切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11101阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 U8KY/!XZ  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! {LDb*'5Cy  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 >L`mF_WG  
    function z = zernfun(n,m,r,theta,nflag) ~HRWKPb  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. }{oBKm9_p  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N KB*=a   
    %   and angular frequency M, evaluated at positions (R,THETA) on the ZMg9Qt  
    %   unit circle.  N is a vector of positive integers (including 0), and r.^X>?  
    %   M is a vector with the same number of elements as N.  Each element [#'_@zZz  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) )#~fS28j  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, d}cJ5 !d  
    %   and THETA is a vector of angles.  R and THETA must have the same 5)NBM7h  
    %   length.  The output Z is a matrix with one column for every (N,M) NOp=/  
    %   pair, and one row for every (R,THETA) pair. Q]UYG(  
    % WCTW#<izm  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Vzvw/17J  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), < DZ76  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral nvVsO>2{ o  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, gr{Sh`Cm-  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized l]y%cJ~$'D  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. igj@{FN  
    % *js$r+4  
    %   The Zernike functions are an orthogonal basis on the unit circle. bvS\P!m\c  
    %   They are used in disciplines such as astronomy, optics, and ]mo<qWRc>p  
    %   optometry to describe functions on a circular domain. @SG"t,5s  
    % pbxcsA\  
    %   The following table lists the first 15 Zernike functions. W(lKR_pF  
    % D K_v{R  
    %       n    m    Zernike function           Normalization x0$:"68PW  
    %       -------------------------------------------------- i=H>D  
    %       0    0    1                                 1 &\` a5[  
    %       1    1    r * cos(theta)                    2 L9?/ -@M  
    %       1   -1    r * sin(theta)                    2 SH$cn,3F8  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 0+y~RTAVB  
    %       2    0    (2*r^2 - 1)                    sqrt(3) i3&B%JiLX  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) cBR8HkP~  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) P^m 6di  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) xj q7%R_,  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) l@/kPEh  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) FDs^S)B  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) y&=19 A#  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8Pr7aT:,  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) SJc@iffS  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (My$@l973  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) yP9wYF^A\  
    %       -------------------------------------------------- L0|hc  
    % 8|qB 1fB  
    %   Example 1: }%FuL5Tx  
    % (s@tU>4U  
    %       % Display the Zernike function Z(n=5,m=1) S}Y|s]6  
    %       x = -1:0.01:1; xP6?es`  
    %       [X,Y] = meshgrid(x,x); _u|FJTk  
    %       [theta,r] = cart2pol(X,Y); "~2#!bK7  
    %       idx = r<=1; IgR"eu U  
    %       z = nan(size(X)); Y{2d4VoW6  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 5h=TV  
    %       figure q(tG bhQ  
    %       pcolor(x,x,z), shading interp OC>_=i$ '  
    %       axis square, colorbar r{2].31'  
    %       title('Zernike function Z_5^1(r,\theta)') $EGRaps{j>  
    % e=jT]i*cU  
    %   Example 2: BS,5W]ervE  
    % hB}h-i(u  
    %       % Display the first 10 Zernike functions ;, v L  
    %       x = -1:0.01:1; x gT~b9  
    %       [X,Y] = meshgrid(x,x); Ao,!z  
    %       [theta,r] = cart2pol(X,Y); [aM'  
    %       idx = r<=1; -S%q!%}u  
    %       z = nan(size(X)); $K_YC~  
    %       n = [0  1  1  2  2  2  3  3  3  3]; $n#Bi.A j  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; $FusDdCv3  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; YyJ{  
    %       y = zernfun(n,m,r(idx),theta(idx)); MjXE|3&  
    %       figure('Units','normalized') waWKpk1Wo  
    %       for k = 1:10 ,Lun-aMd  
    %           z(idx) = y(:,k); Z-h7  
    %           subplot(4,7,Nplot(k)) =e!l=d|/  
    %           pcolor(x,x,z), shading interp H9san5{  
    %           set(gca,'XTick',[],'YTick',[]) =1 BNCKT<  
    %           axis square ~'NpM#A  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \aVY>1`  
    %       end 6(J4IzZ  
    % (YYj3#|  
    %   See also ZERNPOL, ZERNFUN2. G]mWaA  
    ,s><kHJ  
    %   Paul Fricker 11/13/2006 c@ZS|U*(  
    .Y(lB=pV  
    B&i0j5L  
    % Check and prepare the inputs: JYg% ~tW'  
    % ----------------------------- EwD3d0udL  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) lTr*'fX  
        error('zernfun:NMvectors','N and M must be vectors.') "o{)X@YN]  
    end ^K.u ~p   
    =%3b@}%HqS  
    if length(n)~=length(m) QOV}5 0  
        error('zernfun:NMlength','N and M must be the same length.') 45+%K@@x  
    end V'"I9R'1  
    EzIs@}  
    n = n(:); 3xzkZ8]/  
    m = m(:); 6 tc:A5mK  
    if any(mod(n-m,2)) ;;?vgrz  
        error('zernfun:NMmultiplesof2', ... Cx+WLD  
              'All N and M must differ by multiples of 2 (including 0).') )XP#W|;  
    end 1 @%B?  
    jWXR__>.  
    if any(m>n) a;"Uz|rz  
        error('zernfun:MlessthanN', ... Oz&+{ c  
              'Each M must be less than or equal to its corresponding N.') ;Rhb@]X  
    end Gg9VS&VI  
    }U%^3r-  
    if any( r>1 | r<0 ) y7JZKtsFA  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') `k(u:yGK  
    end l801` ~*gO  
    JAlU%n?R  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) iUIy,Y  
        error('zernfun:RTHvector','R and THETA must be vectors.') ,M) k7t:  
    end <Zp^lDxa  
    aXdf>2c{JD  
    r = r(:); $s-9|Lbs`  
    theta = theta(:); <t{?7_ 8  
    length_r = length(r); >*dQqJI  
    if length_r~=length(theta) K8 b+   
        error('zernfun:RTHlength', ... {J~(#i k   
              'The number of R- and THETA-values must be equal.') g4:VR:o  
    end e=t<H"&  
    a-]hW=[  
    % Check normalization: 'aD6>8/Hj  
    % -------------------- +7Yu^&  
    if nargin==5 && ischar(nflag) _i3i HR?  
        isnorm = strcmpi(nflag,'norm'); t`"^7YFS>  
        if ~isnorm 'h-3V8m^e  
            error('zernfun:normalization','Unrecognized normalization flag.') m|pTn#*`  
        end CQdBf3q  
    else oi2J :Y4  
        isnorm = false; Yd' H+r5b  
    end dG&2,n'f  
    5kcJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]7a;jNQu  
    % Compute the Zernike Polynomials 9~@<-6jE3b  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zwK }7h6]  
    k$C"xg2  
    % Determine the required powers of r: *FV0Vy  
    % ----------------------------------- 31~hlp;  
    m_abs = abs(m); tbq|,"  
    rpowers = []; 6Wj@r!u  
    for j = 1:length(n) 9Z&?R++?  
        rpowers = [rpowers m_abs(j):2:n(j)]; Hu[]h]  
    end ZP"yq6!i  
    rpowers = unique(rpowers); $#5klA  
    %drJ p6n%  
    % Pre-compute the values of r raised to the required powers, FbveI4  
    % and compile them in a matrix: B4Q79gEh=  
    % ----------------------------- bA9CO\Pp`  
    if rpowers(1)==0 tG/a H%4S  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U\Ct/U&A?  
        rpowern = cat(2,rpowern{:}); Dy su{rL  
        rpowern = [ones(length_r,1) rpowern]; TfJL+a0  
    else (@ "=F6P  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l '/N3&5  
        rpowern = cat(2,rpowern{:}); tWm>j  
    end tJ"az=?  
    `h?LVD'l  
    % Compute the values of the polynomials: UxyY<H~Wx  
    % -------------------------------------- HOfF"QAR$  
    y = zeros(length_r,length(n)); "Nbos.a]5  
    for j = 1:length(n) 'Q5&5UrBr  
        s = 0:(n(j)-m_abs(j))/2; KxY$PgcC  
        pows = n(j):-2:m_abs(j); <P1rqM9^  
        for k = length(s):-1:1 U R}kB&t  
            p = (1-2*mod(s(k),2))* ... l]H0g[  
                       prod(2:(n(j)-s(k)))/              ... lX"bN=E?!  
                       prod(2:s(k))/                     ... O}QFq14<+  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ?w*yW;V`  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); wxj>W[V  
            idx = (pows(k)==rpowers); D}w<84qX  
            y(:,j) = y(:,j) + p*rpowern(:,idx); rj3YTu`  
        end m%pBXXfGYj  
         >V(zJ  
        if isnorm `fz,Lh*v  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); bp#fyG"  
        end i X%[YQ |  
    end QQFf5^  
    % END: Compute the Zernike Polynomials b$Ln} <  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $Z ]z  
    lyyX<=E{)  
    % Compute the Zernike functions: Lj8)' [K"  
    % ------------------------------ hT'=VN  
    idx_pos = m>0; /PXioiGcs  
    idx_neg = m<0; [SkKz>rC  
    sK&,):"]R  
    z = y; yyP'Z~0  
    if any(idx_pos) Rn-G @}f  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 0z7L+2#b^  
    end FQROK4x%"  
    if any(idx_neg) &Yf",KcL*I  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); T1W:>~T5#  
    end @DuK#W"E u  
    L,?/'!xV  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) }"_j0ax  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 5wT>N46UX  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Yp1bH+/u  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 7?nJ4x1  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, U>P|X=)  
    %   and THETA is a vector of angles.  R and THETA must have the same !^y y0`k6  
    %   length.  The output Z is a matrix with one column for every P-value, XV>&F{  
    %   and one row for every (R,THETA) pair. !VP %v&jKm  
    % {q3:Z{#>7  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 7NL% $Vf  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) hO#t:WxFI  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) A\AT0th  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 r?A|d.Tl  
    %   for all p. hat>kXm2K  
    % )R?;M  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ECcZz.  
    %   Zernike functions (order N<=7).  In some disciplines it is tmJgm5v  
    %   traditional to label the first 36 functions using a single mode j U[ O  
    %   number P instead of separate numbers for the order N and azimuthal A6{b?aQ  
    %   frequency M. 909md|9K3  
    % T9syo/(  
    %   Example: AIRr{Y  
    % }]+xFj9[>  
    %       % Display the first 16 Zernike functions o' 'wCr%  
    %       x = -1:0.01:1; ;%!B[+ut"  
    %       [X,Y] = meshgrid(x,x);  c</1  
    %       [theta,r] = cart2pol(X,Y); ;%Hf)F  
    %       idx = r<=1; > cN~U3  
    %       p = 0:15; *7$P]  
    %       z = nan(size(X)); /i_ @  
    %       y = zernfun2(p,r(idx),theta(idx)); P0Z! ?`e=M  
    %       figure('Units','normalized') /6+NU^  
    %       for k = 1:length(p) -#s [F S  
    %           z(idx) = y(:,k); M4m$\~zf  
    %           subplot(4,4,k) ymN!-x8q>'  
    %           pcolor(x,x,z), shading interp ycAKK?O*  
    %           set(gca,'XTick',[],'YTick',[]) IQH[Q9%  
    %           axis square } JiSmi6o  
    %           title(['Z_{' num2str(p(k)) '}']) JC#>Td  
    %       end 3c3OG.H$8  
    % $` VFdAe  
    %   See also ZERNPOL, ZERNFUN. 9GLb"6+PK  
    <F=9*.@D   
    %   Paul Fricker 11/13/2006 A,gEM4  
    k`{7}zxS  
    D y-S98Y  
    % Check and prepare the inputs: MJ{%4S{K,p  
    % ----------------------------- a W%5~3  
    if min(size(p))~=1 5n lMrK  
        error('zernfun2:Pvector','Input P must be vector.') [I;^^#'P  
    end I+(/TP  
    ^W?Z  
    if any(p)>35 ++-{]wB3=.  
        error('zernfun2:P36', ... q MYe{{r  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... x_#-tB  
               '(P = 0 to 35).']) [ ho (z30k  
    end ;]sYf  
    *^%*o?M~  
    % Get the order and frequency corresonding to the function number: a->3`c  
    % ---------------------------------------------------------------- bG F7Zh9  
    p = p(:); [U@; \V$  
    n = ceil((-3+sqrt(9+8*p))/2); {LHR!~d}5f  
    m = 2*p - n.*(n+2); PQN@JaD  
    t"072a  
    % Pass the inputs to the function ZERNFUN: 4QOEw-~w&s  
    % ---------------------------------------- !k3e\v|  
    switch nargin M$4[)6Y  
        case 3 BQH}6ueZ  
            z = zernfun(n,m,r,theta); s*/bi W  
        case 4 ]i<[d ,  
            z = zernfun(n,m,r,theta,nflag); 'B5^P  
        otherwise |*/[`|*G  
            error('zernfun2:nargin','Incorrect number of inputs.') C)'q QvA  
    end :r#)z4d5  
    7{@l%jx][  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Twn4lG4~  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. toN^0F?Qm  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of X\EVTd)@  
    %   order N and frequency M, evaluated at R.  N is a vector of 1I@8A>2^OX  
    %   positive integers (including 0), and M is a vector with the Hbv6_H  
    %   same number of elements as N.  Each element k of M must be a (=D&A<YX  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) gs!(;N\j|  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is A_Frk'{qhB  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix F}Vr:~  
    %   with one column for every (N,M) pair, and one row for every "ju6XdZo  
    %   element in R. qC F5~;7  
    % s0Z uWVip  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- g&/T*L  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 'y8]_K*  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to __mF ?m  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 *m?/O} R  
    %   for all [n,m]. {(r6e  
    % UAoh`6vFF8  
    %   The radial Zernike polynomials are the radial portion of the cGjPxG;  
    %   Zernike functions, which are an orthogonal basis on the unit Ft}@ 1w5  
    %   circle.  The series representation of the radial Zernike .r*2|  
    %   polynomials is jKt7M>P  
    % (vT+IZEI  
    %          (n-m)/2 4apL4E"r  
    %            __ ;b-XWK=  
    %    m      \       s                                          n-2s ]_N|L|]M  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r p]3?gK-  
    %    n      s=0 pz"0J_xDM  
    % x.S3Zi}=  
    %   The following table shows the first 12 polynomials. ~69&6C1Ch  
    % XI^QF;,  
    %       n    m    Zernike polynomial    Normalization 3Z1CWzq(  
    %       --------------------------------------------- Y]&j,j&  
    %       0    0    1                        sqrt(2) HTG%t/S  
    %       1    1    r                           2 FSND>\>  
    %       2    0    2*r^2 - 1                sqrt(6) KCs[/]  
    %       2    2    r^2                      sqrt(6) #ep`nf0x  
    %       3    1    3*r^3 - 2*r              sqrt(8) ~@}Bi@*  
    %       3    3    r^3                      sqrt(8) a\r\PBi  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) M3.do^ss  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) FJMrs[  
    %       4    4    r^4                      sqrt(10) wb0L.'jyR)  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) _*f`iu:`  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) A}l3cP; `#  
    %       5    5    r^5                      sqrt(12) wpN=,&!  
    %       --------------------------------------------- >7 ="8  
    % %^jMj2  
    %   Example: LGn:c;  
    % r]6C  
    %       % Display three example Zernike radial polynomials RCpR3iC2  
    %       r = 0:0.01:1; kDsFR#w&`  
    %       n = [3 2 5]; zolt$p  
    %       m = [1 2 1]; 7j-4TY~  
    %       z = zernpol(n,m,r); E 7{U |\  
    %       figure -qGa]a  
    %       plot(r,z) 9iQq.$A.  
    %       grid on |!4K!_y  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') .6Pw|xu`Pw  
    % (JOgy .5C~  
    %   See also ZERNFUN, ZERNFUN2. iUN Ib  
    " )1V]}+m  
    % A note on the algorithm. K|[*t~59  
    % ------------------------ H:V2[y8\  
    % The radial Zernike polynomials are computed using the series GB=X5<;  
    % representation shown in the Help section above. For many special %lGl,me H  
    % functions, direct evaluation using the series representation can @J/K-.r  
    % produce poor numerical results (floating point errors), because 1ukTA@Rj&  
    % the summation often involves computing small differences between H*PSR  
    % large successive terms in the series. (In such cases, the functions 3ca (i/c  
    % are often evaluated using alternative methods such as recurrence ZQV6xoN;r  
    % relations: see the Legendre functions, for example). For the Zernike SHfy".A6.0  
    % polynomials, however, this problem does not arise, because the =c\>(2D  
    % polynomials are evaluated over the finite domain r = (0,1), and Wi)_H$KII  
    % because the coefficients for a given polynomial are generally all ~x1$h#Cx'  
    % of similar magnitude. ;@oN s-  
    % ZbdZ rE$  
    % ZERNPOL has been written using a vectorized implementation: multiple m+]K;}.}R  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ,?^ p(w  
    % values can be passed as inputs) for a vector of points R.  To achieve k5'Vy8q  
    % this vectorization most efficiently, the algorithm in ZERNPOL w9EOC$|Y  
    % involves pre-determining all the powers p of R that are required to 0Qf,@^zL*  
    % compute the outputs, and then compiling the {R^p} into a single u0 `S5?  
    % matrix.  This avoids any redundant computation of the R^p, and ?67Y-\}  
    % minimizes the sizes of certain intermediate variables. cK(C&NK  
    % wfLaRP  
    %   Paul Fricker 11/13/2006 +V{kb<P  
    9y"@(  
    -lY6|79bF  
    % Check and prepare the inputs: +~ P2C6@G  
    % ----------------------------- vdc\R?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) . 1Dg s=|  
        error('zernpol:NMvectors','N and M must be vectors.') Q+{xZ'o"Z  
    end s"r*YlSp"  
    _@ qjV~%Sy  
    if length(n)~=length(m) 52Z2]T c ,  
        error('zernpol:NMlength','N and M must be the same length.') nAsh:6${  
    end nFHUy9q  
    , /Z%@-rF  
    n = n(:); ,is3&9  
    m = m(:); W}@c|d $`  
    length_n = length(n); qN9(S:_Px  
    a%JuC2  
    if any(mod(n-m,2)) KQ% GIz x  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') I-]?"Q7Jz  
    end dO! kk"qn  
     UD2C>1j  
    if any(m<0) 6]WAUK%h  
        error('zernpol:Mpositive','All M must be positive.') Q{>+ft U  
    end KQ!8ks]  
    84& $^lNV  
    if any(m>n) [}E='m}u9+  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 1Y\DJ@lh  
    end hF~n)oQ  
    FXG]LoP  
    if any( r>1 | r<0 ) H)kwQRfu  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Fo5FNNiID  
    end &[?\k>  
    un mJbY;t  
    if ~any(size(r)==1) Qb-M6ihcc  
        error('zernpol:Rvector','R must be a vector.') Hw}Xbp[y  
    end $]/{[@5  
    O`IQ(,yef  
    r = r(:); P^ ~yzI  
    length_r = length(r); _^Ubs>d=*  
    itt3.:y  
    if nargin==4 ;#W2|'HD  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 5IGX5x  
        if ~isnorm C!<Ou6}!b  
            error('zernpol:normalization','Unrecognized normalization flag.') t6 "%3#s  
        end oGnSPI5KGC  
    else |.: q  
        isnorm = false; ]vUwG--*  
    end M6 "PX *K  
    Y8~"vuIE5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *SJ_z(CZm  
    % Compute the Zernike Polynomials NZ:,ph  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @1roe G  
    DN>[\hg  
    % Determine the required powers of r: EHJ.T~X  
    % ----------------------------------- J/y83@  
    rpowers = []; Ko<:Z)PS  
    for j = 1:length(n) b|:YIXml  
        rpowers = [rpowers m(j):2:n(j)]; UERLtSQ  
    end 0*3R=7_},o  
    rpowers = unique(rpowers); VPJElRSH  
    {UI+$/v#  
    % Pre-compute the values of r raised to the required powers, E4jNA }3k+  
    % and compile them in a matrix: sUO`uqZV  
    % ----------------------------- reu*53r]  
    if rpowers(1)==0  ?(1 y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); YoNDf39  
        rpowern = cat(2,rpowern{:}); i>`%TW:g  
        rpowern = [ones(length_r,1) rpowern]; 4SxX3Fw  
    else AO4U}?  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); kiaw4_  
        rpowern = cat(2,rpowern{:}); >1Ibc=}g  
    end Rh{f5-  
    _ ]ip ajT  
    % Compute the values of the polynomials: .W%)*&WH\  
    % -------------------------------------- m=:9+z  
    z = zeros(length_r,length_n); P/eeC"  
    for j = 1:length_n j3V -LnA  
        s = 0:(n(j)-m(j))/2; H/ HMm{4  
        pows = n(j):-2:m(j); ~TD0z AA&  
        for k = length(s):-1:1 S9y}  
            p = (1-2*mod(s(k),2))* ... ~q.F<6O  
                       prod(2:(n(j)-s(k)))/          ... %J?xRv!  
                       prod(2:s(k))/                 ... @Cyvf5|bL  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 1.GQau~  
                       prod(2:((n(j)+m(j))/2-s(k))); aeJHMHFc  
            idx = (pows(k)==rpowers); B~ GbF*j  
            z(:,j) = z(:,j) + p*rpowern(:,idx); g*_&  
        end BX7kO0j  
         zwjgE6  
        if isnorm E{`fF8]K  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); XNkn|q2  
        end 6A-|[(NS  
    end R 'zWYQ  
    KkbDW3-  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  UCWBYC+  
    :gC#hmm^  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 b`_Q8 J  
    Y9|!+,  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)