切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10733阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 F]cc?r312  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! HG^~7oMf  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 (qDJgf4fgn  
    function z = zernfun(n,m,r,theta,nflag) *2Q x69`  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. gXB&Sgjo  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Mm%b8#Fe!  
    %   and angular frequency M, evaluated at positions (R,THETA) on the cBU@853  
    %   unit circle.  N is a vector of positive integers (including 0), and V,eH E5C  
    %   M is a vector with the same number of elements as N.  Each element j2jUrl  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) c}w[ T  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, B|SX?X  
    %   and THETA is a vector of angles.  R and THETA must have the same t}gK)"g  
    %   length.  The output Z is a matrix with one column for every (N,M) 4}Hf"L[ l  
    %   pair, and one row for every (R,THETA) pair. EI@ep~  
    % RMa#z [{0  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike hcQv!!Q"k$  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), SpZmwa #\  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral o+?Ko=vYw  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,62BZyT,T,  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ?{>5IjL)en  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Q]-r'pYr  
    % jxnb<!|?H@  
    %   The Zernike functions are an orthogonal basis on the unit circle. %Z(lTvqG  
    %   They are used in disciplines such as astronomy, optics, and 5S4`.'  
    %   optometry to describe functions on a circular domain. qb5IpI{U  
    % #}xPOz7:  
    %   The following table lists the first 15 Zernike functions. >IHf5})R  
    % #DcK{|ty  
    %       n    m    Zernike function           Normalization ~PCS_  
    %       -------------------------------------------------- i(kr#XsU  
    %       0    0    1                                 1 DkBVk+  
    %       1    1    r * cos(theta)                    2 l%7^'nDn  
    %       1   -1    r * sin(theta)                    2 c1StA  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) a0Q\]S  
    %       2    0    (2*r^2 - 1)                    sqrt(3) m\ /V0V\  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Y'o.`':\~  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 5fK<DkB$>:  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) :#UN^"(m}  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @m"P_1`*  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) V,:~FufM^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) V _pKe~  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) VB{G% !}  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 5v#_2Ih  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 'w}/ o+x@  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) U &y?3  
    %       -------------------------------------------------- mC84fss  
    % YCNpJGM  
    %   Example 1: 9_pOV%Qs  
    % vC5y]1QDd  
    %       % Display the Zernike function Z(n=5,m=1) .gd'<l  
    %       x = -1:0.01:1; +#ANc;2g  
    %       [X,Y] = meshgrid(x,x); Ib$?[  
    %       [theta,r] = cart2pol(X,Y); Zh.[f+l]  
    %       idx = r<=1; 3/2G~$C  
    %       z = nan(size(X)); pw1&WP&?3  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); T8a!"lPP7  
    %       figure o<%s\n  
    %       pcolor(x,x,z), shading interp WK6|e[iP  
    %       axis square, colorbar 5K?%Eo72!=  
    %       title('Zernike function Z_5^1(r,\theta)') 84ma X'  
    % 1(WNrVm;  
    %   Example 2: ;]SP~kG  
    % 6w^Fee`>]  
    %       % Display the first 10 Zernike functions T13Jno  
    %       x = -1:0.01:1; x)o`w"]al  
    %       [X,Y] = meshgrid(x,x); xGymQ|y84  
    %       [theta,r] = cart2pol(X,Y); JV9Ft,xk  
    %       idx = r<=1; A+F@JpV  
    %       z = nan(size(X)); 8VZLwhj  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 6B>H75S+H  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; *|k/lI  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; p*(]8pDC  
    %       y = zernfun(n,m,r(idx),theta(idx)); f}F   
    %       figure('Units','normalized') x$aFJ CL  
    %       for k = 1:10 *1 l"|=_&s  
    %           z(idx) = y(:,k); Tof H =d  
    %           subplot(4,7,Nplot(k)) _ ?Z :m  
    %           pcolor(x,x,z), shading interp I%31MU9  
    %           set(gca,'XTick',[],'YTick',[]) 4 g^oy^~  
    %           axis square ?]u=5gqUU  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %1VfTr5  
    %       end -dsE9)&8DX  
    % ZtqN8$[6n  
    %   See also ZERNPOL, ZERNFUN2. 0^rDf L  
    B>W!RyH8o  
    %   Paul Fricker 11/13/2006 E`>u*D$un~  
    6H}8^'/u  
    KN9e""  
    % Check and prepare the inputs: O* 7` Waag  
    % ----------------------------- q%A.)1<'_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) C!}9[X!7@:  
        error('zernfun:NMvectors','N and M must be vectors.') C| Vz `FY  
    end j -j,0!T~b  
    eC41PQ3=1'  
    if length(n)~=length(m) > H(o=39s  
        error('zernfun:NMlength','N and M must be the same length.') rfS kQT  
    end x>=8~wIK  
    9n[ovX 7n!  
    n = n(:); H '(Ky  
    m = m(:); /NFcIU  
    if any(mod(n-m,2)) 2k$~Mv@L  
        error('zernfun:NMmultiplesof2', ... s>^$: wzu  
              'All N and M must differ by multiples of 2 (including 0).') ==pGRauq  
    end Cn>RUGoUsI  
    c*#*8R9.y  
    if any(m>n) Td6"o&0A!  
        error('zernfun:MlessthanN', ... 1WW`%  
              'Each M must be less than or equal to its corresponding N.') B#U:6Ty  
    end WMLsKoby  
    O}IRM|r"  
    if any( r>1 | r<0 ) m'i^BE  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') H o;bgva  
    end b)Px  
    &.}Z j*BD  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) hO@VYO   
        error('zernfun:RTHvector','R and THETA must be vectors.') =fr_` "?k  
    end `vPc&.-K  
    1Xi.OGl  
    r = r(:); UI>?"b6 L  
    theta = theta(:); >1n[Y- r  
    length_r = length(r); E}WO?xxv74  
    if length_r~=length(theta) -O?}-6,_Z  
        error('zernfun:RTHlength', ... u \zP`Y  
              'The number of R- and THETA-values must be equal.') 5==}8<$  
    end b\O%gg\p%!  
    ~Z#jIG<?g  
    % Check normalization: b0_Ih6  
    % -------------------- .s !qf!{V`  
    if nargin==5 && ischar(nflag) :"oQ _bLT  
        isnorm = strcmpi(nflag,'norm'); R~R?0aq  
        if ~isnorm 7FiQTS B:  
            error('zernfun:normalization','Unrecognized normalization flag.') i #%17}  
        end N=oWIK<;-  
    else JBKCa 3  
        isnorm = false; ZCbnDj  
    end ,y5 7tY  
    S EeDq/h  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5/),HGxi  
    % Compute the Zernike Polynomials # ,KjJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >$yqx1=jW  
    n(MVm-H  
    % Determine the required powers of r: g}B|ZRz+{  
    % ----------------------------------- DJmT]Q]o)  
    m_abs = abs(m); pGO)9?j_N  
    rpowers = []; Tl9;KE|  
    for j = 1:length(n) J~jR`2+r  
        rpowers = [rpowers m_abs(j):2:n(j)]; [*k25N  
    end ]8qFxJ+2^  
    rpowers = unique(rpowers); > v~?Vd(  
    }RvP*i  
    % Pre-compute the values of r raised to the required powers, C& QT-|  
    % and compile them in a matrix: 8JU9Qb]L'I  
    % ----------------------------- [;F%6MPK^  
    if rpowers(1)==0 z[I3k  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); kq SpZoV0'  
        rpowern = cat(2,rpowern{:}); AMhHq/Dw  
        rpowern = [ones(length_r,1) rpowern]; nKzS2 u=:Y  
    else f;nO$h[Qb  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); yR Zb_Mq9U  
        rpowern = cat(2,rpowern{:}); f2JeXsOI  
    end |Ts|>"F'  
    vThK@P!s  
    % Compute the values of the polynomials: QD}'2{M!  
    % -------------------------------------- Whd2mKwiO  
    y = zeros(length_r,length(n)); xSQ:#o=8G  
    for j = 1:length(n) "0(H! }D  
        s = 0:(n(j)-m_abs(j))/2; [a<u cJ  
        pows = n(j):-2:m_abs(j); s5DEuu>g  
        for k = length(s):-1:1 SGd[cA Ko  
            p = (1-2*mod(s(k),2))* ... 7( &\)qf=n  
                       prod(2:(n(j)-s(k)))/              ... [LQD]#  
                       prod(2:s(k))/                     ... 6Ch [!=p{  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... D[7+xAwS  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ;w/|5 ;{A;  
            idx = (pows(k)==rpowers); |(Bc0sgw}  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ld-Cb 3R^  
        end ^11y8[[  
         tf VK  
        if isnorm R<J1bH1n3  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ]>33sb S6  
        end F.s*^}L[  
    end o~vUqj?BA  
    % END: Compute the Zernike Polynomials 9\_^"5l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _NfdJ=[Xh  
    Y-Zw'  
    % Compute the Zernike functions: O M]d}}=Y  
    % ------------------------------ ]5V=kNu i  
    idx_pos = m>0; 6`tc]a"#Zb  
    idx_neg = m<0; X#bK.WN$  
    8gQg#^,(t  
    z = y; 7wivu*0  
    if any(idx_pos) ^ucmScl  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 56;^ NE4  
    end (Q_J{[F  
    if any(idx_neg) H+ P&} 3  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 8QYP\7}o  
    end  T\(w}  
    S~~G0GiW  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) [tKH'}/s=  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. #2/2X v  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated DRDn;j  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive G^G= .9O  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, :7WeR0*%  
    %   and THETA is a vector of angles.  R and THETA must have the same nY>UYSv  
    %   length.  The output Z is a matrix with one column for every P-value, ` XvuyH  
    %   and one row for every (R,THETA) pair. 5f~49(v]  
    % Oc Gg'R7  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike W> +/N4  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) $ ?HOke  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) LU-,B?1  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 'ie+/O@G  
    %   for all p. _d[4EY  
    % .T>^bLuFy  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 H%peE9>$  
    %   Zernike functions (order N<=7).  In some disciplines it is C[-M ~yIL  
    %   traditional to label the first 36 functions using a single mode m]7oTmS  
    %   number P instead of separate numbers for the order N and azimuthal c%jW'  
    %   frequency M. \CY_nn|&g  
    % >FR;Ux~a  
    %   Example: IO@Ti(,  
    % )K.'sX{B  
    %       % Display the first 16 Zernike functions \y7kb  
    %       x = -1:0.01:1; 6h5,XcO4  
    %       [X,Y] = meshgrid(x,x); W$>AK_Y}  
    %       [theta,r] = cart2pol(X,Y); ;(F_2&he  
    %       idx = r<=1; >" &&,~  
    %       p = 0:15; `|rr<Tsy\  
    %       z = nan(size(X)); 2C@ui728  
    %       y = zernfun2(p,r(idx),theta(idx)); u ? }T)B  
    %       figure('Units','normalized') (}4]U=/nV  
    %       for k = 1:length(p) WZ A8D0[  
    %           z(idx) = y(:,k);  CJ~gE"  
    %           subplot(4,4,k) oEuV&m|yX  
    %           pcolor(x,x,z), shading interp F?!X<N{  
    %           set(gca,'XTick',[],'YTick',[]) ;X z fd  
    %           axis square X!AD]sK  
    %           title(['Z_{' num2str(p(k)) '}']) [PhT zXt  
    %       end  EOn[!  
    % xoYaL  
    %   See also ZERNPOL, ZERNFUN. )LdS1%  
    )HL[_WfY  
    %   Paul Fricker 11/13/2006 O-N@HZC  
    Z8vR/  
    t0"2Si  
    % Check and prepare the inputs: C)RJjaOr  
    % ----------------------------- '",+2=JJ  
    if min(size(p))~=1 (QFu``ae+  
        error('zernfun2:Pvector','Input P must be vector.') <y!(X"n`  
    end 2," (  
    <CIy|&J6  
    if any(p)>35 rHMr8,J;  
        error('zernfun2:P36', ... Wu1">|  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... l2S1?*  
               '(P = 0 to 35).']) ,WKWin  
    end 1M<;}hJ{/  
    RHIGNzSz  
    % Get the order and frequency corresonding to the function number: :W6R]y  
    % ---------------------------------------------------------------- HC$rC"f  
    p = p(:); EqjaD/6Y`  
    n = ceil((-3+sqrt(9+8*p))/2); }TDoQ]P  
    m = 2*p - n.*(n+2); *@-a{T}  
    'k1vV  
    % Pass the inputs to the function ZERNFUN: +p\+ 15  
    % ---------------------------------------- C"[d bh!  
    switch nargin ro8c-[V  
        case 3 nu<kx  
            z = zernfun(n,m,r,theta); ol#4AU`  
        case 4 #FwTV@  
            z = zernfun(n,m,r,theta,nflag); $;Nw_S@  
        otherwise +DR,&;  
            error('zernfun2:nargin','Incorrect number of inputs.') iYR`|PJi  
    end }%lk$g';  
    F=9-po  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) +h?Rb3=S  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. hG!|ts  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of gg+!e#-X  
    %   order N and frequency M, evaluated at R.  N is a vector of r(i!".Z  
    %   positive integers (including 0), and M is a vector with the d:GAa   
    %   same number of elements as N.  Each element k of M must be a wNtPh&  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) YLkdT%  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is !`qw" i  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix K!A;C#b!  
    %   with one column for every (N,M) pair, and one row for every {+  @M!  
    %   element in R. -s,guW |  
    % 9{Xh wi)z  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- a&)4Dv0  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ^QbaMX  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 9Lp[y%{GP  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Q|&Wcxq2!  
    %   for all [n,m]. NU |vtD  
    % r;'Vy0?AL  
    %   The radial Zernike polynomials are the radial portion of the VU ,tCTXz  
    %   Zernike functions, which are an orthogonal basis on the unit i8 fUzg)  
    %   circle.  The series representation of the radial Zernike AiOz1Er  
    %   polynomials is 6e q`/~#  
    % }$D{YHF  
    %          (n-m)/2 O od?ifA  
    %            __ NoD\t(@h  
    %    m      \       s                                          n-2s g6l&;S40  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r S/H!a:_5r  
    %    n      s=0 ?CHFy2%Y  
    % w W1>#F  
    %   The following table shows the first 12 polynomials. |p"4cG?)  
    % |\] _u 3  
    %       n    m    Zernike polynomial    Normalization r>.^4Z@  
    %       --------------------------------------------- fNNik7  
    %       0    0    1                        sqrt(2) q+)csgN  
    %       1    1    r                           2 S1G=hgF_L  
    %       2    0    2*r^2 - 1                sqrt(6) >7j(V`i"y  
    %       2    2    r^2                      sqrt(6) C$#X6Q!,  
    %       3    1    3*r^3 - 2*r              sqrt(8) 0\a;} S'g#  
    %       3    3    r^3                      sqrt(8) 3E`poE  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) y jQpdO  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) w/Ej>OS  
    %       4    4    r^4                      sqrt(10) +~cW0z  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) <'l;j"&lp  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) t]PO4GA  
    %       5    5    r^5                      sqrt(12) ^Z~'>J  
    %       --------------------------------------------- T*i rCe  
    % {H$m1=S  
    %   Example: 9G)q U  
    % hY^-kdQ>M  
    %       % Display three example Zernike radial polynomials Ey**j  
    %       r = 0:0.01:1; Ii4lwZnz  
    %       n = [3 2 5]; dt=5 Pnf[y  
    %       m = [1 2 1]; Q?"-[6[v  
    %       z = zernpol(n,m,r); -4!i(^w[m/  
    %       figure e Zb8x  
    %       plot(r,z) MF%>avRj  
    %       grid on dab[x@#r>  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ^d[ s*,i?  
    % 0"O22<K3a  
    %   See also ZERNFUN, ZERNFUN2. {8a s _  
    KtY_m`DY4R  
    % A note on the algorithm. 8 ?+t+m[  
    % ------------------------ .-W_m7&}  
    % The radial Zernike polynomials are computed using the series DGllJ_/Z  
    % representation shown in the Help section above. For many special #w<:H1,4  
    % functions, direct evaluation using the series representation can q9`!T4,  
    % produce poor numerical results (floating point errors), because =|G l  
    % the summation often involves computing small differences between yg-uL48q  
    % large successive terms in the series. (In such cases, the functions 7<?~A6  
    % are often evaluated using alternative methods such as recurrence \%ZF<sV W  
    % relations: see the Legendre functions, for example). For the Zernike 9azk(OL6  
    % polynomials, however, this problem does not arise, because the SOPQg?'n=V  
    % polynomials are evaluated over the finite domain r = (0,1), and r\sQ8/  
    % because the coefficients for a given polynomial are generally all 'G-zJcU  
    % of similar magnitude. R9B!F{! 5  
    % E*_lT`Hzf  
    % ZERNPOL has been written using a vectorized implementation: multiple QA3q9,C"  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] qp@:Zqz8  
    % values can be passed as inputs) for a vector of points R.  To achieve Tfba3+V  
    % this vectorization most efficiently, the algorithm in ZERNPOL |Skxa\MI  
    % involves pre-determining all the powers p of R that are required to &bO0Rn1F  
    % compute the outputs, and then compiling the {R^p} into a single (!0=~x|Z[  
    % matrix.  This avoids any redundant computation of the R^p, and o]vU(j_Ju  
    % minimizes the sizes of certain intermediate variables. MxXu&.| _  
    % <Hq|<^_K  
    %   Paul Fricker 11/13/2006 k_c8\::p#  
    i1#\S0jN  
    8yDu(.Q  
    % Check and prepare the inputs: I}aiy.l  
    % ----------------------------- z7H[\4A!>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .CL\``  
        error('zernpol:NMvectors','N and M must be vectors.') *CH lg1  
    end TCd1JF0  
    k8;  
    if length(n)~=length(m) K 8gd?88  
        error('zernpol:NMlength','N and M must be the same length.') b%fn1Ag9  
    end K] ^kUN_  
    b]NSCu*)s  
    n = n(:); 4ZK8Y[]Lv  
    m = m(:); _"PT O&E  
    length_n = length(n); U0+Hk+  
    [V5ebj:6w  
    if any(mod(n-m,2)) Ba\l`$%X  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') tCk;tu!d  
    end x_JCH7-  
    hoc$aqP6pp  
    if any(m<0) }D7q)_g=  
        error('zernpol:Mpositive','All M must be positive.')  wv2  
    end 'wd-!aZAd  
    J/j?;qx]j  
    if any(m>n) "(hhb>V1Wl  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 1r?<1vh:z  
    end L//Z\xr|  
    7J]tc1-re  
    if any( r>1 | r<0 ) TvE M{  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') m q`EM OH  
    end `o 6Hm  
    .O{2]e$  
    if ~any(size(r)==1) <|M cE  
        error('zernpol:Rvector','R must be a vector.') HXTBxh  
    end );wSay>%(  
    $T\z  
    r = r(:); 3%] %c6  
    length_r = length(r); gp:,DC?(  
    Zu\(XN?62  
    if nargin==4 bUf2uWy7  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Y. ]FVq  
        if ~isnorm 2<Tbd"x?  
            error('zernpol:normalization','Unrecognized normalization flag.') *7C t#GC  
        end 8 'Z#sM^E  
    else I_('Mr)  
        isnorm = false; _-&\~w  
    end Cg/L/0Ak  
    [a;U'v*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u=h:d+rq@  
    % Compute the Zernike Polynomials U5]{`C0H?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i2SR.{&  
    ~a:0Q{>a  
    % Determine the required powers of r: ')w:`8Tl  
    % ----------------------------------- _uuxTNN0x*  
    rpowers = []; l+'@y (}Q  
    for j = 1:length(n) MO+g*N  
        rpowers = [rpowers m(j):2:n(j)]; XYtDovbv&  
    end G};os+FxF  
    rpowers = unique(rpowers); \0iF <0oy  
    a$p?r3y  
    % Pre-compute the values of r raised to the required powers, IWvLt  
    % and compile them in a matrix: Q# w`ZQX3  
    % ----------------------------- Amf gc>eJ  
    if rpowers(1)==0 37DyDzW)'  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); hPa:>e  
        rpowern = cat(2,rpowern{:}); ~ztsR;iL  
        rpowern = [ones(length_r,1) rpowern]; m$ZPQ0X  
    else f"zXiUV  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); C fKvC  
        rpowern = cat(2,rpowern{:}); *2ZX*w37  
    end Hn5:*;N  
    v /{LC4BF  
    % Compute the values of the polynomials: QS:dr."k  
    % -------------------------------------- ^s/HbCA  
    z = zeros(length_r,length_n); -xS{{"-  
    for j = 1:length_n 095:"GvO  
        s = 0:(n(j)-m(j))/2; tLXwszR0r  
        pows = n(j):-2:m(j); 5qzFH,  
        for k = length(s):-1:1 U}ei2q\  
            p = (1-2*mod(s(k),2))* ... duCxYhh|  
                       prod(2:(n(j)-s(k)))/          ... #~l(t_m{  
                       prod(2:s(k))/                 ... .UF](  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... \ s^a4l 2  
                       prod(2:((n(j)+m(j))/2-s(k))); 'thWo wE  
            idx = (pows(k)==rpowers); FES_:?.0  
            z(:,j) = z(:,j) + p*rpowern(:,idx); @j*K|+X"  
        end % UDz4?zx  
         'NyIy:  
        if isnorm H`#{zt);  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); pvdM3+6  
        end EkotVzR5  
    end #@s[!4)_I  
    n1+1/  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    851
    光币
    831
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  o0B3G  
    7dh--.i  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 6 _n~E e  
    &Jf67\N  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)