切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11038阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Sy8Og] a  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! `aC#s3[  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 8(ZQD+U(9F  
    function z = zernfun(n,m,r,theta,nflag) ??k^Rw+0R  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4u"O/rt  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N yy%J{;  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 6 Iup4sP  
    %   unit circle.  N is a vector of positive integers (including 0), and 1N2:4|woe  
    %   M is a vector with the same number of elements as N.  Each element 8 2_3|T  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) %]NbTTL  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, O-G4^V8  
    %   and THETA is a vector of angles.  R and THETA must have the same fa$ Fo(.  
    %   length.  The output Z is a matrix with one column for every (N,M) FzW(An&x2  
    %   pair, and one row for every (R,THETA) pair. z<)?8tAgq  
    % 5<&<61[A  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ; zs4>>^>  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 03# r F@e  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral d]+g3oy `  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, FCOSgEU  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Tl9_Wi  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. QHA<7Wg  
    % * \f(E#wa  
    %   The Zernike functions are an orthogonal basis on the unit circle. uI+h9j$vS  
    %   They are used in disciplines such as astronomy, optics, and .\i9}ye  
    %   optometry to describe functions on a circular domain. "bRck88V  
    % )=8X[<^i  
    %   The following table lists the first 15 Zernike functions. i9+V<'h  
    % }>SHTHVye  
    %       n    m    Zernike function           Normalization tR*J M$T  
    %       -------------------------------------------------- Rh~<#"G]  
    %       0    0    1                                 1 1 aIJ0#nE  
    %       1    1    r * cos(theta)                    2 -<qci3Ba}  
    %       1   -1    r * sin(theta)                    2 Kh3*\xT  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) *p+%&z_<  
    %       2    0    (2*r^2 - 1)                    sqrt(3) :h?Zg(l  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ,p0R 4gi  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ck-wMd  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) lO)p  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) O+c@B}[!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) spgY &OI;  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) NNSn]LP  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |VTm5.23  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 0 E{$u  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BpRQG]L  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) T|r@:t[  
    %       -------------------------------------------------- ?GX 5Pvg  
    % 6?z&G6  
    %   Example 1: v?5Xx{ym  
    % omY%sQ{)  
    %       % Display the Zernike function Z(n=5,m=1) #;>J<>  
    %       x = -1:0.01:1; }hEBX:-  
    %       [X,Y] = meshgrid(x,x); J?u",a]|H"  
    %       [theta,r] = cart2pol(X,Y); Hz!+g'R!Gs  
    %       idx = r<=1; %<:?{<~wH9  
    %       z = nan(size(X)); J7_'@zU  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); if r!ha+8!  
    %       figure 1z0&+C3z  
    %       pcolor(x,x,z), shading interp hAKyT~[n0  
    %       axis square, colorbar V_(lZDjh*  
    %       title('Zernike function Z_5^1(r,\theta)') QV7K~qi  
    % }yC ve  
    %   Example 2: .}%$l.#a  
    % -Z)$].~|t  
    %       % Display the first 10 Zernike functions 3]M YH b  
    %       x = -1:0.01:1; vNHM e{,u  
    %       [X,Y] = meshgrid(x,x); WSKG8JT^|  
    %       [theta,r] = cart2pol(X,Y); ok2$ p  
    %       idx = r<=1; DTsc&.29^  
    %       z = nan(size(X)); ey@y?X=  
    %       n = [0  1  1  2  2  2  3  3  3  3]; t&eY+3y,T  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; No!P?  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; a|  
    %       y = zernfun(n,m,r(idx),theta(idx)); .0r5=  
    %       figure('Units','normalized') l&^9<th  
    %       for k = 1:10 u7<B*d:  
    %           z(idx) = y(:,k); @| qnD  
    %           subplot(4,7,Nplot(k)) %t`a-m  
    %           pcolor(x,x,z), shading interp ;9/6X#;$  
    %           set(gca,'XTick',[],'YTick',[])  >pT92VN  
    %           axis square Xo;J1H  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) [A fV+$  
    %       end J9mLW}I?NW  
    % WOz dYeeG  
    %   See also ZERNPOL, ZERNFUN2. o#4Wn'E  
    \$<kJ|| lS  
    %   Paul Fricker 11/13/2006 #AFr@n  
    av&dGsFP  
    = r_&R#~GT  
    % Check and prepare the inputs: 9v_gR52vh  
    % ----------------------------- *Iyv${  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) fZ 17  
        error('zernfun:NMvectors','N and M must be vectors.') #<MLW4P  
    end 6WzE'0Nyr  
    --dGN.*xb4  
    if length(n)~=length(m) WB"$NYB  
        error('zernfun:NMlength','N and M must be the same length.') K &Ht37T  
    end  Xb&r|pR  
    ;_%61ZI?M<  
    n = n(:); -P!vCf^{ t  
    m = m(:); ^Qs-@]E-  
    if any(mod(n-m,2)) ^kch]?  
        error('zernfun:NMmultiplesof2', ... _Oh;._PS  
              'All N and M must differ by multiples of 2 (including 0).') cJGA5m/{I  
    end v'2EYTVNJD  
    bv)E>%Yy  
    if any(m>n) Z"mpE+U*  
        error('zernfun:MlessthanN', ... L/c$p`-  
              'Each M must be less than or equal to its corresponding N.') GKZn|<Y|{c  
    end I,l%6oPa  
    7"Zr:|$U  
    if any( r>1 | r<0 ) Fx/9T2%=  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6jO*rseC  
    end ZL+{?1&-  
    );@@>~  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) !3-mPG< ]  
        error('zernfun:RTHvector','R and THETA must be vectors.') 9 %,_G.  
    end +pnT6kU|  
    ;#G>qo  
    r = r(:); |0b$60m$!t  
    theta = theta(:); o%+K S5v!  
    length_r = length(r); ? Ls]k  
    if length_r~=length(theta) X.o[=E  
        error('zernfun:RTHlength', ... |U8;25Y  
              'The number of R- and THETA-values must be equal.') X6N^<Z$  
    end 3 B KW  
    !,V8?3.aJn  
    % Check normalization: &bRmr/D  
    % -------------------- 5lxC**NA  
    if nargin==5 && ischar(nflag) K}1>n2P  
        isnorm = strcmpi(nflag,'norm'); Ni"fV]'  
        if ~isnorm @J!)o d  
            error('zernfun:normalization','Unrecognized normalization flag.') Fu^^Jex  
        end ) Z0  
    else A&Ut:OiA  
        isnorm = false; |/]bpG'z  
    end ?P4`  
    &dbX>u q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X. UN=lu  
    % Compute the Zernike Polynomials V}'|a<8kVv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dWg$yH  
     sFx $  
    % Determine the required powers of r: ZBJ.dK?Ky|  
    % ----------------------------------- ~5:]Oux  
    m_abs = abs(m); '355Pce/  
    rpowers = []; l9qq;hhGP,  
    for j = 1:length(n) 5\S)8j `8  
        rpowers = [rpowers m_abs(j):2:n(j)]; {>5z~OV  
    end Rdwr?:y(]  
    rpowers = unique(rpowers); sog?Mvoq  
    H-1@z$p  
    % Pre-compute the values of r raised to the required powers, !#f4t]FM`B  
    % and compile them in a matrix: rw ^^12)  
    % ----------------------------- ''?.6r  
    if rpowers(1)==0 <Zl0$~B:5  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N{q5E,}  
        rpowern = cat(2,rpowern{:}); 2a (w7/W:  
        rpowern = [ones(length_r,1) rpowern]; C3G?dZKv2  
    else P`-(08t  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); HqcXP2  
        rpowern = cat(2,rpowern{:}); cd) <t8^KE  
    end 2^[fUzL?  
    29,`2fFr  
    % Compute the values of the polynomials: /fBZRdB  
    % -------------------------------------- `5O<U~'d  
    y = zeros(length_r,length(n)); E@0w t^  
    for j = 1:length(n) +ulX(u(,  
        s = 0:(n(j)-m_abs(j))/2; /(W{`  
        pows = n(j):-2:m_abs(j); RLw=y{%p  
        for k = length(s):-1:1 `w[0q?}"`  
            p = (1-2*mod(s(k),2))* ... 9P{5bG0o8  
                       prod(2:(n(j)-s(k)))/              ... wrK$ZO]  
                       prod(2:s(k))/                     ... d,8V-Dk+p  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... y!blp>V6  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); e4khReF;  
            idx = (pows(k)==rpowers); n!ea)+^  
            y(:,j) = y(:,j) + p*rpowern(:,idx); <saS2.4  
        end \^|ncu:T  
         A;SRm<,  
        if isnorm ;yBq'_e3  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); *q|.H9 K(  
        end 8ENAif   
    end TcauCL  
    % END: Compute the Zernike Polynomials I"Ju3o?u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E+ JGqk  
    w{I60|C]*  
    % Compute the Zernike functions: 4JU#3  
    % ------------------------------ BL]!j#''KE  
    idx_pos = m>0; LL9I:^  
    idx_neg = m<0; riFE.;  
    _^#PV}  
    z = y; M}(4>W  
    if any(idx_pos) h*_r=' E  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Y49kq}  
    end ""d3ownKhw  
    if any(idx_neg) \<i#Jn+)  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ln3x1^!  
    end a[lE9JA;|  
    ;6fkG/T  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) s8 .oS);`  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. _Xsn1  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated p1J%=  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive M?)>, !Z)  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ?|N:[.  
    %   and THETA is a vector of angles.  R and THETA must have the same $sGX%u  
    %   length.  The output Z is a matrix with one column for every P-value, Z~T- *1V  
    %   and one row for every (R,THETA) pair. _$i9Tk  
    %  M"X/([G  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike FIC 2)  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) rh$%*l  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) (VC{#^2l  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 \-V  
    %   for all p. JfKl=vg  
    % 1ub03$pL;  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 M ;\K+,  
    %   Zernike functions (order N<=7).  In some disciplines it is qI8{JcFx:  
    %   traditional to label the first 36 functions using a single mode ]E[Mv} =  
    %   number P instead of separate numbers for the order N and azimuthal h %MPppCEa  
    %   frequency M. 9.vHnMcq  
    % /SlCcozFL~  
    %   Example: Nm#KHA='Z  
    % f.rHX<%q9B  
    %       % Display the first 16 Zernike functions ',J3^h!b  
    %       x = -1:0.01:1; SJy:5e?zk  
    %       [X,Y] = meshgrid(x,x); ;M@ /AAZ  
    %       [theta,r] = cart2pol(X,Y); ]C5JP~ #z  
    %       idx = r<=1; T3'dfe U  
    %       p = 0:15; zzq/%jki  
    %       z = nan(size(X)); 7v%~^l7:x  
    %       y = zernfun2(p,r(idx),theta(idx)); uysGOyi<u  
    %       figure('Units','normalized') a)y8MGx?  
    %       for k = 1:length(p) F =d L#@^  
    %           z(idx) = y(:,k); Y,>])R[4  
    %           subplot(4,4,k) RX7,z.9@'O  
    %           pcolor(x,x,z), shading interp c @2s!bs  
    %           set(gca,'XTick',[],'YTick',[]) J~n{gT<L  
    %           axis square :tzCuK?e  
    %           title(['Z_{' num2str(p(k)) '}']) 2&Wc4,O!i  
    %       end H^'*F->BA  
    % A/BL{ U}  
    %   See also ZERNPOL, ZERNFUN. W!GgtQw{F  
    +de.!oY  
    %   Paul Fricker 11/13/2006 ,+zLFQC0@  
    h'IBVI!P  
    ?z Ms;  
    % Check and prepare the inputs: 1)%9h>F7  
    % ----------------------------- (W*yF2r  
    if min(size(p))~=1 6j_ A{*~Ng  
        error('zernfun2:Pvector','Input P must be vector.') %<I0-o  
    end y5+-_x,  
    BXyZn0k  
    if any(p)>35 @f{)]I +f  
        error('zernfun2:P36', ... %DzS~5$G  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... h1JG^w$ 5  
               '(P = 0 to 35).']) "+saI@G  
    end $\m=-5 0-  
    F!^ Y!Y@H  
    % Get the order and frequency corresonding to the function number: NTgk0cq  
    % ---------------------------------------------------------------- Z*s/%4On  
    p = p(:); f>Bcr9]]  
    n = ceil((-3+sqrt(9+8*p))/2); r{6 ,;  
    m = 2*p - n.*(n+2); o(|`atvK  
    !Bu<6  
    % Pass the inputs to the function ZERNFUN: BC!l)2  
    % ---------------------------------------- DRf~l9f  
    switch nargin 0&-!v?6 )  
        case 3 <[l2]"Q  
            z = zernfun(n,m,r,theta); h/eKVRGs"  
        case 4 9OXrz}8C  
            z = zernfun(n,m,r,theta,nflag); lE=Q(QUr  
        otherwise Njz,y}\  
            error('zernfun2:nargin','Incorrect number of inputs.') a,lH6lDk  
    end t(Iy[-  
    '2:Ily,S@  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) .yg"!X  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 9c#9KCmc  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of  /=[M  
    %   order N and frequency M, evaluated at R.  N is a vector of D1#E&4   
    %   positive integers (including 0), and M is a vector with the POUB{ba  
    %   same number of elements as N.  Each element k of M must be a YJeZ{Wws  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) S,Zjol%p  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is K2:r7f  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix l]3g6c  
    %   with one column for every (N,M) pair, and one row for every W+Gu\=s%O  
    %   element in R. \+L_'*&8  
    % fBw+Y4nCO7  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- VJHHC.Kz  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ~LYKt0/W&  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to |byB7 f  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 [h8F)  
    %   for all [n,m]. &~||<0m  
    % Er{[83  
    %   The radial Zernike polynomials are the radial portion of the T7cT4PAW  
    %   Zernike functions, which are an orthogonal basis on the unit ecf<(Vl}  
    %   circle.  The series representation of the radial Zernike JR7~|ov  
    %   polynomials is R>pa? tQgK  
    % Mt@K01MI%  
    %          (n-m)/2 fp12-Hk ~  
    %            __ u b4(mS  
    %    m      \       s                                          n-2s w[4SuD  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r O aF+Z@s  
    %    n      s=0 K"-N:OV  
    % ,EwJg69  
    %   The following table shows the first 12 polynomials. 9n8;eE08  
    % B;1wnKdj  
    %       n    m    Zernike polynomial    Normalization l\$_t2U  
    %       --------------------------------------------- {fIH9+v  
    %       0    0    1                        sqrt(2) Im6ymaf9  
    %       1    1    r                           2 ;CAB.aB~  
    %       2    0    2*r^2 - 1                sqrt(6) mpr["C"l  
    %       2    2    r^2                      sqrt(6) u!L8Sv  
    %       3    1    3*r^3 - 2*r              sqrt(8) :peBQ{bj  
    %       3    3    r^3                      sqrt(8) &\!-d%||)  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) <JZ=K5  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) qc*+;Wi+5  
    %       4    4    r^4                      sqrt(10) a[9;Okm #  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) nR"k %$  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ;]n U->  
    %       5    5    r^5                      sqrt(12) 5bZ`YO  
    %       --------------------------------------------- ' P-K}Y  
    % \ 0<e#0-V  
    %   Example: jN5Sc0|b  
    % wJ IJPYTK  
    %       % Display three example Zernike radial polynomials P?]q*KViM  
    %       r = 0:0.01:1; }$ AC0  
    %       n = [3 2 5]; UK& E#i  
    %       m = [1 2 1]; z$;%SYI  
    %       z = zernpol(n,m,r); ?>lmLz!e  
    %       figure {' r(P&  
    %       plot(r,z) "#e2"=3*  
    %       grid on `5GJ,*{z  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') xZ9y*Gv\=  
    % xn}'!S2-b  
    %   See also ZERNFUN, ZERNFUN2. mT-5Ok&TUe  
    /I6?t= ?<  
    % A note on the algorithm. D4o?  
    % ------------------------ \DGm[/P  
    % The radial Zernike polynomials are computed using the series zROyG  
    % representation shown in the Help section above. For many special cteHuRd  
    % functions, direct evaluation using the series representation can % qAhE TZ%  
    % produce poor numerical results (floating point errors), because N?87Bd  
    % the summation often involves computing small differences between vBM\W%T|d  
    % large successive terms in the series. (In such cases, the functions <w2Nh eM 3  
    % are often evaluated using alternative methods such as recurrence [$H8?J   
    % relations: see the Legendre functions, for example). For the Zernike jv_sRV  
    % polynomials, however, this problem does not arise, because the luC',QJB  
    % polynomials are evaluated over the finite domain r = (0,1), and d5zzQ]|L  
    % because the coefficients for a given polynomial are generally all GD< Afni  
    % of similar magnitude. CT"0"~~  
    % f#X`e'1  
    % ZERNPOL has been written using a vectorized implementation: multiple QMfYM~o  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] *FG@Dts^&  
    % values can be passed as inputs) for a vector of points R.  To achieve F7"Ihb^l  
    % this vectorization most efficiently, the algorithm in ZERNPOL }^LcKV  
    % involves pre-determining all the powers p of R that are required to 88G[XkL$2  
    % compute the outputs, and then compiling the {R^p} into a single UdLC]  
    % matrix.  This avoids any redundant computation of the R^p, and -@J;FjrXmP  
    % minimizes the sizes of certain intermediate variables. IOmIkx&`GP  
    % cwpDad[Kx  
    %   Paul Fricker 11/13/2006 KrbNo$0%  
    03rZz1  
    0U$6TDtmE  
    % Check and prepare the inputs: y8<,>  
    % ----------------------------- %8 4<@f&n]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 1p8E!c{}j  
        error('zernpol:NMvectors','N and M must be vectors.') j|? bva\  
    end &Rn/ c}[{  
    #Q$4EQB  
    if length(n)~=length(m) wbr"z7}  
        error('zernpol:NMlength','N and M must be the same length.') yyA/x,  
    end 4AF" +L  
    h+*  
    n = n(:); Box,N5AA  
    m = m(:); >StvP=our  
    length_n = length(n); XriVHb  
    #lct"8  
    if any(mod(n-m,2)) p.l]% \QI  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') _k j51=  
    end :Z< 5iLq  
    nh E!Pk  
    if any(m<0) 01w=;Q  
        error('zernpol:Mpositive','All M must be positive.') oY0*T9vv+  
    end o[cKh7&+  
    @*2FG\c<  
    if any(m>n) \8t g7Sdq  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') oW/&X5  
    end g#70Sg*d  
    iK.MC%8?  
    if any( r>1 | r<0 ) ;V%lFP3#  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') !HB,{+25  
    end [C d 2L&9  
     F_I! +  
    if ~any(size(r)==1) >?$Ze@  
        error('zernpol:Rvector','R must be a vector.') :'rXu6c-  
    end RcHyePuF)R  
    O~t5qnu/}  
    r = r(:); wCI.jGSBW  
    length_r = length(r); }_gq vgI>p  
    b(XhwkGVq  
    if nargin==4 gK%&VzG4  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ,,G0}N@7s  
        if ~isnorm <`N\FM^vo  
            error('zernpol:normalization','Unrecognized normalization flag.') s*!2oj  
        end ".@SQgyb0  
    else -l,ib=ne  
        isnorm = false; tHu8|JrH+  
    end I;xT yhUd  
    S`*al<m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :X$&g sT/,  
    % Compute the Zernike Polynomials {{ wVM:1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  NOQgkN  
    5jsnE )  
    % Determine the required powers of r: <4! w2vxG  
    % ----------------------------------- GUcuD^Fe  
    rpowers = []; o 86}NqK  
    for j = 1:length(n) [S<DdTY9hZ  
        rpowers = [rpowers m(j):2:n(j)]; APLu?wy7s5  
    end f|q6<n_nM  
    rpowers = unique(rpowers); cJhf{{_oR  
    10 p+e_@  
    % Pre-compute the values of r raised to the required powers, OOv"h\,  
    % and compile them in a matrix: klx4Mvq+/@  
    % ----------------------------- N.&K"J  
    if rpowers(1)==0 ;pULJ}rDb  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ia(A&Za  
        rpowern = cat(2,rpowern{:}); ! 4s $ 93  
        rpowern = [ones(length_r,1) rpowern]; p(U'Ydl~  
    else j$L<9(DoR  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~ib#x~Db  
        rpowern = cat(2,rpowern{:}); 0CDTj,eK  
    end zY#U]Is  
    Sqb#U{E  
    % Compute the values of the polynomials: ", |wG7N K  
    % -------------------------------------- C&;'Pw9H  
    z = zeros(length_r,length_n); -bj1y2)n  
    for j = 1:length_n #Y{"`5>  
        s = 0:(n(j)-m(j))/2; x Apa+j6I  
        pows = n(j):-2:m(j); HQE#O4  
        for k = length(s):-1:1 P/ y-K0u  
            p = (1-2*mod(s(k),2))* ... da-3hM!u+  
                       prod(2:(n(j)-s(k)))/          ... lRO8}XSI  
                       prod(2:s(k))/                 ... oS`F Yy  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... _WSJg1  
                       prod(2:((n(j)+m(j))/2-s(k))); SS`\,%aog  
            idx = (pows(k)==rpowers); M P3E]T~:  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ec3('}X  
        end v\HGL56T  
         Y]n^(V  
        if isnorm V3`*LU  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); /vQ^>2X%  
        end S9L3/P]  
    end Dnp^yqz*  
    ck@[% ?  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  1E-$f  
    AHLDURv  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 gF:wdcO  
    1ri#hm0x\  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)