切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10902阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 5d-rF:#  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! U@53VmrOy  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Q(x/&]7=V  
    function z = zernfun(n,m,r,theta,nflag) Y+5aT(6O  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Xv+,Z<>iQ  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N o4agaA3k  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Y8N+v+V/  
    %   unit circle.  N is a vector of positive integers (including 0), and u-QHV1H`(  
    %   M is a vector with the same number of elements as N.  Each element m^w{:\p  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ,;f5OUl?[  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, )4> 7X)j>  
    %   and THETA is a vector of angles.  R and THETA must have the same {]$)dz5  
    %   length.  The output Z is a matrix with one column for every (N,M) #5iy^?N"w  
    %   pair, and one row for every (R,THETA) pair. Kq(JHB+  
    % B&<P>AZ  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike DcE4r>8B  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), JEF;Q  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral R@U4Ae{+  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, | /n  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized g{f7 } gTG  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. uQ7lC~  
    % pF(6M3>IN  
    %   The Zernike functions are an orthogonal basis on the unit circle. B>@l(e)b  
    %   They are used in disciplines such as astronomy, optics, and  GInw7  
    %   optometry to describe functions on a circular domain. 1MmEP  
    % *]nk{jo2  
    %   The following table lists the first 15 Zernike functions. 9!.S9[[N  
    % ,H1K sN  
    %       n    m    Zernike function           Normalization k= &n>P  
    %       -------------------------------------------------- whm| "}x)u  
    %       0    0    1                                 1 Wfy+9"-;s  
    %       1    1    r * cos(theta)                    2 KLG29G  
    %       1   -1    r * sin(theta)                    2 \[]?9Z=n  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) /rky  
    %       2    0    (2*r^2 - 1)                    sqrt(3) U+C ^"[B  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) #T@k(Bz{L  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Ul}<@d9: B  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) NK'@.=$  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ZT8LMPC  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) |sEuhP\A3  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) y|zIu I-p  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) KP7 {  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) UcH#J &r  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \ FJ ae  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) [B+:)i  
    %       -------------------------------------------------- (/s~L*gF{  
    % TKgN31`  
    %   Example 1: "h|kf% W  
    % oB~V~c}8x  
    %       % Display the Zernike function Z(n=5,m=1) ;cZp$ xb3  
    %       x = -1:0.01:1; 2e03m62*  
    %       [X,Y] = meshgrid(x,x); X{<taD2~  
    %       [theta,r] = cart2pol(X,Y); _O ;4>  
    %       idx = r<=1; H6Bw3I[  
    %       z = nan(size(X)); dZI["FeO&d  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); >#Xz~xI/I  
    %       figure R[)bGl6#  
    %       pcolor(x,x,z), shading interp p1K]m>Y{?  
    %       axis square, colorbar c{KJNH%7  
    %       title('Zernike function Z_5^1(r,\theta)') cG%X}ZV5  
    % /Ov1eQBNG  
    %   Example 2: pOh<I {r1  
    % )xKW  
    %       % Display the first 10 Zernike functions nh"dPE7^  
    %       x = -1:0.01:1; u[oV Jvc  
    %       [X,Y] = meshgrid(x,x); Z0<s -eN:  
    %       [theta,r] = cart2pol(X,Y); !2^~ar{2  
    %       idx = r<=1; B2'TRXIm1U  
    %       z = nan(size(X)); d>F.C>  
    %       n = [0  1  1  2  2  2  3  3  3  3]; %g{)K)$,ui  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; jA[Ir3  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; #S x  
    %       y = zernfun(n,m,r(idx),theta(idx)); 4nQ5zwiV  
    %       figure('Units','normalized') (|rf>=B+H  
    %       for k = 1:10 `@v;QLD"d<  
    %           z(idx) = y(:,k); hUuKkUR+Ir  
    %           subplot(4,7,Nplot(k)) kytHOn#  
    %           pcolor(x,x,z), shading interp c!'\k,ma<9  
    %           set(gca,'XTick',[],'YTick',[]) fOME&$=O  
    %           axis square 3D1y^I  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Bq1}"092  
    %       end <RZqs  
    % dv+ZxP%g  
    %   See also ZERNPOL, ZERNFUN2. 9q 2 vT^  
    o4J@M{xb_  
    %   Paul Fricker 11/13/2006 -sZb+2tDa  
    aM(#J7;  
    ~PpDrJ; Va  
    % Check and prepare the inputs: E*wG5] at  
    % ----------------------------- I,`;#Q)nx  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T93st<F=R  
        error('zernfun:NMvectors','N and M must be vectors.') MGxkqy?  
    end yT5OFD|T  
    S'kgpF"bm  
    if length(n)~=length(m) Bz kfB:wr  
        error('zernfun:NMlength','N and M must be the same length.') gIusp917  
    end a]xGzv5  
    `b]wyP  
    n = n(:); VZ =:`)  
    m = m(:); K~I?i/P=z  
    if any(mod(n-m,2)) 6vR6=@(`>  
        error('zernfun:NMmultiplesof2', ... >]xW{71F@  
              'All N and M must differ by multiples of 2 (including 0).') rpDBKo  
    end o 9/,@Ri\5  
    ('UTjV  
    if any(m>n) /<IWdy]$3  
        error('zernfun:MlessthanN', ... / o I 4&W  
              'Each M must be less than or equal to its corresponding N.') _X mxBtk9f  
    end )S 4RR2Q>  
    >]ZE<.  
    if any( r>1 | r<0 ) Us!ZQ#pP  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]Y!Fz<-;P  
    end l U4 I*  
    m- ibS:  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) }LKD9U5;8  
        error('zernfun:RTHvector','R and THETA must be vectors.') `O%nDry  
    end cL ~WDW/  
    6)ln,{  
    r = r(:); 'SoBB:  
    theta = theta(:); cz /cY:o)  
    length_r = length(r); cNxxX!P/  
    if length_r~=length(theta) ge.>#1f}  
        error('zernfun:RTHlength', ... j BBl{  
              'The number of R- and THETA-values must be equal.') kp*!  
    end yiI oqvP  
    #asi%&3pP  
    % Check normalization: *<y9.\z Y<  
    % -------------------- fCF.P"{W"  
    if nargin==5 && ischar(nflag) u)I\R\N  
        isnorm = strcmpi(nflag,'norm'); f!R7v|j P  
        if ~isnorm 5N%d Les  
            error('zernfun:normalization','Unrecognized normalization flag.') +6P[TqR  
        end #k|f>D4  
    else [+pa,^  
        isnorm = false; %=9o'Y,4  
    end Z_xQ2uH$:  
    G?=&\fg_:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'N+;{8C-{  
    % Compute the Zernike Polynomials 4K~=l%l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :r hB=  
    o5DT1>h  
    % Determine the required powers of r: `iM%R3&  
    % ----------------------------------- 9N)I\lcY  
    m_abs = abs(m); N{Z+  
    rpowers = []; UhL1Y NF_  
    for j = 1:length(n) tP*Kt'4W  
        rpowers = [rpowers m_abs(j):2:n(j)]; z,x )Xx  
    end h ~yTkN]  
    rpowers = unique(rpowers); gj @9(dk%  
    LO)!Fj4|  
    % Pre-compute the values of r raised to the required powers, [~ 2m*Q  
    % and compile them in a matrix: {}k3nJfE  
    % ----------------------------- EFh^C.S8  
    if rpowers(1)==0 0RMW>v/7kL  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Kc2y  
        rpowern = cat(2,rpowern{:}); J8r8#Zz  
        rpowern = [ones(length_r,1) rpowern]; d4  \  
    else H@G$K@L  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); k)*apc\W  
        rpowern = cat(2,rpowern{:}); G"J nQ  
    end @W/k}<07  
    cl `Wl/Q#  
    % Compute the values of the polynomials: pgh(~ [  
    % -------------------------------------- l~o!(rpX  
    y = zeros(length_r,length(n)); gggD "alDx  
    for j = 1:length(n) .x,y[/[[)  
        s = 0:(n(j)-m_abs(j))/2; XWS]4MB+vm  
        pows = n(j):-2:m_abs(j); ud5}jyJ  
        for k = length(s):-1:1 `G\Gk|4; 2  
            p = (1-2*mod(s(k),2))* ... saiXFM 7J  
                       prod(2:(n(j)-s(k)))/              ... gFHBIN;u  
                       prod(2:s(k))/                     ... J QnaXjW2  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... RIXeV*ix  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); T5zS3O  
            idx = (pows(k)==rpowers); hN!;Tny  
            y(:,j) = y(:,j) + p*rpowern(:,idx); b)KEB9w  
        end )G^k$j  
         E9j<+Ik  
        if isnorm s.Z{mnD6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %|}*xMQ  
        end T%6JVFD  
    end bS~Y_]B  
    % END: Compute the Zernike Polynomials \u[}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dX)a D $m  
    aHuMm&  
    % Compute the Zernike functions: *w(n%f  
    % ------------------------------ Lg!E  
    idx_pos = m>0; w ods   
    idx_neg = m<0; TY %zw6 #p  
    bk<Rp84vL  
    z = y; ;6pB7N  
    if any(idx_pos) 77[TqRLf  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7afG4 (<k  
    end 6}I X{nQI  
    if any(idx_neg) Kq Jln)7  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Pa Q lQ#  
    end &-Ch>:[  
    dGOFSH  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) !;&\n3-W  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. JYw?  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated V? tH/P  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive DL4`j>2Ov  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, WM|G/'q  
    %   and THETA is a vector of angles.  R and THETA must have the same Gn^lF7yE  
    %   length.  The output Z is a matrix with one column for every P-value, ,}'8. f  
    %   and one row for every (R,THETA) pair. PjBAf'  
    % W+Mw:,>*s  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 4w ,&#L  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Pv2uZH(  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) |s/N ?/qi  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Q<AOc\oO  
    %   for all p. }WFI /W'  
    % 0~BaQ, A @  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 8Snv, Lb`^  
    %   Zernike functions (order N<=7).  In some disciplines it is 3>7{Q_5  
    %   traditional to label the first 36 functions using a single mode ck0%H#BYY  
    %   number P instead of separate numbers for the order N and azimuthal )-5eIy  
    %   frequency M. _J,rql@nG<  
    % d'MZ%.#  
    %   Example: yW'{Z]09  
    % vv,<#4d  
    %       % Display the first 16 Zernike functions ,yNuz@^ P  
    %       x = -1:0.01:1; CtN\-E-  
    %       [X,Y] = meshgrid(x,x); KPz0;2}  
    %       [theta,r] = cart2pol(X,Y); #$S~QS.g  
    %       idx = r<=1; a+lNXlh=  
    %       p = 0:15; JjI1^FRd  
    %       z = nan(size(X)); Q3hf =&$  
    %       y = zernfun2(p,r(idx),theta(idx)); };rp25i  
    %       figure('Units','normalized') i@rUZYF  
    %       for k = 1:length(p) rucw{) _  
    %           z(idx) = y(:,k); &aIFtlC  
    %           subplot(4,4,k) J#Y0R"fo  
    %           pcolor(x,x,z), shading interp # A4WFZ  
    %           set(gca,'XTick',[],'YTick',[]) f9#srIx+  
    %           axis square L3oL>r'|  
    %           title(['Z_{' num2str(p(k)) '}']) $S<B\\ %  
    %       end {,Vvm*L/  
    % "ADI .  
    %   See also ZERNPOL, ZERNFUN. '6NrL;  
    P^F3,'N  
    %   Paul Fricker 11/13/2006 =PA?6Bm  
    6BA$v-VVU  
    g#74c'+  
    % Check and prepare the inputs: 3S_H&>K  
    % ----------------------------- ;Ngk"5  
    if min(size(p))~=1 6;Z`9PGp  
        error('zernfun2:Pvector','Input P must be vector.') OT$ Ne  
    end ~v\ W[  
    QlB9m2XB  
    if any(p)>35 . U6(>6-  
        error('zernfun2:P36', ... mYo~RXKGF  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 4"eFR'g  
               '(P = 0 to 35).']) ,(h -  
    end #]1 jvB  
    %-fXa2  
    % Get the order and frequency corresonding to the function number: M .6BFC  
    % ---------------------------------------------------------------- +`"Tn`O  
    p = p(:); a Tm R~k  
    n = ceil((-3+sqrt(9+8*p))/2); + @fEw  
    m = 2*p - n.*(n+2); xPm{'J+b~  
    O95gdxc  
    % Pass the inputs to the function ZERNFUN: |H5GWZ O{^  
    % ---------------------------------------- bnL!PsG$K,  
    switch nargin /8]K}yvR  
        case 3 Q}\\0ajS)  
            z = zernfun(n,m,r,theta); 9xJtDdy-O  
        case 4 cX1?4e8  
            z = zernfun(n,m,r,theta,nflag); Q'=7#_  
        otherwise Jjj;v2uSK  
            error('zernfun2:nargin','Incorrect number of inputs.') dR=sdqS#J  
    end 71E~~$  
    _nz_.w0H9  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) {I0!q"sF  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. l{3zlXk3z  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of i4>M  
    %   order N and frequency M, evaluated at R.  N is a vector of C[TjcHoA  
    %   positive integers (including 0), and M is a vector with the njJTEUd">  
    %   same number of elements as N.  Each element k of M must be a lBG=jOS  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) KRd'!bG=1  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 89 m.,  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 6*$A/D  
    %   with one column for every (N,M) pair, and one row for every EGv]K|  
    %   element in R. qh}+b^Wi  
    % .i )K#82  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- KMfIp:~  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is @Jd eOL;  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to l_04b];  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ,'Y KL",  
    %   for all [n,m]. 2\64~a^  
    % vnbY^ASdw  
    %   The radial Zernike polynomials are the radial portion of the u#u/uS"  
    %   Zernike functions, which are an orthogonal basis on the unit d7g$9&/q  
    %   circle.  The series representation of the radial Zernike +DefV,Ny  
    %   polynomials is PQF 40g1}  
    % K0'p*[yO/j  
    %          (n-m)/2 ODpAMt"  
    %            __ ]3]B$  
    %    m      \       s                                          n-2s &l`_D?{<#  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r )9/iH(  
    %    n      s=0 5xUZeLj  
    % P^q!Pye  
    %   The following table shows the first 12 polynomials. M`=\ijUwN  
    % $b^niL  
    %       n    m    Zernike polynomial    Normalization YGyw^$.w  
    %       --------------------------------------------- LoJEchRK  
    %       0    0    1                        sqrt(2) {<Y!'WL{  
    %       1    1    r                           2 6 AY~>p  
    %       2    0    2*r^2 - 1                sqrt(6) F!I9)PSj  
    %       2    2    r^2                      sqrt(6) Y nTx)uW  
    %       3    1    3*r^3 - 2*r              sqrt(8) -c0*  
    %       3    3    r^3                      sqrt(8) *fyaAv  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) P()&?C  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) \q!TI x  
    %       4    4    r^4                      sqrt(10) "f3mi[  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) / a}N6KUi  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) -~~R?,H'Z_  
    %       5    5    r^5                      sqrt(12) 2=7[r-*E  
    %       --------------------------------------------- ]$UTMuO Ql  
    % +-V4:@  
    %   Example: mH<|.7~0  
    % $Mx?Y9!  
    %       % Display three example Zernike radial polynomials O#8lJ%?  
    %       r = 0:0.01:1; \\oa[nvL~  
    %       n = [3 2 5]; RWDPsZC  
    %       m = [1 2 1]; (o\D=!a  
    %       z = zernpol(n,m,r); ,&O&h2=  
    %       figure -@'RYY=  
    %       plot(r,z) Mg^A,8lrm  
    %       grid on G%jV}7h  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') cI7aTLC"s  
    % 8JMxA2tZhG  
    %   See also ZERNFUN, ZERNFUN2. .v=n-k7  
    h,fahbH -  
    % A note on the algorithm. {pRa%DF  
    % ------------------------ r24 s_  
    % The radial Zernike polynomials are computed using the series ^#w9!I{4.  
    % representation shown in the Help section above. For many special %N7G>_+  
    % functions, direct evaluation using the series representation can 0(uba3z  
    % produce poor numerical results (floating point errors), because (r<F@)J  
    % the summation often involves computing small differences between Ym-mfWo^#  
    % large successive terms in the series. (In such cases, the functions &MONg=s3  
    % are often evaluated using alternative methods such as recurrence +&1#ob"6lq  
    % relations: see the Legendre functions, for example). For the Zernike 0J5$ Yw1'F  
    % polynomials, however, this problem does not arise, because the 5VN~?#K  
    % polynomials are evaluated over the finite domain r = (0,1), and ~dsx|G?p  
    % because the coefficients for a given polynomial are generally all 6UPGE",u  
    % of similar magnitude. #Oa`P  
    % 94rx4"AN8;  
    % ZERNPOL has been written using a vectorized implementation: multiple ej(w{vl  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] W3MH8z   
    % values can be passed as inputs) for a vector of points R.  To achieve 3[kl` *`  
    % this vectorization most efficiently, the algorithm in ZERNPOL ufA0H J)Yg  
    % involves pre-determining all the powers p of R that are required to qV$0 ";d  
    % compute the outputs, and then compiling the {R^p} into a single 7B)@ aUj$  
    % matrix.  This avoids any redundant computation of the R^p, and EY:EpVin  
    % minimizes the sizes of certain intermediate variables. IPY[x|  
    % Z= pvoTY  
    %   Paul Fricker 11/13/2006 Ao9|t;i  
    gX5.u9%C\  
    K}LF ${bS  
    % Check and prepare the inputs: M!PK3  
    % ----------------------------- fAT M?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) eoiC.$~\  
        error('zernpol:NMvectors','N and M must be vectors.') !-B|x0fs  
    end iSMVV<7  
    3KKq1][  
    if length(n)~=length(m) #t">tL  
        error('zernpol:NMlength','N and M must be the same length.') {\k:?w4  
    end (rf8"T!"  
    ,z$ U=u o  
    n = n(:); p1\E C#Q  
    m = m(:); 1lv. @-  
    length_n = length(n); ,fs>+]UY3  
    7<F{a"5P  
    if any(mod(n-m,2)) `9G1Bd8k  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') g$Ns u:L  
    end z-kB!~r  
    pH?"@  
    if any(m<0) S'q4va"  
        error('zernpol:Mpositive','All M must be positive.') xC$CRzAe5p  
    end ZV:0:k.x  
    N..@}}  
    if any(m>n) f87lm*wZ  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Z&y9m@  
    end Y &*nj`n  
    5'"9)#Ve  
    if any( r>1 | r<0 ) y]%Io]!d  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') % wh>_Ho  
    end [V,f@}m F  
    sHMZ'9b  
    if ~any(size(r)==1) d ?OsVT; U  
        error('zernpol:Rvector','R must be a vector.') &qeM YYY  
    end 6\/(TW&  
    VQ`a-DL  
    r = r(:); #mcGT\tQ  
    length_r = length(r); 'uF"O"*  
    h@(S];.  
    if nargin==4 ;rh@q4#  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); k*= #XbX  
        if ~isnorm r(/+- t  
            error('zernpol:normalization','Unrecognized normalization flag.') _WHGd&u  
        end @EB2I+[  
    else %>k$'UWzK  
        isnorm = false; 25jgM!QBXF  
    end R;2 Z~P  
    A{QA0X!p  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W&0KO-}ot  
    % Compute the Zernike Polynomials mA']*)L1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vBjrI*0  
    U>kL|X3 V  
    % Determine the required powers of r: .t|B6n!  
    % ----------------------------------- 6"Rw&3D?  
    rpowers = []; NYp46;  
    for j = 1:length(n) i@#fyU)[G  
        rpowers = [rpowers m(j):2:n(j)]; XVkCYh4,  
    end ~i/K7qZ  
    rpowers = unique(rpowers); x1R<oB |  
    >-Q=o,cl%3  
    % Pre-compute the values of r raised to the required powers, VTvNn  
    % and compile them in a matrix: 6.g k6  
    % ----------------------------- <ULydBom  
    if rpowers(1)==0 \ POQeZ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); O0 ,=@nw8.  
        rpowern = cat(2,rpowern{:}); E >lW'  
        rpowern = [ones(length_r,1) rpowern]; ;B !u=_'  
    else c0u1L@tj  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %.VFj7J  
        rpowern = cat(2,rpowern{:}); ua>YI  
    end 0Wc8\c  
    '?MT " G  
    % Compute the values of the polynomials: /#I~iYPe  
    % -------------------------------------- U/3 <p8  
    z = zeros(length_r,length_n); OtFGo 8  
    for j = 1:length_n Z</.Ss 4  
        s = 0:(n(j)-m(j))/2; -yP_S~ \n  
        pows = n(j):-2:m(j); $ z 5  
        for k = length(s):-1:1 9&} i[x4  
            p = (1-2*mod(s(k),2))* ... }IGoPCV|  
                       prod(2:(n(j)-s(k)))/          ... 8xN+LL'T{  
                       prod(2:s(k))/                 ... aJ^RY5  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Pmj%QhOYE  
                       prod(2:((n(j)+m(j))/2-s(k))); %#$K P  
            idx = (pows(k)==rpowers); ,@4~:OY  
            z(:,j) = z(:,j) + p*rpowern(:,idx); eT6T@C](  
        end  c 1o8   
         8Xjp5  
        if isnorm "8sB,$  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); c}r"O8M  
        end #cy;((zuB  
    end Th>ff)~ e  
    T.?}iz=ZEq  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  %bS1$ v\n  
    L7[f-cK2:  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Jl<pWjkZZ  
    5Od&-~O  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)