切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11280阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 'UGgY3  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! -4 L27C  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 {=Py|N \\t  
    function z = zernfun(n,m,r,theta,nflag) i1HO>X:ea  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. UU#$Kt*frR  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,yfJjV*I  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Pi%-bD/w  
    %   unit circle.  N is a vector of positive integers (including 0), and CWD $\K G  
    %   M is a vector with the same number of elements as N.  Each element N>@.(f&w  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 1P BnGQYM  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 20Rm|CNH?  
    %   and THETA is a vector of angles.  R and THETA must have the same n@oSLo`k,`  
    %   length.  The output Z is a matrix with one column for every (N,M) ,M\/[_:  
    %   pair, and one row for every (R,THETA) pair. +~;#!I@Di  
    % 6iEA._y  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike v=IcVHuf  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $7Tj<;TV  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Xs2B:`,hh  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, K=P LOC5  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized C+C1(b;1  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. EYZ,GT-I  
    % E_xk8X~  
    %   The Zernike functions are an orthogonal basis on the unit circle. fKs3H?|  
    %   They are used in disciplines such as astronomy, optics, and G<~P||Lu^  
    %   optometry to describe functions on a circular domain. 2T"[$iH!7  
    % En8L1$_  
    %   The following table lists the first 15 Zernike functions. L[:M[,?=`  
    % n8&x=Z}Xs  
    %       n    m    Zernike function           Normalization >k 2^A  
    %       -------------------------------------------------- (Q|Y*yI  
    %       0    0    1                                 1 Bf,}mCq  
    %       1    1    r * cos(theta)                    2 z+?48 }  
    %       1   -1    r * sin(theta)                    2 L\t!)X-4  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) EOGz;:b&  
    %       2    0    (2*r^2 - 1)                    sqrt(3) .n}k,da@(  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) [} %=& B  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) j2#B l  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Ak\"C4s  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) M !rw!,g  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) FJB /tg  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) w`Rt"d_B  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) wY7+E/  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) {6wy}<ynC+  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?zK>[L  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) t3.I ` Z  
    %       -------------------------------------------------- S|B S;VY  
    % NV3oJ0f&2  
    %   Example 1: 2u} ns8wn  
    % y)`q% J&  
    %       % Display the Zernike function Z(n=5,m=1) 2AjP2  
    %       x = -1:0.01:1; &$pA,Gjin\  
    %       [X,Y] = meshgrid(x,x); S ^@# %>  
    %       [theta,r] = cart2pol(X,Y); leJ3-w{ 2  
    %       idx = r<=1; Olq`mlsK  
    %       z = nan(size(X)); j1dz'G}hj  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ;;zd/n2b  
    %       figure Lor__ K  
    %       pcolor(x,x,z), shading interp /oU$TaB>(  
    %       axis square, colorbar tkhEjTZ  
    %       title('Zernike function Z_5^1(r,\theta)') YZ5[# E@l  
    % I8:G:s:  
    %   Example 2: zXeBUbVi  
    % |Fzt| \  
    %       % Display the first 10 Zernike functions R!_1*H$  
    %       x = -1:0.01:1; { *Wc`ZBY  
    %       [X,Y] = meshgrid(x,x); au7@-_  
    %       [theta,r] = cart2pol(X,Y); :,MI,SwnS  
    %       idx = r<=1; $/P\@|MqYQ  
    %       z = nan(size(X)); d|$-l:(J  
    %       n = [0  1  1  2  2  2  3  3  3  3]; k%({< ul  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;DI"9  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; !%G;t$U=M  
    %       y = zernfun(n,m,r(idx),theta(idx)); <``krPi  
    %       figure('Units','normalized') 9QN(Wq@  
    %       for k = 1:10 r Ww.(l  
    %           z(idx) = y(:,k); }+ TA+;  
    %           subplot(4,7,Nplot(k)) xh!aB6m8R  
    %           pcolor(x,x,z), shading interp 4yRX{Bl|  
    %           set(gca,'XTick',[],'YTick',[]) iSj.lW  
    %           axis square E&|EokSyN  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) M cbiO)@I  
    %       end >tV:QP]Y  
    % /d1V&Lj  
    %   See also ZERNPOL, ZERNFUN2. qk\LfRbj  
    6)#%36rP  
    %   Paul Fricker 11/13/2006 _K|?;j#x0k  
    !o/;"'&E  
    .h;X5q1  
    % Check and prepare the inputs: {:BY IdX  
    % ----------------------------- C<iOa)_@Q  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LfG$?<}hR  
        error('zernfun:NMvectors','N and M must be vectors.') \AB*C_Ri  
    end hUMFfc ?  
    fZJO}  
    if length(n)~=length(m) e#{l  
        error('zernfun:NMlength','N and M must be the same length.') Y t0s  
    end ))#_@CwRr  
    }{ "RgT-qG  
    n = n(:); f n\&%`U  
    m = m(:); c jBHczkY  
    if any(mod(n-m,2)) :X- \!w\  
        error('zernfun:NMmultiplesof2', ... T ^z M m  
              'All N and M must differ by multiples of 2 (including 0).') n(el  
    end Q02:qn?T  
    U7Pn $l2!  
    if any(m>n) |:d:uj/  
        error('zernfun:MlessthanN', ... `v$Bib)  
              'Each M must be less than or equal to its corresponding N.') b 'yW+  
    end v`u>; S_  
    3`Q>s;DjIU  
    if any( r>1 | r<0 ) 5v-o2  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Jl^THoEL  
    end u:O6MO9^  
    >CPoeIHK  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ( 0Z3Ksfj1  
        error('zernfun:RTHvector','R and THETA must be vectors.') Rk52K*Dc  
    end s$;IR c5!6  
    p` LPO  
    r = r(:); 4xNzhnp|  
    theta = theta(:); 7_ah1IEK  
    length_r = length(r); "J6 aU  
    if length_r~=length(theta) ZE>!]# ,  
        error('zernfun:RTHlength', ... H!ISQ8{V  
              'The number of R- and THETA-values must be equal.') J*CfG;Y:  
    end mdD9Q N01  
    >c:- ;(k  
    % Check normalization: fTc ,"{  
    % -------------------- jF%[.n[BU  
    if nargin==5 && ischar(nflag) h^6Yjy  
        isnorm = strcmpi(nflag,'norm'); B[Fuyy?  
        if ~isnorm K=C).5=U  
            error('zernfun:normalization','Unrecognized normalization flag.') Lg4I6 G  
        end hV4B?##O  
    else }8qsE  
        isnorm = false; 8q& *tpE  
    end Z<0+<tt  
    &OSyU4r  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aF\?X &|  
    % Compute the Zernike Polynomials Z'sO9Sg8>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xd`!z`X!,s  
    pu*vFwZ  
    % Determine the required powers of r: :-kXZe  
    % ----------------------------------- [,fdNxc8  
    m_abs = abs(m); R7 *ek_  
    rpowers = []; zx{O/v KG  
    for j = 1:length(n) }X`jhsqT  
        rpowers = [rpowers m_abs(j):2:n(j)]; :+>:>$ao  
    end +vtI1LC;_  
    rpowers = unique(rpowers); XK5qE"  
    s GP}>w-JZ  
    % Pre-compute the values of r raised to the required powers, :{v:sK  
    % and compile them in a matrix: #TX=%x6  
    % ----------------------------- 9v<Sng  
    if rpowers(1)==0 ){oVVLs  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Y)I8(g}0  
        rpowern = cat(2,rpowern{:}); ?geEq'  
        rpowern = [ones(length_r,1) rpowern]; ^L<*ggw  
    else q:1_D>  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 61J01(+|  
        rpowern = cat(2,rpowern{:}); afMIqQ?  
    end <IBzh_  
    Y Hv85y  
    % Compute the values of the polynomials: oGLSk (T&I  
    % -------------------------------------- \ns#l@B  
    y = zeros(length_r,length(n)); I!;#Nk>  
    for j = 1:length(n) FT* o;&_QS  
        s = 0:(n(j)-m_abs(j))/2; vx\h Njb  
        pows = n(j):-2:m_abs(j); Pl }dA  
        for k = length(s):-1:1 Vhww-A  
            p = (1-2*mod(s(k),2))* ... h,V#V1>Hu  
                       prod(2:(n(j)-s(k)))/              ... Ek,s6B)'d  
                       prod(2:s(k))/                     ... EO;f`s)t  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ?)cNe:KY  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Ir*,fyl  
            idx = (pows(k)==rpowers); G1"=}Wt`  
            y(:,j) = y(:,j) + p*rpowern(:,idx); xe: D7  
        end 3a4 ]{  
         M,Px.@tw.  
        if isnorm swVq%]')"  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); d*lnXzQor  
        end m GWT</=[$  
    end t p.qh]2c  
    % END: Compute the Zernike Polynomials S`"M;%T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <&o `T4  
    XRI1/2YA  
    % Compute the Zernike functions: }q(IKH\&  
    % ------------------------------ h(I~HZ[K&T  
    idx_pos = m>0; e3wFi,/@  
    idx_neg = m<0; NdQXQa?,  
    Kk~0jP_B9  
    z = y; 56o?=|  
    if any(idx_pos) 4.3Bz1p&#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); nFlj`k<]Y  
    end I@ch 5vl4  
    if any(idx_neg) 3Nh;^  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); mLO{~ruu  
    end w>X33Ff]8@  
    ,7pO-:*g  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) A{;b^ IK  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. D|Z,eench  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ;2}0Hr'|  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive +iwNM+K/gQ  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 1` m ~c  
    %   and THETA is a vector of angles.  R and THETA must have the same `2NL'O:  
    %   length.  The output Z is a matrix with one column for every P-value, ~?6V-m{>#  
    %   and one row for every (R,THETA) pair. o)?"P;UhJX  
    % 5gV8=Ml"V  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike qrNW\ME  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) @}x)>tqD  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) P,~a'_w:|D  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 &tQ,2RT  
    %   for all p. "F|OJ@ M  
    % *Yvfp{B  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 X<(h)&E  
    %   Zernike functions (order N<=7).  In some disciplines it is :H\6wJ  
    %   traditional to label the first 36 functions using a single mode _hMVv&$  
    %   number P instead of separate numbers for the order N and azimuthal NeHR% a2~  
    %   frequency M. 6yTL7@V|B  
    % =X>3C"]  
    %   Example: f<WnPoV  
    % Z[AJat@H  
    %       % Display the first 16 Zernike functions Ajq;\- :  
    %       x = -1:0.01:1; Y.i<7pBt  
    %       [X,Y] = meshgrid(x,x); ^=D77 jS  
    %       [theta,r] = cart2pol(X,Y); eJ%~6c`@!  
    %       idx = r<=1; Z5-"a?{Y  
    %       p = 0:15; S5v>WI^0h  
    %       z = nan(size(X)); cWp n/.a  
    %       y = zernfun2(p,r(idx),theta(idx)); w_,.  
    %       figure('Units','normalized') {*t'h?b  
    %       for k = 1:length(p) yi# Nrc5B  
    %           z(idx) = y(:,k); n4k. tq  
    %           subplot(4,4,k) JeUFCWm  
    %           pcolor(x,x,z), shading interp Nf0b?jn-  
    %           set(gca,'XTick',[],'YTick',[]) VuJth  
    %           axis square G+b$WQn2t  
    %           title(['Z_{' num2str(p(k)) '}']) ~@BV  
    %       end 6l [T Q  
    % .m/Lon E  
    %   See also ZERNPOL, ZERNFUN. * 2T&pX  
    p`Omcl~Q  
    %   Paul Fricker 11/13/2006 c 2?(.UV  
    yKOf]m>#  
    U`:#+8h-}  
    % Check and prepare the inputs: dm.?-u;C  
    % ----------------------------- &!/L^Y*+  
    if min(size(p))~=1 V[+ Pb]  
        error('zernfun2:Pvector','Input P must be vector.') |mk$W$h  
    end pR 1v^m|  
    YV{^S6M  
    if any(p)>35 kc|`VB8L  
        error('zernfun2:P36', ... } %S1OQC  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 0NpxqeIDY  
               '(P = 0 to 35).']) f>ED  
    end gA2\c5F<  
    pVt-7 AgW  
    % Get the order and frequency corresonding to the function number: / )5B  
    % ---------------------------------------------------------------- c !P9`l~MQ  
    p = p(:); e d4T_O;  
    n = ceil((-3+sqrt(9+8*p))/2); f:"es: Fb  
    m = 2*p - n.*(n+2); L V33vy  
    >\} 2("bv  
    % Pass the inputs to the function ZERNFUN: RJF1~9  
    % ---------------------------------------- XuR!9x^5  
    switch nargin uA:;OM}  
        case 3 RXl52#:  
            z = zernfun(n,m,r,theta); ]wa?~;1^&  
        case 4 09|d<  
            z = zernfun(n,m,r,theta,nflag); r1ctW#\~8  
        otherwise 39"8Nq|e  
            error('zernfun2:nargin','Incorrect number of inputs.') Xd|@w{.m*  
    end ;?zb (2  
    7gD$Q  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 6<]&T lS]  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. m>zUwGYEu  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of /,E%)K;  
    %   order N and frequency M, evaluated at R.  N is a vector of (X>r_4W$  
    %   positive integers (including 0), and M is a vector with the oPzt1Y  
    %   same number of elements as N.  Each element k of M must be a w`>xK sKW>  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) cQ3Dk<GZ  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is rU.ew~  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 0lmoI4bW}s  
    %   with one column for every (N,M) pair, and one row for every l4;/[Q>Z  
    %   element in R. js8uvZ i  
    % ;M"hX  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- hs<7(+a  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 'f;+*~*L  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ]7dm`XV  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 /:yKa=$  
    %   for all [n,m]. bG.aV#$FIg  
    % 0p Lb<&  
    %   The radial Zernike polynomials are the radial portion of the 1|z>} xP  
    %   Zernike functions, which are an orthogonal basis on the unit 20%xD e  
    %   circle.  The series representation of the radial Zernike Z33w A?9  
    %   polynomials is Q*mPU=<  
    % & r\z9!   
    %          (n-m)/2 c?<FMb3]  
    %            __ NwT3e&u%|  
    %    m      \       s                                          n-2s J# :%| F%  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r {T:2+iS9:  
    %    n      s=0 <]CO}r   
    % !8l4H c8  
    %   The following table shows the first 12 polynomials. R['qBHQ?  
    % uo 7AU3\  
    %       n    m    Zernike polynomial    Normalization h"wXmAf4%  
    %       --------------------------------------------- [ Y'Xop6G  
    %       0    0    1                        sqrt(2) 1C.<@IZ  
    %       1    1    r                           2 KS(s<ip|  
    %       2    0    2*r^2 - 1                sqrt(6)  g<UjB  
    %       2    2    r^2                      sqrt(6) m:p1O3[R  
    %       3    1    3*r^3 - 2*r              sqrt(8) Wv(VV[?/&  
    %       3    3    r^3                      sqrt(8) i/)Uj-*G)  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) }4eSB  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) lg1?g)lv  
    %       4    4    r^4                      sqrt(10) ~2rZL  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) (F$q|qZ%  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) h7*fjw-Xz[  
    %       5    5    r^5                      sqrt(12) n!3_%K0!r&  
    %       --------------------------------------------- tOp>O oD  
    % 5^0W\  
    %   Example: WnUYZ_+e!  
    % Bz7T1B&to  
    %       % Display three example Zernike radial polynomials 9.1%T06$  
    %       r = 0:0.01:1; @Cw<wrem  
    %       n = [3 2 5]; 3( AgUq  
    %       m = [1 2 1]; "MK:y[+*  
    %       z = zernpol(n,m,r); l4r09"S|V  
    %       figure \'E%ue_<9  
    %       plot(r,z) ZHw)N&Qn  
    %       grid on rC/m}`b  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') H$1R\rE`  
    % Zr oj-3-X~  
    %   See also ZERNFUN, ZERNFUN2. +XFF@h&=t  
    Ds0^/bYp&  
    % A note on the algorithm. nJ'O(Wh,)  
    % ------------------------ j6IWdqXe  
    % The radial Zernike polynomials are computed using the series &#;UKk~)Of  
    % representation shown in the Help section above. For many special ;wTl#\|w0  
    % functions, direct evaluation using the series representation can =3/||b4c  
    % produce poor numerical results (floating point errors), because hQ8/-#LO_  
    % the summation often involves computing small differences between FS`{3d2K +  
    % large successive terms in the series. (In such cases, the functions d;;]+%  
    % are often evaluated using alternative methods such as recurrence k\x>kJ}0  
    % relations: see the Legendre functions, for example). For the Zernike ETjlq]@j  
    % polynomials, however, this problem does not arise, because the cq@8!Eu w]  
    % polynomials are evaluated over the finite domain r = (0,1), and I^\YD9~=x  
    % because the coefficients for a given polynomial are generally all obaJT"1  
    % of similar magnitude. \gj@O5rGP  
    % p0'A\@|  
    % ZERNPOL has been written using a vectorized implementation: multiple 6^UeEmjc  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] -b r/  
    % values can be passed as inputs) for a vector of points R.  To achieve H.wp{m{  
    % this vectorization most efficiently, the algorithm in ZERNPOL )Hl;9  
    % involves pre-determining all the powers p of R that are required to V:My1R0  
    % compute the outputs, and then compiling the {R^p} into a single M<g>z6   
    % matrix.  This avoids any redundant computation of the R^p, and >9Ub=tZm  
    % minimizes the sizes of certain intermediate variables. y\r8_rBo  
    % K^s!0[6  
    %   Paul Fricker 11/13/2006 2-]gHAw%  
    e l7P  
    3D;\V&([  
    % Check and prepare the inputs: IqcPml{\  
    % ----------------------------- }|{yd03 +  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) m3P%E8<Q#  
        error('zernpol:NMvectors','N and M must be vectors.') GwW!Q|tVz=  
    end &xrm;pO  
    rK}*Uwut  
    if length(n)~=length(m) ?&"cI5-  
        error('zernpol:NMlength','N and M must be the same length.') MP;7 u%   
    end ^<[oKi;>  
    <iJ->$  
    n = n(:); O2ety2}?f  
    m = m(:); O'A''}M  
    length_n = length(n); FU5vo  
    KzI$GU3  
    if any(mod(n-m,2)) vr=iG xD  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') w*$nG$  
    end 7cY_=X-?Y  
    +Rxf~m(pV  
    if any(m<0) 7PHvsd"]p  
        error('zernpol:Mpositive','All M must be positive.') JU/K\S2%,  
    end %HwPOEJ  
    ^\ {%(i9  
    if any(m>n) K (Z d-U  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ZMy7z|  
    end Wi hQj  
    &6r".\; ^  
    if any( r>1 | r<0 ) mNWmp_c,1  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') < yE(p  
    end .nKyB'uV  
    =n i&*&  
    if ~any(size(r)==1) j?[fpN$  
        error('zernpol:Rvector','R must be a vector.') Y-gjX$qGo  
    end ]^/:Xsk$  
    (#X/sZQh  
    r = r(:); Pm%ZzU  
    length_r = length(r); <;SQ1^N  
    P_,f  
    if nargin==4 HiILJyb  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); W^60BZ  
        if ~isnorm 9%> H}7=  
            error('zernpol:normalization','Unrecognized normalization flag.') +, p  
        end X./8 PK?&  
    else bx!Sy0PUJ  
        isnorm = false; 91jv=>=DM  
    end %Kd8ZNv  
    P\*-n"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V0c*M>V  
    % Compute the Zernike Polynomials g@`14U/|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~}$:iyJV(>  
    %n=!H  
    % Determine the required powers of r: }i|o":-x+  
    % ----------------------------------- 'nBJ[$2^  
    rpowers = []; :&#hjeltt  
    for j = 1:length(n) 3E y#?   
        rpowers = [rpowers m(j):2:n(j)]; M!;H3*  
    end EYcvD^!1g  
    rpowers = unique(rpowers); zPH1{|H+l  
    * j:  
    % Pre-compute the values of r raised to the required powers, l/DV ?27  
    % and compile them in a matrix: =_D82`p  
    % ----------------------------- [/6$P[  
    if rpowers(1)==0 t A\N$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); iG6 ^s62z7  
        rpowern = cat(2,rpowern{:}); 7.hVbjy'-  
        rpowern = [ones(length_r,1) rpowern]; lk 1c 2  
    else 4 (bV#   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); aVO5zR./)  
        rpowern = cat(2,rpowern{:}); :BC 0f9  
    end 3k5Mty  
    vObP(@0AM  
    % Compute the values of the polynomials: Y^2`)':  
    % -------------------------------------- +}I[l,,xy  
    z = zeros(length_r,length_n); o3]B/  
    for j = 1:length_n h 34|v=8d  
        s = 0:(n(j)-m(j))/2; z%`Tf&UL  
        pows = n(j):-2:m(j); X>wB=z5PXK  
        for k = length(s):-1:1 E`=y9r* Z  
            p = (1-2*mod(s(k),2))* ... DSizr4R  
                       prod(2:(n(j)-s(k)))/          ... os/~6  
                       prod(2:s(k))/                 ... n-}:D<\7  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... y@nWa\i G  
                       prod(2:((n(j)+m(j))/2-s(k))); C ])Q#!D|  
            idx = (pows(k)==rpowers); 9hmCvQgtf  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ~SUA.YuF  
        end dV<M$+;s]  
         =yz#L@\!  
        if isnorm 7 I&7YhFI  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 23_<u]V  
        end Q7N4@w;e  
    end H{\tQ->(2  
    })M$#%(  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  B5I(ai7<M  
    c#HocwP@  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 zEO 9TuBO  
    'kx{0J?  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)