非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 h]=chz
function z = zernfun(n,m,r,theta,nflag) S4(IYnwN
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. vIG,!^*3
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gTq-\k(
% and angular frequency M, evaluated at positions (R,THETA) on the 4Cfwz-Qo
% unit circle. N is a vector of positive integers (including 0), and r'!l`
gm,S
% M is a vector with the same number of elements as N. Each element #2MwmIeA
% k of M must be a positive integer, with possible values M(k) = -N(k) dKMuo'H'%
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, bHMlh^{`%
% and THETA is a vector of angles. R and THETA must have the same 'v,W
gPe
% length. The output Z is a matrix with one column for every (N,M) LNg1q1P3
% pair, and one row for every (R,THETA) pair. givK{Yt<B
% hlVP_h"z
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &B.r&K&
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )N=wJN1
% with delta(m,0) the Kronecker delta, is chosen so that the integral *\`C!r
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, hT_snb;ow
% and theta=0 to theta=2*pi) is unity. For the non-normalized i3GvTg-X
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. td m{
V
st
% \Dc\H)
% The Zernike functions are an orthogonal basis on the unit circle. !of7]s
% They are used in disciplines such as astronomy, optics, and }E=kfMu
% optometry to describe functions on a circular domain. P``hw=L
% fg9sZ%67]\
% The following table lists the first 15 Zernike functions. -`;8~ wMN
% .dygp"*
% n m Zernike function Normalization ;klDt|%3j
% -------------------------------------------------- WDX?|q9rCt
% 0 0 1 1 =#u2Rx%V
% 1 1 r * cos(theta) 2 U!'lc}5
% 1 -1 r * sin(theta) 2 u1"e+4f
% 2 -2 r^2 * cos(2*theta) sqrt(6) 646yeQ1
% 2 0 (2*r^2 - 1) sqrt(3) +-Dd*yD6<
% 2 2 r^2 * sin(2*theta) sqrt(6) mSzwx/3"
% 3 -3 r^3 * cos(3*theta) sqrt(8) nFP2wvFM
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) M{S7ia"s
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) dnx}c4P
% 3 3 r^3 * sin(3*theta) sqrt(8) V?"^Ff3m!
% 4 -4 r^4 * cos(4*theta) sqrt(10) 6M6QMg^
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4 hj2rK'y
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) |Bn=$T]
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -Z Z$
1E
% 4 4 r^4 * sin(4*theta) sqrt(10) NqWHR~&
% -------------------------------------------------- I45A$nV#Q
% qYh,No5\;t
% Example 1: daorKW4
% wv7jh~x(4
% % Display the Zernike function Z(n=5,m=1) SUEw5qitB
% x = -1:0.01:1; ZMe| fn
% [X,Y] = meshgrid(x,x); wx!*fy4hL
% [theta,r] = cart2pol(X,Y); H )}WWXK
% idx = r<=1; WNx^Rg"
>'
% z = nan(size(X)); ArEpH"}@
% z(idx) = zernfun(5,1,r(idx),theta(idx)); <_>6a7ra
% figure :+5afv}
% pcolor(x,x,z), shading interp E,|n'
% axis square, colorbar HB}gn2.1&
% title('Zernike function Z_5^1(r,\theta)') ^M9oTNk2
% 9JtvHUkO
% Example 2: V588Leb?
% YfalsQ8
% % Display the first 10 Zernike functions K4yYNlY
% x = -1:0.01:1; 5 QeGx3'
% [X,Y] = meshgrid(x,x); 3oKGeB;Ja
% [theta,r] = cart2pol(X,Y); =,
0a3D6b
% idx = r<=1; 10rGA=x'(
% z = nan(size(X)); JXAyF6
$
% n = [0 1 1 2 2 2 3 3 3 3]; qIT{` hX
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; p^:Lj 9Qax
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 9H}&Ri%
% y = zernfun(n,m,r(idx),theta(idx)); 7`/qL "
% figure('Units','normalized') c 2@@Rd~M
% for k = 1:10 OW}A48X[+
% z(idx) = y(:,k); +m.8*^
% subplot(4,7,Nplot(k)) $iPN5@F
% pcolor(x,x,z), shading interp tb{{oxa,k
% set(gca,'XTick',[],'YTick',[]) _pGviGR
% axis square }ELCnN
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) |BkY"F7m9
% end ?>8zU;Aj
% Bg
h$P
% See also ZERNPOL, ZERNFUN2. iq:[+
G7;}309s
% Paul Fricker 11/13/2006 4sQAR6_SW~
-],?kP
Q75^7Ga_
% Check and prepare the inputs: X-,y[ )
% ----------------------------- %`1vIr(7
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) gJxVU41
error('zernfun:NMvectors','N and M must be vectors.') fB96Q
end ws?s
4Jr[8P0/A9
if length(n)~=length(m) bW^QH-t
error('zernfun:NMlength','N and M must be the same length.') zjS:;!8em
end RM1uYFs<
grdyiBSVn
n = n(:); J\ +gd%
m = m(:); $tHwJ!<$&
if any(mod(n-m,2)) .K1E1Z_
error('zernfun:NMmultiplesof2', ... *UoHzaIqz
'All N and M must differ by multiples of 2 (including 0).') $-?5Q~
end }.) 43(>]
xJLO\B+gM
if any(m>n) u^$Md WP
error('zernfun:MlessthanN', ... .GN$H>')
'Each M must be less than or equal to its corresponding N.') 9:i,WJO
end 0r ;
nz]'
K!K"}%/_
if any( r>1 | r<0 ) Qsxkw
error('zernfun:Rlessthan1','All R must be between 0 and 1.') $cK
B+}
end T\!SA
SzlfA%4+GR
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) llfiNEK5;
error('zernfun:RTHvector','R and THETA must be vectors.') DIp:S&q2
end R(83E
B~_
d 4\E
r = r(:); y6Epi|8
theta = theta(:); ,(27p6!
length_r = length(r); {kl{mJ*
if length_r~=length(theta) j~S!!Z]
error('zernfun:RTHlength', ... Sje0:;;|
'The number of R- and THETA-values must be equal.') h_chZB'
end (g/X(3
`vxrC&,As
% Check normalization: Y+u-J4bj
% -------------------- XH:gQ 9FD
if nargin==5 && ischar(nflag) vZeYp
isnorm = strcmpi(nflag,'norm'); +%qSB9_>N{
if ~isnorm <S8W~wC
error('zernfun:normalization','Unrecognized normalization flag.') kad;Wa#h
end ^GrkIh0nL
else 3).o"AN
isnorm = false; "gvw0)
end Ym.l@(
-iDEh_pts
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n*i'v tQ8
% Compute the Zernike Polynomials T$^>Fiz{Se
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
X'#$e{
-j`!(IJ
% Determine the required powers of r: q= yZx)
% ----------------------------------- ZE8/ m")
m_abs = abs(m); TG63
rpowers = []; ]fADaw-R
for j = 1:length(n) HA9Nr.NqC@
rpowers = [rpowers m_abs(j):2:n(j)]; B3>Uba*-)}
end KM5DYy2 A6
rpowers = unique(rpowers); : \:~y9X0
[|[sYo
% Pre-compute the values of r raised to the required powers, BgkB x
% and compile them in a matrix: l!;_lH8W$
% ----------------------------- KZ!N{.Jk
if rpowers(1)==0 ;o)=XEh8P
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U +*oI *
rpowern = cat(2,rpowern{:}); &V#z kW
rpowern = [ones(length_r,1) rpowern]; Z<N&UFw7QJ
else yC'hwoQ`
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +%
XhQ
rpowern = cat(2,rpowern{:}); Wj4^W<IO
end &,N3uy;Gc
"y~muE:.
% Compute the values of the polynomials: 5X `w&(]m
% -------------------------------------- ,qe]fo >
y = zeros(length_r,length(n)); G9i)nWr
for j = 1:length(n) hC|5e|S
s = 0:(n(j)-m_abs(j))/2; 5y%un
pows = n(j):-2:m_abs(j); \[[TlB>
for k = length(s):-1:1 1 ;\]D9i
p = (1-2*mod(s(k),2))* ... E/~"j
prod(2:(n(j)-s(k)))/ ... (:?5 i`
prod(2:s(k))/ ... +~w?Xw,
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]_ejDN\>{V
prod(2:((n(j)+m_abs(j))/2-s(k))); ;]gsJ9FK<
idx = (pows(k)==rpowers); "%oH@
=
y(:,j) = y(:,j) + p*rpowern(:,idx); YN%=Oq
end g[EM]q,
FJa[ToZ4+
if isnorm R=vbUA
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); bkr~13S{+
end `Di ^6UK(
end S,*{q(
% END: Compute the Zernike Polynomials !2zo]v4?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H.YIv50E
dThR)Z'=
% Compute the Zernike functions: 5JBB+g
% ------------------------------ n|70x5Z?}J
idx_pos = m>0; q_<*esZ,
idx_neg = m<0; L$Hx?^3
UAsF0&]
z = y; ~\IF9!
if any(idx_pos) UF&0&`@
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ku/\16E/k
end qri}=du&F
if any(idx_neg) aBXYri
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); IajD;V
end 1MbY7!?PG
E4sn[DO
% EOF zernfun