切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10933阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ZxeE6&#M^w  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! om39;nk!}  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 @9 tv N}  
    function z = zernfun(n,m,r,theta,nflag) 7ib<Cb>K  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. QN5N h s  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0`zq*OQ  
    %   and angular frequency M, evaluated at positions (R,THETA) on the BrmFwXLP"  
    %   unit circle.  N is a vector of positive integers (including 0), and ?^GsR[-x  
    %   M is a vector with the same number of elements as N.  Each element XE%6c3s  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Z+Zh;Ms  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, rxA)&  
    %   and THETA is a vector of angles.  R and THETA must have the same ^Iq.0E9_  
    %   length.  The output Z is a matrix with one column for every (N,M) aV#;o9H{  
    %   pair, and one row for every (R,THETA) pair. pODo[Rkq  
    % v333z<<S  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike S$:S*6M@"  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ttt&sW`  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral j`hbQp\`  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, dL"i\5#%A  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized K`2DhJC  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }i~j"m  
    % y`Y}P1y*  
    %   The Zernike functions are an orthogonal basis on the unit circle. 45JLx?rN_  
    %   They are used in disciplines such as astronomy, optics, and ~u1J R`y  
    %   optometry to describe functions on a circular domain. FJ. :*K[  
    % 3{E}^ve  
    %   The following table lists the first 15 Zernike functions. pDN,(Ip  
    % 1#RA+d(  
    %       n    m    Zernike function           Normalization RtEkd_2  
    %       -------------------------------------------------- ho<#i(  
    %       0    0    1                                 1 S(xA}0]  
    %       1    1    r * cos(theta)                    2 N/.9Aj/h~&  
    %       1   -1    r * sin(theta)                    2 b=go"sJ@>(  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ew~FN  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 0M.[) @  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 2M`Ni&v  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Z)~4)71Y:  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 0+h?Bk  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Pk2 "\y@q/  
    %       3    3    r^3 * sin(3*theta)             sqrt(8)  .l'QCW9  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) J(L$pIM  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w-/Tb~#E  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) J#nEGl|a  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Jc6 D^=  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) |9JYg7<  
    %       -------------------------------------------------- Xb;`WE gC  
    % L2tmo-]nw  
    %   Example 1: IC42O_^  
    % !qq@F%tv  
    %       % Display the Zernike function Z(n=5,m=1) SS-   
    %       x = -1:0.01:1; 81g0oVv  
    %       [X,Y] = meshgrid(x,x); /iy/2x28>  
    %       [theta,r] = cart2pol(X,Y); Fv B2y8&W  
    %       idx = r<=1; h@8  
    %       z = nan(size(X)); ,+{ 43;a  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); s=+G%B'  
    %       figure ea/6$f9^  
    %       pcolor(x,x,z), shading interp 0eIR)#j*  
    %       axis square, colorbar %vzpp\t  
    %       title('Zernike function Z_5^1(r,\theta)') D':A-E  
    % U[u6UG  
    %   Example 2: !Zx>)V6.  
    % )/w2]d/9  
    %       % Display the first 10 Zernike functions `WL*Jb  
    %       x = -1:0.01:1; v4zARE9#  
    %       [X,Y] = meshgrid(x,x); mZ%\`H+  
    %       [theta,r] = cart2pol(X,Y); `^x^= og'  
    %       idx = r<=1; xDS9gGr  
    %       z = nan(size(X)); H(|v  
    %       n = [0  1  1  2  2  2  3  3  3  3]; P nDZi  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 48VsHqG  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; v4Gkf  
    %       y = zernfun(n,m,r(idx),theta(idx)); >@o*v*25  
    %       figure('Units','normalized') c{0?gt.  
    %       for k = 1:10 9`{cX  
    %           z(idx) = y(:,k); CJ>=odK[  
    %           subplot(4,7,Nplot(k)) 7t QiKrhp  
    %           pcolor(x,x,z), shading interp eX/$[SL[  
    %           set(gca,'XTick',[],'YTick',[]) k5/}S@F8  
    %           axis square w.jATMJ)F  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 2J5dZYW  
    %       end u-$AFSt  
    % oc3/ IWII  
    %   See also ZERNPOL, ZERNFUN2. SQ[}]Tm;n  
    &-9D.'WzP  
    %   Paul Fricker 11/13/2006 xYq8\9Qb  
    ;DOz92X94  
    VrG|/2  
    % Check and prepare the inputs: 'lF|F+8   
    % ----------------------------- PC5FfX  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) mCo5 Gdt  
        error('zernfun:NMvectors','N and M must be vectors.') +( d2hSIF  
    end !~#31kL&  
    l%O-c}X  
    if length(n)~=length(m) LxO'$oKZV  
        error('zernfun:NMlength','N and M must be the same length.') = zSrre  
    end <f%9w]  
    6r`g+Js/  
    n = n(:); ~*qGH  
    m = m(:); Vl%k:  
    if any(mod(n-m,2)) C%&7,F7  
        error('zernfun:NMmultiplesof2', ... J&?kezs  
              'All N and M must differ by multiples of 2 (including 0).') iT5%X   
    end K':f!sZ&2  
    b< rM3P;  
    if any(m>n) 4#T'Fy].  
        error('zernfun:MlessthanN', ... &*}S 0  
              'Each M must be less than or equal to its corresponding N.') * HVO  
    end fHiCuF  
    UTz;Sw?~hw  
    if any( r>1 | r<0 ) *w;f\zW  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') K{c^.&6D  
    end )xeVoAg  
    :5(TOF  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) />?d 2?  
        error('zernfun:RTHvector','R and THETA must be vectors.') lZ|Ao0(  
    end z"-Urd^O  
    pGC`HTo|  
    r = r(:); CfAqMH*ip  
    theta = theta(:); mnePm{  
    length_r = length(r); fAK  
    if length_r~=length(theta) e1#}/U  
        error('zernfun:RTHlength', ... p81~Lk*Hz@  
              'The number of R- and THETA-values must be equal.') SaNx;xgi  
    end O =fT;&%.  
    P_;oSN|>  
    % Check normalization: f,$CiZ"  
    % -------------------- ` :2C9,Xu  
    if nargin==5 && ischar(nflag) 1yo@CaW[\  
        isnorm = strcmpi(nflag,'norm'); `>V.}K^4  
        if ~isnorm Av'H(qB\K  
            error('zernfun:normalization','Unrecognized normalization flag.') 7J _H Ox#  
        end F"q3p4-<>  
    else 1+^c3Dd`  
        isnorm = false; zUh(b=,  
    end 6l=n&YO  
    R'{V&H^Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pD]Ry" ZG  
    % Compute the Zernike Polynomials T]:5y_4?[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?vhW`LXNB  
    qAU]}Et/  
    % Determine the required powers of r: 0-5:"SN'  
    % ----------------------------------- w9 N Um  
    m_abs = abs(m); mr*zl*  
    rpowers = []; .RT5sj\d  
    for j = 1:length(n) -~5yl}  
        rpowers = [rpowers m_abs(j):2:n(j)]; ScI9.{  
    end rnW i<Se  
    rpowers = unique(rpowers); d&fENnt?h  
    Pvtf_Qo^  
    % Pre-compute the values of r raised to the required powers, fhC=MJ @  
    % and compile them in a matrix: f_ ::?  
    % ----------------------------- FnCHbPlb  
    if rpowers(1)==0 *33Zt+  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6 2LZ}yn_"  
        rpowern = cat(2,rpowern{:}); CV`  I.  
        rpowern = [ones(length_r,1) rpowern]; XW19hG  
    else q3;HfZ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Oz+>I ^Q  
        rpowern = cat(2,rpowern{:}); q[+];  
    end 3 -5^$-7_  
    \dP2xou=  
    % Compute the values of the polynomials: 9;@6iv  
    % -------------------------------------- Fv3fad@x  
    y = zeros(length_r,length(n)); m1(rAr1  
    for j = 1:length(n) ;xb:{?  
        s = 0:(n(j)-m_abs(j))/2; #bGt%*Re p  
        pows = n(j):-2:m_abs(j); <EE)d@%>v  
        for k = length(s):-1:1 4Fnr8 r8W  
            p = (1-2*mod(s(k),2))* ... ?(mlt"tPk  
                       prod(2:(n(j)-s(k)))/              ... .rS0zU  
                       prod(2:s(k))/                     ... <5nz:B/  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ub-ZrC'  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); KQEnC`Nz  
            idx = (pows(k)==rpowers); <)rol  
            y(:,j) = y(:,j) + p*rpowern(:,idx); $Q ?<']|A  
        end P'g$F<~V  
         ,fL*yn  
        if isnorm 1X=}  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1(m8 9C[  
        end TEY%OI zU+  
    end [Y5B$7|s<  
    % END: Compute the Zernike Polynomials #/YKA{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rHP5;j<]  
    A$ s4Q0Mf  
    % Compute the Zernike functions: h'wI/Z_'  
    % ------------------------------ l2$6ojpo  
    idx_pos = m>0; rtOXK4)]I  
    idx_neg = m<0; kMUjSa~\  
     snX5mD  
    z = y; Og^b'Kx/  
    if any(idx_pos) 32dR`qb  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Z5+qb  
    end BaqRAO7  
    if any(idx_neg) "/wZtc  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +Ge-!&.;A  
    end Z:5e:M  
    d?'q(6&H  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 6/ F]ncwG  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. :IvKxOv  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated BlMc<k  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive dy`K5lC@  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, >}Fe9Y.o  
    %   and THETA is a vector of angles.  R and THETA must have the same g"^<LX-  
    %   length.  The output Z is a matrix with one column for every P-value, oF8#gn_  
    %   and one row for every (R,THETA) pair. ?o?~Df&  
    % 9F@Q  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike yMB*/vs  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) L^!E4[ ^4  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) .gzNdSE  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 [ lW~v:W  
    %   for all p. gWL'Fl}H  
    % C/U^8,6\n  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 |aIY  
    %   Zernike functions (order N<=7).  In some disciplines it is *\L\Bzm  
    %   traditional to label the first 36 functions using a single mode 3%p^>D\  
    %   number P instead of separate numbers for the order N and azimuthal h`;w/+/Zr  
    %   frequency M. OLg=kF[[  
    % <XDYnWz  
    %   Example: +a0q?$\  
    % <#k(g\/R  
    %       % Display the first 16 Zernike functions vu Vcv  
    %       x = -1:0.01:1; R,>LUa*u  
    %       [X,Y] = meshgrid(x,x); XmJu{RbS  
    %       [theta,r] = cart2pol(X,Y); 2Sz?r d,0f  
    %       idx = r<=1; iK%%  
    %       p = 0:15; kLtm_  
    %       z = nan(size(X)); g 67;O(3  
    %       y = zernfun2(p,r(idx),theta(idx)); eEl}.W}  
    %       figure('Units','normalized') { )=h  
    %       for k = 1:length(p) 6R1}fdHvP  
    %           z(idx) = y(:,k); 2 ,RO  
    %           subplot(4,4,k) AR8zCKBc^  
    %           pcolor(x,x,z), shading interp C3>&O?7J*7  
    %           set(gca,'XTick',[],'YTick',[]) ;n`SF~CU  
    %           axis square %PW_v~sg  
    %           title(['Z_{' num2str(p(k)) '}']) "&lQ5]N.%  
    %       end rY yB"|  
    % 41dB4Td5t  
    %   See also ZERNPOL, ZERNFUN. }RvinF:5  
    sbqAjm}  
    %   Paul Fricker 11/13/2006 1<766  
    xL&M8:  
    ,sF49C D  
    % Check and prepare the inputs: OpWTw&B"+  
    % ----------------------------- )jc`_{PQg  
    if min(size(p))~=1 &BxDS .  
        error('zernfun2:Pvector','Input P must be vector.') <MdIQ;I8  
    end {^(h*zxn  
    0[E}[{t`  
    if any(p)>35 &pCa{p  
        error('zernfun2:P36', ... zp.-=)D4e  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... /h6K"w=='!  
               '(P = 0 to 35).']) x6N)T4J(  
    end b5!D('w>]  
    xfegi$  
    % Get the order and frequency corresonding to the function number: 3&`LVhx  
    % ---------------------------------------------------------------- f(SK[+aqW  
    p = p(:); oyC5M+shP9  
    n = ceil((-3+sqrt(9+8*p))/2); Tew?e&eO  
    m = 2*p - n.*(n+2); f N_8HP6&  
    {mOQRAKl  
    % Pass the inputs to the function ZERNFUN: Iy[TEB  
    % ---------------------------------------- 3mP251"dIW  
    switch nargin ,9~=yC  
        case 3 {(#2G,  
            z = zernfun(n,m,r,theta); ?2q4dx 0  
        case 4 dQ#$(<v[  
            z = zernfun(n,m,r,theta,nflag); P z< \q;  
        otherwise yX7P5c.   
            error('zernfun2:nargin','Incorrect number of inputs.') H;w8[ImK  
    end G1tua"Px  
    2e_m>I  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ZVIlVuZ}  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Qo\+FkhYq  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of +d!"Zy2|B  
    %   order N and frequency M, evaluated at R.  N is a vector of _jWGwO  
    %   positive integers (including 0), and M is a vector with the  -^ceTzW+  
    %   same number of elements as N.  Each element k of M must be a 2I$-&c]  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) {ovW6#  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is IRG-H!FV  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ioT+,li  
    %   with one column for every (N,M) pair, and one row for every &"6%D|Z0  
    %   element in R. 6<SX%Bc~  
    % }'u0Q6Obj  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- h?7@]&VJ  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is D}T+X ;u)K  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to +yd{-iH  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 nnZM{< !hF  
    %   for all [n,m]. V:'_m'.-Y  
    %  Uys[0n  
    %   The radial Zernike polynomials are the radial portion of the wA< Fw )  
    %   Zernike functions, which are an orthogonal basis on the unit ab8F\%y-8  
    %   circle.  The series representation of the radial Zernike Ihy76_OZ  
    %   polynomials is ,V &RpKek  
    % #-7w |  
    %          (n-m)/2 2fFGS.l  
    %            __ 8i~n;AhDs  
    %    m      \       s                                          n-2s Y]neTX [ef  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 7El:$H  
    %    n      s=0 q?$<{Z"  
    % _>u0vGF-  
    %   The following table shows the first 12 polynomials. \1nj=ca?  
    % @+&QNI06S  
    %       n    m    Zernike polynomial    Normalization kWZ/O  
    %       --------------------------------------------- rUDMQxLruV  
    %       0    0    1                        sqrt(2) =bh.V@*  
    %       1    1    r                           2 "JpnmE[`  
    %       2    0    2*r^2 - 1                sqrt(6) m\eYm;R Vj  
    %       2    2    r^2                      sqrt(6) :O9i:Xq[QW  
    %       3    1    3*r^3 - 2*r              sqrt(8) lG R6S  
    %       3    3    r^3                      sqrt(8) mw fl x8  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) dkAY%ztwo  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) cr>"LAi  
    %       4    4    r^4                      sqrt(10) v%8S:3  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Al^h^ 9tJ  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) !b{7gUjyI  
    %       5    5    r^5                      sqrt(12) ss'`[QhR2  
    %       --------------------------------------------- C@OY)!x!  
    % 0oPcZ""X]  
    %   Example: `3'4_@7s9  
    % Bs;.oK5!n@  
    %       % Display three example Zernike radial polynomials Zp_vv@s  
    %       r = 0:0.01:1; Af XlV-v  
    %       n = [3 2 5]; LgJUMR8vUO  
    %       m = [1 2 1]; ;S}_/'  
    %       z = zernpol(n,m,r); '[`pU>9  
    %       figure 2[~|6 @n  
    %       plot(r,z) @ $2xiE.[  
    %       grid on 'D[g{LkL  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') tWa_-Un3  
    % IiB"F<&[j{  
    %   See also ZERNFUN, ZERNFUN2. -iySU 6  
    ?X~U[dV?  
    % A note on the algorithm. vI0::ah/  
    % ------------------------ lQl  
    % The radial Zernike polynomials are computed using the series Wer.VL  
    % representation shown in the Help section above. For many special "2>_eZ#b  
    % functions, direct evaluation using the series representation can W8Aii'Q8C/  
    % produce poor numerical results (floating point errors), because {N`<TH PP  
    % the summation often involves computing small differences between ,_!MI+o0  
    % large successive terms in the series. (In such cases, the functions <}t<A  
    % are often evaluated using alternative methods such as recurrence e!p?~70  
    % relations: see the Legendre functions, for example). For the Zernike %bZ}vJ5b  
    % polynomials, however, this problem does not arise, because the =N<Z@'c  
    % polynomials are evaluated over the finite domain r = (0,1), and -eQ70BXvB  
    % because the coefficients for a given polynomial are generally all gvy c(d  
    % of similar magnitude. n81z 0lnr  
    % |iGfWJ^+  
    % ZERNPOL has been written using a vectorized implementation: multiple SJsRHQ  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] /8"9 sf *  
    % values can be passed as inputs) for a vector of points R.  To achieve \Ss6F]K]  
    % this vectorization most efficiently, the algorithm in ZERNPOL rFU|oDF  
    % involves pre-determining all the powers p of R that are required to bqSp4TI  
    % compute the outputs, and then compiling the {R^p} into a single ?)mM]2%%  
    % matrix.  This avoids any redundant computation of the R^p, and ,-.a! a  
    % minimizes the sizes of certain intermediate variables. d!#qBn$*[  
    % x$;kA}gy  
    %   Paul Fricker 11/13/2006 rBrJTF:.  
    3%DDN\q\u  
    /qObXI  
    % Check and prepare the inputs: EjFK zx  
    % ----------------------------- >'e(|P4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) tp?< e  
        error('zernpol:NMvectors','N and M must be vectors.') &M2SqeR62;  
    end MrFi0G7u  
    ;=F]{w]$+  
    if length(n)~=length(m) Z hYOz  
        error('zernpol:NMlength','N and M must be the same length.') I+g[ p  
    end >uVr;,=y  
    _NkbB"+L  
    n = n(:); QX >Pni  
    m = m(:); \&. ]!!Q  
    length_n = length(n); $G .ws  
    7<7 /NZ<I  
    if any(mod(n-m,2)) a[A9(Ftn  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') s6.#uT7h  
    end cr"AK"TQ  
    {v~.zRW%]r  
    if any(m<0) (OT&:WwW  
        error('zernpol:Mpositive','All M must be positive.') w;4FN'  
    end J-)9>~[E<  
    TaTs-]4  
    if any(m>n) 0VBbSn}Z<  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') yx&'W_Q@  
    end P8=!/L2?  
    |A%Jx__  
    if any( r>1 | r<0 ) A0`#n|(Ad!  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Z+]Uw   
    end /`vn/X^?^  
    J8:f9a:|M  
    if ~any(size(r)==1) 76j5  
        error('zernpol:Rvector','R must be a vector.') 72;ot`  
    end ^oT!%"\  
    P_8z'pYd>  
    r = r(:); N]iu o.  
    length_r = length(r); Mz#<Vm4  
    @EV*QC2l;Y  
    if nargin==4 #I] ^Wo  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); qmWn$,ax  
        if ~isnorm f%JC;Y  
            error('zernpol:normalization','Unrecognized normalization flag.') f!n0kXVu6U  
        end [d}AlG!  
    else y1@*)| r  
        isnorm = false; 5y%-K=d  
    end N6wCCXd  
    WjVj@oC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -T+7u  
    % Compute the Zernike Polynomials >Qg 9KGk'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D`C#O 7.N  
    6 7{>x[  
    % Determine the required powers of r: L}x,>hbT  
    % ----------------------------------- : ZWKrnG  
    rpowers = []; g&oAa;~o  
    for j = 1:length(n) Sp>v`{F  
        rpowers = [rpowers m(j):2:n(j)]; c>3AR17+5  
    end <4m@WG  
    rpowers = unique(rpowers); eK=<a<tx  
    "x P2GZ  
    % Pre-compute the values of r raised to the required powers, QqU>V0y"w(  
    % and compile them in a matrix: CW9vC  
    % ----------------------------- -=)Al^V4T  
    if rpowers(1)==0 EBl?oN7E  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %zCV>D  
        rpowern = cat(2,rpowern{:}); r(Vz(  
        rpowern = [ones(length_r,1) rpowern]; cEc_S42Z  
    else TC$)::C1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); yv2N5IQ>{V  
        rpowern = cat(2,rpowern{:}); r3_O?b  
    end n^P~]1i   
    |1[3RnG S  
    % Compute the values of the polynomials: ]/klKqz  
    % -------------------------------------- eKw!%97>  
    z = zeros(length_r,length_n); ]:X# w0UR  
    for j = 1:length_n N(W;\>P  
        s = 0:(n(j)-m(j))/2; Gi=s|vt  
        pows = n(j):-2:m(j); zA g.,dA  
        for k = length(s):-1:1 2@~hELkk/E  
            p = (1-2*mod(s(k),2))* ... d%wy@h  
                       prod(2:(n(j)-s(k)))/          ... ooW;s<6  
                       prod(2:s(k))/                 ... bB->7.GXu  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... *`g'*R  
                       prod(2:((n(j)+m(j))/2-s(k))); C ks;f6G  
            idx = (pows(k)==rpowers); =]swhF+l-  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Uzzt+Iwm  
        end B2/d%B  
         #FNSE*Y  
        if isnorm N9}27T+4  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); xB<^ar  
        end 9>I&Z8J$M  
    end *?v_AZ  
    b:6NVHb%  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ^:2>I$  
    (Eo#oX  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 qz }PTx  
    4`p[t;q  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)