非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Q(x/&]7=V
function z = zernfun(n,m,r,theta,nflag) Y+5aT(6O
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Xv+,Z<>iQ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N o4agaA3k
% and angular frequency M, evaluated at positions (R,THETA) on the Y8N+v+V/
% unit circle. N is a vector of positive integers (including 0), and u-QHV1H`(
% M is a vector with the same number of elements as N. Each element m ^w{:\p
% k of M must be a positive integer, with possible values M(k) = -N(k) ,;f5OUl?[
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, )4>7X)j>
% and THETA is a vector of angles. R and THETA must have the same {]$ )dz5
% length. The output Z is a matrix with one column for every (N,M) #5iy^?N"w
% pair, and one row for every (R,THETA) pair. Kq(JHB+
% B&<P >AZ
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike DcE4r>8B
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), JEF ;Q
% with delta(m,0) the Kronecker delta, is chosen so that the integral R@U4Ae{+
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |/n
% and theta=0 to theta=2*pi) is unity. For the non-normalized g{f7} gTG
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. uQ7lC~
% pF(6M3>IN
% The Zernike functions are an orthogonal basis on the unit circle. B>@l(e)b
% They are used in disciplines such as astronomy, optics, and GInw7
% optometry to describe functions on a circular domain. 1MmEP
% *]nk{jo2
% The following table lists the first 15 Zernike functions. 9!.S9[[N
% ,H1K sN
% n m Zernike function Normalization k=&n>P
% -------------------------------------------------- whm|"}x)u
% 0 0 1 1 Wfy+9"-;s
% 1 1 r * cos(theta) 2 KLG29G
% 1 -1 r * sin(theta) 2 \[]?9Z=n
% 2 -2 r^2 * cos(2*theta) sqrt(6) /rky
% 2 0 (2*r^2 - 1) sqrt(3) U+C^"[B
% 2 2 r^2 * sin(2*theta) sqrt(6) #T@k(Bz{L
% 3 -3 r^3 * cos(3*theta) sqrt(8) Ul}<@d9: B
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) NK'@.=$
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ZT8LMPC
% 3 3 r^3 * sin(3*theta) sqrt(8) |sEuhP\A3
% 4 -4 r^4 * cos(4*theta) sqrt(10) y|zIuI-p
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) KP7 {
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) UcH#J &r
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \
FJ ae
% 4 4 r^4 * sin(4*theta) sqrt(10) [B +:)i
% -------------------------------------------------- (/s~L*gF{
% TKgN31 `
% Example 1: "h|kf%
W
% oB~V~c}8x
% % Display the Zernike function Z(n=5,m=1) ;cZp$
xb3
% x = -1:0.01:1; 2e03m62*
% [X,Y] = meshgrid(x,x); X{<taD2~
% [theta,r] = cart2pol(X,Y); _O;4>
% idx = r<=1; H6Bw3I[
% z = nan(size(X)); dZI["FeO&d
% z(idx) = zernfun(5,1,r(idx),theta(idx)); >#Xz~xI/I
% figure R[)bGl6#
% pcolor(x,x,z), shading interp p1K]m>Y{?
% axis square, colorbar c{KJNH%7
% title('Zernike function Z_5^1(r,\theta)') cG%X}ZV5
% /Ov1eQBNG
% Example 2: pOh<I{r1
% ) xKW
% % Display the first 10 Zernike functions nh"dPE7^
% x = -1:0.01:1; u[oV
Jvc
% [X,Y] = meshgrid(x,x); Z0<s
-eN:
% [theta,r] = cart2pol(X,Y); !2^~ar{2
% idx = r<=1; B2'TRXIm1U
% z = nan(size(X)); d>F. C>
% n = [0 1 1 2 2 2 3 3 3 3]; %g{)K)$,ui
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; jA[Ir3
% Nplot = [4 10 12 16 18 20 22 24 26 28]; #Sx
% y = zernfun(n,m,r(idx),theta(idx)); 4nQ5zwiV
% figure('Units','normalized') (|rf>=B+H
% for k = 1:10 `@v;QLD"d<
% z(idx) = y(:,k); hUuKkUR+Ir
% subplot(4,7,Nplot(k)) kyt HOn#
% pcolor(x,x,z), shading interp c!'\k,ma<9
% set(gca,'XTick',[],'YTick',[]) fOME&$=O
% axis square 3D1y^I
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Bq1}"092
% end <RZqs
% dv+ZxP%g
% See also ZERNPOL, ZERNFUN2. 9q
2 vT^
o4J@M{xb_
% Paul Fricker 11/13/2006 -sZb+2tDa
aM(#J7;
~PpDrJ; Va
% Check and prepare the inputs: E*wG5]at
% ----------------------------- I,`;#Q)nx
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T93st<F=R
error('zernfun:NMvectors','N and M must be vectors.') MGxkqy?
end yT5OFD|T
S' kgpF"bm
if length(n)~=length(m) BzkfB:wr
error('zernfun:NMlength','N and M must be the same length.') gIusp917
end a]xGzv5
`b] wyP
n = n(:); VZ=:`)
m = m(:); K~I?i/P=z
if any(mod(n-m,2)) 6vR6=@(`>
error('zernfun:NMmultiplesof2', ... >]xW{71F@
'All N and M must differ by multiples of 2 (including 0).') rpDBKo
end o 9/,@Ri\5
('U TjV
if any(m>n) /<IWdy]$3
error('zernfun:MlessthanN', ... / o
I 4&W
'Each M must be less than or equal to its corresponding N.') _X mxBtk9f
end )S 4RR2Q>
>]ZE<.
if any( r>1 | r<0 ) Us!ZQ#pP
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]Y!Fz<-;P
end l U4 I*
m-ibS:
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) }LKD9U5;8
error('zernfun:RTHvector','R and THETA must be vectors.') `O%nDry
end cL~WDW/
6)ln,{
r = r(:); 'SoBB:
theta = theta(:); cz/cY:o)
length_r = length(r); cNxxX!P/
if length_r~=length(theta) ge.>#1f}
error('zernfun:RTHlength', ... j BBl{
'The number of R- and THETA-values must be equal.') kp* !
end yiI
oqvP
#asi%&3pP
% Check normalization: *<y9.\zY<
% -------------------- fCF.P"{W"
if nargin==5 && ischar(nflag) u)I\R\N
isnorm = strcmpi(nflag,'norm'); f!R7v|jP
if ~isnorm 5N%d Les
error('zernfun:normalization','Unrecognized normalization flag.') +6P[TqR
end #k|f>D4
else [+pa,^
isnorm = false; %=9o'Y,4
end Z_xQ2uH$:
G?=&\fg_:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'N+;{8C-{
% Compute the Zernike Polynomials 4K~=l%l
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :r hB=
o5DT1>h
% Determine the required powers of r: `iM%R3&
% ----------------------------------- 9N)I\lcY
m_abs = abs(m); N{Z+
rpowers = []; UhL1Y
NF_
for j = 1:length(n) tP*Kt'4W
rpowers = [rpowers m_abs(j):2:n(j)]; z,x
)Xx
end h
~yTkN]
rpowers = unique(rpowers); gj
@9(dk%
LO)!Fj4|
% Pre-compute the values of r raised to the required powers, [~
2m*Q
% and compile them in a matrix: {}k3nJfE
% ----------------------------- EFh^C.S8
if rpowers(1)==0 0RMW>v/7kL
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Kc2y
rpowern = cat(2,rpowern{:}); J8r8#Zz
rpowern = [ones(length_r,1) rpowern]; d4 \
else H@G$K@L
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); k)*apc\W
rpowern = cat(2,rpowern{:}); G"J
nQ
end @W/k}<07
cl`Wl/Q#
% Compute the values of the polynomials: pgh(~[
% -------------------------------------- l~o!(rpX
y = zeros(length_r,length(n)); gggD "alDx
for j = 1:length(n) .x,y[/[[)
s = 0:(n(j)-m_abs(j))/2; XWS]4MB+vm
pows = n(j):-2:m_abs(j); ud5}jyJ
for k = length(s):-1:1 `G\Gk|4;2
p = (1-2*mod(s(k),2))* ... saiXFM7J
prod(2:(n(j)-s(k)))/ ... gFHBIN;u
prod(2:s(k))/ ... J QnaXjW2
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... RIXeV*ix
prod(2:((n(j)+m_abs(j))/2-s(k))); T5zS3O
idx = (pows(k)==rpowers); hN!;Tny
y(:,j) = y(:,j) + p*rpowern(:,idx); b)KEB9w
end )G^k$j
E9j<+Ik
if isnorm s.Z{mnD6
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %|}*xMQ
end T%6JVFD
end bS~Y_]B
% END: Compute the Zernike Polynomials \u[}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dX)aD
$m
aH uMm&
% Compute the Zernike functions: *w(n%f
% ------------------------------ Lg!E
idx_pos = m>0; wods
idx_neg = m<0; TY %zw6 #p
bk<Rp84vL
z = y; ;6pB7N
if any(idx_pos) 77[TqRLf
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7afG4
(<k
end 6}I X{nQI
if any(idx_neg) KqJln)7
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); PaQ lQ#
end &-Ch>:[
dGOFSH
% EOF zernfun