非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^p(aZj3k
function z = zernfun(n,m,r,theta,nflag) Rxdj}xy
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. FWu:5fBZY
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ;?u cC@
% and angular frequency M, evaluated at positions (R,THETA) on the y],opG6
% unit circle. N is a vector of positive integers (including 0), and |mMsU,*gB
% M is a vector with the same number of elements as N. Each element =mLp g4
% k of M must be a positive integer, with possible values M(k) = -N(k) &en2t=a
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, }"+"nf5h
% and THETA is a vector of angles. R and THETA must have the same xY?p(>(
% length. The output Z is a matrix with one column for every (N,M) g7323m1=
% pair, and one row for every (R,THETA) pair. (A=PDjP!
% _1)n_P4
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "]jN'N(.
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7=G6ao7
% with delta(m,0) the Kronecker delta, is chosen so that the integral &&CrF~
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, u.q3~~[=
% and theta=0 to theta=2*pi) is unity. For the non-normalized ="]lN
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. A< .5=E,/
% 2<*"@Vj
% The Zernike functions are an orthogonal basis on the unit circle. TeuZVy8a
% They are used in disciplines such as astronomy, optics, and t,LK92?
% optometry to describe functions on a circular domain. qJF'KHyU{l
% R:n|1]*f3X
% The following table lists the first 15 Zernike functions. yW?-Z[
% 4U\>TFO
% n m Zernike function Normalization %UdE2 D'bC
% -------------------------------------------------- Mxw-f4j
% 0 0 1 1 +6>2= ,?Z
% 1 1 r * cos(theta) 2 'bRf>=
% 1 -1 r * sin(theta) 2 $m
;p@#n
% 2 -2 r^2 * cos(2*theta) sqrt(6) AAfhh5i
% 2 0 (2*r^2 - 1) sqrt(3) kKRu]0J~[
% 2 2 r^2 * sin(2*theta) sqrt(6) '{0O!y[H6
% 3 -3 r^3 * cos(3*theta) sqrt(8) Pg.JI:>2Ku
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) @|;[
;:h@
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) M#Z^8(
% 3 3 r^3 * sin(3*theta) sqrt(8) j)G%I y[`
% 4 -4 r^4 * cos(4*theta) sqrt(10) G[e,7jev
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pS-o*!\C.
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) w}6~t\9D
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o~Hq&C"^}
% 4 4 r^4 * sin(4*theta) sqrt(10) d_(;sW"I
% -------------------------------------------------- K?M~x&Q
% XR8`,qH>
% Example 1: =mQY%l
% o[wiQ9Tl
% % Display the Zernike function Z(n=5,m=1) Q `K^>L1
% x = -1:0.01:1; fFVQu\
% [X,Y] = meshgrid(x,x); 7h(
% [theta,r] = cart2pol(X,Y); cq]0|\Vz
% idx = r<=1; E9k%:&]vd
% z = nan(size(X)); [Cd#<Te3
% z(idx) = zernfun(5,1,r(idx),theta(idx)); dH0>lV
% figure e+#Oj
% pcolor(x,x,z), shading interp &:C[
n q
% axis square, colorbar bi-Am/9
% title('Zernike function Z_5^1(r,\theta)') ^xk4HF
% A##Q>|>)
% Example 2: pqv l,G5
% sAO/yG
% % Display the first 10 Zernike functions U(+QrC:
% x = -1:0.01:1; M`#g>~bI#R
% [X,Y] = meshgrid(x,x); zxs)o}8icO
% [theta,r] = cart2pol(X,Y); 9*JxP%8T~X
% idx = r<=1; 6(\-aH'Ol
% z = nan(size(X)); xP9R
d/xa|
% n = [0 1 1 2 2 2 3 3 3 3]; wmK;0 )|H
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; zZ9Ei-Q
% Nplot = [4 10 12 16 18 20 22 24 26 28]; dC4`xUv
% y = zernfun(n,m,r(idx),theta(idx)); I|bX;l
% figure('Units','normalized') r#j3O}(n
% for k = 1:10 )y!gApNs"
% z(idx) = y(:,k); ?l[#d7IB
% subplot(4,7,Nplot(k)) 1IgTJ" \
% pcolor(x,x,z), shading interp b+RU <qR
% set(gca,'XTick',[],'YTick',[]) ]ml 'd
% axis square /QlzWson
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?3LV$S)U
% end
j AoI`J
% y]i}j,e0L
% See also ZERNPOL, ZERNFUN2. %26HB
w=JF
[vBP,_Tjx
% Paul Fricker 11/13/2006 V/\`:
-hF!_);{
@G=:@;
% Check and prepare the inputs: zb~;<:<
% ----------------------------- CyVi{"aF3
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @VND}{j
error('zernfun:NMvectors','N and M must be vectors.') bQ?Vh@j(M
end d]_].D$
w4^$@GtN
if length(n)~=length(m) yWN'va1+$
error('zernfun:NMlength','N and M must be the same length.') ~s?y[yy6i
end L`:V]p
/a$Zzs&xs
n = n(:); &RS)U72
m = m(:); <|3F('Q"
if any(mod(n-m,2)) 0|hOoO]?q&
error('zernfun:NMmultiplesof2', ... $Zi{1w
'All N and M must differ by multiples of 2 (including 0).') F_}y[Yn^
end IAmMO[9H
e'v_eD T^
if any(m>n) !t)uRJ
error('zernfun:MlessthanN', ... X)TZ S
'Each M must be less than or equal to its corresponding N.') I#F,
Mb>:
end oY\;KPz
:E|+[}|
if any( r>1 | r<0 ) *|+$7j
error('zernfun:Rlessthan1','All R must be between 0 and 1.') a[=B?Bd
end Vn^8nS
0!c/4^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) VzM (u_)
error('zernfun:RTHvector','R and THETA must be vectors.') ~2NTXp
end 'o8,XBv-
pXNH
r = r(:); N>j*{]OY+{
theta = theta(:); MqWM!v-M
length_r = length(r); : T4ap_Ycq
if length_r~=length(theta) FGo)]U
error('zernfun:RTHlength', ... grd
fR`3
'The number of R- and THETA-values must be equal.') nwDW<J{f|U
end Ko0T[TNkh
e7Sg-NWV
% Check normalization: ~a>3,v-
% -------------------- fhHTp_u)2
if nargin==5 && ischar(nflag) mL@7,GD
isnorm = strcmpi(nflag,'norm'); *:chN' <
if ~isnorm PB:r+[91
error('zernfun:normalization','Unrecognized normalization flag.') r_V^sX
end {X\FS
else V2 }.X+u&<
isnorm = false; TU2MG VYy
end 57N<OQWf
1(VskFtZF
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ban"H~
% Compute the Zernike Polynomials 8?o{{ay
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lb)i0`AN+
!6+V
% Determine the required powers of r: UXS+GAWU
% ----------------------------------- i?F~]8
m_abs = abs(m); m`,h nDp
rpowers = []; xAf?E%_pi
for j = 1:length(n) B/EGaYH
rpowers = [rpowers m_abs(j):2:n(j)]; %C >Win)g
end yA<\?Ps
rpowers = unique(rpowers); T,4REbm^
]"vpCL
% Pre-compute the values of r raised to the required powers, 1i|5ii*vc
% and compile them in a matrix: VBu6,6
% ----------------------------- [4}U*\/>C
if rpowers(1)==0 L<N=,~
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); XCO;t_%
rpowern = cat(2,rpowern{:}); gn${@y?
rpowern = [ones(length_r,1) rpowern]; 74~%4
else ,Ct1)%
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); wIQt
f|ZI>
rpowern = cat(2,rpowern{:}); .ffb*gZ4
end PkdL] !:
eOd'i{f@F
% Compute the values of the polynomials: Ar$Am
% -------------------------------------- u,Cf4H*xS
y = zeros(length_r,length(n)); OmECvL'Z
for j = 1:length(n) l9$"zEC
s = 0:(n(j)-m_abs(j))/2; L q;=UE
pows = n(j):-2:m_abs(j); iC<qWq|S_m
for k = length(s):-1:1 ~w$ ^`e!]
p = (1-2*mod(s(k),2))* ... gs= (h*
prod(2:(n(j)-s(k)))/ ... 2o`L^^
prod(2:s(k))/ ... AhSN'gWpbF
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 4"%LgV`
prod(2:((n(j)+m_abs(j))/2-s(k))); $C&E3 'O
idx = (pows(k)==rpowers); h Qbz}x
y(:,j) = y(:,j) + p*rpowern(:,idx); ?xCWg.#l4V
end <a%RKjQvT
O>2i)M-h9x
if isnorm ,y*|f0&"~
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Ne2eBmY}(
end -xU4s
end BP0*`TY
% END: Compute the Zernike Polynomials ~fF;GtP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 69{q*qCW
HY7#z2L
% Compute the Zernike functions: ^/$bd4,z
% ------------------------------ |`ZW(}~
idx_pos = m>0; XXPpj< c
idx_neg = m<0; S8)6@ECC
zM|Y
X<
z = y; ,9~2#[|lq
if any(idx_pos) +T]D\];D
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Vqxxm&^P
end ~myY-nEY
if any(idx_neg) 5'[b:YC
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); p6W|4_a?
end XlU`jv+
45tQ$jr`1
% EOF zernfun