非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #6W,6(#^#
function z = zernfun(n,m,r,theta,nflag) SY1GR n
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. VE]6wwV2
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %8w9E=
% and angular frequency M, evaluated at positions (R,THETA) on the ,[`$JNc
% unit circle. N is a vector of positive integers (including 0), and <'&F;5F3V
% M is a vector with the same number of elements as N. Each element //.>>-~1m
% k of M must be a positive integer, with possible values M(k) = -N(k) :c7CiP
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, }+0z,s~0.
% and THETA is a vector of angles. R and THETA must have the same 6peyh_
% length. The output Z is a matrix with one column for every (N,M) QU/3X 1W
% pair, and one row for every (R,THETA) pair. \84v-VK
% (Z-l/)Q
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1h=D4yN
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 73
V"s
% with delta(m,0) the Kronecker delta, is chosen so that the integral [U.v:tR
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {Q~7M$
% and theta=0 to theta=2*pi) is unity. For the non-normalized ~Ltr.ci
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. JE!("]&
% u9]1X1wV
% The Zernike functions are an orthogonal basis on the unit circle. )X5(#E
% They are used in disciplines such as astronomy, optics, and 0@pu@ DP~
% optometry to describe functions on a circular domain. |0
!I5|<k
% maC>LBa2/
% The following table lists the first 15 Zernike functions. !M;A*:-
% ?`AGF%zp
% n m Zernike function Normalization IU!Ht>
% -------------------------------------------------- fbC~WV#
% 0 0 1 1 2dbRE:v5
% 1 1 r * cos(theta) 2 rLF*DB3l
% 1 -1 r * sin(theta) 2 ssl&5AS
% 2 -2 r^2 * cos(2*theta) sqrt(6) #3MKH8k&~
% 2 0 (2*r^2 - 1) sqrt(3) qn"K9k
% 2 2 r^2 * sin(2*theta) sqrt(6) % fhNxR
% 3 -3 r^3 * cos(3*theta) sqrt(8) AhxGj+
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 3nFt1E
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) n?E}b$6
% 3 3 r^3 * sin(3*theta) sqrt(8) fz}?*vPW
% 4 -4 r^4 * cos(4*theta) sqrt(10) u7=T(4a
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) p=gX!4,9<
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) - k`.j
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) it1/3y
=]
% 4 4 r^4 * sin(4*theta) sqrt(10) `.^ |]|u
% -------------------------------------------------- z%:1)
% };S0 G!
% Example 1: x(~<