非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 oK:P@V6!
function z = zernfun(n,m,r,theta,nflag) zn1Rou]6
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. f\U&M,L\'
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ;;hyjFGq%
% and angular frequency M, evaluated at positions (R,THETA) on the }k0-?_Z=1
% unit circle. N is a vector of positive integers (including 0), and eSNSnh]'
% M is a vector with the same number of elements as N. Each element 5qkuKF
% k of M must be a positive integer, with possible values M(k) = -N(k) _I-VWDCk
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, jZT :-w
% and THETA is a vector of angles. R and THETA must have the same .]s(c!{y
% length. The output Z is a matrix with one column for every (N,M) 1 3`0d
% pair, and one row for every (R,THETA) pair. 0(/D|
% yPh2P5}H>
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >04>rn#},,
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), L2.`1Aag
% with delta(m,0) the Kronecker delta, is chosen so that the integral UW[{d/.wC
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, D *I;|.=u
% and theta=0 to theta=2*pi) is unity. For the non-normalized T)
tZU?
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Df:7P>
% 56SS
>b
% The Zernike functions are an orthogonal basis on the unit circle. )QCM2
% They are used in disciplines such as astronomy, optics, and l()MYuLNV
% optometry to describe functions on a circular domain. qJXsf M6
% pNE\@U|4E
% The following table lists the first 15 Zernike functions. k7|z$=zY
% q6JW@GT
% n m Zernike function Normalization (S)E|;f%C
% -------------------------------------------------- Oqpl2Y"/
% 0 0 1 1 R 4$Q3vcH
% 1 1 r * cos(theta) 2 ,' rL'Ys
% 1 -1 r * sin(theta) 2 dEd ]U49u
% 2 -2 r^2 * cos(2*theta) sqrt(6) t)gi.Ed1"L
% 2 0 (2*r^2 - 1) sqrt(3) \btR^;_\A
% 2 2 r^2 * sin(2*theta) sqrt(6) ,mjfZ*N
% 3 -3 r^3 * cos(3*theta) sqrt(8) h>Uid
&:?
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ca/o#9:N`:
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) hQ}7Z&O
% 3 3 r^3 * sin(3*theta) sqrt(8) }{wTlR.]
% 4 -4 r^4 * cos(4*theta) sqrt(10) ,)rZAI
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?(/j<,m^
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) yOUX E>-
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iQ|,&K0d]
% 4 4 r^4 * sin(4*theta) sqrt(10) Ly)(_Tp@+
% -------------------------------------------------- 1 73<x){
% N`<4:v[P
% Example 1: &H4uvJ_<
% gJ3OK !/
% % Display the Zernike function Z(n=5,m=1) \YlF>{LVe
% x = -1:0.01:1; I51oG:6fR?
% [X,Y] = meshgrid(x,x); !<=%;+
% [theta,r] = cart2pol(X,Y); VqClM
% idx = r<=1; JU'WiR
bcb
% z = nan(size(X)); ?VZ11?u
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Dpdn%8+Z
% figure yD[zzEuQ
% pcolor(x,x,z), shading interp xdL/0 N3
% axis square, colorbar ,zN3? /7
% title('Zernike function Z_5^1(r,\theta)') jKj=#O
% "s>fV9YyZ
% Example 2: %|*nmIPq(
% C,{F0-D
% % Display the first 10 Zernike functions y^X\^Kq
% x = -1:0.01:1; r}oURy,5
% [X,Y] = meshgrid(x,x); -OrY{^F
% [theta,r] = cart2pol(X,Y); &N"'7bK6n
% idx = r<=1; nxyjL)!)0
% z = nan(size(X)); %wt2F-u
% n = [0 1 1 2 2 2 3 3 3 3]; `y^zM/Ib
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ){+[$@9
% Nplot = [4 10 12 16 18 20 22 24 26 28]; #ox9&
% y = zernfun(n,m,r(idx),theta(idx)); [;?"R-V"z
% figure('Units','normalized') msc 1^2
% for k = 1:10 C{UF~
% z(idx) = y(:,k); 0~+NB-L}
% subplot(4,7,Nplot(k)) ShWHHU(QQ
% pcolor(x,x,z), shading interp selP=Q!
% set(gca,'XTick',[],'YTick',[]) I(OAEIz
% axis square TsaW5ho<p
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G Sz @rDGY
% end y Y>-MoF/t
% 83KfM!w
% See also ZERNPOL, ZERNFUN2. *.m{jgi1X
]{IR&{EI-
% Paul Fricker 11/13/2006 ~LawF_]6
%bIsrQ~B
Y&vHOA
% Check and prepare the inputs: y)3~]h\a
% ----------------------------- x7"z(rKl
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [3j$ 4rP
error('zernfun:NMvectors','N and M must be vectors.') L!;^#g
end 8W~lU~-
brg":V1a
if length(n)~=length(m) r=fE8[,
error('zernfun:NMlength','N and M must be the same length.') 8yE!7$Mj
end >j50
;</
7$(_j<o`
n = n(:); jrm0@K+<IA
m = m(:); bK3B3r#$
if any(mod(n-m,2)) ?^LG
hdR
error('zernfun:NMmultiplesof2', ... {
EA2
'All N and M must differ by multiples of 2 (including 0).') w$gSj/
end 94Xjz(
i{gDW+N
if any(m>n) [O=W>l
error('zernfun:MlessthanN', ... X_D6eYF
'Each M must be less than or equal to its corresponding N.') OuB2 x=B
end
L~*u4
3YR *
^
if any( r>1 | r<0 ) xME(B@j
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 3PsxOb+
end a*Rz<08
fO*)LPen.z
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) XjX 2[*l
error('zernfun:RTHvector','R and THETA must be vectors.') c
Qld$
end k_]\(myq
X(IyvfC
r = r(:); y k?SD1hj
theta = theta(:); ,#
]+HS^B
length_r = length(r); YVo ao#!
if length_r~=length(theta) F4Rr26M
error('zernfun:RTHlength', ... f,|QAj=a
'The number of R- and THETA-values must be equal.') >f>V5L%1
end V
{p*z
iwUv`>l&
% Check normalization: ]de\i=?|
% -------------------- $u:<x
if nargin==5 && ischar(nflag) &9RH}zv6
isnorm = strcmpi(nflag,'norm'); (I[s3EnhS
if ~isnorm Qe_+r(3)k
error('zernfun:normalization','Unrecognized normalization flag.') 6VC-KY
end gt'*B5F(
else 7m\vRMK
isnorm = false; [~COYjp
end }7%9}2}Iw
>E,Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f_rp<R>Uu
% Compute the Zernike Polynomials ((qGh>*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F'1k<V?
p+$+MeBz
% Determine the required powers of r: 0 <g{ V
% ----------------------------------- \Dfm(R
m_abs = abs(m); guU=NQZ
rpowers = []; t ^m~
for j = 1:length(n) sds}bo
rpowers = [rpowers m_abs(j):2:n(j)]; /
$_M@>
end <KX&zi<L)
rpowers = unique(rpowers); ul$,q05nb
SyAo,
)j
% Pre-compute the values of r raised to the required powers,
c-5Ysg
% and compile them in a matrix: 19p8B&
% ----------------------------- Ls1B\Aw _
if rpowers(1)==0 >VP5vkv=
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6x/s|RWL1
rpowern = cat(2,rpowern{:}); 9p4y>3
rpowern = [ones(length_r,1) rpowern]; Hs$'0:
else KU]ok '
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); grspt}
rpowern = cat(2,rpowern{:}); 1DqX:WM6
end 4@h;5
"TNVD"RLY
% Compute the values of the polynomials: hCAZ{+`z
% -------------------------------------- W&YU^&`Yr
y = zeros(length_r,length(n)); FIS "Z(
for j = 1:length(n) DHv2&zH
s = 0:(n(j)-m_abs(j))/2; *GJ:+U&m[
pows = n(j):-2:m_abs(j); f0DK>L
for k = length(s):-1:1 &qKigkLd
p = (1-2*mod(s(k),2))* ... E=]]b;u-n
prod(2:(n(j)-s(k)))/ ... 6WeM rWx
prod(2:s(k))/ ... q_sEw~~@!
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &?y7I Pp
prod(2:((n(j)+m_abs(j))/2-s(k))); x#r<,uNn,
idx = (pows(k)==rpowers); /OG zt
y(:,j) = y(:,j) + p*rpowern(:,idx); gfN2/TDC]P
end t"|DWC*
45<y{8
if isnorm w"~<h;
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); k"0;D-lTZ>
end s6n`?,vw
end pawl|Z'Ez
% END: Compute the Zernike Polynomials @PX\{6&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nxfoWy
[Gtb+'8
% Compute the Zernike functions: Xb,T{.3@
% ------------------------------
oL-2qtv
idx_pos = m>0; \f%.n]>
idx_neg = m<0; \k; n20\u
MA*
:<l
z = y; RV;!05^<
if any(idx_pos) "VTF}#Uo
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2+Yb
7 uI,
end
)%F5t&lum
if any(idx_neg) ! %Ny0JkO
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Ryv_1gR!
end +qy6d7^
p!DP`Ouc3\
% EOF zernfun