切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11536阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 hFIh<m=C?Y  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! PIri|ZS  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 f.g!~wGD  
    function z = zernfun(n,m,r,theta,nflag) Q7+WV`&  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3! P^?[p3  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ktU:Uq  
    %   and angular frequency M, evaluated at positions (R,THETA) on the | R,dsBd  
    %   unit circle.  N is a vector of positive integers (including 0), and 8{4'G$6  
    %   M is a vector with the same number of elements as N.  Each element RRO@r}A!y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) >{^_]phlb  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, cj>@Jx}]M  
    %   and THETA is a vector of angles.  R and THETA must have the same Sm/8VSY  
    %   length.  The output Z is a matrix with one column for every (N,M) `gl?y;xC  
    %   pair, and one row for every (R,THETA) pair. HYl+xH'.j  
    % uI,*&bP  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 30h[&Oc  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), G"r{!IFL  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral UC&$8^  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Vz mlKVE  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 48p3m) 5  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >\JP X  
    % Rxy|Ag/I;V  
    %   The Zernike functions are an orthogonal basis on the unit circle. o#FctM'Z  
    %   They are used in disciplines such as astronomy, optics, and B;bP~e>W  
    %   optometry to describe functions on a circular domain.  U#f*  
    % lg|6~=aQ  
    %   The following table lists the first 15 Zernike functions. i3 js'?7E  
    % lr&2,p<  
    %       n    m    Zernike function           Normalization XU'(^Y8Imz  
    %       -------------------------------------------------- wGO-Z']i  
    %       0    0    1                                 1 orJ|Q3c)d  
    %       1    1    r * cos(theta)                    2 @;EQ{d  
    %       1   -1    r * sin(theta)                    2 }Z <I%GT  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) [)`*k#.=  
    %       2    0    (2*r^2 - 1)                    sqrt(3) P~(&lu/;P  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) !MSa -  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) uNf'Zeo  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) %[n5mF*`  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 8 8u[s@  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) B~o3Z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) x.gzsd  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5T/+pC$e=  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) -t_&H\_T  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [CHN3&l-5S  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) z{R Mb  
    %       -------------------------------------------------- @Hj]yb5  
    % 6?"Gj}|r  
    %   Example 1: @G& oUhS  
    % _~Lu%   
    %       % Display the Zernike function Z(n=5,m=1) z7fX!'3V  
    %       x = -1:0.01:1; 1dr g5  
    %       [X,Y] = meshgrid(x,x); 6X ]I`e  
    %       [theta,r] = cart2pol(X,Y); [<+T@"y  
    %       idx = r<=1; li3X}  
    %       z = nan(size(X)); 41R~.?  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); qLBQ!>lR  
    %       figure 65B&>`H~  
    %       pcolor(x,x,z), shading interp dhLd2WSyH  
    %       axis square, colorbar covCa)kf  
    %       title('Zernike function Z_5^1(r,\theta)') FUI/ A >  
    % L <  
    %   Example 2: s2sJJdN  
    % D[T\_3 W  
    %       % Display the first 10 Zernike functions .9DhD=8aIO  
    %       x = -1:0.01:1; CS%ut-K<5M  
    %       [X,Y] = meshgrid(x,x); L `2{H%J`  
    %       [theta,r] = cart2pol(X,Y); d3oRan}z  
    %       idx = r<=1; xfUV'=~(  
    %       z = nan(size(X)); 25G~rklk  
    %       n = [0  1  1  2  2  2  3  3  3  3]; N#J8 4i;ry  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; *`s*l+0b  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 1% @i4  
    %       y = zernfun(n,m,r(idx),theta(idx)); ^g'uR@uU  
    %       figure('Units','normalized') J?p|Vy|9  
    %       for k = 1:10 }lk9|U#6*`  
    %           z(idx) = y(:,k); UXa%$gwFw  
    %           subplot(4,7,Nplot(k)) i [/1AI  
    %           pcolor(x,x,z), shading interp n~,6!S  
    %           set(gca,'XTick',[],'YTick',[]) y]Q/(O  
    %           axis square Kd}%%L  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) M7DoAS{6e  
    %       end b#(QZ  
    % /0L]Pf;  
    %   See also ZERNPOL, ZERNFUN2. ^(*eoe  
    ~ LH).\V  
    %   Paul Fricker 11/13/2006 m=`V  
    %*L8W*V  
    Ornm3%p+e  
    % Check and prepare the inputs: SM}& @cJ  
    % ----------------------------- kaZcYuT.9  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )  @C'qbO{  
        error('zernfun:NMvectors','N and M must be vectors.') 787i4h:71  
    end 9dg+@FS}=  
    f]+. i-c=  
    if length(n)~=length(m) UuJ gB)  
        error('zernfun:NMlength','N and M must be the same length.') *XXa 9z  
    end Ob'[W;p)[w  
    ]:6IW:  
    n = n(:); i piS=  
    m = m(:); O|;|7fCB\  
    if any(mod(n-m,2)) 5t-(MY  
        error('zernfun:NMmultiplesof2', ... %e: hVU  
              'All N and M must differ by multiples of 2 (including 0).') P\X$fD  
    end G!GGT?J  
    uCFpH5>  
    if any(m>n) O sIvW'$\  
        error('zernfun:MlessthanN', ... Xt*h2&  
              'Each M must be less than or equal to its corresponding N.') S?H qrf7<  
    end \p izVt  
    xqVIw!J?/}  
    if any( r>1 | r<0 ) 4m9]d)  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') r-}C !aF]  
    end Yv;iduc('  
    xqKj&RuLu  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^@maF<Jb  
        error('zernfun:RTHvector','R and THETA must be vectors.') cj3P]2B#  
    end |>p?Cm  
    9H%L;C5<  
    r = r(:); k8sjW!2  
    theta = theta(:); 4H%Ai(F}_  
    length_r = length(r); /vPcg  
    if length_r~=length(theta) *Q3q(rdrp  
        error('zernfun:RTHlength', ... Gy[m4n~Z5  
              'The number of R- and THETA-values must be equal.') ^X?3e1om  
    end s4\_%je<v  
    ~p/1 9/  
    % Check normalization: n ^C"v6X  
    % -------------------- pL'+sW  
    if nargin==5 && ischar(nflag) i\k>2df  
        isnorm = strcmpi(nflag,'norm'); 8z"*CJ@  
        if ~isnorm l:VcV  
            error('zernfun:normalization','Unrecognized normalization flag.') jTz~ V&^  
        end r7:4| 6E  
    else =qTmFszT  
        isnorm = false; y[:xGf]8@  
    end <bOi}  
    zC\L-i>G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }Ias7d?re  
    % Compute the Zernike Polynomials r`CsR0[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lxD~[e  
    PeB7Q=d)K1  
    % Determine the required powers of r: Y]{~ogsn$:  
    % ----------------------------------- vZt48g  
    m_abs = abs(m); B"I^hrQ  
    rpowers = []; 2~*.X^dR  
    for j = 1:length(n) w57D qG>  
        rpowers = [rpowers m_abs(j):2:n(j)]; t=(CCq_N,  
    end >a2i%j/T  
    rpowers = unique(rpowers); L,wEUI  
    !@kwHJkv  
    % Pre-compute the values of r raised to the required powers, rjW\tuZI  
    % and compile them in a matrix: 3It9|Y"6[  
    % ----------------------------- N(^ q%eHp  
    if rpowers(1)==0 jAb R[QR1%  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); EAXbbcV  
        rpowern = cat(2,rpowern{:}); Vq<\ix Ri  
        rpowern = [ones(length_r,1) rpowern]; ;sn]Blpq  
    else 6` @4i'.  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ify}xv  
        rpowern = cat(2,rpowern{:}); rOd~sa-H  
    end <C,lHt  
    0_faJjTbP;  
    % Compute the values of the polynomials: =5m~rJ< {  
    % -------------------------------------- [kyIF\0  
    y = zeros(length_r,length(n)); vCS D1~V_  
    for j = 1:length(n) aoVfvz2Y  
        s = 0:(n(j)-m_abs(j))/2; E;AOCbV*$  
        pows = n(j):-2:m_abs(j); yJAz#~PO/  
        for k = length(s):-1:1 z 8\z`#g!  
            p = (1-2*mod(s(k),2))* ... I7q}<"`  
                       prod(2:(n(j)-s(k)))/              ... =;?afUj  
                       prod(2:s(k))/                     ... *Z,?VEO  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +Q+>{HK  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Pwg?a  
            idx = (pows(k)==rpowers); ~*Kk+w9H<  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ii :E>O(0B  
        end -kz9KGkPb+  
         1iTI8h&[@  
        if isnorm m]#oZVngy  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); z->[:)c  
        end K/Qo~  
    end n6]8W^g  
    % END: Compute the Zernike Polynomials (Ld,<!eN0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #.^A5`k  
    Q&A^(z}  
    % Compute the Zernike functions: aBonq]W  
    % ------------------------------ sV`!4 u7%}  
    idx_pos = m>0; u#"L gG.X  
    idx_neg = m<0; ~ '/Yp8 (  
    Oq3]ZUVa  
    z = y; Q=~ *oYR  
    if any(idx_pos) :7[20n}w  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2jiH&'@  
    end 6A9 r{'1  
    if any(idx_neg) qPG>0 O  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); kI|7o>}<   
    end ]n9gnE  
    _ ^ny(zy(  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 6k-  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. t#BQB<GI  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated QxI^Bx  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Qf#=Y j  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 'YTSakNJ}  
    %   and THETA is a vector of angles.  R and THETA must have the same a 0+W-#G  
    %   length.  The output Z is a matrix with one column for every P-value, ziTE*rNJ  
    %   and one row for every (R,THETA) pair. J=sj+:GS  
    % NwbX]pDT  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike > t~2  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) QopA'm  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) tR`^c8gD  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 <A`zK  
    %   for all p. Rw!wfh_+  
    % 7Z[6_WD3  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 3s B9t X  
    %   Zernike functions (order N<=7).  In some disciplines it is E,p4R%:$@1  
    %   traditional to label the first 36 functions using a single mode *mtS\J  
    %   number P instead of separate numbers for the order N and azimuthal IJ E{JH  
    %   frequency M. 6O0CF}B*  
    % fuao*L]  
    %   Example: m:x<maP# E  
    % -4!S?rHwd+  
    %       % Display the first 16 Zernike functions uP NZ^lM  
    %       x = -1:0.01:1; ;*[ oi  
    %       [X,Y] = meshgrid(x,x); c>.=;'2  
    %       [theta,r] = cart2pol(X,Y); h= Mmd  
    %       idx = r<=1; k!)Pl,nJ  
    %       p = 0:15; bTepTWv  
    %       z = nan(size(X)); GX0S9s  
    %       y = zernfun2(p,r(idx),theta(idx)); 8ZL9>"%l  
    %       figure('Units','normalized') f{+n$ Cos  
    %       for k = 1:length(p) _oAWj]~rO  
    %           z(idx) = y(:,k); ~b;u1;ne  
    %           subplot(4,4,k) WinwPn+9  
    %           pcolor(x,x,z), shading interp L)yc_ d5  
    %           set(gca,'XTick',[],'YTick',[]) 7Q>bJ Ek7  
    %           axis square 26B+qXEt  
    %           title(['Z_{' num2str(p(k)) '}']) !&#5 *  
    %       end ]gjB%R[.m  
    % 8'|_O  
    %   See also ZERNPOL, ZERNFUN. '9XSz?  
    b;jr;I  
    %   Paul Fricker 11/13/2006 y*H rv  
    ywY[g{4+  
    ni~1)"U.  
    % Check and prepare the inputs: &MJ cLM]  
    % ----------------------------- !cNw 8"SIU  
    if min(size(p))~=1  4"~F  
        error('zernfun2:Pvector','Input P must be vector.') Gc*p%2c  
    end /v8yE9N_  
    CXd/M~:!  
    if any(p)>35 SbK6o:[  
        error('zernfun2:P36', ... "(+p1  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... `BzjDI:a  
               '(P = 0 to 35).']) n@_aTY  
    end 05s{Z.aK  
    Q/]t $  
    % Get the order and frequency corresonding to the function number: ~ya@ YP]';  
    % ---------------------------------------------------------------- ')zf8>,  
    p = p(:); bvF-F$n%F  
    n = ceil((-3+sqrt(9+8*p))/2); #,CK;h9jy!  
    m = 2*p - n.*(n+2); {n 4W3  
    A Qm!7,  
    % Pass the inputs to the function ZERNFUN: 1w}D fI  
    % ---------------------------------------- [yx8?5  
    switch nargin pE381Cw  
        case 3 ZVni'y m  
            z = zernfun(n,m,r,theta); p5`={'>-  
        case 4 7p_B?r  
            z = zernfun(n,m,r,theta,nflag); 6rBP,\m  
        otherwise ICD; a  
            error('zernfun2:nargin','Incorrect number of inputs.') cm17hPe`}n  
    end |"aop|  
    VI k]`)#  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) a\*_b2 ^n  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 8;$zD]{D1  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of C`["4  
    %   order N and frequency M, evaluated at R.  N is a vector of )7  M  
    %   positive integers (including 0), and M is a vector with the 1T0s UIY  
    %   same number of elements as N.  Each element k of M must be a dh V6r  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) /|p6NK;8L  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is (y5 ]]l  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix !SdP<{[  
    %   with one column for every (N,M) pair, and one row for every j2s{rQQ  
    %   element in R. &Ivf!Bgm{Z  
    % *:"p*qV*  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ~n;U5hcB  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is [7Liken  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to WSqo\]  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ypWhH  
    %   for all [n,m]. md;jj^8zj  
    % 8+Abw)]s  
    %   The radial Zernike polynomials are the radial portion of the l,ic-Y1  
    %   Zernike functions, which are an orthogonal basis on the unit  L0>7v  
    %   circle.  The series representation of the radial Zernike -cgMf\YF  
    %   polynomials is 09J,!NN  
    % g3TqTs  
    %          (n-m)/2 51 "v`O+  
    %            __ D2'J (  
    %    m      \       s                                          n-2s B8>3GZi  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r thSXri?kl  
    %    n      s=0 FW:V<{f  
    % lyw)4;wt\  
    %   The following table shows the first 12 polynomials. ~\u~>mtchu  
    % [/U5M>#n  
    %       n    m    Zernike polynomial    Normalization 4[rX\?^e  
    %       --------------------------------------------- :'Tq5kE  
    %       0    0    1                        sqrt(2) nZ4@g@e2  
    %       1    1    r                           2 4F,RlKHBl  
    %       2    0    2*r^2 - 1                sqrt(6) 8TCbEPS@Q  
    %       2    2    r^2                      sqrt(6) Da ]zbz%%  
    %       3    1    3*r^3 - 2*r              sqrt(8) LCMn9I  
    %       3    3    r^3                      sqrt(8) ?OC&=}  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) +,UuJ6[n  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) x,Z:12H0  
    %       4    4    r^4                      sqrt(10) ,'byJlw_pv  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) %Mf3OtPiJW  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) V(M7d>N5G  
    %       5    5    r^5                      sqrt(12) 22R ,  
    %       --------------------------------------------- wDKA1i%G  
    % $fwj8S7$  
    %   Example: -SF50.[  
    % ]u47]L#  
    %       % Display three example Zernike radial polynomials w_*$w Vl  
    %       r = 0:0.01:1; wUH:l  
    %       n = [3 2 5]; ;-VXp80J  
    %       m = [1 2 1]; 6 - IThC  
    %       z = zernpol(n,m,r); U]"6KS   
    %       figure {4r }jH  
    %       plot(r,z) __i))2  
    %       grid on s[%@3bY!7  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') G&@_,y|  
    % K<p)-q  
    %   See also ZERNFUN, ZERNFUN2. t8uaNvUM}e  
    y-_IMu.J`  
    % A note on the algorithm. ; g\r Y  
    % ------------------------ %Vhj<gN  
    % The radial Zernike polynomials are computed using the series i([|@Y=  
    % representation shown in the Help section above. For many special &X)^G#  
    % functions, direct evaluation using the series representation can &Y-jK<  
    % produce poor numerical results (floating point errors), because }*VRj;ff  
    % the summation often involves computing small differences between /\m>PcPa  
    % large successive terms in the series. (In such cases, the functions BrsBB"<o,  
    % are often evaluated using alternative methods such as recurrence 41c4Xj?'  
    % relations: see the Legendre functions, for example). For the Zernike Bs\& '=l  
    % polynomials, however, this problem does not arise, because the a.up&g_$  
    % polynomials are evaluated over the finite domain r = (0,1), and .x_F4#Ka  
    % because the coefficients for a given polynomial are generally all .F@ 2C  
    % of similar magnitude. d[sY]_ dj  
    % >+Y@rj2  
    % ZERNPOL has been written using a vectorized implementation: multiple +m1*ou'K  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] I]Vkaf I>(  
    % values can be passed as inputs) for a vector of points R.  To achieve e84O 6K6o  
    % this vectorization most efficiently, the algorithm in ZERNPOL gt!t Du  
    % involves pre-determining all the powers p of R that are required to EO"G(v  
    % compute the outputs, and then compiling the {R^p} into a single r[3 2'E  
    % matrix.  This avoids any redundant computation of the R^p, and CzI/Z+\  
    % minimizes the sizes of certain intermediate variables. 4)d"}j  
    % PDpDkcy|QM  
    %   Paul Fricker 11/13/2006 JxQGL{) >  
    nw=:+?  
    P=.T|l1  
    % Check and prepare the inputs: y~<_ux,  
    % ----------------------------- x*wr8$@J  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [q~3$mjQ  
        error('zernpol:NMvectors','N and M must be vectors.') c> ":g~w  
    end $`_xP1bUT  
    ,Ofou8C6  
    if length(n)~=length(m) F<(?N!C?@  
        error('zernpol:NMlength','N and M must be the same length.') 9%DLdc\z;  
    end j!K{1s[.y  
    V(F1i%9lg  
    n = n(:); >uJU25)|  
    m = m(:); [ip}f4K  
    length_n = length(n); b#Vm;6BHD1  
    OGPrjL+  
    if any(mod(n-m,2)) 9O-*iK  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') h`:B8+k  
    end ] jycg@=B  
    TJs~}&L  
    if any(m<0) W=2#Q2)  
        error('zernpol:Mpositive','All M must be positive.') ,m;G:3}48  
    end Q`BB@E  
    F`57;)F  
    if any(m>n) :7pt=IA  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') -{ Fy@$!  
    end $#FA/+<&$  
    @"0n8y  
    if any( r>1 | r<0 ) 7QHrb'c  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Y {2L[5_1  
    end :@J.!dokF  
    HQ^:5 XH  
    if ~any(size(r)==1) wZ/ b;%I!  
        error('zernpol:Rvector','R must be a vector.') La\|Bwx  
    end i 8:^1rHp)  
    \0z<@)r+AJ  
    r = r(:); ~4M?[E&  
    length_r = length(r); "\"sM{x  
    >C/O >g  
    if nargin==4 xcQ:&q  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); pR3K~bx^  
        if ~isnorm U9h@1:  
            error('zernpol:normalization','Unrecognized normalization flag.') "PC9[i  
        end F,JqHa9  
    else  nw  
        isnorm = false; mxl"Y&l2<  
    end d? 4-"9Y  
    'Jl73#3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o<!tN OH  
    % Compute the Zernike Polynomials |.LE`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K"VRHIhfg  
    %Sw hNn  
    % Determine the required powers of r: `yrJ}f  
    % ----------------------------------- k4YW;6<C+  
    rpowers = []; ^zR*s |1Q  
    for j = 1:length(n) :xsNn55b  
        rpowers = [rpowers m(j):2:n(j)]; SaA-Krn  
    end *w6(nG'M{  
    rpowers = unique(rpowers); Hs(U|BXU  
    bw OG|\  
    % Pre-compute the values of r raised to the required powers, VHx:3G  
    % and compile them in a matrix: Og(|bs!6  
    % ----------------------------- w~WW2 w  
    if rpowers(1)==0 Dh .<&ri   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); P#qQde/y  
        rpowern = cat(2,rpowern{:});  @+!u{  
        rpowern = [ones(length_r,1) rpowern]; p-B |Gr|  
    else /t_AiM,(  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); "i; "  
        rpowern = cat(2,rpowern{:});  $ 1v'CT  
    end q 1+{MPJ  
    7SjWofv  
    % Compute the values of the polynomials: zl@hg<n  
    % -------------------------------------- >+2gAO!  
    z = zeros(length_r,length_n); WXCZ }l  
    for j = 1:length_n Pe?b# G  
        s = 0:(n(j)-m(j))/2; BVv{:m{w  
        pows = n(j):-2:m(j); 1g_Dkv|D  
        for k = length(s):-1:1 YCo qe,5  
            p = (1-2*mod(s(k),2))* ... Y]H,rO  
                       prod(2:(n(j)-s(k)))/          ... ]xN)>A2  
                       prod(2:s(k))/                 ... @JpkG%eK  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... R9O1#s^  
                       prod(2:((n(j)+m(j))/2-s(k))); Mt%=z9OLq9  
            idx = (pows(k)==rpowers); {[[/*1r|  
            z(:,j) = z(:,j) + p*rpowern(:,idx); GJn ~x  
        end p]J0A ^VV  
         E<L6/rG  
        if isnorm h"On9  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); +X!QH/ 8  
        end 6Wc'5t3  
    end n@y*~sG]  
    7aJ:kumDZ  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  yoG*c%3V?  
    6QAhVg: A  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 LsO}a;t5  
    '^%kTNn  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)