非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 >L`mF_WG
function z = zernfun(n,m,r,theta,nflag) ~HRWKPb
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. }{oBKm9_p
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N KB*=a
% and angular frequency M, evaluated at positions (R,THETA) on the ZMg9Qt
% unit circle. N is a vector of positive integers (including 0), and r.^X>?
% M is a vector with the same number of elements as N. Each element [#'_@zZz
% k of M must be a positive integer, with possible values M(k) = -N(k) )#~fS28j
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, d}cJ5!d
% and THETA is a vector of angles. R and THETA must have the same 5)NBM7h
% length. The output Z is a matrix with one column for every (N,M) NOp=/
% pair, and one row for every (R,THETA) pair. Q]UYG(
% WCT W#<izm
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Vzvw/17J
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), < DZ76
% with delta(m,0) the Kronecker delta, is chosen so that the integral nvVsO>2{ o
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, gr{Sh`Cm-
% and theta=0 to theta=2*pi) is unity. For the non-normalized l]y%cJ~$'D
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. igj@{FN
% *js$r+4
% The Zernike functions are an orthogonal basis on the unit circle. bvS\P!m\c
% They are used in disciplines such as astronomy, optics, and ]mo<qWRc>p
% optometry to describe functions on a circular domain. @SG"t,5s
% pbxcsA\
% The following table lists the first 15 Zernike functions. W(lKR_pF
% DK_v{R
% n m Zernike function Normalization x0$:"68PW
% -------------------------------------------------- i=H>D
% 0 0 1 1 &\`a5[
% 1 1 r * cos(theta) 2 L9?/ -@M
% 1 -1 r * sin(theta) 2 SH$cn,3F8
% 2 -2 r^2 * cos(2*theta) sqrt(6) 0+y~RTAVB
% 2 0 (2*r^2 - 1) sqrt(3) i3&B%JiLX
% 2 2 r^2 * sin(2*theta) sqrt(6) cBR8HkP~
% 3 -3 r^3 * cos(3*theta) sqrt(8) P^m 6di
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) xjq7%R_,
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) l@/kPEh
% 3 3 r^3 * sin(3*theta) sqrt(8) FDs^S)B
% 4 -4 r^4 * cos(4*theta) sqrt(10) y&=19A#
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8Pr7aT:,
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) SJc@iffS
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (My$@l973
% 4 4 r^4 * sin(4*theta) sqrt(10) yP9wYF^A\
% -------------------------------------------------- L0|hc
% 8|qB1fB
% Example 1: }%FuL5Tx
% (s@tU>4U
% % Display the Zernike function Z(n=5,m=1) S}Y|s]6
% x = -1:0.01:1; xP6?e s`
% [X,Y] = meshgrid(x,x); _ u|FJTk
% [theta,r] = cart2pol(X,Y); "~2#!bK7
% idx = r<=1; IgR"euU
% z = nan(size(X)); Y{2d4VoW6
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 5h=TV
% figure q(tGbhQ
% pcolor(x,x,z), shading interp OC>_=i$'
% axis square, colorbar r{2].31'
% title('Zernike function Z_5^1(r,\theta)') $EGRaps{j>
% e=jT]i *cU
% Example 2: BS,5W]ervE
% hB}h-i(u
% % Display the first 10 Zernike functions ;,vL
% x = -1:0.01:1; xgT~b9
% [X,Y] = meshgrid(x,x); Ao,!z
% [theta,r] = cart2pol(X,Y); [aM'
% idx = r<=1; -S%q!%}u
% z = nan(size(X)); $K_YC~
% n = [0 1 1 2 2 2 3 3 3 3]; $n#Bi.A
j
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; $FusDdCv3
% Nplot = [4 10 12 16 18 20 22 24 26 28]; YyJ{
% y = zernfun(n,m,r(idx),theta(idx)); MjXE|3&
% figure('Units','normalized') waWKpk1Wo
% for k = 1:10 ,Lun-aMd
% z(idx) = y(:,k); Z-h7
% subplot(4,7,Nplot(k)) =e!l=d|/
% pcolor(x,x,z), shading interp H9san5{
% set(gca,'XTick',[],'YTick',[]) =1
BNCKT<
% axis square ~'NpM#A
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \aVY>1`
% end 6(J4IzZ
% (YYj3#|
% See also ZERNPOL, ZERNFUN2. G]mWaA
,s><kHJ
% Paul Fricker 11/13/2006 c@ZS|U*(
.Y(lB=pV
B&i0j5L
% Check and prepare the inputs: JYg% ~tW'
% ----------------------------- EwD3d0udL
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) lTr*'fX
error('zernfun:NMvectors','N and M must be vectors.') "o{)X@YN]
end ^K.u
~p
=%3b@}%HqS
if length(n)~=length(m) QOV}5 0
error('zernfun:NMlength','N and M must be the same length.') 45+%K@@x
end V'"I9R'1
EzIs@}
n = n(:); 3xzkZ8]/
m = m(:); 6
tc:A5mK
if any(mod(n-m,2)) ;;?vgrz
error('zernfun:NMmultiplesof2', ... Cx+WLD
'All N and M must differ by multiples of 2 (including 0).') )XP#W|;
end 1@%B?
jWXR__>.
if any(m>n) a;"Uz|rz
error('zernfun:MlessthanN', ... Oz&+{ c
'Each M must be less than or equal to its corresponding N.') ;Rhb@]X
end Gg9VS&VI
}U%^3r-
if any( r>1 | r<0 ) y7JZKtsFA
error('zernfun:Rlessthan1','All R must be between 0 and 1.') `k(u:yGK
end l801`~*gO
JAlU%n?R
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) iUI y,Y
error('zernfun:RTHvector','R and THETA must be vectors.') ,M)k7t:
end <Zp^lDxa
aXdf>2c{JD
r = r(:); $s-9|Lbs`
theta = theta(:); <t{?7_ 8
length_r = length(r); >*dQqJI
if length_r~=length(theta) K8
b+
error('zernfun:RTHlength', ... {J~(#i
k
'The number of R- and THETA-values must be equal.') g4:VR:o
end e=t<H"&
a-]hW=[
% Check normalization: 'aD6>8/Hj
% -------------------- +7Yu^&
if nargin==5 && ischar(nflag) _i3i HR?
isnorm = strcmpi(nflag,'norm'); t`"^7YFS>
if ~isnorm 'h-3V8m^e
error('zernfun:normalization','Unrecognized normalization flag.') m|pTn#*`
end CQdBf3q
else oi2J:Y4
isnorm = false; Yd'H+r5b
end dG&2,n'f
5kcJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]7a;jNQu
% Compute the Zernike Polynomials 9~@<-6jE3b
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zwK
}7h6]
k$C"xg2
% Determine the required powers of r: *FV0Vy
% ----------------------------------- 31~hlp;
m_abs = abs(m); tbq|,"
rpowers = []; 6Wj@r!u
for j = 1:length(n) 9Z&?R++?
rpowers = [rpowers m_abs(j):2:n(j)]; Hu[]h]
end ZP"yq6!i
rpowers = unique(rpowers); $#5klA
%drJ p6n%
% Pre-compute the values of r raised to the required powers, FbveI4
% and compile them in a matrix: B4Q79gEh=
% ----------------------------- bA9CO\Pp`
if rpowers(1)==0 tG/aH% 4S
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U\Ct/U&A?
rpowern = cat(2,rpowern{:}); Dy su{rL
rpowern = [ones(length_r,1) rpowern]; TfJL+a0
else (@ "=F6P
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l '/N3&5
rpowern = cat(2,rpowern{:}); tWm> j
end tJ"az=?
`h?LVD'l
% Compute the values of the polynomials: UxyY<H~Wx
% -------------------------------------- HOfF"QAR$
y = zeros(length_r,length(n)); "Nbos.a]5
for j = 1:length(n) 'Q5&5UrBr
s = 0:(n(j)-m_abs(j))/2; KxY$PgcC
pows = n(j):-2:m_abs(j); <P1rqM9^
for k = length(s):-1:1 UR}kB&t
p = (1-2*mod(s(k),2))* ... l]H0g[
prod(2:(n(j)-s(k)))/ ... lX"b N=E?!
prod(2:s(k))/ ... O}QFq14<+
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ?w*yW;V`
prod(2:((n(j)+m_abs(j))/2-s(k))); wxj>W[V
idx = (pows(k)==rpowers); D}w<84qX
y(:,j) = y(:,j) + p*rpowern(:,idx); rj 3YTu`
end m%pBXXfGYj
>V(zJ
if isnorm `fz,Lh*v
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); bp#fyG"
end iX%[YQ |
end QQFf5^
% END: Compute the Zernike Polynomials b$Ln}<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $Z ]z
lyyX<=E{)
% Compute the Zernike functions: Lj8)'[K"
% ------------------------------ hT'=VN
idx_pos = m>0; /PXioiGcs
idx_neg = m<0; [SkKz>rC
sK&,):"]R
z = y; yyP'Z~0
if any(idx_pos) Rn-G
@}f
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 0z7L+2#b^
end FQROK4x%"
if any(idx_neg) &Yf",KcL*I
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); T1W:>~T5#
end @DuK#W"E u
L,?/'!xV
% EOF zernfun