切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11221阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 jFc{$#g-  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! G`P+J  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 'n no)kQ"  
    function z = zernfun(n,m,r,theta,nflag) Qi61(lK  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. =jN]ckn  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 9wC; m:  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Xy{+=UY  
    %   unit circle.  N is a vector of positive integers (including 0), and h]#)41y<  
    %   M is a vector with the same number of elements as N.  Each element 2$91+N*w9  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) vn<S"  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, C0%%@ 2+  
    %   and THETA is a vector of angles.  R and THETA must have the same UPYM~c+}  
    %   length.  The output Z is a matrix with one column for every (N,M) L7-nPH  
    %   pair, and one row for every (R,THETA) pair. DbN'b(+  
    % #<o#kJL  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 7E95"B&w  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), H.L@]~AyL  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral PwW@I~@>  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, qAS^5|(b[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 1N+#(<x@,  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. m C Ge*V}  
    % Nz;;X\GI  
    %   The Zernike functions are an orthogonal basis on the unit circle. YYHm0pc  
    %   They are used in disciplines such as astronomy, optics, and Jy_'(hG  
    %   optometry to describe functions on a circular domain. hbeC|_+   
    % * 5n:+Tw(  
    %   The following table lists the first 15 Zernike functions. 4lA+V,#  
    % 4B`Rz1QBy  
    %       n    m    Zernike function           Normalization U\ued=H  
    %       -------------------------------------------------- zTLn*?  
    %       0    0    1                                 1 +$t%L  
    %       1    1    r * cos(theta)                    2 ja/[PHq"  
    %       1   -1    r * sin(theta)                    2 T8-$[ 2  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ~<aB-. d  
    %       2    0    (2*r^2 - 1)                    sqrt(3) nQ\k{%Q  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) dK: "  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) >Il`AR;D  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) y~7lug  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) kP$g l|  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) pC-OZ0  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) zwtsw[.  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vXbT E$  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) sd53 _s V  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4:$>,D\  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) jhv1 D' >6  
    %       -------------------------------------------------- Z<W6Avr  
    % +`8)U3u0  
    %   Example 1: >nQ yF  
    % s?k[_|)!  
    %       % Display the Zernike function Z(n=5,m=1) lIg2iun[n  
    %       x = -1:0.01:1; dU6LB+A  
    %       [X,Y] = meshgrid(x,x); @ WaYU  
    %       [theta,r] = cart2pol(X,Y); AvZ) 1(  
    %       idx = r<=1; or}*tSKX  
    %       z = nan(size(X)); L?x?+HPY.  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); aUK4{F ;  
    %       figure e6lOmgHn5  
    %       pcolor(x,x,z), shading interp zF&UdS3  
    %       axis square, colorbar *GP_ut%  
    %       title('Zernike function Z_5^1(r,\theta)') P*`xiTA  
    % OPW"AB J  
    %   Example 2: `Xdxg\|  
    % A@(h!Cq  
    %       % Display the first 10 Zernike functions e"#D){k#  
    %       x = -1:0.01:1; 1m;*fs  
    %       [X,Y] = meshgrid(x,x); Z4ioXl  
    %       [theta,r] = cart2pol(X,Y); !" %sp6Wc  
    %       idx = r<=1; l-}5@D[  
    %       z = nan(size(X)); mwH!:f  
    %       n = [0  1  1  2  2  2  3  3  3  3]; od*Z$Hb>'  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; NxO^VUD  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ^G&D4uZ  
    %       y = zernfun(n,m,r(idx),theta(idx)); *)1Vs'!-  
    %       figure('Units','normalized') 0WE1}.J<  
    %       for k = 1:10 e8mbEC(AK  
    %           z(idx) = y(:,k); uhB!k-ir  
    %           subplot(4,7,Nplot(k)) {@__%=`CCS  
    %           pcolor(x,x,z), shading interp H~ n~5 sF"  
    %           set(gca,'XTick',[],'YTick',[]) P lH`(n#  
    %           axis square F*t_lN5{  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ir:~*|  
    %       end y*h1W4:^-  
    % cuaNAJ  
    %   See also ZERNPOL, ZERNFUN2. 9,f<Nb(\  
    'QojSq   
    %   Paul Fricker 11/13/2006 Y{vwOs  
    Q4Fq=kTE  
    1]Q 2qs  
    % Check and prepare the inputs: Du:p!nO  
    % ----------------------------- 5}bZs` C  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?%/u/*9rj  
        error('zernfun:NMvectors','N and M must be vectors.') ywynx<Wg  
    end [ []SkLZHg  
    !{tiTA  
    if length(n)~=length(m) F] ?@X  
        error('zernfun:NMlength','N and M must be the same length.') aq+IC@O  
    end yISQYvSN  
    E? eWv)//  
    n = n(:); D`:d'ow~KQ  
    m = m(:); 3'*%R48P`  
    if any(mod(n-m,2)) Ocwp]Mut&  
        error('zernfun:NMmultiplesof2', ... b>= Wq  
              'All N and M must differ by multiples of 2 (including 0).') Ldhk^/+  
    end 2FIR]@MQd  
    E<Dh_K  
    if any(m>n) M*|VLOo=v  
        error('zernfun:MlessthanN', ... 1i/::4=  
              'Each M must be less than or equal to its corresponding N.') TT2cOw  
    end J4v0O="  
    !@<@QG-  
    if any( r>1 | r<0 ) KU|BT .o8  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Zfy~mv$  
    end MziZN^(  
    MATgJ`lsy  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) >$naTSJq  
        error('zernfun:RTHvector','R and THETA must be vectors.') /8>0; bX+  
    end ]TBtLU3  
    mw(c[.*%  
    r = r(:); 5rmlAq  
    theta = theta(:); {!}F :~*r  
    length_r = length(r); +an^e'  
    if length_r~=length(theta) :Wg-@d  
        error('zernfun:RTHlength', ... ?QMclzh*-  
              'The number of R- and THETA-values must be equal.') )nNCB=YF!  
    end wY3|#P CDV  
    2:iYYRrg  
    % Check normalization: _jTwiuMS-  
    % -------------------- ]A]Ft!`6z  
    if nargin==5 && ischar(nflag) P}hY {y'  
        isnorm = strcmpi(nflag,'norm'); h;%i/feFg  
        if ~isnorm -jxWlO  
            error('zernfun:normalization','Unrecognized normalization flag.') B)rr7B  
        end Wm)-zvNY;  
    else p,w|=@=  
        isnorm = false; hqs$yb  
    end 7a:*Y"f,~  
    ,](v?v.[4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "*w)puD  
    % Compute the Zernike Polynomials <mZrR3v'D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ', sQ/#S  
    QJ#u[hsMFp  
    % Determine the required powers of r: "7kgez#Y  
    % ----------------------------------- .]j#y9>&w%  
    m_abs = abs(m); LG=X)w)W4S  
    rpowers = []; M|UxE/  
    for j = 1:length(n) /&]-I$G@  
        rpowers = [rpowers m_abs(j):2:n(j)]; V$dJmKg  
    end 2cCWQ"_,  
    rpowers = unique(rpowers); Km)X_}|  
    @PQrmn6w  
    % Pre-compute the values of r raised to the required powers, W$" Y%^L  
    % and compile them in a matrix: [jl2\3*  
    % ----------------------------- TBZ-17+  
    if rpowers(1)==0 -`!_h[   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); cBifZv*l  
        rpowern = cat(2,rpowern{:}); ~reQV6oQua  
        rpowern = [ones(length_r,1) rpowern]; :tMre^oP  
    else |N:MZ#};  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (Sth:{;  
        rpowern = cat(2,rpowern{:}); w"cM<Ewu  
    end cQT1Xi  
    908ayfVI  
    % Compute the values of the polynomials: S3u yn78hI  
    % -------------------------------------- rI0)F  
    y = zeros(length_r,length(n));  VQ`,#`wV  
    for j = 1:length(n) uAu( +zV2  
        s = 0:(n(j)-m_abs(j))/2; (8CCesy&  
        pows = n(j):-2:m_abs(j); [_WI8~g Y  
        for k = length(s):-1:1 cMDRWh  
            p = (1-2*mod(s(k),2))* ... $sEB'>:  
                       prod(2:(n(j)-s(k)))/              ... \ Y*h  
                       prod(2:s(k))/                     ... `n 3FT=  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2)wAFO6u  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 4~O6$;!|~  
            idx = (pows(k)==rpowers); \ V6   
            y(:,j) = y(:,j) + p*rpowern(:,idx); ^ED"rMI  
        end K`hz t  
         7p)N_cJD  
        if isnorm `Kh]x9Z  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .Y!;xB/  
        end 4|nQ=bIau  
    end }0QN[$H!  
    % END: Compute the Zernike Polynomials _yj1:TtCNT  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^vpIZjN  
    MZT6g.ny  
    % Compute the Zernike functions: 6|,e%  
    % ------------------------------ ZA0i)(j*Mn  
    idx_pos = m>0; |~SE"  
    idx_neg = m<0; R6`*4z S  
    np\st7&f6  
    z = y; tXt:HVN  
    if any(idx_pos) u7HvdLql  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /D0RC  
    end <EtUnj:qK8  
    if any(idx_neg) <B!'3C(P  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); *4t-e0]j@w  
    end &vCeLh:s  
    - yoAxPDW  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) D9.`hs0  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. L\YKdUL  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 1HhX/fpq  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive }!8nO;  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, r} Lb3`'  
    %   and THETA is a vector of angles.  R and THETA must have the same Z`Ax pTl  
    %   length.  The output Z is a matrix with one column for every P-value, A:eFd]E{(  
    %   and one row for every (R,THETA) pair. "V4Q2T T  
    % NPm;  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike /s:w^ g~  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) gE\b 982  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ic E|.[  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 G}VDEC  
    %   for all p. oV9z(!X/  
    % >SoO4i8  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 rfs(#  
    %   Zernike functions (order N<=7).  In some disciplines it is :?=Q39O9  
    %   traditional to label the first 36 functions using a single mode |O-`5_z$r  
    %   number P instead of separate numbers for the order N and azimuthal o'Wz*oY))\  
    %   frequency M. Stxp3\jEn  
    % 7X}TB\N1  
    %   Example: /kB|1gFj  
    % ;3;2h+U*  
    %       % Display the first 16 Zernike functions %X>FVlPm  
    %       x = -1:0.01:1; abi[jxCG  
    %       [X,Y] = meshgrid(x,x); r<c #nD~K  
    %       [theta,r] = cart2pol(X,Y); #op:/j  
    %       idx = r<=1; '^iUx,,ZQ  
    %       p = 0:15; E ] B7  
    %       z = nan(size(X)); Hz@h0+h  
    %       y = zernfun2(p,r(idx),theta(idx)); :g2  }C  
    %       figure('Units','normalized') x7dEo%j  
    %       for k = 1:length(p) pYo=oI  
    %           z(idx) = y(:,k); m`y9Cuk  
    %           subplot(4,4,k) sb^mLH] 3  
    %           pcolor(x,x,z), shading interp #f{lC0~vA  
    %           set(gca,'XTick',[],'YTick',[]) rkDi+D6`q  
    %           axis square |0sPka/u16  
    %           title(['Z_{' num2str(p(k)) '}']) +;Cr];b3  
    %       end +ZA)/  
    % %2"J:0j  
    %   See also ZERNPOL, ZERNFUN. yK1ie  
    3K>gz:dt  
    %   Paul Fricker 11/13/2006 ez\eOH6  
    E]I$}>k  
    "AC^ rz~U  
    % Check and prepare the inputs: V.6)0fKZW  
    % ----------------------------- mR% FqaN_  
    if min(size(p))~=1 Gb2L }  
        error('zernfun2:Pvector','Input P must be vector.') <T+!V-Pj*  
    end G:IP? z]  
    &Z;_TN9[  
    if any(p)>35 C\}/"  
        error('zernfun2:P36', ... qMP1k7uG)  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... tY+$$GSQj  
               '(P = 0 to 35).']) C ^w)|2o}  
    end -*B`]  
    ~ #PLAP3-  
    % Get the order and frequency corresonding to the function number: h Dk)Qg  
    % ---------------------------------------------------------------- bsS:"/?>  
    p = p(:); }Fa%%}  
    n = ceil((-3+sqrt(9+8*p))/2); ,Na^%A@TJ  
    m = 2*p - n.*(n+2); 8wK ~ i  
    S6xgiem  
    % Pass the inputs to the function ZERNFUN: ?o*I9[Z)  
    % ---------------------------------------- PuL<^aJ  
    switch nargin =*Z5!W'd  
        case 3 >Cr\y  
            z = zernfun(n,m,r,theta); 0 1V^L}  
        case 4 ["3\eFg  
            z = zernfun(n,m,r,theta,nflag); 2;2}wM[  
        otherwise M.q=p[  
            error('zernfun2:nargin','Incorrect number of inputs.') y<:<$22O  
    end #_i`#d)  
    !do?~$Og  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) n>>Qn&ym  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. oU*45B`"  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of j|4C\~i  
    %   order N and frequency M, evaluated at R.  N is a vector of AlXNg!j;5K  
    %   positive integers (including 0), and M is a vector with the aj^wRzJ}zA  
    %   same number of elements as N.  Each element k of M must be a V[o`\|<  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) G fEX>  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is qOih`dla  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 6( CDNMzj  
    %   with one column for every (N,M) pair, and one row for every 1KM`i  
    %   element in R. W2FD+ wt  
    % (xHf4[[u  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 0'YG6(h  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is c2t=_aAIPQ  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 6 5N~0t  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 eqw0]U\pv  
    %   for all [n,m]. Zwz&rIQpT  
    % ,EGQ@:3/  
    %   The radial Zernike polynomials are the radial portion of the d?`ny#,GB  
    %   Zernike functions, which are an orthogonal basis on the unit !$-\;<bZw  
    %   circle.  The series representation of the radial Zernike i0$Bx>  
    %   polynomials is }X*Riu7gk  
    % 0Z[oKXm1p  
    %          (n-m)/2 FKNMtp[`  
    %            __ 8_<4-<}P:  
    %    m      \       s                                          n-2s .qMOGbd?  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r |KSy`lY-j>  
    %    n      s=0 _8Kx6s%  
    % VCXJwVb  
    %   The following table shows the first 12 polynomials. .A sv%p[W  
    % S}p4iE"n  
    %       n    m    Zernike polynomial    Normalization MjlP+; !  
    %       --------------------------------------------- #]nx!*JNZ  
    %       0    0    1                        sqrt(2) \7Jg7*  
    %       1    1    r                           2 OQW#a[=WQ  
    %       2    0    2*r^2 - 1                sqrt(6) 1N7Kv4,  
    %       2    2    r^2                      sqrt(6) 1$M@]7e+!+  
    %       3    1    3*r^3 - 2*r              sqrt(8) n2)q}_d  
    %       3    3    r^3                      sqrt(8) X.hm s?]  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) UfN&v >8f  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) [0"'T[ok  
    %       4    4    r^4                      sqrt(10) kY*rb_2j  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Ty vtmx M  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Y. ,Kl~  
    %       5    5    r^5                      sqrt(12) |<:vY  
    %       --------------------------------------------- G:~k.1y[  
    % *h}XWBC1q  
    %   Example: !O`(JSoG  
    % bGc~Wr|  
    %       % Display three example Zernike radial polynomials ma"3qGy  
    %       r = 0:0.01:1; cSXwYZDx?  
    %       n = [3 2 5]; n4}B r;%  
    %       m = [1 2 1]; 7;KwLT9  
    %       z = zernpol(n,m,r); ZosP(Tdq  
    %       figure /YZr~|65  
    %       plot(r,z) c-B cA  
    %       grid on $0 vb^  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') {zMU#=EC  
    % !o:f$6EA~C  
    %   See also ZERNFUN, ZERNFUN2. spt6]"Ni  
    &*+'>UEe5  
    % A note on the algorithm. &l!4mxwr`  
    % ------------------------ 3AU;>D^5  
    % The radial Zernike polynomials are computed using the series _lamn }(x0  
    % representation shown in the Help section above. For many special :]\([Q+a  
    % functions, direct evaluation using the series representation can |Y?H A&  
    % produce poor numerical results (floating point errors), because BO;6 u^[  
    % the summation often involves computing small differences between +j< p \Kn>  
    % large successive terms in the series. (In such cases, the functions wK?vPS  
    % are often evaluated using alternative methods such as recurrence 7S}_F^  
    % relations: see the Legendre functions, for example). For the Zernike  #"@|f  
    % polynomials, however, this problem does not arise, because the ~_/(t'9  
    % polynomials are evaluated over the finite domain r = (0,1), and P-?0zF/T$  
    % because the coefficients for a given polynomial are generally all o,_? ^'@  
    % of similar magnitude.  C uB`CI  
    % `aciXlqIF  
    % ZERNPOL has been written using a vectorized implementation: multiple MF5[lK9e  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ML|FQ  
    % values can be passed as inputs) for a vector of points R.  To achieve ` @`CG[-9  
    % this vectorization most efficiently, the algorithm in ZERNPOL be.*#[  
    % involves pre-determining all the powers p of R that are required to W"k"I vTW}  
    % compute the outputs, and then compiling the {R^p} into a single lhy*h_>  
    % matrix.  This avoids any redundant computation of the R^p, and U|jSa,}  
    % minimizes the sizes of certain intermediate variables. { \81i8b]  
    % Gefne[  
    %   Paul Fricker 11/13/2006 k$blEa4  
    gEy?s8_,  
    .+$ Q<L  
    % Check and prepare the inputs: 8WXQ Oo8  
    % ----------------------------- :tV*7S=)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) a<^v(r  
        error('zernpol:NMvectors','N and M must be vectors.') t'n pG}`tE  
    end nLXlU*ES  
    LRL,m_gt  
    if length(n)~=length(m) hgPa6Kd  
        error('zernpol:NMlength','N and M must be the same length.') !LNayk's>  
    end HiZ*+T.B  
    ItNz}4o|d  
    n = n(:); QIG$z?  
    m = m(:); T&6l$1J  
    length_n = length(n); os=e|vkB*  
    l9{hq/V  
    if any(mod(n-m,2)) -|$@-fY;  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Hj^1or3R]  
    end H\ F :95  
    Cd#(X@n  
    if any(m<0) wW>A_{Y  
        error('zernpol:Mpositive','All M must be positive.') J')o|5S1N  
    end @>,^":`#  
    akp-zn&je  
    if any(m>n) ?9 <:QE;I>  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') >mwlsL~X  
    end hOjk3 k  
    y0L_"e/  
    if any( r>1 | r<0 ) (7wc*#}  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') M?1Y,5  
    end ,wQ5.U,  
    DX#Nf""Pw  
    if ~any(size(r)==1) Ag-(5:  
        error('zernpol:Rvector','R must be a vector.') (KjoSN( K  
    end n] ._uza  
    *#,7d"6W5  
    r = r(:); R@1xt@?  
    length_r = length(r); <FV1Wz  
    .s?L^Z^  
    if nargin==4 _>&X\`D   
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); =W(Q34  
        if ~isnorm u-QB.iQ+s  
            error('zernpol:normalization','Unrecognized normalization flag.') ,0 M_ Bk"  
        end '$i: 2mn,  
    else BtkOnbz8X  
        isnorm = false; Ua:}Vn&!  
    end 5TH~.^`Fi  
    0yk]o5a++  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (nQ^  
    % Compute the Zernike Polynomials KI"#f$2&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Snj'y,p[  
    5'OrHk;u  
    % Determine the required powers of r: c[0}AG J  
    % ----------------------------------- qU \w=  
    rpowers = []; q }3`|'3  
    for j = 1:length(n) 5%Y3 Kwyy  
        rpowers = [rpowers m(j):2:n(j)]; (p"%O  
    end \"7*{L:  
    rpowers = unique(rpowers); =Qy<GeY  
    j`{?OYD  
    % Pre-compute the values of r raised to the required powers, Hus)c3Ty7  
    % and compile them in a matrix: T^zXt?  
    % ----------------------------- =*oJEy"  
    if rpowers(1)==0 )W^F2-{  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); /2&c$9=1  
        rpowern = cat(2,rpowern{:}); 9SX +  
        rpowern = [ones(length_r,1) rpowern]; #|uCgdi  
    else \[;0 KV_  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /ixp&Z|7  
        rpowern = cat(2,rpowern{:}); ^ gdaa>L  
    end jk;j2YNPw  
    =>m<GvQz  
    % Compute the values of the polynomials: iDpSj!x/_  
    % -------------------------------------- pIc#L>{E  
    z = zeros(length_r,length_n); tR# OjkvX  
    for j = 1:length_n 2R[:]-b  
        s = 0:(n(j)-m(j))/2; sU=H&D99  
        pows = n(j):-2:m(j); =O~_Q-  
        for k = length(s):-1:1 CXH&U@57{  
            p = (1-2*mod(s(k),2))* ... ))qy;Q,  
                       prod(2:(n(j)-s(k)))/          ... .#EFLXs  
                       prod(2:s(k))/                 ... 1y:-N6  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... })'B<vq  
                       prod(2:((n(j)+m(j))/2-s(k))); b!+hH Hv:  
            idx = (pows(k)==rpowers); Z3Og=XHR  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 0- B5`=yU  
        end d9k0F OR1  
         R|'ybW'Y  
        if isnorm !hm]fh_j  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); [CY9^N  
        end ~]sc^[  
    end P?%s #I:  
    ___~D dq  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  4Z=_,#h4.  
    #Vt%@* i  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Xl{P8L  
    |s(FLF-  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)