multiples of 2 (including 0).') 7v{X?86&  
    end `W& :*  
    } `X.^}oe  
    if any(m>n) TbK;_pg  
        error('zernfun:MlessthanN', ... -W6r.E$mC  
              'Each M must be less than or equal to its corresponding N.') fo$5WTY  
    end &Fw8V=Pw  
    (] Zyk, [  
    if any( r>1 | r<0 ) {? a@UUvC  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') KG2ij~v  
    end I;=HXL  
    <B3v4 f  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +Jf4 5[D   
        error('zernfun:RTHvector','R and THETA must be vectors.') 1\hh,s  
    end CrTGC%w{=  
    *>=|"ff  
    r = r(:); wZAY0@pA  
    theta = theta(:); |FR'?y1  
    length_r = length(r); ?zS t  
    if length_r~=length(theta) G $P|F6  
        error('zernfun:RTHlength', ... sKIpL(_I$  
              'The number of R- and THETA-values must be equal.') #z( JYw,  
    end QH) uh"  
    ptA-rX.  
    % Check normalization: )bl'' yO  
    % -------------------- \G+uK:PC,  
    if nargin==5 && ischar(nflag) BAJEn6f?  
        isnorm = strcmpi(nflag,'norm'); }mhD2'E  
        if ~isnorm BGe&c,feIc  
            error('zernfun:normalization','Unrecognized normalization flag.') `S&$y4|Vs  
        end <"&I'9  
    else @P$_2IU"  
        isnorm = false; xs'vd:l.Pp  
    end ^")SU(`  
    j/C.='?%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >$%rsc}^  
    % Compute the Zernike Polynomials D>HX1LV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NHL -ll-R  
    Q\!0V@$  
    % Determine the required powers of r: ,hggmzA~  
    % ----------------------------------- [6$n  
    m_abs = abs(m); GfG!CG^ %  
    rpowers = [];  {[i 37DN  
    for j = 1:length(n) 9=-d/y?  
        rpowers = [rpowers m_abs(j):2:n(j)]; 88]UA  
    end ?6m6 4{M  
    rpowers = unique(rpowers); Z*M]AvO+#  
    "b#L8kN  
    % Pre-compute the values of r raised to the required powers, X AnN<  
    % and compile them in a matrix: A3;}C+K  
    % ----------------------------- SF 7p/gG  
    if rpowers(1)==0 e 1 yvvi  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); t+2!"Jr  
        rpowern = cat(2,rpowern{:}); R cz;|h8  
        rpowern = [ones(length_r,1) rpowern]; &~6W!w  
    else EWr8=@iU  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); oX;D|8 f  
        rpowern = cat(2,rpowern{:}); 4ox[,  
    end %GY U$aA  
    gbl`_t/  
    % Compute the values of the polynomials: \["'%8[:gR  
    % -------------------------------------- "IvFkS=*Q  
    y = zeros(length_r,length(n)); ]csfK${  
    for j = 1:length(n) ~S$\ PG4  
        s = 0:(n(j)-m_abs(j))/2; l<89[{9o  
        pows = n(j):-2:m_abs(j); 3~r>G  
        for k = length(s):-1:1 AWXBk+  
            p = (1-2*mod(s(k),2))* ... C `>1x`n  
                       prod(2:(n(j)-s(k)))/              ... \?|FB~.Ry  
                       prod(2:s(k))/                     ... tlz+!>  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... t3w:!' Ato  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ~0^d-,ZD5  
            idx = (pows(k)==rpowers); v&8%t 7|  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 5 wT e?  
        end Oh|KbM*vS  
         TsvF~Gdp  
        if isnorm +TWk}#G   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $4&%<'l3I  
        end HqZ3]  
    end !n?8'eqWru  
    % END: Compute the Zernike Polynomials HZ+l){u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y[8GoqE|  
    6UXDIg=  
    % Compute the Zernike functions: qkg`4'rLg  
    % ------------------------------ @gn}J'  
    idx_pos = m>0; _tJm0z!  
    idx_neg = m<0; I|SQhbi  
    "P@jr{zvMd  
    z = y; 74c[m}'S  
    if any(idx_pos) q\`0'Z,  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5g-AB`6T  
    end :O~*}7G  
    if any(idx_neg) %:DH _0  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~h<<-c  
    end $YNWT\FE  
    }1sFddGVt  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) (9phRo)>  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. YIc|0[ ]*|  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ]8c%)%Vi  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive I_k!'zR[N  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, +4r.G(n),  
    %   and THETA is a vector of angles.  R and THETA must have the same L2jjkyX]  
    %   length.  The output Z is a matrix with one column for every P-value, \%! t2=J!  
    %   and one row for every (R,THETA) pair. QR#L1+Hn  
    % d`g)(*  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 3R=R k  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) TJhzyJ"t  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) n$03##pf  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 +pefk+  
    %   for all p. T0Kjnzs  
    % *2(W`m  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Pcs62aE  
    %   Zernike functions (order N<=7).  In some disciplines it is &l0-0 T>  
    %   traditional to label the first 36 functions using a single mode Q~y) V  
    %   number P instead of separate numbers for the order N and azimuthal l[P VWM  
    %   frequency M. B'kV.3t  
    % ylo/]pVs  
    %   Example: XP |qY1  
    % [l7 G9T}/[  
    %       % Display the first 16 Zernike functions &{5v[:$  
    %       x = -1:0.01:1; l )m]<E X  
    %       [X,Y] = meshgrid(x,x); Ol@ssm  
    %       [theta,r] = cart2pol(X,Y); }nO[;2Na  
    %       idx = r<=1; ,e{|[k  
    %       p = 0:15; t'.oty=  
    %       z = nan(size(X)); [JzOsi~R  
    %       y = zernfun2(p,r(idx),theta(idx)); 7F;dLd'  
    %       figure('Units','normalized') itpljh  
    %       for k = 1:length(p) G8Qo]E9-/  
    %           z(idx) = y(:,k); @8;0p  
    %           subplot(4,4,k) "+@>!U  
    %           pcolor(x,x,z), shading interp 8e:\T.)M  
    %           set(gca,'XTick',[],'YTick',[]) uh8+Y%V p  
    %           axis square .R<Ke\y/  
    %           title(['Z_{' num2str(p(k)) '}']) (0c L! N;;  
    %       end /ad]pdF  
    % 1;Q>B>6  
    %   See also ZERNPOL, ZERNFUN. 4P(ysTuM  
    ?;c&5'7ct  
    %   Paul Fricker 11/13/2006 (X(296<;  
    L( B(x>w  
    iax6o+OG|  
    % Check and prepare the inputs: YM(` E9{h  
    % ----------------------------- ,];4+&|8kW  
    if min(size(p))~=1 3SU:Xd(\o  
        error('zernfun2:Pvector','Input P must be vector.') ,;)1|-^nu  
    end &M5_G$5n  
    VZRM=;V  
    if any(p)>35 \`MX\OR  
        error('zernfun2:P36', ... =D"H0w <zw  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... @|1/yQgi  
               '(P = 0 to 35).']) GY[+HgT  
    end  mDJg-BQ  
    {TWgR2?{C  
    % Get the order and frequency corresonding to the function number: Bp.z6x4  
    % ---------------------------------------------------------------- 2 ~zo)G0  
    p = p(:); (K}Md~  
    n = ceil((-3+sqrt(9+8*p))/2); ' >F_y t9  
    m = 2*p - n.*(n+2); |}O9'fyU8  
    Hh<3k- *d  
    % Pass the inputs to the function ZERNFUN: DKzP)!B "  
    % ---------------------------------------- #;#r4sJwU  
    switch nargin 1q&gTvIp  
        case 3 OG C|elSM  
            z = zernfun(n,m,r,theta); 2S{IZ]  
        case 4 %mv9+WJN.  
            z = zernfun(n,m,r,theta,nflag); (_Ld^ ^|  
        otherwise @uWPo2  
            error('zernfun2:nargin','Incorrect number of inputs.') u3Jsu=Nx-  
    end ` s}v6  
    -A\J:2a|  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) g[W`4  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. SAa hkX  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of }+_Z|>qv  
    %   order N and frequency M, evaluated at R.  N is a vector of ),K!| 7#h  
    %   positive integers (including 0), and M is a vector with the f17pwJ~=  
    %   same number of elements as N.  Each element k of M must be a tvC7LLNP<  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 4eOQP  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is  mB:I8g7  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix +bj[.  
    %   with one column for every (N,M) pair, and one row for every 4I[g{S nF  
    %   element in R. !u} }V  
    % ^ H,oI*  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- `GG PkTN  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is U73{Uv  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to #hBDOXHPf  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ={a8=E!;  
    %   for all [n,m]. CENA!WWQ  
    % FL 5tIfV+  
    %   The radial Zernike polynomials are the radial portion of the L;},1 \  
    %   Zernike functions, which are an orthogonal basis on the unit w:}RS.AK  
    %   circle.  The series representation of the radial Zernike }b#KV?xgW  
    %   polynomials is qYMTud[Vf  
    % olC@nQ1c*  
    %          (n-m)/2 <*Kj7o{Qn  
    %            __   0%  
    %    m      \       s                                          n-2s |<@X* #X5  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r X3KP N  
    %    n      s=0 ?hu$  
    % Hm?zMyO.k  
    %   The following table shows the first 12 polynomials. !V =s^8nj  
    % az(u=}  
    %       n    m    Zernike polynomial    Normalization ak?XE4-N  
    %       --------------------------------------------- pvJsSX  
    %       0    0    1                        sqrt(2) /&>6#3df-  
    %       1    1    r                           2 \pzqUTk  
    %       2    0    2*r^2 - 1                sqrt(6) ]JeA29   
    %       2    2    r^2                      sqrt(6) 'w+T vOB  
    %       3    1    3*r^3 - 2*r              sqrt(8) Q<y&*o3YF|  
    %       3    3    r^3                      sqrt(8) =$B:i>z<  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10)  \|Qx`-  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 1RtbQ{2F;  
    %       4    4    r^4                      sqrt(10) ,qgph^C  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) dpO ZqhRs.  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 29?{QJb  
    %       5    5    r^5                      sqrt(12) ;[-dth  
    %       --------------------------------------------- m CFScT  
    % *8zn\No<,  
    %   Example: yIwAJl7Xf  
    % _u^ S[  
    %       % Display three example Zernike radial polynomials Rld1pX2v  
    %       r = 0:0.01:1; +8FlDiP  
    %       n = [3 2 5]; Ly?gpOqu5  
    %       m = [1 2 1]; ,%+i}H,3  
    %       z = zernpol(n,m,r); 9=D\xBd|w  
    %       figure r/E;tm [\  
    %       plot(r,z) lPh>8:qFM  
    %       grid on b!Q|0X.?  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') D>u1ngu  
    % 'IweN  
    %   See also ZERNFUN, ZERNFUN2. _5vAn t*  
    ^D(N_va<  
    % A note on the algorithm. sXm/+I^  
    % ------------------------ ?|8H|LBIr  
    % The radial Zernike polynomials are computed using the series !3{> F"  
    % representation shown in the Help section above. For many special QvK-3w;=  
    % functions, direct evaluation using the series representation can %aU4d e^  
    % produce poor numerical results (floating point errors), because /jQW4eW0  
    % the summation often involves computing small differences between W6t"n_%?"  
    % large successive terms in the series. (In such cases, the functions \4q% n  
    % are often evaluated using alternative methods such as recurrence #Al.Itj  
    % relations: see the Legendre functions, for example). For the Zernike W8Z&J18AU  
    % polynomials, however, this problem does not arise, because the m$xL#omD  
    % polynomials are evaluated over the finite domain r = (0,1), and }vkrWy^  
    % because the coefficients for a given polynomial are generally all vu[+UF\G  
    % of similar magnitude. 'W 5r(M4U  
    % lzz rzx^  
    % ZERNPOL has been written using a vectorized implementation: multiple `MAluu+b  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] =dD<[Iz6  
    % values can be passed as inputs) for a vector of points R.  To achieve ,[}5@cS  
    % this vectorization most efficiently, the algorithm in ZERNPOL d/G`w{H}y  
    % involves pre-determining all the powers p of R that are required to *hVW >{a  
    % compute the outputs, and then compiling the {R^p} into a single jN:!V t  
    % matrix.  This avoids any redundant computation of the R^p, and G\S\Qe{P~  
    % minimizes the sizes of certain intermediate variables. %  (R10G  
    % |?n=~21"1O  
    %   Paul Fricker 11/13/2006  $j*j {}K  
    zhbp"yju7  
    UH1AT#?!W  
    % Check and prepare the inputs: TTaSg\K  
    % ----------------------------- 'f9 fw^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) cg$@x\fJ  
        error('zernpol:NMvectors','N and M must be vectors.') 5 T1M:~u i  
    end p#W[he  
    *R.Q!L v+  
    if length(n)~=length(m) 0[@ 9f1Nk4  
        error('zernpol:NMlength','N and M must be the same length.') ]w.:K*_=  
    end hM")DmvB4  
    6'UtB!gr  
    n = n(:); h4x*C=?A  
    m = m(:); |'WaBy1  
    length_n = length(n); "Zd4e2>{M\  
    @O#4duM4Qz  
    if any(mod(n-m,2)) sZ #Ck"n  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') JX,&im*BG  
    end R{.5Z/Vp6E  
    r- 0BLq]~{  
    if any(m<0) il `O*6-  
        error('zernpol:Mpositive','All M must be positive.') } )O ^xF ~  
    end f>i6f@  
    pIdJ+gu(s  
    if any(m>n) $e#p -z  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ,Ju f  
    end _ETG.SYq  
    A6Ttx{]  
    if any( r>1 | r<0 ) =D.M}x qo  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ,@ A1eX}  
    end `An`"$z  
    ab8uY.j  
    if ~any(size(r)==1) !={Z]J  
        error('zernpol:Rvector','R must be a vector.') 59gt#1k  
    end 6>ZUx}vYj  
    DytH } U"  
    r = r(:); M7BCBA  
    length_r = length(r); &/*XA  
    ]Y Q[ )  
    if nargin==4 p_S8m|%  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); !_rAAY  
        if ~isnorm l-4T Tg  
            error('zernpol:normalization','Unrecognized normalization flag.') vt}+d StUm  
        end Reca5r1O  
    else J<Di2b+  
        isnorm = false; h')@NnFP 1  
    end  $6w[h7  
    laN:H mR8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u5^fiw]C  
    % Compute the Zernike Polynomials A\Rkt;:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ko\VDyt,  
    e`ti*1]q  
    % Determine the required powers of r: r=6-kC!T9  
    % ----------------------------------- &3l g\&"  
    rpowers = []; \G}EI|Wo  
    for j = 1:length(n) 6}"P m  
        rpowers = [rpowers m(j):2:n(j)]; =!m5'$Uz>  
    end $6.CN#  
    rpowers = unique(rpowers); IFNs)*  
    :5hKE(3Q  
    % Pre-compute the values of r raised to the required powers, KCd}N  
    % and compile them in a matrix: {vh}f+2  
    % ----------------------------- 4d3]L` f  
    if rpowers(1)==0 =4cK9ac  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 'EoJo9p6}  
        rpowern = cat(2,rpowern{:}); {_QXx  
        rpowern = [ones(length_r,1) rpowern]; R{GOlxKs C  
    else -C]RFlV  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8 hx4N  
        rpowern = cat(2,rpowern{:}); |D<J9+  
    end ^lhV\YxJ  
    Y`jvza%  
    % Compute the values of the polynomials: t%Hg8oya  
    % -------------------------------------- 89T xd9X  
    z = zeros(length_r,length_n); -b+VzVJZ  
    for j = 1:length_n _MQ)  
        s = 0:(n(j)-m(j))/2; .g71?^?(  
        pows = n(j):-2:m(j);  " Mzb  
        for k = length(s):-1:1 [ sJ f)<  
            p = (1-2*mod(s(k),2))* ... ,.[T]37  
                       prod(2:(n(j)-s(k)))/          ... SskvxH+7  
                       prod(2:s(k))/                 ... $,$bZV  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... {]1o($.u  
                       prod(2:((n(j)+m(j))/2-s(k))); _<pSCR0  
            idx = (pows(k)==rpowers); Qa@b-v'by  
            z(:,j) = z(:,j) + p*rpowern(:,idx); >+y[HTf-  
        end 9 I>qD  
         3Ob"R%Yo  
        if isnorm P6'Oe|+'  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); _7es_w}R  
        end a^_\#,}  
    end -N;$L~`iAt  
    |?k3I/;  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  v3zd>fDnRp  
    V1yY>  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 %#AM }MWIa  
    R=7,F6.  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)