非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #?YQ&o~gZ
function z = zernfun(n,m,r,theta,nflag) DoX#+
07u4
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. HviL4iO
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @fRB0m"3
% and angular frequency M, evaluated at positions (R,THETA) on the v)!Rir5
% unit circle. N is a vector of positive integers (including 0), and U:~O^
% M is a vector with the same number of elements as N. Each element 8<Asg2]6
% k of M must be a positive integer, with possible values M(k) = -N(k) fBS;~;l
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, $dFEC}1t
% and THETA is a vector of angles. R and THETA must have the same $d{{><
% length. The output Z is a matrix with one column for every (N,M) )MHvuk:I)
% pair, and one row for every (R,THETA) pair. bqFGDmu6'
% ^F5[2<O/!
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike IX']s;b
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ])'22sY
% with delta(m,0) the Kronecker delta, is chosen so that the integral o?b$}Qrl
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 4(& W>E
% and theta=0 to theta=2*pi) is unity. For the non-normalized "639oB
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. zIf/j k
% H5S>|"`e`e
% The Zernike functions are an orthogonal basis on the unit circle. h35x'`g7+r
% They are used in disciplines such as astronomy, optics, and (ST/>")L
% optometry to describe functions on a circular domain. `22F@JYN
% 1&ZG6#16q
% The following table lists the first 15 Zernike functions. +IK~a9t
% 0rxlN
[Yp
% n m Zernike function Normalization *^ \xH ,.
% -------------------------------------------------- 5 .0BaVwi
% 0 0 1 1 $L)9'X
% 1 1 r * cos(theta) 2 ea3AcT6
% 1 -1 r * sin(theta) 2 8h=H\v^f
% 2 -2 r^2 * cos(2*theta) sqrt(6) DhG2!'N
% 2 0 (2*r^2 - 1) sqrt(3) xv]P-q0
% 2 2 r^2 * sin(2*theta) sqrt(6) E[/<AY^@!z
% 3 -3 r^3 * cos(3*theta) sqrt(8) ,6~c0]/
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) .wtb7U;7
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) vo-n9Bj
% 3 3 r^3 * sin(3*theta) sqrt(8) fCJ:QK!
% 4 -4 r^4 * cos(4*theta) sqrt(10) n AQB
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3cBuqQ
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) eVjr/nm
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) LUna stA^
% 4 4 r^4 * sin(4*theta) sqrt(10) ;VSHXU'H
% -------------------------------------------------- :[#HP66[O5
% CtTG`)"|
% Example 1: *P 5Xy@:
% w [I%Id;E
% % Display the Zernike function Z(n=5,m=1) m4<8v
% x = -1:0.01:1; AmM^&
% [X,Y] = meshgrid(x,x); &dp(CH<De
% [theta,r] = cart2pol(X,Y); ;-~Wfh+
% idx = r<=1; 8b8ui
% z = nan(size(X)); sl}bNzT#
% z(idx) = zernfun(5,1,r(idx),theta(idx)); yeFt0\=H
% figure ^DS9D:oE
% pcolor(x,x,z), shading interp ,+3l9FuQ
% axis square, colorbar y>'^<xk
% title('Zernike function Z_5^1(r,\theta)') W @Y$!V<
% {# ;e{v
% Example 2: -\b~R7VQ
% ?5K.#>{
% % Display the first 10 Zernike functions =O?<WJoK
% x = -1:0.01:1; -PbGNF
% [X,Y] = meshgrid(x,x); Bcg\p}
% [theta,r] = cart2pol(X,Y); +_|M*%
% idx = r<=1; IVzJ|
% z = nan(size(X)); BT: =
% n = [0 1 1 2 2 2 3 3 3 3]; ^:5;H=.
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 3Ew-Ia%A
% Nplot = [4 10 12 16 18 20 22 24 26 28]; .t.H(Q9
% y = zernfun(n,m,r(idx),theta(idx)); (=}U2GD*
% figure('Units','normalized') 'uGn1|Pvy
% for k = 1:10 s4Lqam!
% z(idx) = y(:,k); DPw"UY:
% subplot(4,7,Nplot(k)) )TnxsFC
% pcolor(x,x,z), shading interp JBtcl#|
% set(gca,'XTick',[],'YTick',[]) EjV,&7o)
% axis square M&Sjo' ( .
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) poGF
% end ` :eXXE
% 1Y$ gt
% See also ZERNPOL, ZERNFUN2. 6AKH0t|4
*F1!=:&s
% Paul Fricker 11/13/2006 8G`fSac`
51W\ %aB
}i!hzkK#
% Check and prepare the inputs: YQ}Rg5o
% ----------------------------- {1li3K&0s
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8G;
t[9
error('zernfun:NMvectors','N and M must be vectors.') L(XGD
end 'e_^s+l)a
biKom|<nm
if length(n)~=length(m) lZ.x@hDS
error('zernfun:NMlength','N and M must be the same length.') OE]zC
end A6v02WG_1T
e7T"?s
n = n(:); -"YQo
m = m(:); `of 5h*k
if any(mod(n-m,2)) \`}Rdr!p%
error('zernfun:NMmultiplesof2', ... W(Z_ac^e[
'All N and M must differ by multiples of 2 (including 0).') XrS. [
end 8VQJUwf;
4G"T{A`O
if any(m>n) D+lzISp~e
error('zernfun:MlessthanN', ... S9S8T+
'Each M must be less than or equal to its corresponding N.') h}k)7
end N3
.!E|
.Qm"iOyM
if any( r>1 | r<0 ) +kP)T(6
error('zernfun:Rlessthan1','All R must be between 0 and 1.') e`
Z;}&
,
end }u:@:}8K
_p <W
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) j|gQe .,1
error('zernfun:RTHvector','R and THETA must be vectors.') wvBx]$SC
end h[b5"Uqj
}R4%%)j(Vj
r = r(:); !#j
y=A
theta = theta(:); %K8Ei/p\t]
length_r = length(r); B{$4s8XU
if length_r~=length(theta) 4+e9:r]
error('zernfun:RTHlength', ... k FE2Vv4.
'The number of R- and THETA-values must be equal.') z )s{>^D
end
F$<>JEdX
smvIU0:K
% Check normalization: k ,wr6>'Vt
% -------------------- E/2 kX 3}
if nargin==5 && ischar(nflag) S+Z_Qf
isnorm = strcmpi(nflag,'norm'); s kC*
if ~isnorm /tR@J8pV
error('zernfun:normalization','Unrecognized normalization flag.') j oDY
end QxZYy}2
else ts%XjCN[
isnorm = false; 4XpW#>
end Sm-gi|A
nt.A X
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H_RV#BW&
% Compute the Zernike Polynomials hEla8L4Y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rDFDrviW_
DuX7
% Determine the required powers of r: X3&-kU
% ----------------------------------- Qz)1wf'y
m_abs = abs(m); JAJo^}}{b
rpowers = []; C^9G \s'
for j = 1:length(n) 2f>G
rpowers = [rpowers m_abs(j):2:n(j)]; ]S;^QZ
end OXcQMVa
6
rpowers = unique(rpowers); :EJ8^'0Q
1bjhEOW
% Pre-compute the values of r raised to the required powers, ~2u~}v5m7
% and compile them in a matrix: D=Ia$O0.
% ----------------------------- <%w)EQf4m
if rpowers(1)==0 uc;1{[5`1q
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); gS{hfDpk,h
rpowern = cat(2,rpowern{:}); SNqw2f5
rpowern = [ones(length_r,1) rpowern]; u~SvR~OE
else c1 aCN
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); xPMTmx?2
rpowern = cat(2,rpowern{:}); 7|Z=#3INw
end 7^1yZ1(
4@ EY+p
% Compute the values of the polynomials: s
zBlyT
% -------------------------------------- 6r
y = zeros(length_r,length(n)); U9^o"vT
for j = 1:length(n) fLkZ'~e!
s = 0:(n(j)-m_abs(j))/2; JxI\ss?O
pows = n(j):-2:m_abs(j); r\nKJdh;ka
for k = length(s):-1:1 (=#[om(A
p = (1-2*mod(s(k),2))* ...
u@QP<[f
prod(2:(n(j)-s(k)))/ ... #._%~}U
prod(2:s(k))/ ... Nl"Xl?y}
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... qyi5j0)W
prod(2:((n(j)+m_abs(j))/2-s(k))); ;k1\-
idx = (pows(k)==rpowers); MzUNk`T @
y(:,j) = y(:,j) + p*rpowern(:,idx); \"r84@<
end )}ygzKEa
t!}QG"ma
if isnorm 2stBW5v3
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 8{DZew /
end f3 _-{<FZ
end X S:W{tL!
% END: Compute the Zernike Polynomials 7b>FqW)%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |#_IAN
kpF")0qr
% Compute the Zernike functions: $ glt%a
% ------------------------------ poLzgd
idx_pos = m>0; 5Bwr\]%$P
idx_neg = m<0; hG1\
GM]" $
z = y; w5/`_m!
if any(idx_pos) u7PtGN0r%
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); bcx,Kb
end </xz
V<Pi
if any(idx_neg) ] oOSL=~c
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )y~FeKh
end RLy2d'DS
"&$ [@c
% EOF zernfun