非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 t:P]bp^#
function z = zernfun(n,m,r,theta,nflag) <ME>#,
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. xt"-Jmox
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N =ONM#DxH
% and angular frequency M, evaluated at positions (R,THETA) on the S# baOO
% unit circle. N is a vector of positive integers (including 0), and ~OxFgKn23&
% M is a vector with the same number of elements as N. Each element S*J\YcqSC
% k of M must be a positive integer, with possible values M(k) = -N(k) 8Exky^OT|
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Ik5V?
% and THETA is a vector of angles. R and THETA must have the same !T
,=kh
% length. The output Z is a matrix with one column for every (N,M) 4t/ ?b
% pair, and one row for every (R,THETA) pair. kv+^U^WoU
% 2Kr>93O
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]F>#0Rdc
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Y= =5\;-
% with delta(m,0) the Kronecker delta, is chosen so that the integral Y TY(Et1i
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -Q?c'e
% and theta=0 to theta=2*pi) is unity. For the non-normalized Jq? zr]"A
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ;8eGf'
% zOFHdd ,"g
% The Zernike functions are an orthogonal basis on the unit circle. .q4$)8[Pg
% They are used in disciplines such as astronomy, optics, and B3?rR-2mEE
% optometry to describe functions on a circular domain. k4u/vn`&r
% ?K2}<H-
% The following table lists the first 15 Zernike functions. *vIP\NL?H
% "_dg$j`Y&&
% n m Zernike function Normalization /]-yZ0hX0O
% -------------------------------------------------- ~!g2+^G7+P
% 0 0 1 1 f/IQ2yT-:D
% 1 1 r * cos(theta) 2 +Ig%h[1a
% 1 -1 r * sin(theta) 2 z#P`m,~t0
% 2 -2 r^2 * cos(2*theta) sqrt(6) .7 LQ l?
% 2 0 (2*r^2 - 1) sqrt(3) c|aX4 =Z
% 2 2 r^2 * sin(2*theta) sqrt(6) WQiRbb X
% 3 -3 r^3 * cos(3*theta) sqrt(8) L+
XAbL)
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) zks7wt]A
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) OW@)6
% 3 3 r^3 * sin(3*theta) sqrt(8) dKU:\y
% 4 -4 r^4 * cos(4*theta) sqrt(10) Q^3{L\6_
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) H<<t^,E^.t
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 9rT^rTV
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ScD
E)r
% 4 4 r^4 * sin(4*theta) sqrt(10) mXS]SE
% -------------------------------------------------- ANM=:EtP
% zb"4_L@m2
% Example 1: G%>[7 ]H
% oJ3(7Sz
% % Display the Zernike function Z(n=5,m=1) 6~2upy~e
% x = -1:0.01:1; #-+Q]}fB4
% [X,Y] = meshgrid(x,x); 5$Kj#9g-#
% [theta,r] = cart2pol(X,Y); >qr/1mW
% idx = r<=1; w{k ^O7~
% z = nan(size(X)); p[].4_B;
% z(idx) = zernfun(5,1,r(idx),theta(idx)); f_xvX f:
% figure B]()
% pcolor(x,x,z), shading interp IvY3iRq6
% axis square, colorbar { gs$pBu
% title('Zernike function Z_5^1(r,\theta)') qq<T~^
% Ml{
]{n
% Example 2: oaPWeM+
% 4KR`
% % Display the first 10 Zernike functions ISK 8t
% x = -1:0.01:1; l:JVt`A4?
% [X,Y] = meshgrid(x,x); v7KBYN
% [theta,r] = cart2pol(X,Y); +WMXd.iN,
% idx = r<=1; \f(zMP
% z = nan(size(X)); -LUZ7,!/>o
% n = [0 1 1 2 2 2 3 3 3 3]; i$6rnS&C
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; oA7DhU5n
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 1i~q~O,
% y = zernfun(n,m,r(idx),theta(idx)); 2\z|/
Q
% figure('Units','normalized') vxC];nCC#
% for k = 1:10 <rK[ &JlJ
% z(idx) = y(:,k); *>mjUT}cP
% subplot(4,7,Nplot(k)) hi/d%lNZ
% pcolor(x,x,z), shading interp QKq4kAaJ!
% set(gca,'XTick',[],'YTick',[]) \9`
~9#P
% axis square 'v
CMf
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 0!ZaR6
% end %Y=r5'6l
% w{xa@Q]t-
% See also ZERNPOL, ZERNFUN2. _,aFQ^]'9
PLz+%L;{
% Paul Fricker 11/13/2006 T|D^kL%m!
JA9NTu(
PlS)Zv3
% Check and prepare the inputs: 00dY?d{[D
% -----------------------------
3F!)7
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h%W,O,K/
error('zernfun:NMvectors','N and M must be vectors.') D]}~` SO
end \<T7EV.
'kC#GTZi
if length(n)~=length(m) \z FCph4
error('zernfun:NMlength','N and M must be the same length.') |gu@b~8
end ZX`x9/0&
MD<x{7O12>
n = n(:); eWex/ m
m = m(:); l1]{r2g
if any(mod(n-m,2)) R13k2jLSQ
error('zernfun:NMmultiplesof2', ... >Ovz;
'All N and M must differ by multiples of 2 (including 0).') S,Q^M
)$
end G/#<d-}_
w+*rbJ
if any(m>n) $ ~%Y}Xt*
error('zernfun:MlessthanN', ... G<<;a
'Each M must be less than or equal to its corresponding N.') .JB1#&B+
end Ij.mLO]
lemV&$WN|
if any( r>1 | r<0 ) !> +Lre@
error('zernfun:Rlessthan1','All R must be between 0 and 1.') mk!8>XvM
end cl&?'`
)
Q$]1juqg
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) uuF~+=.|
error('zernfun:RTHvector','R and THETA must be vectors.') .|07IH/Di{
end vf<Dqy <M.
2YWO'PL
r = r(:); Cu24xP`
theta = theta(:); ^q/^.Gf
length_r = length(r); >.od(Fh{l|
if length_r~=length(theta) y_q1Y70i2r
error('zernfun:RTHlength', ... GeB&S!F
'The number of R- and THETA-values must be equal.') Q#ksf
h!D
end JLo E)\Mi
Nb_Glf
% Check normalization: MMET^SO
% -------------------- DO*6gzW
if nargin==5 && ischar(nflag) sg}<()
isnorm = strcmpi(nflag,'norm'); W1xPK*
if ~isnorm Lk#)VGk:
error('zernfun:normalization','Unrecognized normalization flag.') b`S9#`
end hslT49m>
else t5K#nRd Z:
isnorm = false; +`Nu0y!rj
end Z"w}`&TC$^
(,+#H]L
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |P|2E~[r
% Compute the Zernike Polynomials t!J>853
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sw-2vnSdM
<_eEpG}9
% Determine the required powers of r: }{:}K<
% ----------------------------------- |r;>2b/ x
m_abs = abs(m); m
zoH$@
rpowers = []; tq'hiS(b
for j = 1:length(n) z4(\yx
rpowers = [rpowers m_abs(j):2:n(j)]; $J)`Ru6.
end udr|6EjD.
rpowers = unique(rpowers); *,O3@,+>H
<GQ=PrT|/
% Pre-compute the values of r raised to the required powers, iS.gN&\z^
% and compile them in a matrix: 4K`b?{){+a
% ----------------------------- MwSfuP
if rpowers(1)==0 7iM@BeIf
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Q7v1xBM
rpowern = cat(2,rpowern{:}); g;AW
rpowern = [ones(length_r,1) rpowern]; 4A(h'(^7A
else 811QpYA
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); A(`Mwh+
rpowern = cat(2,rpowern{:}); E
U RKzJk
end eA
Fp<2g
T<Zi67QC@
% Compute the values of the polynomials: #FRm<9/j
% -------------------------------------- Oz]$zRu/0
y = zeros(length_r,length(n)); 9X33{
for j = 1:length(n) NhF"%
s = 0:(n(j)-m_abs(j))/2; R! X+-
pows = n(j):-2:m_abs(j); ".#h$
for k = length(s):-1:1 %Q]thv:
p = (1-2*mod(s(k),2))* ... ?LU>2!jN
prod(2:(n(j)-s(k)))/ ... UM21Cfqex
prod(2:s(k))/ ... OQ<;w
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... awz.~c++
prod(2:((n(j)+m_abs(j))/2-s(k))); OuWRLcJ!
idx = (pows(k)==rpowers); c`lL&*]
y(:,j) = y(:,j) + p*rpowern(:,idx); [GI2%uA0
end 0xCe6{86
x=x%F;
if isnorm +tg${3ti_
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :h3U^
end y[S9b(:+
end 3X ',L*f
% END: Compute the Zernike Polynomials Jx`7W1%T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 017n hI
b~YIaD[Z
% Compute the Zernike functions: i$6a0'@U
% ------------------------------ rqm":N8@
idx_pos = m>0; N;>s|ET
idx_neg = m<0; ^x^(Rk}|
_;S~nn
z = y; fN<Y3^i"
if any(idx_pos) [4dX[
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); sP%b?6
end P39oHW
if any(idx_neg) JdWav!PYm
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); eHd7fhW5
end pbWjTI $
]8Xip/uE
% EOF zernfun