非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 8(ZQD+U(9F
function z = zernfun(n,m,r,theta,nflag) ??k^Rw+0R
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4u"O/rt
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N yy%J{;
% and angular frequency M, evaluated at positions (R,THETA) on the 6 Iup4sP
% unit circle. N is a vector of positive integers (including 0), and 1N2:4|woe
% M is a vector with the same number of elements as N. Each element 8 2_3|T
% k of M must be a positive integer, with possible values M(k) = -N(k) %]NbTTL
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, O-G4^V8
% and THETA is a vector of angles. R and THETA must have the same fa$ Fo(.
% length. The output Z is a matrix with one column for every (N,M) FzW(An&x2
% pair, and one row for every (R,THETA) pair. z<)?8tAgq
% 5<&<61[A
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;zs4>>^>
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 03#r F@e
% with delta(m,0) the Kronecker delta, is chosen so that the integral d]+g3oy
`
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, FCOSgEU
% and theta=0 to theta=2*pi) is unity. For the non-normalized Tl 9_Wi
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. QHA<7Wg
% * \f(E#wa
% The Zernike functions are an orthogonal basis on the unit circle. uI+h9j$vS
% They are used in disciplines such as astronomy, optics, and .\i9}ye
% optometry to describe functions on a circular domain. "bRck88V
% )=8X[<^i
% The following table lists the first 15 Zernike functions. i9+V<'h
% }>SHTHVye
% n m Zernike function Normalization t R*JM$T
% -------------------------------------------------- Rh~<#"G]
% 0 0 1 1 1 aIJ0#nE
% 1 1 r * cos(theta) 2 -<qci3Ba}
% 1 -1 r * sin(theta) 2 Kh3*\x T
% 2 -2 r^2 * cos(2*theta) sqrt(6) *p +%&z_<
% 2 0 (2*r^2 - 1) sqrt(3) :h?Zg(l
% 2 2 r^2 * sin(2*theta) sqrt(6) ,p0R4gi
% 3 -3 r^3 * cos(3*theta) sqrt(8) ck-wMd
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) lO)p
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) O+c@B}[!
% 3 3 r^3 * sin(3*theta) sqrt(8) spgY &OI;
% 4 -4 r^4 * cos(4*theta) sqrt(10) NNS n]LP
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |VTm5.23
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 0E{$u
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BpRQG]L
% 4 4 r^4 * sin(4*theta) sqrt(10) T|r@:t[
% -------------------------------------------------- ?GX5Pvg
% 6?z&G6
% Example 1: v?5Xx{ym
% omY%sQ{)
% % Display the Zernike function Z(n=5,m=1) #;>J<>
% x = -1:0.01:1; }h EBX:-
% [X,Y] = meshgrid(x,x); J?u",a]|H"
% [theta,r] = cart2pol(X,Y); Hz!+g'R!Gs
% idx = r<=1; %<:?{<~wH9
% z = nan(size(X)); J7_'@zU
% z(idx) = zernfun(5,1,r(idx),theta(idx)); if
r!ha+8!
% figure 1z0&+ C3z
% pcolor(x,x,z), shading interp hAKyT~[n0
% axis square, colorbar V_(lZDjh*
% title('Zernike function Z_5^1(r,\theta)') QV7K~qi
% }yC ve
% Example 2: .}%$l.#a
% -Z)$].~|t
% % Display the first 10 Zernike functions 3]M
YHb
% x = -1:0.01:1; vNHMe{,u
% [X,Y] = meshgrid(x,x); WSKG8JT^|
% [theta,r] = cart2pol(X,Y); ok2$ p
% idx = r<=1; DTsc&.29^
% z = nan(size(X)); ey@y?X=
% n = [0 1 1 2 2 2 3 3 3 3]; t&eY+3y,T
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; No!P?
% Nplot = [4 10 12 16 18 20 22 24 26 28]; a|
% y = zernfun(n,m,r(idx),theta(idx)); .0r5=
% figure('Units','normalized') l&^9<th
% for k = 1:10 u7<B*d:
% z(idx) = y(:,k); @| qnD
% subplot(4,7,Nplot(k)) %t`a-m
% pcolor(x,x,z), shading interp ;9/6X#;$
% set(gca,'XTick',[],'YTick',[]) >pT92VN
% axis square Xo;J1H
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) [AfV+$
% end J9mLW}I?NW
% WOzdYeeG
% See also ZERNPOL, ZERNFUN2. o#4Wn'E
\$<kJ||lS
% Paul Fricker 11/13/2006 #AFr@n
av&dGsFP
=
r_&R#~GT
% Check and prepare the inputs: 9v_gR52vh
% ----------------------------- *Iyv${
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) fZ 17
error('zernfun:NMvectors','N and M must be vectors.') #<MLW4P
end 6WzE'0Nyr
--dGN.*xb4
if length(n)~=length(m) WB"$NYB
error('zernfun:NMlength','N and M must be the same length.') K&Ht37T
end Xb&r|pR
;_%61ZI?M<
n = n(:); -P!vCf^{
t
m = m(:); ^Qs-@]E-
if any(mod(n-m,2)) ^kch]?
error('zernfun:NMmultiplesof2', ... _Oh;._PS
'All N and M must differ by multiples of 2 (including 0).') cJGA5m/{I
end v'2EYTVNJD
bv)E>%Yy
if any(m>n) Z"mpE+U*
error('zernfun:MlessthanN', ... L/c$p`-
'Each M must be less than or equal to its corresponding N.') GKZn|<Y|{c
end I,l%6oPa
7"Zr:|$U
if any( r>1 | r<0 ) Fx/9T2%=
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6jO*rseC
end ZL+{?1&-
);@@>~
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) !3-mPG<
]
error('zernfun:RTHvector','R and THETA must be vectors.') 9 %,_G.
end +pnT6kU|
;#G>q o
r = r(:); |0b$60m$!t
theta = theta(:); o%+KS5v!
length_r = length(r); ? Ls]k
if length_r~=length(theta) X.o[=E
error('zernfun:RTHlength', ... |U8;25Y
'The number of R- and THETA-values must be equal.') X6N^<Z$
end 3BKW
!,V8?3.aJn
% Check normalization: &bRmr/D
% -------------------- 5lxC**NA
if nargin==5 && ischar(nflag) K}1>n2P
isnorm = strcmpi(nflag,'norm'); Ni"fV]'
if ~isnorm @ J!)o d
error('zernfun:normalization','Unrecognized normalization flag.') Fu^^Jex
end ) Z0
else A&Ut:OiA
isnorm = false; |/]bpG 'z
end ?P4`
&dbX>u q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X. UN=lu
% Compute the Zernike Polynomials V}'|a<8kVv
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dWg$yH
sFx$
% Determine the required powers of r: ZBJ.dK?Ky|
% ----------------------------------- ~5:]Oux
m_abs = abs(m); '355Pce/
rpowers = []; l9qq;hhGP,
for j = 1:length(n) 5\S)8j `8
rpowers = [rpowers m_abs(j):2:n(j)]; {>5z~OV
end Rdwr?:y(]
rpowers = unique(rpowers); sog?Mvoq
H-1@z$p
% Pre-compute the values of r raised to the required powers, !#f4t]FM`B
% and compile them in a matrix: rw
^^12)
% ----------------------------- ''?.6r
if rpowers(1)==0 <Zl0$~B:5
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N{q5E,}
rpowern = cat(2,rpowern{:}); 2a (w7/W:
rpowern = [ones(length_r,1) rpowern]; C3G?dZKv2
else P`-(08t
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); HqcXP2
rpowern = cat(2,rpowern{:}); cd)<t8^KE
end 2^[fUzL?
29,`2fFr
% Compute the values of the polynomials: /fBZRdB
% -------------------------------------- `5O<U~'d
y = zeros(length_r,length(n)); E@0wt^
for j = 1:length(n) +ulX(u(,
s = 0:(n(j)-m_abs(j))/2; / (W{`
pows = n(j):-2:m_abs(j); RLw=y{%p
for k = length(s):-1:1 `w[0q?}"`
p = (1-2*mod(s(k),2))* ... 9P{5bG0o8
prod(2:(n(j)-s(k)))/ ... wrK$ZO]
prod(2:s(k))/ ... d,8V-Dk+p
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... y!blp>V6
prod(2:((n(j)+m_abs(j))/2-s(k))); e4khReF;
idx = (pows(k)==rpowers); n!ea)+^
y(:,j) = y(:,j) + p*rpowern(:,idx); <saS2.4
end \^|ncu:T
A;SRm<,
if isnorm ;yBq'_e3
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); *q|.H9
K(
end 8ENAif
end TcauCL
% END: Compute the Zernike Polynomials I"Ju3o?u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E+JGqk
w{I60|C]*
% Compute the Zernike functions: 4JU#3
% ------------------------------ BL]!j#''KE
idx_pos = m>0; L L9I:^
idx_neg = m<0; riFE.;
_^#PV}
z = y; M}(4>W
if any(idx_pos) h*_r='
E
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Y49kq}
end ""d3ownKhw
if any(idx_neg) \<i#Jn+)
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ln3x1^!
end a[lE9JA;|
;6fkG/T
% EOF zernfun