切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10961阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 %hZX XpuO  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! (JnEso-V  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 t:P]bp^#  
    function z = zernfun(n,m,r,theta,nflag) <ME>#,  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. xt "-Jmox  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N =ONM#DxH  
    %   and angular frequency M, evaluated at positions (R,THETA) on the S# baOO  
    %   unit circle.  N is a vector of positive integers (including 0), and ~OxFgKn23&  
    %   M is a vector with the same number of elements as N.  Each element S*J\YcqSC  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 8Exky^OT|  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Ik5V?  
    %   and THETA is a vector of angles.  R and THETA must have the same !T ,=kh  
    %   length.  The output Z is a matrix with one column for every (N,M) 4t/?b  
    %   pair, and one row for every (R,THETA) pair. kv+^U^WoU  
    % 2Kr>93O  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]F>#0Rdc  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Y= =5\;-  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral YTY(Et1i  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -Q?c'e  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Jq?zr]"A  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ; 8eGf'  
    % zOFHdd ,"g  
    %   The Zernike functions are an orthogonal basis on the unit circle. .q4$)8[Pg  
    %   They are used in disciplines such as astronomy, optics, and B3?rR-2mEE  
    %   optometry to describe functions on a circular domain. k4u/v n`&r  
    % ?K2}<H-  
    %   The following table lists the first 15 Zernike functions. *vIP\NL?H  
    % "_dg$j`Y&&  
    %       n    m    Zernike function           Normalization /]-yZ0hX0O  
    %       -------------------------------------------------- ~!g2+^G7+P  
    %       0    0    1                                 1 f/IQ2yT-:D  
    %       1    1    r * cos(theta)                    2 +Ig%h[1a  
    %       1   -1    r * sin(theta)                    2 z#P`m,~t0  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) .7LQ l ?  
    %       2    0    (2*r^2 - 1)                    sqrt(3) c|aX4=Z  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) WQiRbbX  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) L+ XAbL)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) zks7wt]A  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) OW@)6   
    %       3    3    r^3 * sin(3*theta)             sqrt(8) dKU :\y  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Q^3{L\6_  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) H<<t^,E^.t  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 9rT^rTV  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ScD E)r  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) mXS]SE  
    %       -------------------------------------------------- ANM=:EtP  
    % zb"4_L@m2  
    %   Example 1: G%>[7]H  
    % oJ3(7Sz  
    %       % Display the Zernike function Z(n=5,m=1) 6~2upy~e  
    %       x = -1:0.01:1; #-+Q]}fB4  
    %       [X,Y] = meshgrid(x,x); 5$Kj#9g-#  
    %       [theta,r] = cart2pol(X,Y); >qr/1mW  
    %       idx = r<=1; w{k^O7~  
    %       z = nan(size(X)); p[].4_B;  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); f_xvXf:  
    %       figure B]()  
    %       pcolor(x,x,z), shading interp IvY3iRq6  
    %       axis square, colorbar { gs$pBu  
    %       title('Zernike function Z_5^1(r,\theta)') qq<T~^  
    % Ml{ ]{n  
    %   Example 2: oaPWeM+  
    % 4KR`  
    %       % Display the first 10 Zernike functions ISK 8t  
    %       x = -1:0.01:1; l:JVt`A4?  
    %       [X,Y] = meshgrid(x,x); v7KBYN  
    %       [theta,r] = cart2pol(X,Y); + WMXd.iN,  
    %       idx = r<=1; \f(zMP  
    %       z = nan(size(X)); -LUZ7,!/>o  
    %       n = [0  1  1  2  2  2  3  3  3  3]; i$6rnS&C  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; oA7DhU5n  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 1i~q~ O,  
    %       y = zernfun(n,m,r(idx),theta(idx)); 2\z|/ Q  
    %       figure('Units','normalized') vxC];nCC#  
    %       for k = 1:10 <rK[&JlJ  
    %           z(idx) = y(:,k); *>mjUT}cP  
    %           subplot(4,7,Nplot(k)) hi/d%lNZ  
    %           pcolor(x,x,z), shading interp QKq4kAaJ!  
    %           set(gca,'XTick',[],'YTick',[]) \9` ~9#P  
    %           axis square ' v CMf  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 0!ZaR 6  
    %       end %Y=r5'6l  
    % w{xa@Q]t-  
    %   See also ZERNPOL, ZERNFUN2. _,aFQ^]'9  
    PLz+%L;{  
    %   Paul Fricker 11/13/2006 T|D^kL%m!  
    JA9NTu(  
    PlS)Zv3  
    % Check and prepare the inputs: 00dY?d{[D  
    % ----------------------------- 3F!)7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h%W,O,K/  
        error('zernfun:NMvectors','N and M must be vectors.') D]}~`SO  
    end \< T7EV.  
    'kC#GTZi  
    if length(n)~=length(m) \zFCph4  
        error('zernfun:NMlength','N and M must be the same length.') |gu@b~8  
    end ZX`x9/0&  
    MD<x{7O12>  
    n = n(:); eWex/ m  
    m = m(:); l1]{r2g  
    if any(mod(n-m,2)) R13k2jLSQ  
        error('zernfun:NMmultiplesof2', ... >Ovz;  
              'All N and M must differ by multiples of 2 (including 0).') S,Q^M )$  
    end G/# <d-}_  
    w+*rbJ  
    if any(m>n) $ ~%Y}Xt*  
        error('zernfun:MlessthanN', ... G<<; a  
              'Each M must be less than or equal to its corresponding N.') .JB1#&B +  
    end Ij.mLO]  
    lemV&$WN|  
    if any( r>1 | r<0 ) !> +Lre@  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') mk!8>XvM  
    end cl&?'` )  
    Q$]1juqg  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) uuF~+=.|  
        error('zernfun:RTHvector','R and THETA must be vectors.') .|07IH/Di{  
    end vf<Dqy<M.  
    2 YWO'PL  
    r = r(:); Cu24xP`  
    theta = theta(:); ^q/^.Gf  
    length_r = length(r); >.od(Fh{l|  
    if length_r~=length(theta) y_q1Y70i2r  
        error('zernfun:RTHlength', ... GeB&S!F  
              'The number of R- and THETA-values must be equal.') Q#ksf h!D  
    end JLoE)\Mi  
    Nb_Glf  
    % Check normalization: MMET^SO  
    % -------------------- DO*6gzW  
    if nargin==5 && ischar(nflag) sg}<()  
        isnorm = strcmpi(nflag,'norm'); W1 xPK*  
        if ~isnorm Lk#)VGk:  
            error('zernfun:normalization','Unrecognized normalization flag.') b`S9#`  
        end hslT49m>  
    else t5K#nRd Z:  
        isnorm = false; +`Nu0y!rj  
    end Z"w}`&TC$^  
    (,+#H]L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |P|2E~[r  
    % Compute the Zernike Polynomials t!J>853  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sw-2vnSdM  
    <_eEpG}9  
    % Determine the required powers of r: }{:}K<  
    % ----------------------------------- |r;>2b/ x  
    m_abs = abs(m); m zoH$@  
    rpowers = []; tq'hiS(b  
    for j = 1:length(n) z4(\yx  
        rpowers = [rpowers m_abs(j):2:n(j)]; $J)`Ru6.  
    end udr|6EjD.  
    rpowers = unique(rpowers); *,O3@,+>H  
    <GQ=PrT|/  
    % Pre-compute the values of r raised to the required powers, iS.gN&\z^  
    % and compile them in a matrix: 4K`b?{){+a  
    % ----------------------------- MwSfuP  
    if rpowers(1)==0 7iM@BeIf  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Q7v1xBM  
        rpowern = cat(2,rpowern{:});  g;AW  
        rpowern = [ones(length_r,1) rpowern]; 4A(h'(^7A  
    else 811QpYA  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); A(`Mwh+  
        rpowern = cat(2,rpowern{:}); E U RKzJk  
    end eA Fp<2g  
    T<Zi67QC@  
    % Compute the values of the polynomials: #FRm<9/j  
    % -------------------------------------- Oz]$zRu/0  
    y = zeros(length_r,length(n)); 9X33{  
    for j = 1:length(n) NhF"%  
        s = 0:(n(j)-m_abs(j))/2; R!X+-  
        pows = n(j):-2:m_abs(j); ".#h$  
        for k = length(s):-1:1 %Q]thv:  
            p = (1-2*mod(s(k),2))* ... ?LU>2!jN  
                       prod(2:(n(j)-s(k)))/              ... UM21Cfqex  
                       prod(2:s(k))/                     ... OQ<;w  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... awz.~c++  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); OuWRLcJ!  
            idx = (pows(k)==rpowers); c`lL&*]  
            y(:,j) = y(:,j) + p*rpowern(:,idx); [GI2%uA0  
        end 0xCe6{86  
         x=x%F;  
        if isnorm +tg${3ti_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :h3U^  
        end y[S9b (:+  
    end 3X',L*f  
    % END: Compute the Zernike Polynomials Jx`7W1%T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 017nhI  
    b~YIaD[Z  
    % Compute the Zernike functions: i$6a0'@U  
    % ------------------------------ rqm":N8@  
    idx_pos = m>0; N;>s|ET  
    idx_neg = m<0; ^x^(Rk}|  
    _;S~nn  
    z = y; fN<Y3^i"  
    if any(idx_pos) [4dX[  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); sP% b? 6  
    end P39oHW  
    if any(idx_neg) JdWav!PYm  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); eHd7fhW5  
    end pbWjTI$  
    ]8Xip/uE  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Y)(yw \&v  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 2vsV :LS.  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated tAY{+N]f  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive _bgv +/  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Ra H1aS(  
    %   and THETA is a vector of angles.  R and THETA must have the same !<~cjgdx  
    %   length.  The output Z is a matrix with one column for every P-value, C[#C/@  
    %   and one row for every (R,THETA) pair. ]0|A\bE\S  
    % ),xD5~_=q  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike '^$+G0jv  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) E8p,l>6(f  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) V s=o@  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 @A*>lUo  
    %   for all p. 5)hfI7{d  
    % @tD (<*f+  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 MQ0r ln?  
    %   Zernike functions (order N<=7).  In some disciplines it is 0 ?gHRdU"  
    %   traditional to label the first 36 functions using a single mode S QGYH  
    %   number P instead of separate numbers for the order N and azimuthal d/~g3n>|  
    %   frequency M. {[L('MH2|  
    % /Bh*MH  
    %   Example: iXvrZofE  
    % ]H\tz@ &  
    %       % Display the first 16 Zernike functions n}(A4^=4KQ  
    %       x = -1:0.01:1; _jg tZ  
    %       [X,Y] = meshgrid(x,x); V RD^>Gi  
    %       [theta,r] = cart2pol(X,Y); be5N{lPT@;  
    %       idx = r<=1; Vry_X2  
    %       p = 0:15; ;_E|I=%'E  
    %       z = nan(size(X)); |(PS bu  
    %       y = zernfun2(p,r(idx),theta(idx)); x',6VTz^  
    %       figure('Units','normalized') Np ru  
    %       for k = 1:length(p) KNj~7aTp  
    %           z(idx) = y(:,k); K,%CE ].  
    %           subplot(4,4,k) 8]R{5RGy  
    %           pcolor(x,x,z), shading interp ^M;#x$Y?  
    %           set(gca,'XTick',[],'YTick',[]) ?A*!rW:l;  
    %           axis square 3T4HX|rC  
    %           title(['Z_{' num2str(p(k)) '}']) 9 Qa_3+.B  
    %       end hCd? Kti  
    % A=p'`]Yld  
    %   See also ZERNPOL, ZERNFUN. v_WQ<G?  
    V{A`?Jl6{  
    %   Paul Fricker 11/13/2006 c/v|e&q  
    *)6\ V}`  
    X;l/D},.  
    % Check and prepare the inputs: PiCGZybCA  
    % ----------------------------- uLPBl~Y  
    if min(size(p))~=1 Fkq^2o ]  
        error('zernfun2:Pvector','Input P must be vector.') cF8X  
    end ,u)jZ7  
    aW{5m@p{"  
    if any(p)>35 ACZK]~Y'N*  
        error('zernfun2:P36', ... >!a- "  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... `ZI-1&Y3  
               '(P = 0 to 35).']) -)}Z $;1a  
    end N@}h  
    |g!d[ct]  
    % Get the order and frequency corresonding to the function number: Vp|?R65S*  
    % ---------------------------------------------------------------- ,c{ckm  
    p = p(:); bcpsjUiy#  
    n = ceil((-3+sqrt(9+8*p))/2); kV4Oq.E  
    m = 2*p - n.*(n+2); ~T-uk  
    A>2_I)  
    % Pass the inputs to the function ZERNFUN: `8RKpZv&  
    % ---------------------------------------- ()O&O+R|)  
    switch nargin ,uPcQ  
        case 3 nw%`CnzT  
            z = zernfun(n,m,r,theta); [0]A-#J  
        case 4 [wnp]'+!  
            z = zernfun(n,m,r,theta,nflag); >$E;."a  
        otherwise [w|Klq5  
            error('zernfun2:nargin','Incorrect number of inputs.') _ezRE"F5  
    end $/;K<*O$  
    '@ Rk#=85Z  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) K.Y`/<  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. c$7~EP  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of xUsL{24  
    %   order N and frequency M, evaluated at R.  N is a vector of 62zu;p9m  
    %   positive integers (including 0), and M is a vector with the :=ek~s.UV  
    %   same number of elements as N.  Each element k of M must be a rz k;Q@1  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) F=1 #qo<?  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ;(Ug]U%3_  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ;<m`mb4x[  
    %   with one column for every (N,M) pair, and one row for every Hcu!bOQ  
    %   element in R. vB_3lAJt@  
    % K3[+L`pz  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ;..z)OP_  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 2J&~b8:  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to x0(bM g>7  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 2*z~ 'i  
    %   for all [n,m]. Xi[]8o  
    % {>msE }L  
    %   The radial Zernike polynomials are the radial portion of the fPUr O  
    %   Zernike functions, which are an orthogonal basis on the unit j7kX"nz  
    %   circle.  The series representation of the radial Zernike i l@>b  
    %   polynomials is 6` TwP\!$/  
    % =zK4jiM1  
    %          (n-m)/2 [B)!  
    %            __ |;wc8;  
    %    m      \       s                                          n-2s k !0O[U  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 'A7!@hVy  
    %    n      s=0 NF6xKwRU]_  
    % ?8"* B^*Sh  
    %   The following table shows the first 12 polynomials. Jp]?tlT  
    % `M6"=)twu  
    %       n    m    Zernike polynomial    Normalization jo<xrn\  
    %       --------------------------------------------- {&IB[Y6  
    %       0    0    1                        sqrt(2) EpMxq7*  
    %       1    1    r                           2 ',0:/jSz  
    %       2    0    2*r^2 - 1                sqrt(6) e,e(t7c?d  
    %       2    2    r^2                      sqrt(6) D`a6D  
    %       3    1    3*r^3 - 2*r              sqrt(8) M x#L|w`r  
    %       3    3    r^3                      sqrt(8) ?I[8rzBWU  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) WT<}3(S'?  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) CE`]X;#y  
    %       4    4    r^4                      sqrt(10) nXLz<wE  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) VRQ`-#  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) /x ?@M n>  
    %       5    5    r^5                      sqrt(12) [8sYEh  
    %       --------------------------------------------- rAu% bF  
    % h{^v756L  
    %   Example: 4@{c K|  
    % `z(o01y  
    %       % Display three example Zernike radial polynomials W<X3!zuKSg  
    %       r = 0:0.01:1; =eU=\td^  
    %       n = [3 2 5]; u_^mN9h  
    %       m = [1 2 1]; ^:{8z;w!(  
    %       z = zernpol(n,m,r); nD BWm`kN  
    %       figure  k;+TN9  
    %       plot(r,z) Yvo*^jv  
    %       grid on {fACfSW6  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 2j%=o?me^p  
    % Z&Ob,Ru  
    %   See also ZERNFUN, ZERNFUN2. A r]*?:4y[  
    FE!jN-#  
    % A note on the algorithm. MrHJ)x"hy  
    % ------------------------ :6nD"5(  
    % The radial Zernike polynomials are computed using the series bQautRW  
    % representation shown in the Help section above. For many special SPb +H19;  
    % functions, direct evaluation using the series representation can ^^"zjl*^  
    % produce poor numerical results (floating point errors), because BrE#.g Jq  
    % the summation often involves computing small differences between 4)w,gp  
    % large successive terms in the series. (In such cases, the functions  \nEMj,)  
    % are often evaluated using alternative methods such as recurrence x!_5 /  
    % relations: see the Legendre functions, for example). For the Zernike E,6|-V;?  
    % polynomials, however, this problem does not arise, because the kFp^?+WI%H  
    % polynomials are evaluated over the finite domain r = (0,1), and >SDQ@63E?  
    % because the coefficients for a given polynomial are generally all w/*G!o- <  
    % of similar magnitude. T$D(Y`zdn  
    % I:TbZ*vi~  
    % ZERNPOL has been written using a vectorized implementation: multiple aG }oI!  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M]  7(+4^  
    % values can be passed as inputs) for a vector of points R.  To achieve &RZO\ZT  
    % this vectorization most efficiently, the algorithm in ZERNPOL fY&TI}Y  
    % involves pre-determining all the powers p of R that are required to n\((#<&  
    % compute the outputs, and then compiling the {R^p} into a single =6dAF"b)  
    % matrix.  This avoids any redundant computation of the R^p, and IQO|)53)  
    % minimizes the sizes of certain intermediate variables. bs"J]">(N  
    % ^5E9p@d"J  
    %   Paul Fricker 11/13/2006 kku<0<(N  
    ]oV{JR]  
    g9" wX?*  
    % Check and prepare the inputs: [ *Dj:A)V^  
    % ----------------------------- \lQ3j8 U  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !ddyJJ^a  
        error('zernpol:NMvectors','N and M must be vectors.') 3UUdJh<~  
    end VG 5*17nf5  
    ?2&= +QaT  
    if length(n)~=length(m) wmGcXBHt$  
        error('zernpol:NMlength','N and M must be the same length.') lk 1\|Q I  
    end $,~Ily7w  
    wvq4 P  
    n = n(:); #Q!Xz2z2  
    m = m(:); _ARG "  
    length_n = length(n); BEaF-*?A  
    d MR?pbD  
    if any(mod(n-m,2)) I*N"_uKU  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') !0@4*>n  
    end x\G%  
    N~=I))i  
    if any(m<0) Hnt*,C.0  
        error('zernpol:Mpositive','All M must be positive.') $b|LZE\bU.  
    end 6HK1?  
    J1}\H$*X  
    if any(m>n)  c`xNTr01  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') F~6]II  
    end Xeq9Vs zg  
    VP A+/5TW  
    if any( r>1 | r<0 ) 1+Gq<]@G  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 3FR(gr$X  
    end c7r( &h  
    wL8j i>"  
    if ~any(size(r)==1) V#w$|2  
        error('zernpol:Rvector','R must be a vector.') |s! _;6  
    end +4%~.,<_to  
    OY{fxBb  
    r = r(:); SvSO?H!-  
    length_r = length(r); [gBf1,bK  
    N] sbI)Z@  
    if nargin==4 7=Muq]j2  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); /GGyM]k3  
        if ~isnorm 3tf_\E+mIi  
            error('zernpol:normalization','Unrecognized normalization flag.') xZ {6!=4!  
        end DYf2V6'  
    else ,<L4tp+y0  
        isnorm = false; ~k&b  
    end Sqn>L`Lz  
    \]<R`YMV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bpBn3f`?*  
    % Compute the Zernike Polynomials F[}#7}xjA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s-rc0:I  
    &5-1Cd E  
    % Determine the required powers of r: 73X*|g  
    % ----------------------------------- n0l|7:Mk  
    rpowers = []; nZB ~l=  
    for j = 1:length(n) <}WSYK,zUY  
        rpowers = [rpowers m(j):2:n(j)]; myA;Y  
    end f)_<Ih\/7_  
    rpowers = unique(rpowers); v>LK+|U  
    S} UYkns*  
    % Pre-compute the values of r raised to the required powers, W\>O$IX^e  
    % and compile them in a matrix: ywp_,j9F  
    % ----------------------------- Q$U.vF7BnP  
    if rpowers(1)==0 ]z'L1vQl7  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #|E#Rkw!  
        rpowern = cat(2,rpowern{:}); qR cSB  
        rpowern = [ones(length_r,1) rpowern]; I+ |uyc  
    else "J,|),Yd  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); FL\pgbI  
        rpowern = cat(2,rpowern{:}); n@+?tYk*e  
    end sX6\AYF1M  
    b<y*:(:  
    % Compute the values of the polynomials: OT\D;Z"__I  
    % -------------------------------------- YA@?L!F  
    z = zeros(length_r,length_n); &qWg$_Yh  
    for j = 1:length_n q* lk9{>  
        s = 0:(n(j)-m(j))/2; liYsUmjZ=  
        pows = n(j):-2:m(j); =iW hK~S  
        for k = length(s):-1:1 ^*l dsc  
            p = (1-2*mod(s(k),2))* ... \9,lMK[b  
                       prod(2:(n(j)-s(k)))/          ... a.<XJ\  
                       prod(2:s(k))/                 ... RTVU3fw  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... eWqS]cM#  
                       prod(2:((n(j)+m(j))/2-s(k))); 0z \KI?kd  
            idx = (pows(k)==rpowers); TFb7P/g  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 5P <"I["  
        end =T3{!\tH  
         s;P _LaIp)  
        if isnorm >A D!)&c  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); \ R}I4'  
        end a"P & 9c  
    end @XG1d)sE  
    H 2I  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  pc_$,RkN  
    IPh_QE2g  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ~F]If\b  
    ld23 ^r  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)