切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10626阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 oIR.|=Hk{  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! JpmB;aL#%  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #6W,6(#^#  
    function z = zernfun(n,m,r,theta,nflag) SY1GR n  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. VE]6wwV2  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %8w9E=  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ,[`$JNc  
    %   unit circle.  N is a vector of positive integers (including 0), and <'&F;5F3V  
    %   M is a vector with the same number of elements as N.  Each element //.>>-~1m  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) :c7CiP  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, }+0z,s~0.  
    %   and THETA is a vector of angles.  R and THETA must have the same 6peyh_  
    %   length.  The output Z is a matrix with one column for every (N,M) QU/3X 1W  
    %   pair, and one row for every (R,THETA) pair. \84v-VK  
    % (Z-l/)Q  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1h=D4yN  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 73 V"s  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral [U.v:tR   
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {Q~7M$  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ~Ltr.ci  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. JE!("]&  
    % u 9]1X1wV  
    %   The Zernike functions are an orthogonal basis on the unit circle. )X5(#E  
    %   They are used in disciplines such as astronomy, optics, and 0@pu@DP~  
    %   optometry to describe functions on a circular domain. |0 !I5|<k  
    % maC>LBa2/  
    %   The following table lists the first 15 Zernike functions. !M;A*:-  
    % ?`AGF%zp  
    %       n    m    Zernike function           Normalization IU!Ht>  
    %       -------------------------------------------------- fbC~WV#  
    %       0    0    1                                 1 2dbRE:v5  
    %       1    1    r * cos(theta)                    2 rLF*DB3l  
    %       1   -1    r * sin(theta)                    2 ssl&5AS  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) #3MKH8k&~  
    %       2    0    (2*r^2 - 1)                    sqrt(3) qn"K9k  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) %fhNxR  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) AhxGj+  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 3nFt1E   
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) n?E}b$6  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) f z}?*vPW  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) u7=T(4a  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) p=gX !4,9<  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) - k`.j  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) it1/3y =]  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) `.^ |]|u  
    %       -------------------------------------------------- z%:&#1)  
    % };S0 G!  
    %   Example 1: x(~<tX~  
    % HI!4  
    %       % Display the Zernike function Z(n=5,m=1) C6QbBo  
    %       x = -1:0.01:1; 'M/ ([|@  
    %       [X,Y] = meshgrid(x,x); z"379b7cN  
    %       [theta,r] = cart2pol(X,Y); yA;W/I4  
    %       idx = r<=1; }htPTOy5  
    %       z = nan(size(X)); y=H@6$2EQ  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); \dkOK`)b  
    %       figure _H\<[-l  
    %       pcolor(x,x,z), shading interp Cs1>bpY*R6  
    %       axis square, colorbar ai^|N.!  
    %       title('Zernike function Z_5^1(r,\theta)') g}Q x`65:  
    % x-_vl 9P)  
    %   Example 2: %l$W*.j|;  
    % `|Fp^gM  
    %       % Display the first 10 Zernike functions 7NF/]y4w  
    %       x = -1:0.01:1; +jV_Wz  
    %       [X,Y] = meshgrid(x,x); li/aN  
    %       [theta,r] = cart2pol(X,Y); c K<)$*  
    %       idx = r<=1; 2 ZG@!Y|  
    %       z = nan(size(X)); OJ,m1{9$}  
    %       n = [0  1  1  2  2  2  3  3  3  3]; oH-8r:{  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ?L|yaC~  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; b^Cfhy^RTq  
    %       y = zernfun(n,m,r(idx),theta(idx)); j _ ;fWBD:  
    %       figure('Units','normalized') WS,7dz  
    %       for k = 1:10 Mv|!2 [:  
    %           z(idx) = y(:,k); '`l K'5;  
    %           subplot(4,7,Nplot(k)) xsP4\C>  
    %           pcolor(x,x,z), shading interp u"+}I,'L  
    %           set(gca,'XTick',[],'YTick',[]) 5*G%IR@@LK  
    %           axis square @ 4UxRp6+  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Zb(t3I>n  
    %       end , =y#m- 9  
    % PK:2xN:=  
    %   See also ZERNPOL, ZERNFUN2. KIus/S5 RC  
    YfDWM7x7,  
    %   Paul Fricker 11/13/2006 jw>h k  
    Eipp ~GD  
    o8S"&O ?  
    % Check and prepare the inputs: # c Fr   
    % ----------------------------- o"q+,"QL  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) OW5t[~y]  
        error('zernfun:NMvectors','N and M must be vectors.') V|FrN*m  
    end bToq$%sCg  
    X0uJNHO  
    if length(n)~=length(m) {j SmoA  
        error('zernfun:NMlength','N and M must be the same length.') {eHAg<+  
    end ;YH[G;aJ  
    p 2 !FcFi  
    n = n(:); |jG~,{  
    m = m(:); r>n" 51*  
    if any(mod(n-m,2)) LU2waq}VA  
        error('zernfun:NMmultiplesof2', ... 0(\+-<  
              'All N and M must differ by multiples of 2 (including 0).') q=5l4|1  
    end %1}6q`:w  
    >k(MUmhX  
    if any(m>n) b2) \ MNH  
        error('zernfun:MlessthanN', ... ,YLF+^w-  
              'Each M must be less than or equal to its corresponding N.') \3zj18(@8!  
    end j^SZnMQf  
    ^mPPyT,(  
    if any( r>1 | r<0 ) bS^WhZy'(  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ?M}S| dsmE  
    end |a(fejO3  
    [EZYsOr.  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ALT^8c&K  
        error('zernfun:RTHvector','R and THETA must be vectors.') QMp r v*i  
    end 4IsG=7   
    Sycw %k  
    r = r(:); <+U|dX  
    theta = theta(:); Ew,T5GG  
    length_r = length(r); 0D~ Tga)  
    if length_r~=length(theta) J"CJYuGW,  
        error('zernfun:RTHlength', ... WFv!Pbq,  
              'The number of R- and THETA-values must be equal.') I.jZ wW!r  
    end eN>0wd5{L  
    *3+-W  
    % Check normalization: ZxHJ<2oD  
    % -------------------- oy\B;aAK  
    if nargin==5 && ischar(nflag) q{' ~+Nq  
        isnorm = strcmpi(nflag,'norm'); "v]%3i.* -  
        if ~isnorm yfj(Q s  
            error('zernfun:normalization','Unrecognized normalization flag.') -j`LhS~|  
        end \~DM   
    else \ v2H^j/  
        isnorm = false; 7{M>!} rY  
    end veh 5 }2  
    \;9W.d1iU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {|<"C?  
    % Compute the Zernike Polynomials ]\c,BWC@e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PlxIf  L  
    Te-Amu  
    % Determine the required powers of r: %w}gzxN^  
    % ----------------------------------- uh3) 0.nR  
    m_abs = abs(m); )N !>=  
    rpowers = []; fg*@<'  
    for j = 1:length(n) @F5f"8!.\  
        rpowers = [rpowers m_abs(j):2:n(j)]; ?vtX"Fdz  
    end >FF5x#^&c  
    rpowers = unique(rpowers); -"TR\/  
    I -@?guZ r  
    % Pre-compute the values of r raised to the required powers, \=e8%.#@J  
    % and compile them in a matrix: .zj0Jy8N  
    % ----------------------------- k2^a$k}  
    if rpowers(1)==0 .qD@ Y3-  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); S-F o  
        rpowern = cat(2,rpowern{:}); }VCI=?-  
        rpowern = [ones(length_r,1) rpowern]; O l@_(U  
    else #5ax^p2*~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }SfbCa)UO  
        rpowern = cat(2,rpowern{:}); bud&R4+  
    end 't (O$  
    Z|m`7xeCy  
    % Compute the values of the polynomials: >)nS2b OE  
    % -------------------------------------- '+y_\  
    y = zeros(length_r,length(n)); fw-\|fP  
    for j = 1:length(n) vT{kL  
        s = 0:(n(j)-m_abs(j))/2; gwB\<rzG  
        pows = n(j):-2:m_abs(j); zqySm) o]  
        for k = length(s):-1:1 '-PC7"o  
            p = (1-2*mod(s(k),2))* ... Kuw^qX"  
                       prod(2:(n(j)-s(k)))/              ... !u|Tu4G^  
                       prod(2:s(k))/                     ... >t+ qe/  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... JgfVRqm   
                       prod(2:((n(j)+m_abs(j))/2-s(k))); hsNWqk qys  
            idx = (pows(k)==rpowers); %j,iAUE<  
            y(:,j) = y(:,j) + p*rpowern(:,idx); TpfZ>d2  
        end |`O5Xs1{B  
         hvV_xD8|  
        if isnorm 4vZ4/#(x  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ;O#g"8  
        end z!wDpG7b  
    end #KpY6M-H  
    % END: Compute the Zernike Polynomials p.JXS n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cNK)5- U  
    @4+#Xd7"  
    % Compute the Zernike functions: m?CZQq,  
    % ------------------------------ !7p}C-RZp  
    idx_pos = m>0; l&(l$@t  
    idx_neg = m<0; b'p4wE>  
    ^q[gxuL_  
    z = y; rxZi8w>}  
    if any(idx_pos) o+O}Te  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8G^<[`.@j  
    end K`%tGVY  
    if any(idx_neg) B|=|.qp$)  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); [3/VCYje  
    end },-*  
    e79KbLV  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Q\Kx"Y3i  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. u eb-2[=  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated E)N<lh  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ;\;M =&{}  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, g(x9S'H3l  
    %   and THETA is a vector of angles.  R and THETA must have the same  \[:/CxP  
    %   length.  The output Z is a matrix with one column for every P-value, N5U)*U'-u  
    %   and one row for every (R,THETA) pair. ;T+pu>)  
    % `RRE(SiKU  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike cW8\d  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 62'1X"  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) {r85l\u)Q\  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 bJ /5|E?  
    %   for all p. AvJ,SQt  
    % hcCp,b  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ]88];?KS}  
    %   Zernike functions (order N<=7).  In some disciplines it is VaONd0Z I  
    %   traditional to label the first 36 functions using a single mode @p=AWi}\  
    %   number P instead of separate numbers for the order N and azimuthal jvy$t$az  
    %   frequency M. KDP H6  
    % CO+/.^s7}S  
    %   Example: d4?d4;{  
    % )~)*=u/  
    %       % Display the first 16 Zernike functions  Y k7-`  
    %       x = -1:0.01:1; Y4.Eq+$gh  
    %       [X,Y] = meshgrid(x,x); bru/AZ#de  
    %       [theta,r] = cart2pol(X,Y); arK_oh0B  
    %       idx = r<=1; Lv[OUW#S  
    %       p = 0:15; Y5q3T`x E  
    %       z = nan(size(X)); 0C%W&;r0  
    %       y = zernfun2(p,r(idx),theta(idx)); ^L4Qbc(vJ  
    %       figure('Units','normalized') >x1p%^cA;=  
    %       for k = 1:length(p) g| <wyt[  
    %           z(idx) = y(:,k); siDh="{s  
    %           subplot(4,4,k) 58xnB!h\}  
    %           pcolor(x,x,z), shading interp ti5HrKIw  
    %           set(gca,'XTick',[],'YTick',[]) @F*wg  
    %           axis square |R/.r_x,V?  
    %           title(['Z_{' num2str(p(k)) '}']) !5@_j,lW(  
    %       end `Mj}md;O"  
    % '\#EIG  
    %   See also ZERNPOL, ZERNFUN. m#/_x  
    1nknSw#  
    %   Paul Fricker 11/13/2006  $!@\  
    >ydRSr^  
    #EGA#SKoq  
    % Check and prepare the inputs: h0vob_Fdl  
    % ----------------------------- 3-n1 9[zk  
    if min(size(p))~=1 4674SzL  
        error('zernfun2:Pvector','Input P must be vector.') }ArpPU :]  
    end 2aA`f7  
    lfsqC};#\  
    if any(p)>35 YZ$ZcfXDW  
        error('zernfun2:P36', ... zQ6p+R7D  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... %6%<?jZ  
               '(P = 0 to 35).']) T^<>Xiam  
    end rX7QbAB  
    w2O!M!1  
    % Get the order and frequency corresonding to the function number: xda; K~w  
    % ---------------------------------------------------------------- g.JN_t5  
    p = p(:); gd/H``x|Y  
    n = ceil((-3+sqrt(9+8*p))/2); ,tH5e&=U01  
    m = 2*p - n.*(n+2); ,6^ znOt  
    `IpA.| Y  
    % Pass the inputs to the function ZERNFUN: `i +g{kE2M  
    % ---------------------------------------- hG~reVNf  
    switch nargin ^vs=f 95  
        case 3 OYC_;CP  
            z = zernfun(n,m,r,theta); HBE.F&C88  
        case 4 PYRd] %X  
            z = zernfun(n,m,r,theta,nflag); p}b/XnV$~  
        otherwise Z BUArIC  
            error('zernfun2:nargin','Incorrect number of inputs.') $/1c= Y@  
    end *1Z5+uVT[  
    dBV7Te4L  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) vKwQXR~C  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Ioy  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of wv QMnE8\  
    %   order N and frequency M, evaluated at R.  N is a vector of {j{+0V  
    %   positive integers (including 0), and M is a vector with the ;|p$\26S)%  
    %   same number of elements as N.  Each element k of M must be a '1fNBH2  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) t%zpNd2lk  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is lJP1XzN_  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix  O|A_PyW  
    %   with one column for every (N,M) pair, and one row for every kc'pN&]r:  
    %   element in R. LWsP ya  
    % `dMqe\o%!  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- YJS{i  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is l:6,QaT1  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to MC((M,3L  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 GT hL/M  
    %   for all [n,m]. u JR%0E7!  
    % Kz<@x`0   
    %   The radial Zernike polynomials are the radial portion of the D9mz9  
    %   Zernike functions, which are an orthogonal basis on the unit !}\4u tHY  
    %   circle.  The series representation of the radial Zernike 5 )2:stT73  
    %   polynomials is ^[Ua46/"m  
    % dLsn\m>  
    %          (n-m)/2 (\"k&O{  
    %            __ be5,U\&z  
    %    m      \       s                                          n-2s "xMD,}+5$$  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r $I#q  
    %    n      s=0 yq_LW>|Z  
    % D47R  
    %   The following table shows the first 12 polynomials. "x941 }  
    % N$Y" c*  
    %       n    m    Zernike polynomial    Normalization .*$OQA  
    %       --------------------------------------------- jEc|]E  
    %       0    0    1                        sqrt(2) Uw-p758dD  
    %       1    1    r                           2 3'c\;1lhT  
    %       2    0    2*r^2 - 1                sqrt(6) 'sp-%YlM -  
    %       2    2    r^2                      sqrt(6) 8,O33qwH  
    %       3    1    3*r^3 - 2*r              sqrt(8) P^MOx4  
    %       3    3    r^3                      sqrt(8) H* ,,^  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) S~qZr  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) b,P]9$Ut  
    %       4    4    r^4                      sqrt(10) }7{t^>;D  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Obw?_@X  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) mD:IO  
    %       5    5    r^5                      sqrt(12) nFX_+4V2  
    %       --------------------------------------------- 5dx&Qu'}ZS  
    % =5D nR  
    %   Example: d"G+8}.4  
    % IdIrI  
    %       % Display three example Zernike radial polynomials oIGrA-T}  
    %       r = 0:0.01:1; Md)zEj`\  
    %       n = [3 2 5]; V~GWl1#7  
    %       m = [1 2 1]; =k3!RW'  
    %       z = zernpol(n,m,r); o01kYBD  
    %       figure SUWD]k>PH  
    %       plot(r,z) J" j.'.  
    %       grid on IYWjH E+)d  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') +^rh[>W  
    % " "O"  
    %   See also ZERNFUN, ZERNFUN2. JO&JP3N1  
    $d+DDm1o  
    % A note on the algorithm. rzrl>9 h  
    % ------------------------ M)?dEgU}M  
    % The radial Zernike polynomials are computed using the series : FAH\  
    % representation shown in the Help section above. For many special TUL_TR  
    % functions, direct evaluation using the series representation can X.ONa_  
    % produce poor numerical results (floating point errors), because rI5F oh6  
    % the summation often involves computing small differences between jk\ dG16  
    % large successive terms in the series. (In such cases, the functions M-NV_W&M  
    % are often evaluated using alternative methods such as recurrence EG'[`<*h  
    % relations: see the Legendre functions, for example). For the Zernike qLncn}oNM  
    % polynomials, however, this problem does not arise, because the _FbC{yI8;  
    % polynomials are evaluated over the finite domain r = (0,1), and PI A)d-Z  
    % because the coefficients for a given polynomial are generally all  O#nR>1h  
    % of similar magnitude. 2y0J`!/)  
    % y`e4;*1  
    % ZERNPOL has been written using a vectorized implementation: multiple 3`hUo5K  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Kzy/9  
    % values can be passed as inputs) for a vector of points R.  To achieve e{({|V '  
    % this vectorization most efficiently, the algorithm in ZERNPOL |( (zTf  
    % involves pre-determining all the powers p of R that are required to 8pM>Co!  
    % compute the outputs, and then compiling the {R^p} into a single Gx?+9C V  
    % matrix.  This avoids any redundant computation of the R^p, and QVZD/shq  
    % minimizes the sizes of certain intermediate variables. d lH$yub  
    % d {lP  
    %   Paul Fricker 11/13/2006 RVtQ20e";r  
    a\kb^D=T  
    Ap&)6g   
    % Check and prepare the inputs: IWVlrGyM  
    % ----------------------------- LW#M@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %v5R#14[n  
        error('zernpol:NMvectors','N and M must be vectors.') #L crI  
    end JGiKBm;  
    y<W8Q<9  
    if length(n)~=length(m) hlvt$Jwq  
        error('zernpol:NMlength','N and M must be the same length.') F}Mhs17!|  
    end hovGQHg  
    p\wJD1s  
    n = n(:); JnD {J`:  
    m = m(:); <j}lp-  
    length_n = length(n); c- $Gpa}M  
    k1z$e*u&r  
    if any(mod(n-m,2)) P`$12<\O1  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') pl*~kG=  
    end y-?>*fN o  
    `T ^G^7&  
    if any(m<0) &zL#hBE  
        error('zernpol:Mpositive','All M must be positive.') fbrp#G71y  
    end ?{o/I\\  
    >QQ(m\a$  
    if any(m>n) m:tiY [c>W  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') l2v_?j-)x  
    end Q+|{Bs)6i1  
    Q>}2cDl  
    if any( r>1 | r<0 ) ;SwC&.I  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 5`^o1nGO'  
    end ~KjJ\b)R  
    =<f-ob8,  
    if ~any(size(r)==1) oR+-+-? ?$  
        error('zernpol:Rvector','R must be a vector.') {B$2"q/~  
    end $KV&\Q3\0  
    n[xkSF^)  
    r = r(:); xIbMs4'iEx  
    length_r = length(r); X[C3&NX#_  
    a+41|)pt  
    if nargin==4 F SMj  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ZU'!iU|8  
        if ~isnorm 4C_c\;d  
            error('zernpol:normalization','Unrecognized normalization flag.') t *6loS0+  
        end S^RUw  
    else _68BP)nz>.  
        isnorm = false; -=$2p0" R  
    end !jX4`/n2  
    _fTwmnA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  GrJ#.  
    % Compute the Zernike Polynomials MlO-+}`_+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *}b]rjsj  
    ?v]-^X=&  
    % Determine the required powers of r: j28_Hh T  
    % ----------------------------------- >.9eBz@  
    rpowers = []; c|p,/L09L  
    for j = 1:length(n) uq7T{7~<  
        rpowers = [rpowers m(j):2:n(j)]; ,+/zH'U}  
    end #5CI)4x0!  
    rpowers = unique(rpowers); eBB:~,C^q.  
    _]#klL  
    % Pre-compute the values of r raised to the required powers, =fLL|  
    % and compile them in a matrix: wJ"ev.A)  
    % ----------------------------- *DeTqO65  
    if rpowers(1)==0 ,krS-.  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); </oY4$l'  
        rpowern = cat(2,rpowern{:}); ,4F,:w  
        rpowern = [ones(length_r,1) rpowern]; uZjI?Z.A  
    else Z_z#QX>=D  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7Ur?ep  
        rpowern = cat(2,rpowern{:}); W*T{,M@Y  
    end {XY3Xo  
    ,TC~~EWq  
    % Compute the values of the polynomials: D!> d0k,Y  
    % -------------------------------------- v#w_eqg  
    z = zeros(length_r,length_n); Rq)BssdF  
    for j = 1:length_n ^[# & ^[-V  
        s = 0:(n(j)-m(j))/2; 9w^zY ;Y  
        pows = n(j):-2:m(j); /lD?VE  
        for k = length(s):-1:1 )*1.eObhL  
            p = (1-2*mod(s(k),2))* ... s"#]L44N  
                       prod(2:(n(j)-s(k)))/          ... lglYJ,  
                       prod(2:s(k))/                 ... I@Z)<5Zf  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... crmUrF#  
                       prod(2:((n(j)+m(j))/2-s(k))); aO1IVESr$  
            idx = (pows(k)==rpowers); BA+_C]%ZJ  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ," R>}kPli  
        end NrJzVGeS  
          WR.x&m>  
        if isnorm qc8Ta"  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); \2DE ==M)P  
        end g'lT  
    end E20&hc5 8  
    5{l1A (b  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ~M(pCSJ[  
    B)(w%\M4^  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 c{ZqQtfM  
    JG1LS$p^  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)