非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 'nno)kQ"
function z = zernfun(n,m,r,theta,nflag) Qi61(lK
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. =jN]ckn
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 9wC; m :
% and angular frequency M, evaluated at positions (R,THETA) on the Xy{+=UY
% unit circle. N is a vector of positive integers (including 0), and h]#)41y<
% M is a vector with the same number of elements as N. Each element 2$91+N*w9
% k of M must be a positive integer, with possible values M(k) = -N(k) vn<S"
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, C0%%@
2+
% and THETA is a vector of angles. R and THETA must have the same UPYM~c+}
% length. The output Z is a matrix with one column for every (N,M) L7- nPH
% pair, and one row for every (R,THETA) pair. DbN'b(+
% #<o#kJL
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 7E95"B&w
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), H.L@]~AyL
% with delta(m,0) the Kronecker delta, is chosen so that the integral PwW @I~@>
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, qAS^5|(b[
% and theta=0 to theta=2*pi) is unity. For the non-normalized 1N+#(<x@,
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. m
C Ge*V}
% Nz;;X\GI
% The Zernike functions are an orthogonal basis on the unit circle. YYHm0pc
% They are used in disciplines such as astronomy, optics, and Jy_'(hG
% optometry to describe functions on a circular domain. hbeC|_+
% * 5n:+Tw(
% The following table lists the first 15 Zernike functions. 4lA+V,#
% 4B`Rz1QBy
% n m Zernike function Normalization U\ued=H
% -------------------------------------------------- zTLn*?
% 0 0 1 1 +$t%L
% 1 1 r * cos(theta) 2 ja/[PHq"
% 1 -1 r * sin(theta) 2 T8-$[
2
% 2 -2 r^2 * cos(2*theta) sqrt(6) ~<aB-.d
% 2 0 (2*r^2 - 1) sqrt(3) nQ\k{%Q
% 2 2 r^2 * sin(2*theta) sqrt(6) dK: "
% 3 -3 r^3 * cos(3*theta) sqrt(8) >Il`AR;D
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) y~7lug
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) kP$gl|
% 3 3 r^3 * sin(3*theta) sqrt(8) pC-OZ0
% 4 -4 r^4 * cos(4*theta) sqrt(10) zwtsw [.
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vXbT E$
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) sd53 _sV
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4:$>,D\
% 4 4 r^4 * sin(4*theta) sqrt(10) jhv1 D'>6
% --------------------------------------------------
Z<W6Avr
% +`8)U 3u0
% Example 1: >nQyF
% s? k[_|)!
% % Display the Zernike function Z(n=5,m=1) lIg2iun[n
% x = -1:0.01:1; dU6LB+A
% [X,Y] = meshgrid(x,x); @
WaYU
% [theta,r] = cart2pol(X,Y); AvZ) 1(
% idx = r<=1; or}*tSKX
% z = nan(size(X)); L?x?+HPY.
% z(idx) = zernfun(5,1,r(idx),theta(idx)); aUK4{F ;
% figure e6lOmgHn5
% pcolor(x,x,z), shading interp zF&UdS3
% axis square, colorbar *GP_ut%
% title('Zernike function Z_5^1(r,\theta)') P*`xiTA
% OPW"ABJ
% Example 2: `Xdxg\|
% A@(h!Cq
% % Display the first 10 Zernike functions e"#D){k#
% x = -1:0.01:1; 1m;*fs
% [X,Y] = meshgrid(x,x); Z4ioXl
% [theta,r] = cart2pol(X,Y); !"%sp6Wc
% idx = r<=1; l-}5@D[
% z = nan(size(X)); mwH!:f
% n = [0 1 1 2 2 2 3 3 3 3]; od*Z$Hb>'
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; NxO^VUD
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ^G&D4uZ
% y = zernfun(n,m,r(idx),theta(idx)); *)1Vs'!-
% figure('Units','normalized') 0WE1}.J<
% for k = 1:10 e8mbEC(AK
% z(idx) = y(:,k); uhB!k-ir
% subplot(4,7,Nplot(k)) {@__%=`CCS
% pcolor(x,x,z), shading interp H~ n~5 sF"
% set(gca,'XTick',[],'YTick',[]) PlH`(n#
% axis square F*t_lN5{
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ir:~*|
% end y*h1W4:^-
% cuaNAJ
% See also ZERNPOL, ZERNFUN2. 9,f<Nb(\
'QojSq
% Paul Fricker 11/13/2006 Y{vwOs
Q4Fq=kTE
1] Q2qs
% Check and prepare the inputs: Du:p!nO
% ----------------------------- 5}bZs` C
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?%/u/*9rj
error('zernfun:NMvectors','N and M must be vectors.') ywynx<Wg
end [[]SkLZHg
!{tiTA
if length(n)~=length(m) F] ?@X
error('zernfun:NMlength','N and M must be the same length.') aq+IC@O
end yISQYvSN
E? eWv)//
n = n(:); D`:d'ow~KQ
m = m(:); 3'*%R48P`
if any(mod(n-m,2)) Ocwp]Mut&
error('zernfun:NMmultiplesof2', ... b>=Wq
'All N and M must differ by multiples of 2 (including 0).') Ldhk^/+
end 2FIR]@MQd
E<Dh_K
if any(m>n) M*|VLOo=v
error('zernfun:MlessthanN', ... 1i /::4=
'Each M must be less than or equal to its corresponding N.') TT2cOw
end J4v0O="
!@<@QG-
if any( r>1 | r<0 ) KU|BT.o8
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Zfy~mv$
end MziZN^(
MATgJ`lsy
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) >$naTSJq
error('zernfun:RTHvector','R and THETA must be vectors.') /8>0;bX+
end ]TBtLU3
mw(c[.*%
r = r(:); 5rml Aq
theta = theta(:); {!}F
:~*r
length_r = length(r); +an^e'
if length_r~=length(theta) :Wg-@d
error('zernfun:RTHlength', ... ?QMclzh*-
'The number of R- and THETA-values must be equal.') )nNCB=YF!
end wY3|#P
CDV
2:iYYRrg
% Check normalization: _jTwiuMS-
% -------------------- ]A]Ft!`6z
if nargin==5 && ischar(nflag) P}hY{y'
isnorm = strcmpi(nflag,'norm'); h;%i/feFg
if ~isnorm -jxWlO
error('zernfun:normalization','Unrecognized normalization flag.') B)rr7B
end Wm)-zvNY;
else p,w|=@=
isnorm = false; hqs $yb
end 7a:*Y"f,~
,](v?v.[4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "*w)puD
% Compute the Zernike Polynomials <mZrR3v'D
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ', sQ/#S
QJ#u[hsMFp
% Determine the required powers of r: "7kge z#Y
% ----------------------------------- .]j#y9>&w%
m_abs = abs(m); LG=X)w)W4S
rpowers = []; M|UxE/
for j = 1:length(n) /&]-I$G@
rpowers = [rpowers m_abs(j):2:n(j)]; V$dJmKg
end 2cCWQ"_,
rpowers = unique(rpowers); Km)X_}|
@PQrmn6w
% Pre-compute the values of r raised to the required powers, W$" Y%^L
% and compile them in a matrix: [jl2\3*
% ----------------------------- TBZ-17+
if rpowers(1)==0 -`!_h[
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); cBifZv*l
rpowern = cat(2,rpowern{:}); ~reQV6oQua
rpowern = [ones(length_r,1) rpowern]; :tMre^oP
else |N:MZ#};
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (Sth:{;
rpowern = cat(2,rpowern{:}); w"cM<Ewu
end cQT1Xi
908ayfVI
% Compute the values of the polynomials: S3uyn78hI
% -------------------------------------- rI0)F
y = zeros(length_r,length(n)); VQ`,#`wV
for j = 1:length(n) uAu( +zV2
s = 0:(n(j)-m_abs(j))/2; (8CCesy&
pows = n(j):-2:m_abs(j); [_WI8~gY
for k = length(s):-1:1 cMD RWh
p = (1-2*mod(s(k),2))* ... $sEB'>:
prod(2:(n(j)-s(k)))/ ... \ Y*h
prod(2:s(k))/ ... `n
3FT=
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2)wAFO6u
prod(2:((n(j)+m_abs(j))/2-s(k))); 4~O6$;!|~
idx = (pows(k)==rpowers); \ V6
y(:,j) = y(:,j) + p*rpowern(:,idx); ^ED"rMI
end K`hz
t
7p)N_cJD
if isnorm `Kh]x9Z
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .Y!;xB/
end 4|nQ=bIau
end }0QN[$H!
% END: Compute the Zernike Polynomials _yj1:TtCNT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^vpIZjN
MZT6g. ny
% Compute the Zernike functions: 6|,e%
% ------------------------------ ZA0i)(j*Mn
idx_pos = m>0; |~SE"
idx_neg = m<0; R6`*4zS
np\st7&f6
z = y; tXt:HVN
if any(idx_pos) u7HvdLql
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /D0RC
end <EtUnj:qK8
if any(idx_neg) <B!'3C(P
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); *4t-e0]j@w
end &vCeLh:s
-yoAxPDW
% EOF zernfun