切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11307阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 (Clkv  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! T"}vAG( .O  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 bB;5s`-  
    function z = zernfun(n,m,r,theta,nflag) h@]XBv  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. JOim3(5?s  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Sw^u3  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ">j j  
    %   unit circle.  N is a vector of positive integers (including 0), and 84pFc;<  
    %   M is a vector with the same number of elements as N.  Each element wtV#l4  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) c>~*/%+  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 3% ;a)c;D  
    %   and THETA is a vector of angles.  R and THETA must have the same R= o2K  
    %   length.  The output Z is a matrix with one column for every (N,M) ;H.^i|_/  
    %   pair, and one row for every (R,THETA) pair. WPG(@zD  
    % PO 7Lf#9]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @\P;W(m.i  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), pDCeQ6?  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral @)&=%  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 5vZ^0yFQ  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized :s6o"VkW  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. U,-39mr  
    % >:!X.TG$  
    %   The Zernike functions are an orthogonal basis on the unit circle. pKrN:ExB"\  
    %   They are used in disciplines such as astronomy, optics, and s)Cjc.Qs  
    %   optometry to describe functions on a circular domain. TNh1hhJ$b  
    % E5lBdM>2  
    %   The following table lists the first 15 Zernike functions. !*. -`$x  
    % 6Yxh9*N~]  
    %       n    m    Zernike function           Normalization f|lU6EkU  
    %       -------------------------------------------------- `eCo~(F y  
    %       0    0    1                                 1 7 uKY24  
    %       1    1    r * cos(theta)                    2 !pdb'*,n  
    %       1   -1    r * sin(theta)                    2 Rn I&8  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) o;R2p $  
    %       2    0    (2*r^2 - 1)                    sqrt(3) JU5C}%Q6  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Nyj( 0W  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Mz~D#6=  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) iBgx  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) .KUv( -  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) l +OFw)8od  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) +sUFv)!4  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ApV~( k)W  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) r^a7MHY1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) os={PQRD  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) iv;Is[<o  
    %       -------------------------------------------------- scou%K  
    % m~d]a$KQ5-  
    %   Example 1: EbE-}>7OO  
    % B1C-J/J  
    %       % Display the Zernike function Z(n=5,m=1) usCt#eZK  
    %       x = -1:0.01:1; s<eb;Z2D  
    %       [X,Y] = meshgrid(x,x); {U m)15K  
    %       [theta,r] = cart2pol(X,Y); 4 f'V8|QM{  
    %       idx = r<=1; lqZ5?BD1  
    %       z = nan(size(X)); 5}]"OXQ  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); '*w00  
    %       figure EYEnN  
    %       pcolor(x,x,z), shading interp ~W+kiTsD?  
    %       axis square, colorbar /%TI??PGu  
    %       title('Zernike function Z_5^1(r,\theta)') FZ,#0ZYJGP  
    % W=vP]x >J  
    %   Example 2: QpA/SmJ  
    % C3],n   
    %       % Display the first 10 Zernike functions J| bd)0  
    %       x = -1:0.01:1; $#S&QHyEe  
    %       [X,Y] = meshgrid(x,x); Sf7\;^  
    %       [theta,r] = cart2pol(X,Y); ,>-< (Qi  
    %       idx = r<=1; Dq5j1m.  
    %       z = nan(size(X)); )~] (&  
    %       n = [0  1  1  2  2  2  3  3  3  3]; .=;3d~.]  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; f@DYN!Z_m  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 8b-Q F  
    %       y = zernfun(n,m,r(idx),theta(idx)); F,dx2ZPIs?  
    %       figure('Units','normalized') cy3B({PLy  
    %       for k = 1:10 L3--r  
    %           z(idx) = y(:,k); _Khc3Jo  
    %           subplot(4,7,Nplot(k)) F,MO@&ue"  
    %           pcolor(x,x,z), shading interp S.m{eur!,E  
    %           set(gca,'XTick',[],'YTick',[]) ruzspS  
    %           axis square `t9?=h!  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) O_ DtvjI'  
    %       end x+x40!+\  
    % 0#&5.Gr)  
    %   See also ZERNPOL, ZERNFUN2. fb8g7H|  
    *ikc]wQr$  
    %   Paul Fricker 11/13/2006 -}=%/|\FG  
    l q&wXi  
    FCuB\ Q  
    % Check and prepare the inputs: e5B Qr$j  
    % ----------------------------- ReI/]#Us  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5>j)kx=J9  
        error('zernfun:NMvectors','N and M must be vectors.') #+5pgD2C  
    end Jjv=u   
    "a1n_>#Fb  
    if length(n)~=length(m) dhr3,&+T2  
        error('zernfun:NMlength','N and M must be the same length.') @I/]D6 ~"  
    end 3]UUG  
    ^!z [t\$  
    n = n(:);  H77"  
    m = m(:); yo )%J  
    if any(mod(n-m,2)) ;@Z#b8aM}  
        error('zernfun:NMmultiplesof2', ... Vq;A>  
              'All N and M must differ by multiples of 2 (including 0).') G *;a^]-  
    end "WK{ >T  
    ?1$fJ3  
    if any(m>n) M9@ri^x  
        error('zernfun:MlessthanN', ... ;b(p=\i  
              'Each M must be less than or equal to its corresponding N.') oifv+oY  
    end :^x?2% ~K.  
    ~-m"   
    if any( r>1 | r<0 ) ^__Dd)(  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ICkp$u^  
    end J@X'PG< 6B  
    lh D,\3/O  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) oDYRQozo>  
        error('zernfun:RTHvector','R and THETA must be vectors.') BWuqo  
    end QC;^xG+W  
     KiOcu=F  
    r = r(:); iN0nw]_*  
    theta = theta(:); .0O2Qqdg  
    length_r = length(r); {0^&SI"5`E  
    if length_r~=length(theta) 3?Pn6J{O  
        error('zernfun:RTHlength', ... ,gOOiB }  
              'The number of R- and THETA-values must be equal.') !M]\I&  
    end [$"n^5_~  
    I=9!Rs(QF  
    % Check normalization: g[7#w,o  
    % -------------------- 16i "Yg!*  
    if nargin==5 && ischar(nflag) mAW, ?h  
        isnorm = strcmpi(nflag,'norm'); )R  2.  
        if ~isnorm $g+[yb7@  
            error('zernfun:normalization','Unrecognized normalization flag.') Xo*%/0q'  
        end '@CR\5 @  
    else iVTGF<  
        isnorm = false; ?Wt$6{)  
    end `8>Py~  
    deixy. |  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JPWOPB'H  
    % Compute the Zernike Polynomials &F5@6nJ`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (S`2[.j  
    &0(  
    % Determine the required powers of r: 9>rPe1iv  
    % ----------------------------------- T%n2$  
    m_abs = abs(m); ZwerDkd  
    rpowers = []; pzgSg[|  
    for j = 1:length(n) $aPfGZ<i  
        rpowers = [rpowers m_abs(j):2:n(j)]; _#}n~}d  
    end F. =Bnw/-  
    rpowers = unique(rpowers); 9Xo[(h)5d  
    *[R eb %  
    % Pre-compute the values of r raised to the required powers, V{&rQ@{W  
    % and compile them in a matrix: Css l{B  
    % ----------------------------- dVo.Czyd  
    if rpowers(1)==0 U*P. :BvG  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); yxq}QSb \3  
        rpowern = cat(2,rpowern{:}); lP!;3iJ B  
        rpowern = [ones(length_r,1) rpowern]; "a/ Q%.P  
    else FwZ>{~?3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); P7f,OY<@%o  
        rpowern = cat(2,rpowern{:}); .eO?Z^  
    end w L^%w9q-  
    NwR}yb6  
    % Compute the values of the polynomials: t"YNgC ^  
    % -------------------------------------- d/e|'MPX  
    y = zeros(length_r,length(n)); LW:LFzp  
    for j = 1:length(n) `\6?WXk3T  
        s = 0:(n(j)-m_abs(j))/2; I]y.8~xs  
        pows = n(j):-2:m_abs(j); mTEx,   
        for k = length(s):-1:1 }Lw>I94e  
            p = (1-2*mod(s(k),2))* ... !'*csg  
                       prod(2:(n(j)-s(k)))/              ... O8W7<Wc |z  
                       prod(2:s(k))/                     ... {?}*1,I  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... fQ=MJ7l  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); e<#DdpX!H~  
            idx = (pows(k)==rpowers); !!nuAQ"E[  
            y(:,j) = y(:,j) + p*rpowern(:,idx); +/;*|  
        end "A)( "  
         ?}Lg)EFH  
        if isnorm GzTq5uU&  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }O4se"xK  
        end 08m;{+|vY  
    end K!mOr  
    % END: Compute the Zernike Polynomials nPgeLG"00  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :g\rQazxO  
    oq_6L\ ~  
    % Compute the Zernike functions: 35x 0T/8  
    % ------------------------------ leiW4Fj  
    idx_pos = m>0; %&\jOq~  
    idx_neg = m<0; @MK"X}3  
    =_8Tp~j  
    z = y; @i3bgx>_o  
    if any(idx_pos) vkRi5!bR  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); R, 8s_jN  
    end <p?&udqD  
    if any(idx_neg) lRP1&FH0  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ?n\*,{9  
    end y9|K|xO[  
    *X38{r j  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ehAu^^Q>  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ,A5)<}  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated !z zW2>  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Y#01o&f0n  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 8S;CFyT\n  
    %   and THETA is a vector of angles.  R and THETA must have the same i(6J>^I  
    %   length.  The output Z is a matrix with one column for every P-value, n|4;Hn1V  
    %   and one row for every (R,THETA) pair. m$$?icA  
    % 0D(cXzQP  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike G;oFTP>o  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) (a6?s{(  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) b]]N{: I  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 C6& ( c  
    %   for all p. 7XyOB+aQO  
    % cUDgM  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 $'[q4wo<  
    %   Zernike functions (order N<=7).  In some disciplines it is r FL$QC2  
    %   traditional to label the first 36 functions using a single mode cVq}c?  
    %   number P instead of separate numbers for the order N and azimuthal }+Vv0jX|V  
    %   frequency M. yD)"c .  
    % ;' e@t8i6  
    %   Example: ad`_>lA4Lp  
    % ^i:\@VA:  
    %       % Display the first 16 Zernike functions r[Zq3  
    %       x = -1:0.01:1; H"+c)FGi  
    %       [X,Y] = meshgrid(x,x); 0d\~"4 R  
    %       [theta,r] = cart2pol(X,Y); 0D)`2W  
    %       idx = r<=1; oVB"f  
    %       p = 0:15; Eb.;^=x  
    %       z = nan(size(X)); z4} %TT@^  
    %       y = zernfun2(p,r(idx),theta(idx)); Y&'8VdW  
    %       figure('Units','normalized') ?|t/mo|K?  
    %       for k = 1:length(p) h#3m4<w(9  
    %           z(idx) = y(:,k); a]VGUW-  
    %           subplot(4,4,k) a`Z{ xme =  
    %           pcolor(x,x,z), shading interp g<[rH%\6fg  
    %           set(gca,'XTick',[],'YTick',[]) (clU$m+oXX  
    %           axis square Y~"9L|`f/  
    %           title(['Z_{' num2str(p(k)) '}']) Ud3""C5B  
    %       end S>ugRasZ$  
    % MMD<I6Iyv  
    %   See also ZERNPOL, ZERNFUN. H|+tC=]4IZ  
    h}=M^SL  
    %   Paul Fricker 11/13/2006 SQKt}kDbM  
    c#q"\"  
    <FmBa4ONU  
    % Check and prepare the inputs: DA LQ<iF  
    % ----------------------------- Dc FCKji  
    if min(size(p))~=1 u;n(+8sz  
        error('zernfun2:Pvector','Input P must be vector.') mTEVFm  
    end 'H=weH  
    ~5t?C<wo  
    if any(p)>35 o?!uX|Fy  
        error('zernfun2:P36', ... =FBIrw{w  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... bc}dYK3$q  
               '(P = 0 to 35).'])  0:dB 9  
    end ?*K<*wBw#  
    YIDg'a+z  
    % Get the order and frequency corresonding to the function number: z/vDgH!s  
    % ---------------------------------------------------------------- d1NE%hg3  
    p = p(:); &]3:D  
    n = ceil((-3+sqrt(9+8*p))/2); ^"tqdeCb=  
    m = 2*p - n.*(n+2); t&"5dM\  
    Wg1tip8s  
    % Pass the inputs to the function ZERNFUN: uJPH~mdW   
    % ---------------------------------------- %\yK5V5  
    switch nargin /w~C~6z @!  
        case 3 B+D`\Nlo  
            z = zernfun(n,m,r,theta); h3h8lt_ |  
        case 4 3zb)"\(R  
            z = zernfun(n,m,r,theta,nflag); /;+,mp4  
        otherwise ALR:MAXwC  
            error('zernfun2:nargin','Incorrect number of inputs.') P|N?OocE  
    end [s %\.y(q  
    WOH9%xv  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) au A.6DQ  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. g _x\T+=  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of z9fNk%  
    %   order N and frequency M, evaluated at R.  N is a vector of 0hZxN2r  
    %   positive integers (including 0), and M is a vector with the ws().IZ  
    %   same number of elements as N.  Each element k of M must be a 6)+9G_  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) KF4see;;  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is [+7"{UvT  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix +cw{aI`a8  
    %   with one column for every (N,M) pair, and one row for every ;;6\q!7`  
    %   element in R. rUvwpP"k  
    % KPg[-d  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ;<VR2U`  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is bN4d:0Y  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to mN7&%Z  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 I`#EhH  
    %   for all [n,m]. iGyVG41U  
    % Z#@6#S`  
    %   The radial Zernike polynomials are the radial portion of the :3 PGf  
    %   Zernike functions, which are an orthogonal basis on the unit 0c-QIr}m  
    %   circle.  The series representation of the radial Zernike r"1A`89  
    %   polynomials is ]t7ClT)n!  
    % =G[ H,;W  
    %          (n-m)/2 wz)m{:b<  
    %            __ |/2LWc?  
    %    m      \       s                                          n-2s ]uJM6QuQ  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 0vcET(  
    %    n      s=0 +%x^RV}  
    % 4=UI3 2v3  
    %   The following table shows the first 12 polynomials. @#1cx  
    % zAu}hVcW  
    %       n    m    Zernike polynomial    Normalization O<Jwaap  
    %       --------------------------------------------- B_b8r7Vn`  
    %       0    0    1                        sqrt(2) i:R!T,  
    %       1    1    r                           2 *;Ak5.du  
    %       2    0    2*r^2 - 1                sqrt(6) cyDiA(ot&  
    %       2    2    r^2                      sqrt(6) Za34/ro/T  
    %       3    1    3*r^3 - 2*r              sqrt(8) ^]KIgGv\  
    %       3    3    r^3                      sqrt(8) M'b:B*>6  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) JPHUmv6  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) _y|[Z;  
    %       4    4    r^4                      sqrt(10) MyK^i2eD  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) z{@= _5;  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) IBzHR[#,^  
    %       5    5    r^5                      sqrt(12) QZqp F9Eu  
    %       --------------------------------------------- $/MY,:*e  
    % B<rPvM7a  
    %   Example: S|s3}]g9  
    % d 4[poi ~  
    %       % Display three example Zernike radial polynomials (tgEa{rPAP  
    %       r = 0:0.01:1; xAFek;GY?  
    %       n = [3 2 5]; 4p*?7g_WVH  
    %       m = [1 2 1]; a"MTQFm'  
    %       z = zernpol(n,m,r); Cb+P7[X-  
    %       figure cF-Jc}h  
    %       plot(r,z) +'!h-x1y~  
    %       grid on 6R0D3kW  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') N=hSqw[  
    % ;|2U f   
    %   See also ZERNFUN, ZERNFUN2. ;D6x=v=2  
    $z~jnc  
    % A note on the algorithm. cq- e c7  
    % ------------------------ QxP` fKC8  
    % The radial Zernike polynomials are computed using the series \CP*i_:"  
    % representation shown in the Help section above. For many special p{+tFQy  
    % functions, direct evaluation using the series representation can +>n. T  
    % produce poor numerical results (floating point errors), because ajf_)G5X P  
    % the summation often involves computing small differences between `#-p,NElV  
    % large successive terms in the series. (In such cases, the functions @WMj^t1D+  
    % are often evaluated using alternative methods such as recurrence cYBrRTrI#  
    % relations: see the Legendre functions, for example). For the Zernike 4;B= Qoxe  
    % polynomials, however, this problem does not arise, because the O8!!UA8V  
    % polynomials are evaluated over the finite domain r = (0,1), and )G}sb*+v?  
    % because the coefficients for a given polynomial are generally all NdaVT5RB  
    % of similar magnitude. lr)G:I#|  
    % *Cc$eR]-  
    % ZERNPOL has been written using a vectorized implementation: multiple :YkDn~@  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] y}3 `~a  
    % values can be passed as inputs) for a vector of points R.  To achieve @^w!% ?J  
    % this vectorization most efficiently, the algorithm in ZERNPOL \"<GL;  
    % involves pre-determining all the powers p of R that are required to 7Y|Wy Oq  
    % compute the outputs, and then compiling the {R^p} into a single C@l +\M(  
    % matrix.  This avoids any redundant computation of the R^p, and H620vlC}V  
    % minimizes the sizes of certain intermediate variables. Fj[ dO&  
    % %Z-TbOX  
    %   Paul Fricker 11/13/2006 ~hxeD" w  
    NZC<m$')  
    VQZT.^  
    % Check and prepare the inputs: W$x K^}  
    % ----------------------------- AX!Md:s  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~:'gvR;x  
        error('zernpol:NMvectors','N and M must be vectors.') M%nZu{  
    end CNpCe-%&  
    $i5G7b  
    if length(n)~=length(m) XFLjVrX[  
        error('zernpol:NMlength','N and M must be the same length.')  mP`,I"u  
    end D/ NIn=>j  
    L%=BCmMx  
    n = n(:); IJL^dXCu  
    m = m(:); 4AG&z,[  
    length_n = length(n); 5d!z<{`  
    v= 8~ZDY  
    if any(mod(n-m,2)) z. Ve#~\  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') +4p2KYO  
    end ?Mgt5by  
    F ~11 _  
    if any(m<0) i&AXPq>`  
        error('zernpol:Mpositive','All M must be positive.') Rqv+N]  
    end j$JV(fz  
    Bk@_]a  
    if any(m>n) }b\ipA,~  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Ezo" f  
    end 7D9h;gsP  
    AH ?MJKY@Z  
    if any( r>1 | r<0 ) &El[  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 8tB{rK,  
    end !E(J ]a  
    P dE)m/  
    if ~any(size(r)==1) ;9- 4J  
        error('zernpol:Rvector','R must be a vector.') a'L7y%  
    end o 2$<>1^  
    h;mQ%9 Yd  
    r = r(:); bx'B;rZr  
    length_r = length(r); _s=Pk[e  
    OHXeqjhy  
    if nargin==4 ! a8h  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); '!2  
        if ~isnorm (kD?},Z  
            error('zernpol:normalization','Unrecognized normalization flag.') Iclan\q#y  
        end YH:W]  
    else p-ii($~ }  
        isnorm = false; \&|w;  
    end o2t@-dNi  
    *? orK o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S7\jR%p b  
    % Compute the Zernike Polynomials DNTRLIKa  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Yc( )'6  
    TBLk+AR  
    % Determine the required powers of r: wNlV_  
    % ----------------------------------- 19.!$;  
    rpowers = []; v \L Ip  
    for j = 1:length(n) 6CzvRvA*P  
        rpowers = [rpowers m(j):2:n(j)];  Q-3J0=  
    end hJL0M!  
    rpowers = unique(rpowers); ~(L<uFU V  
    ~S<F  
    % Pre-compute the values of r raised to the required powers, OW5|oG  
    % and compile them in a matrix: ob()+p.kK  
    % ----------------------------- F$pd]F!#  
    if rpowers(1)==0 l2_E6U"  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?f%DVK d  
        rpowern = cat(2,rpowern{:}); S7~l%G>]b  
        rpowern = [ones(length_r,1) rpowern]; "NI>HO.U  
    else 6T aT_29  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); bKbpI>;[  
        rpowern = cat(2,rpowern{:}); gB'Ah-@,P  
    end X<bj2 w  
    pJ@DHj2@  
    % Compute the values of the polynomials: JT+lWhy  
    % -------------------------------------- LZ<( :S  
    z = zeros(length_r,length_n); >w2WyYJYH  
    for j = 1:length_n x'PjP1  
        s = 0:(n(j)-m(j))/2; ^i,0n}>  
        pows = n(j):-2:m(j); za 4B+&JJ  
        for k = length(s):-1:1 OCoRcrAx  
            p = (1-2*mod(s(k),2))* ... ;@UX7NA  
                       prod(2:(n(j)-s(k)))/          ... /[|md0,  
                       prod(2:s(k))/                 ... DT~y^h  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... < EE+ S#z  
                       prod(2:((n(j)+m(j))/2-s(k))); 2ZFK jj  
            idx = (pows(k)==rpowers); Gt *<?  
            z(:,j) = z(:,j) + p*rpowern(:,idx); rcb/X`l=  
        end "I 1M$^8n  
         ${H&Q*  
        if isnorm UyfIAC$S  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); RwLdV+2\R`  
        end }qX&*DU_@  
    end IpVwnNj!}  
    =kkA  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  03T.Owd  
    sjGZ ,?%  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 K<(R Vh  
    .S;/v--F  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)