切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11274阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 CXuMNa  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! "PS ) "t  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 A5\ Hq  
    function z = zernfun(n,m,r,theta,nflag) MO| Dwuaf  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?|Z~mE  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N g-ZXj4Ph!  
    %   and angular frequency M, evaluated at positions (R,THETA) on the {,(iL8,^  
    %   unit circle.  N is a vector of positive integers (including 0), and q<^MC/]  
    %   M is a vector with the same number of elements as N.  Each element 6f t6;*,  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) .!+7|us8l\  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, k}qCkm27  
    %   and THETA is a vector of angles.  R and THETA must have the same f<oU" WM  
    %   length.  The output Z is a matrix with one column for every (N,M) Brd9"M|d  
    %   pair, and one row for every (R,THETA) pair. zTPNQ0=|  
    % 'R- g:X\{  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^qVBgBPb  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), A@:U|)+4  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral SjF(;0k C  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |TQ4:P1T  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized %<p/s;eu  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. YRv96|c,  
    % ^ rUq{  
    %   The Zernike functions are an orthogonal basis on the unit circle. M0?%r`  
    %   They are used in disciplines such as astronomy, optics, and CY*GCkH  
    %   optometry to describe functions on a circular domain. [}l 90lP  
    % s +qodb+  
    %   The following table lists the first 15 Zernike functions. 8\C][ y  
    % +%WW8OX   
    %       n    m    Zernike function           Normalization (u='&ka  
    %       -------------------------------------------------- ~4twI*f  
    %       0    0    1                                 1 .A_R6~::  
    %       1    1    r * cos(theta)                    2 *XYp~b  
    %       1   -1    r * sin(theta)                    2 9KJ}A i  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) =&Tuh}  
    %       2    0    (2*r^2 - 1)                    sqrt(3) =}I=s@  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 2 J3/Eu  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) {Xr 9]g`  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) C(8!("tU  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 6hcK%0z  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) > sQ&5-i  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) })?-)fFD  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i\DU<lD5VN  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) >Y+m54EE  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,Jn` qvmi  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) qzO5p=}  
    %       -------------------------------------------------- Y" rODk1  
    % JBZ1DZAWC  
    %   Example 1: ~v:IgS  
    % ""_G4{  
    %       % Display the Zernike function Z(n=5,m=1) @6aJh< c  
    %       x = -1:0.01:1; \}Iq-Je   
    %       [X,Y] = meshgrid(x,x); $A/?evJi8R  
    %       [theta,r] = cart2pol(X,Y); OjG`s-91&  
    %       idx = r<=1; F0r2=f(?  
    %       z = nan(size(X)); R(8?9-w  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); m~P30)  
    %       figure R9"}-A  
    %       pcolor(x,x,z), shading interp I36%oA  
    %       axis square, colorbar <%rm?;PBl  
    %       title('Zernike function Z_5^1(r,\theta)') P &@,Z# \  
    % O,v C:av  
    %   Example 2: yx*<c#Uf  
    % 0L,!o[L*  
    %       % Display the first 10 Zernike functions R7!v=X]i  
    %       x = -1:0.01:1; nG{o$v_|  
    %       [X,Y] = meshgrid(x,x); &N+`O)$  
    %       [theta,r] = cart2pol(X,Y); CPeu="[  
    %       idx = r<=1; oe3=QE  
    %       z = nan(size(X)); ]w$cqUhM  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 4sBvW  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; WiQVZ {  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; UWK|_RT6SA  
    %       y = zernfun(n,m,r(idx),theta(idx)); 2+C:Em0yI  
    %       figure('Units','normalized') L<B)BEE.  
    %       for k = 1:10 z}Us+>z+jc  
    %           z(idx) = y(:,k); gN7 3)uJ0  
    %           subplot(4,7,Nplot(k)) P|p X F~  
    %           pcolor(x,x,z), shading interp MA}}w&  
    %           set(gca,'XTick',[],'YTick',[]) i3d 2+N`  
    %           axis square :O,r3O6  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6X?:mn'%QF  
    %       end G)M! , Q  
    % h+Yd \k  
    %   See also ZERNPOL, ZERNFUN2. ]>*VEe}hJ  
    v<<ATs%w  
    %   Paul Fricker 11/13/2006 (\r^ 0>H  
    .jC5 y&  
    q@ ;1{  
    % Check and prepare the inputs: .}Ys+d1b9c  
    % ----------------------------- q4G$I?4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) d<HO~+9  
        error('zernfun:NMvectors','N and M must be vectors.') V}7)>i$A  
    end q bCU&G|)  
    #a2Z.a<V  
    if length(n)~=length(m) >}2 ,2  
        error('zernfun:NMlength','N and M must be the same length.') mO(Y>|mm  
    end j8PeO&n>  
    9}Z;(,6/.\  
    n = n(:); fE&s 6w&  
    m = m(:); mW+5I-~  
    if any(mod(n-m,2)) k'PvQl"I  
        error('zernfun:NMmultiplesof2', ... >H5t,FfQL  
              'All N and M must differ by multiples of 2 (including 0).') C]l)Pz$  
    end ;T8(byH ?  
    R#8cOmZ  
    if any(m>n) ) j&khHD  
        error('zernfun:MlessthanN', ... *QI Yq  
              'Each M must be less than or equal to its corresponding N.') v6[VdWOx5  
    end \.p; 4V&  
    i_*.  
    if any( r>1 | r<0 ) @p}_"BHYWt  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') B!8X?8D  
    end 1^V.L+0s]  
    [wiB1{/Ls.  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) "!7Hu7  
        error('zernfun:RTHvector','R and THETA must be vectors.') Ea'jAIFPpO  
    end GO@<?>K  
    55UPd#E'  
    r = r(:); BA@M>j6d  
    theta = theta(:); skTa IGRL  
    length_r = length(r); 5[r}'08b  
    if length_r~=length(theta) ~Cw7.NA{3  
        error('zernfun:RTHlength', ... 4,h)<(d{  
              'The number of R- and THETA-values must be equal.') )'e1@CR  
    end UJ%.KU%Q}  
    Ruq>+ }4  
    % Check normalization: + ZiYl[_|  
    % -------------------- So e2Gq  
    if nargin==5 && ischar(nflag) v6Y[_1  
        isnorm = strcmpi(nflag,'norm'); X eY[;}9  
        if ~isnorm `d4xX@  
            error('zernfun:normalization','Unrecognized normalization flag.') Q=vo5)t   
        end IR:{{ (  
    else 2@pEiq3  
        isnorm = false; P$N5j~*  
    end Mqk|H~l5c  
    * a1q M?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "lC>_A  
    % Compute the Zernike Polynomials F2_'U' a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PVdN)tG5  
    9^N(s7s  
    % Determine the required powers of r: f}4A ,%:1  
    % ----------------------------------- H.C*IL9  
    m_abs = abs(m); V?) V2>]  
    rpowers = []; w^ofH-R/  
    for j = 1:length(n) 4}cxSl]jf!  
        rpowers = [rpowers m_abs(j):2:n(j)]; !+z^VcV  
    end i ps)-1  
    rpowers = unique(rpowers); f\q5{#"z  
    ,L~aa?Nb-  
    % Pre-compute the values of r raised to the required powers, re#]zc<  
    % and compile them in a matrix: 5 $$Cav  
    % ----------------------------- 61&{I>~1  
    if rpowers(1)==0 Lc[TIX  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); G/fBeK$.  
        rpowern = cat(2,rpowern{:}); ;#IrHR*Bk  
        rpowern = [ones(length_r,1) rpowern]; K3h7gY|.  
    else G,^ ?qbHg  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W?P4oKsql*  
        rpowern = cat(2,rpowern{:}); rUyGTe(@h  
    end k{b|w')  
    +%Kk zdS'  
    % Compute the values of the polynomials: h)j#?\KYm9  
    % -------------------------------------- aK|  
    y = zeros(length_r,length(n)); tX1`/}``  
    for j = 1:length(n) V51kX{S  
        s = 0:(n(j)-m_abs(j))/2; 0`p"7!r  
        pows = n(j):-2:m_abs(j); )D'# >!Y  
        for k = length(s):-1:1 TvT>UBqj=  
            p = (1-2*mod(s(k),2))* ... Ex*{iJ;\  
                       prod(2:(n(j)-s(k)))/              ... ;V?(j 3b[  
                       prod(2:s(k))/                     ... 6@FhDj2X  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... }aXSMxCd  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 4MW oGV9  
            idx = (pows(k)==rpowers); tQUKw@@Q  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Otq1CD9  
        end KD+&5=Y  
         )1@%!fr  
        if isnorm (e!Yu#-  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Knb(MI6  
        end WS.g` %  
    end n <> ^cD  
    % END: Compute the Zernike Polynomials Fn4yx~0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T3"'`Sd9;  
    45< gO1  
    % Compute the Zernike functions: P0OMu/  
    % ------------------------------ t98S[Z(-%+  
    idx_pos = m>0; p W5D!z  
    idx_neg = m<0; ?Ov~\[) F  
    "zTy_0[;  
    z = y; hy%5LV<(  
    if any(idx_pos) &sBD0R(a  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); s?->2gxhx  
    end +|pYu<OY  
    if any(idx_neg) ,g*3u  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~Jsu"kr  
    end l7VTuVGUJ  
    t>*(v#WeZ  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 3#]IIj`\  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. {+d)M  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated VSV]6$~H  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive `l.bU3C  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ~@X3qja  
    %   and THETA is a vector of angles.  R and THETA must have the same 98?O[=  
    %   length.  The output Z is a matrix with one column for every P-value, v.>K )%`#  
    %   and one row for every (R,THETA) pair. |/%5~=%7  
    % jA^Dk$  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike OU#p^ 5K  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 8tna<Hx  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Wc!]X.|9*  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 xWK/uE(  
    %   for all p. T9]0/>  
    % afD {w*[8  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 jAy2C&aP  
    %   Zernike functions (order N<=7).  In some disciplines it is "XLtrAu{  
    %   traditional to label the first 36 functions using a single mode >b5 ;I1o=y  
    %   number P instead of separate numbers for the order N and azimuthal :?FHqfN?_  
    %   frequency M. +c C. ZOS  
    % 1=,2i)  
    %   Example: Hy,""Py  
    % vZ57 S13  
    %       % Display the first 16 Zernike functions 2  @T~VRy  
    %       x = -1:0.01:1; ;~d$O M  
    %       [X,Y] = meshgrid(x,x); @H~oOf  
    %       [theta,r] = cart2pol(X,Y); =2NrmwWZs  
    %       idx = r<=1; *!*%~h8V  
    %       p = 0:15; s3Zt)xQ3  
    %       z = nan(size(X)); j;z7T;!i  
    %       y = zernfun2(p,r(idx),theta(idx)); 7gB?rJHV,  
    %       figure('Units','normalized') xJU]py~o  
    %       for k = 1:length(p) ~OvbMWu  
    %           z(idx) = y(:,k); Kr1Y3[iNv  
    %           subplot(4,4,k) 4E2/?3D  
    %           pcolor(x,x,z), shading interp fR{_P  
    %           set(gca,'XTick',[],'YTick',[]) |pG0 .p4  
    %           axis square "Y^ 9g/  
    %           title(['Z_{' num2str(p(k)) '}']) 3RvDX p  
    %       end ElDeXLr'  
    % w{2CV\^>5  
    %   See also ZERNPOL, ZERNFUN. tu* uQ:Ipk  
    !~R<Il|B  
    %   Paul Fricker 11/13/2006 +r;t]  
    C8T0=o/-`  
    yZgWFf.X  
    % Check and prepare the inputs: ']I!1>v$[  
    % ----------------------------- mf{M-(6'  
    if min(size(p))~=1 B9$f y).Gp  
        error('zernfun2:Pvector','Input P must be vector.') .QZjJ9pvK  
    end &IzNoB  
    |K{ d5\_  
    if any(p)>35 6aHD?a o  
        error('zernfun2:P36', ... *V\.6,^v  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... "M /Cl|z  
               '(P = 0 to 35).']) @|wU @by{  
    end 1y wdcg  
    p=E#!cn3  
    % Get the order and frequency corresonding to the function number: Ev7v,7`z  
    % ---------------------------------------------------------------- @H4]Gp ]  
    p = p(:); i|AWaG)  
    n = ceil((-3+sqrt(9+8*p))/2); t1J3'lS  
    m = 2*p - n.*(n+2); i$6rnS&C  
    w%iw xo   
    % Pass the inputs to the function ZERNFUN:  8 zlvzp  
    % ---------------------------------------- pOn&D  
    switch nargin _Y]Oloo('  
        case 3 _Z9 d.-  
            z = zernfun(n,m,r,theta); *>mjUT}cP  
        case 4 hi/d%lNZ  
            z = zernfun(n,m,r,theta,nflag); %*npLDi  
        otherwise 8]b;l; W5  
            error('zernfun2:nargin','Incorrect number of inputs.') A s}L=2  
    end <;?1#ok  
    tD}-&"REP  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) IO 0nT  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. `L7^f!  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of #\^=3A|b  
    %   order N and frequency M, evaluated at R.  N is a vector of v^s?=9  
    %   positive integers (including 0), and M is a vector with the ]u$tKC  
    %   same number of elements as N.  Each element k of M must be a `5wiXsNjLY  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) nw`rH*  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is fiA8W  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix _/}$X"4  
    %   with one column for every (N,M) pair, and one row for every '<<@@.(f  
    %   element in R. %$Py@g  
    % '/ Hoq  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Fv %@k{  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ?Sa,n^b*H  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to C R?}*  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 $b{8 $<;9  
    %   for all [n,m]. -=8f*K[W  
    % LA59O@r  
    %   The radial Zernike polynomials are the radial portion of the YlG#sBzl  
    %   Zernike functions, which are an orthogonal basis on the unit h?OSmzRLd  
    %   circle.  The series representation of the radial Zernike 8N9,HNBT$  
    %   polynomials is @d|Sv1d%  
    % $V?sD{=W  
    %          (n-m)/2 sH2xkUp  
    %            __ GBRiU &D  
    %    m      \       s                                          n-2s W% Lrp{  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r VWK/(>TP  
    %    n      s=0 F}meKc?a  
    % u1u;aG  
    %   The following table shows the first 12 polynomials. {fl[BX]kZ  
    % &1^~G0 Rh\  
    %       n    m    Zernike polynomial    Normalization `RE>gX  
    %       --------------------------------------------- %@)q=*=y  
    %       0    0    1                        sqrt(2) iM:-750n/  
    %       1    1    r                           2 PHI c7*_  
    %       2    0    2*r^2 - 1                sqrt(6) aBY&]6^-  
    %       2    2    r^2                      sqrt(6) {c LWum[SY  
    %       3    1    3*r^3 - 2*r              sqrt(8) >!" Sr3,L  
    %       3    3    r^3                      sqrt(8) Op~:z<z  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) N2[jBy8M  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) c?c\6*O  
    %       4    4    r^4                      sqrt(10) V/"RCqY4  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) eX"Ecl{  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) vShB26b  
    %       5    5    r^5                      sqrt(12) 9IG<9uj  
    %       --------------------------------------------- %'e$N9zd  
    % \vc&V8  
    %   Example: 4Y1^ U{A+  
    % f B]2"(  
    %       % Display three example Zernike radial polynomials 3PRU  
    %       r = 0:0.01:1; ip{ b*@K  
    %       n = [3 2 5]; |r;>2b/ x  
    %       m = [1 2 1]; 7zE1>.  
    %       z = zernpol(n,m,r); /@&o%I3h  
    %       figure o(l%k},a  
    %       plot(r,z) GtIAsC03  
    %       grid on z~p!7q&g  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') m3P7*S5NJ7  
    % M3]eqxLC  
    %   See also ZERNFUN, ZERNFUN2. w?nSQBz$  
    X_D-K F  
    % A note on the algorithm. 'IIa,']H  
    % ------------------------ =1|p$@L`%  
    % The radial Zernike polynomials are computed using the series [`tNa Vg  
    % representation shown in the Help section above. For many special Bv3B|D&+  
    % functions, direct evaluation using the series representation can f!5w+6(  
    % produce poor numerical results (floating point errors), because zlQBBm;fE  
    % the summation often involves computing small differences between lcReRcjm  
    % large successive terms in the series. (In such cases, the functions 5pY|RV6:  
    % are often evaluated using alternative methods such as recurrence -OD&x%L*{3  
    % relations: see the Legendre functions, for example). For the Zernike |+sAqx1IF  
    % polynomials, however, this problem does not arise, because the ls9Y?  
    % polynomials are evaluated over the finite domain r = (0,1), and 3jJV5J'"  
    % because the coefficients for a given polynomial are generally all p*YV*Arv  
    % of similar magnitude. b{-|q6  
    % J n2QvUAZ&  
    % ZERNPOL has been written using a vectorized implementation: multiple MuzQ z.C  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] S-Vxlku]  
    % values can be passed as inputs) for a vector of points R.  To achieve Qu8=zI>t  
    % this vectorization most efficiently, the algorithm in ZERNPOL 7!Im|7Ty  
    % involves pre-determining all the powers p of R that are required to })uyq_nz  
    % compute the outputs, and then compiling the {R^p} into a single ?/sn"~"  
    % matrix.  This avoids any redundant computation of the R^p, and jll|y0  
    % minimizes the sizes of certain intermediate variables. ""N~##)8  
    % KX cRm)  
    %   Paul Fricker 11/13/2006 x*TJYST  
    !lsa5w{  
    4u41M,nJQd  
    % Check and prepare the inputs: N,VI55J:y>  
    % ----------------------------- -Ks)1w>l  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) upeioC q  
        error('zernpol:NMvectors','N and M must be vectors.') +s`cXTlFrk  
    end Rm$(X5x>o  
    5K$<Ad4$b  
    if length(n)~=length(m) eIlovq/X  
        error('zernpol:NMlength','N and M must be the same length.') ~Ij/vyB_  
    end xkSVD6Km  
    jMS>B)'TO  
    n = n(:); K g.O2F77  
    m = m(:); 7'{Vh{.  
    length_n = length(n); #NL'r99D/o  
    TPKD'@:x  
    if any(mod(n-m,2)) hPgYKa8u  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') }K,3SO(:  
    end  fWs*u[S  
    D ZH2U+K  
    if any(m<0) @"^7ASd%  
        error('zernpol:Mpositive','All M must be positive.') .V UnOdI  
    end S-7C'dc  
    9 p^gF2?k  
    if any(m>n) D,=#SBJ:Z  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') %hH> %  
    end W* v3B.  
    Pl`Nniy  
    if any( r>1 | r<0 ) .XkVdaX  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') m$pRA0s2`  
    end *1_Ef).  
    "d}ey=$h4  
    if ~any(size(r)==1) d(b~s2\i  
        error('zernpol:Rvector','R must be a vector.') ST g} Z  
    end :LdPqFXj  
    #!#s7^%K&  
    r = r(:); "*MF=VB1  
    length_r = length(r); &Ll&A@yU  
    #ZnNJ\6  
    if nargin==4 qFq$a9w|@  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); HRu;*3+%>F  
        if ~isnorm S9%,{y  
            error('zernpol:normalization','Unrecognized normalization flag.') "oF)u1_?  
        end I6@"y0I  
    else x_C0=Q|K3  
        isnorm = false; )24M?R@r  
    end 8`]yp7ueS  
    qTMY]=(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% puMb B9)  
    % Compute the Zernike Polynomials \W= qqE]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "{t]~urLd  
    L$kB(Brw  
    % Determine the required powers of r: K" X" 2c1o  
    % ----------------------------------- [/n@BK  
    rpowers = []; ja&m-CFK  
    for j = 1:length(n) |z:4T%ES  
        rpowers = [rpowers m(j):2:n(j)]; L*vKIP<EMM  
    end _F|}=^Z`  
    rpowers = unique(rpowers); `c-omNu  
    n"Bc2}{  
    % Pre-compute the values of r raised to the required powers, ]bpgsW:Xu  
    % and compile them in a matrix: Q[|*P ] w  
    % ----------------------------- HTvUt*U1  
    if rpowers(1)==0 +PKsiUJ|  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); x.] tGS  
        rpowern = cat(2,rpowern{:}); *-Vr=e<8   
        rpowern = [ones(length_r,1) rpowern]; Z;RUxe|<k  
    else wQ@:0GJH  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8~TKiR5  
        rpowern = cat(2,rpowern{:}); |')PQ  
    end gxAy{ t  
    {B6ywTK\ `  
    % Compute the values of the polynomials: @>V;guJC%  
    % -------------------------------------- y=EVpd  
    z = zeros(length_r,length_n); F*>#Xr~/  
    for j = 1:length_n v7`{6Pf_$  
        s = 0:(n(j)-m(j))/2; K,%CE ].  
        pows = n(j):-2:m(j); 8]R{5RGy  
        for k = length(s):-1:1 ^M;#x$Y?  
            p = (1-2*mod(s(k),2))* ... ?A*!rW:l;  
                       prod(2:(n(j)-s(k)))/          ... Qh-:P`CN  
                       prod(2:s(k))/                 ... ('Uj|m}9  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... <1<xSr  
                       prod(2:((n(j)+m(j))/2-s(k))); S9r+Nsn  
            idx = (pows(k)==rpowers); .q[}e);)  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ylQj2B,CB  
        end ]yZ%wU9!  
         \[^! ys  
        if isnorm & 0WQF  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); :XG~AR /  
        end Fkq^2o ]  
    end lI.oyR'  
    |5X[/Q*K`W  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  iv *$!\Cd  
    /h+ W L  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 .k]`z>uv  
    y&,|+h  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)