非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Z;nUS,?om
function z = zernfun(n,m,r,theta,nflag) hXz@ (cF
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. }uk]1M2=
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N HVK./yqy
% and angular frequency M, evaluated at positions (R,THETA) on the sn.&|)?Fi
% unit circle. N is a vector of positive integers (including 0), and xl;0&/7e
% M is a vector with the same number of elements as N. Each element keL!;q|r-)
% k of M must be a positive integer, with possible values M(k) = -N(k) Ld3!2g2y7&
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, B5fF\N^
% and THETA is a vector of angles. R and THETA must have the same mL[Y{t#N
% length. The output Z is a matrix with one column for every (N,M) \Yd
0oe82
% pair, and one row for every (R,THETA) pair. Bwg\_:vq
% _f@,
>l
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &%`Y>\@f
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !`EhVV8u-_
% with delta(m,0) the Kronecker delta, is chosen so that the integral Z@bGLS
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N"rZK/@}
% and theta=0 to theta=2*pi) is unity. For the non-normalized 7__?1n~{
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. #Ez+1
% u#`FkuE\}
% The Zernike functions are an orthogonal basis on the unit circle. zCdzxb_h"
% They are used in disciplines such as astronomy, optics, and ZP^7`q)6
% optometry to describe functions on a circular domain. 2OQDG7#Kc
% '`fz|.|cbB
% The following table lists the first 15 Zernike functions. A%c)=(,
% !_SIq`5]@
% n m Zernike function Normalization p7kH"j{xD
% -------------------------------------------------- l9X\\uG&
% 0 0 1 1 nH% 1lD?:
% 1 1 r * cos(theta) 2 Du."O]syD
% 1 -1 r * sin(theta) 2 8'6$t@oT9w
% 2 -2 r^2 * cos(2*theta) sqrt(6) "ZLujpZcG
% 2 0 (2*r^2 - 1) sqrt(3) d T*8I0\+
% 2 2 r^2 * sin(2*theta) sqrt(6) OGqsQ
% 3 -3 r^3 * cos(3*theta) sqrt(8) ~^R?H S
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ,,KGcDBj
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 0[T>UEI?
% 3 3 r^3 * sin(3*theta) sqrt(8) jJDYl( [
% 4 -4 r^4 * cos(4*theta) sqrt(10) lTn~VsoRZ
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T^~9'KDd
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ^HasT4M+x
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Zc9j_.?*
% 4 4 r^4 * sin(4*theta) sqrt(10) }./_fFN@
% -------------------------------------------------- )mb RG9P
% |ZnRr
% Example 1: b[_${in:
% 8${Yu
% % Display the Zernike function Z(n=5,m=1) r9d dVD
% x = -1:0.01:1; @ dF]X
% [X,Y] = meshgrid(x,x); qTl/bFD
% [theta,r] = cart2pol(X,Y); Pqm)OZE?
% idx = r<=1; 3!V$fl0
% z = nan(size(X)); q"Z!}^{
% z(idx) = zernfun(5,1,r(idx),theta(idx)); OnKPD=<
% figure OK^0,0kS3
% pcolor(x,x,z), shading interp 5Si\hk:o
% axis square, colorbar U.B=%S
% title('Zernike function Z_5^1(r,\theta)') G]- wN7G
% A->y#KQ
% Example 2: 5h4E>LB.B
% L!]~J?)
% % Display the first 10 Zernike functions ;dh8|ujh
% x = -1:0.01:1; > \KVg(?D
% [X,Y] = meshgrid(x,x); t9Nu4yl
% [theta,r] = cart2pol(X,Y); fx783
% idx = r<=1; Mn=5yU
% z = nan(size(X)); S"z cSkF
% n = [0 1 1 2 2 2 3 3 3 3]; WZ<kk T
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Hw "UJP
% Nplot = [4 10 12 16 18 20 22 24 26 28]; gxku3<S
% y = zernfun(n,m,r(idx),theta(idx)); *KXg;777
% figure('Units','normalized') k9^Vw+$m
% for k = 1:10 M5Twulz/w
% z(idx) = y(:,k); 6!3Jr
% subplot(4,7,Nplot(k)) MK<VjpP0(
% pcolor(x,x,z), shading interp .u_k?.8|
% set(gca,'XTick',[],'YTick',[]) >Lo!8Hen
% axis square G{cTQH|
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) weOzs]uc
% end z]YP
% Gkr^uXNg#
% See also ZERNPOL, ZERNFUN2. Q l$t
s\`Vr;R:|
% Paul Fricker 11/13/2006 4P>tGO&*x
u%7a&1c
28j=q-9Z
% Check and prepare the inputs: Bn"r;pqWiT
% ----------------------------- WLAJqmC]
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9o7d3 ir)
error('zernfun:NMvectors','N and M must be vectors.') Rro{A+[,X
end J\%<.S>
!7g
E
if length(n)~=length(m) UEq;}4Bo
error('zernfun:NMlength','N and M must be the same length.') PSdH9ea
end 4nhe *ip
ZHshg`I`
n = n(:); vl@t4\@3
m = m(:); 3"gifE
if any(mod(n-m,2)) 4JHQ^i-aY
error('zernfun:NMmultiplesof2', ... %;0w2W
'All N and M must differ by multiples of 2 (including 0).') sK:,c5^
end )Q\ZYCPOr
."Yub];H
if any(m>n) @Y>3 -,o,S
error('zernfun:MlessthanN', ... ;UgRm#
'Each M must be less than or equal to its corresponding N.') gkpNT)
end 1>*]jj}
|zu>G9m
if any( r>1 | r<0 ) xaerMr
error('zernfun:Rlessthan1','All R must be between 0 and 1.') NEO~|B*oDU
end lxK_+fj
q
~zz |U!TG
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Ar sMqb
error('zernfun:RTHvector','R and THETA must be vectors.') Yi[dS`,d
end l\^q7cXG
Q;P ~'
r = r(:); O#7ldF(
theta = theta(:); [&*$!M
length_r = length(r); #{0DpSzE5
if length_r~=length(theta) (Df<QC`0v
error('zernfun:RTHlength', ... bE>3D#V<
'The number of R- and THETA-values must be equal.') $EJ*x$
end !9"R4~4
.Qh8I+Q%
% Check normalization: YeJ95\jf
% -------------------- 7o
z(hO~
if nargin==5 && ischar(nflag) x#0C+cU
isnorm = strcmpi(nflag,'norm'); DuvP3(K
if ~isnorm ^@L[0Z`
error('zernfun:normalization','Unrecognized normalization flag.') <nsl`C~6g0
end 5?kA)!|UB
else (r[<g*+3
isnorm = false; ?<frU ,{
end +$>ut
r
%Z{J=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |V9%@
Y?
% Compute the Zernike Polynomials *Kzs(O
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \N#)e1.0P
e+R.0E
% Determine the required powers of r: 5,AQ~_,'\
% ----------------------------------- <Awx:lw.
m_abs = abs(m); J+*rjdI
rpowers = []; QrA8KSLC
for j = 1:length(n) (+]k{
rpowers = [rpowers m_abs(j):2:n(j)]; )N=b<%WD
end jPU#{Wo#
rpowers = unique(rpowers); /#G"'U/
u
F*cS&'Z
% Pre-compute the values of r raised to the required powers, .;KupQ;*
% and compile them in a matrix: 4\ OELU
% ----------------------------- hTG
d Uw]
if rpowers(1)==0 3Xh&l[.
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @$+[IiP
rpowern = cat(2,rpowern{:}); $m=z87hX
rpowern = [ones(length_r,1) rpowern]; EhFhL4Xdn
else
.V.N^8(:a
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 78QFaN$
rpowern = cat(2,rpowern{:}); ?^ErrlI_
end I(<G;ft<}
ai`:HhE
% Compute the values of the polynomials: )(L&+DDy
% -------------------------------------- f<;9q?0V F
y = zeros(length_r,length(n)); D1Sl+NOV
for j = 1:length(n) wKeqR$
s = 0:(n(j)-m_abs(j))/2; o7T|w~F~R
pows = n(j):-2:m_abs(j); _(z"l"l=$
for k = length(s):-1:1 j d81E
p = (1-2*mod(s(k),2))* ... z>0"T2W
y
prod(2:(n(j)-s(k)))/ ... )ED[cYGx
prod(2:s(k))/ ... _N:h&uw
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0/gcSW
b
prod(2:((n(j)+m_abs(j))/2-s(k))); Td F<
idx = (pows(k)==rpowers); p_AV3
y(:,j) = y(:,j) + p*rpowern(:,idx); +-nQ,
fOV
end >eTlew<5
!qpu /
if isnorm -0X> y
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); bvx:R ~E$
end "XY?v8*c
end % KA/
% END: Compute the Zernike Polynomials X2uX+}h*tA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,![=_ d
R,\
r{@yrz
% Compute the Zernike functions: `-H:j:U{
% ------------------------------ C#~MR+;
idx_pos = m>0; +Y~+o-_
idx_neg = m<0;
m#nxw
>&&xJ5
z = y; -"zu"H~t4
if any(idx_pos) }SV3PdE
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); `"H?nf0
end ]1&9~TL
if any(idx_neg) S0+zq<
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); QC4T=E]`j
end
n{t',r50
1,j9(m2
% EOF zernfun