非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 :^+ aJ]
function z = zernfun(n,m,r,theta,nflag) tkBp?Wl
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. **L . !/
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N U$j*{`$4
% and angular frequency M, evaluated at positions (R,THETA) on the Hn%n>Bnl
% unit circle. N is a vector of positive integers (including 0), and 9IgozYj
% M is a vector with the same number of elements as N. Each element PSX-b)wb
% k of M must be a positive integer, with possible values M(k) = -N(k) ;Ub;AqY
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, -AUdBG
% and THETA is a vector of angles. R and THETA must have the same ?Xscc mN
% length. The output Z is a matrix with one column for every (N,M) #F\}PCBe'
% pair, and one row for every (R,THETA) pair. Iy\{)+}aS
% oR'8|~U@B
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %/17K2g
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), H tIl;E
% with delta(m,0) the Kronecker delta, is chosen so that the integral 6$TE-l
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, m&xyw9a
% and theta=0 to theta=2*pi) is unity. For the non-normalized U$R+&@;
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. kYw k'\s
% %xE\IRlR
% The Zernike functions are an orthogonal basis on the unit circle. Ur`Ri?
% They are used in disciplines such as astronomy, optics, and gbOd(ugH
% optometry to describe functions on a circular domain. $+eDoI'f
% }Wf \\
% The following table lists the first 15 Zernike functions. 0;,4.hsh
% DN)Ehd.
% n m Zernike function Normalization ek~bXy{O`
% -------------------------------------------------- Fw!CssW
% 0 0 1 1 (J(JB}[X,
% 1 1 r * cos(theta) 2 V
QE *B
% 1 -1 r * sin(theta) 2 >'3J. FY
% 2 -2 r^2 * cos(2*theta) sqrt(6) &KC^Vn3Nj
% 2 0 (2*r^2 - 1) sqrt(3) LyM"
% 2 2 r^2 * sin(2*theta) sqrt(6) qP<wf=wY
% 3 -3 r^3 * cos(3*theta) sqrt(8) wehZ7eqm
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ^v.~FFK
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) #gbJ$1s
% 3 3 r^3 * sin(3*theta) sqrt(8) f6x}M9xS%
% 4 -4 r^4 * cos(4*theta) sqrt(10) p!<Y 'G
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kIS_6!
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ,"!t[4p=f
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |,c\R"8xS
% 4 4 r^4 * sin(4*theta) sqrt(10) vy?Zz<c;
% -------------------------------------------------- B`,4M&
% w 8M,35b
% Example 1: AyZL(
% zoYw[YP 9
% % Display the Zernike function Z(n=5,m=1) V=}AFGC85
% x = -1:0.01:1; |IL..C
% [X,Y] = meshgrid(x,x); Iuk!A?XV
% [theta,r] = cart2pol(X,Y); IHCEuK
% idx = r<=1; {f;]
% z = nan(size(X)); MM8r*T4g/
% z(idx) = zernfun(5,1,r(idx),theta(idx)); AW;"` ].
% figure 1Ao YG_
% pcolor(x,x,z), shading interp W$=MuF7R
% axis square, colorbar O(BAw
% title('Zernike function Z_5^1(r,\theta)') x}I'W?g
% =H&@9=D*
% Example 2: &Pu}"M$[MH
% dLQV>oF
% % Display the first 10 Zernike functions S^;D\6(r
% x = -1:0.01:1; S<"T:Y&
% [X,Y] = meshgrid(x,x); A<esMDX
% [theta,r] = cart2pol(X,Y); Q%6Lc.i
% idx = r<=1; s,UccA@
% z = nan(size(X)); kWs"v6B
% n = [0 1 1 2 2 2 3 3 3 3]; z7X[$T$V
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 0#f;/c0i
% Nplot = [4 10 12 16 18 20 22 24 26 28]; r:u,
% y = zernfun(n,m,r(idx),theta(idx)); `4E6&&E+S
% figure('Units','normalized') nzI}w7>VU
% for k = 1:10 __jFSa`at
% z(idx) = y(:,k); |,k,X}gP
% subplot(4,7,Nplot(k)) NsYeg&>`
% pcolor(x,x,z), shading interp jFYv4!\ju
% set(gca,'XTick',[],'YTick',[]) -z%|
Jk
% axis square NWCJ|
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vr#_pu)f4
% end lTOO`g
% ts rcX
% See also ZERNPOL, ZERNFUN2. FL-yt
rdd%"u+
% Paul Fricker 11/13/2006 oW]~\vp^0
h\GlyH~
bN-ljw0&
% Check and prepare the inputs: W~sP7&sp
% ----------------------------- &y-(UOqbkP
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) B=K&+
error('zernfun:NMvectors','N and M must be vectors.') (vHB`@x
end ZsjDe {TH
F.:B_t
if length(n)~=length(m) ; n tq%
error('zernfun:NMlength','N and M must be the same length.') X.V6v4
end Aa^%_5
@ %LrpD
n = n(:);
)L}6to
m = m(:); &_cMbFLBP
if any(mod(n-m,2)) Ys |n9pW
error('zernfun:NMmultiplesof2', ... Ms8&$
'All N and M must differ by multiples of 2 (including 0).') (h;4irfX
end -A}U^-'a}
-:w+`x?XaB
if any(m>n) }lZfZ?oAz
error('zernfun:MlessthanN', ... d\Q~L 3x
'Each M must be less than or equal to its corresponding N.') Qp9)Rc5
end RGrra<
Cnp\2Fu/
if any( r>1 | r<0 ) NEInro<
error('zernfun:Rlessthan1','All R must be between 0 and 1.') U#3Y3EdF<
end k.b->U
]+RBykr
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) hiKgV|ZD
error('zernfun:RTHvector','R and THETA must be vectors.') @SA:64
9
end 4Eq$f (QJ
md8r"
r = r(:); Kts#e:k@
theta = theta(:); -X#Zn>#
length_r = length(r); Kfho:e,
if length_r~=length(theta) E3X6-J|
error('zernfun:RTHlength', ... 4,D$% .
'The number of R- and THETA-values must be equal.') 24u;'i-y5
end @SH%l]
P{qi>FJqe
% Check normalization: "5 \<.
% -------------------- d ;GF<bz
if nargin==5 && ischar(nflag) y^"[^+F3 .
isnorm = strcmpi(nflag,'norm'); n_}=G
RR
if ~isnorm ;{xk[fm=
error('zernfun:normalization','Unrecognized normalization flag.') @k_xA-a
end "o+E9'Dm
else px!lJtvgo
isnorm = false; &gdtI
end hrsMAh!
D,FX&{TYU
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G,+-}~ $_
% Compute the Zernike Polynomials SF?Ublc!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :{z a[,
yQ5F'.m9e
% Determine the required powers of r: iwJeV J
% ----------------------------------- f|eUpf%)
m_abs = abs(m); di^E8egR$
rpowers = []; H^UuT
for j = 1:length(n) e!_+TyI
rpowers = [rpowers m_abs(j):2:n(j)]; B&J;yla6`d
end DIx!Sw7EC
rpowers = unique(rpowers); l;TWs_N
<pAN{:
% Pre-compute the values of r raised to the required powers, xO2e>[W
% and compile them in a matrix: F'eV%g
% ----------------------------- &PJ&XTR
if rpowers(1)==0 W(
O)J$j
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Uy8r
!9O
rpowern = cat(2,rpowern{:}); Ko6>h
rpowern = [ones(length_r,1) rpowern]; *;(wtMg
else S.,om;`
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); M'Ec:p=X"
rpowern = cat(2,rpowern{:}); _ ^5w f
end 0Q\6GCzN\
Tk(ciwB
% Compute the values of the polynomials: t[L0kF9en
% -------------------------------------- \UKr|[P
y = zeros(length_r,length(n)); GEJEhwO;H
for j = 1:length(n) >lZ9Y{Y4v
s = 0:(n(j)-m_abs(j))/2; @9yY`\"ed
pows = n(j):-2:m_abs(j); @m*^v\q<u
for k = length(s):-1:1 R*m=V{iu`
p = (1-2*mod(s(k),2))* ...
Yxe%:
prod(2:(n(j)-s(k)))/ ... N@Ie VF
prod(2:s(k))/ ... D]NfA2B7
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >]DnEF&
prod(2:((n(j)+m_abs(j))/2-s(k))); & ,KxE(C
idx = (pows(k)==rpowers); (_2;}eg
y(:,j) = y(:,j) + p*rpowern(:,idx); Yo`#G-]
end mGf@J6wGz
3vs;ZBM
if isnorm p-p]dV
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 0(+3w\_!
end rlQ4+~
end VK7lm|J+
% END: Compute the Zernike Polynomials #dcf Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +mc0:e{WF
(`z`ni
% Compute the Zernike functions: lIs<&-0
% ------------------------------ $:v!*0/
idx_pos = m>0; 7 (}gs?&w
idx_neg = m<0;
4d\1W?i-
3zV{cm0
z = y; *|Cmm>z"7
if any(idx_pos) _FG?zE
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i,77F !
end (QARle(i
if any(idx_neg) EX]LH({?+L
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); y81B3`@
end EfTuHg$pe
$Tc"7nYu
% EOF zernfun