切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11340阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 k4|YaGhf  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! kn<[v;+  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 1M+mH#?  
    function z = zernfun(n,m,r,theta,nflag) m!PN1$9V  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. EBn7waBS  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N S4\T (  
    %   and angular frequency M, evaluated at positions (R,THETA) on the [#.QDe  
    %   unit circle.  N is a vector of positive integers (including 0), and LsLsSV  
    %   M is a vector with the same number of elements as N.  Each element P!-9cd1 C,  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) HID;~Ne  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, uh GL1{  
    %   and THETA is a vector of angles.  R and THETA must have the same | 0&~fY  
    %   length.  The output Z is a matrix with one column for every (N,M) , n+dB2\  
    %   pair, and one row for every (R,THETA) pair. sqkPC_;A  
    % _|#)tWy}  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 8J>s|MZ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m7d? SU  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral \Q & Kd|  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, h-6kf:XP%  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized =XqmFr;h  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. P>)qN,a  
    % H*!E*_  
    %   The Zernike functions are an orthogonal basis on the unit circle. "eBpSV>nnQ  
    %   They are used in disciplines such as astronomy, optics, and 2"13!s  
    %   optometry to describe functions on a circular domain. HtXzMSGo7  
    % k6$.pCH6  
    %   The following table lists the first 15 Zernike functions. X${k  
    % +.zriiF]i  
    %       n    m    Zernike function           Normalization Bf8 #&]O  
    %       -------------------------------------------------- tQ*5[F,fm  
    %       0    0    1                                 1 [5,#p$R  
    %       1    1    r * cos(theta)                    2 zHyM@*Gf(  
    %       1   -1    r * sin(theta)                    2 ] @IzJz"R  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Of-l<Ks\  
    %       2    0    (2*r^2 - 1)                    sqrt(3) &'i>5Y  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) &t`l,]PQ=6  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) w%`7,d u|  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) teET nz_L  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) uN'e~X6  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) tLLP2^_&  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) sv =6?uYW  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X62GEqff  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) qL] !/}  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /SjA;c! .  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) }+,;wj~  
    %       -------------------------------------------------- qA5tMZ^w  
    % lNqYpyvy*  
    %   Example 1: (rvK@  
    % YQ;?N66  
    %       % Display the Zernike function Z(n=5,m=1) J](AJkGzK  
    %       x = -1:0.01:1; ss.wX~I  
    %       [X,Y] = meshgrid(x,x); <Knl6$B  
    %       [theta,r] = cart2pol(X,Y); lor jMS  
    %       idx = r<=1; yX/ 9jk  
    %       z = nan(size(X)); `cCsJm$V"  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); R9^Vk*`gFU  
    %       figure 7]62=p2R  
    %       pcolor(x,x,z), shading interp M2{{B ^*$6  
    %       axis square, colorbar 6gNsh  
    %       title('Zernike function Z_5^1(r,\theta)') 3+0 $=ef  
    % 4Y;z46yM%  
    %   Example 2: 5v6*.e'p  
    % up#W"`"  
    %       % Display the first 10 Zernike functions Ic P]EgB  
    %       x = -1:0.01:1; X=8y$Yy  
    %       [X,Y] = meshgrid(x,x); UXvUU^k"v  
    %       [theta,r] = cart2pol(X,Y); 4Un(}P'   
    %       idx = r<=1; ~#C7G\R  
    %       z = nan(size(X)); ]-&A )M6  
    %       n = [0  1  1  2  2  2  3  3  3  3]; RNiFLD%5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; w9G (^jS6  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; jEo)#j];`<  
    %       y = zernfun(n,m,r(idx),theta(idx)); WRe9ki=R  
    %       figure('Units','normalized') `O5w M\Z  
    %       for k = 1:10 @ l41'?m  
    %           z(idx) = y(:,k); j KGfm9|zj  
    %           subplot(4,7,Nplot(k)) I r]#u]Ap  
    %           pcolor(x,x,z), shading interp  At @H  
    %           set(gca,'XTick',[],'YTick',[]) Y{ijSOl3  
    %           axis square g Y|f[M|  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) UP'~D]J  
    %       end Y23- Im  
    % *eK\W00  
    %   See also ZERNPOL, ZERNFUN2. 0}$Zr*|;Y  
    H`d595<=i;  
    %   Paul Fricker 11/13/2006 P%2aOsD0  
    TF R8  
    f{mWy1NH\  
    % Check and prepare the inputs: i&=I5$  
    % ----------------------------- {<+B>6^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) H65><38X/  
        error('zernfun:NMvectors','N and M must be vectors.') ]Dec/Nnj  
    end W|'7)ph  
    /N'0@ q  
    if length(n)~=length(m) \MI2^J N  
        error('zernfun:NMlength','N and M must be the same length.') 3Xcjr2]~  
    end D`d*bNR  
    & 6 wD  
    n = n(:); w`KqB(36  
    m = m(:); 4&N#d;ErC  
    if any(mod(n-m,2)) PDQEI55  
        error('zernfun:NMmultiplesof2', ... kD;1+lNz  
              'All N and M must differ by multiples of 2 (including 0).') Bie#GKc  
    end H{ M7_1T  
    `xv2,Z9<  
    if any(m>n)  S1$lNB  
        error('zernfun:MlessthanN', ... Rxb?SBa  
              'Each M must be less than or equal to its corresponding N.') GBeWF-`B  
    end ,=>Ws:j  
    R RRF/Z;))  
    if any( r>1 | r<0 ) OEi u,Y|@l  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') /~~A2.=.  
    end b'r</ncZ  
    p+7G  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )  R.x^  
        error('zernfun:RTHvector','R and THETA must be vectors.') x%_VzqR`  
    end 0{Uc/  
    u1 Z;n  
    r = r(:); 8FT]B/^&m  
    theta = theta(:); pmwVVUEQ  
    length_r = length(r); )_C+\K*  
    if length_r~=length(theta) wE3L,yx=  
        error('zernfun:RTHlength', ... _+7+90u  
              'The number of R- and THETA-values must be equal.') j)nL!":O  
    end `^v=*&   
    eR3v=Q  
    % Check normalization: u*}ltR~/  
    % -------------------- TW?_fse*[  
    if nargin==5 && ischar(nflag) baQORU=X  
        isnorm = strcmpi(nflag,'norm'); \+M6R<Qw  
        if ~isnorm Xfc+0$U@  
            error('zernfun:normalization','Unrecognized normalization flag.') 6.Jvqn  
        end B%7Az!GX  
    else 2t7P| b~V1  
        isnorm = false; @vZeye  
    end =cR"_Z[8X  
    D~ogq]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YjCHKI"e  
    % Compute the Zernike Polynomials 4bs<j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s5/u>d  
    J8'1 ~$6  
    % Determine the required powers of r: k=W~ot &  
    % ----------------------------------- dzQs7D}  
    m_abs = abs(m); 8TBv~Q u  
    rpowers = []; d88Dyzz  
    for j = 1:length(n) n1U!od  
        rpowers = [rpowers m_abs(j):2:n(j)]; 6& (bL<8b  
    end WKAG)4  
    rpowers = unique(rpowers); R 7h^ @  
    m#Ydq(0+  
    % Pre-compute the values of r raised to the required powers, jj&mRF0gCb  
    % and compile them in a matrix: bey:Qj??  
    % ----------------------------- -aq3Lqi  
    if rpowers(1)==0 nR]*RIp5  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); J`]9 n>G  
        rpowern = cat(2,rpowern{:}); 1=Kt.tuf  
        rpowern = [ones(length_r,1) rpowern]; \ 5.nr*5  
    else Sa[?B  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); qRSoF04!R  
        rpowern = cat(2,rpowern{:}); 6:~<L!`&  
    end Oq^t[X'  
    /3#h]5Y"T  
    % Compute the values of the polynomials: C$0rl74Wi  
    % -------------------------------------- enx+,[  
    y = zeros(length_r,length(n)); eQz.N<f"  
    for j = 1:length(n) GrUpATIx  
        s = 0:(n(j)-m_abs(j))/2; )K8 ^}L,  
        pows = n(j):-2:m_abs(j); 4_D *xW  
        for k = length(s):-1:1 .-'_At4g  
            p = (1-2*mod(s(k),2))* ... +zwS[P@  
                       prod(2:(n(j)-s(k)))/              ... j0=F__H#@  
                       prod(2:s(k))/                     ... ZZw2m@T>  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 97[wz C,  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 4.Q[Tu  
            idx = (pows(k)==rpowers); 1N_T/I8_F  
            y(:,j) = y(:,j) + p*rpowern(:,idx); QOX'ZAB`  
        end IgjPy5k  
         K ton$%Li  
        if isnorm PR/>E60H  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $Zr \$z2  
        end 4{Q$^wD+.  
    end kbL7Xjk  
    % END: Compute the Zernike Polynomials b<!' WpY-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \2!.  
    qnHjwMi  
    % Compute the Zernike functions: cTz@ga;!mI  
    % ------------------------------ T6b~uE  
    idx_pos = m>0; lN&+<>a  
    idx_neg = m<0; ,PoG=W  
    EKO~\d  
    z = y; q:nUn?zB  
    if any(idx_pos) \!hd|j?&6  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); VDro(?p8Z  
    end =;GmLi3A  
    if any(idx_neg) A;5_/ 2  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); cNT !}8h^  
    end 7Vk9{x$z  
    dWi< U4  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) nGwon8&]]  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ps?su`  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated m]*a;a'}#  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive &^K(9"  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, #'},/Lm@  
    %   and THETA is a vector of angles.  R and THETA must have the same =>lX brJ  
    %   length.  The output Z is a matrix with one column for every P-value, 1JU je  
    %   and one row for every (R,THETA) pair. oOc-1C y  
    % @ ;@~=w  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike +)bn}L>R l  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) r\#nBoo(  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) k q]E@tE*3  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ]'7Au]Us`  
    %   for all p. yY!)2{F+  
    % Yyar{$he  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 /}2Y-GOU  
    %   Zernike functions (order N<=7).  In some disciplines it is T`pDjT  
    %   traditional to label the first 36 functions using a single mode 2@?X>,  
    %   number P instead of separate numbers for the order N and azimuthal wfe4b  
    %   frequency M. */JYP +  
    % Qd\='*:!  
    %   Example: $=,pQ q  
    % 6FJ*eWPC  
    %       % Display the first 16 Zernike functions /F9Dg<#a  
    %       x = -1:0.01:1; 1=5HQ~|[TO  
    %       [X,Y] = meshgrid(x,x); Ywv\9KL  
    %       [theta,r] = cart2pol(X,Y); YjnQ@IfIH  
    %       idx = r<=1; m&b1H9ymd  
    %       p = 0:15; <,0/BMz  
    %       z = nan(size(X)); 63%V_B|  
    %       y = zernfun2(p,r(idx),theta(idx)); \.oJ/++  
    %       figure('Units','normalized') u{va2n/  
    %       for k = 1:length(p) %'i_iF8.  
    %           z(idx) = y(:,k); ItvcN  
    %           subplot(4,4,k) ?%su?L  
    %           pcolor(x,x,z), shading interp 7sQHz.4  
    %           set(gca,'XTick',[],'YTick',[]) JIw?]xa*  
    %           axis square %o4v} mzV  
    %           title(['Z_{' num2str(p(k)) '}']) AX%}ip[PC  
    %       end rNJU & .]  
    % - AgD  
    %   See also ZERNPOL, ZERNFUN.  oJ*,a  
    T@{ab1KV  
    %   Paul Fricker 11/13/2006 G u_\ySV/y  
    /O.Ql ,6[  
    z/h]Jos  
    % Check and prepare the inputs: Dq<DW2It>  
    % ----------------------------- N%>h>HJ  
    if min(size(p))~=1 0HU0p!yt&  
        error('zernfun2:Pvector','Input P must be vector.') ||*F. p  
    end 2A@oa9  
    sbX7VfAR`  
    if any(p)>35 IDJ2epW*;  
        error('zernfun2:P36', ... +ctU7 rVy  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ^'`(E_2u  
               '(P = 0 to 35).']) kvbW^pl  
    end mD.6cV  
    TfkGkVR  
    % Get the order and frequency corresonding to the function number: vV$t`PEY  
    % ---------------------------------------------------------------- (yi zM  
    p = p(:); b/qK/O8J  
    n = ceil((-3+sqrt(9+8*p))/2); 6;:D!},'c  
    m = 2*p - n.*(n+2); I}o} # OJ  
    Z2yO /$<  
    % Pass the inputs to the function ZERNFUN: 0Fon`3(^\  
    % ---------------------------------------- qD\9h`a  
    switch nargin 4U}J?EB?K  
        case 3 6,jCO@!   
            z = zernfun(n,m,r,theta); %{4 U\4d@'  
        case 4 4Eu'_>"a  
            z = zernfun(n,m,r,theta,nflag); Q|{b8K  
        otherwise wT- <#+L\  
            error('zernfun2:nargin','Incorrect number of inputs.') ggrYf*  
    end {wA8!5Gu  
    =O"]e/CfO  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) i.W*Go+  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. bri8o"  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 3{~(_  
    %   order N and frequency M, evaluated at R.  N is a vector of <EgJm`V  
    %   positive integers (including 0), and M is a vector with the #yR&|*@  
    %   same number of elements as N.  Each element k of M must be a k Qr  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) |;~2y>E  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Or?c21un  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix W).Kq-  
    %   with one column for every (N,M) pair, and one row for every '{.4~:  
    %   element in R. R\&z3<-S  
    % BI-'&kPk  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Q <D_QJ  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is +FadOx7X$  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to b:~#;$g  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 K n1;=k  
    %   for all [n,m]. f&^"[S"\f  
    % !idVF!xG  
    %   The radial Zernike polynomials are the radial portion of the ?yj g\S?L  
    %   Zernike functions, which are an orthogonal basis on the unit ohx$;j  
    %   circle.  The series representation of the radial Zernike @J 5TDq @  
    %   polynomials is # }}6JM  
    % Dzu//_u  
    %          (n-m)/2 s:xJ }Ll  
    %            __ i?M-~EKu  
    %    m      \       s                                          n-2s Tq )hAZ  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r <Fx%P:d  
    %    n      s=0 +2eri_p  
    % NrXIaN  
    %   The following table shows the first 12 polynomials. \ILNx^$EL  
    % '&,p>aM  
    %       n    m    Zernike polynomial    Normalization $G)HU6hF*  
    %       --------------------------------------------- P/[RH e  
    %       0    0    1                        sqrt(2) XgnNYy6W  
    %       1    1    r                           2 4OJD_  
    %       2    0    2*r^2 - 1                sqrt(6) u1UCe  
    %       2    2    r^2                      sqrt(6) p9 ,[kb  
    %       3    1    3*r^3 - 2*r              sqrt(8) aN*{nW  
    %       3    3    r^3                      sqrt(8) '-N 5F  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) MS#*3Md&y  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) u tkdL4G}'  
    %       4    4    r^4                      sqrt(10) -eh .Tk  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) T*#M'H7LSQ  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ^J hs/HV  
    %       5    5    r^5                      sqrt(12) /8l@n dZf  
    %       --------------------------------------------- QP50.P5g  
    % F Xr\  
    %   Example: U<sGj~"#  
    % JCBX?rM/  
    %       % Display three example Zernike radial polynomials v%2Dz  
    %       r = 0:0.01:1; e&T-GL  
    %       n = [3 2 5]; ,\&r\!=  
    %       m = [1 2 1]; jLM y27Cn  
    %       z = zernpol(n,m,r);  03zt^<  
    %       figure ZD|F"v.  
    %       plot(r,z) |X XO0  
    %       grid on J| wk})?  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') hPz=Ec<zW  
    % WH39=)D%u  
    %   See also ZERNFUN, ZERNFUN2. iQ2}*:Jc$  
    M"p%CbcI]  
    % A note on the algorithm. zx]r.V  
    % ------------------------ {t! &x:  
    % The radial Zernike polynomials are computed using the series V*2 * 5hx  
    % representation shown in the Help section above. For many special [$d]U.  
    % functions, direct evaluation using the series representation can k}nGgd6XD  
    % produce poor numerical results (floating point errors), because owA8hGF  
    % the summation often involves computing small differences between $vO<v<I'Gb  
    % large successive terms in the series. (In such cases, the functions K$}K2w  
    % are often evaluated using alternative methods such as recurrence /!t:MK;  
    % relations: see the Legendre functions, for example). For the Zernike [ypE[   
    % polynomials, however, this problem does not arise, because the M,ybj5:6  
    % polynomials are evaluated over the finite domain r = (0,1), and +IbV  
    % because the coefficients for a given polynomial are generally all b5]<!~Fv:`  
    % of similar magnitude. "0 %f R"  
    % 9yTDuhJ6  
    % ZERNPOL has been written using a vectorized implementation: multiple |k]]dP|:'  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] <zTz/Hk`  
    % values can be passed as inputs) for a vector of points R.  To achieve  HRbv%  
    % this vectorization most efficiently, the algorithm in ZERNPOL toD!RE  
    % involves pre-determining all the powers p of R that are required to ~}ifwm'7 a  
    % compute the outputs, and then compiling the {R^p} into a single `DSFaBj,  
    % matrix.  This avoids any redundant computation of the R^p, and {%k[Z9*tO  
    % minimizes the sizes of certain intermediate variables. `~lG5|  
    % tQT<1Q02i  
    %   Paul Fricker 11/13/2006 9$9a BW  
    kRwY#  
    $gYGnh_,Q  
    % Check and prepare the inputs: vyWx{ @  
    % ----------------------------- _ Dz*%  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) q^^R|X1  
        error('zernpol:NMvectors','N and M must be vectors.') }#E]efjs  
    end 1/ j >|  
    %qeNC\6N  
    if length(n)~=length(m) V(LfFO{^>?  
        error('zernpol:NMlength','N and M must be the same length.') A@d 2Ukv  
    end ' i5}`\  
    AEWrrE  
    n = n(:); go6; _  
    m = m(:); e8:O2!HW  
    length_n = length(n); jG& 8`*|*  
    L">jSZW[[  
    if any(mod(n-m,2)) z.)*/HGJm  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ! ,H6.IH;S  
    end HL$7Ou  
    ~X<$ l+5  
    if any(m<0) doX`NbA  
        error('zernpol:Mpositive','All M must be positive.') ,+v(?5[6  
    end KkzG#'I1  
    (NfB+Ue}  
    if any(m>n) iDgc$'%?  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') `{yI| Wf  
    end L:@COy  
    Dh#5-Kf%  
    if any( r>1 | r<0 ) ei1;@k/  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 4~oRcO8!Y  
    end %Rr_fSoV  
    TL$w~dY  
    if ~any(size(r)==1) Y Fj#{C.  
        error('zernpol:Rvector','R must be a vector.') {H9g&pfv  
    end <pG 4 g  
    (+zU!9}I1  
    r = r(:); u9c^YCBM  
    length_r = length(r); ~SA>$  
    V5 9Vf[i|  
    if nargin==4 g.8^ )u  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); -<T> paE9  
        if ~isnorm xa?auv!  
            error('zernpol:normalization','Unrecognized normalization flag.') u!It' ;j  
        end OQg}E@LZ  
    else +yk0ez  
        isnorm = false; &h6 `hP_  
    end 7N vRZ!  
    %7\l+g,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +>u 8r&Jw.  
    % Compute the Zernike Polynomials tdu:imH~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }+u<w{-7/  
    pD~."fb  
    % Determine the required powers of r: (otD4VR_  
    % ----------------------------------- md\Vw?PkU  
    rpowers = []; ,%V%g!6{  
    for j = 1:length(n) [z;}^3b  
        rpowers = [rpowers m(j):2:n(j)]; 1guiuR4  
    end 7g oRj  
    rpowers = unique(rpowers); 4QiV@#o:  
    *|L;&XM&/  
    % Pre-compute the values of r raised to the required powers, *9F{+)A  
    % and compile them in a matrix: hHOx ]  
    % ----------------------------- F 6+4Yy+  
    if rpowers(1)==0 w#L`|cYCm  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &f)pU>Di  
        rpowern = cat(2,rpowern{:}); D7B g!*  
        rpowern = [ones(length_r,1) rpowern]; H2+Ijn19E  
    else dd6l+z  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Rp_}_hL0  
        rpowern = cat(2,rpowern{:}); (CYQ>)a  
    end t""Y -M  
    -"2%+S{  
    % Compute the values of the polynomials: :F"NF  
    % -------------------------------------- Kj4L PG  
    z = zeros(length_r,length_n); oHV!>K_D  
    for j = 1:length_n ] J|#WtS  
        s = 0:(n(j)-m(j))/2; Q+U" %   
        pows = n(j):-2:m(j); k&u5`F  
        for k = length(s):-1:1 9:E.Iy  
            p = (1-2*mod(s(k),2))* ... 6mIRa(6V  
                       prod(2:(n(j)-s(k)))/          ... J/Ch /Sa  
                       prod(2:s(k))/                 ... Jep/%cT$w  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... V4,\vgGu  
                       prod(2:((n(j)+m(j))/2-s(k))); Te^_gdf  
            idx = (pows(k)==rpowers); >ca`0gu  
            z(:,j) = z(:,j) + p*rpowern(:,idx);  [cfXcl  
        end =%[vHQ\%  
         $JK,9G[Vu  
        if isnorm 2ryg3% +O  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); NZXCaciG  
        end mMK 93Ng"&  
    end yOk]RB<'r  
    Q$yQ^ mG  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  qE{L42  
    .;%`I  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ME'LZ"VT  
    (*V:{_r  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)