非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 (qDJgf4fgn
function z = zernfun(n,m,r,theta,nflag) *2Q x69`
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. gXB&Sgjo
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Mm%b8#Fe!
% and angular frequency M, evaluated at positions (R,THETA) on the cBU@853
% unit circle. N is a vector of positive integers (including 0), and V,eH E5C
% M is a vector with the same number of elements as N. Each element j2 jUrl
% k of M must be a positive integer, with possible values M(k) = -N(k) c}w[T
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, B|S X?X
% and THETA is a vector of angles. R and THETA must have the same t}gK)"g
% length. The output Z is a matrix with one column for every (N,M) 4}Hf"L[ l
% pair, and one row for every (R,THETA) pair. EI@ep~
% RMa#z [{0
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike hcQv!!Q"k$
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), SpZmwa #\
% with delta(m,0) the Kronecker delta, is chosen so that the integral o+?Ko=vYw
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,62BZyT,T,
% and theta=0 to theta=2*pi) is unity. For the non-normalized ?{>5IjL)en
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Q]-r'pYr
% jxnb<!|?H@
% The Zernike functions are an orthogonal basis on the unit circle. %Z(lTvqG
% They are used in disciplines such as astronomy, optics, and 5S4`.'
% optometry to describe functions on a circular domain. qb5IpI{U
% #}xPOz7:
% The following table lists the first 15 Zernike functions. >IHf5})R
% #DcK{|ty
% n m Zernike function Normalization ~PC S_
% -------------------------------------------------- i(kr#XsU
% 0 0 1 1 DkBVk+
% 1 1 r * cos(theta) 2 l%7^'nDn
% 1 -1 r * sin(theta) 2 c1StA
% 2 -2 r^2 * cos(2*theta) sqrt(6) a0Q\]S
% 2 0 (2*r^2 - 1) sqrt(3) m\ /V 0V\
% 2 2 r^2 * sin(2*theta) sqrt(6) Y'o.`':\~
% 3 -3 r^3 * cos(3*theta) sqrt(8) 5fK<DkB$>:
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) :#UN^ "(m}
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) @m"P_1`*
% 3 3 r^3 * sin(3*theta) sqrt(8) V,:~FufM^
% 4 -4 r^4 * cos(4*theta) sqrt(10) V_pKe~
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) VB{G%!}
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 5v#_2Ih
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 'w}/o+x@
% 4 4 r^4 * sin(4*theta) sqrt(10) U&y?3
% -------------------------------------------------- mC84fss
% YCNpJGM
% Example 1: 9_pOV%Qs
% vC5y]1QDd
% % Display the Zernike function Z(n=5,m=1) .gd'<l
% x = -1:0.01:1; +#ANc;2g
% [X,Y] = meshgrid(x,x); Ib$?[
% [theta,r] = cart2pol(X,Y); Zh.[f+ l]
% idx = r<=1; 3/2G~$C
% z = nan(size(X)); pw1&WP&?3
% z(idx) = zernfun(5,1,r(idx),theta(idx)); T8a!"lPP7
% figure o<%s\n
% pcolor(x,x,z), shading interp WK 6|e[iP
% axis square, colorbar 5K?%Eo72!=
% title('Zernike function Z_5^1(r,\theta)') 84maX'
% 1(WNrVm;
% Example 2: ;]SP~kG
% 6w^Fee`>]
% % Display the first 10 Zernike functions T13Jn o
% x = -1:0.01:1; x)o`w"]al
% [X,Y] = meshgrid(x,x); xGymQ|y84
% [theta,r] = cart2pol(X,Y); JV9Ft,xk
% idx = r<=1; A+F@JpV
% z = nan(size(X)); 8VZLwhj
% n = [0 1 1 2 2 2 3 3 3 3]; 6B>H75S+H
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; *|k/l I
% Nplot = [4 10 12 16 18 20 22 24 26 28]; p*(]8pDC
% y = zernfun(n,m,r(idx),theta(idx)); f}F
% figure('Units','normalized') x$aFJCL
% for k = 1:10 *1
l"|=_&s
% z(idx) = y(:,k); Tof H=d
% subplot(4,7,Nplot(k)) _ ?Z :m
% pcolor(x,x,z), shading interp I%31MU9
% set(gca,'XTick',[],'YTick',[]) 4
g^oy^~
% axis square ?]u=5gqUU
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %1VfTr5
% end -dsE9)&8DX
% ZtqN8$[6n
% See also ZERNPOL, ZERNFUN2. 0^rDf
L
B>W!RyH8o
% Paul Fricker 11/13/2006 E`>u*D$un~
6H}8^'/u
KN9 e""
% Check and prepare the inputs: O*7`Waag
% ----------------------------- q%A.)1<'_
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) C!}9[X!7@:
error('zernfun:NMvectors','N and M must be vectors.') C|Vz
`FY
end j-j,0!T~b
eC41PQ3=1'
if length(n)~=length(m) >
H(o=39s
error('zernfun:NMlength','N and M must be the same length.') rfS kQT
end x>=8~wIK
9n[ovX 7n!
n = n(:); H '(Ky
m = m(:); /NFcIU
if any(mod(n-m,2)) 2k$~Mv@L
error('zernfun:NMmultiplesof2', ... s>^$: wzu
'All N and M must differ by multiples of 2 (including 0).') ==pGRauq
end Cn>RUGoUsI
c*#*8R9.y
if any(m>n) Td6"o&0A!
error('zernfun:MlessthanN', ... 1WW`%
'Each M must be less than or equal to its corresponding N.') B#U:6Ty
end WMLsKoby
O}IRM|r"
if any( r>1 | r<0 ) m'i^BE
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Ho; bgva
end b)Px
&.}Zj*BD
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )
hO@VYO
error('zernfun:RTHvector','R and THETA must be vectors.') =fr_` "?k
end `vPc&.-K
1Xi.OGl
r = r(:); UI>?"b6
L
theta = theta(:); >1n[Y- r
length_r = length(r); E}WO?xxv74
if length_r~=length(theta) -O?}-6,_Z
error('zernfun:RTHlength', ... u\zP`Y
'The number of R- and THETA-values must be equal.') 5==}8<$
end b\O%gg\p%!
~Z#jIG<?g
% Check normalization: b0_Ih6
% -------------------- .s!qf!{V`
if nargin==5 && ischar(nflag) :"oQ _bLT
isnorm = strcmpi(nflag,'norm'); R~R ?0aq
if ~isnorm 7FiQTS B:
error('zernfun:normalization','Unrecognized normalization flag.') i#%17}
end N=oWIK<;-
else JBKCa 3
isnorm = false; ZCbnDj
end ,y57tY
S EeDq/h
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5/) ,HGxi
% Compute the Zernike Polynomials #, KjJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >$yqx1=jW
n(MVm-H
% Determine the required powers of r: g}B|ZRz+{
% ----------------------------------- DJmT]Q]o)
m_abs = abs(m); pGO)9?j_N
rpowers = []; Tl9;KE|
for j = 1:length(n) J~jR`2+r
rpowers = [rpowers m_abs(j):2:n(j)]; [*k25N
end ]8qFxJ+2^
rpowers = unique(rpowers); >
v~?Vd(
}RvP*i
% Pre-compute the values of r raised to the required powers, C&QT-|
% and compile them in a matrix: 8JU9Qb]L'I
% ----------------------------- [;F%6MPK^
if rpowers(1)==0 z[I3k
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); kq
SpZoV0'
rpowern = cat(2,rpowern{:}); AMhHq/Dw
rpowern = [ones(length_r,1) rpowern]; nKzS2u=:Y
else f;nO$h[Qb
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); yRZb_Mq9U
rpowern = cat(2,rpowern{:}); f2JeXsOI
end |Ts|>"F'
vThK@P!s
% Compute the values of the polynomials: QD}'2{M!
% -------------------------------------- Whd2mKwiO
y = zeros(length_r,length(n)); xSQ:#o=8G
for j = 1:length(n) "0(H! }D
s = 0:(n(j)-m_abs(j))/2; [a<ucJ
pows = n(j):-2:m_abs(j); s5DEuu>g
for k = length(s):-1:1 SGd[cA
K o
p = (1-2*mod(s(k),2))* ... 7( &\)qf=n
prod(2:(n(j)-s(k)))/ ... [LQD]#
prod(2:s(k))/ ... 6 Ch
[!=p{
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... D[7+xAwS
prod(2:((n(j)+m_abs(j))/2-s(k))); ;w/|5 ;{A;
idx = (pows(k)==rpowers); |(Bc0sgw}
y(:,j) = y(:,j) + p*rpowern(:,idx); ld-Cb3R^
end ^11y8[[
tf VK
if isnorm R<J1bH1n3
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ]>33sb
S6
end F.s*^}L[
end o~vUqj?BA
% END: Compute the Zernike Polynomials 9\_^"5l
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _NfdJ=[Xh
Y -Zw'
% Compute the Zernike functions: OM]d}}=Y
% ------------------------------ ]5V=kNui
idx_pos = m>0; 6`tc]a"#Zb
idx_neg = m<0; X#bK.WN$
8gQg#^,(t
z = y; 7wivu*0
if any(idx_pos) ^ucmScl
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 56;^
NE4
end (Q_J{[F
if any(idx_neg) H+ P&}
3
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 8QYP\7}o
end T\(w}
S~~G0GiW
% EOF zernfun