非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 iOll WkF
function z = zernfun(n,m,r,theta,nflag) FOSbe]
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. c#
xO<
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N rCE;'? Y
% and angular frequency M, evaluated at positions (R,THETA) on the { UOhVJy
% unit circle. N is a vector of positive integers (including 0), and V}SyD(8~
% M is a vector with the same number of elements as N. Each element ) \4
|
% k of M must be a positive integer, with possible values M(k) = -N(k) 6Hwxx5>r
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 9Eg&CZ,9$D
% and THETA is a vector of angles. R and THETA must have the same { V0>iN:~S
% length. The output Z is a matrix with one column for every (N,M) 0V3gKd7
% pair, and one row for every (R,THETA) pair. AFm,CINa
% \6:>{0\
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike gfm;xT/y
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), V!xwb:J
% with delta(m,0) the Kronecker delta, is chosen so that the integral *> KHRR<N
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \B&6TeR
% and theta=0 to theta=2*pi) is unity. For the non-normalized <BPRV> 0X
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. wyzOcx>M
% GmbIFOT~
% The Zernike functions are an orthogonal basis on the unit circle. ]`d2_mu
% They are used in disciplines such as astronomy, optics, and ZBJ3 VK
% optometry to describe functions on a circular domain. /l6\^Xf{
% \TUE<<?1s
% The following table lists the first 15 Zernike functions. 2e.N"eLNt
% ~.6|dw\p!
% n m Zernike function Normalization +#s;yc#=2
% -------------------------------------------------- [O_^MA,z
% 0 0 1 1 V&[eSVY?
% 1 1 r * cos(theta) 2 -\Z `z}D
% 1 -1 r * sin(theta) 2 _q)!B,y-/N
% 2 -2 r^2 * cos(2*theta) sqrt(6) AK *N
% 2 0 (2*r^2 - 1) sqrt(3) 4\6:\
% 2 2 r^2 * sin(2*theta) sqrt(6) 9 mPIykAj8
% 3 -3 r^3 * cos(3*theta) sqrt(8) |l7%l&!
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 2tf6GX:
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) KDD@%E
% 3 3 r^3 * sin(3*theta) sqrt(8) Sl>>SP
% 4 -4 r^4 * cos(4*theta) sqrt(10) q}wj}t#
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~@Kf2dHes
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) C(o.Cy6
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)
rN"Xz
% 4 4 r^4 * sin(4*theta) sqrt(10) 2xn<E>]
% -------------------------------------------------- JUQg 'D
% ZPyM>XK$4
% Example 1: s4$X
% etyCrQ
?U
% % Display the Zernike function Z(n=5,m=1) NR4Jn?l{
% x = -1:0.01:1; #6W,6(#^#
% [X,Y] = meshgrid(x,x); nm @']
% [theta,r] = cart2pol(X,Y); >'`Sf ?+|
% idx = r<=1; :<GfET Is
% z = nan(size(X)); AIh*1>2Xn
% z(idx) = zernfun(5,1,r(idx),theta(idx)); "-
eZZEl(
% figure *vnXlV4L
% pcolor(x,x,z), shading interp yN\e{;z`
% axis square, colorbar }1U*A#aN7K
% title('Zernike function Z_5^1(r,\theta)') #3 bv3m
% =nU/ [T.
% Example 2: ZJ(rG((!
% a2yE:16o6
% % Display the first 10 Zernike functions i8~$o:&HT
% x = -1:0.01:1; } 0M{A+
% [X,Y] = meshgrid(x,x); vv.PF~:
% [theta,r] = cart2pol(X,Y); f^9&WT
% idx = r<=1; Rri`dmH
% z = nan(size(X)); Hm9<