非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 -Z;:_"&9
function z = zernfun(n,m,r,theta,nflag) G)e 20Mst
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. vW4f 3(/
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Uc6U!X
% and angular frequency M, evaluated at positions (R,THETA) on the \\/X+4|o'
% unit circle. N is a vector of positive integers (including 0), and gf3/ kll9
% M is a vector with the same number of elements as N. Each element mYy3KqYu
% k of M must be a positive integer, with possible values M(k) = -N(k) { j/w3
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ZR#UoYjupb
% and THETA is a vector of angles. R and THETA must have the same sP+S86
u
% length. The output Z is a matrix with one column for every (N,M) +'KM~c?]
% pair, and one row for every (R,THETA) pair. fe0 Y^vW
% Jz|(B_U
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike mWGT
(`|~/
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), F;_;lRAb
% with delta(m,0) the Kronecker delta, is chosen so that the integral u#P7~9ZG-
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, '8Gw{&&
% and theta=0 to theta=2*pi) is unity. For the non-normalized 3;M!]9ms
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. aSK$#Xeu
% }YSH8d
% The Zernike functions are an orthogonal basis on the unit circle. L`Ic0}|lzy
% They are used in disciplines such as astronomy, optics, and A5/h*`Q\\
% optometry to describe functions on a circular domain. Kp&d9e{
Yc
% .6'T;SoK>
% The following table lists the first 15 Zernike functions. @+2Zt%
% z[k2&=c
% n m Zernike function Normalization ,J~1~fg89
% -------------------------------------------------- WI6er;D
% 0 0 1 1 jG^~{7#
% 1 1 r * cos(theta) 2 # / 4Wcz<
% 1 -1 r * sin(theta) 2 sV+>(c-$
% 2 -2 r^2 * cos(2*theta) sqrt(6) '+eP%Y[W%
% 2 0 (2*r^2 - 1) sqrt(3) C9nNziws
% 2 2 r^2 * sin(2*theta) sqrt(6) P#0_
% 3 -3 r^3 * cos(3*theta) sqrt(8) V*TG%V -
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ~Ep&:c4:D
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) P9'5=e@jB
% 3 3 r^3 * sin(3*theta) sqrt(8) awawq9)Y
% 4 -4 r^4 * cos(4*theta) sqrt(10) l9jcoVo.
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Hv=coS>g:
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5)
h!Q>h7
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F-R`'{ ka
% 4 4 r^4 * sin(4*theta) sqrt(10) ]I]dwi_g)
% -------------------------------------------------- ydFY<Mb(o
% rvG qUmSUs
% Example 1: Mfz5:'
% $K iMu
% % Display the Zernike function Z(n=5,m=1) k]JLk"K
% x = -1:0.01:1; vbFAS:Y:+
% [X,Y] = meshgrid(x,x); B8nXWi
% [theta,r] = cart2pol(X,Y); 4R0_%x6vG
% idx = r<=1; p!691LI
% z = nan(size(X)); pQ/:*cd+M
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ENmo^O#,u
% figure *[U:'o`67
% pcolor(x,x,z), shading interp nJ? C 4\#3
% axis square, colorbar G]S E
A
% title('Zernike function Z_5^1(r,\theta)') hw7_8pAbh
% m=K XMX
% Example 2: {NFeX'5bP
% 226s:\d
% % Display the first 10 Zernike functions \?g%>D:O;
% x = -1:0.01:1; %MIu;u FR
% [X,Y] = meshgrid(x,x); 9@j~1G%^
% [theta,r] = cart2pol(X,Y); M&K@><6k,k
% idx = r<=1; c`>\R<Z ]
% z = nan(size(X)); :X!(^a;]
% n = [0 1 1 2 2 2 3 3 3 3]; Q?>#sN,
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 0{,zE
% Nplot = [4 10 12 16 18 20 22 24 26 28]; GGBe/X
% y = zernfun(n,m,r(idx),theta(idx)); =UV?Pi*M>
% figure('Units','normalized') ,'9tR&S$_
% for k = 1:10 VgdkCdWRm_
% z(idx) = y(:,k); .$yw;go3
% subplot(4,7,Nplot(k)) 06`__$@h
% pcolor(x,x,z), shading interp Z:*U/_G
% set(gca,'XTick',[],'YTick',[]) {)[i\=,`{
% axis square j@ "`!uPz
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .
9
NS
% end 9,Mp/.T" \
% *HC8kD a%$
% See also ZERNPOL, ZERNFUN2. {7wvC)WW
e\dT~)c
% Paul Fricker 11/13/2006 <Hp"ZCN
^"Y'zIL
R*y[/Aw
% Check and prepare the inputs: rNAu@B
% ----------------------------- z>{KeX:
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) EH3G|3^xz
error('zernfun:NMvectors','N and M must be vectors.') )k1,oUx
end 7L]?)2=
^M9oTNk2
if length(n)~=length(m) ~
/[Cgh0
error('zernfun:NMlength','N and M must be the same length.') mx[^LaR>v
end So^`L s;S
)L!R~F
C
n = n(:); 5 QeGx3'
m = m(:); 3oKGeB;Ja
if any(mod(n-m,2)) =,
0a3D6b
error('zernfun:NMmultiplesof2', ... 10rGA=x'(
'All N and M must differ by multiples of 2 (including 0).') JXAyF6
$
end Psa8OJan
p^:Lj 9Qax
if any(m>n) 9H}&Ri%
error('zernfun:MlessthanN', ... 7`/qL "
'Each M must be less than or equal to its corresponding N.') c 2@@Rd~M
end OW}A48X[+
D5>~'N3b
if any( r>1 | r<0 ) <f6PULm
error('zernfun:Rlessthan1','All R must be between 0 and 1.') `Y;gMrp
end Vr1|%*0Tv
IpJ v\zH7
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) DRoxw24
error('zernfun:RTHvector','R and THETA must be vectors.') AL7O -D
end ?GarD3#A
cQ41NX@I
r = r(:); ?<?C*W_
theta = theta(:); LwPM7S~ *
length_r = length(r); ewG21 q$
if length_r~=length(theta) c.Y8CD.tqL
error('zernfun:RTHlength', ... Q/n.T0Z^
'The number of R- and THETA-values must be equal.') Nj_sU0Dt
end "V0:Lq
3x0wk9lND
% Check normalization: cmU+VZ#pk
% -------------------- CD1=2
if nargin==5 && ischar(nflag) _ICDtG^
isnorm = strcmpi(nflag,'norm'); b6Hk20+B;
if ~isnorm ;cn.s,
error('zernfun:normalization','Unrecognized normalization flag.') ls\E%d
end t)Q@sKT6
else !#I/be]
isnorm = false; U_;J.{n
end $ F7gH
AdW2o|Uap
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /7@2Qc2
% Compute the Zernike Polynomials V8$bPVps
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K=?F3tX^
><MgIV
% Determine the required powers of r: 7B\(r~f`t
% ----------------------------------- w00\1'-Kz
m_abs = abs(m); }!]x|zU.=
rpowers = []; 25c!-.5D
for j = 1:length(n) o;>3z*9?3
rpowers = [rpowers m_abs(j):2:n(j)]; $A@3ogoS&
end wLN2`ucC
rpowers = unique(rpowers); niEEm`"
P&3/nL$9N
% Pre-compute the values of r raised to the required powers, *.]E+MYi*
% and compile them in a matrix: ,."(Gp
% ----------------------------- *\:_o5o%[T
if rpowers(1)==0 \seG2vw$
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?U/Wio$@
rpowern = cat(2,rpowern{:}); O;e8ft
'|
rpowern = [ones(length_r,1) rpowern]; ^=Ct Aa2
else XH:gQ 9FD
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _#D\*0J
rpowern = cat(2,rpowern{:}); >_aio4j}r
end ,V]A63J
7;}3{z
% Compute the values of the polynomials: x~9z`d{!
% -------------------------------------- k?/ v y9
y = zeros(length_r,length(n)); z2Y_L8u2
for j = 1:length(n) +
lB+|yJ+
s = 0:(n(j)-m_abs(j))/2; J&"?m.~@
pows = n(j):-2:m_abs(j); (d'j'U:C
for k = length(s):-1:1 NC.P2^%
p = (1-2*mod(s(k),2))* ... mOgOHb2
prod(2:(n(j)-s(k)))/ ... A]iv)C;]
prod(2:s(k))/ ... r d6F"W
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... g{W6a2
prod(2:((n(j)+m_abs(j))/2-s(k))); f >)Tq'
idx = (pows(k)==rpowers); 8f,'p}@!d
y(:,j) = y(:,j) + p*rpowern(:,idx); R=amKLD?
end b4)*<Zp`
mbX)'. +L
if isnorm S
$_Y/x
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {y&\?'L'
end N+s?ZE*
end B221}t
% END: Compute the Zernike Polynomials XiRT|%j
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CaYos;Pl
`
-[Bo
% Compute the Zernike functions: S#h'\/S
% ------------------------------ 5hJYy`h~
idx_pos = m>0; 2z.8rNwT
idx_neg = m<0; RO%tuU,-
up&N CX
z = y; -4vHK!l
if any(idx_pos) ^%5~;
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6MQs \ J6.
end ii_|)udz
if any(idx_neg) b=K6IX;
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); D/S>w(=
end =XMD+
[+%d3+27
% EOF zernfun