非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 f2e$BA
function z = zernfun(n,m,r,theta,nflag) _^sSI<&m
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. $zA[5}{ZtQ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \yizIo.Y`
% and angular frequency M, evaluated at positions (R,THETA) on the _~&vs<
% unit circle. N is a vector of positive integers (including 0), and ;HwJw\fo
% M is a vector with the same number of elements as N. Each element ;Wm)e~`,
% k of M must be a positive integer, with possible values M(k) = -N(k) \D k^\-
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Fm~}A4
% and THETA is a vector of angles. R and THETA must have the same 5{f/H]
P
% length. The output Z is a matrix with one column for every (N,M) Bq=](<>>
% pair, and one row for every (R,THETA) pair. DQXx}%Px
% U1tPw`0h
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike t7%Bv+Uo
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), j|8{Vyqd
% with delta(m,0) the Kronecker delta, is chosen so that the integral X"59`Yh
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @!HMd{r
% and theta=0 to theta=2*pi) is unity. For the non-normalized ptL}F~
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. BnY|t2r
% znpZ0O\!
% The Zernike functions are an orthogonal basis on the unit circle. FOyfk$
% They are used in disciplines such as astronomy, optics, and v"TH[}C9D
% optometry to describe functions on a circular domain. xH-k~#
% 6>7LFV1tvy
% The following table lists the first 15 Zernike functions. -mdPqVIJn:
% j-E>*N}-_
% n m Zernike function Normalization e';c8WF3E
% -------------------------------------------------- UsKn4Kh
% 0 0 1 1 5 :>
% 1 1 r * cos(theta) 2 *3oQS"8
% 1 -1 r * sin(theta) 2 wpMQ 7:j
% 2 -2 r^2 * cos(2*theta) sqrt(6) 8j+;Xlh
% 2 0 (2*r^2 - 1) sqrt(3) +/8?+1E ^
% 2 2 r^2 * sin(2*theta) sqrt(6) 3ZZI1_j
% 3 -3 r^3 * cos(3*theta) sqrt(8) =v"{EmT[$
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) OtqLigt&l
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) g{{SY5qDj
% 3 3 r^3 * sin(3*theta) sqrt(8) 01w/,r
% 4 -4 r^4 * cos(4*theta) sqrt(10) +@v} (
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $\H46Ji
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) jH/%Z5iu
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Mi-9sW
% 4 4 r^4 * sin(4*theta) sqrt(10) #>NZN1
% -------------------------------------------------- YH$`r6\S
% l'R`XGT
% Example 1: nXW1 :
% i<![i5uAI
% % Display the Zernike function Z(n=5,m=1) lK@r?w|<M
% x = -1:0.01:1; Kwau:_B
% [X,Y] = meshgrid(x,x); (acRYv(
% [theta,r] = cart2pol(X,Y); M"
\y2
% idx = r<=1; 7:<>#
% z = nan(size(X)); .6(i5K
% z(idx) = zernfun(5,1,r(idx),theta(idx)); g}h0J%s
% figure -p~B
-,
% pcolor(x,x,z), shading interp }RK9Onh3G
% axis square, colorbar aa!c>"g6
% title('Zernike function Z_5^1(r,\theta)') _Y~?. hs^
% G_o4A:2
% Example 2: >H! 2Wflm
% |a3b2x,
% % Display the first 10 Zernike functions Dne&YVF9V
% x = -1:0.01:1; pc>R|~J{2
% [X,Y] = meshgrid(x,x); =^}2 /vA
% [theta,r] = cart2pol(X,Y); 3<lDsb(}0A
% idx = r<=1; RmCR"~
% z = nan(size(X)); Ric$Xmu
% n = [0 1 1 2 2 2 3 3 3 3]; ;T(^riAEl
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 3EdPKM j&
% Nplot = [4 10 12 16 18 20 22 24 26 28]; AS
u l
% y = zernfun(n,m,r(idx),theta(idx)); ? 'nMZ
% figure('Units','normalized') {[dqXG$v `
% for k = 1:10 yK;I<8+>_
% z(idx) = y(:,k); c Ix(;[U
% subplot(4,7,Nplot(k)) ]|(?i ,p
% pcolor(x,x,z), shading interp Nrh`DyF0D!
% set(gca,'XTick',[],'YTick',[]) _l<"Qqt
% axis square ~a Rq\fx{
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) dY^~^<{Lj
% end a WC
sLH
% mZ%\`H+
% See also ZERNPOL, ZERNFUN2. `^x^=
og'
Pd?YS!+S
% Paul Fricker 11/13/2006 4|UIyDt8
#/6X44
*u
48VsHqG
% Check and prepare the inputs: v4G kf
% ----------------------------- >@o*v*25
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) c{0?gt.
error('zernfun:NMvectors','N and M must be vectors.') ~<3yTl>
end ~Fh(4'
O jmz/W
if length(n)~=length(m) x(Z@R\C-a
error('zernfun:NMlength','N and M must be the same length.') Ig2VJ s;
end EWi@1PAZK
ah.Kb(d:
n = n(:); J/ ~]A1fP6
m = m(:); BH1To&ol
if any(mod(n-m,2)) {zcjTJ=Zt8
error('zernfun:NMmultiplesof2', ... #;)7~69
'All N and M must differ by multiples of 2 (including 0).') Qy%/+9L
end bE{`g]C5
Gy5W;,$q
if any(m>n) 'lF|F+8
error('zernfun:MlessthanN', ... PC5FfX
'Each M must be less than or equal to its corresponding N.') mCo5Gdt
end +(
d2hSIF
!~#31kL&
if any( r>1 | r<0 ) l%O-c}X
error('zernfun:Rlessthan1','All R must be between 0 and 1.') {_JLmyaerZ
end &DV'%h>i=
4KKNw9L)
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 6r`g+Js/
error('zernfun:RTHvector','R and THETA must be vectors.') ~*qGH
end V l%k:
C%&7,F7
r = r(:);
J&?kezs
theta = theta(:); iT5%X
length_r = length(r); pJIH_H
if length_r~=length(theta) @NF8?>!
error('zernfun:RTHlength', ... FWj~bn
'The number of R- and THETA-values must be equal.') =W6P>r_
end YY9q'x,w
w;:,W@K
% Check normalization: b({2|R
% -------------------- -p1arA
if nargin==5 && ischar(nflag) #'[ f^xgJ
isnorm = strcmpi(nflag,'norm'); =[$*PTe
if ~isnorm BBDOjhik
error('zernfun:normalization','Unrecognized normalization flag.') 5D#*lMSP"'
end >3JOQ;:d8
else Q'N<jX[
isnorm = false; W$&Q.Z
end 1VeCAx[e
s}.nh>Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (]JJ?aAF
% Compute the Zernike Polynomials er_aol e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cb+!H>+
@1pdyKK
% Determine the required powers of r: ^ZsME,
% ----------------------------------- CNwhH)*
m_abs = abs(m); FR&RIFy
rpowers = []; `4o;Lz~
for j = 1:length(n) Vo\d&}Q
rpowers = [rpowers m_abs(j):2:n(j)]; * PZ=$>r
end ZE9*i}r
rpowers = unique(rpowers); Zqao4
E,;nx^`!l
% Pre-compute the values of r raised to the required powers, *6h.#$\
% and compile them in a matrix: mb#)w`<
% ----------------------------- D -jew &B
if rpowers(1)==0 )z aMycW
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \6N\6=t!A
rpowern = cat(2,rpowern{:}); q/[)mr|~
rpowern = [ones(length_r,1) rpowern]; Deam%)bXM]
else 6Hz=VhQrN
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); SSzOz-&GA
rpowern = cat(2,rpowern{:}); ELm#
end k_skn3,u
Zd%*,\`S
% Compute the values of the polynomials: 33; ytd
% -------------------------------------- 27MgwX
NQ
y = zeros(length_r,length(n)); R_^:<F0
for j = 1:length(n) XdB8Oj~~
s = 0:(n(j)-m_abs(j))/2; {\%x{
pows = n(j):-2:m_abs(j); i,~{{XS<
for k = length(s):-1:1 m$4 Gm(Up
p = (1-2*mod(s(k),2))* ... FGZOn5U6'
prod(2:(n(j)-s(k)))/ ... !:>y.^O
prod(2:s(k))/ ... 29E^]IL?
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &W ~,q(
prod(2:((n(j)+m_abs(j))/2-s(k))); NZl0sX.:
idx = (pows(k)==rpowers); rlds-j''
y(:,j) = y(:,j) + p*rpowern(:,idx); ^ PD a
end JsH9IK:
A_[65'*b
if isnorm 6Us#4 v,
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ^v,^.>P
end ci$o~b6V
end \Wo,^qR
% END: Compute the Zernike Polynomials L.8-nTg"y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &BQ`4j~.
`'g%z: ~
% Compute the Zernike functions: E)`+1j
% ------------------------------ WUHijHo5(8
idx_pos = m>0; I|p(8R!
idx_neg = m<0; /JvNJ
f
[1s B
z = y; 0iwx$u7[
if any(idx_pos) O*30|[
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \}cEHLq
end /{Nx%PqL
if any(idx_neg) IQR?n}ce
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); En[cg
end FzNs >*
P2lj#aQLS
% EOF zernfun