非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 M X7Ix{
function z = zernfun(n,m,r,theta,nflag) 3EY
m@oZj
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. /!A"[Tyt
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !.q9:|oc
% and angular frequency M, evaluated at positions (R,THETA) on the j(]O$" "
% unit circle. N is a vector of positive integers (including 0), and "5O>egt
% M is a vector with the same number of elements as N. Each element /c 7z[|
% k of M must be a positive integer, with possible values M(k) = -N(k) ;134$7!Y
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, %7w8M{I R3
% and THETA is a vector of angles. R and THETA must have the same ccPWfy_
% length. The output Z is a matrix with one column for every (N,M) #7}M\\$M
% pair, and one row for every (R,THETA) pair. t u{~:Z(
% zUZET'Bm9
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike #62ThH~
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), MSeg7/ MF
% with delta(m,0) the Kronecker delta, is chosen so that the integral +PI}$c-|`
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, V45adDiZ
% and theta=0 to theta=2*pi) is unity. For the non-normalized W*#5Sk
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. LL)t)
% DI2e%`$
% The Zernike functions are an orthogonal basis on the unit circle. I"x|U[*B
% They are used in disciplines such as astronomy, optics, and &GJVFr~z
% optometry to describe functions on a circular domain. JMo r[*
% c$L1aZo
% The following table lists the first 15 Zernike functions. 2nCc(F&+?
% u a_w5o7
% n m Zernike function Normalization yRl
% -------------------------------------------------- wy${EY^h
% 0 0 1 1 S-Vj$asv!
% 1 1 r * cos(theta) 2 l&e$:=;8
% 1 -1 r * sin(theta) 2 92A9gY
% 2 -2 r^2 * cos(2*theta) sqrt(6) .Y?]r6CC/
% 2 0 (2*r^2 - 1) sqrt(3) ,+6u6
% 2 2 r^2 * sin(2*theta) sqrt(6) SJMbYjn0J
% 3 -3 r^3 * cos(3*theta) sqrt(8) uL1lB@G@
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) q >>1?hzA
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) qm:C1#<p
% 3 3 r^3 * sin(3*theta) sqrt(8) X9]} UX
% 4 -4 r^4 * cos(4*theta) sqrt(10) Q1x&Zm1v
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9X;*GC;d
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) aGi`(|shW
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lN,a+S/'
% 4 4 r^4 * sin(4*theta) sqrt(10) ~wv$uL8y
% -------------------------------------------------- q{f\_2[
% F`x_W;\
% Example 1: n5.sx|bI?
% {cIk-nG-_
% % Display the Zernike function Z(n=5,m=1) h4|}BGO
% x = -1:0.01:1; QSa#}vCp*
% [X,Y] = meshgrid(x,x); Rk#'^}
% [theta,r] = cart2pol(X,Y); Y:,C_^$w;
% idx = r<=1; GWPBP-)0
% z = nan(size(X)); c!7WRHJE_a
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 1 Ga3[g
% figure }8aqSD<:
% pcolor(x,x,z), shading interp zb!1o0, J
% axis square, colorbar _0'X!1"
% title('Zernike function Z_5^1(r,\theta)') 6fo"k+S
% 'b}RFzEn
% Example 2: _u$DcA8B
% LDHu10l
% % Display the first 10 Zernike functions 8zj&e8&v
% x = -1:0.01:1; 4=|Q2qgFV
% [X,Y] = meshgrid(x,x); IjRUr \ l
% [theta,r] = cart2pol(X,Y); Z.Z;p/4F
% idx = r<=1; $6wSqH?q
% z = nan(size(X)); o ^UOkxs.
% n = [0 1 1 2 2 2 3 3 3 3];
J@_^]
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; vn$=be8l4
% Nplot = [4 10 12 16 18 20 22 24 26 28]; }s<;YC
% y = zernfun(n,m,r(idx),theta(idx)); i.)n#@M2
% figure('Units','normalized') s=jYQ5nv
% for k = 1:10 `H$XO{w
% z(idx) = y(:,k); #\Rxqh7
% subplot(4,7,Nplot(k))
l:UKU !
% pcolor(x,x,z), shading interp 1@t.J>
% set(gca,'XTick',[],'YTick',[]) ?yq=c
% axis square HB5-B XBU
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 8uLS7\,$z
% end IBJNs$
% !s1<)%Jt
% See also ZERNPOL, ZERNFUN2. _&V,yp!|
nf"#F@dk
% Paul Fricker 11/13/2006 tR'RB@kJ
cRrJZ9
0'pB7^y
% Check and prepare the inputs: a_5s'Dh
% ----------------------------- ?i#x13
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /Z^a,%1
error('zernfun:NMvectors','N and M must be vectors.') L@AFt)U
end o(Z~J}l({
7UW\|r
if length(n)~=length(m) {zm8`
error('zernfun:NMlength','N and M must be the same length.') Fovah4q%V
end zE$HHY2ovi
AJ*17w
n = n(:); h?SRX_
m = m(:); C@`#@1X
if any(mod(n-m,2)) T{+a48,;
error('zernfun:NMmultiplesof2', ... |LQ%sV
'All N and M must differ by multiples of 2 (including 0).') {*GBUv5
end |*g#7YL
Lv%t*s2$/
if any(m>n) zytN leyc
error('zernfun:MlessthanN', ... ^" ?a)KC
'Each M must be less than or equal to its corresponding N.') e3CFW_p
end eu$VKLY*
~$T>,^K
y
if any( r>1 | r<0 ) ,(x`zpp _
error('zernfun:Rlessthan1','All R must be between 0 and 1.') $#D#ezvxe
end d>)=|
ZOV,yuD{8{
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) N)Q_z9b=
error('zernfun:RTHvector','R and THETA must be vectors.') jH<Sf: Y(
end i:jXh9+
+yfUB8Xw
r = r(:); }a5TY("d9H
theta = theta(:); v;
#y^O
length_r = length(r); >KrI}>!9r
if length_r~=length(theta) ms}o[Z@n
error('zernfun:RTHlength', ... RNB&!NC
'The number of R- and THETA-values must be equal.') mq4Zy3H
end o}KVT%}
=h-EN_[
% Check normalization: =T2SJ)
% -------------------- v0)Y, hW
if nargin==5 && ischar(nflag) K(upzn*a
isnorm = strcmpi(nflag,'norm'); S5>ztK.e
if ~isnorm PsNrCe%e
error('zernfun:normalization','Unrecognized normalization flag.') 7 "'PfP4c
end -avxH?;?7
else Ss5@ n
isnorm = false; '1b8>L
end aIa<,
nD
eVY K
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EL3X8H
% Compute the Zernike Polynomials 8493Sw
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OjlX<y.
@uRJl$3
% Determine the required powers of r: M1m]1<
% ----------------------------------- G5U?]& I8
m_abs = abs(m); Sq,>^|v4&e
rpowers = []; s1cu5eCt
for j = 1:length(n) t6+W
rpowers = [rpowers m_abs(j):2:n(j)]; xP_%d,
end y'^U4# (
rpowers = unique(rpowers); rMIX{K)'f
l@GJcCufE
% Pre-compute the values of r raised to the required powers, W3UxFs]$
% and compile them in a matrix: #p*uk
% ----------------------------- FvVC 2Z
if rpowers(1)==0 C=&n1/
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); hL/u5h%$
rpowern = cat(2,rpowern{:}); =6ru%.8U,
rpowern = [ones(length_r,1) rpowern]; Ip7#${f5M
else IowXVdm@6
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); d*Mqs}8
rpowern = cat(2,rpowern{:}); 8~Zw"
end oCkG
F!hjtIkPj
% Compute the values of the polynomials: }Em{?Hqy
% -------------------------------------- diu"Nt
y = zeros(length_r,length(n)); 4s:M}=]N
for j = 1:length(n) -V4{tIQY
s = 0:(n(j)-m_abs(j))/2; xP>cQEL ot
pows = n(j):-2:m_abs(j); ]3,9."^
for k = length(s):-1:1 L$O\fhO?
p = (1-2*mod(s(k),2))* ... ;Z0&sFm
prod(2:(n(j)-s(k)))/ ... g9^\QYh!
prod(2:s(k))/ ... 3]kM&lK5\
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5%9Uh'y#
prod(2:((n(j)+m_abs(j))/2-s(k))); :t`W&z41
idx = (pows(k)==rpowers); U'F}k0h?\'
y(:,j) = y(:,j) + p*rpowern(:,idx); V]J"v#!{
end 7)<Ib
j<M
-7w}+iS
if isnorm K:<Viz
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); `qmwAT
end qgl-,3GY%N
end iP9]b&
% END: Compute the Zernike Polynomials :^`j:B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {:"<E?+
j~\FDcG*ed
% Compute the Zernike functions: &uE )Vr4 R
% ------------------------------ Dx /w&v
idx_pos = m>0; ?/MkH0[G =
idx_neg = m<0; _I; hM
V2?{ebx`
z = y; )?radg
if any(idx_pos) p2l@6\m\
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (Q||5
end g,WTXRy
if any(idx_neg) -eK0 +beQ
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); a"xRc
end *jc
>?)k
Y1r'\@L w
% EOF zernfun