切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11584阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 DU%w1+u  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! o:Qv JcB  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Em[DHfu1Q  
    function z = zernfun(n,m,r,theta,nflag) ;?C #IU  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. O25lLNmO  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gGfoO[B  
    %   and angular frequency M, evaluated at positions (R,THETA) on the hsu{eyp  
    %   unit circle.  N is a vector of positive integers (including 0), and oyo(1 >  
    %   M is a vector with the same number of elements as N.  Each element = k\J<  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) tTd\|  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ">?vir^  
    %   and THETA is a vector of angles.  R and THETA must have the same KZ~*Nz+H2  
    %   length.  The output Z is a matrix with one column for every (N,M) [w ;kkMJAy  
    %   pair, and one row for every (R,THETA) pair. G[jW<'f  
    % 3Hf0MAt  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike g^zs,4pPU<  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), V|\7')Qq  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral O|_h_I-2  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, HSq}7S&U  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized r(gXoq_w  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .F+@B\A<  
    %   TX  
    %   The Zernike functions are an orthogonal basis on the unit circle. ]qhPd_$?D'  
    %   They are used in disciplines such as astronomy, optics, and +S Jd@y@fR  
    %   optometry to describe functions on a circular domain. ;# Q%j%J  
    % LR" 9D  
    %   The following table lists the first 15 Zernike functions. 4tY ss  
    % V)}rEX   
    %       n    m    Zernike function           Normalization qWw\_S  
    %       -------------------------------------------------- |JCU<_<  
    %       0    0    1                                 1 A_KW(;50  
    %       1    1    r * cos(theta)                    2 I}R0q  
    %       1   -1    r * sin(theta)                    2 bV/jfV"%E  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Y3Q9=u*5  
    %       2    0    (2*r^2 - 1)                    sqrt(3) o.I6ulY8  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Yup3^E w&  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) y( y8+ZT  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) s&j-\bOic9  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @B}aN@!/  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) >rvQw63\  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) {T].]7Z  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !>:?rSg*  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 2#k5+?-c61  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) oY, %Iq  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) i~r l o^  
    %       -------------------------------------------------- fDLG>rXPT  
    % 5xL~`-IA&v  
    %   Example 1: }NB}"%2  
    % f5` g  
    %       % Display the Zernike function Z(n=5,m=1) K$d$m <  
    %       x = -1:0.01:1; cp h:y  
    %       [X,Y] = meshgrid(x,x); G}p\8Q}'  
    %       [theta,r] = cart2pol(X,Y); )2M>3C6>f  
    %       idx = r<=1; &\_iOw8  
    %       z = nan(size(X)); m4*@o?Ow  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); iTaWup  
    %       figure =G]@+e  
    %       pcolor(x,x,z), shading interp jmeRrnC}  
    %       axis square, colorbar RD.V'`n"  
    %       title('Zernike function Z_5^1(r,\theta)') c/ uNM  
    % 2PG [7u^  
    %   Example 2: 4f<$4d^md  
    % jRatm.N  
    %       % Display the first 10 Zernike functions TiH) 5  
    %       x = -1:0.01:1; c_>f0i  
    %       [X,Y] = meshgrid(x,x); 8,uB8C9  
    %       [theta,r] = cart2pol(X,Y); 0x!2ihf  
    %       idx = r<=1; P67o{EdK  
    %       z = nan(size(X)); ]~3U  
    %       n = [0  1  1  2  2  2  3  3  3  3]; t]e;;q=L.  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; fj&i63?e  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; h;0S%ZC  
    %       y = zernfun(n,m,r(idx),theta(idx)); KI+VXH}Y5{  
    %       figure('Units','normalized') F;>!&[h}G  
    %       for k = 1:10 9VbOQ{8  
    %           z(idx) = y(:,k); zLJ/5&  
    %           subplot(4,7,Nplot(k)) XO'l Nb.  
    %           pcolor(x,x,z), shading interp )YqXRm  
    %           set(gca,'XTick',[],'YTick',[]) > %KuNy{  
    %           axis square !Ta>U^ 7  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .c$316  
    %       end y.q(vzg\_  
    % v~Y^r2  
    %   See also ZERNPOL, ZERNFUN2. !Xph_SQ!B=  
    l(Q?rwI8Y  
    %   Paul Fricker 11/13/2006 5+wAzVA  
    28=O03q  
    F_4n^@M  
    % Check and prepare the inputs: of@#:Qs  
    % ----------------------------- _(KbiEB{  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~#/hzS  
        error('zernfun:NMvectors','N and M must be vectors.') ,tg0L$qC  
    end &%/7E_j7  
    b?'yAXk  
    if length(n)~=length(m) +U3m#Y)k  
        error('zernfun:NMlength','N and M must be the same length.') mbueP.q[?  
    end SZXY/~=h  
    )sT> i  
    n = n(:); L~KM=[cn  
    m = m(:); =3v]gOcO  
    if any(mod(n-m,2)) jfqopiSi  
        error('zernfun:NMmultiplesof2', ... P$-X)c$&  
              'All N and M must differ by multiples of 2 (including 0).') z+>}RT]  
    end \0gM o&  
    Alxx[l\<J  
    if any(m>n) 0MdDXG-7  
        error('zernfun:MlessthanN', ... ^) s2$A:L  
              'Each M must be less than or equal to its corresponding N.') NW&b&o  
    end Ho *AAg  
    a 7,C>%I  
    if any( r>1 | r<0 ) FJ6u.u  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') pLzk   
    end Kc^;vT>3  
    *VZ5B<Ic  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,1"KHv  
        error('zernfun:RTHvector','R and THETA must be vectors.') 2m2;t0  
    end w4d--[Q  
    1N>|yQz  
    r = r(:); J":,Vd!*-  
    theta = theta(:); !U~WK$BP  
    length_r = length(r); J>bJ 449B  
    if length_r~=length(theta) c?,i3s+2Y  
        error('zernfun:RTHlength', ... QhK#Y{xY  
              'The number of R- and THETA-values must be equal.') ok4@N @  
    end ' >rw(3  
    X.e7A/ClEo  
    % Check normalization: qm8&*UuKJ  
    % -------------------- .?Gd'Lp  
    if nargin==5 && ischar(nflag) X<%Q"2hW  
        isnorm = strcmpi(nflag,'norm'); h^o{@/2  
        if ~isnorm _Iv6pNd/  
            error('zernfun:normalization','Unrecognized normalization flag.') _\GC(  
        end n= u&uqA*  
    else 9b*nLyYVz  
        isnorm = false; ut I"\1hQ  
    end y7i*s^ys{  
    Os1>kwC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BFOq8}fX2  
    % Compute the Zernike Polynomials w2'f/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6 jn3`D  
    3z&Fi;<+j  
    % Determine the required powers of r: @>U-t{W  
    % ----------------------------------- ixT:)|'i  
    m_abs = abs(m); B,=H@[Fj  
    rpowers = []; Ch3jxgQY  
    for j = 1:length(n) /Bm( `T  
        rpowers = [rpowers m_abs(j):2:n(j)]; KW^7H  
    end &E=>Hj(dTG  
    rpowers = unique(rpowers); ]3 l9:|  
    q*7VqB  
    % Pre-compute the values of r raised to the required powers, 9B7^lR  
    % and compile them in a matrix: hs$GN]  
    % -----------------------------  D 'Zt  
    if rpowers(1)==0 Gnq?"</  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); X'qU*Eo  
        rpowern = cat(2,rpowern{:}); #I bp(  
        rpowern = [ones(length_r,1) rpowern]; ?pB>0b~3-  
    else F 70R1OYU  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1jF`5k  
        rpowern = cat(2,rpowern{:}); VQS~\:1  
    end Q{5kxw1ZF  
    ~"kb7Fxp  
    % Compute the values of the polynomials: h9G RI  
    % -------------------------------------- 57&b:0`p  
    y = zeros(length_r,length(n)); DRi<6Ob  
    for j = 1:length(n) 65aK2MS@  
        s = 0:(n(j)-m_abs(j))/2; c:o]d)S  
        pows = n(j):-2:m_abs(j); G%W8S \  
        for k = length(s):-1:1 [.uG5%fa  
            p = (1-2*mod(s(k),2))* ... sv&;Y\2c  
                       prod(2:(n(j)-s(k)))/              ... -RvQB  
                       prod(2:s(k))/                     ... >^*+iEe  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #T=LR@y  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); &RnTzqv  
            idx = (pows(k)==rpowers); 2-Ej4I~  
            y(:,j) = y(:,j) + p*rpowern(:,idx); k@3Q|na  
        end .G#8a1#  
         < F.hZGss7  
        if isnorm 9#MBaO8_"  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); L'0B$6  
        end P<a)25be/  
    end sEGO2xeI  
    % END: Compute the Zernike Polynomials Xy$3VU*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% li}1S  
    [k;\SXDZo  
    % Compute the Zernike functions: + |#O@k  
    % ------------------------------ 9vGu0Um  
    idx_pos = m>0; U$WxHYo  
    idx_neg = m<0; G2Qlt@.T  
    yEhTNBa*h{  
    z = y; O\"3J(y,  
    if any(idx_pos) {_ i\f ]L  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); v{ 0=  
    end \ b?" b  
    if any(idx_neg) ECrex>zr%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); zGA q-<  
    end 7G}2,ueI  
    3 I@}my1  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) > dI LF  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. pgE}NlW  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ,+meT`'vn  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive zxbpEJzpn  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, OZ |IA:,}  
    %   and THETA is a vector of angles.  R and THETA must have the same jY% na HaI  
    %   length.  The output Z is a matrix with one column for every P-value, '%dfz K*Z  
    %   and one row for every (R,THETA) pair. YkniiB[/  
    %  CohDO  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike G MX?  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) @|63K)Xy  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) W&& ;:Fr  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 f78An 8  
    %   for all p. %_RQx2  
    % El[)?+;D  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 j/r]wd"aUS  
    %   Zernike functions (order N<=7).  In some disciplines it is =|3ek  
    %   traditional to label the first 36 functions using a single mode TDFkxB>  
    %   number P instead of separate numbers for the order N and azimuthal toya fHf  
    %   frequency M. kb{]>3Y"  
    % q Gw -tPD<  
    %   Example: im9G,e  
    % q)S^P>  
    %       % Display the first 16 Zernike functions s:/8[(A  
    %       x = -1:0.01:1; z(_Ss@ $  
    %       [X,Y] = meshgrid(x,x); Bm.:^:&k  
    %       [theta,r] = cart2pol(X,Y); % NA9{<I  
    %       idx = r<=1; P"y`A}Bx  
    %       p = 0:15; aqRhh=iS  
    %       z = nan(size(X)); KxYwJ  
    %       y = zernfun2(p,r(idx),theta(idx)); )vjh~ybZ  
    %       figure('Units','normalized') <lw` 3aa(  
    %       for k = 1:length(p) aY'C%^h]  
    %           z(idx) = y(:,k); 4)h]MOZ  
    %           subplot(4,4,k) B$ajK`x&I  
    %           pcolor(x,x,z), shading interp >/kc dWl  
    %           set(gca,'XTick',[],'YTick',[])  FT#8L  
    %           axis square ~]pE'\D7Ad  
    %           title(['Z_{' num2str(p(k)) '}']) CFzNwgv]z  
    %       end Rot@x r7Hc  
    % ~$:|VHl  
    %   See also ZERNPOL, ZERNFUN. q>$ev)W  
    L+Xc-uv["p  
    %   Paul Fricker 11/13/2006 7'Zky2F  
    L;VoJf  
    0B@SN)<kH  
    % Check and prepare the inputs: Z:,U]Z(  
    % ----------------------------- 3L833zL  
    if min(size(p))~=1 t2F _uCr  
        error('zernfun2:Pvector','Input P must be vector.')  x }\64  
    end 42e|LUZg  
    [ oL.+  
    if any(p)>35 !46RGU:I  
        error('zernfun2:P36', ... \m7-rV6r  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... s }UjGFP  
               '(P = 0 to 35).']) "!Uqcay-  
    end E*.{=W }C  
    i]Fp..`v~  
    % Get the order and frequency corresonding to the function number: MBt9SXM  
    % ---------------------------------------------------------------- (i34sqV$m  
    p = p(:); %_+2@\  
    n = ceil((-3+sqrt(9+8*p))/2); 0fb`08,^  
    m = 2*p - n.*(n+2); N^HUijw<  
     J7=+  
    % Pass the inputs to the function ZERNFUN: C~nzH,5  
    % ---------------------------------------- g!$!F>[  
    switch nargin %+8F'&X  
        case 3 WM| dKF  
            z = zernfun(n,m,r,theta); WF1px%  
        case 4 C ~<'rO}|  
            z = zernfun(n,m,r,theta,nflag); 0vEoGgY0*:  
        otherwise r\b3AKrIN  
            error('zernfun2:nargin','Incorrect number of inputs.') 1T y<\bZ=  
    end &<wuJ%'>)Z  
    YVYu:}e3)  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) _CW(PsfY  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ^cczJOxB  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of SnE(o)Q  
    %   order N and frequency M, evaluated at R.  N is a vector of iVB86XZ`  
    %   positive integers (including 0), and M is a vector with the r<K(jG[:{f  
    %   same number of elements as N.  Each element k of M must be a 4 !y%O  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) xnmmXtk  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is MYla OT  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Y( 3Bp\6  
    %   with one column for every (N,M) pair, and one row for every R]OpQ[k  
    %   element in R. AWP"b?^G|  
    % k p<OJy  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- /LO -HnJ  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is x|mqL-Q f  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ny`#%Vs  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 o$w_Es]Ma  
    %   for all [n,m]. H*[ M\gN$  
    % k Mu8"Az  
    %   The radial Zernike polynomials are the radial portion of the 8-BflejX  
    %   Zernike functions, which are an orthogonal basis on the unit W_kHj}dj,p  
    %   circle.  The series representation of the radial Zernike p1&b!*o-&  
    %   polynomials is BReJ!|{m}  
    % -amBB7g  
    %          (n-m)/2 GH+r ?2<  
    %            __ ;?8_G%va  
    %    m      \       s                                          n-2s ~kZ G{  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r K{[%7AM  
    %    n      s=0 |QU <e  
    % ~xD ={9BL  
    %   The following table shows the first 12 polynomials. yp$_/p O=2  
    % NMa} <  
    %       n    m    Zernike polynomial    Normalization WN01h=1J_  
    %       --------------------------------------------- eu(:`uu  
    %       0    0    1                        sqrt(2) 0URji~?|x  
    %       1    1    r                           2 |962G1.  
    %       2    0    2*r^2 - 1                sqrt(6) SzjkI+-$:  
    %       2    2    r^2                      sqrt(6) @7?#Y|`  
    %       3    1    3*r^3 - 2*r              sqrt(8) 7 T1=q{#M  
    %       3    3    r^3                      sqrt(8) ?)u@Rf9>  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Vl:^>jTki  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ||;hci O  
    %       4    4    r^4                      sqrt(10) a{R%#e\n  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ](&{:>RNJ  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) CitDm1DXt/  
    %       5    5    r^5                      sqrt(12) cUY`97bn  
    %       --------------------------------------------- rNB_W.  
    % F;+|sMrq  
    %   Example: 4|CtRF<L  
    % E;+O($bA  
    %       % Display three example Zernike radial polynomials h"_MA_]~  
    %       r = 0:0.01:1; i'#E )  
    %       n = [3 2 5]; yt.F\[1  
    %       m = [1 2 1]; 3?1`D/  
    %       z = zernpol(n,m,r); H[S%J3JI  
    %       figure D^=J|7e  
    %       plot(r,z) MM (xk  
    %       grid on =5kY6%E7c  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') MP!d4  
    % UE$UR#T'w  
    %   See also ZERNFUN, ZERNFUN2. ~c %hWt  
    " N9 <wU  
    % A note on the algorithm. )i !o8YB  
    % ------------------------ Jo@|"cE=  
    % The radial Zernike polynomials are computed using the series px}|Mu7z~  
    % representation shown in the Help section above. For many special mg*qiScfW  
    % functions, direct evaluation using the series representation can Z yE `/J'  
    % produce poor numerical results (floating point errors), because .6`9H 1  
    % the summation often involves computing small differences between joiL{  
    % large successive terms in the series. (In such cases, the functions d` jjGEj  
    % are often evaluated using alternative methods such as recurrence 0@H|n^Md#  
    % relations: see the Legendre functions, for example). For the Zernike MLRK74D  
    % polynomials, however, this problem does not arise, because the ">y%iE  
    % polynomials are evaluated over the finite domain r = (0,1), and T>R0T{A  
    % because the coefficients for a given polynomial are generally all wtH? [>S;)  
    % of similar magnitude. J6L  K  
    % <8d^^0  
    % ZERNPOL has been written using a vectorized implementation: multiple aVK3?y2  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] e^<#53!  
    % values can be passed as inputs) for a vector of points R.  To achieve E )5E$  
    % this vectorization most efficiently, the algorithm in ZERNPOL S"OR%  
    % involves pre-determining all the powers p of R that are required to 4KH45|; 3  
    % compute the outputs, and then compiling the {R^p} into a single 3td)'}  
    % matrix.  This avoids any redundant computation of the R^p, and ]>~)<   
    % minimizes the sizes of certain intermediate variables. XgLL!5`  
    % *:L?#Bw  
    %   Paul Fricker 11/13/2006 H\qC["  
    V>A .iim  
    ?q; Fp  
    % Check and prepare the inputs: rzh#CnL3  
    % ----------------------------- Db;G@#x  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) A7%:05  
        error('zernpol:NMvectors','N and M must be vectors.') v(EEG/~  
    end mo[Zb0>  
    .)<(Oj|4  
    if length(n)~=length(m) dv.(7Y7.x  
        error('zernpol:NMlength','N and M must be the same length.') HA2k [F@3^  
    end Y0_),OaY  
    HmiJ~C_v`:  
    n = n(:); 0o9 3i u=&  
    m = m(:); 3WUTI(  
    length_n = length(n); }lfnnK#  
    !!`!|w  
    if any(mod(n-m,2)) bZ|FnY}FB  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') }jVSlCF@t  
    end sIK;x]Q)  
    1$%V{4bJ  
    if any(m<0) tb$LriN  
        error('zernpol:Mpositive','All M must be positive.') JvT"bZk( o  
    end @ ]/AjjLt  
    q~*t@  
    if any(m>n) qU#BJON]BR  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') QoG cWJ  
    end @O[}QB?/fi  
    U5He?  
    if any( r>1 | r<0 ) %5A+V0D0'  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') j& <i&  
    end `~ * @q!  
    CC@.MA@9N  
    if ~any(size(r)==1) pGK;1gVj  
        error('zernpol:Rvector','R must be a vector.') 9Iz%ht  
    end <_XWWT%  
    86\S?=J-b  
    r = r(:); {WPobP"  
    length_r = length(r); RW}"2  
    ~Q>_uw}g#  
    if nargin==4 !X<~-G2)l  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); |'{zri|A"  
        if ~isnorm Hv\-_>}K  
            error('zernpol:normalization','Unrecognized normalization flag.') Xa[?^P  
        end XLH+C ]pfr  
    else H)>;/#!r-  
        isnorm = false; ,I_^IitN  
    end !}r% u."  
    CJXg@\\/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K"[AxB'F  
    % Compute the Zernike Polynomials {FG|\nPw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TM|)Ljm  
    6'RrQc=q  
    % Determine the required powers of r: aBw2f[mo  
    % ----------------------------------- [w&$|h:;  
    rpowers = []; IrWD%/$H  
    for j = 1:length(n) r,Nq7Txn?  
        rpowers = [rpowers m(j):2:n(j)]; LbZ:&/t^y8  
    end [_.5RPJP8  
    rpowers = unique(rpowers); &g~ wS@  
    *L'>U[Pl7  
    % Pre-compute the values of r raised to the required powers, !Wy[).ZAf  
    % and compile them in a matrix: 1s{^X -  
    % ----------------------------- Hw-Z  
    if rpowers(1)==0 Iz{R}#8CZ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); F`9ZH.  
        rpowern = cat(2,rpowern{:}); ;XDz)`c  
        rpowern = [ones(length_r,1) rpowern]; Zt&6Ua[Y}  
    else D.1J_Y=9  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); H_ez'yy  
        rpowern = cat(2,rpowern{:}); \a=D  
    end p!<$vE  
    0`I-2M4F*Q  
    % Compute the values of the polynomials: en:4H   
    % -------------------------------------- h'$ 9C  
    z = zeros(length_r,length_n); YNBHBK4;  
    for j = 1:length_n 6"D/xV3Z  
        s = 0:(n(j)-m(j))/2; =Odv8yhn  
        pows = n(j):-2:m(j); )5.C]4jol  
        for k = length(s):-1:1 LT,?$I  
            p = (1-2*mod(s(k),2))* ... 'D%w|Pe?Q  
                       prod(2:(n(j)-s(k)))/          ... yx<WSgWZ[  
                       prod(2:s(k))/                 ... k~|-gf FP  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... bQZ*r{g  
                       prod(2:((n(j)+m(j))/2-s(k))); ;9}pOzF1q  
            idx = (pows(k)==rpowers); _` [h,=  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ?^EXTU85`"  
        end &k1T08C*  
         Cb_oS4vM  
        if isnorm \^V`ds*.  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); BkZV!Eg  
        end )|I5j];L  
    end \6 93kQ  
    =SAU4xjo  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ,m07p~,V  
    N_C_O$j  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 1a9w(X  
    Kla:e[{  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)