非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 )&z4_l8`=
function z = zernfun(n,m,r,theta,nflag) L#ZLawG
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. "mtp0
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N D$hQyhz'
% and angular frequency M, evaluated at positions (R,THETA) on the ~6sE an3p
% unit circle. N is a vector of positive integers (including 0), and :~33U)?{T
% M is a vector with the same number of elements as N. Each element <r;o6>+
% k of M must be a positive integer, with possible values M(k) = -N(k) PkJcd->
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, +6376$dC
% and THETA is a vector of angles. R and THETA must have the same 50,Y
% length. The output Z is a matrix with one column for every (N,M) ZpWu,1
% pair, and one row for every (R,THETA) pair. nsl*Dm"*F
% 1J'pB;.]s
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike n^Vxi;F
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :l`i4kx
% with delta(m,0) the Kronecker delta, is chosen so that the integral ,R}Z=w#
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |[ocyUsxX
% and theta=0 to theta=2*pi) is unity. For the non-normalized }P.K2ku
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0I^Eo|
% *%?d\8d
% The Zernike functions are an orthogonal basis on the unit circle. 9v$qrM`8
% They are used in disciplines such as astronomy, optics, and T3rn+BxF 7
% optometry to describe functions on a circular domain.
{,Fcd(MU
% A6i
et~h[
% The following table lists the first 15 Zernike functions. )-q\aX$])
% OHhs y|W
% n m Zernike function Normalization n}:t<
% -------------------------------------------------- gn`zy9PU
% 0 0 1 1 OAVQ`ek
% 1 1 r * cos(theta) 2 :MBS>owR
% 1 -1 r * sin(theta) 2 R'Eq:Rv~;^
% 2 -2 r^2 * cos(2*theta) sqrt(6) sX5sL
% 2 0 (2*r^2 - 1) sqrt(3) 8nsZ+,@+[
% 2 2 r^2 * sin(2*theta) sqrt(6) J|q^+K
% 3 -3 r^3 * cos(3*theta) sqrt(8) C#$6O8O
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ^]7,1dH}M
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) (Y )!"_|
% 3 3 r^3 * sin(3*theta) sqrt(8) <tW:LU(!
% 4 -4 r^4 * cos(4*theta) sqrt(10) "Y(^F
bs
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Xy!&^C` J`
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ] 9@X?q
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %yvA
% 4 4 r^4 * sin(4*theta) sqrt(10) ENyAF%6
% -------------------------------------------------- $l#{_~
"m7
% _25d%Ne0
% Example 1: UM`nq;>
% ]hKgA~;
% % Display the Zernike function Z(n=5,m=1) > [8#hSk
% x = -1:0.01:1; 2/EK`S
% [X,Y] = meshgrid(x,x); 3`ml;
L?D
% [theta,r] = cart2pol(X,Y); [9HYO
% idx = r<=1; =%L@WVbM
% z = nan(size(X)); /sV?JV[t
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 0#
l#,Y6#I
% figure EIPnm%{1
% pcolor(x,x,z), shading interp oR#my ^
% axis square, colorbar O a1'oYIHg
% title('Zernike function Z_5^1(r,\theta)') k{{hZ/om
% 2!idy]vy_
% Example 2: hbH#Co~o4#
% s,kU*kHn
% % Display the first 10 Zernike functions q-H&5K
% x = -1:0.01:1; 5pmQp}}R
% [X,Y] = meshgrid(x,x); 7O9n!aJ
% [theta,r] = cart2pol(X,Y); dEG ]riO
% idx = r<=1; }>,CUz
% z = nan(size(X)); `1q|F9D
% n = [0 1 1 2 2 2 3 3 3 3]; m\ ?\6Wk
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; *7_@7=W,
% Nplot = [4 10 12 16 18 20 22 24 26 28]; @sdS0pC
% y = zernfun(n,m,r(idx),theta(idx)); |e+aZ%g
% figure('Units','normalized') u6pIdt
% for k = 1:10 dxntGH< O
% z(idx) = y(:,k); Y.X4*B
% subplot(4,7,Nplot(k)) /L$NE$D} "
% pcolor(x,x,z), shading interp D Kq-C%
% set(gca,'XTick',[],'YTick',[]) pkW5D
% axis square &\c5!xQ9*
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) a-:pJE.'p
% end +NT:<(;|i5
% "5h_8k~sQ
% See also ZERNPOL, ZERNFUN2. +xq=<jy
T1bFxim#b
% Paul Fricker 11/13/2006 I^@.Awt
~Zu}M>-^c,
0H<4+
*`K
% Check and prepare the inputs: LC76 Qi;|k
% ----------------------------- {>A
8g({i
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9j2\y=<&
error('zernfun:NMvectors','N and M must be vectors.') t%:G|n Sz
end `;e^2
Q<C@KBiVE
if length(n)~=length(m) g*28L[Q~
error('zernfun:NMlength','N and M must be the same length.') x~nQm]@`h
end c<>y!^g
h)P]gT0f/
n = n(:); C-r."L
m = m(:); @| P3
if any(mod(n-m,2)) 4[Z1r~t\L
error('zernfun:NMmultiplesof2', ... xp(mB7;:
'All N and M must differ by multiples of 2 (including 0).') %~G0[fG
end wCC-Y kA
K# /Ch5?
if any(m>n) $=lJG(2%
error('zernfun:MlessthanN', ... FJW`$5?
'Each M must be less than or equal to its corresponding N.') ~%/'0}F
end 0T=jR{j!o
tgc@7
if any( r>1 | r<0 ) Iht@mE
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]2P/G5C3tU
end Xa>}4j.
}0vtc[!
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) W;91H'`?H
error('zernfun:RTHvector','R and THETA must be vectors.') Bg5;Q)
end 8dlInms
z(#=tC|
r = r(:); ??q!jm-m
theta = theta(:); jzQ9zy_
length_r = length(r); cK/PQsMP
if length_r~=length(theta) o%$<LaQG5
error('zernfun:RTHlength', ... FW/)uf3I
'The number of R- and THETA-values must be equal.') .\)--+(
end ~T;K-9R
r,QJG$ Jo
% Check normalization: py}.00it
% -------------------- dy'X<o^?W
if nargin==5 && ischar(nflag) )Gx":
D
isnorm = strcmpi(nflag,'norm'); .0?ss0~
if ~isnorm >c&4_?d&,A
error('zernfun:normalization','Unrecognized normalization flag.') J6= w:c
end *1R##9\jU7
else ]j72P
isnorm = false; )H.ubM1
end S$Qr@5
'M47'{7T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z3Bo@`&?
% Compute the Zernike Polynomials {6-;P#Q0_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h5<T.vV
UUZ6N ZQI
% Determine the required powers of r: $,p.=j;P
% ----------------------------------- aB/{ %%o
m_abs = abs(m); $:xF)E
rpowers = []; []^PJ
for j = 1:length(n) z<FV1niE
rpowers = [rpowers m_abs(j):2:n(j)]; sj#{TTW
end c1 gz#,
rpowers = unique(rpowers);
h4J{j h.
p)K9ZI
% Pre-compute the values of r raised to the required powers, {yGZc3e1j
% and compile them in a matrix: ;bUJ+6f:
% ----------------------------- tn(f rccy
if rpowers(1)==0 BDarJY
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?v0A/68s#
rpowern = cat(2,rpowern{:}); wjN`EF5$}&
rpowern = [ones(length_r,1) rpowern]; o'9OPoof:.
else FSI]k:
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1\M"`L/
rpowern = cat(2,rpowern{:}); ]C9%]`
end 5q0BG!A%T
IwZZewb-a
% Compute the values of the polynomials: aNuZ/9O
% -------------------------------------- WO.}DUfG+
y = zeros(length_r,length(n)); |JirBz
for j = 1:length(n) C5.\;;7^&
s = 0:(n(j)-m_abs(j))/2; p,M3#^ q
pows = n(j):-2:m_abs(j); p~v2XdR
for k = length(s):-1:1 AH"g^ gw~T
p = (1-2*mod(s(k),2))* ... PPuXas?i
prod(2:(n(j)-s(k)))/ ... I,?Fqg'sq
prod(2:s(k))/ ... D2hAlV)i(
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... (cPeee%Q
prod(2:((n(j)+m_abs(j))/2-s(k))); xfbK eS8
idx = (pows(k)==rpowers); 3fbD"gL
y(:,j) = y(:,j) + p*rpowern(:,idx);
6E)uu; 8
end + MOe{:/6
H]T2$'U6
if isnorm =woqHTR
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); a PcGI
end y<I Z|f
end /j=DC9_
% END: Compute the Zernike Polynomials %XDip]+rb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H4,.H,PZ
z=- 8iks|
% Compute the Zernike functions: 4iL.4Uj{N
% ------------------------------ (;Dn%kK
idx_pos = m>0; Zu [?'
idx_neg = m<0; %WJ\'@O\
-.+KCt G$+
z = y; A{{q'zb!
if any(idx_pos) a!hI${Xn
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); TnMVHO-
end ;|;h9"
if any(idx_neg) FrAqTz
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); `E4!u=%
end iuH8g
~L4*b*W
% EOF zernfun