切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11494阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 lU3Xd_v O  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 5g4c1K  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^-7{{/  
    function z = zernfun(n,m,r,theta,nflag) g|l|)T.s  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. &($Zs'X  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N h!>NS ?X7  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ( G6N@>V(`  
    %   unit circle.  N is a vector of positive integers (including 0), and p}swJ;S  
    %   M is a vector with the same number of elements as N.  Each element U^X8{,8O  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) } u7&SU  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 3#T_(  
    %   and THETA is a vector of angles.  R and THETA must have the same /%GMbO_  
    %   length.  The output Z is a matrix with one column for every (N,M) 4.mbW  
    %   pair, and one row for every (R,THETA) pair. ui6B  
    % V/-~L]G  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }tT*Ch?u  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *:A )j?(  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral QWGFXy,=1  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, eDSBs3k7H  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized *8CE0;p'k  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. k||DcwO  
    % 0Z{(,GU  
    %   The Zernike functions are an orthogonal basis on the unit circle. }t #Hq  
    %   They are used in disciplines such as astronomy, optics, and t| zLR  
    %   optometry to describe functions on a circular domain. ,/>~J]:\;  
    % H{T)?J~  
    %   The following table lists the first 15 Zernike functions. HCifO  
    % *ha9Vq@X  
    %       n    m    Zernike function           Normalization D r$N{d  
    %       -------------------------------------------------- pf`li]j'V  
    %       0    0    1                                 1 [0e]zyB+  
    %       1    1    r * cos(theta)                    2 Lsozl<@  
    %       1   -1    r * sin(theta)                    2 3,B[%!3d  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) i=<(fq  
    %       2    0    (2*r^2 - 1)                    sqrt(3) *H RxC  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) :PaFC{O)*  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) P5P<-T{-c  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) jWW2&cBm\  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 0,;FiOp  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) HnqZ7%jeN  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) kB]|4CG{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  OkO"t  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Z{n7z$s*  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) HF\L`dJX?  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) EH$wW l^  
    %       -------------------------------------------------- {UYqRfgbZ  
    % 3r{'@Y =)Y  
    %   Example 1: (<.1o_Q-LU  
    % Urx gKTry  
    %       % Display the Zernike function Z(n=5,m=1) "v3u$-xN1  
    %       x = -1:0.01:1; ( |5g`JDG  
    %       [X,Y] = meshgrid(x,x); sEvJ!$Tt?I  
    %       [theta,r] = cart2pol(X,Y); <STjB,_s  
    %       idx = r<=1; xI~\15PhG  
    %       z = nan(size(X)); }wkBa]  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 7F'61}qL  
    %       figure R/O_*XY  
    %       pcolor(x,x,z), shading interp 73.o{V  
    %       axis square, colorbar r%'2a+}D  
    %       title('Zernike function Z_5^1(r,\theta)') Gz@%UIv  
    % nhCB ])u8l  
    %   Example 2: I"JT3[*s  
    %  "rjJ"u 1  
    %       % Display the first 10 Zernike functions n(f&uV_):  
    %       x = -1:0.01:1; 1=(i{D~  
    %       [X,Y] = meshgrid(x,x); XLbrE|0A?  
    %       [theta,r] = cart2pol(X,Y); #G{T(0<F  
    %       idx = r<=1; 9Jk(ID'c  
    %       z = nan(size(X)); y~S[0]y>  
    %       n = [0  1  1  2  2  2  3  3  3  3]; *} w.xt  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; {@ , L  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; $~~=SOd0  
    %       y = zernfun(n,m,r(idx),theta(idx)); Y*Q( v  
    %       figure('Units','normalized') kb7\qH!n  
    %       for k = 1:10 nQ(#'9  
    %           z(idx) = y(:,k); dF.T6b  
    %           subplot(4,7,Nplot(k)) VBCj.dw  
    %           pcolor(x,x,z), shading interp 4GHIRH C%[  
    %           set(gca,'XTick',[],'YTick',[]) q-8  GD7  
    %           axis square ga~vQ7I_  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 'b^:"\t'Rh  
    %       end ^3yjE/Wi"  
    % .D>lv_kp  
    %   See also ZERNPOL, ZERNFUN2. _RmE+Xg2  
    >Ia(g0  
    %   Paul Fricker 11/13/2006 %mYIXsuH  
    7R2)Klt  
    d,)F #;^5  
    % Check and prepare the inputs: l9L;Tjj  
    % ----------------------------- v S+~4Q41  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .$OInh  
        error('zernfun:NMvectors','N and M must be vectors.') #U_u~7?H$  
    end IkZ_N#m  
    ~fUSmc  
    if length(n)~=length(m) P`%ppkzV6  
        error('zernfun:NMlength','N and M must be the same length.') BA>0 +  
    end Qom@-A  
    S2s-TpjB<  
    n = n(:); jN<]yhqf  
    m = m(:); E8dp  
    if any(mod(n-m,2)) N7jRdT2k%  
        error('zernfun:NMmultiplesof2', ... s,29_z7  
              'All N and M must differ by multiples of 2 (including 0).') OLR1/t`V  
    end ( gFA? aD<  
    V_1#7  
    if any(m>n) qlxW@|  
        error('zernfun:MlessthanN', ... uHIWbF<0oo  
              'Each M must be less than or equal to its corresponding N.') -$kJERvy  
    end =!c+|X`  
    Kk(ucO  
    if any( r>1 | r<0 ) 7r<>^j'  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') *Fc&DQT(  
    end .0-m=3mp2  
    /t^lI%&  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) k$ M4NF~$  
        error('zernfun:RTHvector','R and THETA must be vectors.') 4a|Fx  
    end >y~_Hh(TSL  
    eEh0T %9K  
    r = r(:); !U!E_D.O  
    theta = theta(:); <`*P/V  
    length_r = length(r); q{ 1U  
    if length_r~=length(theta) ;$E[u)l  
        error('zernfun:RTHlength', ... #dt2'V- ,  
              'The number of R- and THETA-values must be equal.') o5@ jMU;  
    end Ft rw3OxN  
    8'[wa  
    % Check normalization: M!l5,ycF  
    % -------------------- r97[!y1gt  
    if nargin==5 && ischar(nflag) D5b _m|7%  
        isnorm = strcmpi(nflag,'norm'); v`w?QIB]  
        if ~isnorm NXNon*"  
            error('zernfun:normalization','Unrecognized normalization flag.') 15:@pq\  
        end S: uEK  
    else a0.3$  
        isnorm = false; +"cyOC  
    end {wXN kq  
    K@~#Gdnl  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EM/+1 _u  
    % Compute the Zernike Polynomials q$rA-`jw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +|<&#b0Xd  
    (NC>[  
    % Determine the required powers of r: ;T+U&U0d|  
    % ----------------------------------- -b}S3<15@  
    m_abs = abs(m); 3/=QZ8HA&-  
    rpowers = []; D*gV S  
    for j = 1:length(n) pe%)G6@G  
        rpowers = [rpowers m_abs(j):2:n(j)]; gVJ#LJ  
    end mRY6[*u  
    rpowers = unique(rpowers); UeMe4$m  
    15 11<,  
    % Pre-compute the values of r raised to the required powers, gtGKV  
    % and compile them in a matrix: N:[;E3?O  
    % ----------------------------- 5 hadA>d  
    if rpowers(1)==0 si_ HN{  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); s)8M? |[`I  
        rpowern = cat(2,rpowern{:}); C'2 =0oou  
        rpowern = [ones(length_r,1) rpowern]; ]q7 LoH'S  
    else yN<fmi};c  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hr6e1Er  
        rpowern = cat(2,rpowern{:}); = DTOI  
    end KBq aI((  
    cu?(P ;mQi  
    % Compute the values of the polynomials: {4aY}= -Q*  
    % -------------------------------------- ]"g >>N  
    y = zeros(length_r,length(n)); vW-`=30  
    for j = 1:length(n) sg"D;b:X  
        s = 0:(n(j)-m_abs(j))/2; `$SEkYdt  
        pows = n(j):-2:m_abs(j); uEGPgYY(  
        for k = length(s):-1:1 lO:{tV  
            p = (1-2*mod(s(k),2))* ... *F*jA$aY  
                       prod(2:(n(j)-s(k)))/              ... K[ gWXBP  
                       prod(2:s(k))/                     ... 3@`H<tP'6o  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `N.$LY;8  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); rL sK-qQ  
            idx = (pows(k)==rpowers); nWF4[<t  
            y(:,j) = y(:,j) + p*rpowern(:,idx); zHOE.V2Qo  
        end y*b.eO  
         `-EH0'w~"  
        if isnorm }R&5qpl  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Qb't*2c%  
        end i;hc]fYb=K  
    end n`z+ w*  
    % END: Compute the Zernike Polynomials _6UAeZ*M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Wejwj/EU%  
    e_c;D2' F  
    % Compute the Zernike functions: G6 8Nv:  
    % ------------------------------ .e2A*9,  
    idx_pos = m>0; {I-a;XBX  
    idx_neg = m<0; DGZY~(]  
    %^5@z1d,  
    z = y; <j 9Mt=8M  
    if any(idx_pos) 51M^yG&M  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1: xnD  
    end +Sd,l>8\  
    if any(idx_neg) \}x'>6zr2  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ]AA%J@  
    end ZutB_uW  
    /uE^H%9h  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) @v ~ Pwr!  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. WR a+zii,  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated mUt,Z^ l`  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive fNqmTRu  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, \POnsM)+l  
    %   and THETA is a vector of angles.  R and THETA must have the same v<%kd[N  
    %   length.  The output Z is a matrix with one column for every P-value, {b,2;w}95  
    %   and one row for every (R,THETA) pair. #$t}T@t>  
    % t[?a @S~6  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 3@yTzaq6  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Be{/2jU%  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 7V=MRf&xQ  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Xn/ n|[  
    %   for all p. \o B'  
    % X7H'Uk9:  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 w<Yv`$-`  
    %   Zernike functions (order N<=7).  In some disciplines it is |}M0,AS  
    %   traditional to label the first 36 functions using a single mode jJUGZVM6)  
    %   number P instead of separate numbers for the order N and azimuthal -MrtliepW*  
    %   frequency M. ,!I?)hwOC  
    % rv}mD  
    %   Example: -SvTg{Q{la  
    % Q sg/ V]  
    %       % Display the first 16 Zernike functions l`b1%0y  
    %       x = -1:0.01:1; \TbsoWX  
    %       [X,Y] = meshgrid(x,x); }Kj Ju;  
    %       [theta,r] = cart2pol(X,Y); .kc"E  
    %       idx = r<=1; P{S\pWZkk  
    %       p = 0:15; _~;&)cn,0  
    %       z = nan(size(X)); _%'L@[ H  
    %       y = zernfun2(p,r(idx),theta(idx)); sTtX$&Qu  
    %       figure('Units','normalized') pcy<2UV  
    %       for k = 1:length(p) tlV &eN  
    %           z(idx) = y(:,k); Qz@IK:B}  
    %           subplot(4,4,k) X(k{-|9]  
    %           pcolor(x,x,z), shading interp /2;dH]o0  
    %           set(gca,'XTick',[],'YTick',[]) WR/o @$/  
    %           axis square 1~2R^#rm  
    %           title(['Z_{' num2str(p(k)) '}']) &~~aAg  
    %       end #wenX$UTh3  
    % bmOqeUgB  
    %   See also ZERNPOL, ZERNFUN. 7}4'dW.  
    2W^B{ZS;  
    %   Paul Fricker 11/13/2006 38c?^  
    ZfPd0 p  
    ;} lT  
    % Check and prepare the inputs: bLgL0}=n  
    % ----------------------------- Q2/MnM  
    if min(size(p))~=1 ;gDMl57PQ.  
        error('zernfun2:Pvector','Input P must be vector.') A8pj~I/*-  
    end 7%}ay  
    e74zR6  
    if any(p)>35 I^~=,D  
        error('zernfun2:P36', ... w6T[hZ 9  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... FR:d^mL  
               '(P = 0 to 35).']) X^}A*4j  
    end q!6|lZB3  
    D ]OD.  
    % Get the order and frequency corresonding to the function number: gmh5 %2M  
    % ---------------------------------------------------------------- 'LVn^TB_f&  
    p = p(:); c $0_R;4/  
    n = ceil((-3+sqrt(9+8*p))/2);  ep+  
    m = 2*p - n.*(n+2); @}<"N  
    t5.`! 3EO  
    % Pass the inputs to the function ZERNFUN: c juZB Fl  
    % ---------------------------------------- 1O |V=K  
    switch nargin N.Dhu~V  
        case 3 b'i'GJBQ+$  
            z = zernfun(n,m,r,theta); s]U4B<q  
        case 4 KOjluP  
            z = zernfun(n,m,r,theta,nflag); 6*IpAIh  
        otherwise Z@3l%p6V  
            error('zernfun2:nargin','Incorrect number of inputs.') [,=d7*b(l  
    end E\0X`QeY  
    <FY&h#  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) &D]p,  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. <},1Ncl  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Nt]qVwUm'Y  
    %   order N and frequency M, evaluated at R.  N is a vector of ?  -3\  
    %   positive integers (including 0), and M is a vector with the q$[n`w-  
    %   same number of elements as N.  Each element k of M must be a ["y6b*;x  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) zB*euHIqZ  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is c%z'xM  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix vJ"i.:Gf4  
    %   with one column for every (N,M) pair, and one row for every .2.qR,"j  
    %   element in R. BkawL,  
    % a(;!O}3_)(  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 2*[QZ9U[@  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is FJeiY#us  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ;I}'}  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 }7ehF6  
    %   for all [n,m]. x5}lgyt  
    % yto[8;)_  
    %   The radial Zernike polynomials are the radial portion of the K R,z^9  
    %   Zernike functions, which are an orthogonal basis on the unit `'i( U7?  
    %   circle.  The series representation of the radial Zernike Xc*U+M >U  
    %   polynomials is 5.vG^T0w  
    % %{!R l@  
    %          (n-m)/2 C!+I>J{4f  
    %            __ 1@>$ Gcc  
    %    m      \       s                                          n-2s dRW$T5dac  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Z^yNLF*&V  
    %    n      s=0 \OQkZ.cU;  
    % ${I*nh>=  
    %   The following table shows the first 12 polynomials. , sjh^-;  
    % 0 Y>M=|  
    %       n    m    Zernike polynomial    Normalization z.36;yT/  
    %       --------------------------------------------- D3D}DaEYj  
    %       0    0    1                        sqrt(2) k GHQ`h  
    %       1    1    r                           2 _{4^|{>Pv  
    %       2    0    2*r^2 - 1                sqrt(6) tGjhHp8}c  
    %       2    2    r^2                      sqrt(6) VwyVEZt  
    %       3    1    3*r^3 - 2*r              sqrt(8) 29&bbfU  
    %       3    3    r^3                      sqrt(8) D`[Khsf  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) s?2$ue&-f  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) (UL4+ta  
    %       4    4    r^4                      sqrt(10) `JB?c  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) MSw$_d  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) H1/?+N}(  
    %       5    5    r^5                      sqrt(12) AY,].Zg[  
    %       --------------------------------------------- v6GPS1:a  
    % ?'s6Xmd  
    %   Example: K/L;8a  
    % ?QZ"JX])  
    %       % Display three example Zernike radial polynomials _n;;][]S  
    %       r = 0:0.01:1; CyDV r  
    %       n = [3 2 5]; jYRP8 Yi  
    %       m = [1 2 1]; ]bZ(HC?KZr  
    %       z = zernpol(n,m,r); a u7.4ln>Y  
    %       figure =K\r-'V  
    %       plot(r,z) gw36Ec<M  
    %       grid on 3^?ZG^V  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') zZ=pP5y8  
    % k{;,6H  
    %   See also ZERNFUN, ZERNFUN2. T4)fOu3]  
    zCv"]%  
    % A note on the algorithm. S35~Cp  
    % ------------------------ \xv;sl$f  
    % The radial Zernike polynomials are computed using the series e:'?*BYVg3  
    % representation shown in the Help section above. For many special >J9oH=S6  
    % functions, direct evaluation using the series representation can M_g ?<rK  
    % produce poor numerical results (floating point errors), because sEMQ  
    % the summation often involves computing small differences between +{<#(}  
    % large successive terms in the series. (In such cases, the functions Dre2J<QL  
    % are often evaluated using alternative methods such as recurrence $+p?Y)h .  
    % relations: see the Legendre functions, for example). For the Zernike Fz#X= gmG  
    % polynomials, however, this problem does not arise, because the AN!s{7V3  
    % polynomials are evaluated over the finite domain r = (0,1), and 7%f&M>/  
    % because the coefficients for a given polynomial are generally all zk-.u}RBFG  
    % of similar magnitude. %D$]VSP;  
    % GZI`jS"lU  
    % ZERNPOL has been written using a vectorized implementation: multiple #7ohQrP  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] |a1{ve[  
    % values can be passed as inputs) for a vector of points R.  To achieve ~5FW [_  
    % this vectorization most efficiently, the algorithm in ZERNPOL tW WWx~k  
    % involves pre-determining all the powers p of R that are required to hj'(*ND7z  
    % compute the outputs, and then compiling the {R^p} into a single HY)-/  
    % matrix.  This avoids any redundant computation of the R^p, and ;X*cCb`h   
    % minimizes the sizes of certain intermediate variables. ~t9tnLc$  
    % J'$>Gk]  
    %   Paul Fricker 11/13/2006 A,sr[Pa@  
    >leU:7  
    ^nbnbU4'  
    % Check and prepare the inputs: kuyjnSo9i  
    % ----------------------------- $9Hcdbdm  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RuII!}*  
        error('zernpol:NMvectors','N and M must be vectors.') !*R qCS,  
    end Cj~'Lhmv'T  
    [!!Q,S"  
    if length(n)~=length(m) Tg!m`9s+  
        error('zernpol:NMlength','N and M must be the same length.') '%q$` KDb  
    end /c uLc^(X  
    :VTTh |E%#  
    n = n(:); '!/<P"5t  
    m = m(:); |{CfWSB7~@  
    length_n = length(n); SkmT`*v@  
    *S2ypzwRZ,  
    if any(mod(n-m,2)) x)(|[  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') s"t$0cH9  
    end L 4!{h|  
    ty8v 6J#  
    if any(m<0) H$y-8-&)  
        error('zernpol:Mpositive','All M must be positive.') ]]zPq<b2  
    end J0@X<Lt U  
    hCC<?5q  
    if any(m>n) rqY`8Ry2M  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') sBcPq SMby  
    end ?Y@N`S  
    |`.([2  
    if any( r>1 | r<0 ) y3fGWa*7e  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') %}%Qc6.H  
    end @3zg=?3  
    6oGYnu;UZ  
    if ~any(size(r)==1) .ev?"!Vpp9  
        error('zernpol:Rvector','R must be a vector.') ;qm D50:%  
    end Q)IKOt;N]  
    8P|D13- Q  
    r = r(:); p,eTY[k?  
    length_r = length(r); $m/)FnU/  
    'Iw NTM  
    if nargin==4 H!$o$}A  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); zx)z/1  
        if ~isnorm >k (C  
            error('zernpol:normalization','Unrecognized normalization flag.') 0$ S8 fF@  
        end neLAEHV  
    else <i&_ooX  
        isnorm = false; Ru>MFG  
    end ]@phF _  
    t+!$[K0/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n CdR EXw  
    % Compute the Zernike Polynomials ?!` /m|"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a6uJYhS~  
    9po3m]|zy  
    % Determine the required powers of r: 2Eu`u!jhx  
    % ----------------------------------- G;l_|8<t#\  
    rpowers = []; Pu"P9  
    for j = 1:length(n) zd >t-?g  
        rpowers = [rpowers m(j):2:n(j)];  &7K?w~  
    end \RC'XKQ*n  
    rpowers = unique(rpowers); ?gt l)q  
    *^VRGfpb  
    % Pre-compute the values of r raised to the required powers, \D*KGd]M0  
    % and compile them in a matrix: V<T9&8l+:  
    % ----------------------------- D=-SO +  
    if rpowers(1)==0 v0H@Eg_  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]QlwR'&j/n  
        rpowern = cat(2,rpowern{:}); ]H+8rY%+  
        rpowern = [ones(length_r,1) rpowern]; 0"28'  
    else j~[z2tV  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jK& h~)  
        rpowern = cat(2,rpowern{:}); e?8FN. q  
    end 2{H@(Vgpbr  
    s;01u_  
    % Compute the values of the polynomials: {tYZt4!{^  
    % -------------------------------------- G}b]w~ML ~  
    z = zeros(length_r,length_n); LnH?dy  
    for j = 1:length_n RAgg:3^  
        s = 0:(n(j)-m(j))/2; T[UN@^DP(  
        pows = n(j):-2:m(j); H4&lb}  
        for k = length(s):-1:1 }HFN3cq;C  
            p = (1-2*mod(s(k),2))* ... ,9zjFI  
                       prod(2:(n(j)-s(k)))/          ... 3q\,$*D.  
                       prod(2:s(k))/                 ... P-yjN  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... iJ1"at  
                       prod(2:((n(j)+m(j))/2-s(k))); FQ<Ju.  
            idx = (pows(k)==rpowers); 4;yKOQD|  
            z(:,j) = z(:,j) + p*rpowern(:,idx); !Prg_6 `  
        end &8Cu#^3  
         Q ayPo]O  
        if isnorm 3Q.#c,`jV  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 7&jTtKLj  
        end n|9-KTe7|*  
    end 5\:^ y'g[  
    IP xiV]c  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ]i|h(>QWP  
    +^` I?1\UF  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 vNyf64)  
    n<Z({\9&H  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)