非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 f.g!~wGD
function z = zernfun(n,m,r,theta,nflag) Q7+WV`&
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3!P^?[p3
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ktU:Uq
% and angular frequency M, evaluated at positions (R,THETA) on the | R,dsBd
% unit circle. N is a vector of positive integers (including 0), and 8{4'G$6
% M is a vector with the same number of elements as N. Each element RRO@r}A!y
% k of M must be a positive integer, with possible values M(k) = -N(k) >{^_]phlb
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, cj>@Jx}]M
% and THETA is a vector of angles. R and THETA must have the same Sm/8VSY
% length. The output Z is a matrix with one column for every (N,M) `gl?y;xC
% pair, and one row for every (R,THETA) pair. HYl+xH'.j
% uI,*&bP
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 30h[&Oc
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), G"r{!IFL
% with delta(m,0) the Kronecker delta, is chosen so that the integral UC&$8^
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Vz mlKVE
% and theta=0 to theta=2*pi) is unity. For the non-normalized 48p3m)5
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >\JPX
% Rxy|Ag/I;V
% The Zernike functions are an orthogonal basis on the unit circle. o#FctM'Z
% They are used in disciplines such as astronomy, optics, and B;bP~e>W
% optometry to describe functions on a circular domain. U#f*
% lg|6~=aQ
% The following table lists the first 15 Zernike functions. i3 js'?7E
% lr&2,p<
% n m Zernike function Normalization XU'(^Y8Imz
% -------------------------------------------------- wG O-Z']i
% 0 0 1 1 orJ|Q3c)d
% 1 1 r * cos(theta) 2 @;EQ{d
% 1 -1 r * sin(theta) 2 }Z <I%GT
% 2 -2 r^2 * cos(2*theta) sqrt(6) [)`*k#.=
% 2 0 (2*r^2 - 1) sqrt(3) P~(&lu/;P
% 2 2 r^2 * sin(2*theta) sqrt(6) !MSa -
% 3 -3 r^3 * cos(3*theta) sqrt(8) uNf'Zeo
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) %[n5mF*`
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 88u[s@
% 3 3 r^3 * sin(3*theta) sqrt(8) B~o3Z
% 4 -4 r^4 * cos(4*theta) sqrt(10) x.gz sd
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5T/+pC$e=
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) -t_&H\_T
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [CHN3&l-5S
% 4 4 r^4 * sin(4*theta) sqrt(10) z{R
Mb
% -------------------------------------------------- @Hj]yb5
% 6?"Gj}|r
% Example 1: @G&oUhS
% _~Lu%
% % Display the Zernike function Z(n=5,m=1) z7fX!'3V
% x = -1:0.01:1; 1drg5
% [X,Y] = meshgrid(x,x); 6X ]I`e
% [theta,r] = cart2pol(X,Y); [<+T@"y
% idx = r<=1; li3X}
% z = nan(size(X)); 41R~.?
% z(idx) = zernfun(5,1,r(idx),theta(idx)); qLBQ!>lR
% figure 65B&>`H~
% pcolor(x,x,z), shading interp dhLd2WSyH
% axis square, colorbar covCa )kf
% title('Zernike function Z_5^1(r,\theta)') FUI/ A>
% L<
% Example 2: s2sJJdN
% D[T\_3W
% % Display the first 10 Zernike functions .9DhD=8aIO
% x = -1:0.01:1; CS%ut-K<5M
% [X,Y] = meshgrid(x,x); L `2{H%J`
% [theta,r] = cart2pol(X,Y); d3oRan}z
% idx = r<=1; xfUV'=~(
% z = nan(size(X)); 25G~rklk
% n = [0 1 1 2 2 2 3 3 3 3]; N#J8 4i;ry
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; *`s*l+0b
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 1%@i4
% y = zernfun(n,m,r(idx),theta(idx)); ^g'uR@uU
% figure('Units','normalized') J?p|Vy|9
% for k = 1:10 }lk9|U#6*`
% z(idx) = y(:,k); UXa%$gwFw
% subplot(4,7,Nplot(k))
i[/1AI
% pcolor(x,x,z), shading interp n~,6!S
% set(gca,'XTick',[],'YTick',[]) y] Q/(O
% axis square Kd}%%L
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) M7DoAS{6e
% end b#(QZ
% /0L]Pf;
% See also ZERNPOL, ZERNFUN2. ^(*eo e
~LH).\V
% Paul Fricker 11/13/2006 m=`V
%*L8W*V
Ornm3%p+e
% Check and prepare the inputs: SM}&
@cJ
% ----------------------------- kaZcYuT.9
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @C'qbO{
error('zernfun:NMvectors','N and M must be vectors.') 787i4h:71
end 9dg+@FS}=
f]+.
i-c=
if length(n)~=length(m) UuJ gB)
error('zernfun:NMlength','N and M must be the same length.') *XXa9z
end Ob'[W;p)[w
]:6IW:
n = n(:); ipiS=
m = m(:); O|;|7fCB\
if any(mod(n-m,2)) 5t-(MY
error('zernfun:NMmultiplesof2', ... %e:
hVU
'All N and M must differ by multiples of 2 (including 0).') P\X$fD
end G!GGT?J
uCFpH5>
if any(m>n) O sIvW'$\
error('zernfun:MlessthanN', ... Xt*h2&
'Each M must be less than or equal to its corresponding N.') S?H
qrf7<
end \p iz Vt
xqVIw!J?/}
if any( r>1 | r<0 )
4m9]d)
error('zernfun:Rlessthan1','All R must be between 0 and 1.') r-}C !aF]
end Yv;iduc('
xqKj&RuLu
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^@maF<Jb
error('zernfun:RTHvector','R and THETA must be vectors.') cj3P]2B#
end |>p?Cm
9H%L;C5<
r = r(:); k8sjW!2
theta = theta(:); 4H%Ai(F}_
length_r = length(r); /vPcg
if length_r~=length(theta) *Q3q(rdrp
error('zernfun:RTHlength', ... Gy[m4n~Z5
'The number of R- and THETA-values must be equal.') ^X?3e1om
end s4\_%je<v
~p/1
9/
% Check normalization: n ^C"v6X
% -------------------- pL'+sW
if nargin==5 && ischar(nflag) i\k>2df
isnorm = strcmpi(nflag,'norm'); 8z"*CJ@
if ~isnorm l:VcV
error('zernfun:normalization','Unrecognized normalization flag.') jTz~
V&^
end r7:4|6E
else =qTmFszT
isnorm = false; y[:xGf]8@
end <bOi }
zC\L-i>G
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }Ias7d?re
% Compute the Zernike Polynomials r`CsR0[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
lxD~[e
PeB7Q=d)K1
% Determine the required powers of r: Y]{~ogsn$:
% ----------------------------------- vZt48g
m_abs = abs(m); B"I^hrQ
rpowers = []; 2~*.X^dR
for j = 1:length(n) w57D qG>
rpowers = [rpowers m_abs(j):2:n(j)]; t=(CCq_N,
end >a2i%j/T
rpowers = unique(rpowers); L,wEUI
!@kwHJkv
% Pre-compute the values of r raised to the required powers, rjW\tuZI
% and compile them in a matrix: 3It9|Y"6[
% ----------------------------- N(^
q%eHp
if rpowers(1)==0 jAb R[QR1%
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); EAXbbcV
rpowern = cat(2,rpowern{:}); Vq<\ixRi
rpowern = [ones(length_r,1) rpowern]; ;sn]Blpq
else 6` @4i'.
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ify}xv
rpowern = cat(2,rpowern{:}); rOd~sa-H
end <C,lHt
0_faJjTbP;
% Compute the values of the polynomials: =5m~rJ<{
% -------------------------------------- [kyIF\0
y = zeros(length_r,length(n)); vCS D1~V_
for j = 1:length(n) aoVfvz2Y
s = 0:(n(j)-m_abs(j))/2; E;AOCbV*$
pows = n(j):-2:m_abs(j); yJAz#~PO/
for k = length(s):-1:1 z8\z`#g!
p = (1-2*mod(s(k),2))* ... I7q}<"`
prod(2:(n(j)-s(k)))/ ... =;?afUj
prod(2:s(k))/ ... *Z,?VEO
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...
+Q+>{HK
prod(2:((n(j)+m_abs(j))/2-s(k))); Pwg?a
idx = (pows(k)==rpowers); ~*Kk+w9H<
y(:,j) = y(:,j) + p*rpowern(:,idx); ii:E>O(0B
end -kz9KGkPb+
1iTI8h&[@
if isnorm m]#oZVngy
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); z->[:)c
end K/Qo~
end n6]8W^g
% END: Compute the Zernike Polynomials (Ld,<!eN0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #.^A5`k
Q&A^(z}
% Compute the Zernike functions: aBonq]W
% ------------------------------ sV`!4
u7%}
idx_pos = m>0; u#"L gG.X
idx_neg = m<0; ~ '/Yp8(
Oq3]ZUVa
z = y; Q=~*oYR
if any(idx_pos) :7[20n}w
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2jiH&'@
end 6A9
r{'1
if any(idx_neg) qPG>0
O
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); kI|7o>}<
end ]n9gnE
_^ny(zy(
% EOF zernfun