切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10990阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 }\DAg'e)  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! N6WPTUQ1mF  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Ob7zu"zr  
    function z = zernfun(n,m,r,theta,nflag) 1X[ 73  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?Y%}(3y  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %B[YtWqm`/  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 3(MoXA*  
    %   unit circle.  N is a vector of positive integers (including 0), and @8QFP3\1  
    %   M is a vector with the same number of elements as N.  Each element d:A\<F  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Yd[U  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, pi|\0lH6W  
    %   and THETA is a vector of angles.  R and THETA must have the same 52da]BW<  
    %   length.  The output Z is a matrix with one column for every (N,M) ,<7"K&  
    %   pair, and one row for every (R,THETA) pair. :b.3CL\.6  
    % ,;9ak-$8p  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5BrU'NF  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )>ug{M%g  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral >Dk1axZ!>/  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, EV:_Kx8fP  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized :x8Jy4L  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2r %>]y  
    % @P*ylB}?Q  
    %   The Zernike functions are an orthogonal basis on the unit circle. ~ &t!$  
    %   They are used in disciplines such as astronomy, optics, and $$k7_rs  
    %   optometry to describe functions on a circular domain. >?^~s(t  
    % h1n*WQ-  
    %   The following table lists the first 15 Zernike functions. mYntU^4f  
    % yb[{aL^4%  
    %       n    m    Zernike function           Normalization FX{ ~"  
    %       -------------------------------------------------- YI L'YNH  
    %       0    0    1                                 1 )C'G2RV  
    %       1    1    r * cos(theta)                    2 H0: iYHu  
    %       1   -1    r * sin(theta)                    2  fn4=  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6)  -0{T  
    %       2    0    (2*r^2 - 1)                    sqrt(3) P]|J?$1K  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) QIR4<]/  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) {CW1t5$*  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ,Y`'myL8W  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 3 %z   
    %       3    3    r^3 * sin(3*theta)             sqrt(8) FgXu1-  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ='7er.~\  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D."cQ<sxpN  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ^`l"'6  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lo\:]/&6  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) :({-0&&_  
    %       -------------------------------------------------- Q&oC]u(="&  
    % }@3Ud ' Y  
    %   Example 1: h`z2!F4  
    % H+S~ bzz  
    %       % Display the Zernike function Z(n=5,m=1) SNQz8(O  
    %       x = -1:0.01:1; <9Lv4`]GU5  
    %       [X,Y] = meshgrid(x,x); t#fs:A7P?}  
    %       [theta,r] = cart2pol(X,Y); %4?SY82  
    %       idx = r<=1; r~ZS1Tp  
    %       z = nan(size(X)); K<$wz/\  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); /X(@|tk:  
    %       figure hB|H9+  
    %       pcolor(x,x,z), shading interp clh3  
    %       axis square, colorbar p:DL:^zx  
    %       title('Zernike function Z_5^1(r,\theta)') )B -MPuB  
    % #Tr;JAzVjG  
    %   Example 2: o?:;8]sr!  
    % *>H M$.?Q  
    %       % Display the first 10 Zernike functions $sU5=,  
    %       x = -1:0.01:1; =gxgS<bde  
    %       [X,Y] = meshgrid(x,x); 1x~%Ydy  
    %       [theta,r] = cart2pol(X,Y); b:N^Fe  
    %       idx = r<=1; xi '72  
    %       z = nan(size(X)); l.__10{  
    %       n = [0  1  1  2  2  2  3  3  3  3]; h Jfa_  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; o0,UXBx  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; >yV)d/  
    %       y = zernfun(n,m,r(idx),theta(idx)); r Iya\z1W  
    %       figure('Units','normalized') >i^y;5  
    %       for k = 1:10 R`0foSq \M  
    %           z(idx) = y(:,k); ib5;f0Qa  
    %           subplot(4,7,Nplot(k)) 6{JR0  
    %           pcolor(x,x,z), shading interp 3v8V*48B$  
    %           set(gca,'XTick',[],'YTick',[]) MgJ%26TZ  
    %           axis square y3 ({(URU  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?aK'OIo  
    %       end LK'S)Jk  
    % eT7!a']x  
    %   See also ZERNPOL, ZERNFUN2. fe& t-  
    %8}WX@SB  
    %   Paul Fricker 11/13/2006 _&k'j)rg  
    `jD8(}_  
    @ A~B ,  
    % Check and prepare the inputs: )LXoey!aZ  
    % ----------------------------- 9 _M H  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) c,v^A+sZu  
        error('zernfun:NMvectors','N and M must be vectors.') A }>|tm7|  
    end VxUvvJ{-v  
    _H~pH7WU  
    if length(n)~=length(m) w0a+8gexi  
        error('zernfun:NMlength','N and M must be the same length.') 4_6W s$x  
    end ,wwU` U  
    6=Y3(#Ddt  
    n = n(:); lKh2LY=j  
    m = m(:); _ 6+,R  
    if any(mod(n-m,2)) w>NZRP_3  
        error('zernfun:NMmultiplesof2', ... z")3_5Br  
              'All N and M must differ by multiples of 2 (including 0).') ]t. WJC %  
    end J)7,&Gc6  
    _1w.B8Lyz@  
    if any(m>n) (uuEjM$3%  
        error('zernfun:MlessthanN', ... EuKrYY]g  
              'Each M must be less than or equal to its corresponding N.') @1pW!AdN  
    end &X#x9|=&O  
    ;ZxK3/(7  
    if any( r>1 | r<0 ) (c|$+B^*  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ({d,oU$>y  
    end 6i9Q ,4~  
    wf~5lpI[  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~.PPf/ Z8]  
        error('zernfun:RTHvector','R and THETA must be vectors.') vxbH^b  
    end ~cO?S2!W  
    +BtLyQ  
    r = r(:); %KabyvOl)  
    theta = theta(:); "xvV'&lQ  
    length_r = length(r); CI~hmL0  
    if length_r~=length(theta) bGMeBj"R  
        error('zernfun:RTHlength', ... C,OB3y  
              'The number of R- and THETA-values must be equal.') |?;"B:0  
    end SHXa{-  
    7(A G]  
    % Check normalization: )E[ Q  
    % -------------------- %T&&x2p^=?  
    if nargin==5 && ischar(nflag) ;3.T* ?|o  
        isnorm = strcmpi(nflag,'norm'); 75hFyh;u  
        if ~isnorm MYDf`0{$_a  
            error('zernfun:normalization','Unrecognized normalization flag.') M/8#&RycQ  
        end O)$N}V0  
    else =\ Tud-1Z  
        isnorm = false; k2_6<v Z  
    end &dZ.+#8r  
    @mQ/W Ys  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JhMrm%  
    % Compute the Zernike Polynomials ySr091Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t(z(-G|&  
    q^jqLT&w  
    % Determine the required powers of r: $ sA~p_]  
    % ----------------------------------- #cp$ltY  
    m_abs = abs(m); ;:-2~z~~  
    rpowers = []; }Yo15BN+  
    for j = 1:length(n) %b-;Rn  
        rpowers = [rpowers m_abs(j):2:n(j)]; %~B)~|h  
    end XDrlJvrPL  
    rpowers = unique(rpowers); Yn[EI7D  
    6,g5To#vw  
    % Pre-compute the values of r raised to the required powers, -Iruua7b  
    % and compile them in a matrix: 5x1%oC  
    % ----------------------------- Vne. HFXA  
    if rpowers(1)==0 Y00i{/a 8  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |j5A U  
        rpowern = cat(2,rpowern{:}); ^;bGP.!p  
        rpowern = [ones(length_r,1) rpowern]; =An Z>6  
    else }'w^<:RSy  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); wEo-a< (  
        rpowern = cat(2,rpowern{:}); wNf*/? N  
    end g1hg`qBBW  
    My6]k?;}(  
    % Compute the values of the polynomials: H~_^w.P  
    % -------------------------------------- &>) `P[x  
    y = zeros(length_r,length(n)); PTI'N%W  
    for j = 1:length(n) soQv?4  
        s = 0:(n(j)-m_abs(j))/2; H,4,~lv|  
        pows = n(j):-2:m_abs(j); o{-USUGj7  
        for k = length(s):-1:1 x9&tlKKxf  
            p = (1-2*mod(s(k),2))* ... 9/X v&<Tn  
                       prod(2:(n(j)-s(k)))/              ... !+*?pq  
                       prod(2:s(k))/                     ... {C0OrO2:  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... P`IMvOs&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); t#D\*:Xi  
            idx = (pows(k)==rpowers); k+m_L{#m5  
            y(:,j) = y(:,j) + p*rpowern(:,idx); {7pE9R5  
        end RfKxwo|M<  
         k>z-Zg  
        if isnorm 2Z IpzH/8  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1 Z$99  
        end EH!EyNNb  
    end o7 -h'b-  
    % END: Compute the Zernike Polynomials NM.f0{:cj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k`4\.m"&  
    B,VSFpPx  
    % Compute the Zernike functions: ]BS{,sI  
    % ------------------------------ {</$ObK  
    idx_pos = m>0; $RFu m'`5  
    idx_neg = m<0; dXK~ Z:  
    PEQvEruZ}  
    z = y; KxTYc  
    if any(idx_pos) o}^vREO  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); W!Ct[t  
    end  9jzLXym  
    if any(idx_neg) '`goy%Wd  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); b8b PK<  
    end :PjUl  
    $d??(   
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) xY}j8~k  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. LAVt/TcZS|  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 2mp>Mn~K^  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Nwu Be:"@  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, jvKaxB;e  
    %   and THETA is a vector of angles.  R and THETA must have the same 7u3b aM  
    %   length.  The output Z is a matrix with one column for every P-value, Q@.9wEAJ  
    %   and one row for every (R,THETA) pair. {8p?we3l1  
    % m=l3O:~J  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike /t6u"I~  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) P;91C'T-x  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Q c< O; #  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 jxOVH+?l%  
    %   for all p. ?}Ptb&Vk(  
    % GDQg:MgX  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 2F@<{v4  
    %   Zernike functions (order N<=7).  In some disciplines it is 3UtXxL&L`  
    %   traditional to label the first 36 functions using a single mode J2k'Ke97o  
    %   number P instead of separate numbers for the order N and azimuthal NeZYchR  
    %   frequency M. }~,cCtg:o  
    % !<^j!'2  
    %   Example: t:@A)ip  
    % =xWW+w!r  
    %       % Display the first 16 Zernike functions  SSM> ID  
    %       x = -1:0.01:1; "uER a(i  
    %       [X,Y] = meshgrid(x,x); YZtA:>;p  
    %       [theta,r] = cart2pol(X,Y); [ Zqg"`  
    %       idx = r<=1; cZF;f{t  
    %       p = 0:15; QS?9&+JM|  
    %       z = nan(size(X)); B-p5;h>  
    %       y = zernfun2(p,r(idx),theta(idx)); $zA[5}{ZtQ  
    %       figure('Units','normalized') \yizIo.Y`  
    %       for k = 1:length(p) _~&v s<  
    %           z(idx) = y(:,k); ZrT|~$*m`  
    %           subplot(4,4,k) ;Wm)e~`,  
    %           pcolor(x,x,z), shading interp \D k^\-  
    %           set(gca,'XTick',[],'YTick',[]) Fm~}A4  
    %           axis square 5{f/H] P  
    %           title(['Z_{' num2str(p(k)) '}']) Y$5v3E\uc  
    %       end &`y_R'  
    % ;8Q?`=a  
    %   See also ZERNPOL, ZERNFUN. 3>3ZfFC  
    TK?N^ly  
    %   Paul Fricker 11/13/2006 0~5}F^8[L  
    X \ZUt >  
    nE$ V<Co}  
    % Check and prepare the inputs: ?O^:j!C6  
    % ----------------------------- T<,tC"  
    if min(size(p))~=1 APm[)vw#f  
        error('zernfun2:Pvector','Input P must be vector.') J3E:r_+  
    end `,=p\g|D  
     xyCcd=  
    if any(p)>35 -+Ji~;b  
        error('zernfun2:P36', ... I}3K,w/7mi  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... %cjav  
               '(P = 0 to 35).']) NGGd6V%'-  
    end Nxk'!:  
    9cPucKuj  
    % Get the order and frequency corresonding to the function number: 2;7GgO~  
    % ---------------------------------------------------------------- 4B>|Wft{p]  
    p = p(:); !H.lVA  
    n = ceil((-3+sqrt(9+8*p))/2); {]N?DmF  
    m = 2*p - n.*(n+2); $)a5;--W  
    u3!!_~6,z  
    % Pass the inputs to the function ZERNFUN: !-Q!/?  
    % ---------------------------------------- ZI]K+jza  
    switch nargin oK[,xqyA  
        case 3 ^?`,f>`M  
            z = zernfun(n,m,r,theta); 'v)+S;oB  
        case 4 v)pWx0l=  
            z = zernfun(n,m,r,theta,nflag); EU~'n-  
        otherwise WL]'lSHa  
            error('zernfun2:nargin','Incorrect number of inputs.') h"m7r4f  
    end :Dm@3S$4<  
    \wd`6  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Lj\<qF~n  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. |a3b2x,  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Dne&YVF9V  
    %   order N and frequency M, evaluated at R.  N is a vector of pc>R|~J{2  
    %   positive integers (including 0), and M is a vector with the =^}2 /vA  
    %   same number of elements as N.  Each element k of M must be a 3<lDsb(}0A  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) RmCR"~   
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Ric$Xmu  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ;T(^riAEl  
    %   with one column for every (N,M) pair, and one row for every 3EdPKM j&  
    %   element in R. AS ul  
    % ? 'nMZ  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 2|EoP-K7  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is %J'_c|EQM  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to A&#Bf#!G  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 eIl&=gZ6>  
    %   for all [n,m]. 1uE[ %M  
    % )nVx 2m4  
    %   The radial Zernike polynomials are the radial portion of the W[ DB !ue  
    %   Zernike functions, which are an orthogonal basis on the unit \:S8mDI^s  
    %   circle.  The series representation of the radial Zernike MDt4KD+bZ  
    %   polynomials is ujBADDwOg)  
    % iBt5aUt  
    %          (n-m)/2 R/7l2*  
    %            __ co|0s+%PBq  
    %    m      \       s                                          n-2s *QJ/DC$  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r )LUl?  
    %    n      s=0 &aU+6'+QXB  
    % v%w]Q B  
    %   The following table shows the first 12 polynomials. ,'}ZcN2)  
    % 9EW 7,m{A  
    %       n    m    Zernike polynomial    Normalization TY}?>t+  
    %       --------------------------------------------- yo=d"*E4^  
    %       0    0    1                        sqrt(2) 7t QiKrhp  
    %       1    1    r                           2 eX/$[SL[  
    %       2    0    2*r^2 - 1                sqrt(6) k5/}S@F8  
    %       2    2    r^2                      sqrt(6) w.jATMJ)F  
    %       3    1    3*r^3 - 2*r              sqrt(8) 2J5dZYW  
    %       3    3    r^3                      sqrt(8) u-$AFSt  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) oc3/ IWII  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) A_+ WY|#M  
    %       4    4    r^4                      sqrt(10) MmB-SR[>P  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) t<=L&:<N  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) |m% &Qb  
    %       5    5    r^5                      sqrt(12) 'lF|F+8   
    %       --------------------------------------------- PC5FfX  
    % mCo5 Gdt  
    %   Example: +( d2hSIF  
    % !~#31kL&  
    %       % Display three example Zernike radial polynomials l%O-c}X  
    %       r = 0:0.01:1; (`N/1}vk  
    %       n = [3 2 5]; &W%TY:Da|  
    %       m = [1 2 1]; WF]:?WE%  
    %       z = zernpol(n,m,r); 8~bPoWP  
    %       figure d>}%A ]  
    %       plot(r,z) spf}{o  
    %       grid on i8]r }a  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ~tWBCq 6  
    % POf \l  
    %   See also ZERNFUN, ZERNFUN2. l d@^ $  
    ^/,s$dj  
    % A note on the algorithm. W~qo `r  
    % ------------------------ Hcpw [%(  
    % The radial Zernike polynomials are computed using the series F&\o1g-L  
    % representation shown in the Help section above. For many special 'nul{RE*  
    % functions, direct evaluation using the series representation can Kj7Osqu2bE  
    % produce poor numerical results (floating point errors), because )]}*oO  
    % the summation often involves computing small differences between sC$X7h(Q+  
    % large successive terms in the series. (In such cases, the functions t t=$:}A  
    % are often evaluated using alternative methods such as recurrence LLMkv!%D  
    % relations: see the Legendre functions, for example). For the Zernike >Y:ouN~<  
    % polynomials, however, this problem does not arise, because the sdY6_HtE  
    % polynomials are evaluated over the finite domain r = (0,1), and <5.{+!BM  
    % because the coefficients for a given polynomial are generally all = 2k+/0ZbP  
    % of similar magnitude. 0t~--/lA  
    % $T6<9cB@  
    % ZERNPOL has been written using a vectorized implementation: multiple ?'%&2M zM  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] _VJb i,V  
    % values can be passed as inputs) for a vector of points R.  To achieve aCanDMcBnq  
    % this vectorization most efficiently, the algorithm in ZERNPOL >2rFURcD  
    % involves pre-determining all the powers p of R that are required to a36<S0R  
    % compute the outputs, and then compiling the {R^p} into a single &HE8O}<>  
    % matrix.  This avoids any redundant computation of the R^p, and 3ySnAAG  
    % minimizes the sizes of certain intermediate variables. v-kH7H"z  
    % E-/]UH3u H  
    %   Paul Fricker 11/13/2006 %ug`dZ/  
    c}Qc2D3*  
    *?uF&( 0  
    % Check and prepare the inputs: F"q3p4-<>  
    % ----------------------------- 1+^c3Dd`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) k;)L-ge9  
        error('zernpol:NMvectors','N and M must be vectors.') Lh+^GQ  
    end 4bO7rhve  
    D@Q|QY5qic  
    if length(n)~=length(m) Ai/#C$MY$  
        error('zernpol:NMlength','N and M must be the same length.') 6O"0?wG+  
    end i55']7+0  
    {kC]x2 U  
    n = n(:); &,\S<B2.  
    m = m(:); 9SrV,~zD  
    length_n = length(n); []@Mk  
    aoBM _#  
    if any(mod(n-m,2)) UkdQ#b1  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') `1P &  
    end d+bTRnL  
    .{Xi&[jw  
    if any(m<0) Lpn`HAw&  
        error('zernpol:Mpositive','All M must be positive.') a+X X?uN{  
    end +"C0de|-  
    Yrd K@I  
    if any(m>n) !,\]> c  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') H1X6f7`  
    end |h3 YL!  
    | o?@Eh  
    if any( r>1 | r<0 ) "];19]x6q  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') J sH9IK:  
    end A_[65'*b  
    6Us#4 v,  
    if ~any(size(r)==1) ^v,^.>P  
        error('zernpol:Rvector','R must be a vector.') ci$o~b6V  
    end 2sXWeiJy;  
    j3FDGDrg  
    r = r(:); <@?bYp  
    length_r = length(r); K <0ItN v  
    Q%85,L^U  
    if nargin==4 -O ej6sILO  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); E;+3VJ+F"  
        if ~isnorm O=yUA AD$  
            error('zernpol:normalization','Unrecognized normalization flag.') <AB]FBo(  
        end iR_X,&p   
    else GI/g@RV  
        isnorm = false; +VTMa9d  
    end d`Wd"LJ=  
    g n'. 9";j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2"NJt9w  
    % Compute the Zernike Polynomials #t;@x_2yD\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /N~.,vf  
    E")82I  
    % Determine the required powers of r: Fd3V5h  
    % ----------------------------------- VPf=LSxJe  
    rpowers = []; or0f%wAF  
    for j = 1:length(n) {| Tl3  
        rpowers = [rpowers m(j):2:n(j)]; R7vO,kZ6Q  
    end O7E0{8  
    rpowers = unique(rpowers); * c xYB  
    %rYd=Ri  
    % Pre-compute the values of r raised to the required powers, }VyD X14j  
    % and compile them in a matrix: O[$ &]>x]]  
    % ----------------------------- 'H97D-86/  
    if rpowers(1)==0 UE*M\r<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); edA.Va|0  
        rpowern = cat(2,rpowern{:}); O{Wy;7i  
        rpowern = [ones(length_r,1) rpowern]; mI}1si=$  
    else m&fm<?|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3^C  
        rpowern = cat(2,rpowern{:}); hv8V=Z'Q  
    end @<;0 h|  
     w;)@2}  
    % Compute the values of the polynomials: .h{`e>d  
    % -------------------------------------- 06L/i,  
    z = zeros(length_r,length_n); SxH b76 ;  
    for j = 1:length_n rtC.!].;%  
        s = 0:(n(j)-m(j))/2; .I<#i9Le  
        pows = n(j):-2:m(j); LLCMp3qBz  
        for k = length(s):-1:1 [$f  
            p = (1-2*mod(s(k),2))* ... Eqnc("m)  
                       prod(2:(n(j)-s(k)))/          ... jo/-'Lf{?  
                       prod(2:s(k))/                 ... kbiMqiPG  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... BlMc<k  
                       prod(2:((n(j)+m(j))/2-s(k))); hjs[$ ,1  
            idx = (pows(k)==rpowers); 3y<;fdS7  
            z(:,j) = z(:,j) + p*rpowern(:,idx); "/g/Lc  
        end i#=s_v8  
         83e{rcs  
        if isnorm ,~>A>J  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 7ZqC1  
        end CB:G4VqOT  
    end p78X,44xg  
    }HRM6fR1S  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  9 `+RmX;m  
    &RB{0Qhx  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 *G&3NSM-  
    ssY5g !%  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)