非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有
dhZZb
function z = zernfun(n,m,r,theta,nflag) oDz*~{BHg
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 'G<}U343=8
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N /X@7ju;
% and angular frequency M, evaluated at positions (R,THETA) on the ('T4Db
% unit circle. N is a vector of positive integers (including 0), and l8er$8S}
% M is a vector with the same number of elements as N. Each element jo<>Hc{g>
% k of M must be a positive integer, with possible values M(k) = -N(k) ri"?,}(
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, wTHK=n\i
% and THETA is a vector of angles. R and THETA must have the same {EOn r1
% length. The output Z is a matrix with one column for every (N,M) qo61O\qm
% pair, and one row for every (R,THETA) pair. sk~ za
% U&,r4>V@h>
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^uC"dfH
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), `@4 2jG}*
% with delta(m,0) the Kronecker delta, is chosen so that the integral Sc% aJ1
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )!N2'Ld
% and theta=0 to theta=2*pi) is unity. For the non-normalized y=-{Q
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. tceIA8d6
% W"W@WG9X0
% The Zernike functions are an orthogonal basis on the unit circle. BHF{-z
% They are used in disciplines such as astronomy, optics, and \H,V 9!B
% optometry to describe functions on a circular domain. w/qQ(]n8
% h~,x7]w6
% The following table lists the first 15 Zernike functions. B1x'5S;Bq
% Z"l`e0{
% n m Zernike function Normalization Tq9,c#}&
% -------------------------------------------------- :|?~B%-p[
% 0 0 1 1 ;n3uV`\
% 1 1 r * cos(theta) 2 <dq,y>
% 1 -1 r * sin(theta) 2 UN,<6D3\b
% 2 -2 r^2 * cos(2*theta) sqrt(6) +F1]M2p]
% 2 0 (2*r^2 - 1) sqrt(3) 0\V\qAk
% 2 2 r^2 * sin(2*theta) sqrt(6) eA~J4k_
% 3 -3 r^3 * cos(3*theta) sqrt(8) }UyzMy,
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) p#ZMABlE,P
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) TvQWdX=
% 3 3 r^3 * sin(3*theta) sqrt(8) Z|]l"W*w
% 4 -4 r^4 * cos(4*theta) sqrt(10) F;cI0kP=>
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Iu)L3_+
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) (jp1; #P!
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "
7l jc
% 4 4 r^4 * sin(4*theta) sqrt(10) p6<E=5RRd1
% -------------------------------------------------- Hi9 G^Q
% B(S5+Y
% Example 1: sqm%iyC=q
% RA*_&Ll&!C
% % Display the Zernike function Z(n=5,m=1) 9`ri
J4zl
% x = -1:0.01:1; PFImqojHd
% [X,Y] = meshgrid(x,x); 2z.k)Qx!Z
% [theta,r] = cart2pol(X,Y); 0|],d?-h
% idx = r<=1; +9<,3IJe6
% z = nan(size(X)); &>d:ewM\
% z(idx) = zernfun(5,1,r(idx),theta(idx)); (1j(*
?2
% figure ;s}-X_O<
% pcolor(x,x,z), shading interp d/0/$Bz}P
% axis square, colorbar pKOT Qf
% title('Zernike function Z_5^1(r,\theta)') C! aX45eg
% <wIp$F.
% Example 2: qg_>`Bv"a
% S#dyRTmI
% % Display the first 10 Zernike functions !1ie:z>s
% x = -1:0.01:1; tEi@p;Z>
% [X,Y] = meshgrid(x,x); !mw{T D
% [theta,r] = cart2pol(X,Y); 1G e)p4
% idx = r<=1; <[ g$N4
% z = nan(size(X)); +=n
x|:no
% n = [0 1 1 2 2 2 3 3 3 3]; UQC'(>.}
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; rXHHD#\oF
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ,gFL Wb`B'
% y = zernfun(n,m,r(idx),theta(idx)); \GjXsR*b5
% figure('Units','normalized') ~G|{qVO7A
% for k = 1:10 ~NNaLl
% z(idx) = y(:,k); &5kjjQ*HB
% subplot(4,7,Nplot(k)) 5n|MA
% pcolor(x,x,z), shading interp J@u!S~&r
% set(gca,'XTick',[],'YTick',[]) |Fh`.iT%c
% axis square @B>%B EC
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) puf;"c6e'
% end =y,yQO
% d\1:1ucV
% See also ZERNPOL, ZERNFUN2. IkE'_F
x| ~D(zo
% Paul Fricker 11/13/2006 &?`d8\z
-r6(=A
a9mr-`<
% Check and prepare the inputs: MJ*oeI!.=
% ----------------------------- ?kT~)k
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x~3>1Wr#M
error('zernfun:NMvectors','N and M must be vectors.') &9jUf:g J0
end 2WbZ>^:Nsk
he#Tr'j
if length(n)~=length(m) ~'PS|
error('zernfun:NMlength','N and M must be the same length.') tyGnG0GK
end *aSR KY
_If@#WnoyA
n = n(:); hg86#jq%
m = m(:); \8C*O{w
if any(mod(n-m,2)) -Z\UYt
error('zernfun:NMmultiplesof2', ... 0SGczgg
'All N and M must differ by multiples of 2 (including 0).') ( .6tz
end 9X^-)G>
' /@!"IXz
if any(m>n) G`3vH,
error('zernfun:MlessthanN', ...
=t>`<T|(
'Each M must be less than or equal to its corresponding N.') )}zA,FOA*
end {?h6*>-^Z
onS{
if any( r>1 | r<0 ) P[J qJi/H
error('zernfun:Rlessthan1','All R must be between 0 and 1.') LeRh(a`=$
end wTJMq`sY_
`P)64So-1
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {F{[!.
error('zernfun:RTHvector','R and THETA must be vectors.') n(F<
end A=2nj
|[n|=ORI'
r = r(:); Tl0+Bq
theta = theta(:); !Z9ikn4A
length_r = length(r); 2Dwt4V
if length_r~=length(theta) Nr*ibtz|D
error('zernfun:RTHlength', ... "> 4[+'
'The number of R- and THETA-values must be equal.') S)AE
end N?u2,h-
*b 7
^s,?
% Check normalization: <?`e9o
% -------------------- S+\Mt+o
if nargin==5 && ischar(nflag) f*R_\
isnorm = strcmpi(nflag,'norm'); n6-!@RYr
if ~isnorm &hM,b!R|
error('zernfun:normalization','Unrecognized normalization flag.') $K>d \{@+7
end `&&6-/
else b ffml
isnorm = false; *^$N$t/2
end HpgN$$\@
7E84@V[\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?2bE=|
% Compute the Zernike Polynomials oCru 5F
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )~o`QM+
ysP/@;jC
% Determine the required powers of r: @5nkI$>3z
% ----------------------------------- "9Fv!*<-W
m_abs = abs(m); Z;> aW;Wt
rpowers = []; I7-PF?
for j = 1:length(n) jzOMjz~:)
rpowers = [rpowers m_abs(j):2:n(j)]; ;U:o'9^9T
end M`g Kt(3
rpowers = unique(rpowers); '&L
j2&OYg
% Pre-compute the values of r raised to the required powers, I>(z)"1
% and compile them in a matrix: sC*E;7gT,
% ----------------------------- oFx gR9
if rpowers(1)==0 @X / =.
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); fJN9+l
rpowern = cat(2,rpowern{:}); 7Bb@9M?i
rpowern = [ones(length_r,1) rpowern]; x+j/v5
else mjJlXA
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); c\?/^xr'!}
rpowern = cat(2,rpowern{:}); Y&:\s8C
end U";Rp&\3;
mwiPvwHrg
% Compute the values of the polynomials: 0~I)
/T
% -------------------------------------- hCx#H eh
y = zeros(length_r,length(n)); IaZAP
for j = 1:length(n) !c;p4B)
s = 0:(n(j)-m_abs(j))/2; (6_/n&mF
pows = n(j):-2:m_abs(j); 5Szo5
for k = length(s):-1:1 k/f_@8
p = (1-2*mod(s(k),2))* ... _rWXcK3cjr
prod(2:(n(j)-s(k)))/ ... wB0WR
prod(2:s(k))/ ... P6Ol+SI#m
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... J'oz P^N
prod(2:((n(j)+m_abs(j))/2-s(k))); 7PPsEU:rf
idx = (pows(k)==rpowers); S %%qn
y(:,j) = y(:,j) + p*rpowern(:,idx); W;j)ux7jMY
end bJu,R-f
A}+r;Y8[h
if isnorm T%b^|="@
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); )FiU1E
end Z-=7QK.\{
end yOm6HA``hT
% END: Compute the Zernike Polynomials
HAOrwJFqU
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m<;" 1<k
LA(JA
% Compute the Zernike functions: 206jeH9
% ------------------------------ Xrs~ove1V
idx_pos = m>0; O?<_,-.
idx_neg = m<0; W8/6
nK;
rEL
z = y; K*D]\/; ^
if any(idx_pos) r/w@Dh]{_
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); X%qR6mMfT7
end %Y[/Ucdm
if any(idx_neg) lY8Qy2k|
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Hw3E S
end ~w%+y
!,WRXE&j
% EOF zernfun