切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11501阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ~I")-2"B  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! V~Guw[RA  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ZRGe$HaU  
    function z = zernfun(n,m,r,theta,nflag) &i805,lx  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Qp@}v7Due  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N  ?nJv f  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Y|#< kS  
    %   unit circle.  N is a vector of positive integers (including 0), and [$]-W$j+  
    %   M is a vector with the same number of elements as N.  Each element D3O)Tj@:}(  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) {iQ4jJ`n  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, B$q5/L$}  
    %   and THETA is a vector of angles.  R and THETA must have the same m8l!+8  
    %   length.  The output Z is a matrix with one column for every (N,M) -lfbn =3  
    %   pair, and one row for every (R,THETA) pair. nh+h3"-d  
    % @]]\r.DG  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike s=R^2;^  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {p$X*2ReB  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral zo ]-,u  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, fn5!Nr ,  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized &`'@}o>2  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m].  u7&5t  
    % /*6[Itm_h  
    %   The Zernike functions are an orthogonal basis on the unit circle. 9*s:Vff{  
    %   They are used in disciplines such as astronomy, optics, and Qdy/KL1]  
    %   optometry to describe functions on a circular domain. kK&AK2  
    % 3z k},8fu  
    %   The following table lists the first 15 Zernike functions. {XXnMO4uR;  
    % U @}r?!)"f  
    %       n    m    Zernike function           Normalization Nah\4-75&  
    %       -------------------------------------------------- y :QnK0  
    %       0    0    1                                 1 i_y%HG  
    %       1    1    r * cos(theta)                    2 M3fTU CR  
    %       1   -1    r * sin(theta)                    2 =QwT)KRB%  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) WQ{^+C9g'1  
    %       2    0    (2*r^2 - 1)                    sqrt(3) z wn#E  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 7 $dibTER  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) xd`\Ai  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) .| :R#VW  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Vc8w[oS  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) bz`rSp8h  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Xag#ZT  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) RRpCWc Iv"  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) |/u,6`  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) E]pD p /D  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) wEl/s P  
    %       -------------------------------------------------- 0Fs2* FS  
    % OP``+z>  
    %   Example 1: c&g*nDuDj  
    % F_iZ|B  
    %       % Display the Zernike function Z(n=5,m=1) rLp0)Go  
    %       x = -1:0.01:1; =Nz;R2{@  
    %       [X,Y] = meshgrid(x,x); +^$E)Ol  
    %       [theta,r] = cart2pol(X,Y); z|<?=c2P  
    %       idx = r<=1; ~qE:Nz0@  
    %       z = nan(size(X)); bc6|]kB:  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ^ b{~]I  
    %       figure =)! ~t/  
    %       pcolor(x,x,z), shading interp Wm!cjGK  
    %       axis square, colorbar e=ry_@7  
    %       title('Zernike function Z_5^1(r,\theta)') k7nke^,|  
    % g T0@pxl  
    %   Example 2: ^HWa owy=  
    % LP>GM=S#"  
    %       % Display the first 10 Zernike functions ?0d#O_la3  
    %       x = -1:0.01:1; (Wn^~-`=+  
    %       [X,Y] = meshgrid(x,x); );xTl6Y9  
    %       [theta,r] = cart2pol(X,Y); Vo(bro4ZQi  
    %       idx = r<=1; rL/H{.@$`  
    %       z = nan(size(X)); dlDO?T  
    %       n = [0  1  1  2  2  2  3  3  3  3]; v|rBOv  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; R E9 `T  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; !!)NER-dv  
    %       y = zernfun(n,m,r(idx),theta(idx)); X(;W Y^i!  
    %       figure('Units','normalized') =GC,1WVEqV  
    %       for k = 1:10 4=l$wg~;  
    %           z(idx) = y(:,k); mfk^t`w_  
    %           subplot(4,7,Nplot(k)) 2GRv%:rZ  
    %           pcolor(x,x,z), shading interp 50Ov>(f@7  
    %           set(gca,'XTick',[],'YTick',[]) S0lt _~  
    %           axis square xH>j  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) j HEt   
    %       end Pu,2a+0N  
    % cJ'OqV F  
    %   See also ZERNPOL, ZERNFUN2. pE{Ecrc3|  
    CE|rn8MB  
    %   Paul Fricker 11/13/2006 z7HM/<WY  
    +6(\7?  
    E g_ram`\R  
    % Check and prepare the inputs: a6"-,Kg  
    % ----------------------------- p<\7" SB=  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Z)<lPg!YAR  
        error('zernfun:NMvectors','N and M must be vectors.') ,b t j6hg  
    end ` c"  
    Lwo9s)j<e  
    if length(n)~=length(m) O_v*,L!  
        error('zernfun:NMlength','N and M must be the same length.') U<6+2y P  
    end Cr YPcvd6  
    wB"`lY   
    n = n(:); %0%Tp  
    m = m(:); z6 .^a-sU5  
    if any(mod(n-m,2)) }qBmt>#  
        error('zernfun:NMmultiplesof2', ... [6\b(kS+  
              'All N and M must differ by multiples of 2 (including 0).') ULzrJbP'7  
    end A(+%DZ  
    vywpX^KPv  
    if any(m>n) cT nC  
        error('zernfun:MlessthanN', ... E^m;Ab=  
              'Each M must be less than or equal to its corresponding N.') L fZF  
    end f7&9IW`7F^  
    c6VyF=2q  
    if any( r>1 | r<0 ) EvF[h:C2  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]$I}r= Em  
    end -]Q\G  
    Dv~jVIXu  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) %RzCJxT  
        error('zernfun:RTHvector','R and THETA must be vectors.') ;KT5qiqYH  
    end 0xfF  
    gzN51B=D  
    r = r(:); tN z(s)  
    theta = theta(:); QSOG(}w  
    length_r = length(r); H^M>(kT#&  
    if length_r~=length(theta) jW>K#vj  
        error('zernfun:RTHlength', ... 1o?uf,H7O  
              'The number of R- and THETA-values must be equal.') k`J|]99Wb  
    end E@4/<;eKK  
    e/}4Pt  
    % Check normalization: s%1Z raMvJ  
    % -------------------- <T]ey  
    if nargin==5 && ischar(nflag) ?@;#|^k9  
        isnorm = strcmpi(nflag,'norm'); <jBRUa[j_  
        if ~isnorm ~EU\\;1Rmq  
            error('zernfun:normalization','Unrecognized normalization flag.') ygQe'S{!S\  
        end L2OR<3*|Av  
    else <(i5hmuVd  
        isnorm = false; q}W})  
    end 'UM *7  
    } |  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oXU b_/  
    % Compute the Zernike Polynomials U*?`tdXJ$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V)P8w#,  
    a4pewg'  
    % Determine the required powers of r: M~~)tJYsu  
    % ----------------------------------- ',/2J0_  
    m_abs = abs(m); cZ#%tT#  
    rpowers = []; W6B"QbHYz  
    for j = 1:length(n) }Eh &'  
        rpowers = [rpowers m_abs(j):2:n(j)]; o7@C$R_#  
    end <T&v\DN  
    rpowers = unique(rpowers); B<0Kl.V  
    l]OzE-*$b  
    % Pre-compute the values of r raised to the required powers, 3 FV -&Y  
    % and compile them in a matrix: kpxGC,I^*.  
    % ----------------------------- Q!_d6-*u  
    if rpowers(1)==0 _n_()at)  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g/VV2^,  
        rpowern = cat(2,rpowern{:}); 6&il>  
        rpowern = [ones(length_r,1) rpowern]; f+8 QAvh  
    else dT[JVl+3=  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Kxg@(Q  
        rpowern = cat(2,rpowern{:}); jcb&h@T8kv  
    end -& =dl_m  
    N1B$z3E *  
    % Compute the values of the polynomials: U_ l9CZ  
    % -------------------------------------- 3R0ioi 7  
    y = zeros(length_r,length(n)); IdK<:)Q  
    for j = 1:length(n) lqKj;'  
        s = 0:(n(j)-m_abs(j))/2; ~]q>}/&YLo  
        pows = n(j):-2:m_abs(j); xF@&wg  
        for k = length(s):-1:1 p4 =/rkq  
            p = (1-2*mod(s(k),2))* ... {Ay dt8  
                       prod(2:(n(j)-s(k)))/              ... w ?*eBLJ(G  
                       prod(2:s(k))/                     ... &} { #g  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 9bspf {  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); : ]+6l  
            idx = (pows(k)==rpowers); RB|i<`Z  
            y(:,j) = y(:,j) + p*rpowern(:,idx); UtP|<]{  
        end ;lvcg)}l  
         &{UqGD#1&  
        if isnorm AV7#,+p%G  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); imeE&  
        end *@ H\J e`  
    end ,Aai-AGG@  
    % END: Compute the Zernike Polynomials  6su~SPh  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q$v00z]f*  
    ~f[ Y;  
    % Compute the Zernike functions: @Z2np{X:  
    % ------------------------------ >0W P:-\*  
    idx_pos = m>0; p4*L}Q  
    idx_neg = m<0; H!&_Tv[  
    (zsv!U  
    z = y; 7eAV2.  
    if any(idx_pos) gWzslgO6  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); P^Owgr=Y  
    end -Ep#q&\  
    if any(idx_neg) -z0;4O (K]  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); N2"B\  
    end .7  0  
    a4*976~![  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ; Byt'S  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. {;u,04OVK  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated DZtpY {=Z  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive  d]`6N  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, kuD$]A Q`&  
    %   and THETA is a vector of angles.  R and THETA must have the same dN)8r  
    %   length.  The output Z is a matrix with one column for every P-value, tVEe)QX  
    %   and one row for every (R,THETA) pair. fy4zBI@  
    % vxj:Y'}  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike /HpM17   
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) A*?PH`bY  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) b4i=%]v8  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Q(nTL WW  
    %   for all p. j2<+[h-  
    % TZ5TkE;1  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ZBK0`7#&EH  
    %   Zernike functions (order N<=7).  In some disciplines it is Cl<!S`  
    %   traditional to label the first 36 functions using a single mode YM:sLeQ~c  
    %   number P instead of separate numbers for the order N and azimuthal $t.oGd@N  
    %   frequency M. Sb/?<$>  
    % iX]OF.:   
    %   Example: ,3Q~X$f  
    % 95z|}16UK  
    %       % Display the first 16 Zernike functions _&hM6N  
    %       x = -1:0.01:1; k`8O/J  
    %       [X,Y] = meshgrid(x,x); 'E3T fM  
    %       [theta,r] = cart2pol(X,Y); <VKJ+  
    %       idx = r<=1; ~ p? ArZb  
    %       p = 0:15; X]p3?"7  
    %       z = nan(size(X)); tfGs| x  
    %       y = zernfun2(p,r(idx),theta(idx)); V%r`v%ktF  
    %       figure('Units','normalized') #dUKG8-HJ  
    %       for k = 1:length(p) LJ/He[r|[  
    %           z(idx) = y(:,k); .i RKuBM/  
    %           subplot(4,4,k) IDH~nMz  
    %           pcolor(x,x,z), shading interp >] 'oN  
    %           set(gca,'XTick',[],'YTick',[]) 'NhQBk  
    %           axis square w Wb>V&3  
    %           title(['Z_{' num2str(p(k)) '}']) $lJcC |*  
    %       end _w4G|j$C  
    % l5{60$g  
    %   See also ZERNPOL, ZERNFUN. ZyUcL_   
    sip4,>,E  
    %   Paul Fricker 11/13/2006 0w3c8s.  
    U]sAYp^$  
    QPDh!A3T  
    % Check and prepare the inputs: pD%(Y^h?  
    % ----------------------------- PlzM`g$A  
    if min(size(p))~=1 q>2bkcGY#  
        error('zernfun2:Pvector','Input P must be vector.') hT X[W%K  
    end 51q|-d  
    t^~vi'bB  
    if any(p)>35 <bzzbR[F  
        error('zernfun2:P36', ... RVatGa0  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... [P`e @$  
               '(P = 0 to 35).']) 7EE{*}?0E  
    end Q6qW?*Y  
    @=Q!a (g  
    % Get the order and frequency corresonding to the function number: mQ:{>`  
    % ---------------------------------------------------------------- {=ox1+d  
    p = p(:); U|} ?{x  
    n = ceil((-3+sqrt(9+8*p))/2);  LgNIb  
    m = 2*p - n.*(n+2); <giBL L!  
    \~ D(ww  
    % Pass the inputs to the function ZERNFUN: ZZT #V%Q=u  
    % ---------------------------------------- 7y'uZAF  
    switch nargin :25LQf^nz  
        case 3 p@Y=6Bw  
            z = zernfun(n,m,r,theta); bqcCA9 1  
        case 4 kXSX<b<%  
            z = zernfun(n,m,r,theta,nflag); .T'@P7Hdx  
        otherwise }<04\t?  
            error('zernfun2:nargin','Incorrect number of inputs.') 2FIL@f|\7z  
    end faQmkO  
    x s{pGQ6Q  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) UT<e/  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. dvB=Zk]m  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of #CC5+  
    %   order N and frequency M, evaluated at R.  N is a vector of [;u#79aE  
    %   positive integers (including 0), and M is a vector with the %k!CjW3  
    %   same number of elements as N.  Each element k of M must be a AQ~ xjU  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) %_OjmXOfe  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is X94a  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix m{/7)2.  
    %   with one column for every (N,M) pair, and one row for every ^jL '*&l  
    %   element in R. %fj5 ;}E.  
    % %2\Hj0JQQ  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 2d&F<J<sU  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is C~ 1]  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to cM#rus?)+  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 b:dN )m  
    %   for all [n,m]. p#@#$u-  
    % 9kL,69d2  
    %   The radial Zernike polynomials are the radial portion of the C96/   
    %   Zernike functions, which are an orthogonal basis on the unit z#*.9/y\^R  
    %   circle.  The series representation of the radial Zernike [l23b{  
    %   polynomials is p `"k=tZ{  
    % L+am-k:T~  
    %          (n-m)/2 \Vyys[MMY8  
    %            __ aFnel8  
    %    m      \       s                                          n-2s (>al-vZ6A  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r =Hi@q "  
    %    n      s=0 4>KF`?%4  
    % Zy}tZRG  
    %   The following table shows the first 12 polynomials. GK@OdurAR  
    % ,Bk5( e  
    %       n    m    Zernike polynomial    Normalization / F0q8j0  
    %       --------------------------------------------- Tq1\  
    %       0    0    1                        sqrt(2) &hOz(825r  
    %       1    1    r                           2 H1bR+2s  
    %       2    0    2*r^2 - 1                sqrt(6) qRt!kWW  
    %       2    2    r^2                      sqrt(6) d][ Wm  
    %       3    1    3*r^3 - 2*r              sqrt(8) $dL..QH^K  
    %       3    3    r^3                      sqrt(8) :{7+[LcH7  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) s0SzO,Vi  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) DR#" 3  
    %       4    4    r^4                      sqrt(10) o<G 9t6~  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) zggnDkC5  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) t-\+t<;  
    %       5    5    r^5                      sqrt(12) 4E$MhP  
    %       --------------------------------------------- wI.aV>  
    % i^s Vy  
    %   Example: ]eL# bJ  
    % (@?mm  
    %       % Display three example Zernike radial polynomials @Cj!MZ=T  
    %       r = 0:0.01:1; :#rP$LSYC  
    %       n = [3 2 5]; [|(|"dh@^H  
    %       m = [1 2 1]; -,J<X\  
    %       z = zernpol(n,m,r); t>j_C{X1(  
    %       figure _#8hgwf>  
    %       plot(r,z) 2b"*~O;  
    %       grid on 78& |^sq  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') z0 "DbZ;d  
    % 8D*7{Q  
    %   See also ZERNFUN, ZERNFUN2. l]*RiK2AC  
    )x.%PUA  
    % A note on the algorithm. n Bu!2c  
    % ------------------------ (,|,j(=]  
    % The radial Zernike polynomials are computed using the series oRV}Nz7hr  
    % representation shown in the Help section above. For many special `|t,Uc|7!  
    % functions, direct evaluation using the series representation can Kd\0nf6  
    % produce poor numerical results (floating point errors), because PgBEe @.  
    % the summation often involves computing small differences between .;? Bni  
    % large successive terms in the series. (In such cases, the functions O. * 0;5  
    % are often evaluated using alternative methods such as recurrence i)i>Ulj*i  
    % relations: see the Legendre functions, for example). For the Zernike ~A0]vcP  
    % polynomials, however, this problem does not arise, because the 4 Gu'WbJ  
    % polynomials are evaluated over the finite domain r = (0,1), and `+H=3`}X  
    % because the coefficients for a given polynomial are generally all xR+vu>f  
    % of similar magnitude. *$Q>Om]  
    % QPlU+5Cx  
    % ZERNPOL has been written using a vectorized implementation: multiple &^=Lr:I  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ;_}pIO  
    % values can be passed as inputs) for a vector of points R.  To achieve jPh<VVQ$@  
    % this vectorization most efficiently, the algorithm in ZERNPOL Y{Z&W9U  
    % involves pre-determining all the powers p of R that are required to B,>02EZ  
    % compute the outputs, and then compiling the {R^p} into a single kg/B<w'  
    % matrix.  This avoids any redundant computation of the R^p, and "j>X^vn  
    % minimizes the sizes of certain intermediate variables. `PWKA;W$0  
    % .D*Qu}  
    %   Paul Fricker 11/13/2006 eg[EFI.h  
    CK_dEh2c  
    >M<3!?fW)  
    % Check and prepare the inputs: 5P,&VB8L  
    % ----------------------------- {##G.n\~  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) is.t,&H4P]  
        error('zernpol:NMvectors','N and M must be vectors.') aV;|2}q "  
    end g)hEzL0k  
    iOfm:DTPr  
    if length(n)~=length(m) ]ch=@IV  
        error('zernpol:NMlength','N and M must be the same length.') Iiy5;:CX:q  
    end YvY|\2^K  
    ^y5A\nz&  
    n = n(:); LU3pCM{  
    m = m(:); DV5hTw0  
    length_n = length(n); 8hGyh#  
    yF)o_OA[uR  
    if any(mod(n-m,2)) wE .H:q4&  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') h:Pfiw]  
    end *>m[ZJd%=  
    z "@^'{.l  
    if any(m<0) WjV Bz   
        error('zernpol:Mpositive','All M must be positive.') Qz(D1>5I?  
    end $QJ3~mG2  
    J0sD?V|{1~  
    if any(m>n) o/AG9|()4  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') e!u]l  
    end o"z()w~  
    v93b8/1  
    if any( r>1 | r<0 ) YidcVlOsO  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 0]d;)_`@  
    end ?:R]p2ID  
    i?T-6{3I  
    if ~any(size(r)==1) )%C.IZ_s2  
        error('zernpol:Rvector','R must be a vector.') (-C)A-Uo&  
    end VDxm|7  
    aCZ0-X?c  
    r = r(:); "P! .5B  
    length_r = length(r); geQ!}zXWi  
    .; MS 78BR  
    if nargin==4 %. 1/ #{  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); %" iX3  
        if ~isnorm P(T-2Ux6  
            error('zernpol:normalization','Unrecognized normalization flag.') >}SEU-7&\  
        end W8W7<ml0A  
    else KhjC'CU,  
        isnorm = false; Dk  `&tr  
    end ^".OMS"!  
    [6VB&   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  y|LHnNQ  
    % Compute the Zernike Polynomials 0cm34\*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b++r#Q g  
    xe@e#9N$  
    % Determine the required powers of r: rWht},-|1  
    % ----------------------------------- 9#DXA}  
    rpowers = []; X,Ql6uO  
    for j = 1:length(n) "uH>S+%|b  
        rpowers = [rpowers m(j):2:n(j)]; (cj9xROx  
    end 0|e[o"  
    rpowers = unique(rpowers); !5,C"r  
    1l-5H7^w2?  
    % Pre-compute the values of r raised to the required powers, }aWy#Oe  
    % and compile them in a matrix: Q[OwP  
    % ----------------------------- *fN+wiPD  
    if rpowers(1)==0 u^MKqI  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #Y5k/NPg  
        rpowern = cat(2,rpowern{:}); c7mKE`  
        rpowern = [ones(length_r,1) rpowern]; sH6;__e  
    else $N?8[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 12`u[O}\}-  
        rpowern = cat(2,rpowern{:}); ^Iw$ (  
    end ZTR9e\F  
    2@ S}x@^  
    % Compute the values of the polynomials: 9=j9vBV  
    % -------------------------------------- n>ryS/1  
    z = zeros(length_r,length_n); +tPBm{|  
    for j = 1:length_n 8maWF.xq  
        s = 0:(n(j)-m(j))/2; 7uR;S:WX  
        pows = n(j):-2:m(j); 56AC%_ g>  
        for k = length(s):-1:1 <rzP  
            p = (1-2*mod(s(k),2))* ... 9=>q0D2  
                       prod(2:(n(j)-s(k)))/          ... [t4v/vQT  
                       prod(2:s(k))/                 ... 15ailA&(Qm  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... W9SU1{*9  
                       prod(2:((n(j)+m(j))/2-s(k))); :T-DxP/  
            idx = (pows(k)==rpowers); 3)G~ud  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ^hLr9k   
        end 2^r~->  
         P%|~Ni_BTX  
        if isnorm x2!R&q8U>  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); zQ,rw[C"W  
        end y% bIO6u:  
    end <-I69`  
    /1OCK=  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  )^(gwE  
    jG1(Oe;#  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 5{HF'1XgZ*  
    We y*\@  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)