非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ?;ukvD
function z = zernfun(n,m,r,theta,nflag) hlJpElYf
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. *A}WP_ZQ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N e79KbLV
% and angular frequency M, evaluated at positions (R,THETA) on the 0JyVNuHn
% unit circle. N is a vector of positive integers (including 0), and R=)55qu
% M is a vector with the same number of elements as N. Each element K7TzF&
% k of M must be a positive integer, with possible values M(k) = -N(k) k%'m *T f
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, \FmKJ\
% and THETA is a vector of angles. R and THETA must have the same VRng=,
% length. The output Z is a matrix with one column for every (N,M) i?@M
% pair, and one row for every (R,THETA) pair. @J'YV{]
% ;iYff N
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -b;|q.!
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5N7H{vT_
% with delta(m,0) the Kronecker delta, is chosen so that the integral Qt>>$3]!!
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, MHj,<|8Q
% and theta=0 to theta=2*pi) is unity. For the non-normalized vG.9H_&
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. d=O3YNM:v
% 4\otq%Y
% The Zernike functions are an orthogonal basis on the unit circle. h:bru:ef
% They are used in disciplines such as astronomy, optics, and 63WS7s"
% optometry to describe functions on a circular domain. A#h /B+
% 9]'&RyH=#
% The following table lists the first 15 Zernike functions. MmTC=/j
% j+4H}XyE
% n m Zernike function Normalization R=j% S!
% -------------------------------------------------- F'm(8/A$
% 0 0 1 1 yl&UM
qI(
% 1 1 r * cos(theta) 2 v}JD2.O+
% 1 -1 r * sin(theta) 2 8P' ana
% 2 -2 r^2 * cos(2*theta) sqrt(6) gN6rp(?y
% 2 0 (2*r^2 - 1) sqrt(3) 6i@\5}m=
% 2 2 r^2 * sin(2*theta) sqrt(6) !c#]?b%
% 3 -3 r^3 * cos(3*theta) sqrt(8) zy'D!db`Z
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) R,2P3lv1v@
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) yCz|{=7"j
% 3 3 r^3 * sin(3*theta) sqrt(8) tAu4haa4;
% 4 -4 r^4 * cos(4*theta) sqrt(10) ,FzeOSy'p
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `YBkF
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 4-GXmC
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o(kM9G|
% 4 4 r^4 * sin(4*theta) sqrt(10) E ]9\R
% -------------------------------------------------- 2.e
vx
% TtD@'QXq
% Example 1: )v4b
% =3~/:8o
% % Display the Zernike function Z(n=5,m=1) ;lX(}2tXW
% x = -1:0.01:1; q%>'4_
% [X,Y] = meshgrid(x,x); Z)9g~g94
% [theta,r] = cart2pol(X,Y); BP[|nL
% idx = r<=1; WG71k8af
% z = nan(size(X)); @F*wg
% z(idx) = zernfun(5,1,r(idx),theta(idx)); |R/.r_x,V?
% figure I`(l *U
% pcolor(x,x,z), shading interp B?rSjdY4
% axis square, colorbar e-hjC6Q U
% title('Zernike function Z_5^1(r,\theta)') T'-FV
% Z;Rp+X
% Example 2: x`RTp:#
% LjFqZrH
% % Display the first 10 Zernike functions U:6W+p8
% x = -1:0.01:1; ,B}I?vN.
% [X,Y] = meshgrid(x,x); [P4$Khu$
% [theta,r] = cart2pol(X,Y); NSAF4e
% idx = r<=1; )jrT6x^IB
% z = nan(size(X)); {Rq1HH
% n = [0 1 1 2 2 2 3 3 3 3]; Uggw -sRU
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; HL3XyP7
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 1k%k`[VC
% y = zernfun(n,m,r(idx),theta(idx)); eas:6Q)
% figure('Units','normalized') <+#oBN
% for k = 1:10 %?C8mA'w
% z(idx) = y(:,k); abNV4 ,M
% subplot(4,7,Nplot(k)) &ZHC-qMRK
% pcolor(x,x,z), shading interp ''OfS D_g
% set(gca,'XTick',[],'YTick',[]) Qe"pW\
% axis square |WryBzZ>on
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) DHC+C4
% end C`jM0Q
% IxR?'
% See also ZERNPOL, ZERNFUN2. ysIh[1E~%:
@Y,7'0U
% Paul Fricker 11/13/2006 |H}m 4-+*
m9}AG Rj
3ss6_xd+
% Check and prepare the inputs: 'V+dBt3
% ----------------------------- `~UZU@/x
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _lKZmhi
error('zernfun:NMvectors','N and M must be vectors.') ]&~]#vB#
end FSuAjBl0-
ZPN
roCK`
if length(n)~=length(m) Nr<`Z
error('zernfun:NMlength','N and M must be the same length.') Si9Z>MR
end Z+`{ 7G?4m
L%}zVCg
n = n(:); ;8S/6FI
m = m(:); %Pqk63QF
if any(mod(n-m,2)) M~*u;vA/
error('zernfun:NMmultiplesof2', ... *Oc.9 F88"
'All N and M must differ by multiples of 2 (including 0).') ZR v"h/~
end D'l5Zd
EVX{ 7%
if any(m>n) if;71ZE
error('zernfun:MlessthanN', ... 7?gFy-
'Each M must be less than or equal to its corresponding N.') |wEN`#.;b
end @4(k(
;Yfv!\^ |
if any( r>1 | r<0 ) C9DJO:f.2y
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Sw`RBN[ yo
end [+*$\
K-<^$VWh
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (C]
SH\
error('zernfun:RTHvector','R and THETA must be vectors.') R.[Z]-X
end ,6!rR,0
YJS{i
r = r(:); !J*,)kRN
theta = theta(:); `u!l3VZ/4
length_r = length(r); 'Djm0
if length_r~=length(theta) ~1m2#>
error('zernfun:RTHlength', ... 7J28JK
'The number of R- and THETA-values must be equal.') !{n<K:x1
end _ ~RpGX
w:Jrmx
% Check normalization: LIU}a5
% -------------------- Ee1LO#^_6
if nargin==5 && ischar(nflag) =@u 5|:
isnorm = strcmpi(nflag,'norm'); @ ''GPL@
if ~isnorm t&5%?QyM
error('zernfun:normalization','Unrecognized normalization flag.') Sx:Ur>?hd5
end Nfe>3uQK
else JxLf?ad.
isnorm = false; yq_LW>|Z
end MC0TaP
f"7M^1)h2%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w#JJXXQI
% Compute the Zernike Polynomials @ DZD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /:<IIqO.
:{'k@J"|a
% Determine the required powers of r: p5O",3,A4
% ----------------------------------- LAx4Xp/
m_abs = abs(m); 7:]Pl=:X
rpowers = []; cH<q:OYi
for j = 1:length(n) FLoNE>q
rpowers = [rpowers m_abs(j):2:n(j)]; %xlqF<
end .t&R>9cZ^
rpowers = unique(rpowers); 5!C_X5M
E@a3~a
% Pre-compute the values of r raised to the required powers, Y
$g$x<7
% and compile them in a matrix: qj01]
% ----------------------------- k"kJ_(
if rpowers(1)==0 )CI1;
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,U *)2`[
rpowern = cat(2,rpowern{:}); Y=Z1Tdxa|
rpowern = [ones(length_r,1) rpowern]; EA.D}X C
else !@u>A_
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _<$>*i
R
rpowern = cat(2,rpowern{:}); H9 C9P17
end #B'aU#$u
h0?2j)X_
% Compute the values of the polynomials: ^1:U'jIXO
% -------------------------------------- 6b8;}],|
y = zeros(length_r,length(n)); %or,{mmiM:
for j = 1:length(n) H?}[r)|(3i
s = 0:(n(j)-m_abs(j))/2; 2=-utN@Z
pows = n(j):-2:m_abs(j); =k3!RW'
for k = length(s):-1:1 "+KJop
p = (1-2*mod(s(k),2))* ... Sj'ht=
prod(2:(n(j)-s(k)))/ ... _$<Gyz*
prod(2:s(k))/ ... WqxUX H
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... gIR^)m
prod(2:((n(j)+m_abs(j))/2-s(k))); %xwIt~Y
idx = (pows(k)==rpowers); ?^'
7+8C*J
y(:,j) = y(:,j) + p*rpowern(:,idx); 0.r4f'vk
end
s6
( z
,3v+PIcMM+
if isnorm [w
-{r+[
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6,1b=2G
end {^{p,9
end #6+FY+/
% END: Compute the Zernike Polynomials IUGz =%[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r8xyd"Axy
~/_9P Fk
% Compute the Zernike functions: -3Avs9`5
% ------------------------------ "O+5R(XT
idx_pos = m>0; d-bqL:/
idx_neg = m<0; 4vK8kkW1
#5sD{:f`
z = y; qP!eJ6[Nh"
if any(idx_pos) qZ@0]"h
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Mv|ykJoz"
end uBg 8h{>
if any(idx_neg) 6Dws,_UAZ4
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {vaaFs
end R8*Q$rH<
OYM@szM
% EOF zernfun