非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Ob7zu"zr
function z = zernfun(n,m,r,theta,nflag) 1X[73
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?Y%}(3y
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %B[YtWqm`/
% and angular frequency M, evaluated at positions (R,THETA) on the 3(MoXA*
% unit circle. N is a vector of positive integers (including 0), and @8QFP3\1
% M is a vector with the same number of elements as N. Each element d:A\<F
% k of M must be a positive integer, with possible values M(k) = -N(k) Yd[U
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, pi|\0lH6W
% and THETA is a vector of angles. R and THETA must have the same 52da]BW<
% length. The output Z is a matrix with one column for every (N,M) ,<7"K&
% pair, and one row for every (R,THETA) pair. :b.3CL\.6
% ,;9ak-$8p
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5BrU'NF
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )>ug{M%g
% with delta(m,0) the Kronecker delta, is chosen so that the integral >Dk1axZ!>/
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, EV:_Kx8f P
% and theta=0 to theta=2*pi) is unity. For the non-normalized :x8Jy4L
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2r
%>]y
% @P*ylB}?Q
% The Zernike functions are an orthogonal basis on the unit circle. ~&t!$
% They are used in disciplines such as astronomy, optics, and $$k7_rs
% optometry to describe functions on a circular domain. >?^~s(t
% h1n*WQ-
% The following table lists the first 15 Zernike functions. mYntU^4f
% yb[{aL^4%
% n m Zernike function Normalization FX{~"
% -------------------------------------------------- YI L'YNH
% 0 0 1 1 )C'G2RV
% 1 1 r * cos(theta) 2 H0: iYHu
% 1 -1 r * sin(theta) 2
fn4=
% 2 -2 r^2 * cos(2*theta) sqrt(6) -0{T
% 2 0 (2*r^2 - 1) sqrt(3) P]|J?$1K
% 2 2 r^2 * sin(2*theta) sqrt(6) QIR4<]/
% 3 -3 r^3 * cos(3*theta) sqrt(8) {CW1t5$*
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ,Y`'myL8W
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 3 %z
% 3 3 r^3 * sin(3*theta) sqrt(8) FgXu1-
% 4 -4 r^4 * cos(4*theta) sqrt(10) ='7er.~\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D."cQ<sxpN
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ^`l"'6
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lo\: ]/&6
% 4 4 r^4 * sin(4*theta) sqrt(10) :({-0&&_
% -------------------------------------------------- Q&oC]u(="&
% }@3Ud'
Y
% Example 1: h`z2!F4
% H+S~ bzz
% % Display the Zernike function Z(n=5,m=1) SNQz8(O
% x = -1:0.01:1; <9Lv4`]GU5
% [X,Y] = meshgrid(x,x); t#fs:A7P?}
% [theta,r] = cart2pol(X,Y); %4?SY82
% idx = r<=1; r~ZS1Tp
% z = nan(size(X)); K<$wz/\
% z(idx) = zernfun(5,1,r(idx),theta(idx)); /X(@|tk:
% figure hB|H9+
% pcolor(x,x,z), shading interp clh3
% axis square, colorbar p:DL:^zx
% title('Zernike function Z_5^1(r,\theta)') )B-MPuB
% #Tr;JAzVjG
% Example 2: o?:;8]sr!
% *>H M$.?Q
% % Display the first 10 Zernike functions $sU5=,
% x = -1:0.01:1; =gxgS<bde
% [X,Y] = meshgrid(x,x); 1x~%Ydy
% [theta,r] = cart2pol(X,Y); b:N^Fe
% idx = r<=1; xi
'72
% z = nan(size(X)); l.__10{
% n = [0 1 1 2 2 2 3 3 3 3]; h
Jfa_
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; o0,UXBx
% Nplot = [4 10 12 16 18 20 22 24 26 28]; >yV)d/
% y = zernfun(n,m,r(idx),theta(idx)); r
Iya\z1W
% figure('Units','normalized') >i^y;5
% for k = 1:10 R`0foSq \M
% z(idx) = y(:,k); ib5;f0Qa
% subplot(4,7,Nplot(k)) 6{JR 0
% pcolor(x,x,z), shading interp 3v8V*48B$
% set(gca,'XTick',[],'YTick',[]) MgJ%26TZ
% axis square y3
({(URU
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?aK'OIo
% end LK'S)Jk
% eT7!a']x
% See also ZERNPOL, ZERNFUN2. fe&
t-
%8}WX@SB
% Paul Fricker 11/13/2006 _&k'j)rg
`jD8(}_
@A~B
,
% Check and prepare the inputs: )LXoey!aZ
% ----------------------------- 9_M H
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) c,v^A+sZu
error('zernfun:NMvectors','N and M must be vectors.') A}>|tm7|
end VxUvvJ{-v
_H~pH7WU
if length(n)~=length(m) w0a+8gexi
error('zernfun:NMlength','N and M must be the same length.') 4_6W s$x
end ,wwU`
U
6=Y3(#Ddt
n = n(:); lKh2LY=j
m = m(:); _ 6+,R
if any(mod(n-m,2)) w>NZRP_3
error('zernfun:NMmultiplesof2', ... z")3_5Br
'All N and M must differ by multiples of 2 (including 0).') ]t.WJC %
end J)7,&Gc6
_1w.B8Lyz@
if any(m>n) (uuEjM$3%
error('zernfun:MlessthanN', ... EuKrYY] g
'Each M must be less than or equal to its corresponding N.') @1pW!AdN
end &X#x9|=&O
;Zx K3/(7
if any( r>1 | r<0 ) (c|$+B^*
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ({d,oU$>y
end 6i9Q,4~
wf~5lpI[
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~.PPf/
Z8]
error('zernfun:RTHvector','R and THETA must be vectors.') vxbH^b
end ~cO?S2!W
+BtLyQ
r = r(:); %KabyvOl)
theta = theta(:); "xvV'&lQ
length_r = length(r); CI~hmL0
if length_r~=length(theta) bGMeBj"R
error('zernfun:RTHlength', ... C,OB3y
'The number of R- and THETA-values must be equal.') |? ;"B:0
end SHXa{-
7(A
G]
% Check normalization: )E[
Q
% -------------------- %T&&x2p^=?
if nargin==5 && ischar(nflag) ;3.T* ?|o
isnorm = strcmpi(nflag,'norm'); 75hFyh;u
if ~isnorm MYDf`0{$_a
error('zernfun:normalization','Unrecognized normalization flag.') M/8#&RycQ
end O)$N}V0
else =\Tud-1Z
isnorm = false; k2_6<v
Z
end &dZ.+#8r
@mQ/WYs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JhMrm%
% Compute the Zernike Polynomials ySr091Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t(z(-G|&
q^jqLT&w
% Determine the required powers of r: $ sA~p_]
% ----------------------------------- #cp$ltY
m_abs = abs(m); ;:-2~z~~
rpowers = []; }Yo15BN+
for j = 1:length(n) %b-;Rn
rpowers = [rpowers m_abs(j):2:n(j)]; %~B)~|h
end XDrlJvrPL
rpowers = unique(rpowers); Yn[EI7D
6,g5To#vw
% Pre-compute the values of r raised to the required powers, -Iruua7b
% and compile them in a matrix: 5x1%oC
% ----------------------------- Vne.HFXA
if rpowers(1)==0 Y00i{/a 8
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |j5AU
rpowern = cat(2,rpowern{:}); ^;bGP.!p
rpowern = [ones(length_r,1) rpowern]; =AnZ>6
else }'w^<:RSy
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); wEo-a< (
rpowern = cat(2,rpowern{:}); wNf*/?N
end g1hg`qBBW
My6]k?;}(
% Compute the values of the polynomials: H~_^w.P
% -------------------------------------- &>) `P[x
y = zeros(length_r,length(n)); PTI'N%W
for j = 1:length(n) soQv?4
s = 0:(n(j)-m_abs(j))/2; H,4,~lv|
pows = n(j):-2:m_abs(j); o{-USUGj7
for k = length(s):-1:1 x9&tlKKxf
p = (1-2*mod(s(k),2))* ... 9/X v&<Tn
prod(2:(n(j)-s(k)))/ ... !+*?pq
prod(2:s(k))/ ... {C0OrO2:
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... P`IMvOs&
prod(2:((n(j)+m_abs(j))/2-s(k))); t#D\*:Xi
idx = (pows(k)==rpowers); k+m_L{#m5
y(:,j) = y(:,j) + p*rpowern(:,idx); {7pE9R 5
end RfKxwo|M<
k>z-Zg
if isnorm 2Z IpzH/8
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1Z$99
end EH!EyNNb
end o7 -h'b-
% END: Compute the Zernike Polynomials NM.f0{:cj
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k`4\.m"&
B,VSFpPx
% Compute the Zernike functions: ]BS{,sI
% ------------------------------ {</$ObK
idx_pos = m>0; $RFu
m'`5
idx_neg = m<0; dXK~
Z:
PEQvEruZ}
z = y; KxTYc
if any(idx_pos) o}^vREO
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); W!Ct[t
end 9jzLXym
if any(idx_neg) '`goy%Wd
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); b8b PK<
end :PjUl
$d??(
% EOF zernfun