切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11322阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 g;>M{)A  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 4/Vy@h"A3  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 mGQgy[gX  
    function z = zernfun(n,m,r,theta,nflag) Tl#Jf3XY}  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. +s6 wF{  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1MtvnPY  
    %   and angular frequency M, evaluated at positions (R,THETA) on the -DO*,Eecv  
    %   unit circle.  N is a vector of positive integers (including 0), and 7k<4/|CQ{  
    %   M is a vector with the same number of elements as N.  Each element dVDQ^O&  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) kT(}>=]g  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, K>kMKd1  
    %   and THETA is a vector of angles.  R and THETA must have the same &`a$n2ycy  
    %   length.  The output Z is a matrix with one column for every (N,M) SL;\S74  
    %   pair, and one row for every (R,THETA) pair. Z\=].[,w4  
    % jafq(t  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike wz*QB6QtU  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), H=vrF-#  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Lw=.LN  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, qYg4H|6  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized (89NK]2x  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. b$sw`Rsw  
    % k_9tz}Z  
    %   The Zernike functions are an orthogonal basis on the unit circle. ZQvpkO7}M  
    %   They are used in disciplines such as astronomy, optics, and YyX/:1 sg>  
    %   optometry to describe functions on a circular domain. '676\2.  
    % l`2X'sw[/  
    %   The following table lists the first 15 Zernike functions. eNlE]W,=  
    % 6 ^X$;  
    %       n    m    Zernike function           Normalization 5/Ng!bW  
    %       -------------------------------------------------- oZ1#.o{  
    %       0    0    1                                 1 r}i<cyL  
    %       1    1    r * cos(theta)                    2 %/dYSC  
    %       1   -1    r * sin(theta)                    2 }>JFO:v&  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) D4yJ:ATO&  
    %       2    0    (2*r^2 - 1)                    sqrt(3) [y y D-  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) TB] %?L:  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) JMu|$"o&{  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Q? a&q0f  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) B$k<F8!%  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ^e$;I8l  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) O6P0Am7s  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) SGW2'  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) c'_-jdi`>_  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9&}`.Py  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) e{/(NtKf  
    %       -------------------------------------------------- ?;.j)  
    % ?@9kVB*|  
    %   Example 1: b .k J&c  
    % 8uoFV=bj\  
    %       % Display the Zernike function Z(n=5,m=1) >9W ;u`  
    %       x = -1:0.01:1; Ebp^-I9.d  
    %       [X,Y] = meshgrid(x,x); 9Ot;R?>(  
    %       [theta,r] = cart2pol(X,Y); yy4QY%  
    %       idx = r<=1; "U34D1I )#  
    %       z = nan(size(X)); -@%*~^~z'  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); <ns[( Q  
    %       figure -zg,pK$+  
    %       pcolor(x,x,z), shading interp 2q J}5  
    %       axis square, colorbar Q7$ILW-S  
    %       title('Zernike function Z_5^1(r,\theta)') buGW+TrWY  
    % F\+wM*:U  
    %   Example 2: hS&,Gm`^  
    % bD<[OerG  
    %       % Display the first 10 Zernike functions n6; jIf|  
    %       x = -1:0.01:1; ks7g*; 3{@  
    %       [X,Y] = meshgrid(x,x); q{ov62t`  
    %       [theta,r] = cart2pol(X,Y); Vb06z3"r  
    %       idx = r<=1; ;HM& ":7  
    %       z = nan(size(X)); B:5( sK  
    %       n = [0  1  1  2  2  2  3  3  3  3]; g^(wZ$NH  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; C>Qgd9  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; cj-P&D[Ny[  
    %       y = zernfun(n,m,r(idx),theta(idx)); |@={:gRJ{x  
    %       figure('Units','normalized') go/]+vD  
    %       for k = 1:10 Rd;k>e  
    %           z(idx) = y(:,k); DF'-dh</*  
    %           subplot(4,7,Nplot(k)) Eom|*2vWIC  
    %           pcolor(x,x,z), shading interp $78fR8|r-  
    %           set(gca,'XTick',[],'YTick',[]) F"j0;}+N  
    %           axis square l2>G +t(,  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?yzhk7j7  
    %       end ?b2  
    % -;'8#"{`^  
    %   See also ZERNPOL, ZERNFUN2. A1@tp/L=o  
    9 )u*IGj  
    %   Paul Fricker 11/13/2006 JpE4 o2  
    elb|=J`M0  
    ,"  
    % Check and prepare the inputs: O^hWG ~o  
    % ----------------------------- B2VC:TG>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) F{ J>=TC  
        error('zernfun:NMvectors','N and M must be vectors.') {gluK#Qm  
    end y5iLFR3z  
    $6h:j#{JE  
    if length(n)~=length(m) -_.)~ )P  
        error('zernfun:NMlength','N and M must be the same length.') Adgh:'h  
    end ,Cj1S7GFR  
    d/Xbk%`p  
    n = n(:); 0P sp/H%  
    m = m(:); ji<b#YO4  
    if any(mod(n-m,2)) z`((l#(  
        error('zernfun:NMmultiplesof2', ... t>f<4~%MJ  
              'All N and M must differ by multiples of 2 (including 0).') ,rc5r3  
    end uQWJ7Xm  
    lz@fXaZM  
    if any(m>n) C_=! ( @`8  
        error('zernfun:MlessthanN', ... EP&iG%(k  
              'Each M must be less than or equal to its corresponding N.') |{+D65R  
    end ?`Qw=8]`  
    K>6#MI  
    if any( r>1 | r<0 ) 1Vt7[L*  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') $n& alcU  
    end AU}e^1h  
    r9 'lFj  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) EcrM`E#kaZ  
        error('zernfun:RTHvector','R and THETA must be vectors.') ,x!P|\w.G{  
    end mf6?8!O}>  
    -}1S6dzr  
    r = r(:); -fuSCj  
    theta = theta(:); ~T>_}Q[M2p  
    length_r = length(r); T[B@7$Dp*  
    if length_r~=length(theta) -X5rGp++  
        error('zernfun:RTHlength', ... 7(^<Z5@  
              'The number of R- and THETA-values must be equal.') 6c>t|=Ss(  
    end vC[)/w  
    xi8RE@gm  
    % Check normalization: !=--pb  
    % -------------------- )`yxJ;O@$  
    if nargin==5 && ischar(nflag) F.ryeOJ  
        isnorm = strcmpi(nflag,'norm'); #ebT$hf30  
        if ~isnorm AJ`b- $Q  
            error('zernfun:normalization','Unrecognized normalization flag.') lb5Y$ZC  
        end xz[a3In+  
    else e@*Gnh<&  
        isnorm = false; w' K\}G~  
    end VS@o_fUx)  
    {^>m3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :M9'wg  
    % Compute the Zernike Polynomials -MOPm]iA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H>_ FCV8  
    3g9xTG);eA  
    % Determine the required powers of r: ==`K$rM  
    % ----------------------------------- sh[Yu  
    m_abs = abs(m); _C~e(/=z  
    rpowers = []; U0t/(Jyg  
    for j = 1:length(n) P}N%**>`  
        rpowers = [rpowers m_abs(j):2:n(j)]; hc2[,Hju{O  
    end v' .:?9  
    rpowers = unique(rpowers); 96T.xT>&  
    ~?m';  
    % Pre-compute the values of r raised to the required powers, %/b?T]{  
    % and compile them in a matrix: >t7xa]G  
    % ----------------------------- |lOxRUf~  
    if rpowers(1)==0 7'Y 3T[  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); n( l!T 7  
        rpowern = cat(2,rpowern{:}); BusD}9QqB  
        rpowern = [ones(length_r,1) rpowern]; VlRN  
    else zg+78  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); csz/[*  
        rpowern = cat(2,rpowern{:}); /cF 6{0XS9  
    end ^ '!]|^  
    DxR__  
    % Compute the values of the polynomials: )dgXS//Y  
    % -------------------------------------- <KqZ.7XfB  
    y = zeros(length_r,length(n)); ^_#0\f  
    for j = 1:length(n) Z0g3> iItM  
        s = 0:(n(j)-m_abs(j))/2; =i  }  
        pows = n(j):-2:m_abs(j); =($RT  
        for k = length(s):-1:1 wv<D%nF2|  
            p = (1-2*mod(s(k),2))* ... PN[ `p1F  
                       prod(2:(n(j)-s(k)))/              ... I>o+INb:  
                       prod(2:s(k))/                     ... \{@s@VBx[  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... wV-1B\m  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); >(S4h}^I  
            idx = (pows(k)==rpowers); no`c[XY  
            y(:,j) = y(:,j) + p*rpowern(:,idx); V|KYkEl r1  
        end u@5vK2  
         i`)bn 1Xm  
        if isnorm [H)NkR;I  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); B~QX{  
        end I1yZ7QY  
    end 2Un~ Iy  
    % END: Compute the Zernike Polynomials %l%5Q;t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S.rlF1`  
    Da*=uW9  
    % Compute the Zernike functions: "- S2${  
    % ------------------------------ 8-5MGh0L  
    idx_pos = m>0; exrsYo!%  
    idx_neg = m<0; w~+5FSdH  
    /KjRB_5~q}  
    z = y; U1bhd}MoR  
    if any(idx_pos) azR<Y_tw  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); P1)f-:;  
    end '#gd19#  
    if any(idx_neg) 3 XdN \xc  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %5 V!Fdb  
    end &M(=#pq9  
    &cztUM(  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) UOHU 1.3$T  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. yE[ -@3v  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated h1@|UxaE#  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive HKr")K%  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 6}wXNTd  
    %   and THETA is a vector of angles.  R and THETA must have the same <6^MVaD  
    %   length.  The output Z is a matrix with one column for every P-value, y%)5r}S^  
    %   and one row for every (R,THETA) pair. \U;4 \  
    % f>\OT   
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 6, \i0y5n  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) J.Mj76\_  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Bv_C *vW  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 9XWHr/-_@  
    %   for all p. CY;ML6c@  
    % rB|Mp!g%@  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ^{&Vv(~!Q  
    %   Zernike functions (order N<=7).  In some disciplines it is RaT(^b(  
    %   traditional to label the first 36 functions using a single mode {Ts@#V=:  
    %   number P instead of separate numbers for the order N and azimuthal ^]c/hb|X  
    %   frequency M. uU(G&:@  
    % U;Z6o1G  
    %   Example: wLwAtjW)  
    % 7uG@ hL36  
    %       % Display the first 16 Zernike functions fTiqY72h  
    %       x = -1:0.01:1; ?h UC#{  
    %       [X,Y] = meshgrid(x,x); .|Y2'TWQ  
    %       [theta,r] = cart2pol(X,Y); >!O3 jb k  
    %       idx = r<=1; Uf )?sz  
    %       p = 0:15; {N1Ss|6  
    %       z = nan(size(X)); Y: &?xR  
    %       y = zernfun2(p,r(idx),theta(idx)); 0STtwfTr:  
    %       figure('Units','normalized') iTsmUq<b]l  
    %       for k = 1:length(p) y~'F9E!i  
    %           z(idx) = y(:,k); JwWW w1  
    %           subplot(4,4,k) *Wk y#  
    %           pcolor(x,x,z), shading interp (7BG~T  
    %           set(gca,'XTick',[],'YTick',[]) S|!)_RL  
    %           axis square f!hQ"1[  
    %           title(['Z_{' num2str(p(k)) '}']) )&:4//}a  
    %       end T|^rFaA  
    % ^$qr6+  
    %   See also ZERNPOL, ZERNFUN. :e>y= s>  
    WNSf$D{p  
    %   Paul Fricker 11/13/2006 cF!ygz//  
    $z,lq#zzl  
    .Tr!/mf_  
    % Check and prepare the inputs: 'qcLK>E  
    % ----------------------------- Cj31>k1  
    if min(size(p))~=1 :l>&5w;  
        error('zernfun2:Pvector','Input P must be vector.') N*z_rZE  
    end Jydz2 zt!  
    7=C$*)x  
    if any(p)>35 {^>dQ+Sx7  
        error('zernfun2:P36', ... 8 tMfh  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ,l`4)@{G  
               '(P = 0 to 35).']) _j{^I^P  
    end sv`+?hjG  
    .;j}:<  
    % Get the order and frequency corresonding to the function number: rFJ(t7\9h  
    % ---------------------------------------------------------------- QX}O{LQR  
    p = p(:); %^){Z,}M}  
    n = ceil((-3+sqrt(9+8*p))/2); gwE#,OY*  
    m = 2*p - n.*(n+2); Ut:>'TwG  
    c{4C4'GD  
    % Pass the inputs to the function ZERNFUN: :*|%g  
    % ---------------------------------------- lZoy(kdc  
    switch nargin ;=\vm"I?  
        case 3 @IL_  
            z = zernfun(n,m,r,theta); R2{y1b$l  
        case 4 q\wT[W31@  
            z = zernfun(n,m,r,theta,nflag); EIZSV>  
        otherwise 4AdZN5  
            error('zernfun2:nargin','Incorrect number of inputs.') "@: b'm  
    end o,l3j|1  
    u,AZMjlF  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) On%21L;JG  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. H}m%=?y@  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of L ;5R*)t  
    %   order N and frequency M, evaluated at R.  N is a vector of S[p.`<{J  
    %   positive integers (including 0), and M is a vector with the t(3<w)r2  
    %   same number of elements as N.  Each element k of M must be a /)I:C z/f  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ?kBi9^)N4  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ')C %CAYW  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix cQkH4>C~  
    %   with one column for every (N,M) pair, and one row for every #$q~ZKB  
    %   element in R. Gvg)@VNr  
    % ,\*PpcU  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 3I0=^ >A  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is A gKG>%0  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to nNuv 0  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 &8VB{S>r  
    %   for all [n,m]. AKW M7fI  
    % V %k #M  
    %   The radial Zernike polynomials are the radial portion of the uJ:'<dJ  
    %   Zernike functions, which are an orthogonal basis on the unit y&8' V\  
    %   circle.  The series representation of the radial Zernike j2GO ZKy  
    %   polynomials is D0T0Km/"  
    % {}F?eI  
    %          (n-m)/2 QLNQE6-  
    %            __ PF$K> d  
    %    m      \       s                                          n-2s OVr, {[r  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r #i$/qk= N  
    %    n      s=0 5?-cP?|.9  
    % L,!3  
    %   The following table shows the first 12 polynomials. 3`y9V2&b  
    % qs\ O(K8  
    %       n    m    Zernike polynomial    Normalization {Rc!S? 8  
    %       --------------------------------------------- 02g!mJW>}y  
    %       0    0    1                        sqrt(2) 5Ym/'eT  
    %       1    1    r                           2 *}BaO*A  
    %       2    0    2*r^2 - 1                sqrt(6) QwaCaYoh  
    %       2    2    r^2                      sqrt(6) $nR1AOm}.B  
    %       3    1    3*r^3 - 2*r              sqrt(8) 8m? 9?OV5  
    %       3    3    r^3                      sqrt(8) N}ur0 'J0  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) #$!(8>YJ  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ~ Iin|  
    %       4    4    r^4                      sqrt(10) 63hOK  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) wc #+ Yh6  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) #vk-zx*v7=  
    %       5    5    r^5                      sqrt(12) B>kx$_~  
    %       --------------------------------------------- eWjLP{W  
    % wNsAVUjLe  
    %   Example: om$x;L6  
    % 5DgfrX  
    %       % Display three example Zernike radial polynomials qU!*QZ^y&  
    %       r = 0:0.01:1; dB{o-R  
    %       n = [3 2 5]; Yh`P+L  
    %       m = [1 2 1]; U`gQ7  
    %       z = zernpol(n,m,r); /mMRV:pd  
    %       figure DDdMWH^o7  
    %       plot(r,z) A?l.(qG C_  
    %       grid on p(EV-^  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ;; z4EGr  
    % -Y]ue*k{  
    %   See also ZERNFUN, ZERNFUN2. o K;.|ja  
    aAHx^X^  
    % A note on the algorithm. .~#<>  
    % ------------------------ fhx_v^< X  
    % The radial Zernike polynomials are computed using the series D ==H{c1F  
    % representation shown in the Help section above. For many special anwMG0  
    % functions, direct evaluation using the series representation can Uloa]X=Im8  
    % produce poor numerical results (floating point errors), because Xg>nb1e  
    % the summation often involves computing small differences between KPGo*mY  
    % large successive terms in the series. (In such cases, the functions $[zy|Y(  
    % are often evaluated using alternative methods such as recurrence I!IWmU6FN  
    % relations: see the Legendre functions, for example). For the Zernike CXqU< a&  
    % polynomials, however, this problem does not arise, because the R~40,$e{  
    % polynomials are evaluated over the finite domain r = (0,1), and fIOI  
    % because the coefficients for a given polynomial are generally all u&)+~X  
    % of similar magnitude. b!W!Vvf^x  
    % |Sg FHuA  
    % ZERNPOL has been written using a vectorized implementation: multiple v-`RX;8  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] )4oTA@wR  
    % values can be passed as inputs) for a vector of points R.  To achieve Fb#_(I[aj  
    % this vectorization most efficiently, the algorithm in ZERNPOL 63b?-.!b  
    % involves pre-determining all the powers p of R that are required to B j!{JcM-^  
    % compute the outputs, and then compiling the {R^p} into a single H38ODWO3  
    % matrix.  This avoids any redundant computation of the R^p, and Ktrqrl^IJ  
    % minimizes the sizes of certain intermediate variables. u<`CkYT  
    % <^j,jX  
    %   Paul Fricker 11/13/2006 ${"+bWG2G!  
    [}snKogp  
    X}?`G?'  
    % Check and prepare the inputs: ^8S'=Bk  
    % ----------------------------- ,DrE4")4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) VEAf,{)Q  
        error('zernpol:NMvectors','N and M must be vectors.') zUg-M  
    end CB(Qy9C%h[  
    Gv,_;?7lD  
    if length(n)~=length(m) {Lj]++`fB]  
        error('zernpol:NMlength','N and M must be the same length.') JGH;&UYP  
    end DgOO\  
    a4gJ-FE  
    n = n(:); %X(iAoxbj  
    m = m(:); `TvpKS5.Y  
    length_n = length(n); sdq8wn  
    p|Po##E}g^  
    if any(mod(n-m,2)) JTuU}nm+  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') VUF^ r7e  
    end %u"3&kOV  
    w}="}Cb  
    if any(m<0) mfHZGk[[  
        error('zernpol:Mpositive','All M must be positive.') <Wgp$qt;  
    end \W5fcxf  
    :f?};t+  
    if any(m>n) h$`P|#V&  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 0Da9,&D  
    end tHez S~t_  
    RY=B>398:  
    if any( r>1 | r<0 ) 2"`R_q  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') {j%'EJ5  
    end ?Rlo<f:Mf  
    -ea":}/  
    if ~any(size(r)==1) aw z(W >  
        error('zernpol:Rvector','R must be a vector.') ^8p=g -U\  
    end qV^Z@N+,  
    &S/@i|_  
    r = r(:); 9 06b=  
    length_r = length(r); nCF1i2*6|"  
    }Gmwm|`*  
    if nargin==4 nM*-Dy3ou  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); K&2{k+ w  
        if ~isnorm J[6`$$l0  
            error('zernpol:normalization','Unrecognized normalization flag.') R pUq#Y:a  
        end $)w9EGZ  
    else 9r,)Bw!RP  
        isnorm = false; 1n+C'P"  
    end _]~`t+W'DJ  
    K0hmRR=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |G^w2"D_Z  
    % Compute the Zernike Polynomials ?7 Kl)p3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p*F.WxB)4  
    xY] Y  
    % Determine the required powers of r: B}n tD  
    % ----------------------------------- 7[=MgnmuC  
    rpowers = []; QDO.&G2  
    for j = 1:length(n) 0Z.bd=H  
        rpowers = [rpowers m(j):2:n(j)]; : b9X?%L~  
    end t= =+SHGP  
    rpowers = unique(rpowers); A.0eeX{  
    g\;&Z  
    % Pre-compute the values of r raised to the required powers, Yyl(<,Yi  
    % and compile them in a matrix: <Lz/J-w  
    % ----------------------------- 'Em5AA`>  
    if rpowers(1)==0 %Z T@&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); s];jroW@u  
        rpowern = cat(2,rpowern{:}); =Kf]ZKj)  
        rpowern = [ones(length_r,1) rpowern]; ^! ?wh  
    else ]iP  +Y  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); o Ho@rGU  
        rpowern = cat(2,rpowern{:}); v?\Z4Z|f  
    end CKoRq|QG_  
    wGRMv1|lIu  
    % Compute the values of the polynomials: 8R G U^&  
    % -------------------------------------- 6|h~pH  
    z = zeros(length_r,length_n); z=YHRS  
    for j = 1:length_n $^[^ ]Q  
        s = 0:(n(j)-m(j))/2; [nL{n bli  
        pows = n(j):-2:m(j); EZICH&_  
        for k = length(s):-1:1 ?]1_ 2\M  
            p = (1-2*mod(s(k),2))* ... IdP"]Sv{<  
                       prod(2:(n(j)-s(k)))/          ... >M~wFs$~  
                       prod(2:s(k))/                 ... &w4~0J>v!  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... UBj"m<  
                       prod(2:((n(j)+m(j))/2-s(k))); )SJ18 no|l  
            idx = (pows(k)==rpowers); QzV Q}  
            z(:,j) = z(:,j) + p*rpowern(:,idx); X,+M?  
        end G a1B&@T  
         ZT;8Wvo  
        if isnorm -SF *DZ  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); @Kl'0>U  
        end 25bLU?x5B  
    end 'WF Ey>1#  
    j,:vK  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  tu%!j}3s  
    8rXQK|A  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 YR\pt8(z?  
    ~|>q)4is6a  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)