非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 h&EF)~G
function z = zernfun(n,m,r,theta,nflag) v}uzUY
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. UH7FIM7kX
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <e$%m(]
% and angular frequency M, evaluated at positions (R,THETA) on the nm@.]
"/
% unit circle. N is a vector of positive integers (including 0), and -dH]_
% M is a vector with the same number of elements as N. Each element ~PedR=Y0n
% k of M must be a positive integer, with possible values M(k) = -N(k) eY'RDQa
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ^-qz!ib
% and THETA is a vector of angles. R and THETA must have the same jlaC: (6
% length. The output Z is a matrix with one column for every (N,M) Ev1gzHd!i
% pair, and one row for every (R,THETA) pair. `Wp& 'X
% 8AmB0W>e
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike d'e\tO
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :}ZY*ind
% with delta(m,0) the Kronecker delta, is chosen so that the integral 3q0S}<h al
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +}^^]J$Nh
% and theta=0 to theta=2*pi) is unity. For the non-normalized ZE6W"pbjU
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .|2[!7CXH
% -;&-b >b
% The Zernike functions are an orthogonal basis on the unit circle. }_9yemP
% They are used in disciplines such as astronomy, optics, and x UTlM
% optometry to describe functions on a circular domain. VI8/@A1Gv
% .;%`I
% The following table lists the first 15 Zernike functions. E5t
/-4
% *30T$_PiX|
% n m Zernike function Normalization Eyg F,>.4
% -------------------------------------------------- c- "#
% 0 0 1 1 4siq
% 1 1 r * cos(theta) 2 o(oD8Ni
% 1 -1 r * sin(theta) 2 8 >!-|VSn
% 2 -2 r^2 * cos(2*theta) sqrt(6) !~ZAm3GwL
% 2 0 (2*r^2 - 1) sqrt(3) OT}P0
~4s
% 2 2 r^2 * sin(2*theta) sqrt(6) .N Z
% 3 -3 r^3 * cos(3*theta) sqrt(8) UkM#uKr:
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) kC/An@J^#
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Kd7 Lpw1u]
% 3 3 r^3 * sin(3*theta) sqrt(8) Lv:;}
% 4 -4 r^4 * cos(4*theta) sqrt(10) lLNI5C
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9mB] \{^
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) He}"e&K
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v=x)]<E"_
% 4 4 r^4 * sin(4*theta) sqrt(10) F&D,y-CQ
% -------------------------------------------------- LCok4N$o
% (iY2d_FQ[
% Example 1: ]1|OQYG
% B1z7r0Rm,
% % Display the Zernike function Z(n=5,m=1) eY3<LVAX
% x = -1:0.01:1; %H=^U8WB
% [X,Y] = meshgrid(x,x); ,?VYrL
% [theta,r] = cart2pol(X,Y); Ej$oRo{IG
% idx = r<=1; k~=P0";
% z = nan(size(X)); Ny]]L
% z(idx) = zernfun(5,1,r(idx),theta(idx)); M~g@y$
% figure P
B{7u
% pcolor(x,x,z), shading interp G Cp90
% axis square, colorbar fs8C ^Ik>~
% title('Zernike function Z_5^1(r,\theta)') Fuo.8
% }C5Fvy6uz
% Example 2: ez[$;>
% C0H@
% % Display the first 10 Zernike functions
{5JYu
% x = -1:0.01:1; 8FgF6ip
% [X,Y] = meshgrid(x,x); M#xol/)h
% [theta,r] = cart2pol(X,Y); :-cqC|Y
% idx = r<=1; :<xf'.
% z = nan(size(X)); ro18%'RRI
% n = [0 1 1 2 2 2 3 3 3 3]; #QiNSS
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; &IkHP/
% Nplot = [4 10 12 16 18 20 22 24 26 28]; \d
QRQL{LL
% y = zernfun(n,m,r(idx),theta(idx)); )H%RwV#
% figure('Units','normalized') f!JSb?#3
% for k = 1:10 Y$FhV~m
% z(idx) = y(:,k); J&;' gT
% subplot(4,7,Nplot(k)) M&0U@ r-
% pcolor(x,x,z), shading interp "cDc~~3/@
% set(gca,'XTick',[],'YTick',[]) /!W',9ua6
% axis square e(jD[q
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G:Nwi=vN
% end cxnEcX\
% pB,l t6
% See also ZERNPOL, ZERNFUN2. Hx ojxZwm
ky[ ^uQ>0
% Paul Fricker 11/13/2006 ! Y'~?BI
UZu.B!4
@gm!D`YL
% Check and prepare the inputs: *.+N?%sAP)
% ----------------------------- Qe]aI7Ei
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) p?x]|`M
error('zernfun:NMvectors','N and M must be vectors.') x^y&<tA
end (o1o);AO
__ G=xf
if length(n)~=length(m) ]{= qdgJ
error('zernfun:NMlength','N and M must be the same length.') #6nuiSF
end TGI`}#
sb</-']a
n = n(:); /^, /o
m = m(:); *TYOsD**9
if any(mod(n-m,2)) y@dTdR2Wc
error('zernfun:NMmultiplesof2', ... yH.Z%*=xQa
'All N and M must differ by multiples of 2 (including 0).') 13/U4-%b2
end `5Em : 8 M
5>rjL;
if any(m>n) S|T*-?|
error('zernfun:MlessthanN', ... ^fvx2<
'Each M must be less than or equal to its corresponding N.') \`8?=_ST
end R3E|seR
IUQYoKz4}A
if any( r>1 | r<0 ) Tnb5tHjnh
error('zernfun:Rlessthan1','All R must be between 0 and 1.') i/F].Sag
end &u~%5;
xWKUti i
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) >@q4Uez
error('zernfun:RTHvector','R and THETA must be vectors.') Z+Ppd=||,
end uar[D|DcD"
els71t -
r = r(:); It5n;,n
theta = theta(:); @;>Xy!G
length_r = length(r); ^c:I]_Ww
if length_r~=length(theta) d6~d)E
error('zernfun:RTHlength', ... W";Po)YC
'The number of R- and THETA-values must be equal.')
8V+
end cDh\$7'b
D~@lpcI
% Check normalization: >RKepV(X7
% -------------------- G/V0Yn""
if nargin==5 && ischar(nflag) r+}<]?aT>-
isnorm = strcmpi(nflag,'norm'); 910N1E
if ~isnorm RzqU`<//
error('zernfun:normalization','Unrecognized normalization flag.') #\MkbZc d
end wW0m}L
else dlc'=M
isnorm = false; D?r% Y
end q:G3y[ P
B{lL}"++0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wKAxUPzm
% Compute the Zernike Polynomials .KF(_
92
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qim|=
)|<g\>/
% Determine the required powers of r: Fzn#>`qG
% ----------------------------------- KZwzQ" Hl
m_abs = abs(m); A]m_&A#
rpowers = []; p&3~n:
Fo
for j = 1:length(n) c/`Rv{*'o
rpowers = [rpowers m_abs(j):2:n(j)]; ?/24-n
end #oEq)Vq>g|
rpowers = unique(rpowers); aN~x3G
n16TQe"8
% Pre-compute the values of r raised to the required powers, i|G /x
% and compile them in a matrix: jx8hh}C
% ----------------------------- UQCond+K
if rpowers(1)==0 vjYG>YhV
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -|_io,eL;
rpowern = cat(2,rpowern{:}); [jgC`
rpowern = [ones(length_r,1) rpowern];
Ox+}JB
[
else J*]JH{
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); zl["}I(*n
rpowern = cat(2,rpowern{:}); ]`eJSk.
end
h]?[}&
mbZg2TTy
% Compute the values of the polynomials: -/J2;AkGH
% -------------------------------------- Oa-~}hN
y = zeros(length_r,length(n)); {aWfD XB1
for j = 1:length(n) sys;Rz2
s = 0:(n(j)-m_abs(j))/2; Axx{G~n! [
pows = n(j):-2:m_abs(j); Zz56=ZX*_
for k = length(s):-1:1 ceNJXK
p = (1-2*mod(s(k),2))* ... (r$QQO)/
prod(2:(n(j)-s(k)))/ ...
"'mr0G9X
prod(2:s(k))/ ... 3G-f+HN^E
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... K@;ls
prod(2:((n(j)+m_abs(j))/2-s(k))); &}vc^io
idx = (pows(k)==rpowers); 3Tr}t.mt
y(:,j) = y(:,j) + p*rpowern(:,idx); 0vdnM8N2
end gj1l9>f>]a
u3_AZ2-;
if isnorm cUM#|K#6
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); F`
]s
end Pna2IB+
end =s[P =d U
% END: Compute the Zernike Polynomials iVb#X#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -Khb
"AMsBvzgo
% Compute the Zernike functions: C**kJ
% ------------------------------ S[oRq
idx_pos = m>0; R3} Z"
idx_neg = m<0; nv"D
XX'Rv]T
z = y; VWcR@/3
if any(idx_pos) Cr%6c3aQ
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {t&+abY
end 2[$` ]{U
if any(idx_neg) YM]ZL,8
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +G>;NiP_
end fIcra
'C|yUsBC
% EOF zernfun