切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11235阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 O$u;]cg  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Onb*nm  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 N%;Q[*d@/  
    function z = zernfun(n,m,r,theta,nflag) Fp4?/-]  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. P]!$MOt  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N $D5[12X  
    %   and angular frequency M, evaluated at positions (R,THETA) on the qyl~*r*  
    %   unit circle.  N is a vector of positive integers (including 0), and ?15k~1nA  
    %   M is a vector with the same number of elements as N.  Each element y$s}-O]/-  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) n>>hfxv(O!  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, $t.N |b`'  
    %   and THETA is a vector of angles.  R and THETA must have the same d|TRP,y  
    %   length.  The output Z is a matrix with one column for every (N,M) }D dg  
    %   pair, and one row for every (R,THETA) pair. ;hF>iw  
    %  s=#IoNh  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @dX0gHU[c  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), asP>(Li  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral RyD2LAf)J  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, WhE5u&`  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized j)Kk:BFFY  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. +A W6 >yV`  
    % ^T'+dGU`  
    %   The Zernike functions are an orthogonal basis on the unit circle. FMY r6/I  
    %   They are used in disciplines such as astronomy, optics, and As@~%0 S  
    %   optometry to describe functions on a circular domain. X^%I 3  
    % Z]$yuM  
    %   The following table lists the first 15 Zernike functions. :eS7"EG{3  
    % %_M B-  
    %       n    m    Zernike function           Normalization Fdd$Bl.&XS  
    %       -------------------------------------------------- "A__z|sQ  
    %       0    0    1                                 1 V5KAiG<d  
    %       1    1    r * cos(theta)                    2 _jH1Mcq  
    %       1   -1    r * sin(theta)                    2 \|R`wFn^P  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]=9%fA  
    %       2    0    (2*r^2 - 1)                    sqrt(3) @^Mn PM  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) d|on y  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) IOF~V)8k=  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) vtR<(tOu@  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ig; ~ T  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) R.A}tV=j#  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 0'^? m$  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9^0 'VRG  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) .)|jBC8|}  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *bn9j>|iv  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 'Twi @I  
    %       -------------------------------------------------- 5 W(iU  
    % wX#\\Jgi  
    %   Example 1: dcU|y%k%  
    % |Y(].G,  
    %       % Display the Zernike function Z(n=5,m=1) 1>a^Q  
    %       x = -1:0.01:1; Uvf-h4^J]:  
    %       [X,Y] = meshgrid(x,x); C'n 9n!hR  
    %       [theta,r] = cart2pol(X,Y); 3I:DL#f  
    %       idx = r<=1; TW3:Y\p  
    %       z = nan(size(X)); "4g1I<  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); RfN5X}&A  
    %       figure XIBw&mWf  
    %       pcolor(x,x,z), shading interp ]*i>KR@G  
    %       axis square, colorbar Tj0eW(<!s  
    %       title('Zernike function Z_5^1(r,\theta)') Uj k``;  
    % <py~(q  
    %   Example 2: $ }B"u;:SU  
    % =AgY8cF!sl  
    %       % Display the first 10 Zernike functions ih+kh7J-  
    %       x = -1:0.01:1; 7azxqa5:  
    %       [X,Y] = meshgrid(x,x); L8bq3Q'p  
    %       [theta,r] = cart2pol(X,Y); z@~1e]%  
    %       idx = r<=1; KN}[N+V>  
    %       z = nan(size(X)); ;i:Uoyi  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ip>dHj z  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; H:[z#f|t  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; cR@z^  
    %       y = zernfun(n,m,r(idx),theta(idx)); 9D<^)ShY  
    %       figure('Units','normalized') 9\Xl 3j!  
    %       for k = 1:10 ACyQsmqm:  
    %           z(idx) = y(:,k); t"0~2R6i  
    %           subplot(4,7,Nplot(k)) v Z]gb$  
    %           pcolor(x,x,z), shading interp B]*&lRR  
    %           set(gca,'XTick',[],'YTick',[]) OPKX&)SE-  
    %           axis square r.K4<ly-N  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) gLpWfT29V  
    %       end _R5^4-Qe  
    % ;"Ot\:0  
    %   See also ZERNPOL, ZERNFUN2. , R^Pk6m>  
    U4N S.`V  
    %   Paul Fricker 11/13/2006 Do_L  
    Z@ I%ppd  
    -\NB*|9m|  
    % Check and prepare the inputs: dk(-yv'  
    % ----------------------------- U_VD* F4Bv  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ww\/$ |  
        error('zernfun:NMvectors','N and M must be vectors.') `Z@wWs  
    end |LNXu  
    m   
    if length(n)~=length(m) ~{5%~8h.0r  
        error('zernfun:NMlength','N and M must be the same length.') /`s^.Xh  
    end Nc"h8p?  
    eM9~&{m.  
    n = n(:); yS3x))  
    m = m(:); \C<rg|  
    if any(mod(n-m,2)) D!Gm9Pa}  
        error('zernfun:NMmultiplesof2', ... Q'|cOQX  
              'All N and M must differ by multiples of 2 (including 0).') 6B+ @76wH  
    end lA]u8+gXd  
    +5({~2Lzvp  
    if any(m>n) ol[{1KT{  
        error('zernfun:MlessthanN', ... R K'( {1  
              'Each M must be less than or equal to its corresponding N.') 8\a)}k~4  
    end g|+G(~=e|  
    M?\)&2f[Z  
    if any( r>1 | r<0 ) hCo&SRC/5  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9J%>2AA  
    end be764do  
    !^m5by  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) )Z; Y,g  
        error('zernfun:RTHvector','R and THETA must be vectors.') /60[T@Mz  
    end C$(t`G  
    F)%; gzs  
    r = r(:); {T^'&W>8G8  
    theta = theta(:); 9 /zz@  
    length_r = length(r); NeK:[Q@je  
    if length_r~=length(theta) jkdNisq37  
        error('zernfun:RTHlength', ... m+u>%Ys`  
              'The number of R- and THETA-values must be equal.') C>03P.s4c  
    end RB\WttI  
    W*s`1O>  
    % Check normalization: ?"C]h s  
    % -------------------- oVhw2pKpM  
    if nargin==5 && ischar(nflag) Zq`bd55~  
        isnorm = strcmpi(nflag,'norm'); vc!S{4bN  
        if ~isnorm sZbzY^P  
            error('zernfun:normalization','Unrecognized normalization flag.') i5wA=K_  
        end nRo`O  
    else ~/#?OLj(T  
        isnorm = false; z`Q5J9_<cV  
    end  JA)gM  
    7<tqT @c  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BsRas  
    % Compute the Zernike Polynomials AnyFg)a<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sXydMk`J  
    H\b5]q %  
    % Determine the required powers of r: G|MDo|q]  
    % ----------------------------------- fwnpmuJ  
    m_abs = abs(m); UMX+h])#N  
    rpowers = []; q#778  
    for j = 1:length(n) tFSdi. |G=  
        rpowers = [rpowers m_abs(j):2:n(j)]; K;97/"  
    end y$&a(S]  
    rpowers = unique(rpowers); (Q4_3<G+  
    [@y=% \%R  
    % Pre-compute the values of r raised to the required powers, B>]5/!_4  
    % and compile them in a matrix: QbNv+Eu5  
    % ----------------------------- e7?W VV,  
    if rpowers(1)==0 jK=*~I  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =ddx/zN  
        rpowern = cat(2,rpowern{:}); "''<:K|  
        rpowern = [ones(length_r,1) rpowern]; %1<p1u'r?#  
    else f|G7L5-  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 87Uv+((H  
        rpowern = cat(2,rpowern{:}); .;F+ QP0  
    end I[`2MKh  
    C&st7. (k  
    % Compute the values of the polynomials: \|pAn  
    % -------------------------------------- 6f>l~$  
    y = zeros(length_r,length(n)); hHg g H4T  
    for j = 1:length(n) r zmk-V  
        s = 0:(n(j)-m_abs(j))/2; nSow$6T_  
        pows = n(j):-2:m_abs(j); a "DV`jn  
        for k = length(s):-1:1 ICTtubjV"  
            p = (1-2*mod(s(k),2))* ... 9j2I6lGQ  
                       prod(2:(n(j)-s(k)))/              ... StDmJ]  
                       prod(2:s(k))/                     ... 2%qn !+.  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 'f}S ,i +q  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 0;H6b=  
            idx = (pows(k)==rpowers); u20b+c4  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 6uXW`/lvX  
        end IX*S:7S[  
         )eFFtnu5  
        if isnorm 7, 13g)  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); u`'z~N4}  
        end R>U<8z"i  
    end 5p|@)  
    % END: Compute the Zernike Polynomials /C:'qhY,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5Hm!5:ZB  
    `eWc p^|  
    % Compute the Zernike functions: LJ/qF0L!H  
    % ------------------------------ SN{*:\>,  
    idx_pos = m>0; IeB6r+4|  
    idx_neg = m<0; i@CMPz-h&  
    +.lWck  
    z = y; 4 ufLP DH  
    if any(idx_pos) 9sCk\`n  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ?R]y}6 P$  
    end =.X?LWKY  
    if any(idx_neg) ^!<7#kX  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); $ tNhwF  
    end e] K=Nm  
    6}T%m?/}  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ~snF20  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. S9NN.dKu  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated _qeuVi=A  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive EOX_[ek7  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ARdGh_yJ&  
    %   and THETA is a vector of angles.  R and THETA must have the same @pG lWw9*  
    %   length.  The output Z is a matrix with one column for every P-value, -t 6R!ZI  
    %   and one row for every (R,THETA) pair. !e'0jf-~  
    % Ke?gz:9j  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike e4Ox`gLa*p  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 2-V)>98  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ~y2)&x  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 d BMe`hM)  
    %   for all p. '95E;RV&  
    % Ydh<TF4!  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 e$EF% cKH  
    %   Zernike functions (order N<=7).  In some disciplines it is WjrMd#^  
    %   traditional to label the first 36 functions using a single mode vzcBo%  
    %   number P instead of separate numbers for the order N and azimuthal vA;F]epr!  
    %   frequency M. ^ Y7/Ow  
    % ZJ9Jf2 c  
    %   Example: F[CT l3X  
    % %md^S |  
    %       % Display the first 16 Zernike functions G|-\T(&J  
    %       x = -1:0.01:1; 'dc+M9u)_q  
    %       [X,Y] = meshgrid(x,x); ^+as\  
    %       [theta,r] = cart2pol(X,Y); %A62xnX  
    %       idx = r<=1; XalJo@%-  
    %       p = 0:15; h ??C4z  
    %       z = nan(size(X)); V[Rrst0yo  
    %       y = zernfun2(p,r(idx),theta(idx)); P-+M,>vNy[  
    %       figure('Units','normalized') [2'm`tZL  
    %       for k = 1:length(p) Hs%QEvZl  
    %           z(idx) = y(:,k); g. ?*F#2  
    %           subplot(4,4,k) xIQ/$[&v  
    %           pcolor(x,x,z), shading interp icPp8EwH  
    %           set(gca,'XTick',[],'YTick',[]) eOehgU5x  
    %           axis square fJWxJSdi  
    %           title(['Z_{' num2str(p(k)) '}']) $>r>0S#+\&  
    %       end 7-d}pgVK  
    % zr.+'  
    %   See also ZERNPOL, ZERNFUN. vx!::V7s6  
    Or+*q91j  
    %   Paul Fricker 11/13/2006 U|J$?aFDr  
    z!s. 9  
    7G.o@p6$  
    % Check and prepare the inputs: DB`$Ru@  
    % ----------------------------- 5L-lpT8P  
    if min(size(p))~=1 7}ws |4Y  
        error('zernfun2:Pvector','Input P must be vector.') ]$~Fzs  
    end rFmKmV  
    StU  4{  
    if any(p)>35 Vvm=MBgN  
        error('zernfun2:P36', ... Jcz]J)|5v  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... _8Nw D_"  
               '(P = 0 to 35).']) UzgA26;  
    end NoCDY2 $  
    ;&Bna#~B  
    % Get the order and frequency corresonding to the function number: 1BQ0M{&  
    % ---------------------------------------------------------------- &yx NvyA[u  
    p = p(:); <NG/i i=  
    n = ceil((-3+sqrt(9+8*p))/2); &8<<!#ob  
    m = 2*p - n.*(n+2); p)B33Z zC  
    I@0z/4H``  
    % Pass the inputs to the function ZERNFUN: YV/>8*i  
    % ---------------------------------------- DX}B0B  
    switch nargin L*g. 6+2  
        case 3 :}y9$p  
            z = zernfun(n,m,r,theta); `$s)X$W?  
        case 4 %G;0T;0L  
            z = zernfun(n,m,r,theta,nflag); )0#j\ B  
        otherwise (O\U /daB  
            error('zernfun2:nargin','Incorrect number of inputs.') h+,'B&=|_  
    end D \N \BD  
    B7!<{i  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) d1v<DU>M  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. YT>KJ  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of hAm/mu  
    %   order N and frequency M, evaluated at R.  N is a vector of 9\HR60V  
    %   positive integers (including 0), and M is a vector with the ^+ZgWS^%  
    %   same number of elements as N.  Each element k of M must be a z{9=1XY  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) f-;$0mTQ  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is I>PZYh'.T  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix TZ[Zm  
    %   with one column for every (N,M) pair, and one row for every 1y J5l,q  
    %   element in R. LL&ud_Y  
    % /<);=&[  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- "~F3*lk#E  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 7R}9oK_I  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to HPg3`Ul  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 AS)UJ/lC  
    %   for all [n,m]. $ a?  
    % 0}{'C5  
    %   The radial Zernike polynomials are the radial portion of the :\XI0E  
    %   Zernike functions, which are an orthogonal basis on the unit ui:=  
    %   circle.  The series representation of the radial Zernike x2co>.i  
    %   polynomials is WJ |:kuF  
    % rcV-_+KE(B  
    %          (n-m)/2 ^W~p..DF  
    %            __ S}(8f!9<  
    %    m      \       s                                          n-2s Z$ p0&~   
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r G8nrdN-9  
    %    n      s=0 c.A Yx I"  
    % UiH!Dl}<  
    %   The following table shows the first 12 polynomials. glj7$  
    % }pVTTs`  
    %       n    m    Zernike polynomial    Normalization NQfYxB1Yr:  
    %       --------------------------------------------- L*h{'<Bz  
    %       0    0    1                        sqrt(2) s,6`RI%  
    %       1    1    r                           2 r> k-KdS  
    %       2    0    2*r^2 - 1                sqrt(6) {%C*{,#+8q  
    %       2    2    r^2                      sqrt(6) j%L&jH 6@  
    %       3    1    3*r^3 - 2*r              sqrt(8) ]PWDE"  
    %       3    3    r^3                      sqrt(8) 9i5tVOhE  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Qck| #tc  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) +vW)vS[  
    %       4    4    r^4                      sqrt(10) "9IYB)Js  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) "5C`,4s  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) aZ Xmlq  
    %       5    5    r^5                      sqrt(12) +uo{ m~_4  
    %       --------------------------------------------- %dMqpY7"  
    % Q8D&tJg  
    %   Example: FdzNE  
    % >5hhd38  
    %       % Display three example Zernike radial polynomials iDoDwq!l_  
    %       r = 0:0.01:1; X T[zj <&_  
    %       n = [3 2 5]; -`b8T0?oK  
    %       m = [1 2 1]; :XG;ru%i  
    %       z = zernpol(n,m,r); =PkO!Mm8  
    %       figure zce`\ /:  
    %       plot(r,z) JTU#vq:TY  
    %       grid on *T`-|H*6@  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') S?ujRp  
    % %zBCq"y  
    %   See also ZERNFUN, ZERNFUN2. &Lm-()wb  
    |TsE-t*E}  
    % A note on the algorithm. 2f>PO +4S{  
    % ------------------------ 2 PqS%`XiS  
    % The radial Zernike polynomials are computed using the series G(iJi  
    % representation shown in the Help section above. For many special K+Y^>N4m  
    % functions, direct evaluation using the series representation can gU&%J4O  
    % produce poor numerical results (floating point errors), because o:S0*  
    % the summation often involves computing small differences between @L/o\pvc  
    % large successive terms in the series. (In such cases, the functions 7ZxaPkIu&%  
    % are often evaluated using alternative methods such as recurrence NTo!'p:s  
    % relations: see the Legendre functions, for example). For the Zernike tZyo`[La  
    % polynomials, however, this problem does not arise, because the &;i "P  
    % polynomials are evaluated over the finite domain r = (0,1), and Jzkq)]M  
    % because the coefficients for a given polynomial are generally all asJ!NvVG'  
    % of similar magnitude. 0 B@n{PvR0  
    % =(v^5  
    % ZERNPOL has been written using a vectorized implementation: multiple i;/xK=L  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ~y HU^5D  
    % values can be passed as inputs) for a vector of points R.  To achieve =U8Ek;Drp  
    % this vectorization most efficiently, the algorithm in ZERNPOL tVuWVJ4M  
    % involves pre-determining all the powers p of R that are required to +Hvc_Av''  
    % compute the outputs, and then compiling the {R^p} into a single xu5ia|gYz7  
    % matrix.  This avoids any redundant computation of the R^p, and dCyqvg6u  
    % minimizes the sizes of certain intermediate variables. #LlUxHv #  
    % M`YWn ;  
    %   Paul Fricker 11/13/2006 bmgncwlz  
    vhbDb)J  
    te|? )j  
    % Check and prepare the inputs: az0<5 Bq)  
    % ----------------------------- Vj<:GRNQ,d  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Jn:ZYqc  
        error('zernpol:NMvectors','N and M must be vectors.') $YxBE`)d-  
    end Q;11N7+  
    vo>d!rVCV  
    if length(n)~=length(m) ^d}gpin  
        error('zernpol:NMlength','N and M must be the same length.') l^GP3S  
    end :x.7vZzxs  
    z>sbr<doa  
    n = n(:); \B F*m"lz  
    m = m(:); w(ln5q  
    length_n = length(n); x:-.+C%  
    XU!2YO)t;!  
    if any(mod(n-m,2)) n0Y+b[ +wj  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') =_$Qtq+h  
    end 4[Z\ ?[  
    FZjHw_pP  
    if any(m<0) Z;9>S=w!  
        error('zernpol:Mpositive','All M must be positive.') --;@2:lg{  
    end rX_@Ihv'  
    O~j> ?  
    if any(m>n) Grs]d-xI  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') {{V8;y  
    end |*Z$E$k:  
    ? WJ> p  
    if any( r>1 | r<0 ) SJD@&m%?[  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') #/PAA  
    end ~ wg:!VWA)  
    zvABU+{jD  
    if ~any(size(r)==1) V5+SWXZ  
        error('zernpol:Rvector','R must be a vector.') @SCI"H%[  
    end :0Z^uuk`gq  
     "KcA  
    r = r(:); c/c$D;T  
    length_r = length(r); N0hE4t  
    f{SB1M   
    if nargin==4 YK|bXSA[  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ^u 3V E  
        if ~isnorm ^N8)]F,  
            error('zernpol:normalization','Unrecognized normalization flag.') 8XbA'% o  
        end rG,5[/l  
    else V_plq6z  
        isnorm = false; O=u1u}CP?  
    end  >S$Z  
    gV&z2S~"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .<kqJ|SVi  
    % Compute the Zernike Polynomials 'SQG>F Uy  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h iNEJ_f  
    l5L.5 $N  
    % Determine the required powers of r: !i=nSqW  
    % ----------------------------------- VfT*7_  
    rpowers = []; xf|mlHS+  
    for j = 1:length(n) [+qCs7'  
        rpowers = [rpowers m(j):2:n(j)]; bn |zl!Pq  
    end Da"j E  
    rpowers = unique(rpowers); n3J53| %v  
    CI3XzH\IX*  
    % Pre-compute the values of r raised to the required powers, J\ e+}{  
    % and compile them in a matrix: AT5aDEb^^  
    % ----------------------------- DTWD |M  
    if rpowers(1)==0 @A)R_p  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {Zp\^/  
        rpowern = cat(2,rpowern{:}); )BRKZQN  
        rpowern = [ones(length_r,1) rpowern]; ve&zcSeb  
    else ZvcJK4hi  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); uZ;D!2Q a  
        rpowern = cat(2,rpowern{:}); ^MBm==heL  
    end y"Nsh>h  
    uc|45Zxt  
    % Compute the values of the polynomials: CbN!1E6).  
    % -------------------------------------- WxF:~{  
    z = zeros(length_r,length_n); b(9FZ]7S  
    for j = 1:length_n 4H@Wc^K  
        s = 0:(n(j)-m(j))/2; QBR=0(giF  
        pows = n(j):-2:m(j); znJ'iV f  
        for k = length(s):-1:1 EI\9_}@,  
            p = (1-2*mod(s(k),2))* ... 7Pa@1']  
                       prod(2:(n(j)-s(k)))/          ... V2N_8)s9W  
                       prod(2:s(k))/                 ... t(="h6i  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... q%ow/!\;  
                       prod(2:((n(j)+m(j))/2-s(k))); \W%UZs  
            idx = (pows(k)==rpowers);  ,m,)I  
            z(:,j) = z(:,j) + p*rpowern(:,idx); iOG[>u0h  
        end |ae97 5  
         r-h#{==*c  
        if isnorm fryJW=  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); s|D>-  
        end Z}-Vf$O~  
    end iDf,e Kk$'  
    wY"Q o7  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Wpc|`e<  
    xW[ -n  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 _f6HAGDN  
    [p=*u,-  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)