非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 !J%m 7A
function z = zernfun(n,m,r,theta,nflag) f|cF[&wo
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. zB@@Gs>
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N BGSqfr1F
% and angular frequency M, evaluated at positions (R,THETA) on the D,)^l@UP
% unit circle. N is a vector of positive integers (including 0), and xdV $dDCT
% M is a vector with the same number of elements as N. Each element {R{Io|
% k of M must be a positive integer, with possible values M(k) = -N(k) LqOjVQxz
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, +'{@Xe}
% and THETA is a vector of angles. R and THETA must have the same S^/:O.X)c,
% length. The output Z is a matrix with one column for every (N,M) {zj<nu
% pair, and one row for every (R,THETA) pair. xn`<g|"#
% 6lKM5,Oa
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike TXDb5ZCzM
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9>1
$Jv3
% with delta(m,0) the Kronecker delta, is chosen so that the integral Z"u|-RoBV
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, yS2[V,vS7
% and theta=0 to theta=2*pi) is unity. For the non-normalized w*3DIVlxL
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. UB7H`)C}
% Pp9nilb_(
% The Zernike functions are an orthogonal basis on the unit circle. Pqc+p E
% They are used in disciplines such as astronomy, optics, and 4[$D3,A
% optometry to describe functions on a circular domain. &8^1:CcE
% O:>9yZhV
% The following table lists the first 15 Zernike functions. AWqc?K@
% oP 0ZJK&;
% n m Zernike function Normalization n!>#o1Qr
% -------------------------------------------------- ^HM9'*&KJ
% 0 0 1 1 oO8opS7F
% 1 1 r * cos(theta) 2 $ [NC$*N7
% 1 -1 r * sin(theta) 2 ue~?xmZg
% 2 -2 r^2 * cos(2*theta) sqrt(6) "k%B;!We)
% 2 0 (2*r^2 - 1) sqrt(3) /t<C_lLM
% 2 2 r^2 * sin(2*theta) sqrt(6) F]"Hs>
% 3 -3 r^3 * cos(3*theta) sqrt(8) j & x=?jX
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ncy? w
e
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) A`
iZ"?
% 3 3 r^3 * sin(3*theta) sqrt(8) )ZP-t!).G#
% 4 -4 r^4 * cos(4*theta) sqrt(10) .!&S{;Vv?W
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "~uo4n~H
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ^^{gn3xJ
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )U':NV2
% 4 4 r^4 * sin(4*theta) sqrt(10) >dTJ
% -------------------------------------------------- nLfITr|5
% NxyrP**j
% Example 1: UJX=lh.o
% ]F]!>dKA
% % Display the Zernike function Z(n=5,m=1) w=txSF&Qr
% x = -1:0.01:1; R
Wd#)3
% [X,Y] = meshgrid(x,x); )&$Zt(
% [theta,r] = cart2pol(X,Y); tHj |_t
% idx = r<=1; *k7vm%#ns
% z = nan(size(X)); ,PyA$Z
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ~{O9dEI
% figure %N, P?
,U
% pcolor(x,x,z), shading interp ;Npv 2yAab
% axis square, colorbar \s[/{3
% title('Zernike function Z_5^1(r,\theta)') r,` 5 9
% jP-=x(
% Example 2: G \S >H
% 6a=Y_fma
% % Display the first 10 Zernike functions %](H?'H
% x = -1:0.01:1; ~D9VjXfL)
% [X,Y] = meshgrid(x,x); t#p*{S 3u
% [theta,r] = cart2pol(X,Y); Yom,{;Bv
% idx = r<=1; mOUIGlv
% z = nan(size(X)); >;;tX3(
% n = [0 1 1 2 2 2 3 3 3 3]; 8#S}.|"?F
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; qC%[J:RwF
% Nplot = [4 10 12 16 18 20 22 24 26 28]; P 3CzX48^
% y = zernfun(n,m,r(idx),theta(idx)); ``:AF:
% figure('Units','normalized') ?xTh}Sky
% for k = 1:10 R&OqmhT!
% z(idx) = y(:,k); \*_@`1m
% subplot(4,7,Nplot(k)) #0+`dI_5/
% pcolor(x,x,z), shading interp l/JE}Eg(
% set(gca,'XTick',[],'YTick',[]) fnUR]5\tc
% axis square rX*ATN
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) J01Y%W
% end l{{wrU`
% *$KUnd-T
% See also ZERNPOL, ZERNFUN2. YJ&K0%R
!"dbK'jb^
% Paul Fricker 11/13/2006 (j%d{y4
:LuzKCvBP
g]z[!&%Ahs
% Check and prepare the inputs: `xhiG9mz~
% ----------------------------- >}43xIRRCq
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4[ S0~O{r
error('zernfun:NMvectors','N and M must be vectors.') &tULSp@J
end f4s^$Q{Q
;Ly(O'9
if length(n)~=length(m) MBbycI,
error('zernfun:NMlength','N and M must be the same length.') ^Fl6-|^~
end myVV5#{
9\/T #EP
n = n(:); WJ{hta
m = m(:); 86^xq#+Uw
if any(mod(n-m,2)) Rv)!p~V8
error('zernfun:NMmultiplesof2', ... ;?y*@*2u
'All N and M must differ by multiples of 2 (including 0).') da[u@eNrnX
end Z(S=2r.
PC_#kz
if any(m>n) Y}bJN%M
error('zernfun:MlessthanN', ... ;JcOm&d/hk
'Each M must be less than or equal to its corresponding N.') 9q2 >_Mv
end +P7A`{Ae
G36}4
if any( r>1 | r<0 ) H(^O{JC]y!
error('zernfun:Rlessthan1','All R must be between 0 and 1.') _u`NIpXSP
end e#YQA
0,T'z,
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) pr|P#mc"J
error('zernfun:RTHvector','R and THETA must be vectors.') eB:OvOol*^
end m[7i<'+S
H<M
ggs-
r = r(:); 6
1=?(Iw
theta = theta(:); 'oZ/fUl|7
length_r = length(r); jhWNMu
if length_r~=length(theta) O?8^I<
error('zernfun:RTHlength', ... 8+&] q#W3
'The number of R- and THETA-values must be equal.') LF'M!C9|
end fq){?hk~O
jb' hqz
% Check normalization: y(K?mtQ
% -------------------- e!wS"[,
if nargin==5 && ischar(nflag) .wrNRU7s
isnorm = strcmpi(nflag,'norm'); O jkbv
if ~isnorm PMJe6*(x/
error('zernfun:normalization','Unrecognized normalization flag.') 8@)/a
end w#Y<~W&
else }2.^n{Y
isnorm = false; ZhKYoPIq
end 1NO<K`
ny5=
=C{9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }b+tD3+
% Compute the Zernike Polynomials K?_4|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M%wj6!5
"h/{YjUS
% Determine the required powers of r: -{>Nrx|
% ----------------------------------- =nEl m*E
m_abs = abs(m); p~h=]o'i
rpowers = []; Q{Gi**<
for j = 1:length(n) (9h{7<wD`
rpowers = [rpowers m_abs(j):2:n(j)]; C#X0Cn0ln
end K1Tq7/N
rpowers = unique(rpowers); YF=@nR$_~j
;p"G<n
% Pre-compute the values of r raised to the required powers, 9n!<M)E
% and compile them in a matrix: E+$vIYq:W
% ----------------------------- qoBm!|q
if rpowers(1)==0 E[J7FgU)<S
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,TD@s$2x
rpowern = cat(2,rpowern{:}); D"F5-s7
rpowern = [ones(length_r,1) rpowern]; f/9]o
else da3]#%i0
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Y%$57,Bu n
rpowern = cat(2,rpowern{:}); vJ$#m_aa
end OGNjn9av
1Y410-.3w{
% Compute the values of the polynomials: {A4"KX(U
% -------------------------------------- raGov`
y = zeros(length_r,length(n)); 8=Di+r
for j = 1:length(n) H~+D2A
s = 0:(n(j)-m_abs(j))/2; hq/k}Y
pows = n(j):-2:m_abs(j); ]*pALT6
for k = length(s):-1:1
PA"xb3@I
p = (1-2*mod(s(k),2))* ... $Q1:>i@I|g
prod(2:(n(j)-s(k)))/ ... oUEpzv,J
prod(2:s(k))/ ... GmN} +(
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8vB~1tl;
prod(2:((n(j)+m_abs(j))/2-s(k))); $%VFk 53I
idx = (pows(k)==rpowers); h\KQ{-Bl
y(:,j) = y(:,j) + p*rpowern(:,idx); &C3J6uCm+
end )`Tny]M
F ]\4<
if isnorm >Vc_.dR)E
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); AFL* a*
end .O'S@ %]
end o[^% 0uVF
% END: Compute the Zernike Polynomials XU.ZYYZ=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3a9Oj'd1M
lyKV^7}
% Compute the Zernike functions: j& f-yc'i-
% ------------------------------ zt!mx{l'
idx_pos = m>0; +L*2 6ar6
idx_neg = m<0; PdJtJqA8h\
,T_HE3 K
z = y; {<&I4V@+
if any(idx_pos) wQ[~7 ,o
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Z=DAA+T`
end V@<tIui$
if any(idx_neg) NFPW#-TF
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); lRnst-inlI
end q~.\NKc
A\lnH5A
% EOF zernfun