非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ZRGe$HaU
function z = zernfun(n,m,r,theta,nflag) &i805,lx
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Qp@}v7Due
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N
?nJv f
% and angular frequency M, evaluated at positions (R,THETA) on the Y|#<kS
% unit circle. N is a vector of positive integers (including 0), and [$]-W$j+
% M is a vector with the same number of elements as N. Each element D3O)Tj@:}(
% k of M must be a positive integer, with possible values M(k) = -N(k) {iQ4jJ`n
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, B$q5/ L$}
% and THETA is a vector of angles. R and THETA must have the same m8l!+8
% length. The output Z is a matrix with one column for every (N,M) -lfbn=3
% pair, and one row for every (R,THETA) pair. nh+h3"-d
% @]]\r.DG
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike s=R^2;^
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {p$X*2ReB
% with delta(m,0) the Kronecker delta, is chosen so that the integral zo
]-,u
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, fn5!Nr ,
% and theta=0 to theta=2*pi) is unity. For the non-normalized &`'@}o>2
% polynomials, max(Znm(r=1,theta))=1 for all [n,m].
u7&5t
% /*6[Itm_h
% The Zernike functions are an orthogonal basis on the unit circle. 9*s:Vff{
% They are used in disciplines such as astronomy, optics, and Qdy/KL1]
% optometry to describe functions on a circular domain. kK&AK2
% 3z k},8fu
% The following table lists the first 15 Zernike functions. {XXnMO4uR;
% U@}r?!)"f
% n m Zernike function Normalization Nah\4-75&
% -------------------------------------------------- y
:QnK0
% 0 0 1 1 i_y%HG
% 1 1 r * cos(theta) 2 M3fTUCR
% 1 -1 r * sin(theta) 2 =QwT)KRB%
% 2 -2 r^2 * cos(2*theta) sqrt(6) WQ{^+C9g'1
% 2 0 (2*r^2 - 1) sqrt(3) z
wn#E
% 2 2 r^2 * sin(2*theta) sqrt(6) 7 $dibTER
% 3 -3 r^3 * cos(3*theta) sqrt(8) xd`\Ai
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) .|:R#VW
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Vc8w[oS
% 3 3 r^3 * sin(3*theta) sqrt(8) bz`rSp8h
% 4 -4 r^4 * cos(4*theta) sqrt(10) Xag#ZT
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) RRpCWcIv"
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) |/u,6`
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) E]pDp
/D
% 4 4 r^4 * sin(4*theta) sqrt(10) wEl/s P
% -------------------------------------------------- 0Fs2* FS
% OP``+z>
% Example 1: c&g*nDuDj
% F_iZ|B
% % Display the Zernike function Z(n=5,m=1) rLp0)Go
% x = -1:0.01:1; =Nz;R2{@
% [X,Y] = meshgrid(x,x); +^$E)Ol
% [theta,r] = cart2pol(X,Y); z|<?=c2P
% idx = r<=1; ~qE:Nz0@
% z = nan(size(X)); bc6|]kB:
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ^ b{~]I
% figure =)!~t/
% pcolor(x,x,z), shading interp Wm!cjGK
% axis square, colorbar e=ry_@7
% title('Zernike function Z_5^1(r,\theta)') k7nke^,|
% g
T0@pxl
% Example 2: ^HWa owy=
% LP>GM=S#"
% % Display the first 10 Zernike functions ?0d#O_la3
% x = -1:0.01:1; (Wn^~-`=+
% [X,Y] = meshgrid(x,x); );xTl6Y9
% [theta,r] = cart2pol(X,Y); Vo(bro4ZQi
% idx = r<=1; rL/H{.@$`
% z = nan(size(X)); dlDO?T
% n = [0 1 1 2 2 2 3 3 3 3]; v|rBOv
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; R E9`T
% Nplot = [4 10 12 16 18 20 22 24 26 28]; !!)NER-dv
% y = zernfun(n,m,r(idx),theta(idx)); X(;WY^i!
% figure('Units','normalized') =GC,1WVEqV
% for k = 1:10 4=l$wg~;
% z(idx) = y(:,k); mfk^t`w_
% subplot(4,7,Nplot(k)) 2GRv%:rZ
% pcolor(x,x,z), shading interp 50Ov>(f@7
% set(gca,'XTick',[],'YTick',[]) S0lt_~
% axis square xH>j
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) j
HEt
% end Pu,2a+0N
% cJ'OqV F
% See also ZERNPOL, ZERNFUN2. pE{Ecrc3|
CE|rn8MB
% Paul Fricker 11/13/2006 z7HM/<WY
+6(\7?
Eg_ram`\R
% Check and prepare the inputs: a6 "-,Kg
% ----------------------------- p<\7" SB=
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Z)<lPg!YAR
error('zernfun:NMvectors','N and M must be vectors.') ,b t
j6hg
end ` c"
Lwo9s)j<e
if length(n)~=length(m) O_v*,L!
error('zernfun:NMlength','N and M must be the same length.') U<6+2y P
end CrYPcvd6
wB"`lY
n = n(:); %0%Tp
m = m(:); z6 .^a-sU5
if any(mod(n-m,2)) }qBmt>#
error('zernfun:NMmultiplesof2', ... [6\b(kS+
'All N and M must differ by multiples of 2 (including 0).') ULzrJbP'7
end A(+%DZ
vywpX^KPv
if any(m>n) cT
nC
error('zernfun:MlessthanN', ... E^m;Ab=
'Each M must be less than or equal to its corresponding N.') L fZF
end f7&9IW`7F^
c6VyF=2q
if any( r>1 | r<0 ) EvF[h:C2
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]$I}r=
Em
end -]Q\G
Dv~jVI Xu
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) %RzCJxT
error('zernfun:RTHvector','R and THETA must be vectors.') ;KT5qiqYH
end 0x fF
gzN51B =D
r = r(:); tNz(s)
theta = theta(:); QSOG(}w
length_r = length(r); H^M>(kT#&
if length_r~=length(theta) jW>K#vj
error('zernfun:RTHlength', ... 1o?uf,H7O
'The number of R- and THETA-values must be equal.') k`J|]99Wb
end E@4/<;eKK
e/}4Pt
% Check normalization: s%1ZraMvJ
% -------------------- <T]ey
if nargin==5 && ischar(nflag) ?@;#|^k9
isnorm = strcmpi(nflag,'norm'); <jBRUa[j_
if ~isnorm ~EU\\;1Rmq
error('zernfun:normalization','Unrecognized normalization flag.') ygQe'S{!S\
end L2OR<3*|Av
else <(i5hmuVd
isnorm = false; q}W})
end 'UM *7
}
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oXUb_/
% Compute the Zernike Polynomials U*?`tdXJ$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V)P8w#,
a4pe wg'
% Determine the required powers of r: M~~)tJYsu
% ----------------------------------- ',/2J0_
m_abs = abs(m); cZ# %tT#
rpowers = []; W6B"QbHYz
for j = 1:length(n) }Eh &'
rpowers = [rpowers m_abs(j):2:n(j)]; o7@C$R_#
end <T&v\DN
rpowers = unique(rpowers); B<0Kl.V
l]OzE-*$b
% Pre-compute the values of r raised to the required powers, 3 FV -&Y
% and compile them in a matrix: kpxGC,I^*.
% ----------------------------- Q!_d6-*u
if rpowers(1)==0 _n_()at)
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g/VV2^,
rpowern = cat(2,rpowern{:}); 6&il>
rpowern = [ones(length_r,1) rpowern]; f+8 QAvh
else dT[JVl+3=
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Kxg@( Q
rpowern = cat(2,rpowern{:}); jcb&h@T8kv
end -&=dl_m
N1B$z3E*
% Compute the values of the polynomials: U_l9CZ
% -------------------------------------- 3R0ioi 7
y = zeros(length_r,length(n)); IdK<:)Q
for j = 1:length(n) l qKj;'
s = 0:(n(j)-m_abs(j))/2; ~]q>}/&YLo
pows = n(j):-2:m_abs(j); xF@&wg
for k = length(s):-1:1 p4
=/rkq
p = (1-2*mod(s(k),2))* ... {Ay dt8
prod(2:(n(j)-s(k)))/ ... w
?*eBLJ(G
prod(2:s(k))/ ... &}
{ #g
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 9bspf {
prod(2:((n(j)+m_abs(j))/2-s(k))); :
]+6l
idx = (pows(k)==rpowers); RB|i<`Z
y(:,j) = y(:,j) + p*rpowern(:,idx); UtP|<]{
end ;lvcg)}l
&{UqGD#1&
if isnorm AV7#,+p%G
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); imeE&
end *@H\J e`
end ,Aai-AGG@
% END: Compute the Zernike Polynomials
6su~SPh
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q$v00z]f*
~f[ Y;
% Compute the Zernike functions: @Z2np{X:
% ------------------------------ >0W
P:-\*
idx_pos = m>0; p4*L}Q
idx_neg = m<0; H!&_Tv[
(zsv!U
z = y; 7eAV2.
if any(idx_pos) gWzslgO6
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); P^Owgr=Y
end -Ep#q&\
if any(idx_neg) -z0;4O (K]
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); N2"B\
end .7
0
a4*976~![
% EOF zernfun