切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11066阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 r Ka7[/  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! f[HhLAVGK`  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 +!6aB|-  
    function z = zernfun(n,m,r,theta,nflag) i[/g&fx  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. N@lTn}U  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 9"Oz-!Y4  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ?2zVWZ  
    %   unit circle.  N is a vector of positive integers (including 0), and x*Y&s<  
    %   M is a vector with the same number of elements as N.  Each element ZdJwy%  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) R5c Ya  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, o?$kcI4  
    %   and THETA is a vector of angles.  R and THETA must have the same jFY6}WY)}7  
    %   length.  The output Z is a matrix with one column for every (N,M) (lq7 ct  
    %   pair, and one row for every (R,THETA) pair. r63_|~JVB<  
    % '^)Ve:K-.  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike HgPRz C  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YhYcqE8  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 1OJD!juL$  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Fk@A;22N  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 8\+kfK  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. rxH*h`Xx@  
    % }CnqJ@>C5  
    %   The Zernike functions are an orthogonal basis on the unit circle. P9= L?t.  
    %   They are used in disciplines such as astronomy, optics, and U]tbV<m%  
    %   optometry to describe functions on a circular domain. 2`hc0 IE  
    % ++d(}^C;  
    %   The following table lists the first 15 Zernike functions. g+;)?N*j  
    % 7\m.xWX e  
    %       n    m    Zernike function           Normalization /fC@T  
    %       -------------------------------------------------- ?muI8b  
    %       0    0    1                                 1 z/6/   
    %       1    1    r * cos(theta)                    2 xP%`QTl\  
    %       1   -1    r * sin(theta)                    2 J0CEZ  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) l!CWE  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Bf33%I~  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) }_93}e  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 6REv(E]  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) F4'g}y OLd  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) =67dpQ'y  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) /cHd&i,>  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) gdkl,z3N3  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) wv0d"PKTS  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 5[l9`Cn&A  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M:x?I_JG8  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) u=NpL^6s<  
    %       -------------------------------------------------- RzCC>-  
    % I{Hl2?CnI,  
    %   Example 1: ^*.S7.;2o  
    % c&r8q]u  
    %       % Display the Zernike function Z(n=5,m=1) jY>|>]4X  
    %       x = -1:0.01:1;  +]Ca_`  
    %       [X,Y] = meshgrid(x,x); $ZX^JWq  
    %       [theta,r] = cart2pol(X,Y); kx,9n)  
    %       idx = r<=1; i(R&Q;{E^  
    %       z = nan(size(X)); PhBdm'  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); x/D"a|  
    %       figure qj *IKS  
    %       pcolor(x,x,z), shading interp W/_=S+CvK  
    %       axis square, colorbar k[lYd k  
    %       title('Zernike function Z_5^1(r,\theta)') *lHI\5  
    % .3WDtVE  
    %   Example 2: %zj;~W;qPH  
    % i(DoAfYf/q  
    %       % Display the first 10 Zernike functions 3Mw\}q  
    %       x = -1:0.01:1; VK\ Bjru9  
    %       [X,Y] = meshgrid(x,x); f>.A^?  
    %       [theta,r] = cart2pol(X,Y); ngF5ywIG  
    %       idx = r<=1; z d 9Gi5&  
    %       z = nan(size(X)); )9'eckt  
    %       n = [0  1  1  2  2  2  3  3  3  3]; !u~h.DrvZ  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; n';"c;Ye)  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Z#7T!/28  
    %       y = zernfun(n,m,r(idx),theta(idx)); W+k`^A|@  
    %       figure('Units','normalized') {!5"Y(>X  
    %       for k = 1:10 i*3 4/  
    %           z(idx) = y(:,k); Z-(#}(HD  
    %           subplot(4,7,Nplot(k)) N<c98  
    %           pcolor(x,x,z), shading interp )o!y7MTl  
    %           set(gca,'XTick',[],'YTick',[]) ,4dES|)sP  
    %           axis square MQ;c'?!5[!  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) `L<f15][  
    %       end S%KY%hUt  
    % yNp l0 d  
    %   See also ZERNPOL, ZERNFUN2. g-^Cf   
    A*l(0`aWq  
    %   Paul Fricker 11/13/2006 ^]mwL)I}  
    H':dLR  
    VYw vT0  
    % Check and prepare the inputs: J }izTI  
    % ----------------------------- x`N _tWZ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6GVj13Nr  
        error('zernfun:NMvectors','N and M must be vectors.') |k5uVhN  
    end zA+&V7bvy  
    ' k~'aZ  
    if length(n)~=length(m) Qx,?v|Xg  
        error('zernfun:NMlength','N and M must be the same length.') 2`4'Y.Qf  
    end & sbA:xZBA  
    fsc^8  
    n = n(:); :`BZ,j_  
    m = m(:); G<.p".o4  
    if any(mod(n-m,2)) 4u5^I;4pL  
        error('zernfun:NMmultiplesof2', ... l:NEK`>i  
              'All N and M must differ by multiples of 2 (including 0).') 9/Q_Jv-Q  
    end S0.   
    u@d`$]/>F  
    if any(m>n) p)}iUU2N  
        error('zernfun:MlessthanN', ... `_{'qqRhe  
              'Each M must be less than or equal to its corresponding N.') S<^*jheO5  
    end 'A91i  
    p"^^9'`=  
    if any( r>1 | r<0 ) 0ZQ|W%tS  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') + >o/Ob  
    end nA8]/r1k  
    }>:v  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) >T3HkOT  
        error('zernfun:RTHvector','R and THETA must be vectors.') +gb2>fei&  
    end }N; c  
    c_b^t09  
    r = r(:); G hH0-g{-  
    theta = theta(:); `o(PcX3/}  
    length_r = length(r); \ B 0xL,o<  
    if length_r~=length(theta) ,sPsL9]$  
        error('zernfun:RTHlength', ... i|u3Qt5  
              'The number of R- and THETA-values must be equal.') (bH*i\W  
    end k1y&' 3%  
    )mO|1IDTN  
    % Check normalization: Ikiv+Fq(  
    % -------------------- BBw]>*  
    if nargin==5 && ischar(nflag) @ -pi  
        isnorm = strcmpi(nflag,'norm'); =]x FHw8A  
        if ~isnorm Z[8{V  
            error('zernfun:normalization','Unrecognized normalization flag.') +=I_3Wtth  
        end LLOe  
    else V.J[Uwf  
        isnorm = false; * bmdY=#7  
    end `WF?87l1  
    w2y{3O"p=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jM1|+o*Wr  
    % Compute the Zernike Polynomials 7V?]Qif~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YBQO]3f  
    7SYU^GD  
    % Determine the required powers of r: 3$+|nP:U  
    % ----------------------------------- ^!H8"CdC3  
    m_abs = abs(m); %w7J0p  
    rpowers = []; !]q wRB$5  
    for j = 1:length(n) OIB~ W  
        rpowers = [rpowers m_abs(j):2:n(j)]; |;{^Mci%  
    end b8)>:F  
    rpowers = unique(rpowers); reLYtv  
    0+IJ, ;Wx  
    % Pre-compute the values of r raised to the required powers, Z QND^a:  
    % and compile them in a matrix: 1fwCQM   
    % ----------------------------- QFIdp R.  
    if rpowers(1)==0 c_a*{L|c  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Md'd=Y_0  
        rpowern = cat(2,rpowern{:}); 5{qFKo"g@,  
        rpowern = [ones(length_r,1) rpowern]; dix\hqZ  
    else c:"*MM RC  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @u3K.}i:g  
        rpowern = cat(2,rpowern{:}); ]qL#/   
    end ?1}1uJMj-  
    }K9Vr!  
    % Compute the values of the polynomials: {y=H49  
    % -------------------------------------- R{)Sv| +`  
    y = zeros(length_r,length(n)); x:=Kr@VP  
    for j = 1:length(n) rFZB6A<(]  
        s = 0:(n(j)-m_abs(j))/2; oH!sJ&"#_  
        pows = n(j):-2:m_abs(j); NS6Bi3~  
        for k = length(s):-1:1 K,%H*1YKK  
            p = (1-2*mod(s(k),2))* ... ^*'|(Cv  
                       prod(2:(n(j)-s(k)))/              ... 9I=J#Hi|+  
                       prod(2:s(k))/                     ... h J#U;GL  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... wcP0PfY  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); +pc_KR  
            idx = (pows(k)==rpowers); Ps Qq ^/  
            y(:,j) = y(:,j) + p*rpowern(:,idx); }Y[Z`w  
        end //`heFuc]>  
         0}hN/2}&  
        if isnorm Y'Sxehx  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); F%bv vw*(  
        end v>.nL(VLjP  
    end fG;)wQJ  
    % END: Compute the Zernike Polynomials d /&aC#'B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ui`xgR\6Rh  
    5.F.mUO  
    % Compute the Zernike functions: c>{X( Z=2  
    % ------------------------------ au}rS0) +  
    idx_pos = m>0; Q[scmP^$^  
    idx_neg = m<0; IB /.i(  
    ?2OT:/I,  
    z = y; 4z Af|Je  
    if any(idx_pos) "2+>!G RQ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); n' 73DApW  
    end `da6}Vqj:  
    if any(idx_neg) xT{qeHeZ9,  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); #nX0xV5=  
    end e<YC=67n)  
    >FFZ8=  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) })g|r9=  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. =r3Yt9  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Thn-8DT  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive p*_g0_^  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, p]*$m=t0r  
    %   and THETA is a vector of angles.  R and THETA must have the same jIv+=b#oT  
    %   length.  The output Z is a matrix with one column for every P-value, f|WNPFQ$x  
    %   and one row for every (R,THETA) pair. cz OhSbmc  
    % #l2wF>0  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike E,shTh%&~  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) P9:7_Vc  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) hUSr1jlA  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 #p&iH9c_  
    %   for all p. %bZ3^ ub}t  
    % s#&jE GBug  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 k)Z?  
    %   Zernike functions (order N<=7).  In some disciplines it is Xp1xhb*^  
    %   traditional to label the first 36 functions using a single mode g~h`wv'  
    %   number P instead of separate numbers for the order N and azimuthal ]x:>~0/L  
    %   frequency M. }C"EkT!F  
    % u]@``Zb|  
    %   Example: G'MYTq  
    % )AXTi4MNp  
    %       % Display the first 16 Zernike functions Ooc,R(  
    %       x = -1:0.01:1; tNjb{(eO\h  
    %       [X,Y] = meshgrid(x,x); 0@C`QW%m  
    %       [theta,r] = cart2pol(X,Y); zu(/ c  
    %       idx = r<=1; Z$X2*k6PK  
    %       p = 0:15; 6aK'%K  
    %       z = nan(size(X));  ?Vbe  
    %       y = zernfun2(p,r(idx),theta(idx)); uh\I'  
    %       figure('Units','normalized') j +@1frp  
    %       for k = 1:length(p) ?CAP8_  
    %           z(idx) = y(:,k); ppR~e*rv-  
    %           subplot(4,4,k) @{@x2'-A  
    %           pcolor(x,x,z), shading interp x@m"[u  
    %           set(gca,'XTick',[],'YTick',[]) <4^ _dJ9=  
    %           axis square D}HW7Hnu^  
    %           title(['Z_{' num2str(p(k)) '}']) ']u w,b  
    %       end 7F4$k4r<  
    % $ Etf'.  
    %   See also ZERNPOL, ZERNFUN. (+4gq6b  
    {{ R/:-6?@  
    %   Paul Fricker 11/13/2006 K*'(;1AiW  
    %.pX!jL  
    9j49#wG0"B  
    % Check and prepare the inputs: wHWd~K_q  
    % ----------------------------- 2fO ~%!.G  
    if min(size(p))~=1 zbddn4bW9  
        error('zernfun2:Pvector','Input P must be vector.') E$ q/4  
    end '-D-H}%;}M  
    =9i:R!,W  
    if any(p)>35 ` R!0uRu  
        error('zernfun2:P36', ... ,'= Y  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ]r$S{<  
               '(P = 0 to 35).']) _{_LTy%[  
    end UB|Nx(V s  
    (jPN+yQ  
    % Get the order and frequency corresonding to the function number: 4sSQ nK  
    % ---------------------------------------------------------------- M< *5Y43  
    p = p(:); KAjKv_6=g  
    n = ceil((-3+sqrt(9+8*p))/2); @8DB Ln w  
    m = 2*p - n.*(n+2); 7{D +\i  
    }bIEWho  
    % Pass the inputs to the function ZERNFUN: J}i$ny_3OB  
    % ---------------------------------------- 5L42'gJ  
    switch nargin fH`P8?](x  
        case 3 FnP/NoZa>  
            z = zernfun(n,m,r,theta); b}9K"GT  
        case 4 rMTtPuc2  
            z = zernfun(n,m,r,theta,nflag); TA`*]*O(  
        otherwise  []1VD#  
            error('zernfun2:nargin','Incorrect number of inputs.') . 7g^w+W  
    end @=K> uyB  
    *;m5^i<,;S  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 9C-F%te7  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M.  >pv~$  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of $* b>c:  
    %   order N and frequency M, evaluated at R.  N is a vector of oE"!  
    %   positive integers (including 0), and M is a vector with the _Y|k \|'  
    %   same number of elements as N.  Each element k of M must be a e|):%6#  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) +TpM7QaL  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Fu )V2[TY  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix @-kzSm  
    %   with one column for every (N,M) pair, and one row for every 6b-d#H/1Y  
    %   element in R. \&2GLBKpe  
    % Ny*M{}E  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- UG Fx  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ~)tMR9=wX  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to m1]rLeeEt  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 .Ky<9h.K  
    %   for all [n,m]. J0d +q!  
    % 'RQZU*8  
    %   The radial Zernike polynomials are the radial portion of the O *H:CW  
    %   Zernike functions, which are an orthogonal basis on the unit <H}"xp)j0  
    %   circle.  The series representation of the radial Zernike RW,ew!Z  
    %   polynomials is ;?=nr5;q  
    % -*e$>w[.N  
    %          (n-m)/2 H<}<f:  
    %            __ &KbtW_  
    %    m      \       s                                          n-2s 9{70l539  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r A. U<  
    %    n      s=0 #T#&qo#  
    % P6i4Dr  
    %   The following table shows the first 12 polynomials. &^ =t%A%#  
    % dvyE._/v  
    %       n    m    Zernike polynomial    Normalization V,|l&-  
    %       --------------------------------------------- o7/_a/  
    %       0    0    1                        sqrt(2) ;l4rg!r(S  
    %       1    1    r                           2 ^zs CF0  
    %       2    0    2*r^2 - 1                sqrt(6) EVgn^,  
    %       2    2    r^2                      sqrt(6) "!p#8jR^  
    %       3    1    3*r^3 - 2*r              sqrt(8) S &s7]  
    %       3    3    r^3                      sqrt(8) duXv [1  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) BB--UM{7  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) "SLN8x49(  
    %       4    4    r^4                      sqrt(10) "!E(= W?  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ~M(K{6R  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) bt%k;Z]  
    %       5    5    r^5                      sqrt(12) MukPY2[Am  
    %       --------------------------------------------- ;NLL?6~  
    % UQ'D-eK  
    %   Example: 87~. |nu  
    % C([;JO 11[  
    %       % Display three example Zernike radial polynomials .X_k[l9  
    %       r = 0:0.01:1; MA(\ r  
    %       n = [3 2 5]; wMt?yc:X  
    %       m = [1 2 1]; fAUtqkB  
    %       z = zernpol(n,m,r); zclt2?  
    %       figure `9a%}PVQ-  
    %       plot(r,z) P8DJv-f`  
    %       grid on hS*3yCE"8  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') +wD--24!(  
    % \ts:'  
    %   See also ZERNFUN, ZERNFUN2. nHD4J;l  
    Z=8 25[p  
    % A note on the algorithm. ?h1]s&^| 2  
    % ------------------------ KNIYar*3  
    % The radial Zernike polynomials are computed using the series &p8K0 |  
    % representation shown in the Help section above. For many special `u%//m_(  
    % functions, direct evaluation using the series representation can {n$9o  
    % produce poor numerical results (floating point errors), because "E/F{6NH  
    % the summation often involves computing small differences between ecA0z c~  
    % large successive terms in the series. (In such cases, the functions +c}fDrr)  
    % are often evaluated using alternative methods such as recurrence 4xtbP\=   
    % relations: see the Legendre functions, for example). For the Zernike -M%n<,XN0  
    % polynomials, however, this problem does not arise, because the qZKU=HM  
    % polynomials are evaluated over the finite domain r = (0,1), and \w^U<_zq  
    % because the coefficients for a given polynomial are generally all ^YenS6`F  
    % of similar magnitude. W$?1" F.  
    % 9g^@dfBV  
    % ZERNPOL has been written using a vectorized implementation: multiple #`y7L4V*o  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] (d4zNYK  
    % values can be passed as inputs) for a vector of points R.  To achieve 9WtTUk  
    % this vectorization most efficiently, the algorithm in ZERNPOL WZ6!VE {  
    % involves pre-determining all the powers p of R that are required to "LP4)hr_`  
    % compute the outputs, and then compiling the {R^p} into a single wC@4`h\U  
    % matrix.  This avoids any redundant computation of the R^p, and h!yF   
    % minimizes the sizes of certain intermediate variables.  <gf:QX!  
    % FEU$D\1y  
    %   Paul Fricker 11/13/2006 -Zocu<Rs  
    RX?Nv4-  
    -("79v>#  
    % Check and prepare the inputs: e/#4)@]  
    % ----------------------------- >/5D/}4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0/{-X[z  
        error('zernpol:NMvectors','N and M must be vectors.') v SHb\V#  
    end 9OF5A<%"u  
    k5g\s9n]  
    if length(n)~=length(m) )bi*y`UM]  
        error('zernpol:NMlength','N and M must be the same length.') #mx;t3ja7  
    end <| Xf4.  
    1MfRF v  
    n = n(:); s8@fZ4  
    m = m(:); 47`{ e_YP0  
    length_n = length(n); akJ{-   
    pOIFO =k  
    if any(mod(n-m,2)) 7 &GhJ^Ku  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ?kE2 S6j5  
    end =*"Amd,  
    9XobTi3+'  
    if any(m<0) 99 :`58G  
        error('zernpol:Mpositive','All M must be positive.') uZd)o AB  
    end ;S,g&%N  
    lS XhHy  
    if any(m>n) 2[j|:Ng7  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') /YUf(' b  
    end .7~Kfm@2  
    0 I;>du  
    if any( r>1 | r<0 ) g>OGh o  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') I?bL4u$\  
    end clG3t eC  
    rd%3eR?V  
    if ~any(size(r)==1) cX *  
        error('zernpol:Rvector','R must be a vector.') PCt&66F   
    end P,I3E?! j  
    "/ @ ;6   
    r = r(:); 6<rc]T'|  
    length_r = length(r); +n2x@ 0op  
    ,1^)JshZ~  
    if nargin==4 WYEvW<Hv  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); <XCH{Te1  
        if ~isnorm MW'z*r|,  
            error('zernpol:normalization','Unrecognized normalization flag.') O!Mm~@MoA  
        end Y*wbFL6`  
    else 9FPl  
        isnorm = false; %4n=qK9T 5  
    end 0A5xG&  
    1D=My1B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +/x|P-  
    % Compute the Zernike Polynomials [m}x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2R<1  ^  
    iDHmS6_c  
    % Determine the required powers of r: [>C^ 0\Z~  
    % ----------------------------------- ~@itZ,d\  
    rpowers = []; szmjp{g0  
    for j = 1:length(n) G=yQYsC$  
        rpowers = [rpowers m(j):2:n(j)]; ~)oC+H@{  
    end LoBKR c2t  
    rpowers = unique(rpowers); tC|5;'m.2  
    IO v4Zx<)  
    % Pre-compute the values of r raised to the required powers, b-~`A;pr  
    % and compile them in a matrix: Pw$'TE}  
    % ----------------------------- prIq9U|@  
    if rpowers(1)==0 .JQR5R |Q  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); MzJ5_}  
        rpowern = cat(2,rpowern{:}); 2uiiTg>  
        rpowern = [ones(length_r,1) rpowern]; }"q1B  
    else #H7(dT  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); nM R _ ?g  
        rpowern = cat(2,rpowern{:}); Y;-"Z  
    end RsTpjY*Xb  
    8&`s wu&  
    % Compute the values of the polynomials: EWH'x$z_q  
    % -------------------------------------- $2;YJjz(  
    z = zeros(length_r,length_n); QI`Z[caF  
    for j = 1:length_n 6 D!,vu  
        s = 0:(n(j)-m(j))/2; ,:=E+sS  
        pows = n(j):-2:m(j); (">!vz  
        for k = length(s):-1:1 y}#bCRy~.A  
            p = (1-2*mod(s(k),2))* ... nNBxT+3*i  
                       prod(2:(n(j)-s(k)))/          ... 9J2% 9,^  
                       prod(2:s(k))/                 ... LR9dQ=fHS  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... V4V TP]'n  
                       prod(2:((n(j)+m(j))/2-s(k))); 3z ~zcQ^\  
            idx = (pows(k)==rpowers); /V&$SRdL*  
            z(:,j) = z(:,j) + p*rpowern(:,idx); N;Hf7K  
        end D5AKOM!`  
         p?Yovckm  
        if isnorm XPWK"t0 1  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); tw*qlbFHv  
        end 0 w@~ynW[  
    end kw=+"U   
    QdDdrR^&  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Yckl,g_  
    ~#(bX]+A  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 :5C9uW #  
    xr.fZMOh4  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)