非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 6J$I8b#/
function z = zernfun(n,m,r,theta,nflag) P/q]
u
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]<Q&
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N XSh[#qJ
% and angular frequency M, evaluated at positions (R,THETA) on the ;W\?lGOs{
% unit circle. N is a vector of positive integers (including 0), and !g#y$
% M is a vector with the same number of elements as N. Each element ;!3: 3;
% k of M must be a positive integer, with possible values M(k) = -N(k) =xSf-\F
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Wk!<P"
nHd
% and THETA is a vector of angles. R and THETA must have the same V<ilv<
% length. The output Z is a matrix with one column for every (N,M) zq3f@xOK
% pair, and one row for every (R,THETA) pair. lJx5scN[
% EV|W:;Sg
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ufor>
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^B7Ls{
% with delta(m,0) the Kronecker delta, is chosen so that the integral w:R#F(
'B
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )?6%d
% and theta=0 to theta=2*pi) is unity. For the non-normalized ~HKzqGQy>
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. I"Ko sSs
% s<3M_mt
% The Zernike functions are an orthogonal basis on the unit circle. O+=}x]q*y
% They are used in disciplines such as astronomy, optics, and Y'+KU/H
% optometry to describe functions on a circular domain. `/B+
% -q?,
% The following table lists the first 15 Zernike functions. HTm`_}G9
% |U$ "GI
% n m Zernike function Normalization |PGTP#O<
% -------------------------------------------------- 2gEF$?+q?
% 0 0 1 1 Tv~Ho&LS
% 1 1 r * cos(theta) 2 dqFp"Xe"%
% 1 -1 r * sin(theta) 2 )gAqWbkB
% 2 -2 r^2 * cos(2*theta) sqrt(6) \,lIPA/L
% 2 0 (2*r^2 - 1) sqrt(3) K\mFb
% 2 2 r^2 * sin(2*theta) sqrt(6) q:vGG K^
% 3 -3 r^3 * cos(3*theta) sqrt(8) 4|4[3Ye7u:
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 4.~ <|T8
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) PO:sF]5
% 3 3 r^3 * sin(3*theta) sqrt(8) N]\)Ok
% 4 -4 r^4 * cos(4*theta) sqrt(10) LE?sAN
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U% ?+N
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) )/2TU]//
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4jjo%N
% 4 4 r^4 * sin(4*theta) sqrt(10) Eb5BJ-XeS^
% -------------------------------------------------- ?t/\ ID
% >Dz8+y
% Example 1: 15Jc PDV
% s
E;2;2u"
% % Display the Zernike function Z(n=5,m=1) X[SIk%{D
% x = -1:0.01:1; -e0?1.A$
% [X,Y] = meshgrid(x,x); l701$>>
% [theta,r] = cart2pol(X,Y); (io[O?te
% idx = r<=1; x]4>f[>*>
% z = nan(size(X)); u
Qg$hS
% z(idx) = zernfun(5,1,r(idx),theta(idx)); BE54L+$p
% figure OgHqF,0MN
% pcolor(x,x,z), shading interp g*w}m>O
% axis square, colorbar VAe[x
`
% title('Zernike function Z_5^1(r,\theta)') jc,Qg2
% E;q+u[$
% Example 2: q &S@\b
% pkTVQdtRG
% % Display the first 10 Zernike functions d vo|9 >
% x = -1:0.01:1; ^E~1%Md.
% [X,Y] = meshgrid(x,x); 7c6-
o"A
% [theta,r] = cart2pol(X,Y); ^)a j,U[
% idx = r<=1; a=6@} l1<
% z = nan(size(X)); b7gN|Hw5 H
% n = [0 1 1 2 2 2 3 3 3 3]; 4i<GqG
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; $P2*qpqy
% Nplot = [4 10 12 16 18 20 22 24 26 28]; $-s8tc(
% y = zernfun(n,m,r(idx),theta(idx)); NiRb:F-
% figure('Units','normalized') c}H}fyu%n
% for k = 1:10 +k/=L9#e
% z(idx) = y(:,k); r>sXvzv
% subplot(4,7,Nplot(k)) JEP9!y9y
% pcolor(x,x,z), shading interp [lu+"V,<LJ
% set(gca,'XTick',[],'YTick',[]) w?Cho</Xu
% axis square *Y!RU{w+Z
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ,4;'s
% end ~3%aEj
% Y)#,6\=U
% See also ZERNPOL, ZERNFUN2. Q:'r
p
S@TfZ3Go|
% Paul Fricker 11/13/2006 A-rj: k!
0sCWIGUW
$FZcvo3@*S
% Check and prepare the inputs: CdtCxy5
% ----------------------------- aN!,\D
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) NSq29#
error('zernfun:NMvectors','N and M must be vectors.') lwjA07i
end 9hJ
a K
=F5zU5`i
if length(n)~=length(m) /_yAd,^-+
error('zernfun:NMlength','N and M must be the same length.') ,| j\x
end S,a:H*Hf
EiyHZ
n = n(:); Z>dvth
m = m(:); \XfLTv
if any(mod(n-m,2)) D z[,;
error('zernfun:NMmultiplesof2', ... *qxv"PptX
'All N and M must differ by multiples of 2 (including 0).') ]LMtZUz
end >X5RRSo
S>Gb
Jt(]
if any(m>n) zz8NBO
error('zernfun:MlessthanN', ... u(PUbxJ
V
'Each M must be less than or equal to its corresponding N.') WmRu3O
end 1)f <
&'?Hh(
if any( r>1 | r<0 ) M'T[L%AP
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 42:,*4t(
end =Wz)(N
#RKd>ig%
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) e2pFX?
error('zernfun:RTHvector','R and THETA must be vectors.') Digx#'#jf
end 3 FMYs&0r4
=Ew77
r = r(:); +WguWLO"
theta = theta(:); E
`V?Io
length_r = length(r); aY DM)b}
if length_r~=length(theta) H|'n|\{lt
error('zernfun:RTHlength', ... N(O*"1b
'The number of R- and THETA-values must be equal.') ^+kymZ
end omT^jh
c_aj-`BKp
% Check normalization: sHOBT,B
% -------------------- UMHFq-
if nargin==5 && ischar(nflag) _T;Kn'Gz(&
isnorm = strcmpi(nflag,'norm'); DU-dIqi
if ~isnorm +,)Iv_Xl$
error('zernfun:normalization','Unrecognized normalization flag.') D4?cnwU
end K
28s<i`
else 6zGeGW
isnorm = false; Ql,WKoj*
end *q@3yB}
OU*skc>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w BoP&l
% Compute the Zernike Polynomials 6.a|w}C`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :w7?]y6~S
7dOpJjv?)
% Determine the required powers of r: we
kb&?
% ----------------------------------- fVi[mH0=+
m_abs = abs(m); n-1
rpowers = []; ViUx^e\
for j = 1:length(n) c2]h.G83
rpowers = [rpowers m_abs(j):2:n(j)]; M[e^Z}w.V
end W'e{2u
rpowers = unique(rpowers); hW\'EJ
74hRG~
% Pre-compute the values of r raised to the required powers, cb/$P!j7
% and compile them in a matrix: vorb? iVf>
% ----------------------------- Dw,LB>Eq,
if rpowers(1)==0 dki3(
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); kZfj"+p_S
rpowern = cat(2,rpowern{:}); f{|n/j;n=C
rpowern = [ones(length_r,1) rpowern]; pezfB{x?
else t&IWKu#
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l vBcEg
rpowern = cat(2,rpowern{:}); ?q y*`
end _<?z-K_;I
/sqfw,h@
% Compute the values of the polynomials: K1o&(;l8G
% -------------------------------------- xFA`sAucr
y = zeros(length_r,length(n)); fe}RmnAC
for j = 1:length(n) kc2
8Q2
s = 0:(n(j)-m_abs(j))/2; ; NO#/
pows = n(j):-2:m_abs(j); rAD4}A_w
for k = length(s):-1:1 Yfy";C7X
p = (1-2*mod(s(k),2))* ... Ij9=J1c4
prod(2:(n(j)-s(k)))/ ... FR\r/+n:t0
prod(2:s(k))/ ... @[Wf!8_
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... c57`mOe/b
prod(2:((n(j)+m_abs(j))/2-s(k))); %Siw>
idx = (pows(k)==rpowers); <Rz[G+0S=
y(:,j) = y(:,j) + p*rpowern(:,idx); X@7:FzU9
end @scSW5+
Q_*.1L
if isnorm _Ecs{'k
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _6]tbni?v
end ZR8y9mx2"
end ]UZP dw1D
% END: Compute the Zernike Polynomials f+Fzpd?w S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aLwEz}-
'yh)6mid
% Compute the Zernike functions: IcNZUZGE
% ------------------------------ F'ez{B\AX
idx_pos = m>0; y"H(F,(N
idx_neg = m<0; +KIBbXF7
<W*6=HZ'
z = y; m=w #l>!
if any(idx_pos) zJOyr"B'8
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^xr &E
end ,,?XGx
if any(idx_neg) &C#?&AQ
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); tnq ZlS
end ifmX<'(9A
{H
3wL
% EOF zernfun