切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11487阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Ir*{IVvej  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! *P5/S8c  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 t#-4edB,  
    function z = zernfun(n,m,r,theta,nflag) r&:yZN  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. l2wu>Ar7.  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N DiZv sc  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ="Az g8W  
    %   unit circle.  N is a vector of positive integers (including 0), and <$#^)]Ts  
    %   M is a vector with the same number of elements as N.  Each element :3J`+V}9;  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ~(`MP<  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, E>2AG3)  
    %   and THETA is a vector of angles.  R and THETA must have the same 8|+@A1)&4  
    %   length.  The output Z is a matrix with one column for every (N,M) 1 .o0"  
    %   pair, and one row for every (R,THETA) pair. {W%XS E  
    % ^?A>)?Sq  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ' 8Q }pp`  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), c`\qupnY  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral m Q<Vwx0  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Z]5xy_La  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized &0d5".|s  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. "{~^EQq,  
    % Y 7?q `  
    %   The Zernike functions are an orthogonal basis on the unit circle. 8k.#4}fP  
    %   They are used in disciplines such as astronomy, optics, and 4CS$%Cu\?w  
    %   optometry to describe functions on a circular domain. w7\ \m9  
    % R[m+s=+  
    %   The following table lists the first 15 Zernike functions. Kv#Q$$)r  
    % ,.;{J|4P  
    %       n    m    Zernike function           Normalization 9c5DEq  
    %       -------------------------------------------------- Tq6\oIBkV  
    %       0    0    1                                 1 xsvJjs;=  
    %       1    1    r * cos(theta)                    2 A-M6MW  
    %       1   -1    r * sin(theta)                    2 @f,/K1k  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ?]+! gz1  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 5F]2.<i  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ]9w TAb  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) f>Tn#OW  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) uNqN &7g  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ,WAJ& '^  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 5UG"i_TC  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 5)->.*G*  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tU>7 jo[-p  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) $2Bll5!]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 'S9jMyZrZ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) fEGnI\  
    %       -------------------------------------------------- #;;A~d:V  
    % "wxyY^"  
    %   Example 1: _!?a9  
    % { / ,?3  
    %       % Display the Zernike function Z(n=5,m=1) V%`\x\Xat  
    %       x = -1:0.01:1; 3XncEdy_  
    %       [X,Y] = meshgrid(x,x); 2cZgG^  
    %       [theta,r] = cart2pol(X,Y); i7&ay\+@  
    %       idx = r<=1; [LV>z  
    %       z = nan(size(X)); @jZ1WHS_a  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); A3J=,aRI_v  
    %       figure UunZ/A$]m  
    %       pcolor(x,x,z), shading interp .B!  Z0  
    %       axis square, colorbar -"x@V7X  
    %       title('Zernike function Z_5^1(r,\theta)') A yOy&]g  
    % 8}Q 2!,9Q  
    %   Example 2: meGL T/   
    % :8]y*j  
    %       % Display the first 10 Zernike functions @z=L\ e{  
    %       x = -1:0.01:1; F^?DnZs  
    %       [X,Y] = meshgrid(x,x); bu=RU  
    %       [theta,r] = cart2pol(X,Y); B!4~A{  
    %       idx = r<=1; g]d0B!Ar~  
    %       z = nan(size(X)); ,y}~rYsP%  
    %       n = [0  1  1  2  2  2  3  3  3  3]; R^INl@(O  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 0aJcX)  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; O]oH}#5b  
    %       y = zernfun(n,m,r(idx),theta(idx)); 4MCj*ok<  
    %       figure('Units','normalized') iAt&927  
    %       for k = 1:10 CbOCL~ "  
    %           z(idx) = y(:,k); ~*e@^Nv)v  
    %           subplot(4,7,Nplot(k)) _KZ TY`/*  
    %           pcolor(x,x,z), shading interp WM ]eb, 8q  
    %           set(gca,'XTick',[],'YTick',[]) &#!1 Y[e^  
    %           axis square YU\k D  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Sf2xI'  
    %       end v]}\Ns/  
    % _s}`ohKvD  
    %   See also ZERNPOL, ZERNFUN2. q RRvZhf  
    :*YnH&  
    %   Paul Fricker 11/13/2006 1R7tnR@[u  
    >.uIp4@(  
    F'T.-lEO_d  
    % Check and prepare the inputs: WS%yV|e  
    % ----------------------------- g|tclBx  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) COHook(:  
        error('zernfun:NMvectors','N and M must be vectors.') /Zxq-9   
    end Q 87'zf  
    LG??Q+`l  
    if length(n)~=length(m) v[)8 1uY  
        error('zernfun:NMlength','N and M must be the same length.') beNy5~M$  
    end Tl1H2s=G-  
    vx}BT H  
    n = n(:); Ko|gH]B'  
    m = m(:); D2RvFlAXu  
    if any(mod(n-m,2)) `A-  
        error('zernfun:NMmultiplesof2', ... ]Qe"S>,?`  
              'All N and M must differ by multiples of 2 (including 0).') FuG;$';H75  
    end ?P/73p  
    IsDwa qd|  
    if any(m>n) ZKM@U?PK  
        error('zernfun:MlessthanN', ... F3L+X5D.yu  
              'Each M must be less than or equal to its corresponding N.') t/l<X]o  
    end ,hm&]  
    5qFHy[I A  
    if any( r>1 | r<0 ) 4[)tO-v:Y  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') {BgJ=0g?  
    end ph~BxK )i6  
    l(\F2_,2W  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) `$q0fTz  
        error('zernfun:RTHvector','R and THETA must be vectors.') tq51;L  
    end I+31:#d  
    T`9nY!  
    r = r(:); 1-E utq  
    theta = theta(:); M`E}1WNQ?]  
    length_r = length(r); `Jh<8~1  
    if length_r~=length(theta) +k[w)7Q  
        error('zernfun:RTHlength', ... nj1PR`AE  
              'The number of R- and THETA-values must be equal.') <j3|Mh_(I  
    end >]uu?!PU  
    }daU/  
    % Check normalization: 9SJSUv:@  
    % -------------------- }_('3C,Ba  
    if nargin==5 && ischar(nflag) {qOqtkj  
        isnorm = strcmpi(nflag,'norm'); }(,{^".[}  
        if ~isnorm Z*-a=u%gl'  
            error('zernfun:normalization','Unrecognized normalization flag.') 9'@G7*Yn  
        end {WQ6=wGpS  
    else HJP~ lg  
        isnorm = false; i1'G_bo4F7  
    end oxdX2"WwU  
    Nr).*]g@~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KP7 {  
    % Compute the Zernike Polynomials UcH#J &r  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \ FJ ae  
    [B+:)i  
    % Determine the required powers of r: (/s~L*gF{  
    % ----------------------------------- z7+>G/o  
    m_abs = abs(m); 6ud<U#\b&  
    rpowers = []; }D.\2x(J  
    for j = 1:length(n) 96P&+  
        rpowers = [rpowers m_abs(j):2:n(j)]; >s1?rC  
    end N;k)>  
    rpowers = unique(rpowers); $PAAmaigi  
    $?dQ^]<,  
    % Pre-compute the values of r raised to the required powers, /Gn0|]KI  
    % and compile them in a matrix: PB!XApTb  
    % ----------------------------- M|zTs\1I  
    if rpowers(1)==0 L&~'SC  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D@:'*Z(  
        rpowern = cat(2,rpowern{:}); \9uK^oS  
        rpowern = [ones(length_r,1) rpowern]; B|,d  
    else 1 -C~C]&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); FCWk8/  
        rpowern = cat(2,rpowern{:}); +S`cUn7  
    end 9!kp3x/`  
    <q>d@Foi  
    % Compute the values of the polynomials: j%Xa8$  
    % -------------------------------------- 6> z{xYat  
    y = zeros(length_r,length(n)); yz5! >|EB  
    for j = 1:length(n) L#J2J$ =  
        s = 0:(n(j)-m_abs(j))/2; vU]n0)<KB  
        pows = n(j):-2:m_abs(j); gS@<sO$d>  
        for k = length(s):-1:1 V!>j: "  
            p = (1-2*mod(s(k),2))* ... %QEyvl4  
                       prod(2:(n(j)-s(k)))/              ... El: @l %  
                       prod(2:s(k))/                     ... 1iNMgA  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 9* huO#  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); y)a)VvU":  
            idx = (pows(k)==rpowers); @65xn)CD{  
            y(:,j) = y(:,j) + p*rpowern(:,idx); y n_.  
        end - ZyY95E<  
          m l@% H  
        if isnorm 8FZC0j.^DH  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); MLg{Y?@  
        end f-ceDn  
    end x<' $  
    % END: Compute the Zernike Polynomials cza_LO(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 72.Msnn  
    {?2|rv)  
    % Compute the Zernike functions: !pkIaCxs  
    % ------------------------------ ';c 6  
    idx_pos = m>0; 3bR%#G%  
    idx_neg = m<0; R!lug;u#  
    ICr.Gwe3_  
    z = y; 0:<Y@#L  
    if any(idx_pos) EWgJ"WTF  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); wf &Jd:)4t  
    end 41s\^'^&  
    if any(idx_neg) 9 wbQ$>G9  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ZS;V?]\(  
    end C/#pK2xY  
    /f Q}Ls\  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) <\O8D0.d  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. JbS[(+o  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ;1 {=t!z=  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive QKB+mjMH#x  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, -!\%##r7~  
    %   and THETA is a vector of angles.  R and THETA must have the same 80'@+AD  
    %   length.  The output Z is a matrix with one column for every P-value, ~cfXEjE6  
    %   and one row for every (R,THETA) pair. l>`66~+s,`  
    % $u'"C|>8  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike jZPGUoRLg  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) jC>#`gD  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) mH0OW  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 O-K*->5S  
    %   for all p. ipg`8*My  
    % .UQ|k,,t  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 cNxxX!P/  
    %   Zernike functions (order N<=7).  In some disciplines it is [fV"tf;  
    %   traditional to label the first 36 functions using a single mode j BBl{  
    %   number P instead of separate numbers for the order N and azimuthal kp*!  
    %   frequency M. yiI oqvP  
    % czpu^BT;;T  
    %   Example: <FBBR2  
    % 8.N`^Nj 1  
    %       % Display the first 16 Zernike functions ?[m1?  
    %       x = -1:0.01:1; vYb4&VV  
    %       [X,Y] = meshgrid(x,x); Sw,*#98  
    %       [theta,r] = cart2pol(X,Y); *fI n<Cc  
    %       idx = r<=1; oYTLC@98}  
    %       p = 0:15; b @0= &4  
    %       z = nan(size(X)); /.CS6W^z  
    %       y = zernfun2(p,r(idx),theta(idx)); ;nQ=! .#Q  
    %       figure('Units','normalized') LjE3|+pJ  
    %       for k = 1:length(p) ;CF:cH*  
    %           z(idx) = y(:,k); 1Q!^*D  
    %           subplot(4,4,k) n7K%lj-.P  
    %           pcolor(x,x,z), shading interp <I tS_/z  
    %           set(gca,'XTick',[],'YTick',[]) jOrfI-&.G  
    %           axis square l&U$L N$*e  
    %           title(['Z_{' num2str(p(k)) '}']) 0m4M@94  
    %       end B ;E"VS0  
    % 9RHDkK{5  
    %   See also ZERNPOL, ZERNFUN. M!Ao!D[  
    9?hZf$z  
    %   Paul Fricker 11/13/2006 H1B%}G*Ir-  
    7x>^ip"7  
    T)7U+~nQ"  
    % Check and prepare the inputs: 5$'[R ;r  
    % ----------------------------- b~:)d>s8wY  
    if min(size(p))~=1 OZ e&p  
        error('zernfun2:Pvector','Input P must be vector.') R@z`  
    end ;hO6 p  
    BlU&=;#r5>  
    if any(p)>35 !E?+1WDS0  
        error('zernfun2:P36', ... nb=mY&q}~  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... }*QK;#NEc  
               '(P = 0 to 35).']) Wq<oP  
    end =Q<7[  
    .\ fpjQW  
    % Get the order and frequency corresonding to the function number: p|A ?F0  
    % ---------------------------------------------------------------- >.`*KQdan  
    p = p(:); >4Tk#+%Jj  
    n = ceil((-3+sqrt(9+8*p))/2); E]/2 u3p  
    m = 2*p - n.*(n+2); {G x=QNd  
    6Yodx$  
    % Pass the inputs to the function ZERNFUN: s9CmR]C  
    % ---------------------------------------- MooH`2Fd  
    switch nargin nCWoco.xy  
        case 3  6d;}mhH  
            z = zernfun(n,m,r,theta); "IzAvKPM  
        case 4 p{LbTjdNc  
            z = zernfun(n,m,r,theta,nflag); y.D+M$f  
        otherwise I@6+AU~,6  
            error('zernfun2:nargin','Incorrect number of inputs.') >wmHCOL:  
    end dt "/4wCO  
    9]lI?j]o  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) "Ux(nt  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. :23S%B~X  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ^Z9bA(w8  
    %   order N and frequency M, evaluated at R.  N is a vector of iT Aj$ { >  
    %   positive integers (including 0), and M is a vector with the E!1\9wzM{  
    %   same number of elements as N.  Each element k of M must be a e_Hpai<b  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) I@Hx LEGj  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 6#*_d,xQT  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix F}45.C rD  
    %   with one column for every (N,M) pair, and one row for every T})q/oUqK  
    %   element in R. *|W](id7e  
    % zNt//,={  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- %M1l[\N  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 8j70X <R  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to uXFI7vV6P  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 _`;KmD&5  
    %   for all [n,m]. ,NZllnW  
    % ;y\/7E  
    %   The radial Zernike polynomials are the radial portion of the ~%=%5}  
    %   Zernike functions, which are an orthogonal basis on the unit TIiYic!_~  
    %   circle.  The series representation of the radial Zernike !;&\n3-W  
    %   polynomials is tkHmH/'7  
    % PZqp;!:xz  
    %          (n-m)/2 8,IF%Z+LI  
    %            __ +`Q]p" G  
    %    m      \       s                                          n-2s _h ^.`Tz,  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r >Z_;ZMu)  
    %    n      s=0 vb>F)po1}  
    % QK6_dIvDz  
    %   The following table shows the first 12 polynomials. t adeG  
    % `K+%/|!  
    %       n    m    Zernike polynomial    Normalization O-V] I0  
    %       --------------------------------------------- 9:@Xz5  
    %       0    0    1                        sqrt(2) 2! ,ndLA  
    %       1    1    r                           2 [XI:Yf  
    %       2    0    2*r^2 - 1                sqrt(6) 0;><@{'  
    %       2    2    r^2                      sqrt(6) P=,\wM6T|  
    %       3    1    3*r^3 - 2*r              sqrt(8) lq_UCCnv5  
    %       3    3    r^3                      sqrt(8) auAz>6L  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) D1-/#QN$1  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) M&/4SVBF  
    %       4    4    r^4                      sqrt(10) ._tEDY/1m  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) <t(H+ykh  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Q?1.GuF  
    %       5    5    r^5                      sqrt(12) lG0CCOdQ  
    %       --------------------------------------------- KH?6O%d  
    % f4.jWBF  
    %   Example: Xykoq"dbb  
    % 4_VgJ9@  
    %       % Display three example Zernike radial polynomials v]on0Pi!  
    %       r = 0:0.01:1; 8*/;W&7y  
    %       n = [3 2 5]; <B|b'XVH2  
    %       m = [1 2 1]; Ln&~t(7  
    %       z = zernpol(n,m,r); LWqKSNE;  
    %       figure T:kliM"z  
    %       plot(r,z) qB_s<cpn>  
    %       grid on dF51_Kk  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') S'|PA7a}h  
    % X);'[/]E*  
    %   See also ZERNFUN, ZERNFUN2. b(|&e  
    ~fD\=- S1  
    % A note on the algorithm. o?/H<k\5  
    % ------------------------ am? k  
    % The radial Zernike polynomials are computed using the series Sd ^I >;  
    % representation shown in the Help section above. For many special 6X A(<1P  
    % functions, direct evaluation using the series representation can m,kYE9 {  
    % produce poor numerical results (floating point errors), because 6 M:?W"  
    % the summation often involves computing small differences between L"9Z{o7  
    % large successive terms in the series. (In such cases, the functions KNN{2thy `  
    % are often evaluated using alternative methods such as recurrence iNkN'("  
    % relations: see the Legendre functions, for example). For the Zernike >CrrxiG  
    % polynomials, however, this problem does not arise, because the :I&y@@UG  
    % polynomials are evaluated over the finite domain r = (0,1), and G|nBja8vm  
    % because the coefficients for a given polynomial are generally all >ryA:TO{  
    % of similar magnitude. (|AZO!  
    % u0+F2+ I  
    % ZERNPOL has been written using a vectorized implementation: multiple IfB .2e`  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] %pxJ27Q  
    % values can be passed as inputs) for a vector of points R.  To achieve ^C~_}/cZ  
    % this vectorization most efficiently, the algorithm in ZERNPOL F;`c0ja]  
    % involves pre-determining all the powers p of R that are required to mgH~GKf^  
    % compute the outputs, and then compiling the {R^p} into a single  V0A>+  
    % matrix.  This avoids any redundant computation of the R^p, and b7^q(}qE  
    % minimizes the sizes of certain intermediate variables. g"'BsoJ  
    % *A48shfO  
    %   Paul Fricker 11/13/2006 h`9 & :zr  
    e^@ZN9qQ  
    :D3:`P>,c  
    % Check and prepare the inputs: c oZK  
    % ----------------------------- q90RTX'CY  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) XgVhb<l_  
        error('zernpol:NMvectors','N and M must be vectors.') e%ro7~  
    end AfO.D ?4x  
    u!~kmIa4  
    if length(n)~=length(m) |9 5K  
        error('zernpol:NMlength','N and M must be the same length.') p9G+la~;VM  
    end a.UYBRP/l  
    -a|b.p  
    n = n(:); F(/<ADx  
    m = m(:); onmkg}&_  
    length_n = length(n); pLF,rOb  
     ZaaBg  
    if any(mod(n-m,2)) _VgFuU$h  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') =pmG.>Si  
    end !.#g   
    oVP,a r0G  
    if any(m<0) ~eP~c"L  
        error('zernpol:Mpositive','All M must be positive.') 0 5?`W&:9  
    end ;,]4A{|  
    KY< $+/B!  
    if any(m>n) JDa_;bqL  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ]b;a~Y0  
    end F ]D^e{y  
    r@i)Sluf  
    if any( r>1 | r<0 ) @mu{*. &  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.')  y"Fu=  
    end WN|_IJR~  
    yMkR)HY  
    if ~any(size(r)==1) "* FjEA6=  
        error('zernpol:Rvector','R must be a vector.') P5G0fq7  
    end #sF#<nHZ  
    +Q5'!@8  
    r = r(:); !a V:T&6  
    length_r = length(r); )AieO-4*  
    [Pq |6dz  
    if nargin==4 YwH Fn+  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); mPPB"uQ  
        if ~isnorm rVOF  
            error('zernpol:normalization','Unrecognized normalization flag.') mV"F<G; H  
        end @S~n^v,)  
    else ZBU<L+#  
        isnorm = false; M/F <W!  
    end d7g$9&/q  
    t vW0 W  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% suaP'0  
    % Compute the Zernike Polynomials 8(NS;?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cv>~%<   
     %>zG;4  
    % Determine the required powers of r: d8 v9[ 4  
    % ----------------------------------- w0yzC0yBk  
    rpowers = []; Ai 8+U)  
    for j = 1:length(n) \(^]R,~*!b  
        rpowers = [rpowers m(j):2:n(j)]; \zA3H$Df~  
    end $Sm iN'7;  
    rpowers = unique(rpowers); x)%"i)  
    i 28TH Jh  
    % Pre-compute the values of r raised to the required powers, c*[aIqj  
    % and compile them in a matrix: * >NML]#0  
    % ----------------------------- =b)!l9TX  
    if rpowers(1)==0 d{WOO)j  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Y nTx)uW  
        rpowern = cat(2,rpowern{:}); ?a, `{1m0\  
        rpowern = [ones(length_r,1) rpowern]; J1M9) ,  
    else P()&?C  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \q!TI x  
        rpowern = cat(2,rpowern{:}); "f3mi[  
    end BdvpG  
    -~~R?,H'Z_  
    % Compute the values of the polynomials: 2=7[r-*E  
    % -------------------------------------- ?u{Mz9:?HT  
    z = zeros(length_r,length_n); PK{FQ3b2{  
    for j = 1:length_n "K|':3n|  
        s = 0:(n(j)-m(j))/2; HmsXV_B8[Y  
        pows = n(j):-2:m(j); N/2WUp  
        for k = length(s):-1:1 ND e FY  
            p = (1-2*mod(s(k),2))* ... =b6G' O[  
                       prod(2:(n(j)-s(k)))/          ... %6V=G5+W  
                       prod(2:s(k))/                 ... a9 S&n5  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... -@'RYY=  
                       prod(2:((n(j)+m(j))/2-s(k))); Mg^A,8lrm  
            idx = (pows(k)==rpowers); G%jV}7h  
            z(:,j) = z(:,j) + p*rpowern(:,idx); cI7aTLC"s  
        end 9CIQRc  
         .v=n-k7  
        if isnorm yRhD<*  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); axXR-5c  
        end -=u9>S)!c  
    end [>Zg6q|  
    ^}z:FI   
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  );5H<[  
    vTUhIFa{  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 5IiZnG u  
    $23dcC*hI  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)