切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11192阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 "m):"  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 2pH2s\r<UJ  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #?YQ&o~gZ  
    function z = zernfun(n,m,r,theta,nflag) DoX#+ 07u4  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. HviL4iO  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @fRB0m"3  
    %   and angular frequency M, evaluated at positions (R,THETA) on the v)!Rir5  
    %   unit circle.  N is a vector of positive integers (including 0), and U: ~O^  
    %   M is a vector with the same number of elements as N.  Each element 8<Asg2]6  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) fBS;~;l  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, $dFEC}1t  
    %   and THETA is a vector of angles.  R and THETA must have the same $d{{><  
    %   length.  The output Z is a matrix with one column for every (N,M) )MHvuk:I)  
    %   pair, and one row for every (R,THETA) pair. bqFGDmu6'  
    % ^F5[2<O/!  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike IX']s;b  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ])'22sY  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral o?b$}Qrl  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 4 (& W>E  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized "639oB  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. zIf/jk  
    % H5S>|"`e`e  
    %   The Zernike functions are an orthogonal basis on the unit circle. h35x'`g7+r  
    %   They are used in disciplines such as astronomy, optics, and (ST />")L  
    %   optometry to describe functions on a circular domain. `22F@JYN  
    % 1&ZG6#16q  
    %   The following table lists the first 15 Zernike functions. +IK~a9t  
    % 0rxlN [Yp  
    %       n    m    Zernike function           Normalization *^ \xH,.  
    %       -------------------------------------------------- 5.0BaVwi  
    %       0    0    1                                 1 $L)9'X   
    %       1    1    r * cos(theta)                    2 ea3AcT6  
    %       1   -1    r * sin(theta)                    2 8h=H\v^f  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) DhG2!'N  
    %       2    0    (2*r^2 - 1)                    sqrt(3) xv]P-q0  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) E[/<AY^@!z  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ,6~c0]/  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) .wtb7U;7  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) vo-n9Bj  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) fCJ:QK!  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) n AQB  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3cBuqQ  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) eVjr/nm  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) LUna stA^  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ;VSHXU'H  
    %       -------------------------------------------------- :[#HP66[O5  
    % CtTG`)"|  
    %   Example 1: *P5Xy@:  
    % w[I%Id;E  
    %       % Display the Zernike function Z(n=5,m=1) m4<8v  
    %       x = -1:0.01:1; AmM^&  
    %       [X,Y] = meshgrid(x,x); &dp(CH<De  
    %       [theta,r] = cart2pol(X,Y); ;-~ Wfh+  
    %       idx = r<=1; 8b8ui  
    %       z = nan(size(X)); sl}bNzT#  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); yeFt0\=H  
    %       figure ^DS9D:oE  
    %       pcolor(x,x,z), shading interp ,+3l9FuQ  
    %       axis square, colorbar y>'^<xk  
    %       title('Zernike function Z_5^1(r,\theta)') W @Y$!V<  
    % {# ;e{v  
    %   Example 2: -\b~R7VQ  
    % ?5K.#>{  
    %       % Display the first 10 Zernike functions =O?<WJoK  
    %       x = -1:0.01:1; -PbGNF  
    %       [X,Y] = meshgrid(x,x); Bcg\p}  
    %       [theta,r] = cart2pol(X,Y); +_|M*%  
    %       idx = r<=1; IVzJ|  
    %       z = nan(size(X)); BT: =  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ^:5 ;H=.  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 3Ew-Ia%A  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; .t.H(Q9  
    %       y = zernfun(n,m,r(idx),theta(idx)); (=}U2GD*  
    %       figure('Units','normalized') 'uGn1|Pvy  
    %       for k = 1:10 s 4Lqam!  
    %           z(idx) = y(:,k); DPw"UY:  
    %           subplot(4,7,Nplot(k)) )TnxsFC  
    %           pcolor(x,x,z), shading interp JBtcl# |  
    %           set(gca,'XTick',[],'YTick',[]) EjV,&7o)  
    %           axis square M&Sjo' ( .  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])  poGF  
    %       end ` :eXXE  
    % 1Y$ gt  
    %   See also ZERNPOL, ZERNFUN2. 6AKH0t|4  
    *F1!=:&s  
    %   Paul Fricker 11/13/2006 8G`fSac`  
    51W\%aB  
    }i!hzkK#  
    % Check and prepare the inputs: YQ}Rg5 o  
    % ----------------------------- {1li3K&0s  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8G; t[9  
        error('zernfun:NMvectors','N and M must be vectors.') L (XGD  
    end 'e_^s+l)a  
    biKom|<nm  
    if length(n)~=length(m) lZ.x@hDS  
        error('zernfun:NMlength','N and M must be the same length.') OE]z C  
    end A6v02WG_1T  
    e7T"?s  
    n = n(:); -"YQo  
    m = m(:); `of 5h* k  
    if any(mod(n-m,2)) \`}Rdr!p%  
        error('zernfun:NMmultiplesof2', ... W(Z_ac^e[  
              'All N and M must differ by multiples of 2 (including 0).') XrS.[  
    end 8VQJUwf;  
    4G"T{A`O  
    if any(m>n) D+lzISp~e  
        error('zernfun:MlessthanN', ... S9S8T+  
              'Each M must be less than or equal to its corresponding N.') h}k&#X)7  
    end N3 .!E|  
    .Qm"iOyM  
    if any( r>1 | r<0 ) +kP)T(6  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') e` Z;}& ,  
    end }u:@:}8K  
    _p<W  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) j|gQe .,1  
        error('zernfun:RTHvector','R and THETA must be vectors.') w vBx]$SC  
    end h[b5"Uqj  
    }R4%%)j(Vj  
    r = r(:); !#j y=A  
    theta = theta(:); %K8Ei/p\t]  
    length_r = length(r); B{$4s8XU  
    if length_r~=length(theta) 4+e9:r]  
        error('zernfun:RTHlength', ... k FE2Vv4.  
              'The number of R- and THETA-values must be equal.') z )s{>^D  
    end F$<>JEdX  
    smvIU0:K  
    % Check normalization: k,wr6>'Vt  
    % -------------------- E/2kX3}  
    if nargin==5 && ischar(nflag) S+Z_Qf  
        isnorm = strcmpi(nflag,'norm'); s kC*  
        if ~isnorm /tR@J8pV  
            error('zernfun:normalization','Unrecognized normalization flag.') j oDY   
        end Q xZYy}2  
    else ts%XjCN[  
        isnorm = false; 4XpW#>  
    end Sm-gi|A  
    nt. A X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H_RV#BW&  
    % Compute the Zernike Polynomials hEla8L4Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rDFD rviW_  
    DuX7  
    % Determine the required powers of r: X3&-kU  
    % ----------------------------------- Qz)1wf'y  
    m_abs = abs(m); JAJo^}}{b  
    rpowers = []; C^9G \s'  
    for j = 1:length(n)  2f>G   
        rpowers = [rpowers m_abs(j):2:n(j)]; ]S;^QZ  
    end OXcQMVa 6  
    rpowers = unique(rpowers); :EJ8^'0Q  
    1bjhEO W  
    % Pre-compute the values of r raised to the required powers, ~2u~}v5m7  
    % and compile them in a matrix: D=Ia$O0.  
    % ----------------------------- <%w)EQf4m  
    if rpowers(1)==0 uc;1{[5`1q  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); gS{hfDpk,h  
        rpowern = cat(2,rpowern{:}); SNqw 2f5  
        rpowern = [ones(length_r,1) rpowern]; u~SvR~OE  
    else c1 aCN  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); xPMTmx?2  
        rpowern = cat(2,rpowern{:}); 7|Z=#3INw  
    end 7^1yZ1(  
    4@ EY+p  
    % Compute the values of the polynomials: s zBlyT  
    % -------------------------------------- 6r  
    y = zeros(length_r,length(n)); U9^o"vT  
    for j = 1:length(n) fLkZ'~e!  
        s = 0:(n(j)-m_abs(j))/2; JxI\ss?O  
        pows = n(j):-2:m_abs(j); r\nKJdh;ka  
        for k = length(s):-1:1 (=#[om( A  
            p = (1-2*mod(s(k),2))* ... u@QP<[f  
                       prod(2:(n(j)-s(k)))/              ... #._%~}U  
                       prod(2:s(k))/                     ... Nl"Xl?y}  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... qyi5j0)W  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ;k1 \-  
            idx = (pows(k)==rpowers); MzUNk`T @  
            y(:,j) = y(:,j) + p*rpowern(:,idx); \"r84@<  
        end )}ygzKEa  
         t!}QG"ma  
        if isnorm 2stBW5v3  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 8{DZew /  
        end f3_-{<FZ  
    end XS:W{tL!  
    % END: Compute the Zernike Polynomials 7b>FqW)%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |#_IAN  
    kp F")0qr  
    % Compute the Zernike functions: $glt%a  
    % ------------------------------ poLzgd  
    idx_pos = m>0; 5Bwr\]%$P  
    idx_neg = m<0; hG1\  
    GM]" $  
    z = y; w5/`_m!  
    if any(idx_pos) u7PtGN0r%  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); bcx,K b  
    end </xz V<Pi  
    if any(idx_neg) ]oOSL=~c  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )y~FeKh  
    end RLy2d'DS  
    "&$ [@c  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) g=ehAg  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ^nO0/nqz]  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 5Z8Zb.  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive F!k3/z  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Q:L^DZkGV  
    %   and THETA is a vector of angles.  R and THETA must have the same C0f<xhp?j  
    %   length.  The output Z is a matrix with one column for every P-value, hB?a{#JL  
    %   and one row for every (R,THETA) pair. ,Yp+&&p.  
    % :| s  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 9+irf^D`O  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 9\dpJ\  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 7LFJi@*8  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 TTYM!+T  
    %   for all p. 7d m:L'0  
    % XY_hTHJ  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Q>ZxJ!B<k  
    %   Zernike functions (order N<=7).  In some disciplines it is |2L|Zp&  
    %   traditional to label the first 36 functions using a single mode @Sr{6g*I  
    %   number P instead of separate numbers for the order N and azimuthal ?&gqGU}  
    %   frequency M. ^uWPbW&/q  
    % kT@m*Etr{  
    %   Example: y 4 wV]1  
    % hSN{jl{L`  
    %       % Display the first 16 Zernike functions g)3HVAT  
    %       x = -1:0.01:1; p&s~O,Bw$  
    %       [X,Y] = meshgrid(x,x); ]2_b_ok  
    %       [theta,r] = cart2pol(X,Y); _YK66cS3E/  
    %       idx = r<=1; I>bO<T`  
    %       p = 0:15; ]NEr]sc-"F  
    %       z = nan(size(X)); h]+UK14m  
    %       y = zernfun2(p,r(idx),theta(idx)); ^cz4nW<  
    %       figure('Units','normalized') hR4\:s+[  
    %       for k = 1:length(p) CD! Aa  
    %           z(idx) = y(:,k); u?Uu>9@Z  
    %           subplot(4,4,k) cko^_V&x  
    %           pcolor(x,x,z), shading interp +nIjW;RU  
    %           set(gca,'XTick',[],'YTick',[]) = :/4)  
    %           axis square M1mx{<]A  
    %           title(['Z_{' num2str(p(k)) '}']) Nc da~h Q  
    %       end *HONA>u   
    % m{w'&\T  
    %   See also ZERNPOL, ZERNFUN. mfW}^mu  
    hEh` cBO  
    %   Paul Fricker 11/13/2006 3LkcK1x.  
    mEZHrr J  
    w-j^jU><3  
    % Check and prepare the inputs: im&Nkk4n@  
    % ----------------------------- S{Q2KD  
    if min(size(p))~=1 J+(B]8aj  
        error('zernfun2:Pvector','Input P must be vector.') |Wg!> g!  
    end f=EWr8mno  
    mB5Sm|{  
    if any(p)>35 w7%.EA{N  
        error('zernfun2:P36', ... z 0}JiWR  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Z}AhDIw!G  
               '(P = 0 to 35).']) J*Q+$Ai~  
    end KU=+ 1,Jf  
    t?(fDWd|-  
    % Get the order and frequency corresonding to the function number: !{+a2wi  
    % ---------------------------------------------------------------- 5-RA<d#  
    p = p(:); =T-jG_.H  
    n = ceil((-3+sqrt(9+8*p))/2); r [E4/?_  
    m = 2*p - n.*(n+2); 1KadT7<0}  
    S]Qf p,  
    % Pass the inputs to the function ZERNFUN: ri1;i= W  
    % ---------------------------------------- 4M )oA|1w  
    switch nargin pV(qan,  
        case 3 O>LqpZ  
            z = zernfun(n,m,r,theta); 0t?g!  
        case 4 "!9FJ Y  
            z = zernfun(n,m,r,theta,nflag); [OYSNAs *y  
        otherwise d6f T  
            error('zernfun2:nargin','Incorrect number of inputs.') |Kq<}R  
    end ]Om;bmwt  
    LL_@nvu}M  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) !q1XyQX  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. C'6c,  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of HBm(l@#.  
    %   order N and frequency M, evaluated at R.  N is a vector of "9IR|  
    %   positive integers (including 0), and M is a vector with the 2i$_ ,[fi  
    %   same number of elements as N.  Each element k of M must be a >-j( [%  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) zgl$ n  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is b(~#CHg  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix s{:Thgv,9  
    %   with one column for every (N,M) pair, and one row for every zHD 8 \*  
    %   element in R. TMD*-wYr  
    % rrSFmhQUk  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- GA"vJFQ  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is zbJ}@V  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Flaqgi/j  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 qu0 q LM  
    %   for all [n,m]. fS3%  
    % QN;GMX5&  
    %   The radial Zernike polynomials are the radial portion of the mGo NT  
    %   Zernike functions, which are an orthogonal basis on the unit blUS6"kV}  
    %   circle.  The series representation of the radial Zernike F$S/zh$)0  
    %   polynomials is nK`H;k  
    % $S^rKp#  
    %          (n-m)/2 } x Kv N  
    %            __ Mehp]5*  
    %    m      \       s                                          n-2s k- exqM2x=  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r C'PHbo:  
    %    n      s=0 #!>`$  
    % cR/e Zfl  
    %   The following table shows the first 12 polynomials. 65GC7 >[  
    % PHMp, z8  
    %       n    m    Zernike polynomial    Normalization _TyQC1 d  
    %       --------------------------------------------- v}<z_i5/C.  
    %       0    0    1                        sqrt(2) CoV @{Pi  
    %       1    1    r                           2 1[-RIN;U8  
    %       2    0    2*r^2 - 1                sqrt(6) |!J_3*6$>*  
    %       2    2    r^2                      sqrt(6)  CVZ 4:p  
    %       3    1    3*r^3 - 2*r              sqrt(8) X;v{,P=J  
    %       3    3    r^3                      sqrt(8) [6?x 6_M  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) fVYv 2  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 88}04  
    %       4    4    r^4                      sqrt(10) iZ0.rcQj'o  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) OqX+ R4S  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) xR;z!Tg)  
    %       5    5    r^5                      sqrt(12) ~Fo`Pr_  
    %       --------------------------------------------- N@"e^i  
    % PPh1y;D  
    %   Example: Xy9'JVV6  
    % (kx>\FIK*  
    %       % Display three example Zernike radial polynomials !v*#E{r"g=  
    %       r = 0:0.01:1; ~]BR(n  
    %       n = [3 2 5]; KF7d`bRe  
    %       m = [1 2 1]; Cyud)BZvm  
    %       z = zernpol(n,m,r); xzRC %  
    %       figure eTt{wn;6  
    %       plot(r,z) nTsPX Tat  
    %       grid on  <JZa  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') w$749jGx  
    % 7KtgR=-Lb  
    %   See also ZERNFUN, ZERNFUN2. /sVmQqVY  
    t5QGXj  
    % A note on the algorithm. O>ZJOKe  
    % ------------------------ U}{\qs-zt  
    % The radial Zernike polynomials are computed using the series Q8DKU  
    % representation shown in the Help section above. For many special `U;V-  
    % functions, direct evaluation using the series representation can ^fM=|.?  
    % produce poor numerical results (floating point errors), because iz-O~T/^  
    % the summation often involves computing small differences between ?#__#  
    % large successive terms in the series. (In such cases, the functions $-)y59w"  
    % are often evaluated using alternative methods such as recurrence +@PZ3 [s  
    % relations: see the Legendre functions, for example). For the Zernike K$M,d - `b  
    % polynomials, however, this problem does not arise, because the T{T> S%17~  
    % polynomials are evaluated over the finite domain r = (0,1), and 7wqD_Xr  
    % because the coefficients for a given polynomial are generally all ,7e 2M@=  
    % of similar magnitude. + >v{#A_u  
    % bre6SP@  
    % ZERNPOL has been written using a vectorized implementation: multiple EKT"pL-EY  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] H/ub=,Ej*  
    % values can be passed as inputs) for a vector of points R.  To achieve *OZ O} i  
    % this vectorization most efficiently, the algorithm in ZERNPOL '`p0T%w  
    % involves pre-determining all the powers p of R that are required to NO#^_N`#\  
    % compute the outputs, and then compiling the {R^p} into a single wJF$<f7P  
    % matrix.  This avoids any redundant computation of the R^p, and |nO }YU\E  
    % minimizes the sizes of certain intermediate variables. q{.~=~  
    % t aOsC! Bp  
    %   Paul Fricker 11/13/2006 3lNw*M|")  
    Os1y8ui  
    5?|PC.  
    % Check and prepare the inputs: zdDJcdbGd1  
    % ----------------------------- Q1'D*F4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g/,O51f'  
        error('zernpol:NMvectors','N and M must be vectors.') .]Z,O>N  
    end . LNqU#a  
    q}5&B =2pM  
    if length(n)~=length(m) #60<$HO:Z  
        error('zernpol:NMlength','N and M must be the same length.') Xgm9>/y  
    end dnTXx*I:  
    Iyvl6  
    n = n(:);  ,#-^  
    m = m(:); #D!3a%u0  
    length_n = length(n); k4nA+k<WI`  
    VAR/"  
    if any(mod(n-m,2)) hO:X\:G  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 0b}lwo,|\  
    end ?|Mmz@  
    iF]vIg#h  
    if any(m<0) :hxZ2O?5_  
        error('zernpol:Mpositive','All M must be positive.') x9CI>l  
    end =;xlmndT,  
    ]H<C Rw  
    if any(m>n) L9U<E $%#  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') kL qFh<  
    end Wkv **X}  
    ]j:Ikb}  
    if any( r>1 | r<0 )  yQ8H-a.  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') PZl(S}VY  
    end *)d|:q3  
    rQ$A|GJL  
    if ~any(size(r)==1) ^q$vyY   
        error('zernpol:Rvector','R must be a vector.') ss 3fq}  
    end HI eMV,.QN  
    OiY2l;68  
    r = r(:); D2Go,1  
    length_r = length(r); "Hjw  
    Xc5[d`]  
    if nargin==4 YKvFZH)  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); w } 2|Do$5  
        if ~isnorm jIc;jjAF  
            error('zernpol:normalization','Unrecognized normalization flag.') C5RDP~au  
        end E(U}$Zey  
    else Bv@m)$9\+3  
        isnorm = false; AQ 7e  
    end r5iO%JFg  
    cmN0ya  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P[nWmY  
    % Compute the Zernike Polynomials  2 5ZGuM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n8G#TQrAE  
    pr0V)C6  
    % Determine the required powers of r: ;+b}@e  
    % ----------------------------------- @7^#_772  
    rpowers = []; khv!\^&DD  
    for j = 1:length(n) o>`/,-!  
        rpowers = [rpowers m(j):2:n(j)]; 4+ k:j=x  
    end Z#MODf0H@  
    rpowers = unique(rpowers); Em"X5>;4  
    AYZds >#Q  
    % Pre-compute the values of r raised to the required powers, =OZ_\vO  
    % and compile them in a matrix: 4!}fCP ty  
    % ----------------------------- b);}x1L.T  
    if rpowers(1)==0 i)(Q Npv  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); VD#^Xy4% r  
        rpowern = cat(2,rpowern{:}); ,m b3H  
        rpowern = [ones(length_r,1) rpowern]; -% f DfjP  
    else VD3[ko  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +li^0+3-'  
        rpowern = cat(2,rpowern{:}); -5ec8m8  
    end "&+0jfLY+  
    -<O:isB   
    % Compute the values of the polynomials: 6Rf5  
    % -------------------------------------- e#OU {2X  
    z = zeros(length_r,length_n); G<dXJ ]\\  
    for j = 1:length_n sk3 ;;<H  
        s = 0:(n(j)-m(j))/2; YWZF*,4  
        pows = n(j):-2:m(j); Go67VqJr  
        for k = length(s):-1:1 }I`|*6Up  
            p = (1-2*mod(s(k),2))* ... kv4J@  
                       prod(2:(n(j)-s(k)))/          ... ha),N<'  
                       prod(2:s(k))/                 ... N+V-V-PVk  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... DJW1kR  
                       prod(2:((n(j)+m(j))/2-s(k))); vxt^rBA  
            idx = (pows(k)==rpowers); =% JDo  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Bm7GU`j"  
        end ]1[;A$7  
         W[m_IY  
        if isnorm WE7l[<b  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); }Tef;8d  
        end F3'X  
    end  ~EM];i  
    -ur]k]R  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  )_ ^WpyzF1  
    rgdQR^!l6  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 )6:]o&bZ  
    Cz@FZb8  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)